
Martin Ho�mann

Quality Evaluation of Software Architecture with

Application to OpenH.323 Protocol

Master's Thesis

in Information Technology

3rd October 2006

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Martin Ho�mann

Contact information: marho�m@cc.jyu.�, martin.ho�mann@student.hpi.uni-potsdam.de

Title: Quality Evaluation of Software Architecture with Application to OpenH.323

Protocol

Project: Master's Thesis in Information Technology

Page count: 88

Keywords: Quality Control, Quality Attributes, Metrics, Software Architecture Eval-

uation, ATAM, Telecommunication, H.323

Copyright c© 2006 Martin Ho�mann

All rights reserved.

Eigenständigkeitserklärung

Ich versichere hiermit, diese Arbeit selbständig verfasst, andere als die angegebenen

Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfs-

mittel bedient zu haben.

Martin Ho�mann Potsdam, den 03.10.2006

i

Abstract

The requirements towards software systems usually go beyond the correct function-

ality, the presence of certain quality demands are also very essential for the systems'

acceptance by the stakeholders. So quality control and management must be carried

out through the whole development process to ensure the implementation of required

quality characteristics. This thesis focuses on the quality control of the software archi-

tecture. Several approaches for evaluating the architecture are presented. Furthermore

the OpenH.323 protocol architecture is evaluated in a case study. That software archi-

tecture is evaluated with two approaches: Architecture Trade-O� Analysis Methode

(ATAM) and architectural metrics.

Zusammenfassung

Die Anforderungen an Softwaresysteme gehen weit über die reine Funktionalität hin-

aus. Für die Akzeptanz bei den Stakeholdern eines Softwaresystem sorgen vor allem

Qualitätseigenschaften wie Benutzbarkeit, E�ziens, Sicherheit und Robustheit. Um

die Realisierung dieser Eigenschaften des Systems zu gewährleisten, müssen Qualitäts-

kontrolle und -management während des gesamten Entwicklungsprozesses durchgeführt

werden. Diese Arbeit untersucht in diesem Zusammenhang die Möglichkeiten der Qual-

itätskontrolle der Software-Architektur. Es werden verschiedene Ansätze vorgestellt

und darüber hinaus wird die Sotware-Architektur des OpenH.323 Protokolls hinsichtlich

der Erfüllung von Qualitätseigenschaften bewertet. Zur Evaluierung werden die Methodiken

Architecture Trade-O� Analysis Methode (ATAM) und Architekturmetriken genutzt.

ii

Contents

List of Figures 1

List of Tables 2

1 Introduction 3
1.1 Overall Context of the Research Area 3

1.2 Research Problems and Questions . 4

1.3 Objective of this Work . 5

1.4 Structure of the Thesis . 5

2 Software Architecture 7
2.1 Meaning of Software Architecture . 7

2.2 Architectural views and descriptions 7

2.3 Utilization of Software Architecture . 11

3 Software Quality 12
3.1 Quality Models . 12

3.1.1 Quality Models in General . 12

3.1.2 ISO 9126-1 Quality Model . 13

3.2 Stakeholders and Quality Characteristics 15

3.3 Software Quality Attribute Trade-o�s 20

4 Software Architecture Evaluation 22
4.1 Early vs. Late Software Architecture Evaluation 22

4.1.1 Early Evaluation . 22

4.1.2 Late Evaluation . 22

4.2 Goals of Software Architecture Evaluation 23

4.3 Software Architecture Evaluation Methods 24

4.3.1 Questionnaires and Checklist 24

4.3.2 Scenario-based methods . 25

4.3.3 Architectural Trade-o� Analysis Method (ATAM) 26

4.3.4 Architectural Metrics . 32

4.3.5 Prototyping . 33

iii

4.3.6 Mathematical Modelling . 33

4.3.7 Summary . 34

5 OpenH.323 system 35
5.1 H.323 System Components . 35

5.1.1 Terminal . 35

5.1.2 Gateway . 36

5.1.3 Gatekeeper . 36

5.1.4 Multipoint Control Unit (MCU) 36

5.2 H.323 Protocol . 36

5.2.1 H.323 Protocol and Subprotocols 36

5.2.2 Usage Scenarios . 38

5.3 OpenH.323 protocol Software Architecture 47

5.3.1 Conceptual View of System Structure and Behaviour 47

5.3.2 Logical and Process View . 54

6 Evaluation of the OpenH.323 Protocol Architecture 57
6.1 Early Evalution with ATAM . 58

6.1.1 Utility Tree . 58

6.1.2 Realisation of Scenarios by the Architecture 59

6.2 Evaluation using Architectural Metrics 69

6.3 Cognitions from the Evaluation . 70

7 Conclusion 74

8 References 76

Glossary 79

Appendices

A Additional Diagrams 81

iv

List of Figures

3.1 ISO 9126-1 quality characteristics with their sub-characteristics [15] . . 15

3.2 Role-based quality model in FMC ER-diagram notation 17

3.3 Re�nement process for quality characteristic security 18

3.4 Re�nement process for quality characteristic maintainance and e�ciency 19

3.5 Software Quality Attribute Trade-o� 21

5.1 H.323 Components . 35

5.2 H.323 Protocol Architecture with Subprotocols 37

5.3 H.323 Call Setup . 40

5.4 H.323 Capability Exchange between two Endpoints 41

5.5 H.323 Call Initiation . 42

5.6 H.323 Call Termination . 43

5.7 Message exchange for Registration and Admission 44

5.8 Establishing Connection between H.323 Endpoint and Telephon in PSTN 45

5.9 Closing of Signalling Channel between endpoint and Gateway 46

5.10 Messages Exchange for Releasing Bandwidth 47

5.11 Conceptual view on the OpenH.323 protocol software architecture . . . 48

5.12 Interaction of main components during call 50

5.13 Interaction of main components during call (cont.) 51

5.14 H.245 protocol loop . 52

5.15 Handling of H.225 protocol . 53

5.16 Static class structure . 54

5.17 Inheritance hierarchy of H323Negotiator class 55

6.1 Utility tree for OpenH.323 protocol evaluation 59

6.2 Inheritance hierachy of the abstract channel class 65

A.1 Communication between objects for starting data reception [28] 81

A.2 Communication between objects for starting data transmission [28] . . 82

A.3 Messages for call initiation [28] . 83

A.4 H225CallThread messages for call setup [28] 84

A.5 Communication between objects for opening data channel [28] 85

1

List of Tables

4.1 Evaluation team roles with their responsibilities [16] 27

5.1 Mapping of Conceptual and Logical View 56

6.1 ATAM output for the scenario E1 . 61

6.2 ATAM output for the scenario E2 . 63

6.3 ATAM output for the e�ciency scenarios E3 64

6.4 ATAM output for the maintainability scenarios 66

6.5 ATAM output for the security scenarios 68

6.6 Coupling and cohesion metrics for the architecture's main classes . . . 69

6.7 Cyclomatic Complexity levels with related risk level [29] 70

6.8 Cyclomatic Complexity of essential methods 70

2

1 Introduction

1.1 Overall Context of the Research Area

Nowadays, software systems are utilized in many industrial and service-oriented �elds

either as part of products or for supporting the production. The tasks performed by

these systems are very di�erent. For instance, software systems are responsible for

controlling critical processes in product of the automobile and aerospace industry, or

are important parts of information and communication systems (ICT-systems). These

ICT-systems, for instance, support companies' business processes.

Since software performs such important tasks, it is essential for the systems' stake-

holders and also for the systems' environments (e.g. other software and hardware

systems) that software systems ful�l their required functionality correctly. Even if

those systems provide the required functionality it nevertheless is possible that the

system's stakeholders are not satis�ed with the system because of the absence of so-

called non-functional requirements or quality characteristics like, for instance, safety,

performance, reliability, availability, or maintainability. Furthermore, the increasing

complexity of the software systems which also consist of third-party or common-of-the-

shelf (COTS) software components, complicates the development of software systems

satisfying the expectations of all stakeholders. To ensure that a system disposes be-

yond its required functionality the quality control of these non-functional requirements

is necessary. Usually, the quality of the system is evaluated regarding the functional

and non-functional requirements by testing. But testing the implemented solution is

performed at a relatively late stage in the development process and found insu�ciencies

regarding the system's requirements have to be corrected in the previous development

phases. Nevertheless, insu�ciencies are sometimes recognized after the system is in-

stalled and running, for example, during the maintenance. To enforce changes at that

point in the system's life cycle is even more cost intensive. This means if it would be

possible to detect at least some of those insu�ciencies in earlier development stages

would be less cost and resource intensive. The �rst important output of the develop-

ment process is the architecture which is a system description regarding the system's

structure and behaviour as described in Chapter 2. That means an evaluation of the

architecture regarding the functional and non-functional requirements could serve de-

3

tecting architectural �aws which lead to mentioned system's weaknesses. Corrections

in early development stage are much easier to implement than in the later stages of

the development process. In general, the early identi�cation and estimation of risks re-

lated to architectural decisions would improve the system's quality and should be part

of the development process. That is why architecture evaluation has been a growing

area of interest in academia and ICT-industry lately. The research project AISA ([5])

addresses the investigation of architecture evaluation. Actually, the research topic of

the AISA project is the quality management of enterprise and software architectures

in the development of organizations and information systems, as well as strategies,

methods, and tools for it. The aim of quality management activities related to the

software architecture is to create and maintain a software architecture that enables

the system to attain its desired quality attributes. Architectural key success factors,

evaluation criteria, and metrics both at enterprise and software architecture level are

also investigated in the AISA project. Furthermore, this project aims on research and

development of quality management strategies and methods for architectures, partic-

ularly evaluation methods. This thesis is related to the investigation of evaluation

criteria and possibilities for software architecture evaluation.

1.2 Research Problems and Questions

The general research problem question is how well can one control the quality of soft-

ware architecture by analyzing the architectural description. This means which meth-

ods and measurements can be utilized to gain the relevant information for assessing

the system's quality attributes from the architectural description and what are the

required descriptions to perform such an evaluation. Actually, in the context of this

paper the Architecture Trade-O� Analysis Method (ATAM) is used for evaluating the

software architecture of OpenH.323 protocol. The related matters of interest are:

• What kind of architectural description is needed?

• How can it be used with ATAM?

• Is possible to evaluate also runtime characteristics like e�ciency?

Since the architecture is the system's structural and behavioural description, it in fact

basically permits or excludes a system to ful�l its quality attributes. That circumstance

should enable the evaluation of such a software architecture regarding quality attributes

and quality metrics by analyzing the architecture's design. Some quality attributes

are performance, security, and reliability as well as functionality and extensibility.

4

These attributes may con�ict, and trade-o�s among alternative design decisions are an

essential part of designing a software architecture. According to [1], at the moment

software architecture evaluation criteria and metrics are neither established nor detailed

like in contrast the quality criteria of a software product which are even standardized.

Further, it is not speci�ed what kind of metrics are measurable by design analysis to

make statements on quality.

1.3 Objective of this Work

This thesis aims on the evaluation of the OpenH.323 protocol's software architecture.

This Open Source protocol software enables video conferencing over IP networks. The

evaluation is performed with the Architecture Trade-O� Analysis Method (ATAM).

The ATAM reveals how well the architecture satis�es particular quality goals and

since it recognizes that architectural decisions a�ect more than one quality attribute

that means this method enables the identi�cation of trade-o�s among several quality

attributes. ATAM is described in Section 4.3.3. To perform the ATAM evaluation,

the main stakeholders and their quality requirements are identi�ed. Furthermore the

architectural description for the evaluation is elaborated from the source code. The

architecture must be described from di�erent points of view to address di�erent stake-

holder roles as described in Section 3.2. The di�erent description views are described

in Section 2.1.

1.4 Structure of the Thesis

The second chapter of this paper de�nes the term software architecture and presents

di�erent views on software architecture which have to be considered by an architectural

description to address the di�erent stakeholders and aspects of software architecture.

Krutchen's 4+1 views ([9]) are introduced and discussed. Furthermore, it is stated

why for the case study Soni's conceptual view ([10]) is utilized. Also the description

techniques which are used to illustrate the views are introduced.

The third chapter deals with software quality. The quality of a software system is

primarily perceived by its stakeholders because they have the best impression if the

software system meets their requirements towards it. These requirements are based on

the stakeholders' expectations and needs. Usually quality models are utilized to eval-

uate the quality of a software system. These models map quality characteristics like

5

e�ciency, maintainability, security, and usability to measures. Further, an approach

of a role-base quality model is given, this model also considers the relation between

stakeholder roles and quality characteristics. Furthermore, the mentioned quality may

con�ict, and trade-o�s among alternative design decisions are an essential part of de-

signing a software architecture.

The fourth chapter deals with the evaluation of the software system's quality character-

istics on the architectural level. Software architecture evaluation is the assessment of a

software architecture regarding stakeholders' requirements which includes the system's

functionality and its quality attributes. In this chapter it is described which methods

and approaches exist for evaluating the software architecture regarding required quality

characteristics.

The �fth chapter introduces the OpenH.323 system. Firstly, the system's main com-

ponents are described. Then the protocol is presented with its subprotocols and their

tasks. Furthermore, two usage scenarios of the protocol are given to illustrate the H.323

protocol's functionality. Finally the software architecture of the protocol is described.

Therefore, the conceptual and logical view as well as the runtime behaviour of the

protocol's software components are described.

In the sixth chapter the example evaluation is performed by using a scenario-based

method and the architectural metrics approach. The evaluation outputs are presented

and analysed. This chapter is followed by a general conclusion and discussion.

6

2 Software Architecture

2.1 Meaning of Software Architecture

Since this paper deals with the evaluation of software architectures it is necessary

to de�ne what the term software architecture means in the context of this paper.

There is no single, universally de�nition, but many de�nitions [2, 3, 7] de�ne software

architecture in a similar manner. The software architecture basically must describe the

software system's components. That means their structure as well as their behaviour

and interaction with each other because the whole software system's behaviour results

from its components' behaviour. The authors of [2] de�ne software architecture as

follows: The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them.

2.2 Architectural views and descriptions

Most literary sources [2, 9, 10] agree in the point that for a software architecture de-

scription di�erent views are necessary for describing the di�erent aspects of a software

system. Among these views are description of the static organization of the software

system and the development environment as well as the description of the hardware

architecture.

A well-known approach is Kruchten's model of the 4+1 views [9]. This model con-

sists of �ve main views:

• logical view

• process view

• development view

• physical view

• scenarios

7

In the following these views are explained: The logical view is an object-oriented de-

composition of the software system. This view mainly supports the system's func-

tional requirements because the decomposition in objects is achieved by abstracting

from these functional requirements. That means a certain object or group of objects

ful�ls a certain functional requirement. These objects exploit the principles of ab-

straction, encapsulation, and inheritance. The means of description of the logical view

are mainly Uni�ed Modelling Language (UML) representations like object and class

diagrams which contain information on the objects' or classes' operations and charac-

teristics. Similar views also exist in other architectural description models, e.g. in [2]

this view is called module view because instead of objects the system is decomposed into

modules which ful�l certain functionality. Although this view supports the ful�lment of

functional requirements it does not describe the system under execution which means

the runtime behaviour is not described. Therefore, Krutchen's model also includes the

process view. The process view considers some non-functional requirements like per-

formance and availability. Furthermore aspects like concurrency, distribution, system's

integrity, and fault tolerance are taken into account. Addressing these aspects is sup-

ported because the process view considers the execution of processes which consist of

tasks. A task can, for example, be implemented as thread that means a task is the most

elementary unit of control. The process view describes the scheduling of tasks and also

their distribution over several parallel machines. Also the inter-task communication is

captured with this view by mechanisms like synchronous and asynchronous message-

based communication services, remote procedure calls, event broadcast, rendezvous or

shared memory. The logical and process view are connected by the relation between

the logical view's objects' operations and the tasks of the process view, because the

operations correspond to runtime tasks. In the literature [2] also the terms component

and connector are often used regarding the runtime behaviour description. At this

component refers to a running system component and connector refers to the interac-

tion between two or more of these components. Obviously, a component is comparable

with Kruchen's process [9] and a connector with one of the inter-task communiction

means used in Kruchten's process view [9].

The development view describes the software architecture as an organization of modules

and subsystems. The purpose of this decomposition is to create chunks which can be

developed concurrently by di�erent development teams. The physical view focuses on

mapping the software on an underlying hardware platform. It mainly considers which

processes of the process view or subsystems of the development view are executed on

which hardware node. Finally, the scenario view re�ects the important functional re-

8

quirements which the system must ful�l. That is why the scenarios are similar to the

use cases in the requirement documents. The four other views have to describe how

the ful�lment of the scenarios is supported and implemented by the architecture.

Obviously, Krutchen's 4+1 views [9] aim on support di�erent stakeholder roles by

identifying the architecture's aspects they are interested in. That means each view

transfers knowledge about the architecture on an abstraction level which addresses

only certain stakeholder roles. Systems engineers get the facts which they want to

know from the physical view, then the process view. End-users, customers, data spe-

cialists obtain their needed information from the logical view. Project managers and

software con�guration sta� use the development view.

I disagree with the author of [9] in the point that end-users and customers can ob-

tain the knowledge about the architecture from the logical view. Since the author

suggests the use of UML class diagrams to describe this view, I think that this code-

based description is more understandable for developers than for users and customers.

Furthermore the decomposition of the architecture into objects which exist at runtime

in the memory is probably the wrong means for explaining the structure of system on

a general level. That is why I prefer also to use a conceptual view for the architectural

description. Such a conceptual view is described in Soni's architectural description

model in [10]. This conceptual view is a very high-level structure of the system, using

functional components and relationships (connectors) between them. The conceptual

architecture description is independent of implementation decisions and interaction

protocols between components. This ensures that the level of abstraction is general

enough that it should be understandable for all groups of stakeholders even for those

with a less strong technical background like end-users or customers.

Soni's view model ([10]) proposes three further views which are:

• module architecture

• execution architecture

• code architecture

The module architecture is a decomposition of the system into subsystems, functional

modules, and interfaces between them. So implementation details are taken into ac-

count. This view corresponds to Krutchen's development view ([9]) which describes the

software architecture as an organization of modules and subsystems too. Soni's execu-

tion architecture regards the system at runtime. It describes the dynamic structure of

9

the system in terms of tasks, processes, and address spaces. Further the communiction

between these mentioned runtime elements and the allocation of resources is described

by that view. The execution architecture can be mapped to Krutchen's process view

([9]). According to [10], the code architecture is used to organize the source code into

language level modules, directories, �les, and libraries. This view is not regarded by

Krutchen's model. In contrast to Krutchen's 4+1 views ([9]), Soni's model does not

take the underlying hardware platform into account

For the case study, the implementation of the OpenH.323 system used as described

in Section 5.1. Knowledge of the structural and behavioural characteristics is gained

through reverse engineering. At �rst the architecture from the conceptual point of view

is described to give a general overview of the functional components with their relations

towards each other. This description is as far as possible independent of implementa-

tion details. So this architectural description belongs to an early development stage

and should be suited for an early evaluation method like ATAM which is described

in Section 4.3.3. As description means for the conceptual architecture, as described

in [10], Fundamental Modeling Concepts (FMC) block diagrams are used, they enable

an abstract composational description of the software system. Their main graphical

elements are agents, storages and channels. FMC notations are described in [4]. The

conceptual description can be elaborated by a description of Kruchten's logical view

[9]. That means a description of objects and the functionality they implement. The

logical view will be described with UML class diagrams as the author of [9] proposes.

Both description illustrate the structure of the software system but they do not contain

much information of the system's runtime behaviour. Therefore a description accord-

ing to Krutchen's process view [9] is necessary. The used means of description are petri

nets and UML sequence diagrams.

This paper foregoes the development and physical view because the decomposition

into subsystems for enabling concurrent development is not relevant for the case study.

A description of the underlying hardware is not necessary either because the OpenH.323

software is only executable on a single processor x86 hardware platform.

The description of the OpenH.323 protocol software architecture is given in Section

5.3.

10

2.3 Utilization of Software Architecture

Software Architecure described through di�erent views which are introduced in the

previous Section, can be utilized for several essential tasks during the development

process of the system. The following purposes of software architecture are a summary

of software architecture's purposes which can be found in the book [2] and in the

paper [6]. First of all, the architecture is a means of communication, which means sev-

eral stakeholders like users, developers, administrators, managers, and architects can

discuss and negotiate about the characteristics of the software system by using the soft-

ware architecture as a proxy of the planned software system. In addition, the software

architecture presents the earliest design decisions, which means the software architec-

ture is basis for further development, deployment, and the maintenance of the software

system. Hence, the software architecture has a deep impact on the software system's

whole life cycle. Moreover, parts of an architecture can be reused as components for an

other architecture. The authors of [2] call this reuse of a software architecture transfer-

able abstraction of a system. That means if an architecture contains components which

ful�l single and precise tasks and they are relatively independent of other components

than those components can be reused in other architectures. That is why not only the

reuse aspect should be mentioned, the architecture can also enable the integration of

third-party components by using the components' interfaces. This ability to integrate

other components is also called openness of an architecture. Furthermore, the archi-

tecture de�nes what exactly has to be development so it is a guideline and a means of

control for the system development. Then the software architecture can be evaluated

regarding the system's fuctional and non-functional requirements. That means the ar-

chitecture is also used for quality control and quality assurance. Software architecture

evaluation is described in Section 4.1.2.

11

3 Software Quality

3.1 Quality Models

3.1.1 Quality Models in General

Software quality models have been a research matter since the 70's which is shown by

the penned literature at that time [11, 12]. In their paper [12] the authors give an

overview of quality attributes and create a quality model which mainly corresponds

with the ISO 9126-1 quality model (ISO/IEC, 1998) which standardizes a software

product's quality, as described in Section 3.1.2.

To ensure that a software product correspond to the demanded software quality so

called quality models have been developed. These models are based on the decomposi-

tion of the overall quality into abstract quality characteristics which are necessary for

meeting the stakeholders' requirements. Each of these characteristics can be further

re�ned into one or more sub-characteristics which also can be re�ned again. This re-

�nement process results in a tree of quality characteristics whose leaves are concrete

quanti�able quality indicators. These quality indicators are so called metrics.

There are two classes of software metrics: process metrics and product metrics. The

process metrics are used for evaluating the development process; common metrics are

cost and time. The second class contains the product metrics which are needed for

evaluating the product's quality attributes. In the context of this paper the de�nition

of IEEE Standard 1061 [8] is used. It de�nes metric as a function which assigns to a

software unit a value, this value represents the degree of ful�lment of a certain quality

attribute. Metrics can be further distinguished in external and internal metrics. In-

ternal metrics are applied to the software system under construction that means they

measure code characteristics, for example, code complexity is an internal metric. Ex-

ternal metrics are applied to the executed software system. A typical external metric is

the so-called Mean Time To Failure (MTTF) which represents ratio between the over-

all operating time of the system and the number of failures MTTF = operating time
number of failures

.

MTTF is one of the metrics used for evaluating the attribute Reliability.

12

The tree structure of quality characteristics naturally di�er according to the di�erent

quality requirements for di�erent software systems. That is why the existing quality

models are actually meta models which have to be adjusted regarding to the speci�c

quality requirements. According to [21] a quality model is taxonomy of quality char-

acteristics for specifying and evaluating non-functional requirements.

3.1.2 ISO 9126-1 Quality Model

In 1998 the ISO/IEC published their ISO 9126-1 quality model (ISO/IEC, 1998) which

standardizes quality for every software product and so the implementation of quality

into software is adapted to this standardization. This quality model de�nes six char-

acteristics which serve the ful�lment of functional and non-functional requirements.

Quality characteristics only refer to non-functional requirements that is why the func-

tionality is not regarded in the context of that paper. The ISO 9126-1 quality model

includes functionality but that con�icts with the de�nition quality characteristics. But

as mentioned above, it depends on the speci�c non-functional requirements of the

software which of these characteristics proposed by the ISO 9126-1 quality model are

really relevant for the speci�c software. The proposed �ve quality characteristics are

described in the following:

• reliability

• usability

• e�ciency

• maintainability

• portability

In the following the de�nitions for all these �ve quality characteristics according to the

ISO 9126-1 quality model, as described in [15], are given.

Reliability
Reliability is the capability of the software product to maintain its level of performance

under stated conditions for a stated period of time.

13

Usability
Usability is the capability of the software product to be understood, learned, used and

attractive to the user, when used under speci�ed conditions (the e�ort needed for use).

E�ciency
E�ciency is the capability of the software product to provide appropriate performance,

relative to the amount of resources used, under stated conditions 1 (what the software

does to ful�l needs).

Maintainability
Maintainability is the capability of the software product to be modi�ed. Modi�cations

may include corrections, improvements or adaptations of the software to changes in the

environment and in the requirements and functional speci�cations (the e�ort needed

to be modi�ed).

Portability
Portability is the capability of the software product to be transferred from one environ-

ment to another. The environment may include organizational, hardware or software

environment. Each of these quality characteristics can be re�ned to a set of sub-

characteristics.

The six high-level quality characteristics and their sub-characteristics are shown in

Figure 3.1. The fact that the sub-characteristic compliance is part of every quality

characteristic catches the eye. Compliance means to adhere to standards, conventions

or regulations. The presence of the compliance sub-characteristic means that the re-

maining sub-characteristics within the each of the six quality characteristic are assumed

to be ful�lled by the particular standard.

1Speci�ed or stated conditions refer to the environment in which the software product is operating

and they are usually stated in the product's speci�cation. Such conditions can be, for example, the

interaction with other software products and the system's load.

14

Figure 3.1: ISO 9126-1 quality characteristics with their sub-characteristics [15]

3.2 Stakeholders and Quality Characteristics

The quality of a software system is primarily perceived by its stakeholders because

they have the best impression if the software system meets their requirements towards

it. These requirements are based on the stakeholders' expectations and needs. Princi-

pally, there are two di�erent categories of requirements: functional and non-functional

ones. In accordance with [14] functional requirements describe the tasks of the system,

whereas non-functional requirements specify overall quality characteristics that means

how well does the system ful�ls its tasks.

Di�erent stakeholders of a system have di�erent expectation towards the system and

so also towards the system's quality characteristics. These di�erent expectation result

from di�erent interests or views towards the system. That means the existence or

absence of certain quality characteristic is of di�erent meaning for di�erent stakehold-

ers. A single stakeholder is usually not interested in all the quality characteristics of

a quality model, e.g. the end user is more interested in characteristics like usability

and e�ciency, the administrators appreciate maintainability and portability more than

other quality characteristics. So the system's quality is the entirety of those quality

characteristics which have to be ful�lled to achieve the stakeholders' non-functional

requirements. The identi�cation of the stakeholders' requirements is an essential step

before designing the software architecture because a not regarded requirement decreases

the system quality. To avoid this, the main stakeholder roles and their concerns have

to be identi�ed. In [24] the following stakeholder roles are identi�ed:

• user of the system

15

• customer (client, sponsor, owner)

• component vendor (supplier, contractor)

• analyst

• quality assurance team

• system administrator

• maintainer

• developer

• architect

• project manager

Naturally, these stakeholder roles are a generalisation and cover all possible main stake-

holders. That is why not all of these roles exist for every project.

The main stakeholder roles of the OpenH.323 protocol software are the ITU, end user,

administrator, developer, and architect. The ITU demands certain quality character-

istics of the protocol in its H.323 speci�cation, e.g. exchange of request/response pairs

within certain time limits.The end user is interested in a secure communication and

also fast system replies so that audio and video data is transferred without recognizable

delays. For the administrator resource behaviour and portability are import qualtiy

characteristics. The developer wants the protocol software to be quite well maintain-

able regarding future changes and extensions. So the architect has to implement all

the stakeholder requirements into protocol software architecture in a manner that the

overall quality is satisfying the stakeholders as good as possible.

The entity-relationship diagram (ERD) in Figure 3.2 shows a role-based quality model

that means it shows the main stakeholder roles of the OpenH.323 protocol software

assigned to the quality characteristics which they demand. The purpose of quality

models is described in Section 3.1.1. The used quality characteristics correspond to

those in the ISO 9126-1 model which is described in Section 3.1.2. Starting from the

role-based quality model in Figure 3.2 in Section 3.2, three import quality charac-

teristics, e�ciency, maintainability, and security can be identi�ed for the OpenH.323

protocol software. Figures 3.3 and 3.4 illustrate the mentioned re�nement to metrics

16

Figure 3.2: Role-based quality model in FMC ER-diagram notation

17

and quantitive values which enable the evaluation of the three demanded quaracter-

istics. For the representation, again the FMC ERD notation is used to show relation

between characteristic and metrics. On the shown example 3.3 for the re�nement of

the security characteristic, the quantitave evaluation through measurements is based

on the analysis of the utilized authentication, encryption, and auditing algorithms.

Figure 3.3: Re�nement process for quality characteristic security

18

Figure 3.4: Re�nement process for quality characteristic maintainance and e�ciency

19

3.3 Software Quality Attribute Trade-o�s

The role-based quality model in Figure 3.2 is an approach to relate the ISO 9126-1

quality model to quality requirements of the OpenH.323 protocol's stakeholders. As

mentioned above, this model illustrates that the quality characteristics security, e�-

ciency (time and resource behaviour), and maintainability are import characteristics

which have to be implemented into the OpenH.323 protocol software.

These quality characteristics among others, like those introduced in Section 3.2, may

con�ict, and trade-o�s among alternative design decisions are an essential part of de-

signing a software architecture.

Maintainability is a quite important characteristic for the OpenH.323 protocol soft-

ware because it should be possible to extend the protocol in case of new subprotocols

or data codecs. Since it is an open source software protocol, the structure and un-

derstandability of the code and documentations are essential for futher development.

Regarding the structuring of the system into di�erent components, there are several

design approaches using object-oriented paradigms, design patterns, and component

frameworks to improve the maintainability of a system. According to the authors

of [27] these techniques often tend to cause a decrease of the system's e�ciency be-

cause of higher resource consumption, e.g. memory. But for the protocol software

also e�ciency aspects are essential because the protocol speci�cation de�nes time lim-

its within which certain protocol request response pairs have to be exchanged. Also

the security requirement is in�uencing the system's performance because implemented

encryption algorithms and authentication protocols also need extra time and resources.

Con�icts among quality characteristics must be identi�ed and quantitatively evaluated

to �nd reasonable trade-o�s which are necessary to achieve the best possible overall

quality for the software system.

20

Figure 3.5 illustrates the relationship between the single quality characteristics ef-

�ciency and maintainability. The relationship is represented by the curve which shows

that the increase of one quality characteristic causes the decrease of the other char-

acteristic. So the task of the architect is to �nd the right balance between the single

Figure 3.5: Software Quality Attribute Trade-o�

quality attributes to achieve a overall quality which satis�es the stakeholders.

A method which supports the identi�cation of trade-o�s is the Architecture Trade-

O� Analysis Method (ATAM) which is described in Section 4.3.3.

21

4 Software Architecture Evaluation

In the previous chapters was shown that quality characteristics are related to the

stakeholders and that the software architecture must implement those characteristcs.

Also the fact that these characteristics might con�ict so that trade-o�s have to be

done between design decisions. Software architecture evaluation is the assessment of a

software architecture regarding stakeholders' requirements which includes the system's

functionality and its quality attributes. In the following, it is described which methods

and approaches exist for evaluating the software architecture regarding required quality

characteristics.

4.1 Early vs. Late Software Architecture Evaluation

An architecture evaluation can be performed in di�erent stages of architecture creation

process. Actually, the authors of [16, 17] distinguish two possible evaluation phases:

the early and late evaluation.

4.1.1 Early Evaluation

Early evaluation is performed when only fragments of the architectural description

exist so that mostly the questionnaires (Section 4.3.1), checklists (section 4.3.1), and

scenario-based methods (Section 4.3.2) are used for assessment because at this stage

there is not enough tangible information available for collecting metrics or simulating

behaviour. Mainly the experience of the developers and scenarios based on require-

ments in the requirement documents are the foundation for the early evaluation.

4.1.2 Late Evaluation

Late architecture evaluation is carried out during later stages of the software develop-

ment process when there is at least a detailed design available on which more concrete

metrics can be collected that means the architectural metrics approach is used to eval-

uate the software architecture regarding one ore more quality attributes. To ensure the

quality control and quality assurance early evaluation and late evaluation techniques

should be used in this way. It is possible to ensure that the stakeholders' requirements

are considered and implemented in the architecture. This point of view corresponds

22

with [24] because the author proposes �rst an architectural review which is actually

an early evaluation and secondly the determination of relevant quality attributes like

architectural metrics (Section 4.3.4), simulation (Section 4.3.5) and mathematical mod-

elling (section 4.3.5). In fact, this second proposition has the same purpose as the late

evaluation.

4.2 Goals of Software Architecture Evaluation

According to [16], there are three essential purposes of software architecture evalua-

tion. The �rst main purpose is the early identi�cation of insu�ciencies which were

made during the requirements or early design phases. Here insu�ciency means that

the architecture does not meet the stakeholders' expectation regarding one or more

quality attributes. The earlier the development phase in which such an insu�ciency

is found the less costs and resources are necessary for its elimination. Since the archi-

tecture describes the whole software system, unrecognized weaknesses existing in the

architecture cause errors in further development outputs like the implementation or in

the worst case the �nal product. Hence architectural changes caused by weaknesses

which have been discovered late will also cause necessary changes in these further de-

velopment outputs. These changes are naturally more resource-intensive than only

changes to the architecture itself. The second main purpose is the comparison between

alternative architectural suggestions regarding one or more quality attributes. There

can be several candidate architectures for the realisation of a software system which

implement the same functionality but address quality attributes di�erently. Then it

is necessary to �nd the most suitable architectural proposal for the realisation of the

software system. The third main purpose of the software architecture evaluation is the

investigation whether an architecture holds risks for certain quality attributes. The

evaluation of software architecture can be seen as a part of another evaluation process.

A software system could have been planned with the purpose that it is part of an

enterprise architecture because nowadays many business processes of enterprise utilize

software for achieving their purposes, for example, through application, telecommu-

nication, work�ow, and database software systems. An enterprise architecture also

describes a complex and dynamic system which has to ful�l a certain functionality or

provide certain services. This system involves much more stakeholders than a software

system, and these stakeholders also expect a number of functional and non-function

requirements. According to [23] the architectural description of a software system, as

well as an enterprise system should regard that the system has to meet functionality,

openness, performance, reliability, and maintainability. To create, develop, implement,

23

and maintain an architecture which meets the stakeholders' requirements needs also an

evaluation process to enforce quality control and assurance. The three identi�ed main

goals of software architecture evaluation are general enough, so that they can also be

seen as three targets of enterprise architecture evaluation.

4.3 Software Architecture Evaluation Methods

In the literature [16, 14, 17] �ve main approaches for software architecture evaluation

have been identi�ed:

• Questionnaires and Checklists

• Scenario-based methods

• Architectural Metrics

• Prototyping

• Mathematical Modelling

The �rst two techniques have a stronger focus on evaluating if the stakeholders' require-

ments are met by the architecture, and the identi�cation and evaluation of the relevant

design decisions implementing these requirements. The last three focus more on evalu-

ating the system regarding the required quality attributes on the basis of measurements

and simulations. In the following all approaches are presented.

4.3.1 Questionnaires and Checklist

According to [2], the techniques using questionnaires and checklists are quite similar;

both consist of questions regarding the issue if the architecture ful�ls functional and

non-functional requirements. These questions have to be answered by a group of the

software system's stakeholders. That means this evaluation is based on their experi-

ence. As well questionnaires as checklists are assessed statistically. An example of a

questionnaire-based software architecture evaluation is presented in Svahnberg's paper

[17]. In this example, the questionnaire used for this evaluation basically aims on the

identi�ed necessary system's quality characteristics. According to these quality char-

acteristics, �ve quality attributes are investigated on four candidate architectures.

The questionnaire contains four parts: The �rst part covers generic questions like

what architecture (e.g client-server, multi-tier) the participant would prefer based on

24

his/her experience. Moreover, it contains some questions whether there are any archi-

tecture types or quality attributes missing. The second part deals with questions to

obtain a prioritized list of quality attributes. The third part consists of questions to

rate the support given for the quality attributes within each architecture candidate.

The fourth part encloses questions to rate which architecture is best at each quality

attribute. If possible each stakeholder role of the software system should be involved

in the evaluation.

4.3.2 Scenario-based methods

The following explanation is based on the book [16] whose authors developed several

scenario-based methods at the Software Engineering Institute, Carnegie Mellon Uni-

versity. Scenario-based techniques evaluate the software architecture by considering it

from a higher abstraction level that means the architectural description must neither

be complete nor very detailed. A further commonness is that that these methods de�ne

a number of steps which have to be performed to achieve a useful evaluation result.

These steps are:

• description of the architecture or the architectures which should be evaluated

• development of scenarios (based on non-functional requirements)

• prioritization of the scenarios according to the quality attributes they should

prove

• evaluation the architecture from the high-priority scenarios perspectives

• exposition of the results

Scenarios describe the desired system's behaviour during performing certain tasks. This

behaviour depends on the existence of certain quality characteristics. That means if

the architecture enables the ful�lment of certain scenarios proves the implementation of

certain quality characteristics. The quality of the evaluation and especially its results

depends on the scenarios' quality. Their quality increases by a well done mapping of

requirements to scenarios. It is fatal if an important and necessary scenario is missing

during the evaluation. Therefore, the scenario development should involve representa-

tives from all stakeholders.

Such scenario-based methods are for example:

• Software Architecture Analysis Method (SAAM)

25

• Architectural Trade-o� Analysis Method (ATAM)

• Active Reviews for Intermediate Designs (ARID)

All these three example methods were developed at the Software Engineering Institute,

Carnegie Mellon University. These methods are described in detail in the book [16].

4.3.3 Architectural Trade-o� Analysis Method (ATAM)

In the following the Architecture Tradeo� Analysis Method (ATAM) is described in

detail because several steps of it are used for the identi�cation of trade-o�s in the case

study. The ATAM is so named because it reveals how well an architecture satis�es

particular quality goals and since it recognizes that architectural decisions a�ect more

than one quality attribute that means this method enables the identi�cation of trade-

o�s among several quality attributes. According to [16] the participation of three

di�erent groups is usually necessary for performing the ATAM.

• Evaluation team is a group of three to �ve people who are external to the project

whose architecture is being evaluated. Each member of the team is assigned a

number of speci�c roles to play during the evaluation. These roles are described

in Table 4.1.

• Project decision makers are people who are authorized to speak for the devel-

opment project or have the right to command modi�cations to it. This group

normally consists of the project manager, the customer who is footing the bill for

the development, the architect, and the person commissioning the evaluation.

• Architecture stakeholders include developers, testers, integrators, maintainers,

performance engineers, users, builders of systems interacting with the one under

consideration, and others. Their job during an evaluation is to state the speci�c

quality attribute goals that the architecture should meet in order for the system

to be considered a success. This group usually consists of twelve to �fteen people.

26

Role Responsibilities

Team Leader Sets up the evaluation; coordinates with client, making sure

client's needs are met;

establishes evaluation contract; forms evaluation team; sees

that �nal report is produced and delivered (although the

writing may be delegated)

Evaluation Leader Runs evaluation; facilitates elicitation of scenarios; admin-

isters scenario selection/prioritization process; facilitates

evaluation of scenarios against architecture; facilitates on-

site analysis

Scenario Scribe Writes scenarios on �ipchart or whiteboard during scenario

elicitation; captures agreed-on wording of each scenario,

halting discussion until exact wording is captured

Proceedings Scribe Captures proceedings in electronic form on laptop or work-

station, raw scenarios, issue(s) that motivate each scenario

(often lost in the wording of the scenario itself), and resolu-

tion of each scenario when applied to architecture(s); also

generates a printed list of adopted scenarios for handout to

all participants

Timekeeper Helps evaluation leader stay on schedule; helps control

amount of time devoted to each scenario during the evalu-

ation phase

Process Observer Keeps notes on how evaluation process could be improved

or deviated from; usually keeps silent but may make dis-

creet process-based suggestions to the evaluation leader

during the evaluation; after evaluation, reports on how

the process went and lessons learned for future improve-

ment; also responsible for reporting experience to architec-

ture evaluation team at large

Process Enforcer Helps evaluation leader remember and carry out the steps

of the evaluation method

Questioner Raise issues of architectural interest that stakeholders may

not have thought of

Table 4.1: Evaluation team roles with their responsibilities [16]

27

The whole ATAM-based evaluation is divided into four phases. The �rst phase is

called partnership and preparation. In this phase basically the evaluation team lead-

ership and the key project decision makers informally meet to work out the details of

planned evaluation. They agree on formal issues like logistics, such as the time and

place of meetings, statement of work or nondisclosure agreements, and then they agree

about a preliminary list of stakeholders. Furthermore, they decide which architectural

documents will be delivered to the evaluation team for performing the evaluation. The

actual evaluation phases are the second and third phase. The evaluation team uses

the second phase for studying the architecture documentation to get a concrete idea of

what the system is about, the overall architectural approaches which are chosen, and

the important quality attributes. During the third phase the system's stakeholders join

the evaluation team and both groups analyze the architecture together. The analysis

is based on the elecitated scenarios. According to [16] the capturing and elicitation of

functional and non-functional requirements is part of ATAM. In the fourth and last

phase the evaluation team creates and delivers the �nal report.In the following the

concrete steps which are performed during the evaluation are described. The steps one

to six belong to the second phase and the steps seven to nine belong to the third phase.

First Step
The �rst step mainly consists of the presentation of the ATAM with its steps and out-

puts to the three participating groups mentioned above.

Second Step
During the second step the context for the system and the primary business drivers

which are the reasons for the system's development are presented to the involved per-

sons. Business drivers are all the functions, information and people enforcing the

business goals of an enterprise and ensuring the daily business. Therefore, the sys-

tem's most important functions, the enterprise's business goals and their relation to

the system, any relevant technical, managerial, economic, or political constraints, and

the system's major stakeholders are presented. So actually the desired e�ect of the

system on the its environment is described.

Third Step
In the third step, the architecture is presented at an appropriate level of detail that

means the presentation is depending on how much of the architecture has been de-

signed and documented; how much time is available; and the nature of the behavioural

and quality requirements. The architectural presentation covers technical constraints

28

like the operating system, hardware, or middleware which are intended to be used, and

further it shows other systems with which the system must interact. Most important,

the architect describes the architectural approaches used to meet the functional and

non-functional requirements. The architecture should be described through di�erent

views to address di�erent stakeholder roles, as described in Section 2.2.

Fourth Step
During the fourth step the evaluation team identi�es the architectural approaches and

used patterns and lists them as a basis for further analysis.

Fifth Step
In the �fth step, the quality attribute goals are formulated in detail using a mecha-

nism known as the utility tree. The evaluation team in cooperation with the project

decision makers identify, prioritize, and re�ne the system's most important quality

attribute goals, which are expressed as scenarios. The utility tree serves to make the

requirements concrete, forcing the architect and customer representatives to de�ne pre-

cisely the relevant quality requirements that they were working to provide.

A utility tree begins with utility as the root node. Utility is an expression of the

overall quality of the system. Quality attributes form the second level because these

are the components of utility. Typically, performance, modi�ability, security, usabil-

ity, and availability are the children of utility, but participants are free to name their

own as long as they are able to explain what they mean through re�nement at the

next levels. The third level of the utility tree consists speci�c re�nements of the qual-

ity attributes, for example, performance might be decomposed into data latency and

transaction throughput. These re�nements are the base for the creation of scenarios

which form the leaves of the utility tree and they are concrete enough for prioritization

and analysis. According to [13], scenarios are the mechanism by which broad and am-

biguous statements of desired qualities are made speci�c and testable. ATAM scenarios

consist of three parts:

• stimulus which is an event arriving at the system, the event's generator and

handler are also named

• environment (what is going on at the time)

• response (system's reaction to the stimulus expressed in a measurable way)

The de�nition process of a utility tree is similar to the de�nition of a quality model for

a software product as described in Section 3.1.2 because the overall quality is devided

29

into quality characteristics which are re�ned in measurable quality attributes which

are evaluated by metrics. So metrics are the leaves in a quality model. In the utility

tree, scenarios are indicators of certain quality attributes. Of course, a metric is much

more concrete because it is a value assigned to an attribute, the scenario in contrast

serves to evaluate theoretically wheater it is implemented by the architecture. Some

scenarios might express more than one quality attribute and so they might appear in

more than one place in the tree. To simplify the analysis, these scenarios should be

splitted according to di�erent concerns. The re�nement process of quality attributes

to scenarios might lead to many scenarios which cannot all be analyzed, so this �fth

step also includes the prioritization of the scenarios.

This prioritization can be based on a scale from zero to ten or on a relative rank-

ing like high, low, and medium. The latter one is recommended by [13] because it is

less time consuming. The ranking is done by the project decision makers. Furthermore,

the scenarios are prioritized by the architect regarding the di�culty of satisfying the

scenario by the architecture. There also the high, medium, and low ranking is recom-

mended. Now each scenario has an associated ordered pair (importance of scenario

for the system, di�culty of satisfying the scenario by the architecture), for example

(H,H). The ordered pair (H,H) means, this scenario is very essential for the system and

it is di�cult to implement it by the software architecture. The scenarios that are the

most important and the most di�cult will be the ones where precious analysis time

will be spent, and the remainder will be kept as part of the record. A scenario that is

considered either unimportant (L,*) or very easy to achieve (*,L) is not likely to receive

much attention. The output of utility tree generation is a prioritized list of scenarios

that serves as a plan for the remainder of the ATAM evaluation. It tells the ATAM

team where to spend its (relatively limited) time and, in particular, where to probe

for architectural approaches and risks. The utility tree guides the evaluators toward

the architectural approaches for satisfying the high-priority scenarios at its leaves. The

utility tree for the ATAM evaluation of the OpenH.323 protocol architecture is shown

in Figure 6.1.

Sixth Step
The following sixth step contains of the analysis of the architectural approaches. The

architect explains how the high-ranked scenarios are implemented by the architecture

and the evaluation team documents the relevant architectural decisions and identi�es

and catalogues their risks, non-risks, sensitivity points, and tradeo�s. The architect has

to explain which approaches and architectural decisions meet the quality requirements.

30

The upcoming discussion leads to deeper analysis, depending on how the architect re-

sponds. The key is to elicit su�cient architectural information to establish some link

between the architectural decisions that have been made and the quality attribute re-

quirements that need to be satis�ed. At the end of this step, the evaluation team

should have a clear picture of the most important aspects of the entire architecture,

the rationale for key design decisions, and a list of risks, non-risks, sensitivity points,

and trade-o� points.

Seventh Step
The seventh step is stakeholder-oriented because the evaluation team asks the group

of stakeholders to brainstorm scenarios which are operationally meaningful regarding

the stakeholders' individual roles. These scenarios are also prioritized because of the

limited time for analysis. First, stakeholders are asked to merge scenarios they feel

represent the same behaviour or quality concern. Then they vote for those they feel

are most important.

Eighth Step
In the eighth step the architect explains to evaluation team how relevant architectural

decisions contribute to realizing each of the chosen scenarios from step seven. During

the architect's explanations the evaluation team again identi�es and catalogues risk,

non-risks, and trade-o�s.

Ninth Step
Then, in the ninth step, the gained information from the ATAM needs to be summa-

rized and presented once again to stakeholders.

ATAM's evaluation phase results in the following outputs:

• architectural approaches documented

• set of scenarios and their prioritization from the brainstorming

• utility tree

• risks

• non-risks

• sensitivity points and trade-o� points

31

Finally, the evaluation team groups risks into risk themes. For each risk theme the

a�ected business drivers from the second step are identi�ed. By relating risk themes

to business drivers the risk becomes also tangible for non-technical stakeholders like

managers.

4.3.4 Architectural Metrics

This approach aims at measuring certain attributes of the software architecture which

enable assumptions about the architecture's quality. Architectural metrics belong to

the group of product metrics as described in Section 3.1.1. They are derived from

quality attributes which are re�ned quality characteristics. The existing software ar-

chitectural metrics are quite limited. Furthermore, the so-called architectural metrics

are very similar to design metrics. A reason is, according to [16], that the existence of a

detailed architectural description is necessary to collect metrics. That means that the

design description is at a stage where it can be implemented or parts of it are already

implemented. Mostly metrics about structural characteristics are collected. These

measurements are performed with the help of the architectural descriptions referring

to the di�erent architectural views described in Section 2.2 which are commonly pre-

sented in UML notation or on the code level, and so tool-based measurements are also

possible. The architectural metrics re�ect class characteristics like the complexity of a

class, number of methods, depth of the inheritance hierarchy, coupling, and cohesion.

The collected metrics are interpreted for evaluating quality attributes especially the

attributes maintainability, testability, understandability, reusability, complexity, and

also e�ciency. Cohesion describes the dependencies between methods within a single

software component to ful�l a single and precise task. So a high cohesion means that all

parts of a component are necessary for ful�lling this task. Coupling regards the depen-

dencies between di�erent components. The lower the coupling the more independent

are the components from each other and the easier are changes to the system. For many

systems an architecture is desired which aims on a maximal cohesion and a minimal

coupling. An example of measuring the coupling between modules of software system

is given in [18]. Another import metric is the cyclomatic complexity. According to [29],

the cyclomatic complexity of a method is the count of the number of paths through

the method's source code. Cyclomatic complexity is normally calculated by creating a

graph of the source code with each line of source code being a node on the graph and

arrows between the nodes showing the execution pathways. A implementations with

a high cyclomatic complexity tend to be more error-prone, di�cult to test with high

coverage, and also more risky regarding maintainability(especially for changeability).

32

4.3.5 Prototyping

This technique is described in [19, 26] so most of the information given here on Pro-

totyping is based on them. In order to gain information about architectural quality

the strategy is similar to the utility tree described in Section 4.3.3. The important

quality attributes are re�ned into scenarios. The necessary functionality to perform

these scenarios is implemented in the prototype. The executable prototype can be

tested regarding quality attributes at runtime. The gained results are used for further

development or correction of the software architecture. The scenarios are mostly imple-

mented without user-oriented and business-oriented aspects of the architecture, what

makes the prototyping evaluation approach resource-saving especially regarding time

and cost. The prototyping approach is often also called simulation in the literature,

e.g. in [24]

4.3.6 Mathematical Modelling

A mathematical model is an abstract model which describes the system's behaviour

or certain aspects of the system's behaviour. The model is used for determining the-

oretically how the system reacts on certain events. According to [24, 25], especially

for high-performance computing, reliable systems, real-time systems, etc. mathemat-

ical models have been developed, and they can be used to evaluate especially quality

attributes related to the runtime behaviour of the system. Di�erent from the other

approaches, the mathematical models allow for static evaluation of architectural de-

sign models. Mathematical modelling is an alternative to prototyping because both

approaches are primarily suitable for assessing runtime behaviour. The approaches

can also be combined. Two widely spread types of models are performance modelling

and real-time task models. For example, performance modelling can be used to deter-

mine the computational requirements of the individual components in the architecture.

These theoretical results can then be used and proofed with the running prototype in

a simulation. Since the focus of this work also is on the performance assessment with

the help of the architecture performance modelling is a suitable approach. Typical per-

formance models are queuing networks, markov chains which are based on stochastic

and probability-based methods, and other stochastic approaches like stochastic process

algebras.

33

4.3.7 Summary

While the measurement-based approaches, architectural metrics, and prototyping give

concrete values for the evaluation and make it that way a bit more sound, they have

the drawback that they can be applied only in the presence of a working artifact. Also

the mathematical models are based on detailed description of the whole architecture

or at least of some components because the more detailed the model the more real-

istic are the computed results. Questionnaires and scenario-based evaluation, on the

other hand, work just �ne on hypothetical architectures, and can be applied much

earlier in the life cycle. Actually, these techniques can be seen as architectural review

with the main stakeholders because they improve the understanding of the impact of

architectural decisions on the system's requirements. Furthermore, even if the archi-

tectural description is not in a implemental stage, these approaches are able to identify

insu�ciencies, weaknesses, and risks.

34

5 OpenH.323 system

OpenH.323 is an Open Source implementation of the ITU-T H.323 video conferencing

protocol. This paper relates to the ITU-T H.323 architecture because OpenH.323

implements this speci�cation and also the developers of OpenH.323 refer to the ITU

speci�cation. For the following description of the H.323 architecture, the source [20]

is used. The components of H.323 architecture are terminal, gateway, gatekeeper,

and multipoint control unit (MCUs). All these components communicate via H.323

protocol.

5.1 H.323 System Components

In the following, the main components of the H.323 system are brie�y presented. Figure

5.1 shows the H.323 system components.

Figure 5.1: H.323 Components

5.1.1 Terminal

The terminal represents the endpoint of every connection. It provides fast two way

communications with another H.323 terminal, gateway or multipoint control unit. This

communication consists of speech, speech and data, speech and video, or a combination

of speech, data and video.

35

5.1.2 Gateway

The gateway establish the connection between the terminals in the H.323 network and

also with terminals belonging to di�erent networks with di�erent protocol stack such

as the traditional Public Switching Telephone Network (PSTN) or Integrated Service

Digital Network (ISDN).

5.1.3 Gatekeeper

The gatekeeper is an optional component in the H.323 system which is primarily used

for admission control and address resolution that means for translating between tele-

phone number and IP addresses. It also manages the bandwidth and provides mecha-

nisms for terminal registration and authentications. Further the Gatekeeper provides

facilities such as call transfer and call forwarding.

5.1.4 Multipoint Control Unit (MCU)

The MCU enables establishing and managing multipoint conferences. It consists of a

mandatory Multipoint Controller (MC), which manages call signalling and conference

control. The second MCU component is a Multipoint Processor (MP), which handles

switching and mixing of media stream.

5.2 H.323 Protocol

5.2.1 H.323 Protocol and Subprotocols

The H.323 protocol is a collection of several protocols which enable the transfer of

voice and video data over a network. This protocol is also used for teleconferencing via

Public Switched Telephone Network (PSTN) and Integrated Services Digital Network

(ISDN). The protocols which are utilized by the H.323 protocol architecture are shown

in Figure 5.2.

36

Figure 5.2: H.323 Protocol Architecture with Subprotocols

An overview of the functionality of the protocols presented in Figure 5.2 is given in

the following.

Call Signalling and Control Protocols
The H.225.0 protocol does call signalling, creates packets out of the data stream, and

implements synchronisation of the data stream. The H.245 protocol describes mes-

sages and procedures for establishing and closing of logical channels which are used for

transferring audio information, video information and data. In addition, it handles the

control of capacities which are needed for the data transfer.

Security Protocols
The H.225.0/RAS protocol allows an endpoint to request authorization to place or ac-

cept a call. Further it enables �rstly a gatekeeper to control access to and from devices

under its control and secondly to communicate the address of other endpoints so that

two gatekeepers can easily exchange addressing information. Security mechanism like

37

encryption and authentication are provided by the H.235 protocol.

Protocols for Supplementary Services
H.323 also provides supplementary services like call transfer, call hold, or call diversion.

These services are enabled through the H.450 protocol family.

Audio and Video Processing Protocols
For audio processing which means modulation of voice frequencies and coding of speech,

the protocols G.711, G.722, G.723.1, G.728, and G.729 are used. In order to process

video data the H.323 protocol utilizes the protocols H.261 and H263.

Data Transmission Protocol
The T.120 protocol implements data transmission between end points. It can be used

for various applications in the �eld of collaborative work, such as white-boarding, ap-

plication sharing, and joint document management.

Transport Protocols
The actual audio and video data is transferred by the Real-time Transport Protocol

(RTP) and RTP Control Protocol (RTCP). The latter one carries control informa-

tion between the communication nodes. Both real time protocols use UDP/IP for

transferring their packets. The packets of the call signalling and control protocols are

transferred by the TCP/IP protocol.

5.2.2 Usage Scenarios

To present the way the H.323 protocol is working, two usage scenarios are introduced.

The �rst one shows the communiction between two H.323 terminals in the same net-

work. The second scenario describes the communiction between a terminal in the H.323

network and a analogue telefon connected to the PSTN, this scenario also gives an im-

pression of the functionality of the Gatekeeper and the Gateway in the H.323 network.

These H.323 call scenarios can be described in �ve phases:

• Call Setup

• Capability Exchange

• Call Initiation

• Data Exchange

38

• Call Termination

Basic Usage Scenario
The �rst usage scenario describes the procedure for placing a call between two end-

points A and B in the same H.323 network. So there is a direct connection where each

endpoint is a point of entry and exit of a media �ow.

Call Setup

To establish a call between two endpoints requires two channels between the endpoints:

one for the call setup and the other one, the so-called signalling channel, for capability

exchange and call control. The caller at endpoint A connects to the callee at endpoint

B on a well-known port, port 1720, and sends the call Setup message as de�ned in the

H.225.0 speci�cation. The Setup message includes:

• message type, in this case, Setup

• bearer capability, which indicates the type of call, for example, audio only

• callee's number and address

• caller's number and address

• protocol Data Unit (PDU), which contains the used version of H.225.0

After endpoint B receives the Setup message, it responds with one of the following

messages: Release Complete, Alerting, Connect, Call Proceeding

In this case, endpoint B responds with the Alerting message and endpoint A must

receive the Alerting message before its setup timer expires after one minute. Endpoint

A opens the signalling channel on a dynamically allocated port at the endpoint B. After

sending Alerting message, the user at endpoint B must either accept or refuse the call

with a prede�ned time period of less than one second. When the user at endpoint

B picks up the call, a Connect message is sent to endpoint A and the call setup

is completed. The following step is the capability exchange. The protocol directives

which are exchanged for setting up the call are shown in Figure 5.3. The call is accepted

by endpoint B.

39

Figure 5.3: H.323 Call Setup

Capability Exchange

The call control and capability exchange messages, as de�ned in the H.245 standard,

are sent on the call control channel. This channel remains active for the entire duration

of the call. The call control channel is like the signalling channel unique for each call

between endpoints.

An H.245 TerminalCapabilitySet (TCS) message that includes information about the

codecs supported by that endpoint is sent from one endpoint to the other. Both

endpoints send this message and wait for a reply which can be one of the following

messages:

• TerminalCapabilitySetAck (TCSAck) - Accept the remote endpoints capability

• TerminalCapabilitySetReject(TCSRej) - Reject the remote endpoints capability

The two endpoints continue to exchange these messages until a capability set that is

supported by both endpoints is agreed. In Figure 5.4 the negotiation between both

endpoints is illustrated. After succesful negotiation, the next phase call initiation, can

begin.

Call Initiation

Once the capability setup is agreed, endpoint A and B must set up the voice channels

over which the voice data (media stream) will be exchanged. A sends an H.245 Open-

LogicalChannel message to endpoint B, this message speci�es the type of data being

40

Figure 5.4: H.323 Capability Exchange between two Endpoints

sent, for example, the codec that will be used. For voice and/or video data, the mes-

sage also includes the port number that endpoint B should use to send RTCP receiver

reports. After endpoint B is ready to receive data, it sends an OpenLogicalChannelAck

message to endpoint A. This message contains the port number on which endpoint

A has to send RTP data and the port number on which endpoint A should send

RTCP data. Endpoint B repeats the process above to indicate which port endpoint A

will receive RTP data and also send RTCP reports. This initiation process is shown in

Figure 5.5. After these ports have been identi�ed, the next phase data exchange starts.

Data Exchange

Endpoint A and endpoint B exchange information in RTP packets that carry the voice

and/or video data. During this exchange both sides send periodically RTCP packets,

which are used to monitor the quality of the data exchange. When the data exchange

has been completed the phase call termination follows.

Call Termination

To terminate an H.323 call, one of the endpoints e.g. endpoint B hangs up. End-

point B must send an H.245 CloseLogicalChannel message for each logical channel it

has opened with endpoint A. Accordingly, endpoint A must reply to each of those

messages with a CloseLogicalChannelAck message. When all the logical channels are

closed, endpoint B sends an H.245 EndSessionCommand and waits until it receives the

41

Figure 5.5: H.323 Call Initiation

same message from endpoint A and after that closes the call control channel. Both

endpoint A and endpoint B then send an H.225.0 ReleaseComplete message over the

signalling channel, which closes that channel and ends the call. Figure 5.6 shows the

described termination of a call.

Usage Scenario including Gateway
This scenario shows the usage of the gateway which provides a bridge with other net-

works, for example, an IP network or the PSTN. In this scenario user A is at a terminal

in the H.323 network, while user B is by a phone connected to the PSTN. The gate-

keeper, as described in Section 5.1.3, provides network services such as Registration,

Admission and Status (RAS) and address mapping. When a gatekeeper is present, all

endpoints managed by the gatekeeper must register with the gatekeeper at start-up.

Call Setup

The user at endpoint A attempts to locate a gatekeeper by sending out a Gatekeeper

Request (GRQ) message and waiting 5 seconds for a response. When endpoint A

receives a Gatekeeper Con�rm (GCF) message, the endpoint registers with the Gate-

keeper by sending the Registration Request (RRQ) message and waiting 3 seconds for a

Registration Con�rm (RCF) message. If more than one gatekeeper responds, endpoint

A chooses only one of the responding gatekeepers. After the registration the endpoint

requests permission to call from the gatekeeper. Therefore, it sends an Admission

42

Figure 5.6: H.323 Call Termination

Request (ARQ) message to the gatekeeper. This message includes information such as:

• sequence number

• gatekeeper assigned identi�er

• type of call, in this example, point-to-point

• call model to use, either direct or gatekeeper-routed

• destination address, in this case, the phone number of endpoint B

• estimation of the amount of bandwidth required. This parameter can be adjusted

later by a Bandwidth Request (BRQ) message to the gatekeeper.

If the gatekeeper allows the call to proceed, it sends an Admission Con�rm (ACF)

message to endpoint A. This ACF message includes the following information:

• call model used

• transport address and port to use for call signalling

• allowed bandwidth

43

Figure 5.7: Message exchange for Registration and Admission

The exchange of registration and admission messages is shown in Figure 5.7. Now the

endpoint A can initialize the connection to the gateway. Therefore, it sends the Setup

message to the gateway. Since the destination phone is connected to an analogue line

(the PSTN), the gateway goes o�-hook and dials the phone number using dual tone

multifrequency (DTMF) digits. The gatekeeper, therefore, is converting the H.225.0

signalling into the signalling present on the PSTN. Depending on the location of the

gateway, the number dialled may need to be converted. For example, if the gateway

is also located in Europe, then the international dial pre�x will be removed. As soon

as the gateway is noti�ed by the PSTN that the phone at endpoint B is ringing, it

sends the H.225.0 Alerting message as a response to endpoint A. When the phone is

picked up at endpoint B, the H.225.0 Connect message is sent to endpoint A by the

gateway. As part of the Connect message, a transport address that allows endpoint

A to negotiate codecs and media streams with the gateway as B's proxy is sent. The

described establishing of the connection is shown in Figure 5.8

44

Figure 5.8: Establishing Connection between H.323 Endpoint and Telephon in PSTN

45

The H.225.0 and H.245 signalling used in the phases capability exchange, call initi-

ation and exchange data are the same as that described in the basic H.323 call scenario

above. Endpoint A is communicating via H.323 only with the gateway which is con-

verting the H.323 protocol directives to directives used by the PSTN. Call Termination

As in the basic H.323 call scenario the endpoint which terminates the call �rst, needs

to close all the channels that were open using the H.245 CloseLogicalChannel message.

If the gateway terminates �rst (actually endpoint B), it sends an H.245 EndSession-

Command message to endpoint A and waits for the same message from endpoint A.

The gateway then closes the call control channel. Afterwards by exchangign ReleaseC-

omplete messages the signalling channel is closed. The closing of all communiction

channel is shown in Figure 5.9.

Figure 5.9: Closing of Signalling Channel between endpoint and Gateway

When all channels between endpoint A and the gateway are closed, each must send a

DisengageRequest (DRQ) message to the gatekeeper. This message lets the gatekeeper

know that the bandwidth is being released. The gatekeeper sends a DisengageCon�rm

(DCF) message to both, endpoint A and the gateway, as illustrated in Figure 5.10.

46

Figure 5.10: Messages Exchange for Releasing Bandwidth

5.3 OpenH.323 protocol Software Architecture

5.3.1 Conceptual View of System Structure and Behaviour

In the following, the OpenH.323 protocol software architecture is described by a the

conceptual view which means from high-level structure. The conceptual view is de-

scribed in Section 2.2.

The OpenH.323 architecture is a typical peer-to-peer architecture which means every

participant in the network can provide services to others and use certain services which

are provided by other participants.

In the OpenH.323 architecture, a participant is represented by the endpoint manager

as shown in Figure 5.11. This component is able to initiate and receive several connec-

tions concurrently, which requires multithreading. Figure 5.11 shows only one created

connection because of readability but in general the endpoint manager can create as

much as necessary. The endpoint manager supports the di�erent H.323 component

roles which are described in section 5.1. Which role the certain endpoint manager

supports is de�ned in the type information.

Incoming connection requests are received by the TCP/IP communication service of

the operating system and handed over to the endpoint's listener. The listener accepts

the connection so the communication service can establish the TCP/IP connection and

create a new socket data structure which is used for the connection.

47

After accepting the connection request, the listener is waiting for further incoming

requests. The listener's behaviour is shown in Figure 5.12.

Figure 5.11: Conceptual view on the OpenH.323 protocol software architecture

48

As shown in Figure 5.11 the endpoint manager creates a new connection with a

shared memory for the connection's information and also the signalling channel man-

ager which is a thread. Then the endpoint manager adds the connection to its connec-

tion dictionary. This described behaviour is also illustrated in Figure 5.12.

The signalling channel manager is using socket, returned by the TCP/IP communi-

cation service, to communicate via H.225 protocol, which is described in Section 5.2.1.

The main task of the signalling manager is the exchange of call signalling information

with the communication partner's signalling channel manager. When requested, the

signalling channel manager creates a new thread, the control channel manager which

is responsible for call control and creation of data channel managers which are also

shown in Figure 5.11. The control channel manager has two possibilities to communi-

cate with the communication partner's control channel manager. Either it can use an

own TCP/IP socket or it uses the same socket as the signalling channel manager but

then a tunneling mechanism must be available. The default setting is the own TCP/IP

socket.

The call's data is transmitted and recieved by the data channel managers. These

components are also single threads which are created by the control channel manager,

which is also responsible for terminating the data channel managers. Each data channel

manager uses a UDP/IP socket for recieving or transmitting data. The data channel

manager is able to support di�erent real-time transport protocols, for example RTP

which is used by default. In the RTP case, the data channel manager is responsible

for adding or deleting the RTP header. The data channel manager can either be a

reciever or transmitter. A reciever writes the data which it recieves to the decoder

which sends the decoded data to the playing device. A transmitter sends data which it

reads from the encoder. The encoder encodes the data it recievied from the recording

device. The operations which are performed by the data channel managers are shown

in �gure 5.13. The channels between devices and decoder/encoder are established by

the endpoint manager when he gets a request from the control manager.

The petri nets in Figures 5.12 and 5.13 show the interaction between the conceptual

view's components while enabling and performing a call.

49

Figure 5.12: Interaction of main components during call

50

Figure 5.13: Interaction of main components during call (cont.)

51

The signalling channel manager and the control channel manager implement the

main functionality of the OpenH.323 protocol. Therefore, the operations which they

perform in their loops are described in more details. These loops are parts of the petri

nets which are shown in Figures 5.12 and 5.13. Figure 5.15 shows the way the signalling

channel manager handles and processes H.225 requests.

The operations which are performed by the control channel manager in its loop are

described in Figure 5.14. This component negotiates the call's capabilities, determines

whether caller or callee act as master or slave, controls the call's parameter, e.g. jitter

and bandwith, and manages the creation and termination of data channel managers.

Jitter is the variation in the delay of the packets arriving at the receiving end. Reasons

for Jitter are for example congestion at various points in the network, varying packet

sizes that result in irregular processing times of packets, and out of order packet

delivery.

Figure 5.14: H.245 protocol loop

52

Figure 5.15: Handling of H.225 protocol

53

5.3.2 Logical and Process View

In this section the OpenH.323 protocol software architecture is described with Krutchen's

logical and process view [9] as described in Section 2.2. So this description is quite

close to the code and considers implementation details.

Figure 5.16 shows the OpenH.323 protocol software architecture as UML class diagram.

The system is decomposed into classes which implement its main functionality. In the

Figure 5.16: Static class structure

following the classes shown in Figure 5.16 was described regarding their functionality

and their relation to the conception view which is describe in the previous Section 5.3.1.

An application which is utilizing the OpenH.323 protocol would typically have one

instance of a descendant of the H323Endpoint class. This class implements the func-

tionality of the endpoint manager component which is described in the conceptual view

in Section 5.3.1. The descendant class would set up defaults for various H323 parame-

ters, the most important of which is the capability table which de�nes the codecs and

channel types the application is capable of handling. Also created by the application in

the H323Endpoint would be instances of one or more descendants of the H323Listener

class. There are descendant classes for the TCP, UDP, and IP protocol. A listener

spawns a thread that monitors its protocol and when a new incoming call is detected,

creates an instance of a H323Transport class descendent. The H323Transport class

54

contains attributes for address information which are IP address and port number.

As for the H323Listener class, there is a descendent for each protocol supported, e.g.

H323TransportTCP.

In case the application recieves an incoming call or initiates an outgoing call the End-

point class creates a new connection and H.323 signalling and negotiation begin. The

connection is embodied by the H323Connection class, which contains all of the state

information for a connection between H.323 endpoints. As well as for signalling and

negotiations a thread is spawned. The operations performed by these threads corre-

spond with the behaviour of the conceptual view's signalling channel manager and the

control channel manager which are both describe in the Section 5.3.1. The operations

for the signalling are embodied by the H323Connection class. The H.323 negotiations

are part of the H.245 protocol. The H323Negotiator classes are used to maintain the

state and functionality of each command or variable de�ned by the H.245 protocol.

Figure 5.16 shows the H323Negotiator classes.

Figure 5.17: Inheritance hierarchy of H323Negotiator class

55

The H.245 negotiations may result in the creation of logical channels as well as

by the remote endpoint and by the local application. The H323Channel class descen-

dants represents a logical channel. A typical use of one of these classes is to open

a stream of encoded audio data. The H323Channel class would create a H323Codec

using the H323Capability that was passed during the protocol negotiations. Each in-

stance of a logical channel has a single thread performing the channels operations,

the threads correspond with the data channel managers from the conceptual view

5.3.1. Starting and terminating these threads is the responsibility of an instance of the

H245NegLogicalChannels class.

The main purpose of the OpenH.323 protocol is to facilitate calls. In the Appen-

dix A, UML sequence diagrams are given which show the interaction of objects, which

are instantiated from the classes shown in Figure 5.16, to realize a call between two

H.323 endpoints. These diagrams show sequences of executed operations at runtime

so they are meant to represent the OpenH.323 protocol software architecture from

Kruchten's process view [9]. All operations are executed in the application's process

that means they are elementary units of control. The following Table 5.1 shows the

mapping between the conceptual and logical view.

Conceptual Component Class in the Logical View

endpoint manager Endpoint class

Capabilities class

Capability class

signalling manager Connection class

Transport class

control manager Connection class

H245Negotiator class

H245NegLogicalChannels

Transport class

data channel manager Channel class

Transport class

connection information Connection class

audio encoder Codec class

audio decoder Codec class

listener Listener class

Table 5.1: Mapping of Conceptual and Logical View

56

6 Evaluation of the OpenH.323 Protocol

Architecture

The evaluation of the OpenH.323 protocol architecture will focus on evaluating the

three quality characteristics e�ciency, maintainability, and security. These three have

been identi�ed as important characteristics for the system's stakeholders as described

in Section 3.2 and shown in the role-base quality model in Figure 3.2.

The re�nement processes of these quality characteristics which are shown in Figures 3.4

and 3.3 illustrates that the e�ciency evaluation is based on external metrics (Section

3.1.1) which are collected while testing the running system. The maintainability can

be evaluated with the help of internal metrics (Section 3.1.1) which are measured in

the source code. The quality characteristic security can be evaluated by analyzing the

utilized security mechanisms.

Since the evaluation inputs are the architectural description which is shown in Sec-

tion 5.3 and the source code, the suitable evaluation methods, which can be utilized,

are: the early evaluation methods which are described in Section 4.1.1 and the col-

lection of architectural metrics which are described in section 4.3.4. But the focus

is on the early evaluation because the only existing artefacts are the conceptual and

the logical description of the software system. These descriptions cannot be evaluated

quantitatively regarding quality characteristics. Among the early evaluation methods,

the ATAM method is chosen, which is described in Section 4.3.3. It reveals how well

an architecture satis�es particular quality goals and recognizes that architectural deci-

sions a�ect more than one quality attribute, so this method enables the identi�cation

of trade-o�s among several quality attributes. Furthermore, the architectural met-

rics approach which belongs to the late evaluation methods will be used to retrieve

quantitative values to evaluate the maintainability. Only the collection of architectural

metrics is used because the source code of the system is available. That means the eval-

uation results of the early evaluation regarding maintainability can be substantiated.

The architectural metrics do not consider any relations to the characteristics e�ciency

and security. They only give the possibility to evaluate maintainability.

57

6.1 Early Evalution with ATAM

The ATAM evaluation as described in Section 4.3.3 will be adjusted to my special

case because the evaluation is performed by one person acting in the roles described in

Table 4.1. This paper already described the architecture in Section 5.3 and the three

quality characteristics which are of interest have been identi�ed. So the next step is

the identi�cation of the most important scenarios and the description of the utility tree.

The purpose of OpenH.323 protocol software is calling, so the most important scenario

is the call scenario. This paper focuses on the evaluation of the basic call scenario

which is described in Section 5.2.2. This scenario can be devided into smaller scenarios

according to the quality requirements.

The e�ciency requirements in the basic call scenario are especially the time limits

for exchanging the protocol directives. These time limits are shown in the sequence

diagrams which are used for describing the basic call scenario in Section 5.2.2. Further

the architecture's ability to process and transfer audio/video data with a low end-to-

end delay (less than 200 millisec ([32])) is important fact which has to investigated.

Regarding maintainability especially the ability to perform changes to the architec-

ture is interesting because changes or extensions to the existing protocols and codecs

are thinkable. That means the identi�cation of architectural elements a�ected by a

change and the identi�cation of the changes in the relationships between architecture

components is necessary.

Security is evalutated by investigating the used mechanisms for authorization, au-

thentication, and encryption.

6.1.1 Utility Tree

The utility tree for the OpenH.323 protocol architecture is shown in Figure 6.1. Usu-

ally, the scenarios are prioritized as described in Section 4.3.3, but the scenarios which

are given in this utility tree are the most important one to evaluate the quality char-

acteristics e�ciency, maintainability, and security for the protocol architecture.

58

Figure 6.1: Utility tree for OpenH.323 protocol evaluation

6.1.2 Realisation of Scenarios by the Architecture

In the following, the scenarios which are shown in the utility tree in Figure 6.1 will be

investigated regarding the architectural design decisions, trade-o�s, and risks.

E�ciency Scenarios

Scenario E1

The �rst e�ciency scenario E1 requires that incoming requests over the signalling and

control channel are processed and responded within the required time limits. The time

limits are given in the sequence diagrams in Figures A.3 through A.2. To process in-

coming requests the OpenH.323 architecture has two concurrent working components:

the signalling channel manager and the control channel manager, which both are shown

in Figure 5.11. These components are realised by threads. Multithreading creates a

certain overhead which is caused by the context switches from one thread to another.

The data channel manager are also implemented by threads which means within the

OpenH.323 process there are many context switches. So the e�ciency su�ers from

that overhead. The operations which are necessary to process requests are shown in

the signalling loop in Figure 5.15 and in the control loop in Figure 5.14. Since the

operations of these loops are mapped to the operations of the logical view's connection

class (Figure 5.16) the threads, which implement the signalling channel manager and

59

the control channel manager, have write access to the connection information (Figure

5.11) which means the connection data is located in a shared memory. Access to this

shared memory must be synchronised to avoid inconsistent data. This synchronisation

is achieved with a mutex mechanism which is also shown in Figure 5.11. But that also

means it is a bottleneck because only one thread can access the connection data at

a certain time. That means all other threads have to wait until they are allowed to

access. Hence, this mutex mechanism is negatively a�ecting on the system's e�ciency.

To evaluate whether the architecture can meet the protocol's time limit requirements

the sequence diagrams in Figures A.3 - A.2, which illustrate the message exchange

between the objects at runtime, can be analysed. What becomes obvious on the �rst

glance is that the objects exchange many messages (ca. 120) for initiating a call. That

de�nitely a�ects the e�ciency of the system negatively. But the time requirements

are not di�cult to meet because the signalling manager and control manager wait for

a maximum period of two minutes (the ITU suggests three minutes) for responses of

the communication partner. So even if there is a quite large communication overhead

within the architecture and the dependency on the underlying network within two

minutes the response should be arrived at the communiction partner. For example, to

instantiate a call one signalling manager sends a Setup message, which is shown in Fig-

ure 5.3, to the other signalling manager. Figure A.4 shows that only four operations of

the connection object are necessary to process the incoming Setup message and to send

the reply. These four operations are HandleSignallingChannel(), HandleSignalPDU(),

OnReceivedSignalSetup(), and AnsweringCall().

Only in case of registration and admission at the gatekeeper, the gatekeeper's re-

sponses must arrive within three and �ve seconds. The analysis of the request and the

creation of the response is done by an gatekeeper agent whose functionality is imple-

mented though a single class gkserver. So there is not much communiction with other

components at runtime for processing and responding to registration and admission re-

quests. Table 6.1 summarizes the main desing decisions, which a�ect the �rst e�ciency

scenario E1, in relation to trade-o�s and risks they cause.

60

Design Decisions Trade-offs Risks

multithreading e�ciency(-) context switches cause

overhead which de-

creases the system's

e�ciency

shared memory e�ciency(-)

maintainability(-)

- synchronisation of

access leads to bottle-

neck

high degree of decom-

position causes high

communication degree

between objects at

runtime

e�ciency(-)

maintainability(+)

overhead caused

by communication

between objects

Table 6.1: ATAM output for the scenario E1

Scenario E2

The secenario E2 demands fast processing and transfer of audio and video data to

assure a good quality of speech and video. According to [32], a maximum end-to-end

delay of 200 milliseconds can be accepted, because for higher delays the quality of the

transmitted media streams is very poor. The speech and video data is captured by an

recording device (Figure 5.11) and written to an encoder (Figure 5.11 which encodes

the data following a certain encoding rule given through a codec. The encoded data

is written to a data channel manager (Figure 5.11) which transfers it to the commu-

nication partner via RTP protocol. Every data stream is transferred by a single data

channel manager which is implemented through a thread. Incoming speech or video

data is recieved by a data channel manager which writes it to the decoder. The decoded

data is written to a playing device. So the cruatial tasks which a�ect the quality of

the media streams are encoding/decoding and the data transfer.

The OpenH.323 architecture can use di�erent speech codecs. The used codec depends

on the available bandwidth for transferring the data. The existing audio codecs are

shown in Figure 5.2.1. These codecs are used to digitalize the analogue speech signal.

The codec which assures the highest speech quality is G.711 which uses Pulse-Code-

Modulation (PCM) for encoding. This codec is also used for ISDN telefony and needs

a bandwith of 64 kbit/s. If the data is transferred over IP, like it is the case for

61

OpenH.323, 80 to 100 kbit/s are necessary to assure a good speech quality because

of the overhead created by IP headers. All other available G.XX codecs need lower

bandwith, the G.729 codec requires the lowest bandwith because it operates with 8

kbit/s. But of course, the speech quality is also lower for codecs with lower bandwith

demandings.

For compression of the video data the architecture can use to either the H.261 or

the H.263 codec. Since both codecs are intended for being used for video conferenc-

ing they both are optimized for low data rates and relatively low motion. The main

di�erence between both is the video quality which is higher for the H.263 codec. The

codecs compress the video data in real-time.

Next to the data encoding also the data transfer is crucial for assuring a good qual-

ity of the audio and video stream. To achieve an end-to-end delay of less than 200

milliseconds ([32]), the data channel managers (Figure 5.11), which are responsible for

transmitting the streams, utilize the Real-Time Protocol (RTP). RTP is built on top

of the User Datagram Protocol (UDP). Since Applications using RTP are less sensitive

to packet loss, but typically very sensitive to delays, UDP is more suitable than the

Transmission Control Protocol (TCP) for such applications.

The advantage of UDP is that this protocol is connectionless, so it needs less header in-

formation and does not use mechanism like retransmission or congestion control which

can lead to transmission delays.

Actually, RTP does not provide any mechanism to ensure timely delivery or provide

other quality-of-service guarantees. The three most important informations included

in the RTP header are:

• sequence number

• timestamp

• used data format (e.g. PCM)

The sequence number is useful for reconstructing the incoming packets in the right or-

der. The timestamp is needed to determine transmission delays. In case of delays the

applications can agree on using another data format to reduce the needed bandwith.

The presented design decisions improve the e�ciency but not cause trade-o�s regarding

maintainability and security. Table 6.2 summarizes the main design decisions a�ecting

the scenario E2 in relation to possible risks.

62

Design Decisions Risks

audio codecs supporting di�erent sizes

of bitstreams

quality of speech su�ers from lower bi-

trates

video codecs which compress data in

real-time

video codecs are optimized for low bi-

trate and low motion

RTP on top of UDP packet loss

RTP does not provide any mechanism

to ensure timely delivery

RTP does not provide quality-of-

service guarantees

Table 6.2: ATAM output for the scenario E2

Scenario E3

The third e�ciency scenario requires control mechanisms for connection parameters

like jitter and bandwith. The connection parameters have to be checked from time to

time to ensure a fast transmission with as low delay as possible. This task is ful�lled

by the control channel manager. Every time the control loop is processed the control

thread calculates the jitter for every active RTP channel. If the jitter is too high the

jitter bu�er is increased so that more data is bu�ered. The jitter bu�er is used to

write more packets at the same time with a little delay to the playing device, so the

transmission delay is balanced and not so noticeable for the user. The connection and

channel class shown in the logical view in Figure 5.16 provide operations for getting

and setting the bandwith of singular RTP channels or the whole connection. So the

endpoint manager has the possibility to adjust the bandwith according to available

capacity. Table 6.3 summarizes the main desing decisions, which a�ect the e�ciency

scenario E3, in relation to trade-o�s and risks caused by those design decisions.

63

Design Decisions Trade-offs Risks

control channel man-

ager calculate jitter

and used bandwith

e�ciency(-) control channel man-

ager has to access the

share memory (bottle-

neck) for calculation

jitter bu�er e�ciency(-) jitter bu�er adds de-

lay to balance trans-

mission delay

Table 6.3: ATAM output for the e�ciency scenarios E3

Maintainability Scenarios

Scenario M2

The scenario M1, as shown in the utility tree in Figure 6.1, demands extensibility re-

garding new codecs, channel types and security mechanisms. This demand is satis�ed

by the architecture through the object oriented concept of inheritance. There are dif-

ferent abstract classes which form a kind of framework to enable the adding of own

classes which implement new functionality. For example, the inheritance hierachy of

the abstract channel class is shown in Figure 6.2. There are trade-o�s between this

abstract class pattern, which is described in [31], for increasing maintainability and

e�ciency and security. On the one hand the e�ciency is decreasing at runtime because

of the used polymorphism. On the other hand it is possible to integrate also security

mechanisms which means an improvement of the system's security. The use of abstract

classes has also a disadvantage towards maintainability because changes and extensions

are only possible, without e�ecting the existing structure, if an abstract class for the

further or changed class exists. System capabilities like codecs can only be registered

at the endpoint manager when the system starts, as shown in Figure 5.11. New chan-

nel types must be known at compile time because there are couplings between channel

objects and other objects, especially the connection object (Figure 5.16). So it is not

possible to add functionality to the running system. Extensions have to be made at

compile time.

Scenario M2

Scenario M2 requires the change of existing codecs, channel types and security mech-

anisms. This scenario is similar to scenario M1 because the e�ort on change concerns

only system components which are implemented by classes which inherite from abstract

64

Figure 6.2: Inheritance hierachy of the abstract channel class

65

classes. So the abstract class pattern supports also this change scenario M2.

The trade-o�s caused by this pattern are the same as in the above scenario M1. Also

changes which are made must be known at compile time.

Scenario M3

The third maintainability scenario M3 regards changes to the signalling and/or control

protocol. Although the architecture conceptual view consists of components imple-

menting only a single task, the logical view does not support the functional decomposi-

tion strictly. So the behaviour of the signalling channel manager (Figure 5.11) and the

control channel manager (Figure 5.11), which is shown in the Figures 5.15 and 5.14, is

mapped to the logical view's connection class methods (Figure 5.16). Since this class

also implements mainly the crucial functionality for the enabling a call, changes can

e�ect the system's behaviour negatively. The connection class is also coupled strongly

with almost every of the other classes. That means the architecture does not support

this scenario because changes to the signalling and control protocol are not considered.

Table 6.4 summarizes the architectural designs decisions, trade-o�s and risks for the

maintainability scenarios.

Scenario Design Deci-

sions

Trade-offs Risks

M1 abstract class pat-

tern

maintainability(+)

e�ciency(-)

security(+)

after extension a

new deployment of

the system is neces-

sary

M2 abstract class pat-

tern

maintainability(+)

e�ciency(-)

security(+)

after a change a

new deployment of

the system is neces-

sary

M3 - missing functional

decomposition and

strong coupling of

connection class

- scenario is not

supported

- architecture does

not regard such

changes

Table 6.4: ATAM output for the maintainability scenarios

66

Security Scenarios

Scenario S1

The security scenario S1, which requires encryption of the transmitted data, is not

realized by the architecture in the current state. Encryption is only used if the authen-

tication mechanism for registration (Figure 5.7) at the gatekeeper is activated. The

encryption is either based on Secure Sockets Layer (SSL) or Message Digest Algorithm

5 (MD5) hashing. Both mechanisms use at least 128 bit keys which means the decryp-

tion by a third party is very improbable. The algorithms can be changed and modi�ed

because the endpoint manager (Figure 5.11) uses an authentication agent which is im-

plemented by an class which inheritates from the abstract class H235Authenticators

implementing the authentication security.

Encryption is only supported for the registration, that means privacy and integrity

is only assured for the exchanged authentication data. Which means the audio and

video data is not encrypted and can be captured and analysed by a third party. The

missing encryption a�ects positively the e�ciency because encryption is a time con-

suming process, especially if the algorithms, which use matrix operations, are to be

implemented. Audio and video data has to be processed fast because the maximum

end-to-end delay should not be higher than 200 milliseconds ([32]). To avoid lowering

the quality of the transferred media stream, the architecture does not support encryp-

tion of stream data.

Scenario S2

The second scenario S2, which demands authentication of the communication partic-

ipants, is only supported for the case that a connection with the gatekeeper is es-

tablished. The architecture supports authentication at the gatekeeper through the

authentication agent which is used by the endpoint manager (Figure 5.11) of the caller

and the one of the gatekeeper.

The architecture provides the abstract class H235Authenticators to enable the imple-

mentation of authenti�cation mechanisms. The authenti�cation data is encrypted, as

mentioned in the previous scenario S1.

The authenti�cation is by default not activated which improves the e�ciency of the

registration and admission since the time consuming authentication process is not

executed. The abstract class pattern which is used for changing or extending the au-

67

thentication component also improves the architecture's maintainability.

Architectural designs decisions, trade-o�s, and risks for the security scenarios are sum-

marized in Table 6.5.

Scenario Design Deci-

sions

Trade-offs Risks

S1 -no special compo-

nent for encryption

- only authentica-

tion agent imple-

ments encryption

e�ciency(+)

security(-)

- scenario is not considered

by architecture

-privacy and integrity of

transferred data is not as-

sured

S2 authentication

agent which is

realised by the

abstract class

H235Authenticators

security(+)

performance(-)

maintainability(+)

-authentication is only sup-

ported for the call scenario

with gatekeeper

-by default authenti�cation

is deactivated

-e�ciency decreases when

authentication is used be-

cause of time consuming en-

cryption/decryption

Table 6.5: ATAM output for the security scenarios

68

6.2 Evaluation using Architectural Metrics

Since the implementation of the OpenH.323 is available it is possible to collect archi-

tectural metrics from the code to support the evaluation of the architecture's main-

tainability. The two most interesting metics are the coupling and cohesion of the

architecture's main classses, which metrics are described in Section 4.3.4. Further the

complexity of the functions which implement the system's behaviour which is shown

in the conceptual view in Figure 5.11, especially the signalling and control view, are

interesting regarding the maintainability scenario M3.

The measurement is performed with the source code analyzing tool understand for

C++ [33]. This tool is o�ered as a free thirty day trial version. Understand for C++

is able to measure the number of coupled classes and the lack of cohesion for a certain

class in percents. High percentage corresponds with low cohesion. The following Table

6.6 shows the main classes of the logical view (5.16) with the coupling and cohesion

metric.

Classes Number of Coupled

Classes

Percent Lack of Cohe-

sion

Endpoint 43 98

Connection 91 97

Capability 11 88

Channel 12 87

Transport 11 86

Codec 7 86

H245Negotiator 2 81

H245NegLogicalChannels 8 71

Listener 4 88

Table 6.6: Coupling and cohesion metrics for the architecture's main classes

Furthermore, the tool understand for C++ is utilized to determine the cyclomatic com-

plexity (Section 4.3.4) of the main functions implementing the call initialization.

Table 6.7 gives an overview of the relation of the cyclomatic complexity and the related

risk level.

69

Cyclomatic Complexity Risk

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)

Table 6.7: Cyclomatic Complexity levels with related risk level [29]

The cyclomatic complexity of the methods, which are necessary for the implementing

the signalling and control loop, are given in Table 6.8.

Class Method Cyclomatic Complex-

ity

Connection SendSignalSetup 39

HandleSignallingChannel 10

HandleSignalPDU 28

WriteSignalPDU 4

HandleControlChannel 7

HandleControlPDU 5

HandleControlData 4

Q931 Decode 8

Encode 11

Table 6.8: Cyclomatic Complexity of essential methods

6.3 Cognitions from the Evaluation

In the two previous sections the architecture has been evaluated with the early eval-

uation approach ATAM, and the late evaluation approach architectural metrics. This

section focuses on examining the collected outputs from both evaluations.

The ATAM evaluation has shown that the level of description of the architecture with

the conceptual (Figure 5.11) and logical view (Figure 5.16) allows to assign the con-

sideration of quality characteristics. Although ATAM does not evaluate the quality

70

quantitively it helps to identify the lacks of quality and trade-o�s among the three

quality characteristics. The evaluation also showed that the OpenH.323 software is

a typical Opensource project. Obviously, the OpenH.323 architecture focuses more

on implementing the basic and necessary video conferencing functionality. The archi-

tecture consists of necessary components to perform a call but for example does not

provide any additional features like the encryption of transmitted data because that

is not essential to make a call. But the architecture, like it is typical for Opensource

software, enables the addition of such features.

The quality characteristic e�ciency is re�ned to three e�ciency scenarios (Figure 6.1).

The �rst e�ciency scenario E1 aims especially on meeting the time limits demanded

by the ITU standard for the protocol. Since these time limits are not really short,

the implementations of the architecture should be able to meet them. Also the used

design approaches as shown in Table 6.1 do not improve the architectures time be-

haviour. On the contrary, the time behaviour declines through them. Approaches like

multithreading and shared memories are not used in a system which has to ful�l real-

time requirements. The second and third e�ciency scenario E2 and E3 (Figure 6.1)

focus mainly on the quality of the transmitted audio and video data. To ensure fast

processing and transmission, the architecture uses encoder and decoder which work in

real-time and the RTP protocol as transmission protocol. Further, the architecture

contains the control channel manager (Figure 5.11) which is observing the connection

parameters like the jitter and used bandwith. The control channel manager (Figure

5.11) as well as the signalling channel manager are implementing the core functionality

and these components are implemented in the logical view's connection class (Figure

5.16). Changes or extensions to that class are really risky because of high coupling and

low cohesion as shown in Table 6.6. The methods of this class are very complex.

The H.323 protocol is very complex because it uses several other protocols, so the

amount of exchange protocol directives is comparable high. There are voice over IP

protocols whose degree of communication between components is lower which means

that there are able to set up a call faster than H.323. Acccording to [30] the protocol

architecture The Session Initiation Protocol (SIP) consits of less components and the

amount of exchanged messages is also less. The complexity of the H.323 protocol is

re�ected also in OpenH.323 architecture. At runtime many objects are communicating

and they exchange about 120 messages to initiate a call.

The e�ciency evaluation with ATAM has shown the biggest weakness of the early

71

evaluation and of early evaluation approaches like ATAM. Regarding the mentioned

bottleneck, caused by the synchronisation of the shared memory, or the decreasing e�-

ciency, caused by the context switches of scheduled threads, all these investigations are

based on assumptions which are based on the expertise of the evaluatin team. There

is no possibility to �nd quantive values with ATAM.

The utilization of object oriented techniques for implementing the OpenH.323 archite-

cure aims on improving the quality characteristic maintainability. So for the system

architect the maintainability is higher prioritize than the e�ciency. The reason might

be the moderate time limits for exchanging the protocol directives. The most critical

e�ciency requirement is ensuring a good quality of the audio and video stream. That

this requirement is met by the architecture was stated above.

The quality characteristic maintainability is increased by providing a kind of frame-

work to extend the architecture with further codecs, channel types and security mech-

anisms. The abstract class pattern is utilized to implement this framework. This

causes of course trade-o�s with the quality characteristic e�ciency which is decreased

by polymorphism. The collected design metrics coupled classes and lack of cohesion

showed that the architecture is changeable regarding channel types and codecs. Ta-

ble 6.6 shows that the coupling of the classes Channel, Transport, and Codec to other

classes and their cohesion is relatively low in comparison to the classes Endpoint and

Connection. The latter two classes contain the core functionality and it is quite di�-

cult to change or extend them. This is shown by the ATAM output in Table 6.4. It

was possible to recognize with ATAM from the logical view (Figure 5.16) that the con-

nection class lacks a functional decomposition and is strongly coupled to other classes.

Measuring the coupling and cohesion proved quantitatively that this class decreases

the maintainability. The metrics are given in table 6.6. The high lack of cohesion value

shows that the class could be decomposed in several more. Furthermore, measuring the

complexity of the methods of the Connection and Endpoint class showed that there are

complex methods which decrease the maintainability and especially the testability of

the architecture. Another disadvantage of the architecture regarding maintainability

is that changes and/or extensions cannot be performed on the running system. That

means they must be known at compile time and the whole system must be deployed

every time. Even for registering a new codec this e�ort is necessary.

In general, the architecture ful�ls the stakeholders' demands for maintainability quite

well. The maintainability pro�ts mostly from the used object oriented paradigms and

72

patterns, e.g. the abstract class patter, but these techniques a�ect the e�ciency neg-

atively. Only the core functionality of the system is di�cult to change and/or extend.

The security demandings of the stakeholders are ful�led partly by the architecture.

The second security scenario S2 (Figure 6.1) is ful�lled by the authentication and au-

thorization mechanisms used for registration and admission at the gatekeeper. The

user's authentication data is transmitted encrypted. But the communication itself is

not secure. But additional security features can be implemented because the archi-

tecture provides the means to implement further encryption algorithms and secure

channels.

The missing security features, e.g. encryption of transmitted data, bene�t the system's

e�ciency.

73

7 Conclusion

The thesis' primary objective is the early evaluation of the OpenH.323 protocol software

architecture. The evaluation is performed with two architecture evaluation methods as

described in Section 4.3. The Architecture Trade-O� Analysis Method (ATAM) and

the architectural metrics approach are utilized. ATAM was described in Section 4.3.3

and architectural metrics in Section 4.3.4

For the architectural description a conceptual and logical view have been utilized and

they are presented in Section 5.3.. The conceptual view gives a general overview of

the functional components with their relations towards each other. The case study

showed that the conceptual description is very suitable for an ATAM-based evaluation.

Even from this high-level description it is possible to identify risk and mistakes in the

planned system. Depending on the expertise of the evaluation team, even assumptions

regarding runtime behaviour are possible.

The logical view is an object-oriented decomposition of the software system. The de-

composition is achieved by abstracting from the functionality of the conceptual view's

components. The logical view is very suitable to assess extendability and changeabil-

ity of the software system because it enables the collecting of architectural metrics to

determine coupling and cohesion.

The performed evaluation regarding the three identi�ed quality characteristics proved

that the used architectural description is a useful input for an early evaluation like

ATAM because it was possible to identify quality weaknesses as well as points of trade-

o�. Actually, the evaluation showed that the OpenH.323 architecture focuses mainly

on the necessary functionality to enable video conferencing. Regarding the three qual-

ity characteristics, the analysis of the evaluation results in Section 6.3 points out that

the design of the architecture mainly focuses on the maintainability characteristic. The

e�ciency of the OpenH.323 protocol is essential for the processing and transmitting

of audio and video data with a low end-to-end delay. That is why the architecture

implement mechansims like real-time encoding/decoding, jitter bu�er, and RTP. But

since the time limits for exchanging H.323 protocol directives for signalling and sta-

tus control are quite moderate as shown in the usage scenarios in Section 5.2.2, the

74

architecture utilizes design decisions which even decrease the e�ciency. The security

requirements are only partly implemented but it is possible to extend the architecture

with security features.

ATAM's biggest disadvantage is the absence of metrics which give quantitive evidence

about the degree of ful�lment of certain quality characteristics. The whole ATAM

assignment is based on the expertise of the evaluation team. ATAM only enables as-

sumptions regarding the system's behaviour and the degree of ful�lment of certain

quality characteristics, like e�ciency or security, at runtime. So the quality of the

ATAM evaluation or the early evaluation in general depends on the expertise of the

evaluation team and the quality of the architectural description as input for the eval-

uation.

This shows that it is possible to recognize conceptual �aws by performing a software

architecture evaluation by just using the ATAM evaluation is not enough to assign the

quality. Especially characteristics which occur at runtime like e�ciency must be eval-

uated through mathematical models or simulations on the architectural level to make

correct predictions. Just relying on expertise is not enough for a sound evaluation.

There is de�nitely a need for further methods and approaches to evaluate software

architecture regarding quality characteristics which occur at runtime already on the

architectural level. Also the development of tools which recognize conceptual mistakes

and points of trade-o� in the architectural description are needed to avoid mistakes in

the early development stages.

The existing tools collecting architectural metrics from the source code description only

enable the maintainability evaluation.

75

8 References

[1] T. Kärkkäinen, N. Hämäläinen, J. Ahonen. Why to evaluate enterprise and software

architectures: objectives and use cases. Information Technology Research Institute,

University of Jyväskylä. Jyväskylä, Finland, 2005.

[2] Rick Kazman, Len Bass, Paul Clements. Software Architecture in Practice. Addison

Wesley, 2 edition, April 2003.

[3] Helmut Balzert. Lehrbuch der Software-Technik. Spektrum Akademischer Verlag,

2 edition, 2001.

[4] B. Groehne P. Tabeling A, Knoepfel. Fundamental Modeling Concepts: E�ective

Communication of IT Systems. Wiley and Sons Ltd, March 2006.

[5] AISA project - quality management of enterprise and software architectures. http:

//www.titu.jyu.fi/aisa/index.htm, October 2006.

[6] M. Shereshevsky, H. Ammari. Information theoretic metrics for software architec-

tures. Chicago, IL, USA, 2001. IEEE Computer Society. Proceedings of the 25th

Annual Internation Computer Software and Application Conference (COMPSAC

2001).

[7] IEEE standard recommended practice for architecture description. IEEE Std 1471-

2000.

[8] IEEE standard for a software quality metrics methodology. IEEE Std 1061-1998,

December 1998.

[9] P.B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42�50,

November 1995.

[10] C. Hofmeister, D. Soni, R. L. Nord. Software architecture in industrial applica-

tions. Proceedings of the 17th international conference on Software engineering.

pages 196�207, Seattle, Washington, USA, 1995.

[11] William E. Burr, Samuel H. Fuller. Measurement and evaluation of alternative

computer architectures. Computer, 10:24�35, October 1977.

76

http://www.titu.jyu.fi/aisa/index.htm
http://www.titu.jyu.fi/aisa/index.htm

[12] M. Lipow, B. W. Boehm, J. R. Brown. Quantitative evaluation of software qual-

ity. San Francisco, California, United State, 1976. IEEE Computer Society Press.

Proceedings of the 2nd international conference on Software engineering.

[13] M. Barbacci, M. H. Klein. Quality attributes. Technical report, 1995.

[14] Karl E. Wiegers. Software Requirements 2: Practical techniques for gathering and

managing requirements throughout the product development cycle. Microsoft Press,

2 edition, 2003.

[15] F. Lasavio, L. Chirinos. Iso quality standards for measuring architectures. The

Journal of Systems and Software, 72:209�223, 2004.

[16] Mark Klein, Paul Clements, Rick Kazman. Evaluating Software Architectures:

Methods and Case Studies. Addison Wesley, 1 edition, October 2001.

[17] M. Svahnberg. An industrial study on building consensus around software archi-

tectures and quality attributes. Information and Software Technology, 46:805�818,

2004.

[18] M. Lindvall, R. Tesoriero. Avoiding architectural degeneration: An evaluation

process for softwareg. pages 77�86. IEEE Computer Society, 2002. Proceedings of

the Eighth IEEE Symposium on Software Metrics (METRICS'02).

[19] A. V. Corry, J. Bardram, H. B. Christensen, M. Ingstrup, and K. M. Hansen. Ex-

ploring quality attributes using architectural prototyping. pages 155�170. Springer-

Verlag Berlin Heidelberg, 2005. Proceedings of the First International Conference

on the Quality of Software Architectures (QoSA 2005).

[20] Paul E. Jones. Overview of H.323. http://www.packetizer.com/voip/h323/

papers/overview_of_h323_files/frame.html, June 2004.

[21] H. Astudillo. Five ontological levels to describe and evaluate software architec-

tures. Rev. Fac. Ing. - Univ. Tarapacá, 13:69�76, 2005.

[22] S. Ferber. Reviewing Software Architecture: Experience in Applying ATAM at

Bosch, October 2002. Robert Bosch GmbH, Frankfurt, Germany.

[23] M. Denford, K. Dunsire, T. O'Neill. The abacus architectural approach to

computer-based system and enterprise evolution. pages 62�69, April 2005. 12th

IEEE International Conference and Workshops on the on Engineering of Computer-

Based Systems.

77

http://www.packetizer.com/voip/h323/papers/overview_of_h323_files/frame.html
http://www.packetizer.com/voip/h323/papers/overview_of_h323_files/frame.html

[24] J. Bosch. Software architecture assessment. International Summer School on

Usability-Driven Software Architecture. Tampere, Finland, 2005. University of

Technology.

[25] P. Molin, J. Bosch. Software architecture design: evaluation and transforma-

tion. pages 7�12, March 1999. IEEE Conference and Workshop on Engineering of

Computer-Based Systems.

[26] H. Grahn, M. Mattsson, F. Mårtensson. An approach for performance evaluation

of software architectures using prototyping. USA, 2003. Proceedings of the 7th

IASTED International Conference on Software Engineering and Applications.

[27] W. Diestelkamp L. Lundberg, D. Häggander. Con�icts and trade-o�s between

software performance and maintainability. volume 2047, pages 56�67. Springer-

Verlag, 2001.

[28] Dominik Sacher. Diagrams on openh323 functions. http://www.openh323.org/

docs/diagrams.html.

[29] T. J. McCabe. A complexity measurement. pages 308�320, December 1976. IEEE

Transactions on Software Engineering, 2.

[30] S. Afsharian M. Castaldi, P. Inverardi. A case study in performance, modi�abil-

ity and extensibility analysis of a telecommunication system software architecture.

pages 281�290, 2002. Proceedings. 10th IEEE International Symposium on Model-

ing, Analysis and Simulation of Computer and Telecommunications Systems.

[31] Bobby Woolf. The abstract class pattern. 1997. In PLOP Proceedings.

[32] W. Mandranwa, P. Calyam, M. Sridharan, P. Schopis. Performance measurement

and analysis of h.323 tra�c. Antibes Juan-les-Pins, France, 2004. In Proceedings

of the 5th International Workshop on Passive and Active Network Measurement,

PAM 2004.

[33] Scienti�c Toolworks Inc. Understand for C++. http://www.scitools.com/

products/understand/cpp/product.php.

78

http://www.openh323.org/docs/diagrams.html
http://www.openh323.org/docs/diagrams.html
http://www.scitools.com/products/understand/cpp/product.php
http://www.scitools.com/products/understand/cpp/product.php

Glossary

End-to-end delay End-to-end delay includes compression and transmission delay at

the sender, the propagation, processing, and queuing delay in the network, and

bu�ering and decompression delay at the receiver.

FMC The Fundamental Modeling Concepts primarily provide a framework for the

comprehensive description of software-intensive systems. It is based on a precise

terminology and supported by a graphical notation which can be easily under-

stood.

ICT Information and Communication Technology

IEC The International Electrotechnical Commission is responsible for standardization

of electrical equipment.

IEEE The Institute of Electrical and Electronics Engineers is an international non-

pro�t, professional organization for the advancement of technology related to

electricity.

ISDN The Integrated Services Digital Network is a type of circuit switched telephone

network system, designed to allow digital transmission of voice and data over

ordinary telephone copper wires, resulting in better quality and higher speeds

than available with analog systems.

ISO The International Organization for Standardization is an international standard-

setting body composed of representatives from national standards bodies.

ITU The International Telecommunication Union is an international organization es-

tablished to standardize and regulate international radio and telecommunications.

MCU Multipoint Control Unit is a device commonly used to bridge videoconferencing

connections. The Multipoint Control Unit is an endpoint on the LAN which

provides the capability for three or more terminals and gateways to participate

in a multipoint conference.

Multithreading Multithreading means the concurrent execution more than one pro-

gram by the same machine.

79

Mutex The Mutual exclusion mechanism is a means for inter task communication

usually provided by the operating system. Concurrent thread use a mutex to

ensure that only one thread can access a shared resource. Any other thread who

tries to get the mutex will either be blocked until the mutex is released, or its

request will be rejected.

UML The Uni�ed Modeling Language is a non-proprietary object modeling and spec-

i�cation language used in software engineering. UML is a general-purpose model-

ing language that includes a standardized graphical notation that may be used to

create an abstract model of a system, sometimes referred to as the UML model.

80

A Additional Diagrams

Figure A.1: Communication between objects for starting data reception [28]

81

Figure A.2: Communication between objects for starting data transmission [28]

82

Figure A.3: Messages for call initiation [28]

83

Figure A.4: H225CallThread messages for call setup [28]

84

Figure A.5: Communication between objects for opening data channel [28]

85

	List of Figures
	List of Tables
	Introduction
	Overall Context of the Research Area
	Research Problems and Questions
	Objective of this Work
	Structure of the Thesis

	Software Architecture
	Meaning of Software Architecture
	Architectural views and descriptions
	Utilization of Software Architecture

	Software Quality
	Quality Models
	Quality Models in General
	ISO 9126-1 Quality Model

	Stakeholders and Quality Characteristics
	Software Quality Attribute Trade-offs

	Software Architecture Evaluation
	Early vs. Late Software Architecture Evaluation
	Early Evaluation
	Late Evaluation

	Goals of Software Architecture Evaluation
	Software Architecture Evaluation Methods
	Questionnaires and Checklist
	Scenario-based methods
	Architectural Trade-off Analysis Method (ATAM)
	Architectural Metrics
	Prototyping
	Mathematical Modelling
	Summary

	OpenH.323 system
	H.323 System Components
	Terminal
	Gateway
	Gatekeeper
	Multipoint Control Unit (MCU)

	H.323 Protocol
	H.323 Protocol and Subprotocols
	Usage Scenarios

	OpenH.323 protocol Software Architecture
	Conceptual View of System Structure and Behaviour
	Logical and Process View

	Evaluation of the OpenH.323 Protocol Architecture
	Early Evalution with ATAM
	Utility Tree
	Realisation of Scenarios by the Architecture

	Evaluation using Architectural Metrics
	Cognitions from the Evaluation

	Conclusion
	References
	Glossary
	Additional Diagrams

