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Abstract
Structural and elastic properties of bone are related to microstructural parameters
such as porosity and anisotropy. Microtomography (µCT) enables assessment of
bone microstructural geometry, typically down to a voxel size of 5 microns. The
purpose of this thesis was to evaluate whether using a higher (sub-micrometer)
voxel resolution in X-ray µCT enables detection of new, finer, details in human cor-
tical bone. The second objective was to measure several morphological parameters
that determine the microstructure, and to compare two different microtomographs.
To this end, twenty four human cadaveric femur samples were imaged by Xradia
XCT-400 at a voxel size of 0.56 - 0.59 µm and spatial resolution of 1.5 µm. For
comparison, samples were measured by Skyscan 1172 at a voxel size of 2.78 µm.
Scanner and image reconstruction parameters were individually tuned for each
sample, so as to enhance the signal to noise ratio and to increase the amount of
small detail. The systematical error due to the chosen procedure was satisfyingly
low. Haversian canals (50.8 ± 25.4 µm) and ostecyte lacunae (3.74 ± 0.30 µm)
were easily distinguishable from the scans by XCT-400, whereas SkyScan only ex-
tracted the Haversian canals. Morphological data from these two microtomographs
had consistent distributions at the scale of the Haversian canals. Some correlations
were observed between the morphological parameters, e.g. the cortical porosity cor-
related with pore diameter and number of pores. In conclusion, the Xradia µCT
thus enables new level of bone morphological analysis which can enhance the un-
derstanding of relations between the properties of hierarchical microstructure and
macroscopic features of the bone. Understanding of bone fragility can thereby be
enhanced. In particular, such understanding plays important role in developing
new methods of non-invasive bone assessment, based on quantitative ultrasound.
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Tiivistelmä suomeksi
Osteoporoottiset murtumat vanhenevalla väestöllä aiheuttavat kansanterveydelli-
sen ongelman niin Suomessa kuin muuallakin maailmalla. Yleisimpänä diagnosoin-
timenetelmänä käytetään edelleen luun mineraalitiheyden määrittämistä DXA-
laitteistolla. Nykyisen tekniikan avulla voimme havaita luuston ongelmat yleisim-
min vasta murtumariskin kasvaessa, vaikka luustossa tapahtuvat rakenteellisten
sekä elastisten ominaisuuksien muutokset viestivät mahdollisesta sairaudesta jo
paljon aiemmin. Näiden ominaisuuksien mittaamista tutkitaan aktiivisesti ja tu-
levaisuudessa osteoporoosia ehkäisevä lääkitys on luultavasti mahdollista määrätä
jo ennen varsinaisen taudin voimakasta etenemistä.

Luuston mikrorakenne on vahvasti sidoksissa luun elastisiin kertoimiin. Mikro-
rakennetta voidaan kuvata erilaisilla parametreilla, joista esimerkiksi huokoisuus
ja anisotrooppisuus ovat keskeisiä. Tässä työssä mitataan 24 ihmisen reisiluus-
ta kerättyä sylinterimäistä kuoriluunäytettä käyttäen Xradia XCT-400 mikroto-
mografialaitteistoa. Kuvien pikselikoko on 0,56 − 0,59 µm ja erottelukyky 1,5 µm.
Laitteiston sekä analyysiohjelmien säätäminen näytekohtaisesti vähensi selvästi
kuvien kohinasuhdetta sekä paransi yksityiskohtien erottelua. Mineraalitiheyttä
ei mittauksissa määritetty, sillä välttämättömät tiheysfantomit eivät mahtuneet
näytteiden kanssa samanaikaisesti skannattavalle alueelle. Saaduista kuvista erot-
tuivat selkeästi luun pitkittäissuunnassa kulkevat Haversin kanavat sekä tasaisesti
jakautuneet pienet lacuna-ontelot.

Tomografialaitteistolla kuvatuista luunäytteistä määritettiin rakenteellisia ominai-
suuksia kolmella eri tasolla: yksi sisälsi ainoastaan Haversin kanavien vaikutuksen,
toinen ainoastaan lacunat ja viimeinen oli yhdistetty kahdesta mainitusta. Tilas-
tollisen analyysin avulla ominaisuuksien välisiä yhteyksiä tutkittiin määrittämäl-
lä parametrien väliset korrelaatiokertoimet. Huokoisuuteen havaittiin vaikuttavan
erityisesti huokoisten lukumäärä sekä halkaisija. Anisotrooppisuudella ei havaittu
olevan merkittävää yhteneväisyyttä huokoisuuden kanssa ja rakenne-indeksi vai-
kutti huomattavasti ainoastaan yhdistelmätasolla. Suoritettuja mittauksia verrat-
tiin yhteistyönä Itä-Suomen yliopistossa Kuopiossa eri laitteistolla tehtyihin mit-
tauksiin. Yhteneväisyyksiä löytyi Haversin kanavien mittaluokassa.

Saavutettu hienorakenteen tarkkuus oli parempi kuin useimmissa tutkimuksissa
esitetty. Mikrorakenteen tarkempi ymmärtäminen auttaa määrittämään makros-
kooppisia ominaisuuksia ja tarkentamaan mallia, jolla kuvataan luun kestävyyttä.
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1 Introduction
Osteoporotic fractures are a widespread and growing clinical problem globally and
especially in modern welfare countries. Growing lifespan and changing lifestyle are
major factors in the increasing number of osteoporotic fracture cases. As a disease
osteoporosis is about alterations in geometrical (cortical thickness and cross-section
area) and material (stiffness, mineral density and porosity) properties of bone [1].
These happen due to the imbalanced bone remodeling for which one of the most
dramatic reasons especially for women is the drop of estrogen level during the
menopause. The bone mass increases through childhood, and after the teenage
years, where the peak bone mass is obtained, begins a natural state of osteoporotic
bone resorption [2]. The degree of resorption is individual, but factors such as
passive lifestyle and lack of sports, monotonous diet and shortage of calcium and
vitamin D hastens the procedure.

Dual-energy X-ray absorptiometry (DXA) has the status of clinical standard for
diagnosing osteoporosis [3]. In addition, the majority of all the clinical techniques
are based on measuring the bone mineral content which is known to have a major
effect on bone fracture risk. In osteoporosis not only the mineral content changes,
but so does also the bone micro-architecture, characterized e.g. by porosity and
bone volume fraction.

Microscopy enables observation of features smaller than those visible to the naked
eye. On the other hand, with X-rays we can observe features inside structures.
Computed tomography (CT) has made it possible to use X-rays to create three-
dimensional (3D) visualizations, non invasively, of organs inside the human body.
It enables digital assessment of bone micro-architecture. With high enough magni-
fication it should be possible to detect even the smallest structural features. With
this approach, one can quantify structural details of bone (e.g. volume and orien-
tation of pores) at different hierarchical length scales. High resolution imaging also
allows comparison between bones’ structural properties and their mechanical fea-
tures acquired by other methods. While medical and dentistry application remain
the most common users of X-rays, they are also widely used in other applications
such as airport security and industrial inspection.

This study was done in collaboration with the University of Eastern Finland (Kuo-
pio), where a collection of human bone samples were assessed by X-ray microto-
mography at pixel size of 2.78 microns. The purpose of the present study was to
evaluate, whether imaging at a higher resolution with pixel size of 0.6 microns is
feasible for assessing finer structural details of the bone. To this end, the study was
carried out in the X-ray tomography laboratory of the University of Jyväskylä.

A specific objective of the present thesis was to study, how a collection of cortical
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bone samples from the human femur can be prepared and imaged with high res-
olution microtomography. A series of morphological parameters was determined
from the imaged bone volumes by computerized analysis.

2 Bone and osteoporosis
2.1 Bone
Bone is a specialized connective tissue which forms, together with cartiledge, the
skeletal system. At the organ level, the main functions of bones are to protect the
vital organs and bone marrow, to provide a solid mechanical frame for muscles,
so as to enable locomotion, and to be a metabolic reserve for nutrients such as
calcium and continuous supply of new blood cells [4, 5].

Bone tissue is a composition of different materials such as minerals, water, cells
and macromolecules such as lipids and sugars [6]. Material components of the bone
can be classified into two main categories: organic and inorganic [4, 2]. The organic
part includes type I collagens and some amorphous substance i.e. glycoproteins and
proteoglycans. The inorganic part is constructed of different minerals, of which
hydroxyapatite (HAP) Ca10(PO4)6(OH)2 is the main component with 68% of the
total mass of the bone. Together the cellular levels of organic and inorganic parts
form the so-called bone matrix, which has all the features that make bone a special
structure: flexibility, toughness, rigidity and compressive strength.

Bone has a hierarchical structure [7] (Fig. 1). Mineralized collagen forms long
fibrils, which pack as fibers. These fibers form a lamellar structure, in which they
are oriented randomly in layers [4]. This allows the highest density of collagen per
unit volume of tissue. Lamellae can be either parallel or concentric, depending if
they are deposited along a flat surface or surface surrounding a channel such as
a blood vessel. In woven bone the fiber orientation is less organized. Woven bone
occurs mainly at the early stages of bone growth and fracture repair [8].

Concentric lamellae (osteons or Haversian systems) surround an empty channel
reserved for blood vessels [9]. These are known as Haversian canals and are con-
nected to each other via oblique channels called Volkmann’s channels [10]. Small
lacunae are empty pores of former osteocytes, and canaliculi connects lacunae to
one another. Osteocytes are former bone-forming cells (osteoblasts), which became
trapped in the bone matrix and became calcified [4]. In Fig. 2 the structure of a
bone and some typical sizes are presented.

At the tissue level, bone is constructed of two different forms: cortical (compact)
and trabecular (cancellous) bone [12]. Compact bone forms the majority (about
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Figure 1. The hierarchy of bone structure: macrostructure: cortical and trabecular
bone; microstructure: osteons with Haversian systems; sub-microstructure: lamel-
lae; nanostructure: collagen fibers assemblies of collagen fibrils; sub-nanostructure:
bone mineral crystals, collagen molecules, and non-collagenous proteins [7].

Osteons 500 µm diameter
Trabeculae 200 µm thick
Haversian canals 100 µm diameter
Lacunae 10 µm diameter
Lamellae 5 µm thick
Cement lines 1-5 µm thick
Canaliculi 1 µm diameter
Collagen fibers 3 µm long,

15 nm diameter
Mineral crystals 300 · 30 nm plates

Figure 2. The structure of a bone and some values of size for different compo-
nents [11]. Also some typical sizes of bone structures are shown.
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85%) of human skeleton. Because of its high density (ρ = 1.7− 2.0 g/cm3) and stiff-
ness that comes from the material and configuration, it can be found on periosteal
parts of almost any bone. Long bones like tibia and radius are mostly cortical
bone [12]. Trabecular bone can be found at the ends of long bones and in the cores
of flat bones like scapula and vertebrae. As a softer material, trabecular bone has
the capability of compression without permanent damage when decent stress is
applied. Trabecular bone is always coated with cortical bone and together they
form a rigid but flexible body which can absorb impacts without breaking. Tra-
becular bone is composed of an interconnected network of bone plates, struts and
rods surrounded by bone marrow [13], which is where hematopoiesis, the produc-
tion of blood cells, occurs [2]. The primary structural difference between cortical
and trabecular bones is quantitative: the calcification percentage is 80− 90 % for
cortical and only 15− 25 % for trabecular bone [4].

2.2 Bone remodeling: growth and aging
Bone tissue overcomes continuous process of creation and resorption (i.e. bone
turnover) of the bone matrix. Two types of bone cells, osteoblasts and osteoclasts,
are mainly responsible for this bone remodeling. Osteoblasts take care of the pro-
duction of the bone matrix constituents by forming HAP and other minerals into
lamellar structure [4]. When osteoblasts become surrounded by the bone, they
mineralize and transform into osteocytes. Although they are quite inert cells they
still have some functions: they destroy bone material through osteocytic osteolysis,
they control the activity of osteoblasts and osteocytes within basic multicellular
unit (BMU) and they are connected to each other via cytoplasmic extensions
through small canaliculi to exchange nutrients and waste [4, 6]. Osteoclasts are
large bone-lining cells responsible for bone resorption [14].

Bone growth can be described with two different mechanisms, endochondral os-
sification and intramembranous ossification [4, 15]. Endochondral ossification is
responsible for longitudinal growth where new cartialedge is constantly formed in
a region called physis. This region moves and its diameter stays constant as physis
mineralizes at the same rate as new bone is formed. This happens mainly for long
bones. Intramembranous ossification means growth in diameter which is needed
in flat bones and it is also the main factor in bone modeling and remodeling. By
removing and rebuilding bone can adapt to different loading conditions during the
lifetime.

For a healthy individual, bones grow in size and mass through puberty, where the
peak in these features is obtained [16]. Thereafter a gradual loss of bone takes place.
Bone growth diminishes and bone remodeling starts to adapt bones to different
conditions. The ratio between bone formation and resorption is dependent on
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mechanical stimulation (environment) of the bone as well as hormonal effects,
nutritional changes and gene inheritance [17]. This leads us to the difference in
bone loss between males and females. Women lose about 35− 40 % of the cortical
bone and 55− 60 % of the trabecular bone when the corresponding values for men
are about one third smaller [16].

During aging the red marrow, which contains hematopoietic tissue, is gradually
converted into yellow bone marrow, which is mainly made of fat cells [18].

2.3 Osteoporosis
Osteoporosis is defined as a metabolic bone disease characterized by low bone
mass and micro-architectural deterioration of bone tissue leading to enhanced bone
fragility and a consequent increase in the fracture risk [19]. Osteopenia is a prelim-
inary stage of osteoporosis for which the osteoporotic changes in bone properties
can be regarded detectable. Osteomalacia is, another common metabolic bone dis-
ease, characterized by relative deficiency of mineral contents in relation to collagen
while in osteoporosis this ratio is unaffected.

Osteoporosis results in increasing porosity of the trabecular matrix or increasing
porosity and decreasing thickness of the cortical wall [16, 20]. As a result, ability of
bone to resist fracturing in tensional, compressional, bending or torsional loading
decreases. This leads to increased risk of fractures, especially in bone sites which
are under big stress, the femoral head or lumbar spine, for example. An example
of the difference between healthy and osteoporotic bone has been illustrated in
Fig. 3.

Figure 3. A sketch of a) normal healthy bone and b) osteoporotic bone [5]. In os-
teoporotic bone the cortical wall thickness decreases and the porosity as ratio be-
tween pore volume and tissue volume increases.
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Three subtypes of osteoporosis can be distinguished depending on the causing fac-
tors of bone deterioration: postmenopausal, senile and secondary osteoporosis [21].
Postmenopausal osteoporosis affects women between the ages of 50 and 65 years.
Estrogen has a major role in regulating the bone remodeling cells. During the
menopause estrogen level declines, which leads to decreased activity of osteoblasts
while osteoclasts remain active. Senile osteoporosis affects mostly after the age of
70 and is as common for both men and women [8]. It can be observed as loss of
both cortical and trabecular bone mass. Secondary osteoporosis is the same disease
without age references and is a result of different factors listed below [22, 3, 23].
These can be applied for both osteoporosis and fragility fractures.

• Female gender
• Age
• Hypogonadism
• White race
• Low body mass index
• Familial prevalence
• Previous fragility fracture

• Smoking
• Low physical activity
• Menopausal age
• Obesity
• Low dietary calcium intake
• Vitamin D deficiency

2.4 Clinical bone assessment
Increased fracture risk is typically characterized by the reduced areal bone mineral
density (BMD) and areal bone mineral content (BMC), assessed by DXA [23].
BMD refers to the amount of mineral per square centimeter of the bone. It can be
measured from any skeletal site, which gives a valuable estimation of the universal
state of the skeleton, or measured from an exact site like hip, which gives a specific
evaluation of the bone status at this skeletal site, where fractures predominantly
occur.

Diagnosis of osteoporosis is typically based on the so-called T-score. This parame-
ter is determined against normative data for young healthy adults and it enables,
by definition, comparison between different measuring techniques [3]. T-score is
expressed by [22]:

T = X −Xy
young adult standard deviation

, (1)

where X is the patient’s BMD, Xy is the average peak BMD for the healthy
young reference population of the same gender and the denominator represents
the standard deviation (SD) of the same reference population. Criteria made by
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Table 1. WHO criteria for the diagnosis of osteoporosis based on BMD [3].

Category Criteria T-score
Normal A value of BMD within 1 standard de-

viation below the young adult mean, but
less than 2 standard deviations below this
value.

≥ −1

Osteopenia,
low bone mass

A value of BMD more than 1 SD below
the young adult mean, but less than 2 SD
below this value.

< −1 and > −2.5

Osteoporosis A value of BMD 2.5 SD or more below the
young adult mean.

≤ −2.5

Severe osteo-
porosis

A value of BMD 2.5 SD or more below the
young adult mean in the presence of one or
more fragility fractures.

World Health Organization (WHO) define normality and the state of osteoporosis
in T-score units (Table 1).
Another parameter, Z-score, is used to put the patient’s BMD in perspective by
comparing to the normative data for the same age group. This is useful for the
elderly patients, who would be osteoporotic by the T-score, but average for their
own age [22]. The Z-score is expressed by

Z = X −Xa
population standard deviation

, (2)

where Xa is the mean BMD for persons of same age and gender.
In addition to organic and inorganic material, bone consists of a significant amount
of water, which contributes to the X-ray absorption [10]. When determining the
BMD, depending on the method used, there are some assumptions used that may
lead to inaccuracies. In the worst case the soft tissue composition, bone structure
and bone shape can result in an up to 35% error in BMD measurements [24]. Also,
inaccurate patient positioning, scan analysis or mistakes in interpretation adds the
inaccuracy.

2.5 Modalities of clinical densiometry
Historically, BMD has been measured by using gamma radiation, but fortunately
other options are nowadays available including DXA as the clinical standard. With
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DXA, measurements can be obtained from any site in the body, although the
standard sites of diagnosis are the proximal femur (hip) and lumbar vertebra
(spine) [10]. The WHO standard T-score is highly based on this technique, al-
though it can be applied to any other method as well [3].

DXA was developed from dual photon absorptiometry (DPA) [25]. Though they
both have the same physical principles, the production of photons differs between
these methods. In DPA a radionuclei source is used while in DXA an X-ray tube
produces the photons. The basic principle in measuring BMD with DXA is to mea-
sure the photon absorption using two different energies, typically 40 and 70 keV.
Both the BMD and the overlying soft tissue are evaluated at the same time. Single
X-ray absorptiometry (SXA) is a predecessor for the DXA with only one X-ray
beam in use during measurements [3].

Digital X-ray radiogrammetry (DXR) is a fairly easy and cheap way of measuring
bone mineral content [26]. By measuring the outside and inside diameters of the
cortex for the three middle metacarpal bones in hand, the cortical thickness, corti-
cal area and percentage of the cortical area can be calculated. This method is good
to be used especially for children, since the skeletal age can also be determined. In
addition to calculation of cortical thickness, these measurements can be used to
evaluate whether the bone loss is due to endosteal resortion or lack of periosteal
surface apposition. Disadvantages are that DXR does not measure cancellous bone
and so does not recognize bone loss within cortex.

Quantitative computed tomography (QCT) relies on X-ray absorption measure-
ments on well-defined volumes instead of two-dimensional projections [26]. Usu-
ally the X-ray source and the detectors are rotating around the patient. A three-
dimensional illustration can be reconstructed from the absorption projections at
different angles [10]. A calibration phantom is required to be imaged simultane-
ously with the patient to ensure standardization and thus to correct the readings
of the BMD analysis. Major advantages at QCT are the ability to assess cancel-
lous bone density due to volumetric density and high resolution (image pixel size
is about 300 µm [10]) [3]. Also, the geometry of an entire bone can be modeled. A
disadvantage is that BMD has been shown to be dependent on the bone marrow
composition, which differs from the chemical analyses made on the same object.
The cost of the equipment is also expensive and the radiation dose to the patient
is even bigger than in DXA measurements.

Magnetic resonance imaging (MRI) of bones is still at a development stage. Due to
lower radiation dose it could be an option for high resolution imaging of trabecular
bone [3]. Although it does not give any information about the density of the bone,
it provides a view of the internal structure of cancellous bone with the positive
background given by all types of bone marrow. Its downside is that measurements
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are complex and highly expensive.

Research on skeletal quantitative ultrasound (QUS) has been active and the method
has been suggested as an alternative option by a number of studies [27]. As the
most important aspect we get information about geometrical as well as material
properties (e.g. mineralization, porosity and Young’s modulus) [28]. Ultrasonically
these bone properties are typically characterized by a measured velocity of one or
more wave modes. In addition, some QUS techniques may assess bone by parame-
ters such as broadband ultrasound attenuation (BUA) and backscatter coefficient.
Advantages of QUS compared to other methods are inexpensiveness, mobility and
safety of measurements for the patient since there are no ionizing radiation sources
used.

All of the mentioned techniques have their pros and cons. Since bone mass may be
discordant at various skeletal sites in an individual patient, and because different
techniques give different results even at the same site for a single patient, T-scores
cannot be used interchangeably with different techniques or at different sites [22].
Some features of different methods to detect osteoporosis are given in Table 2.

2.6 Microstructure imaging
In clinical methods the contribution of bone quality and quantity is somewhat dis-
regarded although they both play a major role in bone strength and fracture risk
assessment. Nowadays there are several noninvasive and nondestructive methods
which concentrate on different levels of microstructure in the hierarchical structure
of bone. Besides the small geometric detail of canals and lacunae (Fig. 2), many
features such as trabecular volume, trabecular spacing, cortical porosity and con-
nectivity can be acquired. These are related to bone strength as much as the BMD.

Table 2. Comparison of different modalities for assessing bone [22, 8].

Factor DXA QCT QUS
Cost Intermediate High Low
Radiation dose Low High None
Portability Limited No Yes
Parts measured Spine, hip,

wrist
Spine, hip Calcaneus,

radius, tibia
Precision Excellent Good Moderate
Monitoring
of treatment
response

Good Good Low
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Techniques most commonly used for micro-architectural analysis of bone are micro-
computed tomography, scanning acoustic microscopy and scanning electron mi-
croscopy.

Micro-computed tomography (micro-CT or µCT) is used for detailed imaging of
bone structure beyond the capabilities of conventional (clinical) QCT. Pixel size
(or voxel size in 3D) of the image can be down to sub 1 µm. At this scale it is
possible to distinguish osteocytes inside the bone composition. Yet finer imaging
at sub 0.1 µm scale can be done by nano-CT, so as to enable 3D assessment of e.g.
the mineral distribution (i.e. the degree of mineralization [29]). At this point the
related tomography devices are purely academic and can be used only for small
dried samples separated completely from the soft tissue. Analysis of bone micro-
architecture based on high resolution X-ray tomography is described in more detail
in Chapters 3 and 4.

Scanning acoustic microscopy (SAM) is used to detect and map elastic proper-
ties of bone by measuring acoustic impedance over tissue surface [30, 31]. SAM
works by directing focused high-frequency ultrasound (typically 50MHz to 1GHz
or more) on the surface of the object, e.g. cross-section of the bone. The frequency
determines the resolution of imaging . For example, in a commercial device us-
ing an ultrasonic transducer with a nominal frequency of 150MHz, the spatial
resolution is about 10 um [32].

Scanning electron microscope (SEM) uses a beam of electrons swiping over the
surface of the sample. With SEM both structural and analytical information of
bone can be obtained, such as information about bone resorption, surface struc-
tures and cell-matrix interactions [33]. Secondary electron diffraction is commonly
used in all SEMs but they can also use backscattered electrons (BSE), character-
istic X-rays, cathodoluminesence, specimen current and transmitted electrons. A
crucial benefit of SEM is its magnification which can reach from 10 to even 500,000
at best. Optical microscopes use magnifications from 10 to about 2,000.

The degree of mineralization of trabeculae can be measured with a special BSE
technique called quantitative backscattered electron imaging (qBEI). It is a high
resolution quantification and visualization technique in which the backscattered
electrons detect differences in atomic number and thus in the mineral content of
the sample surface [34]. Mineralization dictates the material properties such as
the Young’s modulus and yield strength of bone. Often this method is being used
alongside the characteristic X-rays, because they both are strongly related to the
atomic number of the specimen.

Another measurement technique for the mechanical properties of bone is nanoin-
dentation. A sample surface is studied with indentation using a tip of known shape
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while monitoring the applied load and displacement [35]. A common tip shape is a
three-sided pyramid, the ’Berkovich tip’. Usually SEM or SAM is needed to provide
sufficient accuracy for the tip’s location. With nanoindentation attributes such as
Young’s modulus, hardness and strain-rate dependence can be measured.

3 X-ray imaging
X-rays cover part of the electromagnetic spectrum withing a range of wavelengths
from 0.01 to 10 nm, corresponding to energies of 150 to 10 keV, respectively [36].
X-rays are generated when light, or charged high-energy particles lose their speed
rapidly when hitting particles of high atomic number, i.e. of large mass for instance.
X-rays of high energy can penetrate non-metallic substances fairly easily, and this
is why they are generally used in many fields of industry and in clinical studies.
X-rayswere discovered in 1895 by a German scientist, William Röntgen.

3.1 Producing X-rays
A Common way of producing X-rays is the X-ray tube, a vacuum tube shown in
Fig. 4. A glass casing contains a cathode and an anode [36]. An electron beam
is emitted from the cathode towards the positively charged anode by applying a
potential difference of 15 to 150 kV between them. The disk shaped anode is usually
made of tungsten since the anode material has to have a high melting point (3410℃
for tungsten [37]), good thermal conductivity and low vapor pressure (10−7 bar at
2250℃, lowest for all metals). The anode plate is usually spinned for a longer
lifespan and to reduce erosion by increasing cooling time. Vacuum gives electrons
a disturbance free trajectory to the anode and prevents the filament from burning.

The energy at which electrons are drawn from the cathode towards the anode is
comparable to the voltage difference U between these. The amount of electrons
can be expressed with the current (I) which flows through the X-ray tube. The
radiation power P at which the device operates is determined by I and U .

When electrons hit the anode, their direction is changed and speed reduced. From
the total energy generated, 99% becomes heat and only 1% is converted into
electromagnetic radiation due to the bremsstrahlung effect, which we call X-rays
or braking radiation [38]. This phenomenon is basically such that electrons unleash
their kinetic energy as electromagnetic radiation. The energy spectrum of the
bremsstrahlung radiation is continuous. Impacting electrons excite electron states
of the anode atoms. Characteristic radiation is generated when atoms in the anode
discharge these excited states. When this happens at the K shell of atoms (the

11



innermost electron shell of an atom, Fig. 5), the emerging characteristic lines are
called K-lines. The incoming electron must have an energy greater than 70 keV
to eject a K shell electron from the anode. Discharge of other shells happens
as well, but we can take into account only the K lines as they typically have a
higher intensity than the rest. These lines are unique for the anode material. Both
bremsstrahlung and characteristic X-ray radiation can be seen in Fig. 6.

There is no characteristic radiation below an operating energy of 70 kV, but within
the range 80 to 150 kV, characteristic radiation covers 10 − 30% of the total in-
tensity of the spectrum.

The spectrum radiation power (P ) is given by the equation [36]

dP

dE
= CZI (Em − E) , (3)

for 0 < E ≤ Em, while

dP

dE
= 0, (4)

for E > Em.

Here E is the photon energy, Em is the kinetic energy of the electrons (Em = eU ,
e is the electron charge), Z is the atomic number of the anode material and C is
a constant. Integration of Eqs. (3) and (4) gives

P = kZIU2, (5)

where k = Ce2/2 is a constant.

3.2 X-ray scattering
X-rays passing through a human body, or some other object, can be categorized
into three separate groups [38]. X-rays that do not interact with the tissue are
called primary radiation. Secondary radiation consists of X-rays scattered by the
tissue, by different mechanisms that alter trajectories of X-rays. Finally, X-rays
can be absorbed completely in the tissue so that they do not reach the detector.
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Figure 4. An X-ray tube and its basic components. Electrons emitted from the
cathode hit the tungsten anode. Only a small amount of the energy generated is
emitted as X-rays when the rest is emitted as heat [36].

Figure 5. Formation of character-
istic radiation via photoelectric
interaction when an incident X-ray
excites a K-shell electron [38].

Figure 6. A typical energy spec-
trum of an X-ray tube with a tung-
sten anode. Notice the K-lines of
tungsten, which appear as spikes in
the otherwise continuous spectrum.
The K lines do not move although
the operating energy (i.e. voltage
U) would be changed. In this case
only the bremsstrahlung line would
grow or diminish depending on
the energy change (increase or de-
crease, respectively).
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There are three main mechanisms in the formation of secondary radiation [38].
Coherent scattering, also called Rayleigh scattering, represents nonionizing inter-
action between X-rays and the tissue. The energy of an X-ray is converted into
oscillations inside an atom, which are relaxed by emission of a secondary X-ray
with the same wavelength but in a random direction.
Compton scattering refers to interaction between an incident X-ray and an electron
on the outer shell (usually M shell) of an atom. A part of the X-ray energy is
transferred onto this electron which is ejected. The energy of the scattered beam
can be calculated by applying the laws of conservation of momentum and energy.
For the conservation of momentum (p) we have [38]

pe,free = pX,inc − pX,scat, (6)

where the subscripts are: e for electron, X for the X-ray beam, inc for incident
beam, scat for scattered beam and free for the free electron. For the energy we
have

EX,inc + EX,bound = EX,scat + Ee,free. (7)

Combining Eqs (6) and (7), we can find the energy of the scattered beam in the
form

EX,scat = EX,inc

1 +
(
EX,inc

mc2

)
(1− cos θ)

, (8)

where m is the mass of the ejected electron and c is the speed of light.
Consider an X-ray deflected by angle θ. If θ is sufficiently small, the energy of the
deflected beam is nearly the same as that of the incident beam. Nevertheless, the
beam is off its original path, but is detected with approximately the same efficiency
as the primary radiation.
The third category of secondary radiation is produced by the photoelectric effect:
when an X-ray is absorbed by an atom in the tissue, a tightly bound electron is
emitted from the K or L shell as a photoelectron [38]. A second electron from
a higher energy level fills the created hole and emits a characteristic X-ray with
an energy equal to the difference in the binding energy of the outer electron and
the emitted photoelectron. This process is illustrated in Fig. 5. The probability of
photoelectric attenuation of X-rays drops off rapidly as a function of the incident
X-ray energy.
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3.3 Attenuation and filtering
Attenuation of the X-ray spectrum is nearly similar to that of gamma rays. As an
example, for monochromatic radiation we have an exponential attenuation derived
from the Beer-Lambert law [39]:

I = I0e
−µ(E)d, (9)

where I and I0 are the intensities of the transmitted and incident X-rays, respec-
tively, µ is the linear attenuation coefficient (sum of the different interactions) and
d is the thickness of the material. Thus the intensity of the X-rays is dependent on
the density and thickness of the material it is passing through. In Fig. 7 one can
observe linear attenuation coefficients for different X-ray interactions, and mass
attenuation coefficients for different tissue types. In an X-ray image, bone is vis-
ible due to different interactions from those in muscle and fat which cannot be
separated easily because of similar composition.

It is useful to reduce some parts of the energy spectrum of the radiation by filtering.
Some filtering happens already at the X-ray tube, when radiation is guided out
of the tube through a beryllium window. The lower end of the energy spectrum
can be suppressed with additional filtering layers after the radiation source. The
filtered part of the spectrum would be absorbed in the object and would not reach
the detector anyway. After all, the useful information about the absorption inside
the object is in the detected beam. Filters most commonly used are made of glass
or metals like aluminium or copper. The filtering factor depends on the material
and thickness of the filter. For commercial use filter kits, including a collection of
filters, are available.

The efficiency of a filter can be expressed as a sum of mass attenuation coefficients,
which can be derived from distance attenuation coefficient µ and density ρ of each
medium by the following equation [36]

µ(E)
ρ

=
∑
i

(
µ(E)
ρ

)
i

· wi, (10)

where
(
µ(E)
ρ

)
i
is the mass attenuation coefficient for element i and wi is its mass

fraction in percents in the medium.
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(a) (b)

Figure 7. a) The linear attenuation coefficient shows how the operating energy af-
fects the Compton scattering and the photoelectric effect. Coherent scattering is
ignored due to its small effect. b) Mass attenuation coefficient showing the differ-
ence between body materials. For low energies the probability for photoelectric
interactions is much higher in bone than in tissue because bone contains calcium,
which has a relatively high atomic number. Muscle and fat contain high amounts
of water and so have relatively consistent structure, and thus similar mass attenua-
tion coefficients [38].

3.4 Detecting the X-rays
After interacting with tissue, X-rays must be detected. The main challenge of
detection is extraction of the useful information, related to tissue properties, from
e.g. noise. This procedure is typical in everyday X-ray imaging.

A collimator, or beam restrictor, is usually located between the source and the
object [38]. The purpose of this is to adjust the radiation field to match the field
of view (FOV). FOV is dependent on the detector and its surface area. The main
function of the collimator is to decrease the beam flux and thus the radiation dose
of the patient since beams outside the FOV have no value for the image.

Due to the effect of different X-ray interactions, some parts of the beam deflect in-
side the object, depart from their original paths and are distributed randomly over
the detector. This phenomenon reduces the resolution of the image. An antiscatter
grid can be placed between the object and detector so as to absorb the deflected
part of the beam. This grid consists of strips of lead foil which are oriented in the
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(a) (b)

Figure 8. a) A schematic presentation of an antiscatter grid to absorb scattered
X-rays. b) Definition of h, t and d for the grid ratio and strip line density [38].

direction of primary radiation and supported by a low attenuating medium like
aluminium or plastic for example. The properties of the grid are described in terms
of grid ratio and strip line density such that [38]

grid ratio = h

d
(11)

strip line density = 1
d+ t

, (12)

where h, t and d are the length and thickness of the strips and distance between
the centers of the strips, respectively (Fig. 8). Typical values for the grid ratio vary
from 4:1 to 16:1 and for the grid line density from 25 to 60 per cm.

In the past, the most widely used detector, especially in clinical studies, was a
photographic film or plate which recorded the passing X-rays. These accessories
contain silver halides, similar to those in photographic films, so as to record visible
light passed through the camera lens. Since the film or plate must be developed
and replaced after each exposure, this approach has been replaced by a semi-digital
method. In the new approach X-rays are recorded on a photostimulable, phosphor-
based imaging plate containing fine-grain barium fluorohalide crystals doped with
divalent europium (Eu2+) [38], and the image data are transferred digitally onto
a computer by laser reading the excited electrons. Such plates can be erased from
all image data by visible light, and can thereby be reused numerous times.
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Also fully digital detectors, with sensors based on a charge-coupled device (CCD),
similar to those in digital cameras, have become popular. A CCD sensor is es-
sentially a metal oxide semiconductor, usually constructed of p-doped silicon as
the conducting material and silicon oxide as the insulator. When photons hit the
photoactive epitaxial layer of silicon (an array of capacitors known as photosites
or pixels [40]), each capacitor accumulates charge proportional to the light in-
tensity. Information in the form of electric charge is transferred along the silicon
surface in ”clocked shift register” fashion by manipulating the voltages on the con-
trol electrodes sequentially [41]. The last capacitor of the array dumps its charge
into a charge amplifier to convert the charge into voltage. This series of voltages
is sampled, digitized and stored in the memory. Figure 9 illustrates a capacitor
array that moves the charge towards its end. All the data that are stored for each
exposure time is saved as one picture.

3.5 Spatial resolution

Spatial resolution defines how close are lines that can still be resolved in an im-
age. Many things affect spatial resolution, including thickness of the intensifying
screen [38] and properties of the system creating the image. The clarity of the
image is characterized by its spatial resolution rather than the number of pixels
in the image. Unlike the usual beliefs in the consumer market, the pixel resolution
(usually counted as pixels per inch, ppi, or pixel amount in megapixels) is not the
only factor affecting the image clarity. True spatial resolution can be determined
by imaging different test patterns. One approach, still widely used, is the 1951
USAF resolution test chart conforming to the MIL-STD-150A standard, originally
set by US Air Force. In this chart three vertical and three horizontal lines are
positioned next to each other so that the space between the lines are the same
as the width of a single line. Starting from the first set, the width of the lines
starts to decrease. The largest bar that the device cannot discern sets the limit to
the resolution (Fig. 10). These charts are commercially available in sizes specially
defined for any imaging device. It is possible to carve the lines onto a metal surface
at almost any scale, using a laser for instance.

Although an X-ray source is considered point-like, it has a finite size. This results
in the phenomenon known as geometric unsharpness. It causes some blurring in
the image, which is most apparent at the edges of different tissues. In this case the
effect is called penumbra or half-shadow. The degree of image blurring is dependent
on the effective focal spot size, f , the distance between the object and the X-ray
source, S0, and that between the source and detector, S1. In Fig. 11 we illustrate
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the formation of blurring. The size of the penumbra is given by [38]

P = f (S1 − S0)
S0

. (13)

To increase image quality, S0 should be as long and f as small as possible.

From distances S0 and S1 we also get the magnification factor, m, such that

m = S1

S0
. (14)

3.6 Radiation dose
X-rays feature energetic ionizing radiation which can cause damage to living tissue.
The main risk of such radiation is development of cancer as a result of genetic
mutations caused by chromosomal aberrations. The direct (deterministic) effect
of high dose is cell death while lower doses affect stochastically the probability of
damage occurrence.

The absorbed dose, D, is consistent with the energy (E) of the radiation absorbed
per unit mass [36]. D is typically expressed in grays Gy (1 Gy = 1 J/Kg) or rads
(1 Gy = 100 rad). Typical doses in taking clinical radiographs are measured in
mGy’s. In clinical use it is convenient to express the radiation dose by an effective
dose equivalent, HE, which has the unit of sievert (Sv) and is usually measured in
mSv’s. HE is given by

HE =
∑
i

wiHi, (15)

where i is the organ considered, wi is the related weight coefficient and Hi is the
dose equivalent for that organ or tissue type. Hi is dependent on the absorbed
dose, D, and a quality factor which is different for each type of radiation (X-rays,
neutrons etc.). Some values of wi for different tissue types are shown in Table 3.

The effective dose absorbed by an individual cannot be directly measured. Doses
related to different types of clinical imaging are based on approximations. Some
typical effective radiation doses are shown in Table 4.
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Figure 9. CCD moving electrons sequentially by applying potential difference to
metal electrodes. An insulating layer of silicate oxide (SiO2) separates the charge
and the electrode. The last one is an ’output gate’ where the charges are converted
into voltage signals.

Figure 10. The USAF 1951 resolution chart
for detecting optical resolution of an imag-
ing device [42]. Group and element numbers
are for identification of the resolution limit.

Figure 11. Half shadow or
penumbra (P ) is cast around
an object (light grey area). If
f is small and S0 is big, espe-
cially compared to (S1 − S0)
the effect of penumbra be-
comes smaller.
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Table 3. Effective dose weight fac-
tor values for different tissue types.
These values are defined for the av-
erage population composed of even
number of men and women and
with a broad age spectrum [36].

Tissue or organ weight
factor
wi

Testicles 0.20
Bone marrow 0.12
Lungs 0.12
Large intestine 0.12
Stomach 0.12
Liver 0.05
Thyroid gland 0.05
Oesophagus 0.05
Breast 0.05
Bladder 0.05
Bone surface 0.01
Skin 0.01

Table 4. Average effective radia-
tion doses for an individual, ex-
posed to different types of clinical
radiological assessments [36]. These
values are highly approximated
since the exact doses feature signif-
icant individual variation.

X-ray Effective dose (mSv)
Limbs < 0.001
Dental tomography 0.004
Chest 0.1
Skull 0.12
Mammography 0.2
Hip 1.3
CT
Head 1.3
Chest 5.1
Angiographs 1.0− 25

Patient’s radiation dose is not a trivial thing to measure. Some studies have eval-
uated the radiation dose by using thermoluminescent dosimeters (TLD) inside
layered phantoms, although such results cannot unambiguously be applied to real
situations. The effective dose can be evaluated from the measured phantom dose,
risk factor of each organ and entrance surface dose (ESD).

4 Micro-computed tomography
Micro-computed tomography has become a standard technique for visualization
and quantification of the three dimensional (3D) structure of trabecular bone. To
date, technical development and decreasing prices of the scientific devices have
made it possible to explore structures at the sub 1 µm scale. Even though it is not
really possible to detect mineral orientation (nano-CT is required), microstructure
of the bone can be identified down to the length scale where osteocytes and canali-
culi can be observed. Osteocytes provide valuable information about the state of
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bone reformation and porosity, both of which are crucial factors characterizing
osteoporosis and affect many other clinically measurable parameters such as ultra-
sound velocity.

X-ray microtomographs form images based upon X-rays transmitted and prop-
agated through the sample. The less X-rays the sample absorbs, the brighter
the image becomes. Absorption increases with increasing density, thickness and
other material properties. Micro-CT produces absorption images, i.e. shadowgrams
(Fig. 12a), of the scanned object. The quality of the image is dependent on several
factors such as the object’s dimensions, spatial resolution, magnification, number
of imaging angles and exposure time. The set of shadowgrams is processed and re-
oriented in a phase called reconstruction, so as to provide a stack of cross-sectional
’slices’ representative of the structure through the imaged sample (Fig. 12b). The
most important reconstruction algorithm in tomography is the filtered back projec-
tion (FBP) algorithm. The idea is to convert the propagation of the X-ray beams
into an inversion problem by using the Radon transform R [43],

g(θ,s) = (Rf)(θ,s) (16)

together with its inverse transform [43],

f(x) = 1
4π2

∫
S1

∫
R1

d
dsg(θ,s)
x · θ − s

dsdθ. (17)

Here beams are modeled as straight lines x · θ = s, where θ ∈ S1 and s ∈ R1.

Then we can use the Fourier slice theorem [44],

(Rθf )̂ (σ) = (2π)(n−1)/2f̂(σθ), (18)

where σ ∈ R1. The ˆ stands for 1D Fourier transform. We include the Hilbert
transform H [44],

(Hh)̂ (σ) = −i sgn(θ)ĥ(σ), (19)

22



to acquire the FBP algorithm,

f = 1
2(2π)1−nR#Hn−1(Rf)(n−1), (20)

where R# is the dual of the Radon transform.

Furthermore, the produced slices can be rendered into a 3D model (Fig. 12c), so
as to represent the original 3D geometry. Reconstruction is usually done with a
program provided by the µCT manufacturer, and can be saved as raw data in a
3D format or as a stack of images in any universal image file format. After recon-
struction, user can transform image data to any software for further processing
and structural analysis.

The scanning voxel size is a characteristic measure of the recorded image data
and determines the best level of detail that can be resolved during the recon-
struction [45]. To optimize the process of reconstructing, a tradeoff can be made
between the reconstructed voxel size and computational requirements (memory
and processor time).

4.1 Image colour depth
Scanning by µCT provides digital images like any related method. A single image
can be dispersed into the number of colours used, i.e. the colour depth. For example,

(a) (b) (c)

Figure 12. a) Micro-CT device saves projection images, i.e. shadowgrams, of the
object. b) Projection images are reconstructed as transverse cross-sectional slices so
the 3D volume can be analyzed. c) Whole 3D volume rendered as a 3D image. The
black plane shows the location of the slice in b).
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a common format for digital images is the JPEG, which in the gray-scale format
contains a total of 256 shades. A definition for the colour range, or dynamic range,
is the number of amplitude quantization levels such that [46]

L = 2B, (21)

where B represents the bit depth. The mentioned JPEG is thus an 8-bit image
with given 28 = 256 gray-scale tones. A related colour image has a depth of 24 bits
with 16.7 million colours, represented by a combination of three 8-bit channels of
red, green and blue (RGB). Colour depths and some applications used are shown
in Table 5.

In a gray-scale image, a pixel with no information is represented by 0, and is typ-
ically visualized by black. If a photon hits a pixel, the latter contains information
and is represented by a number higher than 0. Hit levels from 1 to 255 represent
different shades of gray between black and white. The difference between a lower
and higher colour depth is illustrated in Fig. 13. For a 1-bit image, the highest
level is 1, corresponding typically to visualization by white.

In X-ray microtomographs, it is common to record data in a 16-bit format, although
some older image processing software or image formats support only 8-bit images.
Display hardware of computers affects the image quality shown to the eye. For
instance, LCD displays typical in clinical use are able to show 12-bit channels
while consumer displays are usually restricted to 8 bits [47]. Shades can always be
downgraded by combining, though this process loses valuable data. By processing
the image with appropriate software, we can either maintain maximal information
recorded or compress the image by optimizing between the file size and image
quality. A typical tomography scan can take several gigabytes of disk space and
requires the same amount of RAM memory when processed. Powerful computers
and large data storages are thereby needed to handle such image data.

4.2 Image defects
An image can never be regarded as a perfect representation of the original object.
Whether the image is analogue or digital, gray-scale or colour, it always features
some defects. These defects can efficiently be reduced by numerous possibilities of
digital image processing. Tiny defects may not be visible if the picture is shrank to
a smaller size or printed out. Troublesome the case is when the image is recorded
with a high resolution sensor and shown in full scale, on a projector for example.

24



Table 5. Image types and the corresponding amounts of possible colours

Image type Amount of colours Application
1-bit 21 = 2 Binary
2-bit 22 = 4 CGA
4-bit 24 = 16 EGA
8-bit 28 = 256 VGA, gray-scale JPEG
12-bit 212 = 4,096
16-bit 216 = 65,536 Clinical gray-scale
24-bit 224 = 16,777,216 True colour
30-bit 230 ≈ 1.073 billion HDMI
64-bit 264 ≈ 1.885 · 1019 Modern graphic cards

Figure 13. An a) 1-bit and an b) 8-bit image of the same object [40]. Notice the
information of shades of gray stored in each pixel as numbers and how this affects
the picture.
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Some defects typical of µCT impact the image analysis and must therefore be
reduced.

Noise is one of the most common disturbances in digital X-ray µCT images. It is
analogous to grains in a film, and is common in digital sensors [40]. As a visual
effect, noise can be a neat thing, but for clinical purposes noisy means inaccurate
or even unreadable in the worst case. Digital sensors generate two different kinds
of noise, luminance noise, which is also known as white or background noise, and
chrominance noise which can include noisy patterns of changing luminance or
bright speckles, or can appear as patterns of colours, usually wrong ones. Noise
can be reduced to some extent, but it cannot be totally reduced. Noise cancellation
algorithms and filters are part of almost every editing program. For the present
study, noise reduction for the luminance noise was done by using a technique
of background denoising. To this end, the background is considered more or less
empty, and the gray-scale profile is corrected accordingly. The method of denoising
used is illustrated in Fig. 14.

Sometimes unwanted objects or patterns may appear in the image due to defects
in the CCD sensor or the lens. When during µCT scanning multiple images are
taken from the same object at different angles, a few inactive pixels on the sensor
can build up an effect which results in a ring artifact in the reconstructed µCT
image (Fig. 15). A spot-like artifact can appear if multiple images are taken at
the same angle, and the object is shaking a bit. When aligned, the faulty pixels
sum up to a wider area. Usually either the operating software of the scanner or
the reconstruction software have tools to reduce the ring artifacts.

(a) (b)

Figure 14. Removing noise from images is most crucial for later analyses. A
zoomed area of a slide from a sample (CTJ019) as a) original and b) filtered. No-
tice how the small detail and the boundary becomes more vivid.
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Figure 15. A ring artifact can be a result of faulty pixels in the CCD sensor. In
this figure a bone phantom custom-made of epoxy resin and aluminium oxide was
scanned over 180 degrees. As can be seen, a group of pixels have not recorded any-
thing, for an unknown reason, and the artifact is spanned over the angle interval.
Several smaller rings which are definitely not part of the actual composition of the
phantom can also be seen.

During one exposure cycle an individual photosite can fill up from too many elec-
trons [40]. Excessive electrons can then leak or overflow to adjacent photosites.
This phenomenon is called sensor blooming, and can be detected as extra shadow
figures around an object with high contrast lines. Sensor blooming looks just like
chromatic aberration, the colourful halos around an object when different wave-
lengths do not focus on the same focal plane due to the varying refraction.

5 Materials and methods
5.1 Samples
The samples used comprise twenty-four (24) human cadaveric bone specimens of
cortical bone from the proximal anterior shaft of adult human femora with a mean
age of 48.7 (±16.3) (20 male with a mean age of 48 (±17.3) and 4 female with
a mean age of 52.3 (±10.7)). Specimens were obtained by medical and forensic
autopsies, conducted at Department for Pathology, Kuopio University Hospital.
The ethical permission was granted by the National Authority for Medicolegal
Affairs (TEO, 5783/04/044/07). Slices of cortical bone were cut below the minor
trochanter (Fig. 16). Samples for µCT imaging were extracted with a drill or a
band saw, and were approximately 1-5mm in diameter and 7mm in length. They
were stored individually in a phosphate buffered saline (PBS) solution (pH = 7.4)
and kept frozen at a temperature of -80℃ until preparation.
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5.2 Sample preparation

The samples were dried in a freeze dryer Christ ALPHA 1-4 (Martin Christ, Os-
terode am Harz, Germany, (Fig. 17) which sublimated the ice. The device was
connected to a vacuum pump (Edwards RV3 H.P., Edwards High Vacuum In-
ternational, Crawley, West Sussex, UK) creating a 0.045mbar vacuum inside the
dryer chamber. The samples were cleaned of solid salts with compressed air and
ground manually to fit the field of view (FOV) of the µCT device (diameter of
the tip of the sample < 1.3mm). To ease the scanning procedure, a glass capillary
featured a sample holder, and samples were glued on the tip of this holder by
epoxy based glue. In Fig. 18 a fully prepared bone sample can be seen.

Figure 16. The samples for this study were cut from cortical bone slices of the
proximal anterior shaft of human femora.

Figure 17. Christ Alpha 1-4 con-
nected to a vacuum pump (on the
left side) was used to remove wa-
ter from samples preserved in PBS
solution.

Figure 18. A fully prepared sam-
ple ready for scanning. It was de-
frosted, ground and glued to a
glass capillary. Imaging was done
of the small tip of the sample.
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5.3 Micro-CT device
Micro-CT imaging was carried out using Xradia MicroXCT-400 (Xradia Inc., Con-
cord, CA, USA, Fig. 19(a)). This device features an X-ray source of 20 − 90 kV
(Fig. 19(b)). The device can be operated at power levels of 1−8W [48]. The sample
can be up to 500mm in diameter, 400mm in height and 15 kg in weight. During
scanning the samples can be heated or cooled, pressurized, or their surroundings
can be other than air (other gas or liquid in an X-ray transparent container). Also
samples can be imaged under real operation conditions (current flowing through
electrical components or mechanical parts in motion) or while subject to mechan-
ical forces.

(a) (b)

Figure 19. a) Xradia MicroXCT-400 and its b) X-ray source (20 − 90 kV) (on the
left), sample holder (in the middle) and optical lenses (on the right).

5.4 Micro-CT scanning
Each scanning consists of at least 1800 shadowgrams in an angle interval of 184
degrees. An exposure time of 60 or 100 seconds was used and the power (between
2.5 and 8W) and voltage (25 to 90 kV) combination was set based on the exposure
time. As a safety precaution, power and voltage was set so that current never
exceeded 100 µA. For all the samples a lens with a magnification of 20X was used.
Distance between the sample and source (S0) was 20 to 35mm, and the distance
between the sample and detector (S1 − S0) was usually 4 or 5mm, depending on
the size of the sample. Guidelines for these distances were that the former would
be about 5 to 7 times the latter. Samples were located as close to the detector as
possible still with some room for it to spin around its long axis. For each sample
the scanning took about 60 hours to complete.

The scanning procedure is dependent on the sample properties. Although every
sample was materially the same and about the same size with a cross section
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diameter of 1mm, each sample had to be specified independently. The cross section
of the sample perpendicular to the long axis was fitted fully inside the device’s field
of view (FOV, Fig. 20(a)) which was 1.3mm in diameter for the used magnification
of 20X. Otherwise the spinning of the excessive part would have disturbed the final
result. Distances S0 and (S1−S0) were partly chosen with this in mind. As for the
filter used, some of the thinnest glass filters (LE1, LE2 or LE3) were used from a
series of filters provided by the manufacturer (Fig. 20(b)). Filters and dimensions
of the object had an effect on the image brightness so that power output of the
device had to be optimized for each sample for the best possible result. A guide
distributed by the manufacturer was used to choose correct filter and power levels.
Software used for operating the Xradia MicroXCT-400 was MicroXCT 7.0.2817.
Scanning was performed at atmospheric pressure and normal room temperature
(22℃).
Some single scans were taken before the actual imaging to be sure the results would
be desirable. With these the filter used during scanning was also determined by
separating the background from the object and optimizing the used bit depth. It
was to be made sure that some radiation came through the object in every part
but also that the background was not overexposed (photon limit was not reached
for any pixel).

5.5 Image post processing
3D bone volumes were reconstructed from the through transmission images with
Xradia Reconstructor 7.0.2817. This software was delivered by the manufacturer
and is designed to control the produced images.

(a) (b)

Figure 20. a) A single absorption image of the tip of a bone sample (CTJ022) im-
aged with 20X magnification. This image operates as the FOV at the same time
and includes fully the cross section parallel to the long axis. b) A filter used in the
imaging sequence to flatten out the lower part of the energy spectrum.
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Reconstructed images, or slices, were oriented perpendiculary to the long axis of
the imaged object and numbered from bottom to the top. Also, some enhancements
were performed in this phase. Image sharpening was done with pixel center shifting
(Fig. 21) and roughness due to the hard and dense material was corrected with
a standard beam hardening correction (Fig. 22). Ring artifacts were removed by
using 3-section high contrast ring removal. Also a filter was used based on the
Shepp-Logan function.

Finished 16-bit reconstructions were operated in image processing software ImageJ
1.40c (National Institutes of Health, Bethesda, MD, USA). Image background noise
was removed by using a custom made 3D variance filter.

Some of the samples were remodeled with Avizo 7.0.0 Fire Edition (Visualization
Sciences Group SAS, Burlington, MA, USA) for better visualizations.

5.6 Analysis of bone micro-architecture
Parameters of bone micro-architecture (i.e. morphological parameters of bone)
were determined by software CTAn (version 1.11.4.2, Skyscan™, Kontich, Bel-
gium). Data were imported into the software as 8-bit bitmaps, and a region of in-
terest (ROI) was selected. A polygonal boundary was drawn inside sample bound-
aries according to the thinnest part of the sample. Image noise at the bottom and
known ring artifacts at the top of the images were the most crucial limiting factors
for the height of ROI. Number of slides and the geometry of ROI was chosen with
the maximum volume and maximum image quality in sight. Typical dimensions for
the ROIs were 600-900 µm in diameter and 500-930 µm in height. Morphological
parameters were determined for each sample inside the selected ROI.

Several different morphological parameters can be obtained from the reconstructed
bone volume. The parameters were determined directly in 3D inside a surface-
rendered volume model [49]. Tissue volume (TV) and bone volume (BV) were
based on the separation of bone voxels and empty voxels inside the ROI which
was fully set inside the scanned bone sample boundaries. TV refers to any kind of
tissue independent of its density and BV accounts for the binarized solid volume.

Let us call the bone volume fraction as BV
TV

= PP and the trabecular number (Tb.N)
as Tb.N = PL. Trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and
bone surface to bone volume ratio (BS

BV
) can then be defined as [45]:

Tb.Th = PP
PL

= BV

TV · Tb.N
(22)
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(a) (b)

Figure 21. a) Original absorption images were a little bit out of focus and would
have lead to inaccurate reconstruction. (b) With the center shift function the ge-
ometry of surfaces was corrected.

(a)

(b)

Figure 22. a) Edge of the sample seems denser and the density profile is inhomo-
geneous. b) The Beam hardening constant was set to equalize the distribution of
matter across the sample and to homogenize the density profile across the entire
cross section of the sample.
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Tb.Sp = 1− PP
PL

=
1− BV

TV

Tb.N
(23)

BS

BV
= 2 · PL

PP
= 2 · Tb.N · TV

BV
. (24)

From these equations we obtain a definition for the trabecular number [45, 49],

Tb.N = 1
(Tb.Th+ Tb.Sp) . (25)

The degree of anisotropy (DA) can be defined such that

DA =
(

1−
[

min eigenvalue

max eigenvalue

])
, (26)

where DA is 0 for total isotropy and 1 for total anisotropy. DA was tested with a
mean intercept length analysis where a grid of test lines was distributed inside the
binarized volume in a large number of different 3D angles. DA was determined from
the line length to tissue volume ratio by calculating the number of intersections
the lines have [49].

The structure model index, SMI, is given by

SMI = 6 ·
(
S ′ · V
S2

)
, (27)

where S is the object surface area before dilation, S ′ is the change in surface area
caused by dilation, and V is the initial object volume. SMI indicates the relative
commonness of rods and plates in a structure involving a measurement of surface
convexity.

For any data set xi(i = 1, . . . ,n), arithmetic mean (µ) was determined by

µ = 1
n

n∑
i=1

xi. (28)
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The standard deviation (SD) of a data set is given by

SD =

√√√√∑n
i=1 (xi − µ)2

(n− 1) . (29)

Finally the coefficient of variation (CV) is defined by

CV = SD

µ
. (30)

Calculations were done with built-in 3D morphometric analysis of CTAn including
all of the parameters available. Although the program is originally designed to
examine trabecular bone, with proper thresholding the definitions of gray-scale
can be inverted and the same analysis can be applied to cortical bone [50]. The
nomenclature is modified to characterize the features of cortical bone (Table 6) [50,
51].

Canal and lacunae volume feature the empty space inside the tissue volume. Sur-
face was measured as the interface of dense material and the empty space enclosed
by the Haversian canals and lacunae. As the canal (and lacuna) diameter we used
the mean diameter of the canals (and lacunae). Canal separation was the mean
distance that separated the canals within the canal network, and canal number was

Table 6. The morphological parameters used in this study [50, 51].

Trabecular bone Abbrv. Cortical bone Abbrv.
Tissue volume TV Tissue volume TV
Bone volume BV Pore volume V
Bone surface BS Pore surface S
Bone volume fraction BV/TV Cortical porosity V/TV
Bone surface to tissue
volume BS/TV

Cortical surface to tis-
sue volume S/TV

Trabecular thickness Tb.Th Pore diameter Dm
Trabecular separation Tb.Sp Pore separation Sp
Trabecular number Tb.N Pore number N
Structure model index SMI Structure model index SMI
Degree of anisotropy DA Degree of anisotropy DA
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the mean number of canals per micrometer. The structural model index indicated
the relative prevalence of rods and plates in the structure.

For the analysis of micro-architecture, the bone volumes were segmented by thresh-
olding (Fig. 23). In a segmented image, voxels with levels of linear attenuation lower
than the threshold represented empty space (bright areas), while voxels with lev-
els higher than this represented bone (dark areas). Haversian canals and lacunae
were thus separated from bone tissue. The threshold level was chosen individu-
ally for each sample due to sample-specific variations in image attributes such as
brightness. This level was determined visually by maximizing the amount of details
and minimizing noise. The original 16-bit images were used as references for the
amount of details.

(a) (b)

(c) (d)

Figure 23. a) An original 16-bit slide used for comparison for the level of detail.
b) Image was thresholded for the data analysis. First set included both Haversian
canals and lacunae (Co). c) Haversian canals (Ca) were separated, analyzed and
subtracted from the data set. d) After removing the Haversian canals an analysis
was done of lacunae (Lc) only. Tissue volume was corrected in the final analysis.

35



Three versions of images per each sample were created: one including both the
canals and lacunae (abbreviated by Co as combined), one including only the Haver-
sian canals (abbreviated by Ca) and the last one with only the lacunae (abbreviated
by Lc). In the two latter cases the canal or lacunae volume, determined from im-
age histograms, was subtracted from the tissue volume so as to remove the bias
caused by the canals (lacunae). Abbreviations are used as prefixes in the results
for individual data sets.

Pearson’s correlation coefficients were calculated between the morphological pa-
rameters acquired for the samples. This was done using IBM SPSS Statistics (ver-
sion 20, IBM Corporation, New York, NY, USA). A correlation was considered
statistically significant when its p-value was less than 0.05. Diagrams showing lin-
ear correlation (R2 coefficient, which is the Pearson’s coefficient squared) between
cortical porosity and other parameters were drawn with Matlab (The MathWorks,
Inc., Natick, MA, USA).

6 Results
6.1 Effects of sample specific scanning and thresholding pa-

rameters
The impact of scanning and thresholding parameters, individually tuned for each
sample, on bone morphological parameters is demonstrated for one bone sam-
ple. For this evaluation the same sample was imaged with two different settings
which represent an extreme range of scanning parameters for the whole sample set
studied. The region of interest (ROI) was chosen as cylindrical and was placed as
identical as possible in the two cases. It is evident from Table 7 that the values
of morphological parameters determined differ by approximately 4% between the
two trial scans. The resulting effect is small compared to inter-sample variability
in these morphological properties.

Choice of the threshold level was seen to have a tremendous effect on the image
quality. A level too small lead to images with less detail whereas too high a level
resulted in noise affecting the analyzed volume. The mean value of the threshold
levels was 165 (± 14 with a range of 144-192). To show how much the amount of
details vary depending on the selection of the threshold level, in Figure 24 we show
results one sample that was analyzed with three threshold values chosen from the
threshold level distribution for the samples: the mean value and the mean value ±
SD.
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Table 7. Scanning parameters, threshold levels and resulting morphological proper-
ties for one bone sample featuring a case example on the impact of the choice of the
scanning parameters.

Scanner parameter Unit Scan 1 Scan 2 Difference (%)
Output voltage kV 90 30
Power W 8 3
Filter used LE2 LE2
Number of images taken 1800 1850
Exposure time s 60 100
Sample distance from
source mm 25 35

Sample distance from de-
tector mm 4 5

Pixel size µm 0.58 0.59 0.01 (1.7)
Upper threshold limit 167 163 -4.0 (-2.4)
Morpological parameters Abbr. Scan 1 Scan 2 Difference (%)
Tissue volume TV 391718749 398220217 6501468 (1.6)
Combined cortical porosity Co.V/TV 5.13 4.95 -0.18 (-3.6)
Combined pore diameter Co.Dm 48.6 46.8 -1.82 (-3.8)
Combined pore number Co.N 0.00105 0.00106 0.00001 (0.9)
Combined pore separation Co.Sp 48.39 48.98 0.59 (1.2)
Degree of anisotropy DA 0.56 0.57 0.01 (1.5)
Structure model index SMI 8.62 7.60 -1.02 (-12.5)

In addition, the same sample was thresholded and the bone parameters determined
for several different threshold levels. Besides the level used for this sample in the
actual analysis, four different levels were used: two lower and two higher ones with
a level increment of 2 units. In this case the tested levels were 159, 161, 163, 165
and 167, and the results are shown in Table 8. Canals were subtracted from the
images, and the data included only the lacunae.

Due to the choice of the threshold level, the coefficient of variation was about
0.10 for the morphological parameters. This corresponded to a 10% error for the
chosen levels. For the same set the total volume of the lacunae varied more than
50%. In Fig. 25 we show a magnified part of a cross section for all of the used
threshold levels so as to illustrate their effect on the level of detected details, while
the variation in the amount of noise related to the choice of the threshold level is
illustrated in Fig. 26.
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(a) (b)

(c) (d)

Figure 24. a) A zoomed-in area from the original 16-bit slide of the sample used
for comparison of segmented images. b) The result of using a threshold level of
151, i.e. one SD lower than the mean threshold level of all the samples. c) The re-
sult of using a mean threshold level of 165. d) The result of using a threshold level
of 179, i.e. one SD higher than the mean threshold level. As can be seen (marked
with red circle), a detail clearly visible in the original image does not show up
with too low a threshold level (b). The mean value appears to be almost the cor-
rect value for this sample although the boundary of the Haversian canal is not as
smooth as it should be. For an SD value of 14 this is a coincidence. For a too high
threshold level noise starts to limit the image quality (d).

An automated determination of the threshold level was tested for one sample
by ImageJ. The sample volume was loaded into the program and the automatic
thresholding tool was used for the whole stack at once. Some examples are shown
in Fig. 27, and it is evident that this method did not provide the expected amount
of details while some amount of noise was left in the segmented image. In Table 9
we show the threshold values given by the automatic thresholding tools of ImageJ.
Based on these results, the threshold level should best be located somewhere on the
uprising slope of the gray-scale histogram when determined by visual inspection.
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Table 8. The effect of threshold value was tested for one sample with a varying threshold
value.

Sample
Upper Structure
threshold Tissue Lacuna Cortical Lacuna Lacuna Lacuna Degree of model
limit volume volume porosity diameter number separation anisotropy index

TV Lc.V Lc.V/TV Lc.Dm Lc.N Lc.Sp Lc.DA Lc.SMI
10−3· mm3 10−3· mm3 % µm 1/µm µm

CTJ019

159 516.5 3.94 0.76 3.90 0.0019 52.7 0.71 2.80
161 516.5 4.26 0.82 3.96 0.0020 52.0 0.65 2.86
163 516.5 4.57 0.89 4.02 0.0021 51.2 0.64 2.93
165 516.5 4.90 0.95 4.08 0.0022 50.4 0.62 3.01
167 516.5 5.23 1.01 4.13 0.0023 49.5 0.62 3.13

Mean 516.5 4.58 0.89 4.02 0.0021 51.2 0.65 2.95
SD 0.00 0.51 0.10 0.09 0.0002 1.3 0.04 0.13
CV 0.00 0.11 0.11 0.02 0.09 0.03 0.06 0.04

(a) (b) (c)

(d) (e) (f)

Figure 25. A small portion of a cross section of the image is zoomed-in from a) the
original 16-bit image and from those resulting from using a threshold level value of
b) 159, c) 161, d) 163, e) 165 and f) 167. Note the change in the amount of details
of the size of the smallest lacunae when the threshold value changes from its lowest
level to the highest.
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(a) (b) (c)

(d) (e) (f)

Figure 26. A small portion of a cross section of the image is zoomed-in from a) the
original 16-bit image and from those resulting from using a threshold level value of
b) 159, c) 161, d) 163, e) 165 and f) 167. Note the change in the amount of noise
when the threshold value changes from its lowest level to the highest.

Table 9. Automatic thresholding tools in ImageJ were used for one sample. The
resulting threshold levels varied a lot and were typically quite different from the
one acquired by visual inspection.

ImageJ method Level value
Default 145
Huang 134

Intermodes 142
IsoData 99

IJ_IsoData 145
Li 136

Mean 180
MinError -
Minimum 145
Moments 172

Otsu 145
Percentile 201

RenyiEntropy 181
Shanbhag 107
Triangle 173

Yen 184
Visual inspection 167
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(a)

(b) (c)

(d) (e)

Figure 27. A few examples of the results of using automatic image thresholding
tools for one of the samples. a) The original 16-bit slide used for comparison, b)
the result of using the automatic thresholding tool the “default” method which
gave 145 for the threshold level, c) the result of using the automatic thresholding
tool the “MaxEntropy” method which gave 180 for the threshold level, d) the re-
sult of using the automatic thresholding tool the “Moments” method which gave
172 for the threshold level, e) thresholded image and the threshold level acquired
visually by optimizing between detail and noise. The red line in the histograms
marks the value of the threshold level. Notice that, in panel (e) the optimal thresh-
old value is not at the saddle point of the diagram.
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6.2 Statistical analysis
Morphological parameters for the data set of combined porosity are shown in
Table 10. Data consisting only of canals are shown in Table 11 and those of lacunae
in Table 12.

Correlations between the acquired morphological parameters are summarized in
Tables 13, 14 and 15.

Distribution of cortical porosity across the samples is shown in Fig. 28 Throughout
the set most of the samples had a porosity of 4 to 8% including Haversian canals,
and of 0.2 to 0.5% with lacunae only.

Cortical porosity was correlated with some of the morphological parameters. A
strong correlation occured between the pore diameter and combined porosity (r2

= 0.64, p < 0.001) and canal porosity (r2 = 0.60, p < 0.001) (Fig. 29), but for the
data set including only the lacunae the correlation was not as clear.

Lacuna number (Lc.N) had a clear linear correlation with cortical porosity (r2 = 0.97,
p < 0.001). For the data set including both Haversian canals and lacunae or
canals alone the correlation was not as clear due to the changing size of the canals
(r2 = 0.17, p > 0.05 and r2 = 0.29, p > 0.01 respectively, Fig. 30).

Pore separation was correlated slightly with the combined cortical porosity and la-
cunae porosity, as is evident from Fig. 31. For lacunae the correlation was negative
(r2 = 0.35, p < 0.01).

Degree of anisotropy was not correlated with cortical porosity (Fig. 32).

Structural model index (SMI) seemed to be correlated with the combined cortical
porosity (Co.V/TV) (r2 = 0.48, p < 0.001) (Fig. 33), but not with the canal
porosity (Ca.V/TV) or lacunae porosity (Lc.V/TV).

Morphological parameters were measured at University of Eastern Finland (Kuo-
pio) with a different device (Skyscan 1172, Skyscan Artselaar, Belgium) and imag-
ing setup. Comparisons of distributions of morphological data by Xradia (Xr) and
SkyScan (SS) are shown in Fig. 34. For the cortical porosity, pore diameter and
pore separation the Xr Ca set was most consistent with the SS data. The Co data
set had similarities with the SS data for the porosity and pore diameter. When
considering the Lc data set of the Xradia and the SS data, similar results for pore
number, DA and SMI were measured.
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Table 10. Morphological parameters measured for 24 bone samples. The results are for
total VOI including the Haversian canals and lacunae combined.

Sample

Combined Combined Combined Combined Combined Combined Combined Combined
sample pore cortical pore number pore degree of structure
volume volume porosity diameter of pores separation anisotropy model index
Co.TV Co.V Co.V/TV Co.Dm Co.N Co.Sp Co.DA Co.SMI

[10−3· mm3] [10−3· mm3] [%] [µm] [1/µm] [µm]
CTJ001 313.0 22.80 7.28 42.5 0.0017 58.8 0.77 7.14
CTJ002 628.3 40.69 6.48 37.3 0.0017 59.9 0.47 7.34
CTJ003 381.0 62.19 16.33 83.5 0.0020 59.9 0.70 12.78
CTJ004 597.5 33.48 5.60 41.4 0.0014 61.3 0.64 10.33
CTJ005 453.9 65.08 14.34 56.9 0.0025 53.3 0.58 7.44
CTJ006 130.9 7.75 5.92 35.6 0.0017 56.2 0.84 7.84
CTJ007 524.9 115.11 21.93 110.9 0.0020 67.2 0.70 18.20
CTJ008 358.0 13.55 3.79 30.6 0.0012 59.4 0.75 7.26
CTJ009 344.0 22.47 6.53 43.7 0.0015 54.3 0.73 9.31
CTJ010 342.4 14.69 4.29 38.1 0.0011 56.4 0.56 8.05
CTJ011 662.3 46.48 7.02 33.9 0.0021 55.1 0.79 6.30
CTJ012 305.6 45.62 14.93 48.8 0.0031 55.1 0.57 11.15
CTJ013 464.8 35.21 7.57 55.5 0.0014 54.9 0.94 8.33
CTJ014 246.1 16.31 6.63 26.2 0.0025 49.5 0.53 7.54
CTJ015 193.3 8.08 4.18 27.5 0.0015 53.7 0.76 9.07
CTJ016 404.8 23.49 5.80 36.8 0.0016 53.4 0.65 7.40
CTJ017 382.2 27.46 7.18 43.4 0.0017 51.5 0.78 9.31
CTJ018 627.3 39.13 6.24 46.5 0.0013 51.1 0.58 12.31
CTJ019 543.1 31.42 5.79 44.2 0.0013 47.8 0.60 8.16
CTJ020 156.2 7.71 4.94 17.9 0.0028 48.3 0.57 4.02
CTJ021 516.0 38.30 7.42 48.6 0.0015 58.7 0.72 11.42
CTJ022 445.6 19.61 4.40 39.2 0.0011 55.9 0.59 9.99
CTJ023 497.5 27.44 5.51 55.3 0.0010 53.5 0.65 10.88
CTJ024 311.0 44.48 14.30 128.5 0.0011 53.5 0.59 16.86

Mean 409.6 33.69 8.10 48.9 0.0017 55.4 0.67 9.52
SD 148.8 23.46 4.65 25.4 0.0006 4.4 0.11 3.19
CV 0.36 0.70 0.57 0.52 0.32 0.08 0.17 0.34
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Table 11. Morphological parameters for 24 bone samples. These results are for bone vol-
umes which include the Haversian canals but not lacunae. The lacunae were subtracted
from the total tissue volume.

Sample

Canal Canal Canal
Canal contribution contribution contribution
sample Canal to cortical Canal Canal Canal to degree of to structure
volume volume porosity diameter number separation anisotropy model index
Ca.TV Ca.V Ca.V/TV Ca.Dm Ca.N Ca.Sp Ca.DA Ca.SMI

[10−3· mm3] [10−3· mm3] [%] [µm] [1/µm] [µm]
CTJ001 365.8 24.15 6.60 41.0 0.0016 186.4 0.83 2.94
CTJ002 627.2 39.60 6.31 38.0 0.0017 191.3 0.57 1.53
CTJ003 380.0 61.44 16.17 84.6 0.0019 189.5 0.73 0.25
CTJ004 595.9 32.01 5.37 42.9 0.0013 228.4 0.78 2.45
CTJ005 452.8 64.15 14.17 57.6 0.0025 147.5 0.60 3.17
CTJ006 130.5 7.30 5.59 37.4 0.0015 191.1 0.97 2.05
CTJ007 524.2 114.54 21.85 111.4 0.0020 210.0 0.73 4.40
CTJ008 356.7 12.26 3.44 33.0 0.0010 191.2 0.84 3.03
CTJ009 342.5 20.99 6.13 46.2 0.0013 229.2 0.69 0.79
CTJ010 340.9 13.25 3.89 41.3 0.0009 252.8 0.41 1.63
CTJ011 660.1 44.39 6.72 35.1 0.0019 218.1 0.84 1.84
CTJ012 304.6 44.73 14.68 49.6 0.0030 179.3 0.70 2.47
CTJ013 463.0 33.44 7.22 58.1 0.0012 229.4 0.92 −0.97
CTJ014 244.9 15.18 6.20 27.6 0.0022 164.0 0.62 2.82
CTJ015 192.7 7.46 3.87 29.1 0.0013 196.4 0.76 3.79
CTJ016 403.0 21.66 5.37 39.4 0.0014 244.2 0.73 1.68
CTJ017 380.2 25.49 6.70 46.0 0.0015 218.2 0.77 2.13
CTJ018 625.3 37.19 5.95 48.4 0.0012 232.4 0.61 3.98
CTJ019 538.8 26.63 4.94 49.7 0.0010 319.5 0.65 4.44
CTJ020 155.1 6.60 4.26 20.0 0.0021 149.6 0.90 1.02
CTJ021 514.6 36.93 7.18 50.0 0.0014 207.1 0.68 3.35
CTJ022 443.7 17.68 3.98 42.6 0.0009 247.4 0.69 3.46
CTJ023 495.0 24.91 5.03 59.8 0.0008 244.7 0.76 3.75
CTJ024 309.7 43.16 13.93 131.6 0.0011 195.3 0.58 3.13

Mean 410.3 32.30 7.73 50.8 0.0015 211.0 0.72 2.46
SD 147.3 23.55 4.74 25.4 0.0005 37.5 0.13 1.34
CV 0.36 0.73 0.61 0.50 0.35 0.18 0.17 0.54
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Table 12. Morphological parameters measured for 24 bone samples. These results are for
bone volumes which include the lacunae but not Haversian canals. The canals were sub-
tracted from the total tissue volume.

Sample

Lacuna Lacuna Lacuna
Lacuna contribution contribution contribution
sample Lacuna to cortical Lacuna Lacuna Lacuna to degree of to tructure
volume volume porosity diameter number separation anisotropy model index
Lc.TV Lc.V Lc.V/TV Lc.Dm Lc.N Lc.Sp Lc.DA Lc.SMI

[10−3· mm3] [10−3· mm3] [%] [µm] [1/µm] [µm]
CTJ001 288.4 1.03 0.36 3.55 0.0009 68.6 0.69 3.08
CTJ002 588.7 1.08 0.18 3.26 0.0005 69.3 0.57 3.12
CTJ003 319.4 0.94 0.30 3.88 0.0006 83.9 0.67 2.95
CTJ004 565.4 1.48 0.26 3.54 0.0007 69.0 0.57 2.92
CTJ005 389.6 1.00 0.26 3.50 0.0006 67.8 0.28 3.57
CTJ006 123.7 0.47 0.38 3.79 0.0010 61.8 0.55 3.01
CTJ007 410.3 0.64 0.16 3.61 0.0003 103.8 0.66 3.33
CTJ008 345.7 1.29 0.37 3.57 0.0010 65.4 0.68 2.71
CTJ009 323.0 1.50 0.46 3.81 0.0011 62.5 0.63 2.81
CTJ010 329.2 1.45 0.44 3.96 0.0011 59.9 0.62 2.90
CTJ011 617.9 2.09 0.34 3.56 0.0009 59.9 0.60 3.46
CTJ012 260.8 0.88 0.34 3.37 0.0009 61.7 0.44 3.93
CTJ013 431.4 1.77 0.41 3.77 0.0010 62.1 0.64 2.91
CTJ014 230.8 1.12 0.49 3.57 0.0013 55.0 0.63 3.33
CTJ015 185.8 0.60 0.32 3.37 0.0009 54.7 0.91 3.55
CTJ016 383.1 1.83 0.48 4.01 0.0011 57.9 0.67 3.16
CTJ017 356.7 1.98 0.55 3.90 0.0013 56.3 0.77 2.81
CTJ018 590.0 1.95 0.33 3.59 0.0009 56.1 0.63 3.29
CTJ019 516.5 4.57 0.89 4.02 0.0021 51.2 0.64 2.93
CTJ020 149.6 1.14 0.76 4.40 0.0017 54.4 0.34 3.02
CTJ021 479.0 1.37 0.29 3.61 0.0007 64.9 0.80 2.97
CTJ022 427.6 1.93 0.45 4.30 0.0010 59.0 0.58 3.28
CTJ023 472.6 2.52 0.53 4.22 0.0012 58.8 0.57 3.02
CTJ024 267.8 1.30 0.48 3.56 0.0012 76.4 0.56 2.65

Mean 377.2 1.50 0.41 3.74 0.0010 64.2 0.61 3.11
SD 139.3 0.83 0.16 0.30 0.0004 11.2 0.13 0.30
CV 0.37 0.56 0.40 0.08 0.36 0.18 0.21 0.10
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Table 13. Pearson’s correlations between the morphological parameters of the
combined data including the Haversian canals and lacunae. Significance of corre-
lation: *p < 0.05, **p < 0.01, ***p < 0.001 and ’ns.’ means not significant.

Co.Dm Co.N Co.Sp Co.DA Co.SMI
Co.V/TV 0.802*** 0.414* 0.426* ns. 0.692***

Co.Dm ns. 0.377 ns. 0.873***
Co.N ns. ns. ns.
Co.Sp ns. 0.439*
Co.DA ns.

Table 14. Pearson’s correlations between the morphological parameters for the
data with Haversian canals only. Significance of correlation: *p < 0.05, **p < 0.01,
***p < 0.001 and ’ns.’ means not significant.

Ca.Dm Ca.N Ca.Sp Ca.DA Ca.SMI
Ca.V/TV 0,777*** 0,542** ns. ns. ns.

Ca.Dm ns. ns. ns. ns.
Ca.N -0,688*** ns. ns.
Ca.Sp ns. ns.
Ca.DA ns.

Table 15. Pearson’s correlations between the morphological parameters for
the data with lacunae only. Significance of correlation: *p < 0.05, **p < 0.01,
***p < 0.001 and ’ns.’ means not significant.

Lc.Dm Lc.N Lc.Sp Lc.DA Lc.SMI
Lc.V/TV 0,689*** 0,981*** -0,590** ns. ns.

Lc.Dm 0,570** ns. ns. ns.
Lc.N -0,670*** ns. ns.
Lc.Sp ns. ns.
Lc.DA ns.
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(a) (b) (c)

Figure 28. Distribution of cortical porosity of the samples a) including Haversian
canals and lacunae combined, b) including only the Haversian canals and c) includ-
ing lacunae only.

(a) (b) (c)

Figure 29. a) Pore diameter of the combined data (Co.Dm) and b) canal diameter
(Ca.Dm) has a positive correlation with porosity. c) For lacunae diameter (Lc.Dm)
this relation is not as strong.

(a) (b) (c)

Figure 30. Pore number of the a) combined data set (Co.N) or b) canal data set
(Ca.N) does not seem to be in correlation with porosity as much as with c) the
lacuna number (Lc.N).
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(a) (b) (c)

Figure 31. a) Combined pore separation had a slight positive correlation with the
cortical porosity. b) For canal separation (Ca.Sp) correlation with porosity was not
seen. c) Lacunae separation had a negative correlation with cortical porosity.

(a) (b) (c)

Figure 32. Degree of anisotropy (DA) vs. cortical porosity for data sets of a) com-
bined, b) Haversian canals and c) lacunae. No correlations were found.

(a) (b) (c)

Figure 33. Structural model index (SMI) for a) combined data set, b) data set
including Haversian canals and c) data set including lacunae only. Co.SMI seems
to have some linear correlation with the porosity.
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(a) (b) (c)

(d) (e) (f)

Figure 34. Comparison of the morphological parameters measured with Xradia
XCT-400 (Xr) at the University of Jyväskylä (JYU) and with Skyscan (SS) at the
University of Eastern Finland (Kuopio). The center line is the median value, the
edges of the box are the 25th and 75th percentiles and whiskers are the range of
the data set excluding the outliers (red crosses). a) Cortical porosity, b) pore diam-
eter, c) pore number, d) pore separation, e) degree of anisotropy and f) structure
model index.

7 Discussion
The first objective of this work was to examine the amount of details we can ob-
tain for human femoral cortical bone samples with the high precision µCT device
available at Department of Physics, University of Jyväskylä (JYU). This study was
done in collaboration with the University of Eastern Finland (Kuopio) and Lund
University (Lund, Sweden), and is related to multi-length-scale analysis of bone
fragility properties. A specific objective of high-resolution microtomography imag-
ing was to determine detailed morphological properties of the samples. The most
notable parameter determined was the cortical porosity. Porosity was shown to
correlate with other properties, such as pore diameter, pore number and structure
model index. Statistical analysis was done at three levels of structural hierarchy:
one subset of data included only the impact of Haversian canals (abbreviated by
Ca), one that of lacunae (Lc) and the third represented a combination of both
Ca and Lc (abbreviated by Co with the meaning “combination”). The results for

49



(a) (b)

Figure 35. 3D visualization of the geometry of Haversian canals and lacunae inside
the bone: sideview (left) and bottom view (right). The canals slither through the
bone along its longitudinal axis. Numerous small dots represent the lacunae. The
boundary surface of the bone sample has been excluded for the purpose of visual-
ization.

each data sets were compared with those for SS data. Figure 35 illustrates the
formation of intracortical porosity for one sample imaged in this study.

7.1 Evaluation of the methods used and data gathered
In the first part of this work we examined what kind of images we can get by X-
ray microtomography using Xradia MicroXCT-400. Cooper et al. have indicated
that pixel size has a tremendous effect on the values of morphological parameters
measured from cortical bone [52]. They measured a set of samples with six voxel
sizes, three with different magnifications and three artificially increased from the
set scanned with the highest magnification for which the voxel size was 5 µm. The
result was that images were more sensitive to changes of magnification rather than
to an artificial increase of voxel size. For every voxel size larger than the starting
level, the detail patterns were more or less exaggerated, which had an enormous
effect on the results. In another article, Kim et al. stated that scanning voxel size
is the major factor causing the difference of values in cortical porosity and in con-
nectivity density [45]. For canal (or lacunae) diameter and canal (lacunae) surface
to volume ratio, both the scanning and reconstruction voxel size had significant
effects on the results, whereas the difference in the reconstruction voxel size alone
affected the canal (lacunae) number and canal (lacunae) separation. The main

50



result was that for a bigger voxel size, either in scanning or artificially increased,
the difference from the accurate scan increased and led to erroneous results. For
lacunae of 10 µm wide, the change of voxel size from 5 to 10 µm decreased the
amount of covering pixels from two to one and in the worst case removed small
lacunae completely. In the present study, a detector of 40X magnification and a
voxel size of 0.31 µm was tested on one sample, but it was noted that these images
did not contain significantly more details than those with lower magnification, and
had even a smaller field of view (FOV), and thus contained a smaller volume. A
detector with 20X magnification and a voxel size of 0.56 − 0.59 µm was thereby
used for every sample. At this scale doubling the voxel size did not affect on the
porosity values dramatically since these details of interest were at least one order
of magnitude larger, but allowed the FOV to be almost four times larger than that
by 40X, allowing thus better statistical analysis.

As a high resolution µCT device, the Xradia MicroXCT-400, had many parameters
affecting the image quality. First, the diameter of the sample played a crucial role
in the imaging. Preparing samples as handcraft resulted in unidentical diameters,
which affected the X-ray absorption and thus the brightness of the image. With
proper cutting equipment, the effect of sample size variation could be corrected
but at the time of this study there was no suitable tool available. Secondly, the
mineral content of different samples may be slightly different which again affects
the image brightness and noise level. To provide reference for the bone mineral
density in X-ray µCT, a set of mineral density calibration phantoms must be im-
aged together with each bone sample. In the present case the FOV was limited
and there was no space available to include such phantoms. Such phantoms avail-
able at the laboratory have a diameter of approximately 2mm, whereas the FOV
was of the order of 1mm. In this case the main focus was on geometrical imaging
rather than quantitative density imaging, to achieve maximal resolution for details
such as Haversian canals and lacunae. Thereby the exclusion of density calibration
phantoms was not considered crucial. For the same reason, the distances between
the sample, radiation source and detector were adjusted separately for each sample.
These individualized adjustments were found critical for the image quality.

Individualized tuning of the scanning parameters caused a varying bias in the
thresholding of the samples, and thereby a random error in the resulting mor-
phological parameters. This error was shown to be relatively small, only about
4% (Table 7), corresponding to approximately 0.9 − 12.5% of the inter-sample
variability in the related data. Tuning of the scanning parameters did not thus sig-
nificantly affect the results and was thereby justified. Images taken of the samples
were clear, and lacunae (diameter approximately 10 µm) were visible and easily
distinguishable for further analysis. Image precision was thus satisfactory.
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Variability in the scanning parameters led respectively to individualized tuning of
the image analysis parameters. One of these latter parameters was the threshold
level, on which the impact of variability was tested with visual and analytical
methods (Table 8, Figs. 25 and 26). We also tested a fixed threshold level (Fig. 24)
which, however, did not permit robust extraction of details from the background
noise throughout the samples. The error due to the individualized choice of the
threshold level was slightly more than 10% for the threshold variability of 8 levels
while the total volume of the lacunae varied more than 50%.This is already such a
difference that one can distinguish a difference in the quality of images. The actual
choice was thus within a narrow range of threshold levels, so as to sufficiently limit
the related systematical error in the morphological parameters.

Choosing the proper threshold level was done by visual inspection. Several auto-
mated algorithms were tested if they could lead to consistent results. We learned
that for this kind of data the automatic approaches cannot correctly separate the
details of bone structure from the air and background noise. Some of the algo-
rithms removed almost all of the lacunae and others had trouble with mixing less
dense material and air resulting in scattered images. Random errors due to this
automated misadjustment were greater than those caused by the human influence
of the operator since we defined a narrow range of acceptable threshold levels for
the operator, but for the automated tools the range was wide (99 − 201). As is
evident from Fig. 27, even with the algorithm that gave a threshold closest to that
of the visual methods (in this case the method called ’Moments’ with a threshold
level of 172 while the visually acquired level was 167), the detail resolution and
especially the amount of noise in the figure were remarkably different. Operator
dependence was not examined in this work.

Note that correlations between morphological parameters and the lacuna volume
(and thereby the porosity) were very much as expected. In this case the lacuna
diameter (Lc.Dm), number (Lc.N) and structure model index (Lc.SMI) were pos-
itively correlated and lacuna separation (Lc.Sp) and degree of anisotropy (Lc.DA)
were negatively correlated with the lacuna volume. These correlation results pro-
vide guidelines for further statistical analysis based on these data.

Clinical CT devices have been optimized for minimum radiation dose that the
patient is exposed to. For high-resolution X-ray CT scanners, such as the Xradia
MicroXCT-400 used in this study, the objectives are to maximize the level of de-
tails and extensive research utilization as the output power of the X-ray source is
not limited by health regulations for living tissue. For the operator the radiation
exposure has naturally been minimized by the thick lead enclosure around the ra-
diation source and detector. Shielding combined with correct and careful operation
of the device removes efficiently the possible health risk caused by radiation.
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The use of micro-CT devices is for in vitro studies only. Good resolution requires
a narrow radiation beam and small sample size without the distracting soft tissue.
A long exposure time leads to an extremely high level of energy per surface area,
which also increases the amount of radiation absorbed by the tissue.

7.2 Morphological parameters
Bone fragility increases with age and can be independent of decline in bone min-
eral density (BMD) [53]. Bone strength is therefore determined by a number of
inter-related variables which, in addition to BMD, include bone geometry, bone
micro-architecture, bone turnover and the degree of bone mineralization. A specific
objective of this work was to determine the micro-architectural attributes of the
samples and to determine how these properties correlate with each other.

Cortical porosity is associated to BMD at the macroscopic level and is thus char-
acterized also by the BMD T-score. A healthy cortical wall is solid throughout its
thickness and has a sufficiently high level of BMD. While osteoporosis develops, the
thickness of the cortical layer decreases. At the same time the diameters of Haver-
sian canals and lacunae increase leading to increased porosity in the periosteal
cortical and endosteal trabecular bone. Besides cortical thickness and porosity,
BMD is also affected by age and sex of the individual [54].

Macroscale properties such as BMD or, e.g., elastic coefficients can thus be pre-
dicted by multiscale models which usually require a large number of parameters
to efficiently describe the tissue under examination. The porosity has been proven
to be an important determinant of the mesoscopic elastic properties of bone [55].
Properties are mesoscopic when, due to the possible quantum mechanical behavior,
macroscale is not precise enough and microscale would be too small to describe the
feature in question [56]. However, such properties can be measured with macro-
scopic techniques since macroscale is heavily dependent on the mesoscopic porper-
ties. The changes in porosity at the microscopic level affects the density and elastic
properties at the macroscopic level, which on the other hand defines attributes such
as ultrasound velocity and tolerance to mechanical loading. Macroscopic scale and
its anisotropic properties can thus be modeled with two parameters of the lower
levels: porosity which is known to be an important factor, and mineral content
which defines the behavior of the rigid matrix of the bone material [57]. Stiffness
coefficients are positively correlated with mineral content and negatively correlated
with porosity, and a simple ultrastructure model can be used for the anisotropy at
mineralized matrix [58].

The porosity determined in this study had three different levels: The Haversian
canals at the 100 µm scale, the lacunae at the 10 µm scale and the combination of
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the previous levels. With a spatial resolution of 1.5 µm used in the present study,
details smaller than the lacunae, such as canaliculi, were not yet detectable. For
each level the same set of mesoscopic morphological parameters were determined,
and correlations between the related data across the samples were examined. In
this study the porosity was expected to be related to bone mesoscopic elastic pa-
rameters such as the Young’s modulus, shear modulus and Poisson ratio (Dong et
al. [55]). These elastic properties were not measured, however. Thus, such compar-
ison between the elastic properties and porosity was not made.

For the twenty-four human cadaveric bone specimens the combined porosity was
determined to be 3.79−21.93% when most of the samples had a porosity between
4 and 8%. For healthy persons the total cortical porosity is about 4−10%. Lacuna
porosity was 0.12−0.84% with less variation between samples. For cortical porosity
alone, five samples stand out with a higher porosity because an increased volume
of canals and two because of an increased volume of lacunae.

Of all the morphological parameters, pore diameter seemed to have the best linear
connection with porosity. For Haversian canals this correlation is not a surprise
since for the combined volume most of the porosity comes from the canal capacity
due to their diameter as the amount of canals was limited to only a few (Tables 13,
14 and Fig. 29). This affected the both two data sets that included Haversian
canals. For lacunae the case was different as the porosity was determined by the
number of pores since the amount of lacunae was large for volumes of this size,
and the diameter did not vary as much as that of the canals (Table 15 and Figs. 29
and 30). Negative correlation between the lacuna porosity and separation (Lc.Sp)
was also reasonably explained by porosity: less distance between pores implies
more pores inside a volume of interest.

For the samples studied in the present work, the structure model index (SMI) failed
to show any difference between the samples. It seems that SMI can have many
values independent of porosity (at a fixed scale), and thus any linear correlation
of SMI with porosity was not detected. This was the case for all of the three data
sets. The most interesting result for the SMI was that its range was lower and
narrower for the separated data sets featuring the Haversian canals (-0.97− 4.40)
or lacunae (2.65 − 3.93) alone, as compared to that for the combined data set
(4.02 − 18.20). SMI gives some estimation of the structure’s resemblance to rods
and plates starting from the value 0 for an ideal plate and the value 4 for an
ideal sphere in convexity [49]. Negative values represent negative convexity which
is an implication of more than 50% of the relative enclosed cavity volume. Data
for the separated data sets of the canals and lacunae can be thought simply as
material with either large structures passing through the cavity or small pores
dispersed uniformly throughout the bone. When these two subsets are combined
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in the combined data set, the structures lose their unambiguousness.

The degree of anisotropy (DA) was shown to be one more attribute which cannot
separate the samples in terms of porosity. This is because, during osteoporosis,
the number of actual pores does not change the same way as the diameter does.
Anisotropy measures equality of the dispersion of pores on a plane perpendicular
to the Haversian canals and is linked to homogeneity. Since the orientation of
the Haversian canals is the same with the bone’s axial orientation, DA shows
isotropy for this same direction. DA is an essential determinant of the mechanical
properties of bone, such as the strength. The presence of Haversian canals affected
the most DA values via their number and diameter. Large and plentiful canals give
no intercepts on the test lines in the longitudinal direction, while small serpentine
canals give many intercepts. Also lacunae are little more concentrated around the
canals, which increases the anisotropy even more. When the canals were subtracted
and only the lacunae filled the analyzed volume, bone material seems to be a little
more homogeneous and thus isotropic.

There is one particular limitation related to the small size of the VOIs analyzed in
this study. The Haversian canals are reasonably large compared to the dimensions
of the VOIs, therefore VOIs may not be statistically representative of the individual
features of the canal network. To properly represent the natural variations in the
density of the canal grid, and in the diameter of the canals, a larger piece of bone
may be needed. Although all of the samples were obtained from site-matched
locations, the natural variation in the composition of the bone may cause that
the canals imaged are not comparable between the donors. The Haversian canals
also had a major role as they featured 85.4 − 99.6% of the porosity. For a better
representation of the canals, the samples should thus be large enough and imaged
respectively by a larger voxel size, i.e., lower resolution. This could be done before
cutting the samples for imaging at a high resolution.

On the other hand, the present VOIs and resolution were sufficient for imaging of
the lacunae. By removing the volume associated to the Haversian canals from the
VOIs, we can focus on the local distribution of the lacunae within the resulting
sub VOIs. It is expected that the lacunae have a reasonably uniform statistical
distribution throughout the cortical bone. Naturally there are local variations be-
tween areas next to Haversian canals and areas farther away from them. With the
present resolution, it was easy to determine the number and volume of the lacu-
nae. The size of these smaller pores tends to increase during the development of
osteoporosis, and thus the lacuna size is expected to include valuable information
for characterization of bone fragility. If the aim is to examine both the Haversian
canals and the lacunae by a single µCT scan, a compromise between the spatial
resolution and VOI must be made. Nevertheless, the voxel size cannot be increased
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much of the one used here for the lacunae to be clearly visible.

Comparison between the morphological parameters measured at JYU and Kuopio
shows that values acquired from these sets of data have consistent distribution.
From the data measured with Xradia XCT-400 (Xr), the Ca set seemed to resem-
ble most resemblance to the Skyscan (SS) data (34). The cortical porosity, pore
diameter and pore separation for these two sets were very much alike. For the
parameters that were influenced mostly by the Haversian canals, such as pore di-
ameter, the Co set also corresponded well enough with the SS data. It seems that
lacunae were not visible in the images taken with Skyscan, since Xr data including
lacunae (Co and Lc) had a significantly lower pore diameter than the Ca and SS
data. The median values of DA for all of the data were in good accordance, but
they covered almost completely the whole range of DA (0− 1). For separate pore
types SMI was close that of the SS data, but the combination set Co gave clearly
higher values possibly due to the combination of two different pore sizes.

Despite of consistent distributions, there were no correlations between the data
acquired by the two microtomographs. In other words, the results were consistent
at the population level but not at the individual level. This can be explained by
the limited size of VOI imaged by Xr, which was not large enough to represent the
structure of the Haversian canal network. However, we expect Xr scans to provide
statistically sufficient volumes to represent the morphology of lacunae, whereas
SS was sufficient to describe the Haversian canals. Thereby, it is suggested that
the resolution of imaging, and the most suitable device for the purpose, should be
chosen based on the length scale of details of interest.

7.3 Concluding remarks and outlook
Generally the data acquisition was, although time consuming, straightforward work
which included minor tuning of the parameters due to individual variation between
bone samples. Determination of the morphological parameters was also straight-
forward after the methods for image post processing and binarization had been
determined and fixed. It was shown that some of the parameters of the morpholog-
ical data were correlated with each other according to expectations. The number
of samples of this work was sufficient but small for statistical analysis.

In studies related to microtomography it is typical that all of the controllable
parameters from imaging to image analysis would be fixed. This was, however,
seen to be impossible or impractical with the samples, device and methods of the
present study. The samples were extracted from the femora and then cut to the
size by coarse methods. Therefore, samples differed a lot from each other with
regard to the FOV of the X-ray microtomography scanner. As the main objective
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was to obtain high quality projections of three dimensional volumes from the sam-
ples, some decisions concerning the scanning parameters, image post processing
and analyzer parameters were made. The decisions did result in some amount of
operator-dependent uncertainty due to the influence of the operator, but hopefully
minimized some artifacts and noise in the images and maximized the detail in the
bone composition. In the end it all came down to pore boundary details since the
images were binarized by thresholding before the actual analysis.

It seems that in most cases the samples that were particularly porous compared
to the average of the data set did not show a linear agreement between the poros-
ity and other morphological parameters. For the pore diameter (for all the data
sets: Co, Ca and Lc) the markers of individual samples on the related correlation
diagrams followed well the regression line, otherwise the data were clearly sepa-
rated from the main group and thus from the regression line. This information
is suggestive of possible deterioration in the bone condition. Unfortunately, the
present number of samples was not sufficient to validate any statistical norms, a
large number of samples should be imaged with the same setup to say anything
definite. At this stage it would be interesting to compare results of this work with
the true condition of the bone to confirm the given speculations.

It was, however, interesting that a sample that had for example distinguishable
lacunae porosity also stood out in the total pore separation at the combination
level. This supports the objectives of this work by showing that small details have
important information and they should not be disregarded.

Most important message of this work is that this kind of study is possible to carry
out. The resolution of the scanning device was better than that in most of the
previous studies with similar methods and results. The equipment used feature
the state of the art and can be used to discover unique features in the structure of
different materials. This is a powerful asset which should be used also in the future.
It is already possible to go further, since another tomography device working at
the 50− 150 nanometer scale is available and could be used for the same samples.
The uniformity of the lacunae or the mineral composition for example could thus
be investigated.

The development of µCT devices has been astonishing during the past few decades.
As can be seen from Fig. 36, the detail that can be achieved now is amazing. As
high resolution imaging devices are getting common in research laboratories, an
increasing number of studies can be made at a fine detail of the bone structure.
It is still in debate if the crucial information about diseases such as osteoporosis
can be characterized by such a small length scale, or should we look more the big
picture, i.e. larger hierarchical length scales. For example, we know that during
osteoporosis the porosity of the cortical and trabecular bone changes, and to be
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Figure 36. An example of a cross-sectional image sets taken in 2004 with a micro-
radiograph (left) and µCT (middle) by Cooper et al. [59], and (right) a µCT scan
produced in the present study. In both cases the samples were cortical bone. It is
evident that a superior detail resolution can be achieved with a good µCT of today
in comparison with a radiograph of 2004. Back then the smallest Haversian canals
were at the limit of distinguishable detail when today the lacunae have the same
status.

able to detect that change the optimal resolution is yet to be determined.

In this study the structure of cortical bone samples was unveiled, and a statistical
analysis yielding some morphological parameters was done. The obtained level of
fine detail gave new information about the importance of the lacunae and it is
clear that there are differences in the microstructure between individuals. Next we
should try to understand how the high detailed properties of the bone material
correlate with its mechanical properties and phenomena in macroscale. Combining
this information with the method of ultrasonic bone assessment being developed
by our research group could eventually provide a rapid, inexpensive and precise
method for an early detection of the fragility of osteoporotic bone.
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