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Abstract

This master’s thesis concerns the use of the microscopic quasiparticle-phonon model
in the study of the β− decay of 115Cd. The first part of this text concentrates on
the theoretical description of nearly spherical open-shell odd-A nuclei by using the
microscopic quasiparticle-phonon model. The treatment of the subject is far from
exhaustive but all the necessary relations needed in the practical application of the
formalism are provided in the text.

The second part provides the theory that is needed for the study of β− decay. In ad-
dition to the general theory of forbidden β− decay, also the greatly simplified case of
allowed transitions are discussed. Again rather than providing a fully comprehensive
treatment of the subject, a more streamlined approach is adopted. All the various
relations that are needed in the practical application of the theory are provided in
the text.

Finally, in the third and final part of the text the above theoretical framework is
applied to the β− decay of 115Cd. In addition to the ground state transitions of
115Cd, it is also possible to study the transitions coming from the first excitation
state due to its isomeric character. Because of the various possible ways of carrying
out the fitting of the QRPA phonons, several sets of calculated partial half-lives
are obtained. The calculated partial half-lives are compared to experimental results.
For several transitions values that are fairly close to the experimental ones can be
found. However, in many cases there are large disrepancies between the two. Some
of the transitions seem also to be very sensitive to the adjustments made to the
QRPA phonons. The effect of varying the nucleon spin-orbit interaction strength
was studied as an additional exercise.
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Introduction

The theory of nuclear beta decay has gained a well established position in today’s
nuclear physics. Thanks to its success in accurately describing the most typical beta
transitions, the theory itself is not usually regarded worth active study anymore.
Despite being a somewhat unfashionable subject, the beta decay theory is still a good
test bench for nuclear models. The kinematic part of the theory is fully universal but
the charge-changing transition densities (CCTDs) inside the nuclear matrix elements
are not. These quantities carry the nuclear structure information and in order to
calculate them an actual nuclear model must be specified.

A fully microscopic example of such a nuclear model, and the one that is used in this
text, is the microscopic quasiparticle-phonon model (MQPM) for nearly spherical
odd-A open shell nuclei [1]. The starting point for using this formalism is to choose
a even-even nucleus that is used as a reference nucleus. To lighten the involved
computational burden, the configuration space of the reference nucleus is divided
into two parts [2]. The innermost nuclear orbitals form an inert nuclear core and
only the outer orbitals contribute to the interactions that lead to the formation of
the excited states of the nucleus. The collection of these active outer nuclear orbitals
of the reference nucleus is called the valence space.

The ground state of the reference nucleus can be obtained from the BCS theory [1,2].
In the BCS theory the basic constituents of nuclei are not particles or holes but
rather quasiparticles that have both particle and hole components. The ground
and excited states of the neighbouring odd-A nuclei can then be descriped as one-
quasiparticle excitations on top of the ground state of the reference nucleus. The one-
quasiparticle description can be considerably improved by introducing the MQPM
three-quasiparticle excitations. These three-quasiparticle excitations are constructed
by combining the BCS one-quasiparticle states with the QRPA two-quasiparticle
states [1]. The QRPA two-quasiparticle excitations are considered to be the basic
excitations of the even-even reference nucleus.
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1 Theoretical description of nuclear states

In this section the needed theoretical framework that is used to describe the different
nuclear states of an open-shell odd-A nucleus is developed. The starting point for
the discussion is the nuclear mean-field potential that leads to the discrete set of
single-particle states.

The nuclear model based directly on the consept of these single-particle orbitals
is the mean-field shell model [2]. Despite the fact that the mean-field shell model
correctly predicts at least some of the low-energy states of nearly magic nuclei1, it is
not applicable to open-shell nuclei with several nucleons above a fully closed major
shell. To overcome the challenges faced with the open-shell nuclei, one must strive
for a more refined model. The starting point for this is the BCS theory and the
introduction of the BCS quasiparticles [1].

1.1 Nuclear mean field and Woods–Saxon potential

The many-particle problem of A strongly interacting nucleons is described by a
nuclear Hamiltonian H = T+V [2]. The kinetic-energy term T is a simple sum of the
kinectic energies of the individual nucleons. The potential-energy term V holds the
potential energies of the interactions between the different pairs of nucleons and has
therefore a more complicated two-body character. By introducing a new mean-field
potential with the additional potential energies of the individual nucleons summed
to a term VMF, it is now possible to write the nuclear Hamiltonian in a form

H = [T + VMF ] + [V − VMF ] = HMF + V ′ , HMF =
A∑
i=1

hi . (1)

If the latter part V ′, the residual interactions containing all the two-body inter-
actions, is now effectively enough suppressed by maximizing the first part, namely
HMF, it can be treated as a small perturbation. This procedure of effectively replacing
the A strongly interacting nucleons with weakly interacting mean-field quasiparticles
is the nuclear mean-field approximation [2].

There is a procedure of obtaining a proper mean-field potential via the iterative
use of Hartree–Fock equation, but more common is simply to choose a suitable
phenomenological potential (see for example the discussion in [2]). An example of
such a phenomenological potential with realistic nuclear mean-field behaviour is the
Woods–Saxon potential

vWS(r) = − V0

1 + e(r−R)/a
(2)

that is used in the discussion of this text [2]. With the usual parametrization, the
nuclear radius R and the surface diffuseness a are taken to be

R = 1.27A1/3 fm , a = 0.67 fm. (3)

The depth V0 of the potential is chosen according to the relation

V0 =

(
51± 33

N − Z
A

)
MeV, (4)

1. Nearly magic nuclei have few nucleons (nucleon holes) above (below) a fully closed major shell
at some magic number.
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where the result with + sign is selected for protons and the result with − sign for
neutrons.

When the Coulomb interaction and the spin-orbit interaction are also taken into
account, the complete single-particle Hamiltonian that already formally appeared
in (1), can now be written as [2]

h = − ~2

2mN

∇2 + vWS(r) + vC(r) + vLS(r)~L · ~S (5)

In this text the same nucleon mass mN = 940 MeV/c2 is used for both protons and
neutrons. The Coulombic potential energy vC(r) that is needed only for protons is
taken to be

vC(r) =
Ze2

4πε0

{
3−(r/R)2

2R
, r ≤ R

1
r
, r > R

. (6)

The essential part of the contribution made by the spin-orbit term comes from the
~L · ~S dependence. However, to make the effect to peak at the nuclear surface the
radial part of the term can be taken to be

vLS(r) = v0
LS

(r0

~

)2 1

r

[
d

dr

1

1 + e(r−R)/a

]
(7)

with the spin-orbit interaction strength v0
LS = 0.44V0.

After specifying the single-particle Hamiltonian, the discrete nucleon single-particle
states are now described by the eigenvectors of the Schödinger equation

hlj|nljm〉 = εnlj|nljm〉. (8)

The eigenvalue problem can be solved for example by expanding the non-trivial
radial part of the solution in terms of radial harmonic oscillator wave functions [2].
The obtained single-particle energies εnlj are needed in the BCS calculations. It
should be noted that single-particle states with discrete positive energies, the so-
called quasi-stationary states, are a result of the ’centrifugal’ l(l + 1)/r2 dependent
term of the Schrödinger equation and the Coulomb potential [2].

1.2 BSC theory

The BCS quasiparticle creation and annihilation operators a†α and aα are defined
via the Bogoliubov-Valantin transformation [2]

a†α = uac
†
α + vac̃α

ãα = uac̃α − vac†α.
(9)

Operators c†α and cα are the usual particle-creation and -annihilation operators.
The index notation used here is the one introduced by Baranger. This means that
α = {a, mα} with a = {na, la, ja}. Numbers n, l, j and m are the usual quantum
numbers of the individual mean-field single-particle states. Operators
ãα = (−1)ja+mαa−α and c̃α = (−1)ja+mαc−α are the time-reversed conpanions of the
corresponding annihilation operators aα and cα with the notation −α = {a, −mα}.
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The BCS ground state |BCS〉 that acts as a vacuum for the BCS quasiparticles is
defined with an ansatz [2]

|BCS〉 =
∏
α>0

(ua − vac†αc̃†α)|CORE〉. (10)

The state |CORE〉 represents the effective particle vacuum. This vacuum is the inert
nuclear core of the reference nucleus. The proper BCS vacuum is then obtained as a
result of a variational procedure, where the occupation amplitudes ua and va serve
as variational parameters to minimize the ground state energy [2]. Protons and
neutrons are treated separately in the variational procedure.

It should be noted that the BCS ground state (10) lacks a good particle number [2].
To cope with this shortcoming, it is required as a variational constraint that the
average particle number should correspond to the number of active valence nucleons
of the reference nucleus.

The standard nuclear Hamiltonian (1) consists of one-particle and two-particle parts.
It can be written in occupation-number representation as

H =
∑
α

εαc
†
αcα +

1

4

∑
αβγδ

v̄αβγδc
†
αc
†
βcδcγ, (11)

where the antisymmetrized two-body-interaction matrix elements are defined as
v̄αβγδ = 〈αβ|V |γδ〉 − 〈αβ|V |δγ〉 [1, 2]. For the calculations presented in this text,
the two-body matrix elements are obtained from a realistic Bonn meson-exchange
potential by the use of a so-called G-matrix method [3]. The G-matrix method is
needed to account for the Pauli exclusion principle inside the nuclear matter.

In order to use the nuclear Hamiltonian in BCS theory and later in the QRPA
and MQPM treatments, it has to be transformed into its quasiparticle representa-
tion using the Bogoliubov-Valantin transformation (9). In this representation the
Hamiltonian attains the form

H = H00 +H11 +H20 +H02 +H22 +H31 +H13 +H40 +H04, (12)

where the indices m and n of each term Hmn denote the number of quasiparticle
creation and annihilation operators, respectively, of the term in question [2]. BCS
theory deals only with the terms H00, H11, H20 and H02 of the Hamiltonian. The rest
of the terms constitute the quasiparticle residual interactions VRES and are treated
by means of the QRPA and the MQPM.

To help to state the variational problem one can define an auxiliary Hamiltonian
H = H − λn̂ with n̂ as the particle number operator

∑
c†αcα. The quantity λ

is an unknown parameter serving as the Lagrange undetermined multiplier of the
variational problem. It turns out that the variational procedure modifies the new
Hamiltonian in a such a way that [2]

H = H0 +H1 + VRES, H1 =
∑
β

Eb a
†
βaβ. (13)

In other words, the minimization of the ground-state energy occurs only when the
two-quasiparticle terms of the HamiltonianH vanish. What remains are the constant
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term H0, the one-quasiparticle term H1 and the residual interactions VRES. The first
two terms of the auxiliary Hamiltonian (13) describe a quasiparticle mean field of
non-interacting BCS quasiparticles [2]. The quatities Ea are the energies of the one-
quasiparticle states.

In the present work the Biedenharn–Rose phase convention of the angular part of
the single-particle wave functions is used [2]. In this convention the BCS equations
that arise from the variational procedure are written as [2]

ua =
1√
2

√
1 +

ηa
Ea
, va =

1√
2

√
1− ηa

Ea
(occupation amplitudes), (14)

Ea =
√
η2
a + ∆2

a (quasiparticle energy) (15)

and

2ĵa∆a = −
∑
b

ĵb∆b√
η2
b + ∆2

b

〈a a ; 0|V |b b ; 0〉 (gap equation). (16)

Here, and on many other occasions likewise, the hat factor is defined as ĵ =
√

2j + 1.
In addition to these equations also needed is the particle-number expectation value

n̄ = 〈BCS|n̂|BCS〉 =
∑
a

ĵa
2
v2
a =

1

2

∑
a

ĵa
2
(

1− ηa
Ea

)
. (17)

The short-hand notation used in the relations (14)–(17) is

η b = εb − λ− µb, (18)

where the quantity µb, called the self-energy, is written as

µb = −ĵb
−2∑

aJ

v2
aĴ

2[Nab(J)]−2 〈a b ; J |V |a b ; J〉. (19)

Self-energy is releated to the renormalization of the single-particle energies εa. The
undetermined multiplier λ that now appears in Eq. (18) is actually the chemical
potential of the particle system. Solving of the above BCS equations requires an
iterative method [2].

In actual BCS calculations the interaction matrix elements for protons and neutrons
are scaled separately by constanst g

(p)
pair and g

(n)
pair [2]. The values of the constants are

chosen so that the lowest quasiparticle energies agree with the experimental pairing
gaps. These can be calculated from the three-point formulas [2]

∆p(
A
ZXN) =

1

4
(−1)Z+1 [Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)] (20)

and

∆n(AZXN) =
1

4
(−1)A−Z+1 [Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)] . (21)

The quantities Sp and Sn are the needed experimental proton and neutron separation
energies.
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1.3 Quasiparticle random-phase approximation

After the BCS ground-state, along with a collection of several one-quasiparticle
excited states, are defined, it is time to move on to the description of the two-
quasiparticle excitations of the reference nucleus. In this work, this task is performed
by using the quasiparticle random-phase approximation (QRPA) that takes into
account the terms H22, H40 and H04 of the residual interactions of the Hamiltonian
(12) [1, 2].

The basic two-quasiparticle excitations of the QRPA theory, the so-called QRPA
phonons, are created by an operator [1, 2]

Q†ω =
∑
a≤b

[
Xω
abA

†
ab(JM)− Y ω

abÃab(JM)
]
. (22)

According to the adopted notation, the index ω stands for the angular momentum
Jω, the parity πω and the additional quantum number kω that is used to make a
distinction between different states with the same Jω and πω. The operators A†ab and
Ãab that appear in (22) are the quasiparticle pair creation operator

A†ab(JM) = Nab(J) [a†aa
†
b]JM (23)

and the time-reversed quasiparticle pair annihilation operator

Ãab(JM) = (−1)J+MAab(J,−M) = −Nab(J) [ãaãb]JM . (24)

The amplitudes Xω and Y ω related to the two-quasiparticle configuration mixing
must be determined by solving the QRPA equations. These equations can be derived
by using the equations-of-motion method introduced by Rowe [4]. Combining these
equations together results in a matrix equation[

A B
−B∗ −A∗

] [
Xω

Y ω

]
= Eω

[
Xω

Y ω

]
, (25)

where the submatrices A and B are defined with elements

A(ab, cd; J) = 〈BCS|[Aab(JM),H, A†cd(JM)]|BCS〉 (26)

and
B(ab, cd; J) = −〈BCS|[Aab(JM),H, Ãcd(JM)]|BCS〉. (27)

The mathematical operation inside (26) and (27) is the double commutator. For the
Bose-like phonon excitations that are used here this is

[A,B,C] =
1

2

{[
A, [B,C]

]
+
[
[A,B], C

]}
. (28)

The Hamiltonian that appears in these commutators is the auxiliary Hamiltonian
(13). As indicated by the adopted notation, the submatrices A and B are both
independent of the projection quantum number M [2].

The submatrix A is the same as in the quasiparticle Tamm–Dancoff approximation
(QTDA) [2]. The contributions to it come from the quasiparticle mean field and the
term H22. The submatrix B is called the correlation matrix and from the definition
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(27) it can be seen that only the four-quasiparticle term H40 contributes to it. The
explicit expressions for the elements of the matrices A and B are [2]

A(ab, cd; J) = (Ea + Eb)δacδbd

− 2Nab(J)Ncd(J)
[
(uaubucud + vavbvcvd)G(ab, cd; J)

+ (uavbucvd + vaubvcud)F (ab, cd; J)

− (−1)jc+jd+J(uavbvcud + vaubucvd)F (ab, dc; J)
] (29)

and
B(ab, cd; J) = 2Nab(J)Ncd(J)

[
(uaubvcvd + vavbucud)G(ab, cd; J)

− (uavbvcud + vaubucvd)F (ab, cd; J)

+ (−1)jc+jd+J(uavbucvd + vaubvcud)F (ab, dc; J)
]
.

(30)

The above expressions are written in terms of the Baranger matrix elements [2]

G(ab, cd; J) = −1

2

[
Nab(J)Ncd(J)

]−1〈a b ; J |V | c d ; J〉 (31)

and

F (ab, cd; J) = −1

2
〈a b−1 ; J |VRES| c d−1; J〉

=
1

2

∑
J ′

[
Nad(J ′)Ncb(J ′)

]−1
Ĵ ′

2
{
ja jb J
jc jd J ′

}
〈a d ; J ′|V | c b ; J ′〉.

(32)

The two-body matrix elements of (31) and (32) are taken from the adopted Bonn
meson-exchange potential. The notation a−1 in the particle-hole matrix element (32)
is used to indicate the hole character of the orbital a. Here, the particle-hole matrix
element is readily related to the used two-body matrix elements via the generalized
Pandya transformation (32).

The introduction of the correlation matrix B means that the BCS ground-state
|BCS〉 is not actually the exact ground state for the QRPA excitations2 [2]. However,
the effect of the correlation matrix B is small and due to this the QRPA ground-state
can be written schematically in the form

|QRPA〉 = |BCS〉 + small corrections. (33)

The explicit form of the ground-state with its four-quasiparticle, eight-quasiparticle,
etc. components can be found - but not needed in the treatment of this text - by
using the Thouless theorem [2].

The structure of the QRPA matrix in the matrix equation (25) yields a non-hermitian
eigenvalue problem. The solution can be obtained by using a method descriped in [2]
which utilizes similarity transformations in the diagonalization of the QRPA matrix.
As an effect of this non-hermiticity, the eigenvalue problem leads to both positive-
energy and negative-energy solutions. In the QRPA formalism only the positive-
energy solutions are accepted as physical solutions [2].

In actual QRPA calculations the interaction matrix elements are scaled by the con-
stants gpp and gph for each different Jπ multipoles [2]. This is done to fit the mul-
tipoles to experimental energy levels of the chosen reference nucleus and thus to
ensure a better agreement with experimental data.

2. In the case of QTDA theory the BCS ground-state |BCS〉 is the exact ground state for the
QTDA excitations.
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1.4 Microscopic quasiparticle-phonon model

The final step is to take into account the terms H13 and H31 of the Hamiltonian (12).
A fully microscopic way to do this is the microscopic quasiparticle-phonon model
with its three-quasiparticle excitations [1].

The MQPM three-quasiparticle excitations are constructed by combining the BCS
one-quasiparticle and the QRPA two-quasiparticle states. The operator that creates
these excitations is written in a form [1]

Γ†i (jm) =
∑
n

Ci
na
†
njm +

∑
aω

Di
aω

[
a†aQ

†
ω

]
jm
. (34)

According to (34) each state is allowed to be built from both one-quasiparticle and
one-quasiparticle-plus-phonon components. This is a drastic improvement over the
simple one-quasiparticle description and offers a much richer spectrum of excited
states of an odd-A nucleus.

Application of the equations-of-motion method of [4] to the excitations (34) leads
to a generalized real symmetric eigenvalue problem [1][

A B
BT A′

] [
Ci

Di

]
= Ωi

[
1 0
0 N

] [
Ci

Di

]
. (35)

The submatrices A and A′ are the interaction matrices between two one-quasiparticle
states and between two quasiparticle-phonon states, respectively. These matrices are
defined with elements

A(a, a′; j) = 〈BCS|[aa, H, a†a′ ]|BCS〉 = Eaδaa′ (36)

and

A′(ωa, ω′a′; j) = 〈BCS| [ [a†aQ
†
ω]†j, H, [a

†
a′Q

†
ω′ ]j ] |BCS〉

=
1

2
(~Ωω + Ea + ~Ωω′ + Ea′)N(ωa, ω′a′; j)

− 1

2
ĴωĴω′

∑
b

{
ja′ jb Jω
ja j Jω′

}
(~Ωω + Ea + ~Ωω′ + Ea′ − 2Eb)

× X̄ω
ba′X̄

ω′

baσ
−1
ba σ

−1
ba′

+
1

2
ĴωĴω′

∑
b

δjjb
ĵ2

(−~Ωω − Ea − ~Ωω′ − Ea′ − 2Eb)Ȳ
ω
baȲ

ω′

ba′σ
−1
ba σ

−1
ba′ ,

(37)

where the quantities ~Ωω denote the QRPA phonon energies. The overlap matrix
elements for two three-quasiparticle states are

N(ωa, ω′a′; j) = 〈BCS| [ [a†aQ
†
ω]†j, [a

†
a′Q

†
ω′ ]j ] |BCS〉 = δωω′δaa′ +K(ωa, ω′a′; j), (38)

where the K matrix is defined as

K(ωa, ω′a′; j) = ĴωĴω′
∑
b

[{
ja′ jb Jω
ja j Jω′

}
X̄ω
ba′X̄

ω′

ba −
δjjb
ĵ2
Ȳ ω
baȲ

ω′

ba′

]
σ−1
ba σ

−1
ba′ . (39)

Here, the adopted notation is that σaa′ =
√

1 + δaa′ . The X̄ amplitudes are sym-
metrized counterparts of the X amplitudes of (22) and are defined as X̄ω

aa′ =
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Xω
aa′− (−1)ja+ja′−JωXω

a′a, which holds likewise for the Ȳ amplitudes. The interaction
matrix elements between the one-quasiparticle and the quasiparticle-phonon states
are defined as

B(ωa, a′; j) = 〈BCS| [Qωaa]jHa
†
a′ |BCS〉

=
1

3

Ĵω

ĵa′

∑
b≤b′

Hpp(bb
′aa′Jω)(ubub′X

ω
bb′ − vbvb′Y ω

bb′)σ
−1
bb′

− 1

3

Ĵω

ĵa′

∑
b≤b′

Hhh(bb
′aa′Jω)(vbvb′X

ω
bb′ − ubub′Y ω

bb′)σ
−1
bb′

+
1

3

Ĵω

ĵa′

∑
b≤b′

Hph(bb
′aa′Jω)(ubvb′X

ω
bb′ + vbub′Y

ω
bb′)σ

−1
bb′

− 1

3

Ĵω

ĵa′

∑
b≤b′

Hhp(bb
′aa′Jω)(vbub′X

ω
bb′ + ubvb′Y

ω
bb′)σ

−1
bb′ .

(40)

The four different H factors included in (40) are

Hpp(bb
′aa′J) = 2vbub′G(bb′aa′J) (41)

Hhh(bb
′aa′J) = 2ubvb′G(bb′aa′J) (42)

Hph(bb
′aa′J) = 2vbvb′F (bb′aa′J) + 2ubub′F (b′baa′J)(−1)jb+jb′+J (43)

and
Hhp(bb

′aa′J) = 2ubub′F (bb′aa′J) + 2vbvb′F (b′baa′J)(−1)jb+jb′+J (44)

The quantities G and F are the Baranger matrix elements of (31) and (32).

Solving of the eigenvalue problem can be done using a method described in [1]. This
involves diagonalizing the submatrix N and forming a complete set of basis states
by removing the ones with zero eigenvalue. In practice the calculation accounts only
for the lowest-energy phonons that dominate in the low-energy region of the odd-A
nucleus level scheme.

When a nuclear model is adopted, one can calulate the reduced CCTD matrix
elements for β− transitions (see Chapter 2 for the discussion on β− transitions).
According to [5] the needed elements in the MQPM formalism are

(p||[ c†p′ c̃n′ ]L||n) = L̂upunδpp′δnn′ (45)

and
(n||[ c†p′ c̃n′ ]L||p) = L̂vnvpδnn′δpp′(−1)jn′+jp′+L (46)

for transitions between one-quasiparticle states (between particle states and between
hole states, respectively) and

(ωpj||[ c†p′ c̃n′ ]L||n) = (−1)jp+Jω−jĴωL̂ĵ

[{
jn j L
jp jn′ Jω

}

× X̄ω
nn′up′vn′σ

−1
nn′δpp′(−1)jn+j+L +

δjjp′

ĵ2
Ȳ ω
pp′vp′un′σ

−1
pp′δnn′

] (47)
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and

(ωnj||[ c†p′ c̃n′ ]L||p) = − (−1)jp′+jn′+L(−1)jn+Jω−jĴωL̂ĵ

[{
jp j L
jn jp′ Jω

}

× X̄ω
pp′vn′up′σ

−1
pp′δnn′(−1)jp+j+L +

δjjn′

ĵ2
Ȳ ω
nn′un′vp′σ

−1
nn′δpp′

] (48)

for the transitions between one-quasiparticle and quasiparticle-phonon states. The
auxiliary quantities X̄ω

aa′ , Ȳ
ω
aa′ and σaa′ are defined in same way as in (37), (38)

and (39). Furthermore, for transitions between two quasiparticle-phonon states one
needs

(ωnj||[ c†p′ c̃n′ ]L||ω
′pj′) = −

[
(−1)jp+Jω−j

{
j L j′

jn′ Jω jp′

}
δpp′

×
(

1

2
δnn′δωω′ +K(ωn′, ω′n; j′)

)
+ (−1)jp′+Jω′−j

{
j L j′

jn′ Jω′ jp′

}
δnn′

×
(

1

2
δpp′δωω′ +K(ωp, ω′p′; j)

)]
ĵL̂ĵ′(−1)j+L+j′vp′vn′

−


j L j′

jp jp′ Jω′
Jω′ jn′ jn

 X̄ω′

p′pX̄
ω
nn′(−1)jn′+jp′−L +

δjjn′δj′jp′

ĵ2ĵ′
2 Ȳ ω

pp′Ȳ
ω′

n′n


× σ−1

nn′σ
−1
pp′ ĵL̂ĵ

′(−1)jp+Jω−jĴωĴω′up′un′

(49)

from which the other matrix element (ωpj||[ c†p′ c̃n′ ]L||ω′nj′) can be obtained by sub-
stituting ua → va and va → −ua [5]. The quantities K(ωa, ω′a′; j) are taken from
the relation (39).

10



2 Nuclear beta minus decay

The discussion on the nuclear β− decay begins in this section with an overview to
the deeper, particle level properties of the process. This introduction is then followed
by a streamlined discussion on the general theory of forbidden β− transitions. Also
the drastically simplified theory for allowed transitions is presented at the end of
the chapter.

All the actual relations presented in the section 2.2 are taken from the articles [5]
and [6]. A much more comprehensive discussion on the theory of beta decay can be
found in [7], on which the treatments in the articles [5] and [6] are based.

2.1 General properties of beta minus transitions

The nuclear β− decay, expressed as

A
ZXN → A

Z+1XN−1 + e− + ν̄e ,

is a process where one of the neutrons within the decaying neutron-rich mother
nucleus is converted into a proton. This conversion is accompanied by an emission
of an electron and an electron antineutrino. As the increase of the proton number Z
by one unit results in a decrease of the neutron number N by one unit, the process
involves only isobars of the same mass number A. Using atomic masses, the Q-value
of the decay is expressed as

Q = [m(AZXN)−m(AZ+1XN−1) ]c2 + E∗i − E∗f , (50)

were the quantities E∗i and E∗f are the excitation energies of the intial and final state
nuclides A

ZXN and A
Z+1XN−1, respectively [8].

The conversion of an uncharged nucleon to a charged one is a weak-interaction
process depicted by a Feynman diagram of Figure 1a. The weak charge-changing
interaction is mediated by the negatively charged vector boson W−. However, due
to the large 80 GeV/c2 mass of W− and the modest energy range of nuclear beta
decay, the process can be described as a pointlike interaction with an effective Fermi
decay strength constant GF (see Figure 1b) [9]. This pointlike interaction process
has an invariant amplitude of the form

M(n→ pe−v̄e) =
4GF√

2

[
1

2
ūpγµ(1− ( gA

gV
)γ5)un

] [
1

2
ūeγ

µ(1− γ5)uν̄e

]
. (51)

The quantities inside the square brakets of (51) are the charge-raising hadronic
current and the charge-lowering leptonic current, respectively. The mixture γµ−γµγ5

of the γ-matices yields a V-A (vector-minus-axial-vector) structure that leads to the
observed parity non-conserving nature of weak interactions [9].

For the leptonic current this V-A structure is exactly the correct one. For the
hadronic current however a renormalized combination V−( gA

gV
)A is more appropriate

due to the effects of color forces between the quarks [9]. The values

gV = 1 , gA = 1.25 (52)

of the vector coupling constant gV and axial-vector coupling constant gA are deter-
mined by the CVC (conserved vector current) hypotesis and the PCAC (partially

11
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W-

e-

νe

(a) The decay of a free neutron on
quark level. Vector boson W− medi-
ates the weak interaction.

e-

νe

pn
GF

(b) The decay of a free neutron de-
picted as a point-like interaction pro-
cess with an effective Fermi decay
strength constant GF .

e-

νe

A-1

(Z, A) (Z+1, A)

pnπ π

(c) The nuclear β− decay when the impulse
approximation is applied to the decaying neu-
tron. During the decay process the remaining
A− 1 nucleons act only as spectators.

Figure 1: Feynman diagrams depicting the weak-interaction process that leads to
the conversion of a neutron into a proton.

conserved axial-vector current) hypotesis, of the standard model of electroweak in-
teractions [2].

In nuclear β decay the decay process of Figure 1b happens in a nuclear enviroment.
This means that in addition to the weak interaction, also present is the strong
nuclear force between the nucleons. To deal with the complications resulting from
this strong interaction, a treatment called the impulse approximation is used [2, 5].
In this approximative scheme the decaying nucleon feels only the weak interaction
at the moment of its decay. The remaining A − 1 nucleons act as spectators. This
simplified reaction mechanism is depicted in Figure 1c.

2.2 General theory of forbidden beta minus transitions

In the K-forbidden (K = 1, 2, 3, ...) β− transition the final state leptons leave the
nucleus with non-zero orbital angular momenta with respect to it. This causes the
angular momentum of the nuclear state to change from an initial value Ji to some
final value Jf according to the selection rules of Table 1 [2]. Depending on the forbid-
denness of the transition, the angular momentum change can also be accompanied
by a change of parity of the nuclear state wave function.

12



Table 1: Angular momentum and parity selection rules for forbidden transitions.
Quantity K represents the degree of forbiddenness of the transition.

K ∆J = |Jf − Ji| πfπi

1 0, 1, 2 -1
2 2, 3 +1
3 3, 4 -1
4 4, 5 +1

The probability for the emitted electron to have its total energy in a small interval
from We to We + dWe is [5]

P (We)dWe =
G2
F

(~c)6

1

2π3~
C(We)pecWe(W0 −We)

2F0(Z,We)dWe. (53)

Here, W0 is the end-point energy of the beta spectrum. The quantity pe is the mo-
mentum of the electron and Z the proton number of the daughter nucleus. Fermi
function F0(Z,We) takes into account the Coulumbic interaction between the emit-
ted electron and the nucleus. C(We) is the shape factor and pecWe(W0 − We)

2 a
kinematic factor that arises from the available phase space of the final-state leptons.

Due to the electron’s negative charge the Coulombic interaction between the electron
and the nucleus is attractive. Qualitatively, this has an effect of slightly shifting the
energy spectrum of the emitted electron to lower energies compared to a case, where
the electron would have no electric charge at all [8]. For positively charged positron
that is emitted in β+ decay the effect is just the opposite.

Intergration of Eq. (53) over the possible electron energy range allowes one to write
the partial half-life of the transition now in a form t1/2 = κ/C̃ [5], where the constant
κ is given by

κ =
2π3~ ln 2

(mec2)5G2
F/(~c)6

≈ 6147 s (54)

and the quantity C̃ is the integrated shape factor

C̃ =

∫ w0

1

C(we)pwe(w0 − we)2F0(Z,we)dwe. (55)

The expression (55) is made unitless by scaling the quantities W0, We and pe with the
rest-mass energy of the electron. In other words w0 = W0/(mec

2), we = We/(mec
2)

and p = pe/(mec
2).

Excluding at first the case with angular momentum change ∆J = |Jf − Ji| = 0, it
is possible to write the shape factor C in a form [5]

C(we) =

(
mec

2

~c

)2K
[ ∑
ke+kν=K+1

λke(w
2
e − 1)ke−1(w0 − we)2(kν−1)g2

VD
2
KkekνÃK

+
∑

ke+kν=K+2

λke(w
2
e − 1)ke−1(w0 − we)2(kν−1)g2

V D̃
2
KkekνBK

] (56)
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The positive integers k that appear in this expression result from the expansion of
the final-state lepton wave functions into partial waves. These numbers are related to
the orbital (l) and total (j) angular momentum of the leptons according to relation

k =

{
l, for j = l − 1

2

l + 1, for j = l + 1
2

. (57)

The two summations in (56) are understood so that the leading contributions to
them come from the lowest-order terms of the expansions that satisfy the relations
ke + kν = K + 1 and ke + kν = K + 2.

The quantity λke that appears in (56) is

λke =
Fke−1(Z,we)

F0(Z,we)
, (58)

where Fke−1(Z,we) is the generalized Fermi function

Fke−1(Z,we) = 4ke−1(2ke)(ke + γke)[(2ke − 1)!!]2

× eπy
(

2peR

~

)2(γke−ke)( |Γ(γke + iy)|
Γ(1 + 2γke)

)2

.
(59)

The two dimensionless quantities inside the Fermi function are y = (αZwe)/(pec)
and γke =

√
k2
e − (αZ)2. The quantity α is the fine structure constant and Γ the

usual gamma function. Furthermore,

DKkekν =
1√
2

√
(2K)!!

(2K + 1)!!

1√
(2ke − 1)!(2kν − 1)!

(60)

and

D̃Kkekν =

√
(2K)!!

(2K + 1)!!

1√
(2ke − 1)!(2kν − 1)!

. (61)

The explicit expressions for the quantities ÃK and BK involve both kinematical
factors and nuclear form factors [5]. The nuclear form factors carry all the nuclear
structure information. In the impulse approximation the form factors can be stated
in terms of six nuclear matrix elements, namelyM1,M2,M3,M4,M

(ke)
2 andM

(ke)
3 [5].

Adopting the notations

M± = M2 ±
√
K + 1

K

gA
gV
M3 (62)

and

M
(ke)
− = M

(ke)
2 −

√
K + 1

K

gA
gV
M

(ke)
3 (63)
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the expressions for ÃK and BK become

ÃK =
2K + 1

K
M̃2

1 +
1

(2kν + 1)2
(w0 − we)2M2

+

+
1

(2ke + 1)2

[
(α̃Z)2(M

(ke)
− )2 + 2(α̃Z)weM−M

(ke)
− + (1 + w2

e)M
2
−

]
− 2γke
kewe(2ke + 1)2

[
(α̃Z)M−M

(ke)
− + weM

2
−

]
− 2

2ke + 1

√
2K + 1

K

[
(α̃Z)M̃1M

(ke)
− + weM̃1M−

]
+

2

2ke + 1

√
2K + 1

K

γke
kewe

M̃1M− −
2

2kν + 1

√
2K + 1

K
(w0 − we)M̃1M+

+
2

(2ke + 1)(2kν + 1)
(w0 − we)

[
(α̃Z)M

(ke)
− + weM−

]
M+

− 2

(2ke + 1)(2kν + 1)

γke
kewe

(w0 − we)M−M+

(64)

and

BK =
K + 1

(2ke − 1)(2kν − 1)

[
M2

2 + 2
gA
gV

ke − kν√
K(K + 1)

M2M3

+

(
gA
gV

)2
(ke − kν)2

K(K + 1)
M2

3

]
+

(
gA
gV

)2

M2
4 .

(65)

The new, scaled fine structure constant α̃ that appears in these two expressions is
defined as α̃ = (α~)/(Rmec).

The nuclear matrix elements M1–M4 that arise from the impulse approximation can
be written as

M̃1 =
~c
mec2

M1 =
~c
mec2

1

Ĵi

∑
pn

VmK,K−1,1(pn)(ψf ||[ c†pc̃n ]K ||ψi), (66)

M2 =
1

Ĵi

∑
pn

VmKK0(pn)(ψf ||[ c†pc̃n ]K ||ψi), (67)

M3 =
1

Ĵi

∑
pn

AmKK1(pn)(ψf ||[ c†pc̃n ]K ||ψi) (68)

and

M4 =
1

Ĵi

∑
pn

AmK+1,K1(pn)(ψf ||[ c†pc̃n ]K+1||ψi). (69)

with p and n the proton and neutron indices, respectively. The charge-changing
transition densities (CCTDs) (ψf ||[ c†pc̃n ]K ||ψi) dependent on the nuclear structure
and in order to calculate these quantities an actual nuclear model must be specified.
For the purposes of this text the chosen model is the MQPM discussed in Chap. 1.
The explicit expressions for the relevant CCTD matrix elements were provided at
the end of that chapter.

The reduced single-particle matrix elements V/AmKLS(pn) of the expressions (66)–
(69) are on the other hand completely independent of the nuclear model. Stated
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explicitly, the elements are

VmKK0(pn) = i lp+ln+K(−1)jp+jn+1 1 + (−1)lp+ln+K

2

ĵpĵn

K̂
(jp

1
2
jn − 1

2
|K 0)

×
[
(−1)ln+jn−1/2〈rK〉pn ∆(lplnK)

+ (−1)lp+jp−1/2
{
rK
}
p̃ñ

∆(l̃pl̃nK)
]
,

(70)

AmKL1(pn) = i lp+ln+L(−1)K+1 1 + (−1)lp+ln+L

2

L̂ĵpĵn

K̂
(jp

1
2
jn − 1

2
|K 0)

×
{

[AKL(pn) + BKL(pn)] 〈rL〉pn∆(lplnL)

+ (−1)lp+ln+jp+jn [AKL(pn)− BKL(pn)]
{
rL
}
p̃ñ

∆(l̃pl̃nL)
} (71)

and

VmKL1(pn) = i lp+ln+L+1 1 + (−1)lp+ln+L+1

2

L̂ĵpĵn

K̂
(jp

1
2
jn − 1

2
|K 0)

×
{

(−1)K+ln+jn+1/2 [AKL(pn) + BKL(pn)]
{
rL
}
pñ

∆(lpl̃nL)

+ (−1)K+lp+jp+1/2 [AKL(pn)− BKL(pn)]
{
rL
}
p̃n

∆(l̃plnK)
}
.

(72)

The notation ∆(l1l2L) accounts for the triangular conditions |l1 − l2| ≤ L ≤ l1 + l2
for the coupling of the angular momenta l1, l2 and L. If the triangular condition is
satisfied the term affected by this coupling is left untouched. Otherwise the term
must vanish. The quantity l̃ is an auxiliary quantum number defined as

l̃ =

{
l + 1, j = l + 1

2

l − 1, j = l − 1
2

. (73)

The notation p̃ denotes a set of proton quantum numbers {np, l̃p, jp}. The same
applies also to the auxiliary neutron index ñ with the neutron quantum numbers.

The geometric factors AKL(pn) and BKL(pn) that appear inside the single-particle
elements (70)–(72) are

AKL(pn) =
ĵ2
p + (−1)jp+jn+K ĵ2

n√
2K(K + 1)(2L+ 1)

(−1)K+1(K 1 1 − 1|L 0)(1− δK0) (74)

and

BKL(pn) = (−1)lp+jp−1/2+K 1

L̂
(K 0 1 0|L 0). (75)

The same single-particle elements also include radial factors{
rL
}
pñ

= k(b)
(
b−1〈rL+1〉pn − 2

√
nn + jn + 1〈rL〉pñ

)
, (76){

rL
}
p̃n

= k(b)
(
b−1〈rL+1〉pn − 2

√
np + jp + 1〈rL〉p̃n

)
(77)

and {
rL
}
p̃ñ

= k(b)
(
b−2〈rL+2〉pn − 2b−1

√
np + jp + 1〈rL+1〉p̃n

− 2b−1
√
nn + jn + 1〈rL+1〉pñ

+ 4
√

(nn + jn + 1)(np + jp + 1)〈rL〉p̃ñ
)
.

(78)
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The basic radial integral of the above factors is defined as

〈rL〉pn =

∫ ∞
0

gnplp(r)r
Lgnnlnr

2dr, (79)

where the function gnl(r) is the usual radial harmonic oscillator wave function. The
prefactor k(b) is defined as

k(b) =
1

2mNb
=

0.1051

b [fm]
(80)

with b taken to be the harmonic oscillator parameter

b =
197.33√
939~ω

fm, ~ω = 45A−1/3 − 25A−2/3. (81)

Expressing the basic radial integrals as (fm)L allowes one to state all the single-
particle matrix elements in units of (fm)L.

The two remaining matrix elements M
(ke)
2 and M

(ke)
3 are just the same as M2 and

M3, respectively, except for the Coulomb factor

I(ke, 1, 1, 1; r) =

{
3
2
− 2ke+1

2(2ke+3)

(
r
R

)2
, 0 ≤ r ≤ R

2ke+1
2ke

R
r
− 3

2ke(2ke+3)

(
R
r

)2ke+1
, r > R

(82)

that must be included inside the basic radial integrals (79) [5].

A drastic simplification occurs in the case of unique transitions where the change
of angular momentum is maximal to the degree of forbiddenness of the transition,
i.e. follows the relation ∆J = K + 1. For these transitions only the element M4

contributes to the decay half-life.

An important exception to general theory discussed above is the case of first forbid-
den transitions (K = 1), where it is possible to have ∆J = 0, i.e. a zero change of
angular momentum. In the case of β− decay an extra term

C(1) =

(
mec

2

~c

)2
[
g2
A

(
M̃5 +

w0

3
M6 +

α̃Z

3
M

(1)
6

)2

+ g2
A

(
M6

3

)2

− g2
A

2γ1

we

(
M̃5 +

w0

3
M6 +

α̃Z

3
M

(1)
6

)M6

3

] (83)

must be added to the shape factor (56) [6]. The extra matrix elements thus needed
to calculate the decay half-life are

M̃5 =
~c
mec2

M5 =
~c
mec2

1

Ĵi

∑
pn

ARm00(pn)(ψf ||[ c†pc̃n ]0||ψi) (84)

and

M6 =
1

Ĵi

∑
pn

Am001(pn)(ψf ||[ c†pc̃n ]0||ψi). (85)

The single-particle matrix element of (84) is written as

ARm0L(pn) = i lp+ln+L+1(−1)jp+jn
1 + (−1)lp+ln+L+1

2

ĵpĵn

L̂
(jp

1
2
jn − 1

2
|L 0)

×
[ {
rL
}
pñ

∆(lpl̃nL) + (−1)jp+jn+L+1
{
rL
}
p̃n

∆(l̃plnL)
]
.

(86)
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The other one can be taken from (71) with K = 0 and L = 0. Again, the matrix

element M
(1)
6 is just the same as M6 except for the Coulomb factor (82) included

inside the basic radial integrals.

2.3 Allowed beta minus transitions

The many complications of the general theory of forbidden beta transitions arise
from the fact that the leptons leave the nucleus with non-zero angular momentum.
When the leptons leave the nucleus with no orbital angular momentum with respect
to it, the observed change ∆J is completely caused by the intrinsic spin angular
momenta of these leptons. Adding them up amounts a total of 0 or 1 with no
change of parity.

The distinctive property of the allowed β transition theory is that the lepton kine-
matics are completely separated from the content carrying the nuclear structure
information. The partial half-life can be written as

t1/2 =
κ

f0(BF +BGT )
, (87)

where the constant κ is the same as in (54) [2]. The quantities BF and BGT are the
Fermi and Gamow–Teller reduced transition probabilities

BF =
g2
V

2Ji + 1
|MF |2 (88)

and

BGT =
g2
A

2Ji + 1
|MGT |2. (89)

The Fermi and Gamow–Teller matrix elements MF and MGT of these quantities are
written in a familiar manner:

MF = δJiJf
∑
pn

mF (pn)(ψf ||[ c†pc̃n ]0||ψi) (90)

and
MGT =

∑
pn

mGT (pn)(ψf ||[ c†pc̃n ]1||ψi), (91)

where the reduced single-particle matrix elements are

mF (pn) = δnpnnδlplnδjpjn ĵp (92)

and

mGT (pn) =
√

2 δnpnnδlpln ĵpĵn(−1)lp+jp+3/2

{
1
2

1
2

1
jn jp lp

}
. (93)

The CCTDs of the matrix elements (90) and (91) are again obtained from the
MQPM. The angular momentum selection rules that distinguish Fermi and Gamow–
Teller type transitions from one another are given in Table 2 [2].

The part f0 in the partial half-life expression (87) is a dimensioless phase-space
factor for the final-state leptons. For β− transitions it is written as

f0 =

∫ w0

1

F0(Z,we)pwe(w0 − we)2dwe. (94)

The quantities that appear inside (94) are just the same ones as in the integrated
shape factor (56).
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Table 2: Angular momentum selection rules for Fermi and Gamow–Teller transitions.
There is no parity change involved for any allowed transitions.

Type ∆J = |Jf − ji| πfπi

Fermi 0 +1
Gamow–Teller 1 (Ji = 0 or Jf = 0) +1
Gamow–Teller 0, 1 (Ji > 0 and Jf > 0) +1
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3 Applications to the beta decay of Cd-115

In this chapter the theoretical framework is put into a test. In order to study the
β− decay of 115Cd one must begin with the calculation of the needed CCTDs. Once
these quantities are obtained they can be used to determine theoretical predictions
for the partial half-lives of the different β− transitions. These predictions can then
be compared with experimentally confirmed results.

The reference nucleus for the MQPM calculations presented in this chapter is the
even-even nucleus 114Cd. The experimentally measured excitation level scheme of
this nucleus as well as those of the mother and daughter nuclei 115Cd and 115In can
be found from [10]. Also taken from [10] is the β decay scheme of 115Cd that holds
all the necessary information needed to calculate the experimental decay half-lives.

3.1 Beta decay calculations

The adopted valence space for the reference nucleus 114Cd consists of proton single-
particle orbitals 0f, 1p, 0g, 1d, 2s and 0h11/2 and neutron single-particle orbitals 1p,
0g, 1d, 2s, 0h, 1f, 2p and 0i13/2. This gives a total of Zact = 28 active protons and
Nact = 38 active neutrons inside the valence space.

Pairing gaps for the lowest one-quasiparticle states can be calculated from the three-
point formulas (20) and (21). Using experimental proton and neutron separation
energies obtained from [10], these values are 1.351 MeV for the neutron-odd mother
nucleus 115Cd and 1.445 MeV for the proton-odd daughter nucleus 115In.

The calculated Woods-Saxon single-particle energies of the reference nucleus 114Cd
are presented in the second column of Table 3. When the scaling constant values
g

(p)
pair = 1.130 and g

(n)
pair = 0.974 were used to account for the pairing gaps, the resulting

unadjusted BCS low-energy one-quasiparticle spectrums can be seen in Figures 2
and 3. The comparison of the proton spectrum to the experimental low-energy level
scheme of 115In shows a poor match. Both π1p1/2 (0.899 MeV) and π1p3/2 (2.279
MeV) are far from their expected energy levels at 0.336 MeV and 0.579 MeV. In
the case of neutron orbitals the BCS calculation seems to be able to reproduce the
correct set of low-lying one-quasiparticle states at roughly correct energies. The only
shortcoming is the wrong order of the states ν0h11/2 and ν1d3/2.

In order to match the lowest three proton and neutron one-quasiparticle states with
the low-lying states of 115In and 115Cd, some manual adjustments were made to the
single-particle energies of Table 3. The proton state 1p3/2 was raised to −10.71 MeV
and the state 0g9/2 lowered to −10.20 MeV. In the case of neutron orbitals the state
1d3/2 was raised to −6.71 MeV and the state 0h11/2 lowered to −6.60 MeV. The new

adjusted BCS spectrums with scaling constant values g
(p)
pair = 1.018 and g

(n)
pair = 0.941

are likewise presented in Figures 2 and 3.

The reference nucleus 114Cd is a mid-shell nucleus whose quadrupole vibrator level
structure is clearly seen in the low-energy part of its level spectrum (see for ex-
ample Figure 4 and the discussion in [11]). Most noticeably, there are the one-
phonon quadrupole singlet 2+ at 0.558 MeV and the two-phonon quadrupole triplet
0+, 2+, 4+ at 1.135...1.284 MeV. Furthermore, it is expected to find the three-phonon
quadrupole quintet including the states 0+, 2+, 3+, 4+ and 6+ at energies about three
times that of the one-phonon singlet. The quintet states 0+, 3+ and 6+ are easily

20



Table 3: The Woods–Saxon single-particle energies for the reference nucleus 114Cd.
The calculated single-particle energies are given in the second colomn. If any adjust-
ments to these values were made the adjusted energy is given in the third colomn.

Proton εWS (MeV) Adjusted energy (MeV)

0f7/2 -16.661358
0f5/2 -12.650281
1p3/2 -11.882409 -10.71
1p1/2 -10.325647
0g9/2 -9.3491039 -10.20
0g7/2 -3.2118855
1d5/2 -3.8272991
2s1/2 -1.5048858
1p3/2 -1.0081092
0h11/2 -1.5645671

Neutron εWS (MeV) Adjusted energy (MeV)

0f5/2 -17.785376
1p3/2 -17.238335
1p1/2 -15.932652
0g9/2 -13.748294
0g7/2 -8.6589794
1d5/2 -9.3609343
2s1/2 -7.5244145
1d3/2 -7.0101843 -6.71
0h11/2 -6.0039434 -6.60
0h9/2 0.94621968
1f7/2 -1.8642871
1f5/2 0.95156252
2p3/2 -0.83545411
2p1/2 -0.13775468
0i13/2 1.9958558
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Figure 2: The unadjusted and adjusted BCS spectrums for 115Cd. The Woods–
Saxon single-particle energies for the unadjusted spectrum are taken from the second
column of Table 3. For the adjusted spectrum the energies of the single-particle
orbitals 1d3/2 and 0h11/2 were replaced with the values given in the third column
of Table 3. The calculated BCS spectrums are compared to the experimental low-
energy spectrum of 115Cd.

Figure 3: The unadjusted and adjusted BCS spectrums for 115In. The Woods–Saxon
single-particle energies for the unadjusted spectrum are taken from the second col-
umn of Table 3. The third one-quasiparticle state is 1p3/2 and it can be found at
2.279 MeV. For the adjusted spectrum the energies of the single-particle orbitals
1p3/2 and 0g9/2 were replaced with the values given in the third column of Table 3.
The calculated BCS spectrums are compared to the experimental low-energy spec-
trum of 115In.
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Table 4: The QRPA scaling constant values for the multipoles 0+, 3−, 4+ and 5−.

Jπ gpp gph

0+ 0.40 0.40
3− 1.00 0.74
4+ 1.00 0.96
5− 1.00 0.76

identified but for the states 2+ and 4+ there seem to be several candidates at that
energy range. The state 3− at 1.958 MeV is a possible candidate for the one-phonon
octupole singlet state.

Because the QRPA formalism can only deal with one-phonon excitations the two-
phonon and three-phonon states fall outside the scope of the theoretical tools that
are used in this text. A problematic part of the 114Cd low-energy level scheme are
also the additional 0+ and 2+ states that are found above the quadrupole triplet.
According to [11] these intruder states result from proton excitations across the
Z = 50 major shell.

The most important QRPA phonons in actual MQPM calculations are the low-
energy ones. The effects arising from the high-lying phonons are small and good
convergence for the MQPM calculations can generally be established even when the
high-energy phonons are neglected altogether. A practical way of implementing this
exclusion, and thus lightening the computational burden, is the introduction of an
energy cutoff that defines the upper limit for the energies of the QRPA phonons that
are to be included in the calculations. For the purposes of this work the adopted
energy cutoff was 3.0 MeV.

The scaling constants that were used to fit the multipoles 0+, 3−, 4+ and 5− below
the adopted energy cutoff are given in Table 4. The lowest-energy state of each 3−,
4+ and 5− multipole were fitted close to their proposed experimental companions
using only the parameter gpp. In the case of 0+ it was desirable to adjust also
the second lowest state and therefore both the scaling parameters were used. The
adopted values gpp = 0.40 and gph = 0.40 made it possible to keep the 0+

1 state at
the vicinity of the ground-state, while at the same time to lift the 0+

2 state close to
an experimentally confirmed 0+ state at 2.438 MeV. The state 0+

1 was omitted in
the MQPM calculations since it is known to be completely spurious [12].

It should be noted that the lowest 1− QRPA state is naturally contaminated by a
spurious centre-of-mass motion of the nucleus [2]. To avoid these unwanted effects
from affecting the results, the 1−1 state was also omitted in the MQPM calculations.

The vibrational characters of the reference nucleus 114Cd are a clear indication that
the best fit for the 2+

1 state is the first excited state at 0.558 MeV. Because the
second lowest 2+ state can likewise naturally be found from the low-energy part of
level scheme, it seems almost a necessity to find a good fit also for this state. To cover
all the experimentally confirmed 2+ states near that energy region a systematic way
to explore the different options was adopted. The scaling parameter values given in
Table 5 can be used to fit the state 2+

2 to five different energy levels. An experimental
2+ state can be found at the vicinity of each of these levels.
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Table 5: The QRPA scaling constant values for the multipole 2+. The variations
in the values allow the state 2+

2 to be fitted to different energies while keeping the
lower-energy state 2+

1 close to the quadrupole singlet at 0.558 MeV.

E(2+
2 ) (MeV) gpp gph

1.856 1.39 0.66
2.057 1.28 0.68
2.269 1.14 0.70
2.517 0.93 0.72
2.627 0.81 0.73

Neglecting the omitted 0+
1 state, the calculations involved a total of two 0+ QRPA

states within the energy range from 0 to 3.0 MeV. For each multipole 4+, 5−, 6+

and 8+ there were likewise two states, but only one state for each 1+, 3−, 6− and
7−. Depending on the fit of the 2+

2 state there was a total of three or four 2+ states
below the energy cutoff. For all the other multipoles not mentioned in Tables 4 or 5
the default values gpp = 1.00 and gph = 1.00 were used for the scaling parameters.

The resulting QRPA spectrums are given in Figure 4. The MQPM spectrums based
on these QRPA fits are given in Figures 5 and 6.

The β− decay scheme of 115Cd is given in Figure 7. In addition to the transitions that
come from the ground-state of 115Cd, it is also possible to study transitions from the
metastable first excited state 11/2+. For the purposes of this text only the transi-
tions with experimentally measured branching probabilities were taken into account.
Counting in the order of increasing final state energy, these included the transitions
1/2− → 1/2−, 3/2−, 3/2+, 1/2+, 5/2− and 11/2− → 9/2+

g.s., 7/2+, 11/2+, 13/2+.

Figure 5 shows that in every time the first two excited states of 115Cd are found at
just the right energy range. In the case of 115In (see Figure 6) the general trend would
seem to be that the relevant higher excited states are lying closer to the ground state
9/2+ than they should. The only exceptions to this are the theoretical companions
to the states 3/2+ at 0.829 MeV and 1/2+ at 0.864 MeV. The lowest 3/2+ state
is found at energies around 1.60 MeV and the lowest 1/2+ state at energies just
over 2 MeV. The lift of the 2+

1 phonon results in slight changes in the energies of
the excited states. Most noticeably the order of excited states 3/2− and 7/2+ can
be corrected by fitting the 2+

1 phonon to the highest energy level 2.627 MeV. The
downside of this is that the low-energy states 1/2− and 3/2− now decend to lower
energies.

Based on the MQPM wave functions, the 115In low-energy states 9/2+
g.s., 1/2− and

3/2− are mainly proton-quasiparticle states π0g9/2, π1p1/2 and π1p3/2. At higher
energies the states are mainly characterized by their three-quasiparticle components.
The largest component for the lowest 3/2+ and 1/2+ states is π0g9/2 ⊕ 4+

1 . For
the lowest 7/2+, 11/2+ and 13/2+ states this is π0g9/2 ⊕ 2+

1 . In contrast to these
the largest component for the lowest 5/2− state is π1p3/2 ⊕ 2+

1 . Additional, less
significant contributions to these wave functions come mainly from the components
π0g9/2 ⊕ 2+

2 , 4+
2 , 6+

1 , 8+
1 . In the case of 115Cd both the relevant low-energy states

1/2+
g.s. and 11/2− are mainly neutron-quasiparticle states ν2s1/2 and ν0h11/2.
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Figure 4: The QRPA spectrums with the state 2+
2 fitted at five different energy

levels from 1.856 MeV to 2.627 MeV. Complete low-energy QRPA level scheme is
given only for the fit with E(2+

2 ) = 2.269 MeV. For all the others only the states of
the 2+ multipole are shown in the figure. The QRPA fits can be compared with the
experimental low-energy spectrum of 114Cd on the right.

Figure 5: The MQPM spectrums of 115Cd corresponding to the QRPA phonon fits
with the state 2+

2 at five different energy levels from 1.856 MeV to 2.627 MeV. The
calculated spectrums can be compared with the experimental low-energy spectrum
of 115Cd on the right.
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Figure 6: The MQPM spectrums of 115In corresponding to the QRPA phonon fits
with the state 2+

2 at five different energy levels form 1.856 MeV to 2.627 MeV. In
each case the lowest 1/2+ state is found at just over 2.0 MeV. The lowest 3/2+

state is found at 1.571 MeV, 1.579 MeV, 1.590 MeV, 1.603 MeV and 1.607 MeV,
respectively for the five different spectrums shown in the figure. The calculated
spectrums can be compared with the experimental low-energy spectrum of 115In on
the right.

The most interesting features of the MQPM results (see Figure 6) are the large
energy discrepancies between the lowest theoretical and experimental 1/2+ states.
The poor match suggests the state 1/2+ to be strongly characterized by its five-
quasiparticle components and hence lying beyond the MQPM description. Because
of this shortcoming the Fermi transition 1/2+ → 1/2+ is omitted in the following
discussion on the transition half-lives. Judging by the match between the lowest
theoretical and experimental 3/2+ states, it should be taken into consideration that
these discrepancies might likewise arise from the strong five-quasiparticle compo-
nents. This time however the effect does not seem to be quite that severe.

The needed transition Q-values are given in Table 6. Also shown are the branch-
ing probabilities that can be used to calculate the experimental partial half-lives
displayed in Table 7. Using the CCTDs calculated from the MQPM results the the-
oretical partial half-lives of these transitions are given in Table 7. Corresponding to
the chosen five QRPA phonon fits there are accordingly a total of five different sets
of calculated half-lives. The results collected in Table 7 are also shown in the graphs
of Figure 8.

The uncertainties regarding the structure of the 114Cd state 4+ at 1.732 MeV make
it compelling to study the effect of fitting the QRPA phonon 4+

1 to higher energies.
After neglecting the 4+ state at 1.932 MeV due to its presumed quadrupole three-
phonon structure the next possibility is the state 3+, 4+ at 2.152 MeV. There is also
a experimentally confirmed 4+ state at 2.391 MeV. Using a scaling constant value
gph = 0.78 for the 4+ multipole, the QRPA phonon state 4+

1 can be raised to 2.156
MeV.

Going through the same different options to fit the state 2+
2 as in the above discus-

sion, i.e. using all the parameter values given in Table 5, another set of QRPA results
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Figure 7: The β− decay scheme of 115Cd. Shown here are the experimentally mea-
sured branching probabilities and logft-values for the various transitions that come
from the ground-state 1/2+ and the first excited state 11/2−. Also given is experi-
mentally confirmed γ decay information.
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Table 6: The transition Q-values are calculated from the experimental results of the
level scheme of Figure 7. Also shown is the branching probability and the forbid-
denness of the given transition. The notation 1u means that the transition is first
forbidden unique.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f E∗f (MeV) Q-value (MeV) Iβ− (%) Forbiddenness

1/2− 0.3363 1.1097 62.6 1
3/2− 0.5972 0.8486 1.16 1
3/2+ 0.8286 0.6174 3.3 0
1/2+ 0.8642 0.5818 33.1 0
5/2− 1.0414 0.4046 0.00008 1u

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f E∗f (keV) Q-value (MeV) Iβ− (%) Forbiddenness

9/2+
g.s. 0.0 1.6270 97 1

7/2+ 0.9338 0.6932 1.7 1u
11/2+ 1.1326 0.4944 0.06 1
13/2+ 1.2906 0.3364 0.9 1

Table 7: The sets of β− decay partial half-lives based on the calculated MQPM
results. The first set of values in the third column corresponds to the QRPA results
with E(2+

2 ) = 1.856 MeV, the second set of values in the fourth column to the
results with E(2+

2 ) = 2.057 MeV and so forth. The experimental partial half-lives
are calculated from the branching probabilities of Table 6.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f t
(exp)
1/2 Theoretical partial half-life t1/2

1/2− 3.56 d 15.62 d 13.57 d 11.27 d 8.96 d 7.71 d
3/2− 192.03 d 128.05 d 125.27 d 16.38 d 9.60 d 1.07 d
3/2+ 67.50 d 27.75 min 34.96 min 3.27 h 1.31 h 13.51 h
5/2− 7628.42 a 1079.95 a 4220.04 a 51.03 a 1202.63 a 54.14 a

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f t
(exp)
1/2 Theoretical partial half-life t1/2

9/2+
g.s. 45.94 d 3.17 h 3.05 h 2.96 h 2.90 h 2.79 h

7/2+ 7.18 a 1344.49 a 29434.6 a 1277 a 547.96 a 477.57 a
11/2+ 203.47 a 9.65 a 1.02 a 1.10 a 38.67 a 10.09 a
13/2+ 13.56 a 18.54 a 14.64 a 11.60 a 1.41 a 17.30 a

28



Figure 8: Partial half-lives of Table 7. The values in the left graph are for transitions
with initial state (Jπ)i = 9/2+

g.s. (0.0 MeV) and the values in the right graph for
transitions with initial state (Jπ)i = 11/2− (0.181 MeV). Solid lines connect the
calculated theoretical half-life values of a given transition. Dashed lines represent
the experimental partial half-lives.

is obtained from the calculations. The low-energy phonon spectrums corresponding
to these are exactly the ones given in Figure 4 except for the state 4+

1 at 2.156 MeV.
The MQPM spectrums based on the new QRPA fits are given in Figures 9 and 10.

The new MQPM spectrums of Figures 9 and 10 show in general only slight changes to
the previous results. The most noticeable change occures in the excitations energy
of the lowest 115In state 3/2+ that is now above 2 MeV. The order of the 115Cd
low-energy excitation states is corrected when the 2+

2 phonon energy is lifted to
its highest value. However, this happens again at the expence of lowered excitation
energies of the low-energy states 1/2− and 3/2−.

The calculated theoretical partial half-lives obtained from these MQPM results are
given in Table 8 and in Figure 11. Corresponding to the five QRPA phonon fits there
are again a total of five different sets of calculated half-lives. The Fermi transition
1/2+ → 1/2+ is again omitted. Mean values for the results of Tables 7 and 8 are
given in Table 9.
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Figure 9: The MQPM spectrums of 115Cd based on the QRPA calculations, where
the state 4+

1 raised to 2.156 MeV. The results correspond to the fits with the state
2+

2 at five different energy levels from 1.856 MeV to 2.627 MeV. The calculated
spectrums can be compared with the experimental low-energy spectrum of 115Cd on
the right.

Figure 10: The MQPM spectrums of 115Cd based on the QRPA calculations, where
the state 4+

1 raised to 2.156 MeV. The results correspond to the fits with the state
2+

2 at five different energy levels from 1.856 MeV to 2.627 MeV. In each case the
lowest 1/2+ state is found at around 2.5 MeV. The lowest 3/2+ state is found at
2.042 MeV, 2.050 MeV, 2.061 MeV, 2.075 MeV and 2.079 MeV, respectively for
the five different spectrums shown in the figure. The calculated spectrums can be
compared with the experimental low-energy spectrum of 115In on the right.
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Table 8: The new sets of β− decay partial half-lives based on the calculated MQPM
results with the QRPA state 4+

1 fitted to 2.156 MeV. The first set of values in
the third column corresponds to the QRPA results with E(2+

2 ) = 1.856 MeV, the
second set of values in the fourth column to the results with E(2+

2 ) = 2.057 MeV
and so forth. The experimental partial half-lives are calculated from the branching
probabilities of Table 6.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f t
(exp)
1/2 Theoretical partial half-life t1/2

1/2− 3.56 d 15.63 d 13.48 d 11.16 d 8.87 d 7.62 d
3/2− 192.03 d 138.71 d 128.86 d 17.77 d 11.25 d 1.06 d
3/2+ 67.50 d 202.04 d 1.05 h 55.52 min 56.44 min 264.09 d
5/2− 7628.42 a 2933.82 a 4998.63 a 50.69 a 4816.72 a 11258 a

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f t
(exp)
1/2 Theoretical partial half-life t1/2

9/2+
g.s. 45.94 d 2.81 h 2.67 h 2.55 h 2.43 h 2.30 h

7/2+ 7.18 a 1406.43 a 1336.39 a 29064.3 a 1288.34 a 462.16 a
11/2+ 203.47 a 13.79 a 316.24 d 334.12 d 177.65 a 11.62 a
13/2+ 13.56 a 22.94 a 18.14 a 1.07 a 1.33 a 2.57 a

Table 9: The mean values of the calculated partial half-lives. The values in the third
column are the mean values for the results of Table 7. Those in the fourth colomn
are the mean values for the results of Table 8.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f t
(exp)
1/2 Average theoretical t1/2

1/2− 3.56 d (11.4± 1.5) d (11.4± 1.5) d
3/2− 192.03 d (60± 30) d (60± 40) d
3/2+ 67.50 d (4± 3) h (90± 60) d
5/2− 7628.43 a (1300± 800) a (5000± 2000) a

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f t
(exp)
1/2 Average theoretical t1/2

9/2+
g.s. 45.94 d (178± 4) min (153± 6) min

7/2+ 7.18 a (7000± 6000) a (7000± 6000) a
11/2+ 203.47 a (12± 7) a (40± 40) a
13/2+ 13.56 a (13± 4) a (9± 5) a
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Figure 11: The partial half-lives of Table 8. The values in the left graph are for tran-
sitions with initial state (Jπ)i = 9/2+

g.s. (0.0 MeV) and the values in the right graph
for transitions with initial state (Jπ)i = 11/2− (0.181 MeV). Solid lines connect the
calculated theoretical half-life values of a given transition. Dashed lines represent
the experimental partial half-lives.
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Figure 12: The BCS spectrums showing the effects of increasing the spin-orbit in-
teraction strength from 1.00 v0

LS to 1.08 v0
LS. Dashed lines indicate the energy levels

for 1.00 v0
LS (see Figures 2 and 3) and the solid ones for 1.08 v0

LS. Values inside the
parentheses are the experimentally confirmed energies for the relevant low-energy
states. In either case, no adjustments were made to the Woods–Saxon single-particle
energies. For 1.08 v0

LS the scaling constant values g
(p)
pair = 1.115 and g

(n)
pair = 0.949 were

used to account for the pairing gaps.

3.2 Calculations with adjusted spin-orbit interaction strength

As a further exercise the effect of adjusting the spin-orbit interaction strength was
also examined. The needed small adjustment were done simply by multiplying the
interaction strength v0

LS of Eq. (7) by a constant close to a unity. As depicted
in Figure 12 the increase in the interaction strength tends to bring the low-lying
proton one-quasiparticle states closer together. Also the neutron one-quasiparticle
states 0h11/2 and 1d3/2 are shifted towards their proper experimental companions.

The BCS spectrums with adjusted Woods-Saxon single-particle energies for spin-
orbit interaction strengths 0.92 v0

LS, 0.96 v0
LS, 1.04 v0

LS and 1.08 v0
LS are given in Fig-

ures 14 and 15. The goal was to fit the low-energy one-quasiparticle states in the
same way as in the adjusted BCS spectrums of Figures 2 and 3 which were taken
to be the reference fits with 1.00 v0

LS. To archieve this the new sets of single-particle

energies for the orbitals listed in Table 3 and the scaling constants g
(p)
pair and g

(n)
pair had

to be adjusted slightly differently each time. The dependence of the single-particle
energies on the spin-orbit interaction strength is depicted in the graphs of Figure 13.
The manual adjustments that were made to the energies of the relevant orbitals are
given in Table 10. The scaling constants that were used to account for the pairing
gaps are given in the same table.

In the case of QRPA phonons the fit with E(2+
2 ) = 2.517 MeV and E(4+

1 ) = 2.156
MeV was chosen as the reference with 1.00 v0

LS. Again the goal was to fit the phonons
in the same way as in this reference fit. This required that each time a slightly
different sets of scaling constants gpp and gph had to be used. The scaling constants
for multipoles 0+ and 2+ are given in Table 11. For all the other multipoles essentially
the same constants were used as in the Table 4. The resulting QRPA spectrums
are given in Figure 16. The MQPM spectrums corresponding to them are given in
Figures 17 and 18.
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Figure 13: The Woods–Saxon single-particle energies for the valence space orbitals
of the reference nucleus 114Cd. The actual values corresponding to the spin-orbit
interaction strength 1.00 v0

LS are the unadjusted energies given in Table 3.

Table 10: The proposed manual adjustments to the Woods–Saxon single-particle
energies of the proton orbitals 1p3/2 and 0g9/2 and the neutron orbitals 1d3/2 and
0h11/2. Also given are the scaling constants used to account for the pairing gaps of
the mother and daughter nucleus. The reference case with 1.00 v0

LS corresponds to
the choices made earlier in Chapter 3.1.

Interaction
strength

Adjusted εWS (MeV) Scaling constants

π1p3/2 π0g9/2 ν1d3/2 ν0h11/2 g
(p)
pair g

(n)
pair

0.92 v0
LS -10.79 -10.20 -6.79 -6.64 1.019 0.943

0.96 v0
LS -10.75 -10.24 -6.75 -6.62 1.019 0.942

1.00 v0
LS -10.71 -10.20 -6.71 -6.60 1.018 0.941

1.04 v0
LS -10.67 -10.16 -6.66 -6.57 1.018 0.941

1.08 v0
LS -10.62 -10.12 -6.60 -6.53 1.016 0.941
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Figure 14: The BCS spectrums of 115Cd with the spin-orbit interaction strength
varied from 0.92 v0

LS to 1.08 v0
LS. The spectrum with 1.00 v0

LS is the same adjusted
one as in Figure 2. The calculated spectrums can be compared with the experimental
low-energy spectrum of 115Cd on the right.

Figure 15: The BCS spectrums of 115In with the spin-orbit interaction strength
varied from 0.92 v0

LS to 1.08 v0
LS. The spectrum with 1.00 v0

LS is the same adjusted
one as in Figure 3. The calculated spectrums can be compared with the experimental
low-energy spectrum of 115In on the right.
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Table 11: The QRPA scaling constants for multipoles 0+ and 2+. The adopted
values correspond to the QRPA fit of Chapter 3.1 with E(2+

2 ) = 2.517 MeV and
E(4+

1 ) = 2.156 MeV.

Interaction
strength

Multipole 0+ Multipole 2+

gpp gph gpp gph

0.92 v0
LS 0.50 0.40 0.93 0.73

0.96 v0
LS 0.46 0.40 0.87 0.73

1.00 v0
LS 0.40 0.40 0.93 0.72

1.04 v0
LS 0.35 0.40 0.89 0.72

1.08 v0
LS 0.30 0.40 0.96 0.71

Figure 16: The QRPA spectrums based on the BCS calculations of Figures 14 and
15. The reference spectrum with spin-orbit interaction strength 1.00 v0

LS is the QRPA
fit of Chapter 3.1 with E(2+

2 ) = 2.517 MeV and E(4+
1 ) = 2.156 MeV.
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Figure 17: The MQPM spectrums of 115Cd that correspond to the QRPA phonon fits
of Figure 16. The reference spectrum with spin-orbit interaction strength 1.00 v0

LS

is one in Figure 9 with E(2+
2 ) = 2.517 MeV. The calculated spectrums can be

compared with the experimental low-energy spectrum of 115Cd on the right.

Figure 18: The MQPM spectrums of 115In that correspond to the QRPA phonon fits
of Figure 16. The reference spectrum with spin-orbit interaction strength 1.00 v0

LS

is one in Figure 10 with E(2+
2 ) = 2.517 MeV. In each case the lowest 1/2+ state

is found at around 2.5 MeV. The lowest 3/2+ state is found at 2.082 MeV, 2.066
MeV, 2.075 MeV, 2.062 MeV and 2.073 MeV, respectively for the five different
spectrums shown in the figure. The calculated spectrums can be compared with the
experimental low-energy spectrum of 115Cd on the right.
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Table 12: The sets of β− decay partial half-lives based on the calculated MQPM
results of Figures 17 and 18. The reference set in the fifth column with spin-orbit
interaction strength 1.00 v0

LS is taken from Table 8. The experimental partial half-
lives are calculated from the branching probabilities of Table 6.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f t
(exp)
1/2

Theoretical partial half-life t1/2
0.92 v0

LS 0.96 v0
LS 1.00 v0

LS 1.04 v0
LS 1.08 v0

LS

1/2− 3.56 d 7.88 d 7.78 d 8.87 d 8.80 d 10.36 d
3/2− 192.03 d 14.68 d 1.11 d 11.25 d 1.19 d 10.63 d
3/2+ 67.50 d 1.22 h 4.29 a 56.44 min 1.95 a 4.29 h
5/2− 7628.42 a 29870.8 a 8122.1 a 4816.72 a 1999.1 a 2338.62 a

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f t
(exp)
1/2

Theoretical partial half-life t1/2
0.92 v0

LS 0.96 v0
LS 1.00 v0

LS 1.04 v0
LS 1.08 v0

LS

9/2+
g.s. 45.94 d 2.45 h 2.34 h 2.43 h 2.46 h 2.56 h

7/2+ 7.18 a 2605.09 a 494.68 a 1288.34 a 647.85 a 817.74 a
11/2+ 203.47 a 3.02 a 5.33 a 177.65 a 7.76 a 1.32 a
13/2+ 13.56 a 1.09 a 1.58 a 1.33 a 2.03 a 1.40 a

Figures 17 and 18 show that changes to the previous results are again only slight. In
each case the lowest 3/2+ and 1/2+ states that should correspond to the low-energy
ones found at around 0.85 MeV are above 2 MeV. The theoretical partial half-lives
calculated using this yet another set of MQPM results are given in Table 12 and in
Figure 19. Mean values for the calculated results are given in Table 13.
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Figure 19: The partial half-lives of Table 12. The values in the left graph are for
transitions with initial state (Jπ)i = 9/2+

g.s. (0.0 MeV) and the values in the right
graph for transitions with initial state (Jπ)i = 11/2− (0.181 MeV). Solid lines con-
nect the calculated theoretical half-life values of a given transition. Dashed lines
represent the experimental partial half-lives.

Table 13: The mean values of the calculated partial half-lives of Table 12.

Initial state (Jπ)i = 1/2+
g.s. (0.0 MeV)

(Jπ)f t
(exp)
1/2 Average theoretical t1/2

1/2− 3.56 d (8.7± 0.5) d
3/2− 192.03 d (8± 3) d
3/2+ 67.50 d (1.2± 0.8) a
5/2− 7628.43 a (9000± 6000) a

Initial state (Jπ)i = 11/2− (0.181 MeV)

(Jπ)f t
(exp)
1/2 Average theoretical t1/2

9/2+
g.s. 45.94 d (147± 3) min

7/2+ 7.18 a (1200± 400) a
11/2+ 203.47 a (40± 40) a
13/2+ 13.56 a (1.5± 0.2) a
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4 Conclusions

In this master’s thesis the beta decay of 115Cd was studied using microscopic quasi-
particle-phonon model. The three-quasiparticle spectrums obtained from application
of the MQPM formalism are presented in Chapter 3. The main results of this work
are the calculated partial half-lives for the various β− transitions. These theoretical
estimates are given in Tables 7, 8, and 12 of Chapter 3.

The examination of the calculated partial half-lives of Tables 7 and 8 show that in
several cases a value roughly of the same order of magnitude with the experimental
one can be found. However, in many cases the closest values must be picked from
different sets of results. It is therefore difficult to point out a single set of values
that as a whole gives the best agreement with experiments. Furthermore, for some
transitions the discrepancies between the theoretical and the experimental values
seem be to systematically very large.

The differences between the values listed in Tables 7 and 8 result from the QRPA
fits that affect the wave functions of the relevant excitation states. It can be seen
that for some transitions the half-lives depend rather smoothly on the excitation
energy of the QRPA state 2+

2 . In other cases on the other hand, the effects are much
more unpredictable and can cause significant amounts of variation to the half-life
values. The significance of the QRPA state 4+

1 seems to likewise vary largely from
one transition to another.

Based on the transition half-lives, the most problematic transitions seem to be
11/2− → 9/2+

g.s. and 11/2− → 7/2+, where the calculated results systematically dif-
fer considerably from the experimental values. The Gamow–Teller transition
1/2+ → 3/2+ is also a disappoinment. However, in this case it must be noted
that the final state 3/2+ is very poorly matched with its experimental companion at
0.829 MeV. As stated in Chapter 3, this might be due to the strong five-quasiparticle
components in the wave function of the state. Even though it is reasonable to expect
somewhat less accurate results because of this shortcoming, the large variations in
the half-life values seem nevertheless very unpredictable.

The mean values of Table 9 smooth out the variation in the half-life values but
in reality this is not a drastic improvement over the separate sets of results. Only
for few transitions the actual, experimentally deduced partial half-life can be found
to lie inside the standard error margins of the mean value. Because of the large
variation in the half-life values, these errors tend get likewise very large. It must be
noted that here the whole consept of mean value is perhaps a bit vague. Rather than
being a statistical problem, the differing sets of partial half-lives result in this case
only from the fact that there is no certainty of how exactly the QRPA states should
be arranged. In any case it would seem that the high-energy fit of the 4+

1 phonon is
a more appropriate choice over the low-energy one.

The other part of Chapter 3 concerned the study of changing the spin-orbit inter-
action strength. The conclusion based on the calculated partial half-lives of Table
12 is that although the increase of the interaction strength improved the BCS one-
quasiparticle spectrum, the agreement between theoretical and experimental half-
lives as a whole is not any better. To be able to study the effects that result solely
from the spin-orbit interaction strength, it must be ensured that the BCS and QRPA
spectrums resemble all the time closely to some pre-selected reference fits. Because
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slightly different parameter values and adjustments had to be chosen, it was diffi-
cult to keep the spectrums to look exactly the same. Hence it is possible that other
factors could have also affected the results.

One spesific feature of the results is that the partial half-lives for the transition
11/2− → 9/2+

g.s. are shifted hardly at all. This stability can be explained by the
one-quasiparticle structures of the states 11/2− and 9/2+

g.s. that leaves them largely
unaffected by the QRPA fits. Large discrepancies between the theoretical and the
experimental values must result from the failure of the theoretical formalism to
properly descripe both or either one of these states. Because most of the 115In three-
quasiparticle states have a structure, where the one-quasiparticle state 9/2+

g.s. is
combined with the low-energy QRPA phonons the above argument is likely to explain
many of the problems encountered with the other transitions also. As already stated
in Chapter 3, a particulary noticeable feature of the 115In MQPM spectrums is that
in general the relevant excited states seem to lie closer to the ground state than they
should.

One possible way to investigate the effect of the ground state 9/2+
g.s. could be to

try to explore the different options of adjusting the Woods–Saxon single-particle
energies that affect the BCS quasiparticle spectrums. In practice this seems to be
method of trial and error because beforehand there is no clear indication of what
the proper adjustments need to be.
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