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Abstract: Remote sensing methodologies are employed in the fields of precision agriculture

and forest industry. This thesis focuses on enhancing analysation process for making vege-

tation volume estimates from pre-processed aerial images and Digital Surface Models. An

evolutionary optimisation system for learning crop field biomasses is proposed and making

estimates using radiometrically corrected spectral bands with different tools is studied. This

thesis also considers methods for estimating forest stem volumes by tree species.
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Suomenkielinen tiivistelmä: Kaukokartoitusmenetelmiä käytetään tarkkuusmaataloudessa

ja metsien inventoinnissa. Pro gradu -tutkielma keskittyy parantamaan analysointiprosessia

kasvillisuusmäärien arvioimiseksi esikäsitellyistä ilmakuvista ja digitaalisesta korkeusmal-

lista. Tutkielmassa esitellään evolutiivinen optimointimenetelmä viljapellon biomassojen

estimoimiseksi ja tutkitaan biomassaestimaattien tekoa eri menetelmin radiometrisesti korja-

tuista spektrikaistoista. Tutkielmassa pohditaan myös vaihtoehtoja puulajeittaisten tilavuuk-

sien estimoimiseksi metsistä.

Avainsanat: kaukokartoitus, koneoppiminen, biomassa, puumäärä, k-lähintä naapuria,

tukivektoriregressio, optimointi
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Glossary

BRDF Bidirectional reflectance distribution function

CIR Colour-infrared image

DEM Digital Elevation Model

DSM Digital Surface Model

Feature A numerical quantity that describes an object of interest

GSD Ground Sample Distance

Hyperspectral image An image consisting of many narrow wavelengths spaced evenly

apart from each other

Multispectral image An image consisting of multiple wavelengths

NIR Near-infrared image

Orthoimage Geometrically corrected aerial photograph

Precision agriculture The study of intra-field variations to aid farming decisions

Remote sensing non-destructive measuring of terrain properties

Texture A feature that describes distributions of tones in an image

RMSE Root Mean Square Error

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle
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1 Introduction

Remote sensing of vegetation is a quickly developing field. As more advanced technology

becomes available new remote sensing applications can be developed. In both applications

we focus on improving machine learning process to get better vegetation volume estimates.

The end user of the application can then use the volume estimates to aid decision making in

land-management operations.

The thesis consists of three conference papers: Publication PI proposes an evolutionary sys-

tem for learning crop field biomasses from aerial images. The system is trained with modern

meta-heuristic algorithms. In PI we see that a differential evolution-based optimizer outper-

formed two other that were based on particle swarm optimization and evolution adaptation

strategy.

Publication PII uses infrared images with a few radiometrically corrected spectral bands

and Digital Elevation Model for estimating crop field biomasses. PII shows that combining

features from radiometrically corrected spectral bands and Digital Elevation Model gives the

best results for estimating biomasses.

PIII considers methods for estimating forest stem volumes by tree species using digital sur-

face model and colour-infrared images taken from light UAS. In PIII a treetop delineation

method is prestented and we see that photogrammetric surface model is not sufficient alone

for forest applications.

My contributions in PI are implementation of the fitness function for the optimisation scheme

and the extracted features. In PII I contributed the extracted features that were used in the

study. I conducted the study in PIII apart from developing the presented tree top delineation

method and collecting the ground-truth data.

The Section 2 gives a summary of remote sensing and covers the basis for the presented

studies. Overview of the UASI1 project is given in Section 3 along with the two application

1. Contact information can be found from the website https://www.jyu.fi/it/laitokset/

mit/tutkimus/uasi/
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fields presented in Sections 4 and 5. Section 6 contains discussion and Section 7 sums up the

thesis.

This thesis was done as part of the Tekes2 funded UASI (Unmanned Aerial System Innova-

tions) project.

2. Tekes is Finnish Funding Agency for Technology and Innovation
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2 Remote sensing and data mining

In this section we get to know basic concepts of remote sensing. Remote sensing in its

entirety is a vast subject, and this section is restricted to the type of remote sensing utilized

in the presented publications. The publications focus on improving a single step: analysis of

data. We’ll start by exploring the remote sensing in general and then concentrate on analysis

and examine it with terms of data mining.

In the early days remote sensing meant merely “the observation and measurement of an

object without touching it” (Jones and Vaughan 2010). While this gives a good intuition

of the topic, the definition can be more formal. In their book “Remote Sensing and Image

Interpretation” Lillesand, Kiefer, and Chipman (2008) define the term remote sensing as

follows:

“Remote sensing is the science and art of obtaining information about an object,

area, or phenomenon through the analysis of data acquired by a device that is

not in contact with the object, area, or phenomenon under investigation.”

The remotely collected data can be of many forms, including acoustic wave distributions,

electromagnetic radiation or force distributions (Lillesand, Kiefer, and Chipman 2008). Also,

sensing electromagnetic radiation is still quite a vague expression, as taking pictures with a

digital camera and reading information of modern passport using RFID would still fall into

same category.

The visible light, one form of electomagnetic radiation, covers the spectral range of 400 –

700 nanometers, containing bands of blue, green and red that span roughly 100 nanome-

ters each (Lillesand, Kiefer, and Chipman 2008). That is, when we look at an object, our

eyes only sense the emitted electromagnetic radiation of this range. While the common dig-

ital camera is also adjusted to cover the same spectral range, there exists a wide range of

equipment for covering other ranges as well1.

The information that can be acquired from the images depends on the sensors used but also

1. The used equipment is presented in the next Section 3
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on their location relative to the target. There’s challenges in aerial imaging even after suc-

ceeding in selecting the imager, optics, exposure time etc. as the atmosphere itself can have

significant effect on the outcome (Lillesand, Kiefer, and Chipman 2008). The enviromental

conditions can also vary between the pictures or even withing a single picture because of e.g.

cloud shadows.

Covering ground using multiple aerial images taken from different locations presents many

possibilities. If the overlap of aerial images exceed 70-80 %, it is possible to construct a

digital surface model (DSM)2 of the ground by using photogrammetry (Saari et al. 2011).

DSM can be thought as a 2D digital image that contains height values as pixel values instead

of colour values. A model that is created by subtracting a DSM of the ground level from a

DSM of targets (e.g. vegetation) is called digital elevation model (DEM). We’ll later cover

how these models can be used in the remote sensing process.

The process of remote sensing has a goal, to extract knowledge from the remote acquired

measurements. The remote sensing process consists of the following steps: object, sensor,

data, analysis and information. Everything between the object and information is determined

by the requirements of the application, essentially what information is to be remotely mea-

sured from where. While the process sums up the idea in short, the workflow is as abstract

as possible.

To lay groundwork for the studies presented in this thesis, we’ll now take another look at

the analysis phase using terms of a process known as “knowledge discovery in databases”

(KDD) (Fayyad, Piatetsky-Shapiro, and Smyth 1996). The steps of the KDD process are

presented in Figure 1. It may be useful to think the process as a pipeline consisting of the

necessary steps for turning raw data into knowledge.

Raw

data

Target

data

Preprocessed

data

Transformed

data

Patterns Knowledge

Figure 1. The steps of the KDD process.

2. The digital surface model of the ground level is also called digital terrain model (DTM).
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Raw data as the first step in Figure 1 refers to the raw measurements, unprocessed outputs

of an imaging sensor or some measurements. The images are acquired remotely whereas the

measurements are ground-truth, they are measured on the spot.

Target data is the first refinement step that can, for example, contain removing outliers from

data (Fayyad, Piatetsky-Shapiro, and Smyth 1996). The target data is a pruned version of

raw data.

Preprocessing means turning the data to samples and can consist of numerous phases de-

pending on the application. The samples represent the target objects as numbers or classes,

that are paired by a number of features extracted from the remotely acquired data.

There are some requirements for preprocessing in remote sensing that should be noted. First,

there should be a link between the object world and the images. When covering ground

objects from airborne images this can be achieved by georeferencing single images. Aerial

images can also be combined as an orthophoto, in which each pixel appears like it was

captured from straight above, being uniform in size and clearly located in the nature.

Creating the aforementioned digital surface models are one example of the possible prepro-

cessing steps. The last step of preprocessing is extracting features from the prepared datasets.

Feature extraction is the art of representing the target objects by descriptors extracted from

the remote measurements. In hopes of the above-mentioned and other present issues have

been adressed by previous phases of preprocessing, the extracted feature set aims to contain

all the needed information of the objects.

Features can, for example, make use of channel intensities, texture properties or DSM prop-

erties, values of digital elevation models for example. This can be seen as compressing all

the available remotely sensed information of an object only to numbers. The number of

features that can be extracted is limited only by imagination, as the features can depend on

parameters and can be used together to derive new features.

There exists no theoretical upper limit for the number of extracted features but as we’ll

soon find out, having large number of features is inconvenient. This being said, the feature

extraction basically shrinks the volume of the data down by orders of magnitude.
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Transformation is performed to the samples to make the learning of the data easier. The

used features can have very different value ranges and are therefore not treated equally in

some learners. This step could also contain encoding of the object’s classes suitable to the

used learners. High dimensionality (and the problems of caused by it) is also an upcoming

topic. These are examples of the issues the transformation step tries to address.

The book “Dimension Reduction: A Guided Tour” Burges (2010) gives an extensive tour of

dimension reduction and defines it as follows:

“Dimension means mapping of data to a lower dimension space such that unin-

formative variance in the data is discarded, or such that a subspace in which the

data lives is detected”.

At its simplest, this can mean picking the useful features to describe the objects, which is

called feature selection. It is somewhat inconvenient that there are no obvious implementa-

tions for the simplest concept. Feature selection can be done in several ways with or without

measuring their contributions to the overall performance of the process.

The feature space can also be projected to another space by using for example Principal

Component Analysis (PCA), which projects the data in terms of its principal components.

Patterns are used in the KDD process as a term to cover the learning of data (Fayyad,

Piatetsky-Shapiro, and Smyth 1996). Here we are going to use the term model to represent

the relation between the features and desired outcomes. This finding of a model is present in

pattern recognition, machine learning, data mining and statistical literature. The book “The

Elements of Statistical Learning” by Hastie, Tibshirani, and Friedman (2011) addresses the

different views and gives an extensive introduction to the field.

When we predict quantitative values – like biomasses – we are performing regression (Hastie,

Tibshirani, and Friedman 2011). Predicting qualitative values – tree species – is called clas-

sification (Hastie, Tibshirani, and Friedman 2011).3 In any case the goal is to find a useful

3. In statistical literature the features as defined above could be called descriptors or independent variables,

where as the outcomes of the learner would be called dependent variables (Hastie, Tibshirani, and Friedman

2011).
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approximation f̂ of the unknown function f that maps the extracted feature vectors x as

estimates y:

yi = f̂ (xi)+ εi,

where xi ∈ Rn is the feature vector of sample i, yi ∈ R1 is the estimated value for sample

i and εi ∈ R1 the error between the estimated and measured values. A convenient situation

would be that the output of a regression or classification task is linearly dependent of the

(possibly transformed) features. In this case our feature vector xi = (x1,x2, . . . ,xn) containing

n features can be projected using:

f̂ (x;β ) = β0 +
n

∑
j=1

(xi) jβi,

where (xi) j ∈ R1 is the j’th feature of i’th feature vector, β is a coefficient vector – usually

solved using least squares method – and β0 is the bias of the projection. The linear model has

many attractive properties and is futher covered in Hastie, Tibshirani, and Friedman (2011).

There are many types of learners – the different methods for acquiring the approximated

f̂ functions. The linear model presented above is one example. The requirements of the

application can narrow down the list of applicable types. Since k-nearest neighbour learner

is referred in PII and PIII we’ll introduce it quickly. K-nearest neighbours (k-NN for short)

is an example of an instance-based learner. It is based on a simple mathematical concept

yet it can be very powerful. K-NN evaluates the properties of an unknown sample by its k

nearest neighbours in the training set (Hastie, Tibshirani, and Friedman 2011), selecting the

most common class present or averaging some real valued attribute.

K-NN has a characteristic set of advantages and flaws. K-NN is easy to implement and

its responses are easy to interpret. It doesn’t do many assumptions of the data and while

possibly delivering good results, it can be unstable as the available samples determine its

behavior completely (Hastie, Tibshirani, and Friedman 2011).

Interpretation as the end of the KDD process is also the end product of the remote sens-
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ing process. The features as well as the target attributes could have been gone through a

transformation before applying a learner.

Interpretation could mean decoding the outputs of a learner from the format of the trans-

formation process. Now the remotely sensed information can be used to aid for example a

decision making process.

In summary the goal is to produce information from raw data. In restricted application areas

of remote sensing – like indicating movement or sensing temperature – a small toolchain can

be sufficient and no data mining concepts are required. However, there were no knowledge

of such elegant solutions in the beginning of the studies of the two application fields.

It should also be noted that many of the aforementioned steps – preprocessing, transfor-

mation, patterns – can consist of several tools that require beforehand selected parameter

values. For example feature extraction method can operate on the image using a fixed size

window and the k nearest neighbour requires a selected k. In some cases these values can be

optimized by testing the relevant value range.
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3 The UASI project

This section covers the project this thesis and the presented publications is part of. We’ll

examine the characteristics of the UASI project using the terminology presented in the pre-

vious section. The Unmanned Aerial System Innovations (UASI) project is a collaboration

between many faculties and companies in Finland and is funded by Tekes1 (Saari et al. 2011).

The UASI project’s research is done in collaboration between

• VTT Technical Research Centre of Finland,

• MTT Agrifood Research Finland,

• Metla The Finnish Forest Research Institute,

• JAMK University of Applied Sciences,

• FGI Finnish Geodetic Institute,

• Pieneering Ltd,

and University of Jyväskylä (JYU), which manages the project.

The main goal of the UASI project is to evaluate how a light imaging system could be used

in precision agriculture and forest inventory applications (Saari et al. 2011). The goals in the

both applications are to support land-management decisions. The targets in the agriculture

applications are to remotely estimate biomassed and nitrogen concentrations and to identify

weeds (Saari et al. 2011). The publications PI and PII study the biomass estimation. The

application field and the studies are presented in more detail in Section 4.

The target in the forest application is to remotely estimate forest stand characteristics, like

tree volumes by tree species (Saari et al. 2011). The publication PIII considers methods for

estimating tree volumes. The forest application and the study is described in Section 5.

The project’s data is gathered from flight campaigns performed over crop fields and forests.

There have been flights using several different UAV platform and imaging equipment com-

binations.

1. The Finnish Funding Agency for Technology and Innovation
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While the UAV’s and most of the cameras have been off-the-shelf, there has also been a novel

imager that has been tested: VTT has developed a lightweight hyperspectral imager that can

be mounted to UAV (Saari et al. 2011). Traditionally hyperspecral imaging equipment has

been so heavy that operating it had required a helicopter or a small airplane. The spectral

range of the imager is 500 to 900 nanometers and it can be easily mounted to UAV plat-

forms as it weighs less than 420 grams (Mäkynen et al. 2011).2 The lightweight alternatives

operate by acquiring line by line, which makes using them from a moving platform almost

unthinkable as rendering the images is far from trivial.

Figure 2. Prototype of the VTT’s lightweight hyperspectral imager.

The new hyperspectral imager is based on Fabry-Perot Interferometer, which is used to ac-

quire three chosen spectral bands at once with a common RGB sensor (Mäkynen et al. 2011).

Very precise actuators control a very thin airgap, which is responsive for the “mapping of the

spectres” (Mäkynen et al. 2011). For more detailed description of the imager see Mäky-

nen (Mäkynen et al. 2011; Makynen et al. 2012).

The imager captures three spectral bands at the same time, which makes it viable solution

to airborne imaging. However, covering a set of spectral bands requires capturing multiple

three wavelength sets that cover the needed wavelengths (Mäkynen et al. 2011). This means

that while the single bands are acquired at the same time, different spectral channels aren’t.

The are reasons to use UAVs instead of using larger platforms. While airplanes and satellites

could withstand bigger imaging equipment and they have been in operational use for a long

time, they suffer of economical and operational drawbacks. A successful image acquisition

2. The hyperspectral imager will be commercially available from Rikola Ltd. http://www.rikola.fi

10
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using satellites depends heavily on the weather as clouds can block the target partially or

completely. Satellite imaging has also high operational costs while having poor spatial reso-

lution (Stafford 2000). These drawbacks of the satellite imaging are biggest benefits of using

UAV based remote sensing (Berni et al. 2009). UAVs are also cheaper to operate than small

airplanes (Berni et al. 2009).

Next we’ll introduce some of the arrangements in terms of the remote sensing process de-

scribed earlier.

The preprocessing of the aerial images in the UASI project has been done by Pieneering

Ltd. and Finnish Geodetic Instititute (FGI). Using photogrammetry in chosen application

fields have required developing new methods, some of which has presented in publications

(Honkavaara, Kaivosoja, et al. 2012; Honkavaara, Hakala, et al. 2012). The preprocessing

for publications PI and PII covering agriculture was done by FGI and for PIII that covers

forest inventory by Pieneering.

Not all of the acquired data was processed to be available for the presented publications.

Feature extraction and rest of the analysis process has been done by the Finnish Forest Re-

search Institute, Agrifood Research Finland and University of Jyväskylä. For the analysis

process there has been many types of images available. Features were extracted from both

orthoimages created from both common and hyperspectral imager’s images and digital sur-

face models. Having both hyperspectral images and common RGB or colour-infrared im-

ages is really an advantage for many parts of the process. While the hyperspectral imager

has better spectral resolution – narrow and precise wavelength ranges – it has lower spatial

resolution.

The next Sections 4 and 5 covering the applications give more details of the requirements for

the applications.

11



4 Application: Precision Agriculture

The agriculture application for a lightweight imaging system is supporting a discipline called

precision agriculture, PA for short. Precision agriculture in a nutshell is using knowledge of

intra-field variation to support land management decisions (Stafford 2000).

The basic concept of PA is nothing new – the treating of different parts of the field depending

on their properties – has been done for centuries (Stafford 2000). For example, different

surface properties – slopes and elevated areas – make the water to be unevenly available

within the field, which has a direct effect on the area’s growth potential.

The PA in the modern sense means using technology to aid decision making process. The be-

ginning of the technologically intensive PA is in the mid-1980s (Robert 2002) and since then

its growth has been driven by (among other factors) tightened agriculture legislation (Stafford

2000). Legislation concerning the use of fertilizers and weed management continues to

tighten in Europe (Stafford 2000; Zhang, Wang, and Wang 2002). Public opinion also fa-

vors using optimized farming methods over genetically manipulated food (Stafford 2000).

The advantages of PA are measured in environmental and economical benefits (Zhang, Wang,

and Wang 2002). While the needed technology is more and more available, the benefits of PA

hasn’t been proven except some cases (Stafford 2000). Many of the methods for estimating

crop properties in the literature is only in academic use (Ehlert, Horn, and Adamek 2008).

The goal of the presented publications PI and PII is to study means of improving the analy-

sation chain of the remote sensing process in order to support precision agriculture. Both

studies make use of preprocessed orthoimages and digital surface models. Improving the

preprocessing of the UAV acquired materials for precision agriculture has been studied in

(Honkavaara, Kaivosoja, et al. 2012; Honkavaara, Hakala, et al. 2012).

The flight campaigns for acquiring aerial images that were used in PI and PII were conducted

in July 2011 in Vihti, Finland. Commercial Panasonic Lumix NIR camera and a prototype

of the VTT hyperspectral imager were flown using MD4-1000 UAV.

Figure 3 shows part of the crop field in Vihti with ground-truth points marked on a colour-

12



Figure 3. Ground-truth points marked on a colour-infrared image.

infrared image. All ground-truth measurement points are marked with circles, bright and

dark circles indicate high and low biomass measurements, respectively. The ground-truth

data was prepared by MTT and consists of 91 samples of the field that were analysed in lab-

oratory. The ground-truth points are used in various arrangements for training and validating

the methods in PI and PII .

Publications PI and PII try to enhance the remote sensing process by improving the analy-

sis of the data. Both studies have in common that they compare performances of different

transformation methods and learners (as described in Section 2).

PI uses ensemble learning for the machine learning process. The ensemble consists of trans-

formation method and learner combinations that together produce the estimates. The learners

are support vector regression machines with different kernel functions and the choices are to

use principal component analysis (PCA) or simple scaling. The task of determining optimal

used combinations and the parameters of the used tools is formalized as a real-valued opti-

mization challenge, where the fitness function maps real-valued vector to average error of

the system.

The optimization is done by using three modern optimization algorithms of different type,

13



Figure 4. Histographs of the fitness value distributions between algorithms tested in PI.

namely Proximity based Differential Evolution (Prox-DE), Frankenstein-Particle Swarm Op-

timization (F-PSO) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The

arrangements of the test is explained in PI. In Figure 4 we can see that in this optimization

task Prox-DE produced both the optimal (minimal) fitness value and produced consistently

superior candidates in each run.

PII compares two learners, the k-NN that was presented in Section 2 and support vector

regression. Applying diffusion maps as dimension reduction is also tested. Basic idea of

diffusion maps is explained in PII. In the study it was seen that using k-NN with diffusion

maps outperformed using support vector regression or k-NN alone.

The studies PI and PII make use of different data. In the time of study for PI (November

2011) the pre-processing of raw images was unfinished and only digital surface model and

high resolution near-infrared band were available. Study for PII was carried out later (April

2012) when there was already preprocessed orthoimages of spectral bands available.
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5 Application: Forest Inventory

This section covers the forest inventory application for a lightweight imaging system. The

goal of the forest application is to offer forest stand details to aid cutting planning (Saari et al.

2011). The goals of the UASI project include developing this application and studying how

UAVs and surface models generated using photogrammetry can be applied to forest applica-

tions. To succeed in developing this application would enable performing forest inventory

with new kinds of platforms and devices – lighter equipment.

Some motivations for using UAV platforms were already listed in Section 3. There’s been

also studies that make use of satellite images, but so far the results have not been sufficient

to be used to aid decision making (Tuominen and Pekkarinen 2005).

Interesting forest stand details would include tree volumes by tree-species. The total volumes

are successfully acquired by using already operational methods – laser scanning – but there

are only few studies that aim at species-spesific volumes (Packalen and Maltamo 2006).

Other forest characteristics include crown leaf area index, in which there has already been

success in remotely sensing it with UAVs (Berni et al. 2009).

This thesis presents PIII that considers ideas for acquiring tree volumes by tree-species. In

literature there are two schools of thought to achieve this. First is to study the forest as

small batches (stand-level) and another is to perform individual-tree recognition (Packalen

and Maltamo 2006). Both methods have delivered results but only stand-level examination

is in operational use (Packalen and Maltamo 2006).

The image data that was used in PIII was acquired in July 2011 from Evo educational for-

est. In Figure 5 an unmanned aerial vehicle carrying a colour-infrared camera has just left

the launchpad for acquiring aerial images. Pieneering Ltd. performed the flights and the

preprocessing of the raw aerial images as orthoimages and digital surface models.

In PIII it was seen that DSM’s that are acquired by means of photogrammetry (described

briefly in Section 2) alone are not enough for estimating tree volumes, as measuring the

elevation would require estimate of the ground level that couldn’t be estimated from single

15



Figure 5. Gatewing X100 UAV launched with catapult to acquire airborne images.

surface model alone. The photogrammetry method for creating the surface model of treetops

was not viable for detecting relatively small clear areas as hoped, from which the height of

the vegetation could be estimated.

Lacking information of ground level is not necessarily a critical problem since public ground-

level surface models are available from a public faculty at least in Finland1. The public maps

have been acquired by laser scanning. Change detection would still be valid application for

photogrammetry if the data would otherwise be usable.

In PIII it was also find out that photogrammetry-based DSM is not suitable for tree top

recognition. Detecting treetops from the surface model was demanding even for human

observer. For this reason, in PIII we performed treetop search using colour channels and

found out that performing a filtering method presented in PIII using green channel of the

near-infrared image seems to work well compared to other strategies.

It is inevitable that using aerial imagers of visible or near-visible spectral range some percent-

age of nondominant trees will be hidden from view being simply under crowns of dominant

trees or in shadow. Delineation method presented in PIII could serve as a starting point for

developing other required tools for recognizing trees.

If the performance of the presented delineation method isn’t sufficient there exists other de-

lineation methods for colour-infrated images in the literature (Brandtberg and Walter 1998).

1. For more information see the website of National Land Survey of Finland (Maanmittauslaitos):

http://www.maanmittauslaitos.fi/digituotteet/korkeusmalli-2-m.
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The method tested in PIII was to mix extracted stand-level features with the partially rec-

ognized and classified treetops. This way the presence of tree species wouldn’t rely on

stand-level features indicating presence of different tree species but on actual detections of

single trees.
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6 Discussion

Choosing the extracted features and perfoming machine learning are tasks that don’t seem to

have obviously well-perfoming implementations, which was perhaps the most striking thing

for me. The target, circumstances, equipment and the analysis process are unique to each

study. For example, PI and PII cover the same field but use different feature sets, thus having

different starting points for performing machine learning.

Using literature one can find features that have high expectations for being useful in machine

learning task. The unpleasant aspect is that introducing new features to the process the best

performing choices for machine learning can alter, for example, turning a linear problem to

non-linear.

In PI we took a stand on the issue of selecting best perfoming tools by means of optimization.

However, for optimization to work, of the choices that must be made in the analysis process

(described in Section 2) only few can be feasibly optimized at once. In other words, it

requires domain knowledge to succesfully select the unknown attributes worth optimizing.

Statisticians have criticized the data mining approach for the pursuing a seemingly good

model with any means necessary (Fayyad, Piatetsky-Shapiro, and Smyth 1996). This means

that with enough effort put into figuring a pattern in a fixed set of samples, something can

always be found. In a context of an application it is essential that the found model performs

sufficiently with equivalent unseen environment.

PI succesfully demonstrates the formalization of an optimization task for the parameters of

a machine learning problem. As seen in Section 2 there are countless variables that have

an effect on the performance of the remote sensing chain and comparing numerical results

between studies is therefore almost infeasible. In the context of remote sensing PI lacks

comparison of the presented method to the currently used methods. This should be addressed

in future work.

The work in PIII is heavily in progress. The future work shows whether or not the concept

is viable to be used to enhance species-specific estimates.
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7 Conclusion

In PI we demonstrated that selecting optimal set of tools for machine learning and optimiz-

ing the tool’s parameters can be formalized as a real-valued optimization task. From the

compared three modern optimization algorithms we found out that the performance of the

algorithm based on differential evolution was superior in comparison to others.

Publication PII presents biomass estimation results of using radiometrically corrected spec-

tral bands and digital surface model. Using diffusion maps and k-NN estimator gave best

results in this test.

Forest inventory for discussed in PIII and ideas for learning species-spesific estimates were

presented. Limitations of using the photogrammetrically created digital surface model in

tree volume estimation and tree top recognition were discussed.

The studies support the development of remote sensing process in the two application areas

by enabling more informed decisions to be made in selecting the tools to perform the image

analysis. The original papers are included in the appendix.
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Abstract. This paper proposes an image processing/machine learning
system for estimating the amount of biomass in a field. This piece of
information is precious in agriculture as it would allow a controlled ad-
justment of water and fertilizer. This system consists of a flying robot
device which captures multiple images of the area under interest. Subse-
quently, this set of images is processed by means of a combined action of
digital elevation models and multispectral images in order to reconstruct
a three-dimensional model of the area. This model is then processed by
a machine learning device, i.e. a support vector regressor with multiple
kernel functions, for estimating the biomass present in the area. The
training of the system has been performed by means of three modern
meta-heuristics representing the state-of-the-art in computational intel-
ligence optimization. These three algorithms are based on differential
evolution, particle swarm optimization, and evolution strategy frame-
works, respectively. Numerical Results derived by empirical simulations
show that the proposed approach can be of a great support in precision
agriculture. In addition, the most promising results have been attained
by means of an algorithm based on the differential evolution framework.

1 Introduction

Food production and agriculture have been transformed from a solar based in-
dustry into one relying on fuel, chemicals, sensors and technology. The use of
chemicals and fuel increased dramatically in 60s and 70s and several concerns
were stated about the effect of this increase to our health and the health of our
environment. This concern and the advances in imaging technology resulted in
the development of the Precision Agriculture (PA), see [10]. PA is a farming
technique based on observing and responding to intra-field variations. Clearly,
the observation of variations in the field is crucially important to promptly apply
a countermeasure.

? This research is supported by the Academy of Finland, Akatemiatutkija 130600,
Algorithmic Design Issues in Memetic Computing. A special thank to Antti-Juhani
Kaijanaho for the useful discussions.



A fundamentally important entity to monitor within a field is the produced
biomass since an accurate map of field biomass is necessary for crop yield esti-
mation and optimal field management, see [13]. If an exact inventory of plant
mass is known, more careful economical planning can be done. Furthermore,
if some parts of the field fall behind in growth, intervention methods, such as
fertilization or additional irrigation, can be used.

Field biomass mapping systems are often image based, where spectral or
false color images are acquired from satellites, aeroplanes, and devices mounted
on tractors and other field equipment. Field map creation is based on machine
vision techniques that include a wide variety of machine learning elements where
the biomass estimation is based on features and models built from the images.
For example, in [14], an estimation scheme using several different vegetation in-
dices based on relationships of multispectral images is proposed. In [6], biomass
estimation is performed by means of stereoscopic vision techniques used to con-
struct the so called Digital Elevation Models (DEM), i.e. 3-D representations of
the terrain surface, from sets of ordinary aerial photographs. In [17], the com-
bination of both multispectral images and digital elevation based measurements
of the biomass is successfully proposed.

In order to estimate the biomass in a field, multiple images and measurements
must be taken and the images must be processed. Thus, the problem can be
presented as a non-parametric regression, which is further complicated by the
large variability in images.

In this paper, we propose a chain of operations that extracts suitable in-
formation from image data and creates a non-parametric estimator for biomass
using a machine learning technique for performing the non-parametric regres-
sion. This technique, is based on Support Vector Regression (SVR) (see [3]). and
ensemble learning (see [11] and [1,2]).

The training of the SVM ensemble is obtained by means of three modern
computational intelligence optimization algorithms, based on Evolution Strate-
gies (ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO),
respectively.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the chain of operations and the support vector regression and ensemble
learning techniques. Section 3 shows the performance comparison of the three
meta-heuristics considered in this study. Finally, Section 4 gives the conclusions
of this work.

2 Intelligent system for biomass estimation

The proposed chain is schematically represented in Fig. 1. A set of images is
taken by an Unmanned Aerial Vehicle (UAV). These images are processed into
of DEM and multispectral images, as shown in [17], thus producing a set of data
which is processed by a machine learning technique to associate to each portion
of land (patch) with a biomass value.



Images acquired by UAV

DEM Multispectral images Feature patches

+

X

X X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X X

X X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

Weighted regressor ensemble

(1)

(2) (3)

(4)

Training set

Biomass estimates

21.01
18,01
32,00
16,7
...
..
.

Fig. 1. General workflow of an biomass estimation
system.

Fig. 2. A Digital Elevation Model
(DEM) of a field

The first step in the chain (1) is collating the images acquired by an un-
manned aerial vehicle into a digital elevation model (see Figure 2) and an or-
thographic map of the field. In our case this is done by the UAV operator using
image correlation and stereoscopic vision techniques (see [12] for a survey of this
topic). This phase is not parametrised in this paper.

In the second step of the process (2), the field area is divided into test patches.
Each patch contains a specific sample with a different biomass. For each patch we
calculate the following features, which are used to train the estimation system:

1. A cumulative histogram of the elevation values: cdfDEMi =
∑i
j=0

nj

n , where
0 < i/leq5, and nj is number of elevation samples where the elevation is
between min +j(min−max) and m+(j+1)(min−max), n is the number of
elevation samples within the patch and min and max and are the minimum
and the maximum elevations in the patch respectively.

2. The average (µ) of the elevations measured in the patch.
3. The variance (s2

DEM ) of the elevations measured in the patch.
4. The variance (s2

NIR) of the NIR channel responses measured in the patch.

5. A Cumulative histogram of the NIR channel responses: cdfNIRi =
∑i
j=0

nj

n ,
where 0 < i/leq2, and nj is number of NIR channel responses in range
min +j/(min−max) and m + (j + 1)/(min−max), n is the number of re-
sponses within the patch and min and max and are the minimum and the
maximum responses in the patch respectively.

These features must be preprocessed to equalize features with different ranges.
In this paper, we consider preprocessing with both simple scaling and the prin-
cipal component analysis (PCA), which can be used to reduce the feature vector
dimensionality. In the case of PCA a proper ratio of dimension reduction Tpca
must be selected properly.



These features are paired with the physically measured dry-biomass values
in the step (3) to produce the training set from which we build the biomass esti-
mator using regression analysis in the step (4). Regression analysis is the science
of determining the relationship between dependent and independent variables
and it is used in devising automatic prediction and forecasting tools. When the
relationship between the parameters is unknown, the problem is named non-
parametric regression. SVM, following the example given in [3], are used here to
perform the non-parametric regression tasks. In order to construct a SVR from
a set of point and value pairs, {(xi, yi)} ⊂ Rn × R, we must find a function
f : Rn → R such that f deviates at most an ε amount from the training points:

|yi − f(xi)| ≤ ε (1)

(2)

while f should be as simple as possible.

In our case, the points xi represent the features of the terrain acquired by
the imaging system and the values yi represent the biomass measures associated
with the corresponding terrain features. The resulting function f will be the
biomass estimator for the non-measured parts of the terrain. In order to model
this problem, it is enough to consider a linear function f(x) = w · x + b and
equate simplicity to flat slope, which can later on be generalized to a non-linear
estimator by using a non-linear mapping of the data points. This results in the
following optimization problem:

minimize ‖w‖2 + C
l∑

i=1

(ξi + ξ∗i ) (3)

subject to yi − w · x+ b ≤ ε+ ξi (4)

w · x+ b− yi ≤ ε+ ξ∗i . (5)

Many datasets contain noise and other deviations that make it impossible
to meet this constraint at all or without giving up the simplicity requirement.
To properly handle these cases, the slack variables ξi and ξ∗i are added to the
constraint for additional flexibility and the fitness in penalized according to the
parameter C. The latter parameter determines the trade-off between flatness
of the function and the deviations from the estimate. By transforming inequal-
ity into equality constraints, the optimization problem is reformulated in the
following way:



maximize
1

2

l∑

i,j=1

(αi − α∗i )(αj − α∗j )(xi · xj)

− ε
l∑

i=1

(αi − α∗i ) +
l∑

i=1

yi(αi − α∗i )

subject to

l∑

i=1

(αi − α∗i ) = 0

and αi, α
∗
i ∈ [0, C[ ,

where αi and α∗i are Lagrange multipliers. It can be observed that w =
∑l
i=1(αi−

α∗i )xi and f(x) =
∑l
i=1(αi −α∗i )xi · x+ b. Thus, the function f is entirely char-

acterized by the scalar product between the training points. Then, this opti-
mization problem can be efficiently solved using quadratic programming tech-
niques [16].

In addition, this characterization via scalar products allows an easy extension
from the linear case to the non-linear one by applying a suitable non-linear
mapping θ to the data prior to training the model. Although such mappings
can be computationally demanding, for some θ there exist such functions k that
k(x, y) = θ(x) · θ(y), which allow the efficient calculation of scalar products in
the codomain of θ. These functions k are called kernel functions. Three popular
kernel functions are considered in this paper: 1) Linear k(x, y) = x · y; 2)Radial

Basis k(x, y) = e−σ||x−y||
2

; 3) Sigmoid k(x, y) = tanh (γx · y + c0).
In order to build up an efficient intelligent system it is fundamental to prop-

erly select the parameters ε, C, to design the preprocessing scheme and the
related parameters as well as the kernel function k with its corresponding param-
eters. In this study, we propose an alternative for finding the proper estimator by
combining the outputs of several, differently modelled, weaker estimators as an
ensemble. Such ensemble methods have been found to be very effective tools for
various machine learning tasks in a survey in [8]. In this study we model the se-
lection of each of the regression tasks sub-components, scaling, feature reduction,
and regressor kernel selection by assigning them weights. Each weight represents
the selection probability of the component whose weight is associated. Thus, our
problem consists of finding the optimal weights for each sub-component along
with their related parameters.

Ensembles are constructed according to the optimization based scheme in
Fig. 3. First, Bagging (bootstrap aggregation) is done to avoid overfitting esti-
mators to fitness dataset and subset of 20 samples are selected from the over-
all training set for each regressor. Then, the components for the regressors are
selected according to weights given by the optimization process and their re-
spective parameters are picked according to Table 1. The trained regressors are
then tested with the test set samples and their average error is passed to the
optimizer, which then proceeds to search for better set of parameters.
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Fig. 3. General overview of the proposed system

The parameters to be selected and their respective range of variability are
listed in Table 1.

Table 1. Parameters for the optimization problem

Variable effect range

x1 C
[
2−5, 215

]

x2 ε
[
2−15, 23

]

x3 γ for RBF kernel
[
2−15, 23

]

x4 σ for Sigmoid kernel
[
2−15, 23

]

x5 coefficient for Sigmoid kernel [0, 1]
x6 Tpca [0.0000001, 0.5]
x7 Weight for Linear SVR kernel )0, 1]
x8 Weight for RBF SVR kernel )0, 1]
x9 Weight for Sigmoid SVR kernel )0, 1]
x10 Weight for using no reduction )0, 1]
x11 Weight for using PCA reduction )0, 1]

The related goal is to find the set of parameters listed in Table 1 such that
the median error from the actual biomass values of the samples is minimized.
A training set is used to perform the machine learning while test set is used to
calculate the fitness.

3 Numerical Results

This study was conducted in Agrifood Research Finland (MTT)’s experimental
Hovi crop field, which is situated in Vihti, Finland. For this study, MTT arranged



a test season where growth between plots were varied using different seed and
pesticide amounts during sowing.

The data consists of 91 test plots which were imaged using NIR capable
UAV drone. The images were then postprocessed into an ortophotograph and a
Digital Elevation Model, which describes the terrain height. DEMs are commonly
used as basis for building maps and geographic information systems and can be
constructed from sets of plain 2D images using image correlation and stereoscopic
vision techniques (see, [12] for survey of this topic). For our application we have
acquired a DEM of the target field using the stereoscopic vision techniques.
The test plot locations and reference points for DEM calculation were measured
using Real Time Kinematic GPS. Currently, our spectral data consists of of the
DEM and near-infrared part of the spectrum, due to our UAVs occasional and
catastrophic ineptitude in being aerial.

The test plots, which were randomly divided in the training and test sets,
used in the training of the estimator, plus the validation set, which is used
to evaluate the resulting ensembles. Each set consists of 30 samples. The target
attribute in this study is the total dry biomass of the test plots and the reference
values were acquired by manually collecting samples from the test plots and oven
drying and weighting them.

The proposed model of the ensemble learner is trained using the three fol-
lowing optimization algorithms:

1. Proximity based Differential Evolution (Prox-DE) [4]

2. Frankenstein-Particle Swarm Optimization (F-PSO) [9]

3. Covariance Matrix Adaptation Evolution Strategy CMA-ES) according the
implementation given in [7]

The Prox-DE algorithm is a Differential Evolution scheme which, instead of
randomly (with uniform distribution) selecting the individuals undergoing mu-
tation, employs a probabilistic set of rules for preferring the selection of solutions
closely located to each other. The F-PSO algorithm employs a Particle Swarm
Optimization structure and a set of combined modifications, previously proposed
in literature in order to enhance the performance of the original paradigm. The
CMA-ES is a well-known algorithm based on Evolution Strategy employing the
so called maximum likelihood principle, i.e. it attempts to increase the prob-
ability of successful candidate solutions and search steps. The distribution of
the solution and their potential moves tend to progressively adapt to the fitness
landscape and take its shape.

For each algorithm, 75 simulation runs were run with a budget of 55 000
fitness evaluations. The parameters of the optimization algorithms are taken
from the original articles in literature and are: for the Prox-DE F= 0.7, Cr= 0.3,
Spop = 60; for F-PSO vmax = 1, wmin = 0.4, wmax = 0.9, wtmax = 360,
Spop = 60, topologyk = 2000, topology update period = 11; for CMA-ES σ = 0.5.

Table 2 shows the performance of each algorithm. The first three columns
give numerical values for average, standard deviation and the best value of dis-
tribution over 75 simulations for each algorithm. The last column visualizes the



Table 2. Fitness values achieved with 75 runs.

Algorithm Average±Std.Dev Best Histogram

Prox-DE 2.546±0.248 1.401 p p p
F-PSO 3.400±0.230 2.989 p p p
CMA-ES 3.020±0.314 2.546 p p p

1.401 3.568

Table 3. Estimation errors on the training data

Algorithm Average±Std.Dev Histogram

Prox-DE 5.482±4.600 p p p
F-PSO 7.863±6.159 p p p
CMA-ES 5.883±4.516 p p p

1.430e-02 1.903e+01

distribution using sparkline histograms [15]. The distribution shows that Proxim-
ity Based Differential Evolution is both the most stable and the best performing
of the algorithms in this problem. The algorithm seems to produce a good av-
erage result but is lucky in finding few extraordinarily good values during the
test. The CMA-ES produces the second best values for this problem, but is less
stable than the other algorithms, while the Frankenstein-PSO fails to produce
a competitive result. This observed ordering of the algorithms is statistically
significant (Mann-Whitney U-test,p ≤ 0.005, see [5]). The experiment was not
repeated in order to achieve the significance.

A short analysis of the convergence speed and required iterations can be
made in Figure 4, which shows that CMA-ES converges slightly faster than the
other algorithms.

The trained regressor ensemble is tested on the validation data not present
during the training and the results are summarized in the Table 3. The table
shows the average prediction error on the validation set and the sparkline his-
togram of the estimation error.

Discarding the failure of the F-PSO based ensemble, the result values are
within 500g, which makes the effective difference between the training methods
minor. Also, the convergence behaviour suggests that if more computational
resources were at hand, it could be beneficial to allow Prox-DE to run for a longer
time in hope of improving the solution. When contrasting the performance to
the complexity of the algorithm, it is clear that the very simple Prox-DE is the
most cost efficient choice for the task. In the practical side of things, the achieved
accuracy is enough to control a tractor towed fertilizer dispensers, which have
relatively few dispensation settings.

4 Conclusions

A biomass estimation system based on image analysis and machine learning has
been proposed in order to support precision agriculture. This system collects mul-
tiple images taken by a UAV, reconstructs a 3-D model of the field, and extracts
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biomass information by means of a support vector regressor. The machine learn-
ing structure coordinates an ensemble of components and related parameters
using the weights representing the activation probability of the corresponding
components. The training has been performed by means of Prox-DE, F-PSO,
and CMA-ES showed that the proposed machine learning system is realiably
capable to detect the biomass present in the field by subsequent operations on
the images. Amongst the three optimization algorithms considered in this study
for performing the learning of the support vector regressor, Prox-DE appears
to be the most reliable choice as the other two meta-heuristics seem to detect,
on average, solutions characterized by a mediocre performance and then to be
unable to improve upon them.

Possibilities of remote sensing applications for precision agriculture have been
studied before. However, the presented estimation results in this paper are hard
to compare since the premises and the target attributes in the studies differ.

Interesting areas for future studies would be to compare results with dif-
ferently produced orthophotographs and Digital Elevation Model. Also, with a
larger set of extracted features it would be interesting to shift the focus partic-
ularly to optimizing methods for dimension reduction.
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ABSTRACT  

A novel way to produce biomass estimation will offer possibilities for precision farming. Fertilizer prediction maps 
can be made based on accurate biomass estimation generated by a novel biomass estimator. By using this knowledge, 
a variable rate amount of fertilizers can be applied during the growing season. The innovation consists of light UAS, a 
high spatial resolution camera, and VTT’s novel spectral camera. A few properly selected spectral wavelengths with 
NIR images and point clouds extracted by automatic image matching have been used in the estimation. The spectral 
wavelengths were chosen from green, red, and NIR channels. 
  
Keywords: NIR, spectral imager, estimator, biomass estimation, Fabry-Perot, precision farming, fertilizer 
 
 

1. INTRODUCTION  
From an ecological and economical point of view, fertilization is a notable feature of farming. The right timing of 
fertilization and the right amount of fertilizer are essential in maximization of grain harvest. Also the surrounding 
nature is connected to fertilization. If a farmer over-fertilizes his fields, then more fertilizers end up in the surrounding 
nature and cause eutrophication. To predict how to fertilize, the farmer has to have knowledge about the current 
situation of his field. We present an innovative way to produce biomass estimation for precision farming. Fertilizer 
prediction maps can be made based on accurate biomass estimation generated by our novel biomass estimator. Using 
this knowledge, a variable rate amount of fertilizers can be applied during the growing season. The system consists of 
a light UAS, an NIR camera, and VTT’s Fabry-Perot tunable filter based spectral camera. A few properly selected 
spectral wavelengths with NIR images and point clouds extracted by automatic image matching will be used in the 
estimation. The spectral wavelengths are chosen from green, red, and NIR channels. The research project concept has 
been presented at SPIE 8174 [1, 2]. 
 
In the proposed concept we used a Fabry-Perot Interferometer based hyperspectral imager compatible with the 
lightweight UAS platforms. The concept of the hyperspectral imager has been developed by VTT [1, 2, 3]. Spectral 
camera images, NIR images, and point clouds extracted by automatic image matching were used for biomass 
estimation. Images at a few properly selected spectral bands made it possible to achieve more accurate biomass 
estimation than what can be achieved with pure NIR images. The University of Jyväskylä has developed a way to 
produce biomass estimation for wheat and barley, which can be generalized to many applications. MTT’s test field at 
Vihti, Finland, has been used as a training database for this estimator. Green, red, and some NIR channels from 
hyperspectral images will be added to the NIR data. These spectral bands are centered at 570, 660, 740, 800, and 855 
nm. Fertilizer prediction maps will be made based on the  estimator results. In addition, variation of soils will be taken 
care of in the estimation. Fields need to be imaged before the growing season in order to get the soil information for 
the estimation.  
 
The objective of this investigation is to evaluate different biomass estimators that utilize the novel imaging technology. 
The imaging system was presented by Mäkynen et al. [1] and Saari et al. [2] and the data processing and the first 
assessments of the biomass estimator were presented by [4,5]. 



 
 

 

1.1 Test field 

The test field for the training database is located in Southern Finland. For the variance test, the field was seeded with 
wheat and barley, both with two varieties (Anniina, Kruunu, Voitto, and Saana, respectively). Also different amounts 
of fertilizer were used as we can see in Figure 1. 

 

 

 

Figure 1. The applied amounts of seeds and fertilizers and the locations of 91 sample points. 

 

The area consisted of wheat and barley test plots in which the amount of seeds and nitrogen fertilizer was varied in the 
range of 0 – 150 % for the seeds and 0 – 180 % for the nitrogen fertilizer (Figure 1). The type of soil and its moisture 
varied from north to south. The test field was planned to widely cover the realistic vegetation differences and its 
reflectations. 11 accurate ground control points and four reflectance reference panels were installed in the test area to 
allow geometric and radiometric quality assessment. 

For estimator building and testing we collected 91 test samples from the field. The test samples were about one square 
feet large (33 cm x 33 cm) and were located with centimeter-level accuracy with RTK-GPS. All the plants were taken 
from the sample area. The number of main and axillary shoots was calculated, and their masses were weighted. Also 
the nitrogen content for each sample was determined. The samples were taken immediately after the flights. This 
produced labels for the training and test data. Beside these samples, also 91 samples were taken during the harvesting 
time. Yield and nitrogen contents were determined from those samples. 

 

1.2 Cameras and light UAV 

The novel concept was to integrate stereoscopic, lightweight, high-spectral, and high-spatial resolution imaging in the 
estimation process. The Microdrones MD4-1000 UAV quadrocopter with a 1000 g payload capacity operated by the 
Finnish Geodetic Institute was used as the platform.  

The hyperspectral imaging was carried out using the UASI FPI based Hyperspectral Imager developed by the VTT 
Technical Research Centre of Finland [1,2]. Four flights in total were performed with different sets of spectral steps 
and resolutions. The imaging resolution was set to VGA (640x480 pixels) to enable the recording of a continuous 



 
 

 

spectrum for each ground pixel. The average flying speed of the MD4-1000 was 3 m/s. The whole spectral data cube 
could be recorded in 1.5 s, thus the last raw image was shifted by around 32 pixels related to the first raw image of a 
spectral data cube. The data of the UASI hyperspectral system consists of overlapping images recorded at around 50 
different spectral bands. The flights were carried out from the flight height of 140 m which provided a 13 cm ground 
sample distance (GSD); the forward overlaps were about 80%. One of the flights was selected for the further analysis. 

 
 

 
Figure 2. Microdrones MD4-1000 UAV helicopter and VTT’s hyperspectral camera. 

A customized Panasonic Lumix GF 1 camera (focal length 2 cm, image size 4016 x 3016 pixels, pixel size 4.5 
micrometers) was used to collect high spatial resolution images. Images were collected in sunny weather from a flying 
height of approximately 140 m from the ground level (3 cm GSD) and forward overlaps were approximately 90%.  

Image data processing included determination of exterior orientations, generation of 3D point clouds and digital 
surface models (DSMs), and calculation of radiometrically corrected orthophoto mosaics. The geometric processing 
was carried out using the Bae Systems SOCET SET v. 5.5 commercial photogrammetric workstation. A self-
calibrating bundle block adjustment method was applied to determine the exterior orientations; in the case of UASI 
each individual channel was processed separately. The 3D point clouds and surface models were extracted with a 10 



 
 

 

cm point interval from high spatial resolution GF1 images by novel dense image matching techniques; the Next 
Generation Automated Terrain Extraction software (NGATE) was used. For the radiometric processing and image 
mosaic generation a novel processing software that is under development at the FGI was used. A radiometric block 
adjustment approach was developed to eliminate the intensity differences between different images caused by the 
illumination changes and sensor effects, and the object reflectance anisotropy effects caused by varying 
view/illumination geometry in central perspective images (the so-called bi-directional reflectance distribution function, 
BRDF, correction). Finally, orthophoto mosaics were calculated with the help of the exterior orientation information, 
the DSM, and radiometric correction parameters; GSD was 3 cm with GF1 images and 20 cm with hyperspectral 
images. It was estimated that the final positional accuracy of the GF1 mosaic was about 20 cm and the hyperspectral 
mosaic about 50 cm. Examples of point clouds and image mosaics are shown in Figures 3 and 4. Details of the image 
processing are given in [4,5]. 

 
Figure 3: A digital surface model showing a tree in the test area. 

 
 

 
Figure 4: Image mosaics. From left: the original DN mosaic and the BRDF-corrected mosaic of the red edge channel and the 

BRDF-corrected color-infrared mosaic of spectral images (north is up and east is to the right, sun illumination comes 
from south-east). The BRDF correction compensated efficiently the brightening of the mosaic due to the view-
illumination geometry in the north-west part. 

 



 
 

 

2. FEATURE SPACE 
In this section we describe the features extracted from images and the DSM. 

2.1 Features from Hyperspectral Images 

Hyperspectral imaging provides a great set of different features of the target. One hyperspectral image data cube 
contained around 50 different spectral bands to be used in the analysis. This enables calculating several different 
results from the data. In this study we used five interesting spectral bands at 570, 660, 740, 800, and 855 nm. From 
these bands we calculated the following features for the sample areas: 

• Green channel: channel 10 (green) (5x5 pixels (1 m2) average). 

• Red channel: channel 25 (red) (5x5 pixels (1 m2 average). 

• Red edge channel: channel 36 (red edge) (5x5 pixels (1 m2) average). 

• NIR1 channel; channel 43 (nir1) (5x5 pixels (1 m2) average). 

• NIR2 channel: channel 49 (nir2) (5x5 pixels (1 m2) average). 

• NDVI: NDVI using NIR2 and Red channels (5x5 pixels (1 m2) average). 

• SR: Simple ratio using NIR2 and Red channels (5x5 pixels (1 m2) average). 

The feature space based on hyperspectral images is in R7. 

 
Figure 5: Spectral images with different wavelengths. 



 
 

 

 

2.2 Digital Elevation Model for the Field  

Based on the digital surface model it was possible to form a digital elevation model. Our DSM accuracy was 0.1x0.1 
meter. We had also a digital terrain model (DTM), which was from earlier LIDAR research. The DTM’s accuracy was 
2x2 m. We calculated neighbors for the points in the DSM and subtracted the DTM’s height from that of the DSM.  

From the DSM and DEM we calculated the following different feature sets for the sample areas: 

• DSM1: mean value of heights of 25 nearest neighbors 

• DSM2: subtraction of 25 neighbors’ minimum value from maximum  

• DEM1: height of 25 nearest neighbors  

• DEM2: mean value of heights of 25 nearest neighbors  

• DEM3: subtraction of 25 neighbors’ minimum value from maximum  

The feature space based on the DEM and DSM is in R29.   

 

 
Figure 6: The digital elevation model in meters. 

 



 
 

 

3. BIOMASS ESTIMATOR 
After feature extraction we have 36 dimensional feature spaces in our hands. Our novel approach to the biomass 
estimation is based on diffusion maps and the k nearest neighbors classification. The basic idea in the estimation is to 
reduce the feature space of the labeled data set (includes N data points) to the lower dimension with diffusion maps. 
After dimension reduction we embedded new points to the embedded space and for these data points we calculated 
five nearest neighbors. From these neighbors we can approximate an estimation for the embedded new data points. 
The estimator is based on supervised learning. It needs data points for training and testing. 

Diffusion maps are a relatively new dimensional reduction method presented by Coifman and Lafon [6]. The method 
is based on harmonic geometric analysis and spectral graph theory. Diffusion maps generate an efficient representation 
of complex geometric structures in a high-dimensional space. The basic idea is to construct random walks between 
data points xi to achieve the Markov transition matrix. For this we used a normalized graph Laplacian. Using the 
Gaussian heat kernel we can calculate the matrix 

, where  and . 

After this we normalize W to be row stochastic and form a graph Laplacian. From the eigenvalues and eigenvectors of 
the graph Laplacian we can form diffusion distances. A diffusion map embeds the data into the Euclidian space. The 
Euclidean distance is equivalent to the diffusion distance. Therefore, it is possible to visualize data in the Euclidian 
space. 

 

 
Figure 7: Diffusion mapping, 2nd and 3rd eigenvalues. 

In this embedded space we estimated data points by calculating the nearest neighbors for new data points. To embed 
the new data points from the feature space to the embedded Euclidean space we used Geometric Harmonics [7]. 
Geometric Harmonics is based on the Nyström method [8]. Basically, the idea in Geometric Harmonics is to extend 
empirical functions f defined on set A to another set B. In our case set A is a training set and B is a test set. Function f is 
composed during the diffusion map process.  

 



 
 

 

ESTIMATION RESULTS ONLY FROM 
HYPERSPECTRAL IMAGES 

(mean values of 50 runs) 
 R2 RMSE (g/ft2) 
KNN…………………………. 0.02 9.24 

SVR……....………………….. -0.27 11.12 

DM + KNN…………………… 0.12 9.78 

 
Figure 8: Diffusion mapping with embedded new data points, 2nd and 3rd eigenvalues. 

For the embedded new points we calculated five nearest neighbors from the training set. Based on these neighbors we 
calculate mean values for these points from a label set.  

We also implemented the nearest neighbors and support vector regression based estimators, giving us alternative 
results that can be compared to the diffusion map based method. 

 

 

4. ESTIMATION RESULTS 
Unnatural variance in the test field was large due to different amounts of fertilizer and seeds per square meter. To 
reduce the effect of this unnatural variance we clustered data based on the knowledge on how much seeds and fertilizer 
had been used, how deep the sowing had been done, and what kind of strain were present in that test sample. We 
reduced dimension with diffusion maps and then used a kmeans algorithm for clusterization. Based on this 
clusterization the data was divided into the training and testing sets in the ratio 2:1. In the training set there were 60 
samples and in the testing set 31 samples. First we tested only features from hyperspectral images. We ran the 
estimations 50 times. The results are presented in Table 1.  

Table 1. Estimation results only from hyperspectral images. 



 
 

 

ESTIMATION RESULTS WITH HEIGHT FEATURES 
(mean values of 50 runs) 

 R2 RMSE (g/ft2) 
KNN…………………………. 0.16 9.14 

SVR………………………….. -0.07 10.19 

DM + KNN…………………… 0.13 9.14 

ESTIMATION RESULTS WITH HEIGHT AND NIR 
FEATURES 

(mean values of 50 runs) 
 R2 RMSE (g/ft2) 
KNN…………………………. 0.39 7.83 

SVR………………………….. 0,29 8,43 ?.?? 

DM + KNN…………………… 0.50 7.05 

ESTIMATION RESULTS ONLY FROM HEIGHT 
FEATURES 

(mean values of 50 runs) 
 R2 RMSE (g/ft2) 
KNN…………………………. 0.17 9.09 

SVR………………………….. 0.06 9,69 

DM + KNN…………………… 0.32 8.23 

 

 

 

 

In addition, we increased the amount of features with DEM and DSM based features that are described in Section 2. 
The increased feature space made estimators more precise as we can see in Table 2.  

 

Table 2. Estimation results from hyperspectral images and height features.  

 

After this we decreased the amount of hyperspectral image features and used only the near infrared and red edge 
channels and height features. It seems to be that the near infrared features and the red edge channel characterize 
features. After this estimation the results improved significantly.  

Table 3: Estimation results from NIR images, red edge channel, and height features.  

 

Lastly, we tried only DEM and DSM based features. However, it did not improve the results as we can see in Figure 4. 

Table 4: Estimation results from height features. 

 

As we can see, the best result was achieved with combined diffusion maps and a knn estimator. The used feature space 
was a combination of hyperspectral images, which are near infrared, and height features. It seems that our DEM adds 
value to the estimation. Also our approach in high-dimensional data analysis is productive.  

  



 
 

 

5. CONCLUSIONS AND FUTURE WORK 
The novelty of this work comes from using BRDF-corrected images and the DEM in a few different estimators. 
Within the presented results it seems to be possible to estimate the amount of biomass in the fields from light UAV 
with hyperspectral and NIR cameras. Based on these estimates it is possible to create more precise fertilization plans.  

Our research project continues until the end of 2012. Our ambition is to create better results for the estimation of the 
biomass and nitrogen in the field. We are also interested in predicting the total amount of the yield. In order to have 
better hyperspectral imaging quality in the UAV flight campaigns in summer 2012, VTT will develop an updated 
UAV-compatible imaging system for forest and agriculture applications [9]. 

For the campaigns of summer 2012, the test field will be more homogeneous with less variance in the amount of seeds, 
fertilization, and variety. Based on these campaigns’ imaging results, we are going to include texture features to our 
feature space. With improved hyperspectral imaging quality we are able to use more spectral channels in the estimator 
and to also add spectral features to the feature space. 
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ABSTRACT

In this paper we consider methods for estimating forest tree stem volumes by species using images taken from
light unmanned aircraft systems (UAS). Instead of using LiDAR and additional multiband imagery a color
infrared camera mounted to a light UAS is used to acquire both imagery and the DSM of target area. The goal
of this study is to accurately estimate tree stem volumes in three classes. The status of the ongoing work is
described and an initial method for delineating and classifying treetops is presented.

Keywords: Remote sensing, forest, tree stem volume, species-specific, UAV, UAS, CIR images, individual tree
recognition

1. INTRODUCTION

Forest inventing using remote sensing has been actively under study in last decades. In this paper, we consider
methods for remote sensing tree volumes by species from small (20 m by 20 m) forest stands.

The starting point of remote sensing forests has traditionally been to study forest with features that describe
a small neighbourhood of trees. While producing good results in total tree volumes, volumes by tree species are
more challenging to estimate accurately. There are studies12 on estimating species-specific tree stem volumes
using airborne laser scanning and aerial photographs.

Recently, forest inventing based on recognition of single trees has also been under many studies.3 Single
tree recognition consists of recognizing tree tops and classifying trees to species. Main drawbacks of inventing
using single recognized trees are computational complexity and the fact that recognizing non-dominant trees
is significantly harder.4 When studied using orthoimages and digital elevation models the smaller trees under
dominating trees are totally left without sight.

In last two decades airborne laser scanning (ALS) has been used succesfully for forest inventory in Finland,
Norway and Sweden4.5 ALS data is often used as point height distributions that describe the ground in plot
level. However, many LiDAR equipments are so heavy that they cannot be flown using UAV’s that can only
carry payloads in range of 0.5 kg.

If methods based on UAV equipment can be used they offer a lightweight solution for getting information
from small or medium-sized areas. The orthoimage and Digital Surface Model (DSM) are processed using
photogrammetry from acquired digital images from a regular CIR camera flown by an UAV system.

In this paper, we consider additional features derived from recognized single trees to be used along with
stand-level features. The added features could add value as they provide describe structure of the stand, while
not being sufficient to perform well alone.

The remainder of this paper is organized as follows. In Section 2 we describe the study material. Section 3
shows an overview and details of the used methods. Finally, Section 4 contains conclusions and ideas for future
work.

For further author information: (Send correspondence to Ilkka Pölönen)
Ilkka Pölönen: E-mail: ilkka.polonen@jyu.fi, Telephone +358 400 248 140
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2. MATERIALS

The study area is located in the municipality of Lammi, in Southern Finland (approximately 61o 19’ N and 25o

11’ E). The study area covers a part of state-owned Evo educational forest area covering approximately 2000
ha. The forests of the study area are dominated by coniferous tree species, mainly Scots pine (Pinus sylvestris)
and Norway spruce (Picea abies). Of the deciduous species birches (Betula pendula and B. pubescens) are most
common. Other, mainly non-dominant tree species present in the study area are aspen (Populus tremula), grey
alder (Alnus incana), rowan (Sorbus aucuparia), contorta pine (Pinus contorta), larches (Larix sp.) and firs
(Abies sp.).

Figure 1. Field plots on CIR orthoimage with GSD of 10 cm.

The forest area has a dense grid of sample plots measured for research purposes by HAMK University of
appplied sciences. The field data employed in this study consists of hundred fixed-radius (9.77 m) circular
plots that were measured in 2007-2010 (updated to 2010). From each plot, all living trees with a breast-height
diameter at least 50 mm have been measured as tally trees. From each tally tree the following variables have
been measured: location (compass bearing and distance from plot centre), tree species, crown layer, diameter at
breast height, height and height of living crown. The plots were located with Trimble’s GEOXM 2005 Global
Positioning System (GPS) device, and the locations were processed with local base station data, resulting in an
average error of approximately 0.6 m.

Figure 2. A Gatewing UAV system

Aerial images were acquired from flights performed in August 2011. The flights were performed with Gatewing
that had an autopilot and Ricoh GR Digital III NIR camera mounted in it. Aereas covered in this study were



covered with four separate flights performed between 12am and 6pm. The total coverage of the images were first
seen as success, but the areas far from nadir were skewd and made processing images challenging.

We also have areas covered using VTT’s lightweight hyperspectral imager. The hyperspectral images taken
2011 aren’t yet processed as orthoimages as the Fabry-Pérot interferometer prototype6 with the selected optics
didn’t provide images with sufficient amount of luminosity. The same prototype performed well in the field of
agriculture, and in summer 2012 a new prototype that addresses this luminocity issue will be tested.

The digital surface models and CIR orthoimages used were processed by PIEneering Ltd.∗. The ground
sample distance (GSD) of orthoimage is 10 cm and the GSD of current DSM is 20 cm.

Figure 3. A view to a single field plot projected on a CIR image. Dots represent indexed trees, the brighter the spot the
taller the tree.

For calculating an digital elevation model (DEM) out of this digital surface model, additional information
was required as the DSM didn’t provide enough ground points to evalute the height of the vegetation. We used
additional ground level dataset acruired earlier by laser scanning. So far the imagery acquired by photogrammetry
this way can thereforebe used only for updating forest information using lightweight setup, since it cannot be
used alone.

As there were twists in original images, the orthoimage and digital surface model have silhouettes of treetops
between trees instead of ground. This leads to difficulties in recognizing individual treetops and in estimating
the ground level.

Currently, the number of sample plots available to study is relatively small, since the image preprocessing
is at the moment demanding and isn’t fully automated. We’re investigating methods for making it possible to
automate the processing of the orthoimage and digital surface model.

3. METHODS

A full estimation chain from pre-processed DEM and orthoimages to estimation results goes as follows:

G→ S→ F→ D→ R

,

where G stands for reading ground-truth from plot data, S for separating data to train and test sets, F for
extracting all feature sets, D for dimension reduction and finally R for regression. We’re studying the effects



Figure 4. Simple treetop delineation by a scale space method.

of different choices in all steps. Most of all we’re interested in finding well-performing features and feature
combinations. The remains of this Section outlines some thoughts and details of the above mentioned steps.

The number of ground plots available to study is currently relatively low. For this reason, the selection of
train and test sets must be considered carefully. For providing a fair separation of plots for train and test data
we’re using a k-means clustring algorithm. The plots are clustered by their tree volumes by species (pine, spruce
and deciduous) to clusters, which are then unpacked to split the plots to train sets and test sets.

Plot-level features currently under study consist of height level distribution features from DEM and image
features from the CIR image, much like in studies performed with ALS data combined with aerial images.1 There
are several studies that focus on plot level tree volumes and species-specific tree volumes. While the CIR images
provide many possibilities from learning plot-level features, they also make possible detecting treetops.

On the assumption, that treetops would be efficiently characterized by DEM, we’ve tested several local mode
detectors such as hill climbers and the mean shift7 mode detectors. However, on some plots we found that the
DEM was too inaccurate in delineating trees even for a human observer. Thus, we reverted to a simple scale-space
investigation of the green channel of the CIR images. First, the image is decomposed into a gaussian pyramid,
from which we can obtain multiple scale difference-of-gaussians (DoG) filters. In our case, we can detect treetops
with a sufficient accuracy by selecting areas where both the first vs. third and the second vs. fourth octaves of
the DoG filters have high response (see Figure 4 for an example result). In other words, the pixelwise indicator
image S for a treetop is as follows:

S(x, y) =

{
1, when DoG4,2 > t1 and DoG0,3 > t2

0, otherwise,

where the DoGw,h is defined as

[DoGj,k(f)] (x, y) = [G(x, y, kσ)−G(x, y, jσ)] ∗ f(x, y),

and the thresholds t1 and t2 are selected according to luminance of the dataset (here they are set to 0.02 and
0.06 respectively), and the scale constants are set according the image resolution. To filter out the inevitable
false detections by the coarse texture of the images, we cull the detections using a height limit on the DEM and

∗Additional information can be found from PIEneering website at http://www.pieneering.fi



Figure 5. A pick of challenging parts of orthoimages displaying challenges like twirls, blur and varying lightning conditions.

restricting ourselves to blobs, which cover, at minimum, a circle of 50 cm on the terrain. At the moment this
seems to match well to the average true positive detections.

For each blob, we extract a rectangular subimage of twice the radius of the detected blob. This cropped
image is then used for feature extraction and subsequently for training a Support Vector Machine classifier to
recognize the tree species. Initial results on classifying treetops to three classes using a small subset of the data
set seem promising, yet the difficulty of the task varies greatly troughout the orthoimage. The classifying is at
the moment performed using only the histograms of the available color channels.

It’s possible that further studying the derived features from recognized treetop would enhance the perfor-
mance. The tree height and stem diameter are the main contributors to tree stem volume, while the crown
diameter only contributes to that information. There are studies8 of measuring crown diameter and it’s influ-
ence to tree volumes.

As regressor there are currently two different types of regressor under study. K nearest neighbours (k-NN)
and support vector regressors (SVR) represent machine learning with instance based learning and model-fitting
learning. Both of these algorithms have been widely used and studied in the field of remote sensing.

4. CONCLUSIONS AND FUTURE WORK

Main challenges regarding this study have been related to the quality of the raw CIR images. The photogram-
metric composition of DSM and orthoimage will get easier and produce better results when repeated using a
better CIR camera with more suitable focal lengths to avoid having to use skewd part of the images far from the
nadir.

Using a better camera will also provide better spectral resolution, which will make the tree recognition easier.
For the flight campaigns in summer 2012 a new version of VTT’s lightweight hyperspectral imager will also be
used. The advantages of using hyperspectral images will be studied.

We will also study effects on bidirectional reflectance distribution function (BRDF) based correction to
orthoimages. BRDF corrections would likely give benefits to the descriptiveness of the extracted features.

Plot-level features should also be selected carefully in order to maximize the performance. Genetic algo-
rithms could be used in feature selection.9 Genetic algorithms have already shown good performance in forest
invention.10 Used parameters could also be optimized together with different estimator and dimension reduction
combinations.11



The digital surface model acquired by means of photogrammetry doesn’t seem to be sufficient to stand-
alone usage as it doesn’t contain enough ground points for calculating elevation model. Likely application could
therefore be for getting updates to forest stand details using UAS’s for evaluating storm damages.
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