
Jarkko Laitinen

QCloud API for synchronous and asynchronous file

transfer in Qt

Master’s Thesis
in Information Technology
December 18, 2012

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Jarkko Laitinen
Contact information: jarkko.p.laitinen@jyu.fi
Title: QCloud API for synchronous and asynchronous file transfer in Qt
Työn nimi: QCloud API synkroniseen ja asynkroniseen tiedonsiirtoon Qtlla
Project: Master’s Thesis in Information Technology
Page count: 91
Abstract: There is growing need for using services provided by the Cloud in appli-
cations. The differences between the largest service providers make the integration
of applications difficult. Developers need to make different implementations to each
service provider and it hinders the ability to use the services. In this thesis I com-
pare the differences between Windows Azure and Amazon S3. I implemented an
API according good API design guidelines that enables the developer to use dif-
ferent Cloud providers in their applications with minimal changes. The final API is
functional, but there is still much to be done. In the study I discovered many minute,
and not so minute, differences between the two Cloud providers, and it restricted
the amount of functionality that could be placed in the API.
Suomenkielinen tiivistelmä: Pilvipalveluiden käyttö ohjelmissa on lisääntynyt, sillä
niiden avulla voidaan tarjota uusia ominaisuuksia suhteellisen pienellä vaivalla.
Kuitenkin eri palveluntarjoajien eroista johtuen pilvipalvelusta toiseen siirtyminen
on vaikeaa, ja usein vaatii mittavaa uudelleen koodausta ohjelmassa. Tämän gradun
tarkoitus oli yhdistää eri pilvipalveluntarjoajien palvelut saman APIn taakse, ja näin
tarjota helpompi tapa siirtyä yhdestä palvelusta toiseen. Esitelty QCloud-API tar-
joaa tarpeelliset ominaisuudet Windows Azuren ja Amazonin S3 palveluiden käyt-
töön yhden APIn kautta, jolloin palvelusta toiseen ei vaadi ohjelmassa kuin korkein-
taan yhden rivin muutoksen.
Keywords: Qt, C++, Cloud, Amazon S3, Windows Azure, REST, API design
Avainsanat: Qt, C++, Pilvipalvelut, Amazon S3, Windows Azure, REST, APIn su-
unnittelu

Copyright c© 2012 Jarkko Laitinen

All rights reserved.

Glossary

Qt: C++ framework developed by TrollTech, later purchased by Nokia, and finally
by Digia.
API: Application Programming Interface, is a solution to a certain problem by pro-
viding a easier way to do it.
C++: Programming language developed by Bjarne Stroustrup in 1979.
REST: Representational state transfer, a stateless architecture for communication be-
tween servers and clients.
PaaS: Platform as a Service, is a service that provides a computing platform.
SaaS: Software as a Service, provides software on-demand in the Cloud.
IaaS: Infrastructure as a Service, offers virtual machines or physical computers as a
service.
SLA: Service level agreement, is an document where the service provider describes
the properties of the service.
QoS: Quality of Service, is requirements on a metric that reflects the subjectively ex-
perienced quality.
SP: Service Provider, The provider of a service in the Cloud, for example, Amazon,
and Windows Azure.
Blob: Any kind of file that is located in the Cloud. Resides inside a bucket/con-
tainer.
Container/Bucket: Top level directory in the Cloud.
AWS: Amazon Web Services, a collection of services that together make up a cloud
computing platform.
EC2: Amazon Elastic Compute Cloud, scalable private virtual services.
S3: Amazon Simple Storage Service, service providing storage. SimpleDB: Amazon
SimpleDB, service providing distributed database.
SWF: Amazon Simple Workflow, a workflow service providing control on distributed
services.
VM: Virtual Machine, a software implementation of computer.
Azure: Windows Azure, Microsoft’s cloud computing platform.
IIS: Internet Information Services, a web server application.

i

RESTful: Conforming to REST constraits.
OpenGL: Open Graphics Library, a cross-language multiplatform graphics API.
GPL: GNU General Public License, software license written by Richard Stallman.
LGPL: GNU Lesser General Public License, software license written by Free Soft-
ware Foundation.
JVM: Java Virtual Machine, virtual machine for executing Java bytecode.
Qt Quick: Declarative application framework.
MOC: Meta-Object Compiler, generates C++ code from Qt specific macros.
IDE: Integrated Development Enviroment, provides tools for software development.
Qt Creator: a cross-platform C++ IDE.
MinGW: Minimalist GNU for Windows, native port of GCC for Microsoft Windows.
HMAC: Hash-based message authentication code, an algorithm that can be used to
verify authenticity and data integrity.
QDoc: a documentation tool to generate documentation from notation in source
code.
QTestLib: a unit test framework provided by Nokia to Qt framework.

ii

Contents

Glossary i

1 Introduction 1

2 Cloud computing 3
2.1 From Distributed Applications to Cloud 3
2.2 The Cloud Stack . 6

2.2.1 SaaS . 6
2.2.2 PaaS . 7
2.2.3 IaaS . 8
2.2.4 Scalability . 8
2.2.5 Security . 9

2.3 Service providers . 10
2.4 Amazon . 11

2.4.1 Pricing . 12
2.4.2 Scalability . 14
2.4.3 Security . 14
2.4.4 REST implementation . 15

2.5 Windows Azure . 15
2.5.1 Pricing . 16
2.5.2 Scalability . 17
2.5.3 Security . 17
2.5.4 REST implementation . 17

2.6 Google App Engine . 18
2.6.1 Pricing . 19
2.6.2 Scaling . 20
2.6.3 Security . 20
2.6.4 REST implementation . 20
2.6.5 Summary of the service providers 20

iii

3 Qt 22
3.1 History . 22
3.2 License . 23
3.3 Qt framework . 24
3.4 Compilation . 26
3.5 qmake . 27
3.6 UIC - User Interface Compiler . 27
3.7 Signals & Slots . 28

3.7.1 MOC - Meta-Object Compiler 29
3.8 Qt5 . 30
3.9 QtQuick and QML . 32

3.9.1 QML . 32
3.9.2 From QtQuick 1.0 to QtQuick 2.0 32
3.9.3 QtCreator . 33

3.10 QDoc . 34
3.11 QTestLib . 34

3.11.1 Usage . 35
3.12 Example Qt program . 36

3.12.1 QFtp example . 37

4 Software development for cloud 40
4.1 Differences in architectural views . 40
4.2 Development using Qt . 42

4.2.1 Amazon . 42
4.2.2 Azure . 43
4.2.3 Google App Engine . 44

4.3 REST API comparison between Azure and Amazon 44
4.3.1 Comparison of REST API’s using example 47

5 QCloud API 50
5.1 On API design . 50
5.2 Implementation . 52
5.3 QCloud API . 55

5.3.1 Testing . 56
5.3.2 Documentation . 59
5.3.3 Summary . 60

iv

5.4 Example application . 60
5.5 Evaluation of the implementation . 62

6 Conclusion 65

7 References 67

Appendices

A API implementation 72

B Source of demo application 74

C Readme 78

D Amazon’s encode function 81

E Azure’s encode function 83

v

1 Introduction

In my thesis I will introduce the concept of Cloud API (Application Programming
Interface) to the Qt framework. Cloud computing (from now on Cloud) can be con-
sidered as a diversion of computing from the small scale to the large scale. The
transformation can be attributed to large e-commerce companies and their need to
provide the best possible customer experience in their stores. This led to building
of huge datacenters around the world. Amazon was the first to commercialize their
existing infrastructure as they began renting their services in 2007 [61]. Cloud can
be seen as the next paradigm shift in the IT and the reprecussions will echo through
the whole industry [40]. From how a developer develops his application to how a
user uses the application, Cloud can change it all.

The goal of this thesis is to provide a sample software using an early version of
the QCloud API that I have created. I will also go through the different iterations
of the API and the programs that helped me in creating it. The program shows
one example how cloud computing can help the software developer. I will con-
centrate how the different providers differ and how their implementations of REST
(Representational state transfer) can be used together. At the moment there are two
competing implementations to provide communications from clients to the server,
REST and SOAP (Simple object access protocol). REST has a much lower overhead
and the implementation of the protocol is much easier, so I will concentrate on the
REST implementations. The need for QCloud API comes from the fact that Qt is
lacking an uniform way to incorporate the different cloud services in applications.
QCloud will support Amazons AWS and Microsofts Azure at first but the support
for different service providers can be inspected later. Most of the providers offer
Java toolkits, but none offer Qt/C++. The ability to use cloud services is a must in
future and so API providing these features is needed.

This thesis consists of 5 general chapters. In the first chapter I will go through
the history of the Cloud, how it developed and cloud providers that I will use in the
later parts of the thesis. The second part is on Qt framework and how it developed.
Also I’ll go through the basic improvements that Qt gives compared to basic C++
frameworks. In the third chapter I will try to explain how software development in

1

the cloud differs from software development for local machines. I will also compare
the REST-API implementations of the service providers and present two examples
on how the cloud can enhance programs. The last chapter will be on QCloud that
is the prototype of a general Cloud API for Qt. I will go through the steps that I
took when designing the API and provide a working example how to integrate the
Amazon S3 cloud file storage and Windows Azure to Qt applications.

2

2 Cloud computing

Cloud computing is one of the buzzwords of the 2010 decade. It has been hailed
as the next big thing in the IT-sector. Cloud can help a starting company to publish
their software without the need for an expensive server acquisitions. Or a company
can first see how their application starts off and then buy their own servers accord-
ing to the usage levels seen in the cloud. These providers strive to provide the best
possible QoS (Quality of Service) in order to make the service always available.

In this chapter I will go through the history and phases of cloud computing.
The origins of peer-to-peer computing, grid computing and the transformation to
Cloud. I will compare grid and cloud and after that one should have a good under-
standing of the differences and similarities of these. After explaining the terms I will
go through three different cloud providers: Amazon, Microsoft Azure, and Google
AppEngine. I will compare the features, pricing, and technologies that these three
provide. Lastly, I explain the aspects of security in cloud computing and how the
security affects the transformation of the current paradigm to the cloud paradigm.
After this chapter one should have a good understanding of the cloud paradigm
and in which ways the service providers can differ from each other.

2.1 From Distributed Applications to Cloud

The first ancestor of cloud can be thought as Peer-to-Peer (P2P) computing. P2P is
defined by Dejan S. Milojicic et al. as follows [56]: "a class of systems and appli-
cations that employ distributed resources to perform a function in a decentralized
manner." P2P computing is an evolution of the basic concept of distributed comput-
ing and deepens the possibilities of sharing and cooperation between heterogenious
entities. Distributed computing can be thought as the distribution of solving a prob-
lem, program, or resources on different computers connected via network. David
Barkai brings forth the three aspects of P2P computing in his article "Technologies
for Sharing and Collaborating on the Net" [41]:

• The "action": computing, file sharing, communication, etc.., is taking place at
the edge of the Net, where users and devices are.

3

• Resources are being shared: They might be computing cycles, storage, network
bandwith, content and more.

• Direct communication between peers: PCs or other devices at the edge of the Net,
is almost always present.

P2P is ancestor of Cloud in a manner that entities use distributed resources towards
a central goal.

Grid computing can be thought as another anchestor of the Cloud. In the book
"The Grid: blueprint for new computing infrastructure" [48] Ian Foster and Carl
Kesselman talked about computing being an utility. The ability to have almost un-
limited resources available to everyone on demand. They were not the first be-
cause the first real mention about the paradigm of computing as utility comes from
a press release [54] put out by UCLA on the founding of the internet (at the time
ARPANET). The first paragraph was as follows: "As of now, computer networks are
still in their infancy. But as they grow up and become more sophisticated, we will
probably see the spread of "computer utilities" which, like present electric and tele-
phone utilities, will service individual homes and offices across the country". This
vision has proven to be the driving force behind the birth of ARPANET and later the
Internet. One of the most cited grid computing definitions comes from Ian Foster
and Adriana Iamnitchi [47] : "Grids are sharing environments implemented via the
deployment of a persistent, standards-based service infrastructure that supports the
creation of, and resource sharing within, distributed communities. Resources can
be computers, storage space, sensors, software applications, and data, all connected
through the Internet and a middleware software layer that provides basic services
for security, monitoring, resource management, and so forth." A grid is not useful
for time constrained operations because the fact that the resources are connected to
eachother via the Internet brings latency to the equation.

There are many public grids where users download an application that then can
use the computer’s resources when the user doesn’t need them. Good examples are
BOINC-project [8] and SETI@Home [28]. BOINC is a collection of different calcula-
tion projects of which a users can choose a favourite. BOINC has approximately 2.3
million users [9]. SETI@Home on the other hand analyzes radio telescope data and
has over 3 million users. Grids can also be private. Private grids differ from public
grids as the resources come from the same provider. Notable private grids are the
ones at Cern [16]. Cern is the European organization of nuclear research and they do
experiments with particle accelerators in Switzerland. The need for grids came from

4

the huge amounts of data that the measuring devices produce in the experiments.
With the grid Cern can handle the data and analyze it in a reasonable amount of
time.

Figure 2.1: Search frequency of Grid and Cloud from Google Trends [15]

Like we can see from Figure 2.1, in early 2008 "cloud computing" was searched
more than "grid computing". The change in search frequencies was quite fast since
the term "cloud computing" was conveinced in the late 2007. There is no consen-
sus regarding who coined up the term, but the first real appearance of it can be
found in a paper by Sharon Eisner Gillett and Mitchell Kapor [50]. The paper "The
Self-Governing Internet: Coordination by design" has many of the key concepts of
cloud explained and detailed. The invention of the term has also been credited to
Google’s Eric Schmidt [11], but he just popularisized it. One could say that the dif-
ference between cloud and grid is the means of usage and the distribution of the
resources. The available grid computing platforms usually are within a company
and are used for a certain project, usually calculations. This differs from the now
prevailing cloud computing. Vaquero, Rodero-Merino, Caceres and Lindner [60]
suggested a definition for cloud computing as follows: "Clouds are a large pool of
easily usable and accessible virtualized resources (such as hardware, development
platforms and/or services). These resources can be dynamically reconfigured to ad-
just to a variable load(scale), allowing also for an optimum resource utilization. This
pool of resources is typically exploited by a pay-per-use model in which guarantees
are offered by the Service Provider (SP) by means of customized SLAs (Service Level
Argeements)."

5

Cloud can be thought to be the unification of the P2P and Grid computing
paradigms. Where in P2P heterogeneous computers are connected to each other via
the Internet and share resources, in a (private) grid homogeneous resources are con-
nected to each other via the ethernet. Public grids can be thought to be centralized
P2P systems that use resources from the peers towards a central task. Clouds pro-
vide an agreement between the provider and the developer which defines the way
that the developer wants the service to be provided.

One of the key factors in the growth of cloud services is the building of huge
datacenters. It is not news that many of the cloud providers have history in e-trade
or other services that require the service to be always available. But the usage of
the datacenters can vary because the load is not always the same. This can lead
to the possibility of renting these machines to a third party in the manner of cloud
services. The renting has grown easier with the usage of virtualization [61]. Virtual-
ization means that an operating system runs inside a virtual machine which mimics
the properties of a computer. Providing a virtualized computer allows the SP’s to
run many images on one machine and thus making the utilization of the machine
better. Virtualization provides homogenous slices of the infrastructure and makes
the renting of unused resources easier. Amazon was one of the first to commercial-
ize the cloud with their EC2 service in 2006 [35]. One of the real advantages of the
cloud is the QoS requirements of the SP’s: the service is almost always online and
available.

2.2 The Cloud Stack

The abbreviations SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS
(Infrastructure as a Service) are used in conjuction with cloud. In Figure 2.2 these
abbreviations have been placed on the cloud stack. The following explanations of
the abbreviations is based on the National Institute of Standards and Technology
(NIST)’s definitions of Cloud Computing [55].

2.2.1 SaaS

NIST defines [55] SaaS as follows: "The capability provided to the consumer is to
use the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a thin client interface, such

6

Figure 2.2: The cloud stack, picture from Wikipedia [10]

as a web browser (e.g., web-based email), or a program interface. The consumer
does not manage or control the underlying cloud infrastructure including network,
servers, operating systems, storage, or even individual application capabilities, with
the possible exception of limited userspecific application configuration settings." A
good example of a SaaS service is the Google’s Apps [14]. They provide typical
office tools needed for text editing, making presentations, making spreadsheets, etc.

2.2.2 PaaS

NIST defines PaaS as follows [55]: "The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications cre-
ated using programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud infras-
tructure including network, servers, operating systems, or storage, but has control
over the deployed applications and possibly configuration settings for the application-
hosting environment." Microsofts Windows Azure and Googles App Engine are
good examples of PaaS services. These provide, like the definition implies, the de-
ployment platform for programs that are then used as SaaS. The development is
usually done by provided APIs and using various languages.

7

2.2.3 IaaS

NIST defines [55] IaaS as follows: "The capability provided to the consumer is to pro-
vision processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select networking compo-
nents (e.g., host firewalls)." A good example of IaaS provider is Amazon with their
EC2 instances.

2.2.4 Scalability

Armburst et al. [40] mentioned scalability as one of the obstacles of cloud comput-
ing in their paper "Above the Clouds: A Berkeley View of Cloud Computing". They
point out that one of the biggest obstacles to the software developer is to implement
parallelism and scalability to their programs efficiently. They also point out that the
scalability should be two-way, which means that the amount of instances should
subtract when the need is low. The implementation of scaling and parallelization is
a challenge yes, but cloud SP’s usually provide a well thought out APIs so that the
infrastructure side of the equation would be as easy as possible. The implementa-
tions of the API’s are different between all of the cloud SPs so it is again a hindering
fact when choosing a SP.

Imagine a scenario where your service is featured on a technical blog or in twit-
ter. The traffic to a site can grow exponentially compared to normal levels. If the
infrastructure is located on company’s own computers, then the load can cause the
service to become unavailable. All of the cloud providers that I have mentioned
provide on-demand scalability of the deployed applications. This is one of the best
examples of the power of scalable resources that the cloud provides.

The scalability also applies to storage of which the cloud can provide almost un-
limitedly. For example, the highest pricing group of Amazons S3 is over 5000TB
[5], so the amount that one can store in the cloud is almost unlimited. When con-
sidering using that much space on the Cloud one of the biggest challenges is how
to get the data to the SP. Armburst et al. [40] present the option of sending hard
drives overnight to the cloud provider. This would provide larger bandwidth when
comparing to the 5-18Mbits/s that S3 can usually provide [49]. The transfer of data

8

is usually billed by the SP so the overnight option would also be cheaper. I will go
through the scalability issues again when going through each of the SPs.

2.2.5 Security

Security is one of the biggest questions in cloud. For example, in study done in 2009
[30] IT executives said that despite the potential benefits, they still trust existing
internal systems over cloud-based systems due to fear about security threats and
loss of control of data and systems. The fact is that when you take your services to
cloud you really have to trust the company from which you lease the service. The
data is located on their devices and there is the possiblity that some not-so-friendly
person can access it leading to security breaches. Jon Brodkin mentions in his article
the seven key security risks [44] that the user should raise with the vendor before
committing. They are as follows:

• Privileged user access: Sensitive data processed outside the enterprise needs the
assurance that they are only accessible and propagated to priviledged users.

• Regulatory compliance: A customer needs to verify if a Cloud provider has ex-
ternal audits and security certifications and if their infrastructure complies
with some regulatory security requirements.

• Data location: Since a customer will not know where her data will be stored, it
is important that the Cloud provider commit to storing and processing data in
specific jurisdictions and to obey local privacy requirements on behalf of the
customer.

• Data segregation: One needs to ensure that one customer’s data is fully segre-
gated from another customer’s data.

• Recovery: It is important that the Cloud provider has an efficient replication
and recovery mechanism to restore data if a disaster occurs.

• Investigative support: Cloud services are especially difficult to investigate, if
this is important for a customer, then such support needs to be ensured with a
contractual commitment.

• Long-term viability: Your data should be viable even when the Cloud provider
is acquired by another company.

9

The data location is something that one should ponder before choosing a service.
The location of the service will decide what kind of laws should be complied with.
Encryption of the data sent to the cloud is one of the choices that an individiual can
take, thus providing better safety for his/her data. I will go through the SP specific
details in the later chapters.

The risks that Jon Brodkin mentioned in his article are not the best frame of ref-
erence, they are risks not facts. Joshi et al. [52] list the main goals of information
security in their article "Security Models for Web-Based Applications". They are as
follows:

• Confidentiality: Information can be accessed only by authorized entities.

• Integrity: Data can be modified only by authorized entities.

• Availability: Ensures the information is available when needed and is not made
inaccessible by malicious data-denial activities.

• Accountability: Every action taken by an entity can be traced back to the entity.

• Assurance: Degree of confidence in the security of the system with respect to
predefined security goals.

When comparing the risks that Brodkin mentioned to the goals from Joshi et al
we can see that the basic ideas are quite similar. I will use the Joshie et al. frame
of reference when inspecting the SP’s security aspects. The two first items from the
frame are quite similar and can be thought of as authentication. From now on, the
Joshi et al. frame will be referred to as 4A.

2.3 Service providers

There are many different service providers in the cloud ecosphere. The user should
select cloud SP that is best suited to the user’s needs as there can be differences in
the provided services. The differences between cloud SP’s can hinder the general-
izability of the services [40]. The offered API’s differ between almost all of the SP’s
and it leads to the fact that moving from one cloud SP to another is really difficult.
This is one of the ten risks that Armburst et al mention in their article [40] and they
recommend a standardized API to be adopted. Pricing of the offered services can be

10

different from each other so comparison between SP’s can be difficult. In this chap-
ter, I will go through three different SPs: Google’s AppEngine, Microsoft’s Azure,
and Amazon’s AWS. I will go through the offered API’s, services, and pricing of the
service.

Figure 2.3: SP’s location on the cloud stack

2.4 Amazon

Amazon was probably the first SP in cloud computing as they started Amazon Web
Services (AWS) in 2006 [35]. AWS offered IT infrastructure to businesses in the form
of web services. This model is now known as the cloud. Amazon’s services are
mostly in the IaaS level but they do offer PaaS and SaaS level services as well. Ama-
zon offers many different services today, and they have data centers in U.S., Europe,
Singapore, and Japan. Amazon offers a total of 34 different services in the following
categories:

• Computing

• Networking

• Content Delivery

11

• Payments & Billing

• Database

• Storage

• Deployment & Management

• Support

• Web Traffic

• Application Services

• Workforce

From these categories I will concentrate on computing and storage. Amazon
Elastic Compute Cloud or EC2 is one of the best examples of an IaaS offering. EC2 is
web service that provides resizable computing capacity in the cloud. EC2 is a virtual
machine in which you can choose an own image or one of the ready-made Amazon
Machine Images (AMI) to run in the cloud. The instances boot in minutes and there
are APIs which help you to do that programmatically. Amazon provides means to
start new instances on-demand so usage spikes won’t harm the availability of the
service. The almost endless amount of computational power has led to interesting
revelations. For example, one can use 100 computers to do calculations and it is the
same price as if one had used one computer for 100 hours. Development can be
done using almost any programming language because the cloud is running on a
VM that you have complete control over. One can choose which Linux distribution
to use and what the distribution contains.

2.4.1 Pricing

Amazon provides six types of general virtual machines that have different proper-
ties and prices. The micro instance which is in the free-tier of usage has 613MB of
memory and offers 2 Elastic Compute Units (ECU) of cpu power. ECU is Amazon’s
own unit and it is equivalent to an 1.0-1.2GHz 2007 Opteron or Xeon processor [3].
On the other end of the spectrum is the cluster computing instances. The biggest
rentable cluster has 60.5GB of memory, 88 ECU of cpu, and 3370GB of local storage.
The price difference between these is (in Linux usage and in US East) $0.020/h in
the micro and $2.400/h in the grid.

12

Amazon Simple Storage Service or Amazon S3 is the storage service that Ama-
zon provides in the cloud. The stored objects are stored in buckets that have their
own adresses and can be accessed via REST interface. The default protocol for
downloading the files is HTTP but Amazon provides BitTorrent alternative for large
files. The pricing of these services is by storage and request amounts. The pricing of
storage starts from $0.125/month per GB if using under 1TB to $0.055/month per
GB if using over 5000TB. The requests are $0.01 per 1,000 requests for PUT, COPY,
POST or LIST and $0.01 per 10,000 GET and other requests.

The free-tier of AWS has the following properties [4]:

• 750 hours of EC2 Linux or Windows instance usage with load balancing,

• 30GB of Amazon Elastic Block Storage, plus 2 million I/Os and 1GB of snap-
shot storage.

• 5GB of S3 storage with 20,000 get and 2,000 put requests.

• 100 MB of storage, 5 units of write capacity, and 10 units of read capacity for
Amazon DynamoDB.

• 25 Amazon SimpleDB Machine Hours and 1 GB of storage.

• 1,000 Amazon SWF workflow executions can be initiated for free. A total of
10,000 activity tasks, signals, timers and markers, and 30,000 workflow-days
can also be used for free.

• 100,000 Requests of Amazon Simple Queue Service.

• 100,000 Requests, 100,000 HTTP notifications and 1,000 email notifications for
Amazon Simple Notification Service.

• 10 Amazon Cloudwatch metrics, 10 alarms, and 1,000,000 API requests.

• 15 GB of bandwidth out aggregated across all AWS services.

Anything going over these amounts is billed on regular prices. The free-tier can
be used to host own web sites or run your own SaaS applications or just as a storage
device.

13

2.4.2 Scalability

Scalability can be implemented by the user with the EC2 API, S3 API, or the general
Amazon REST API. Amazon also provides a service called CloudWatch that offers
seven pre-selected metrics to monitor the usage of different resources (storage, com-
putation, bandwidth) for free [2]. CloudWatch can be automated to take action if the
metrics show a rapid change in the usage of resources. This can be done manually
via the developer implementing a load balancing algorithm using the metrics and
API’s or using the Auto Scaling feature. Auto Scaling does what the name implies;
enables automatic scaling of the EC2 instances. S3 services scale automatically as
the amount of data is increased.

2.4.3 Security

Amazon has published a white paper [6] on their approach for security in their
services. I will not go through the whole document, but inspect what they promise
in the 4A frame of reference.

Amazon has a four-pronged approach to security on high level [7]:

• Certifications and Accreditations: Amazon has audits performed by outside en-
tities.

• Physical Security: The location of data centers are on a need to know basis. Data
centers are also protected with many physical security measures to prevent
unauthorized access.

• Secure Services: All of the services in AWS have been designed to be secure and
restrict unauthorized access.

• Data Privacy: Users can enable encryption of data in the AWS Cloud.

When reflecting the Amazon security model against the 4A frame of reference,
one notices that they go well together. Amazon provides confidentiality via the
authorization needed to access services. Information integrity is provided also by
the authorization process as only authorized entities can access data. Amazon pro-
vides availability via decentralizing the locations of their data centers. If a data cen-
ter serving certain entity goes cold the service is transferred to another data center.
Amazon provides accountability in their S3 service via ability to log every request

14

done to access data. Amazon has external audits done regularly on their AWS-
services so assurances are made that the system will comply to predefined security
goals.

2.4.4 REST implementation

Amazon offers RESTful interface to control and access the S3 storage service. The
basic operations of PUT and GET can provide almost everything that one needs in
file handling between physical storage and cloud storage.

The basic flow of getting a file from a bucket is as follows: getting the listing of
buckets in the users account, getting the contents of a certain bucket, and after that
getting a file from the bucket. In each request, an authorization header, date-header
(seconds since epoch), and a HMAC-SHA1 hash of the request are included. The
HMAC-SHA1 hash includes the user’s secret access key so Amazon knows that the
user is allowed to access the files. The specific structure of the requests can be found
from Amazon’s S3 REST API documents [18]. I will compare the structures of the
requests in detail in Section 4.3.

2.5 Windows Azure

Azure is the Microsoft’s cloud service. Microsoft describes it like this: "Windows
Azure is an open and flexible cloud platform that enables you to quickly build,
deploy and manage applications across a global network of Microsoft-managed
datacenters. You can build applications using any language, tool or framework.
And you can integrate your public cloud applications with your existing IT envi-
ronment." [39] There are three different types of instances, which Microsoft calls
compute roles, in Azure:

• Web applications

• Backend applications

• Legacy applications

Web applications are defined as follows: "Web roles in Windows Azure are spe-
cial purpose, and provide a dedicated Internet Information Services (IIS) web-server
used for hosting front-end web applications. You can quickly and easily deploy web

15

applications to Web Roles and then scale your Compute capabilities up or down to
meet demand" [39]. So web roles can be thought as the SaaS offering of Azure.

Backend applications are defined as [39] "Applications hosted within Worker
roles can run asynchronous, long-running or perpetual tasks independent of user
interaction or input. When you separate your application’s background processes
in a Worker role and host the front-end in a Web role, you can better distribute
your application logic and have more fine grain control over how your application
scales." One could say that the worker roled applications are similar to the PaaS level
of Azure.

The final offering is legacy applications and they are defined as: "Virtual Machine
(VM) roles, now in Beta, enable you to deploy a custom Windows Server 2008 R2
(Enterprise or Standard) image to Windows Azure. You can use the VM role when
your application requires a large number of server OS customizations and cannot be
automated. The VM Role gives you full control over your application environment
and lets you migrate existing applications to the cloud." [39] This can be thought as
the IaaS offering because you get a fully working VM powered OS to use. Azure
offers services from all levels of the cloud stack. The development for Azure is done
primaly with .NET, node.js, Java, PHP or C++. Azure supports also other languages
via Azure service API’s (HTTP/REST).

2.5.1 Pricing

Pricing on Azure is similar to other providers. Microsoft offers a three month free
trial after which the service has to be re-uploaded to the cloud and the developer has
to accept a paid subscription. There are five different sizes of compute instances:
extra small, small, medium, large, and extra large. These differ from one another
on the amount of storage and prosessors. For example, the extra small has no own
prosessors but they are shared with other instances and the amount of memory is
768BM. Cost of that is $0.02/h. On the other hand, the extra large has 8 cpu cores,
14GB of RAM, and costs $0.96 an hour.

Azure offers also cloud storage that is available via RESTful interfaces. The pric-
ing of the space is $0.125 per GB stored per month for amounts under 1TB and $0.01
for 10,000 storage transactions.

16

2.5.2 Scalability

Scalability on Azure is not as elastic as on the other SP’s. The amount of servers is
controlled by the user via service configurations. If the user notices that the utiliza-
tion of the server is high, he/she can start a new server by changing the service con-
figurations. There is no ready scaling engine but the user has to code it him/herself.
Microsoft provides examples [38] on scaling engines that survey the usage metrics
and then change the amount of needed servers.

2.5.3 Security

Microsoft provides a white paper [53] that goes through the security aspects of
Azure and it’s service. Microsoft provides the following assurances [53]:

• Confidentiality: Customers data can be accessed only by the allowed entities.

• Integrity: Customeres can trust that their data won’t be changed in the Cloud.

• Availability: Che data is replicated in three different nodes so if one goes down
there is a backup.

• Accountability: Azure provides tools to monitor the clients data so everything
can be monitored.

Azure also provides an authentication service called Access Control Service 2.0
that can help the developer to include access control on the application or service.
ACS includes support for Active Directory Federation Services (AD FS 2.0), and
popular web identity providers such as Google, Windows Live, Yahoo, and Face-
book [1]. When registering to Azure, the developer identifies with the Windows
Live account.

The four points presented in the white paper and ACS provide assurances that
all of the points of the 4A frame of reference are taken seriously. Azure has received
security certifications from external auditors [26].

2.5.4 REST implementation

Azure provides RESTful interfaces for service management and storage manage-
ment. I will concentrate on the storage management. The GET request is formed
with the following parameters: the storage accounts name, container, and the wanted

17

file. The request needs also Authorization-header, Date-header, and x-ms-version-
header. The Authorization header is made from the request itself taking the verb,
context, date, and canonized resource and then encoding the string with the HMAC-
SHA256 algorithm. PUT-requests have the same basic structure as GET-requests,
but add a Context-Length field to the packet. A more thorough examination can be
found in Section 4.3.

2.6 Google App Engine

Google and their App Engine is located on the PaaS level of the cloud architecture as
shown in Figure 2.3. App Engine is defined as "a system that exposes various pieces
of Google’s scalable infrastructure so that you can write server-side applications on
top of them" [13]. AppEngine offers several critical features that are required to
make application that can run under heavy load and need large amounts of data.
The features are as follows [36]:

• Dynamic web serving, with full support for common web technologies.

• Persistent storage with queries, sorting, and transactions.

• Automatic scaling and load balancing.

• APIs for authenticating users and sending email using Google Accounts.

• A fully featured local development enviroment that simulates Google App
Engine on user’s computer.

• Task queues for performing work outside of the scope of a web request.

• Scheduled tasks for triggering events at specified times and regular intervals.

At the moment, App Engine supports applications written in several different
languages: Java, Python, and Go are among the supported ones. App Engine also
features REST-APIs that a developer can use. In Java runtime enviroment devel-
oper can develop the program with standard Java technologies, including JVM,
Java servlets, and the Java programming language - or any other language using
a JVM-based interpreter or compiler, such as JavaScript or Ruby. App Engine fea-
tures two Python runtime enviroments which both include a fast Python interpreter

18

and Python standard library [36]. Go language is supported in the Go runtime en-
viroment that runs natively compiled Go code. In this context, the runtime enviro-
ment is a sandboxed secure enviroment that limits the access of the programs to the
underlying operating system. The limitiations are as follows [36]:

• Communication with the server and the client is done only via HTTP (or
HTTPS) requests.

• Applications cannot write data to file system in any of the runtime enviro-
ments. An application can read files, but only files uploaded with the appli-
cation code. The app must use the App Engine datastore, memcache or other
services for all data that persists between the requests.

• Application code only runs in response to a web request, a queued task, or
a scheduled task, and must return response data within 60 seconds in any
case. A request handler cannot spawn a sub-process or execute code after the
response has been sent.

2.6.1 Pricing

The pricing of App Engine is similar to other PaaS services. There exists a free tier
where an application can use up to 1GB of storage and up to 5 million page views in
a month. If user wants to use more resources he has to enable billing and after that
the resources are billed on usage. The usage is defined by a daily quota. User sets
a daily max amount of usage and the App Engine allocates the resources up to that
amount.

The real costs of App Engine is divided between the frontend instances, back-
end instances, bandwidth, stored data, and datastore operations (write, read, small).
The daily quota is consumed by all of these. For example, the cheapest frontend in-
stance (F1) is $0.12/h and cheapest backend instance is $0.08/h. The most expensive
frontend instance (F4) is $0.32/h and the most expensive backend instance (B8) is
$0.64/h. Stored data in blobstore is $0.13/GB/month and stored data in datastore
is $0.24/GB/month. Datastore operations are between $0.07 and $0.10 for 100,000
operations.

19

2.6.2 Scaling

There is little information available on how scaling is implemented in App Engine.
The only thing that Google provides is the following sentence [37] : "Automatic
scaling is built in with App Engine, all you have to do is write your application
code and we’ll do the rest. No matter how many users you have or how much data
your application stores, App Engine can scale to meet your needs."

2.6.3 Security

There is not a lot of information published about Google’s perspective on informa-
tion security in App Engine. Security assurance is provided by audition [27] of a
third party auditer. App Engine is also tested against the SSAE-16 standard [27],
thus making sure that the security is not just trusting Google’s word. The authenti-
cation process is done with a Google account.

2.6.4 REST implementation

The context of this paper revolves around the construction of QCloud API that pro-
vides the basic file storage API’s for Azure and S3. The decision to exclude App
Engine from the comparison comes from the completely different nature of the ser-
vice. App Engine requires the user to have the program already in the cloud in order
to access the storage services.

2.6.5 Summary of the service providers

Now that I have gone through the SP’s that I will concentrate on a short summary
is in order. The SP’s differ from one other on almost all of the details. On one hand
Amazon is a free-for-all provider that gives you a virtualized computer to work on
and release your applications, and on the other end of the spectrum is GAE which
provides scalability via restricting the developers abilities to a certain degree. Azure
is the middle ground between these two providing services from all of the levels of
the cloud stack, but the free-tier does not exist.

There are open source services that provide their own PaaS implementation that
one can deploy to a Cloud of their liking. For example, Open Stack [57] is an open
source Cloud computing platform that provides different implementations for com-
pute, storage, and networking. Apache’s CloudStack [59] is another good example.

20

These open source alternatives can be deployed in already existing infrastructure
and thus provide the benefits of the Cloud, for example elasticity. CloudStack sup-
ports the EC2 and S3 API’s and thus applications using those services can be trans-
ferred to private Cloud’s easily.

21

3 Qt

In this chapter I will go through the history and initial development of the Qt-
framework. I will explain the special features of Qt and why it is used today. Also
I will explain the basic development flow on Qt. Qt has an original view on event
handling called signals and slots so those will be explained in this section. After
looking in the past I will go through the future of Qt and how Qt 5.0 will change
the development paradigm that is used today. Then I will present the example pro-
grams found in Qt 4.8 and the tools for testing and documenting. After this chapter
you should have a good understanding on the history, development, program struc-
ture, testing and documenting Qt programs.

3.1 History

The history is based on the chapter "A Brief History of Qt" in the book C++ GUI
Programming with Qt 4 by Jasmin Blanchette and Mark Summerfield [42].

Haavard Nord and Eirik Chambe-Eng began creating an object oriented display
system in 1991 that would eventually develop into Qt. The main goal was to make it
easier and faster to develop applications to the X11-window manager. Three years
later they founded Quasar Technologies which was later renamed as Trolltech. Qt-
framework was developed in Trolltech until the year 2008 when Nokia bought the
company. At the same time Trolltech was renamed to Qt Software.

The first official release of Qt-framework happened in 1995. At this time Qt was
ported to Unix and Windows. The reception of Qt was positive, but the initial usage
was limited. At this time Qt was licenced under two different licences: a commercial
one that required payments to Trolltech and a free one called FreeQt. One of the
biggest early adopters was KDE. KDE is an international free software community
that also develops the KDE Plasma Workspaces graphical enviroment. As the time
passed the support for different platforms was improved in Qt, and in the version 3
the support for Mac Os X was added.

A notable milestone in the history of Qt came in 2008 when Nokia bought Troll-
tech and the Qt-framework. After the switch of ownership there were changes done

22

to the framework to match Nokia’s vision. Less used parts of the framework were
deprecated and the development of QTopia was cancelled. QTopia was a framework
intended for mobile devices and as Nokia was building their own implementation
the need for QTopia reduced. Qt was also licenced under LGPL-licence. As the
QTopia project was cancelled the development began on a new API for mobile de-
vices. The API was called Qt Mobility. Qt Mobility offers general components that
are needed to make an application for a mobile device.

Another notable milestone came when Nokia decided to change their mobile
operating system to Windows Phone. This lead to the sale of the Qt commercial side
to Digia. Nokia is still a valued member of the Qt-project which is the open source
and free part of the Qt-platform. Commercial licences are now bought from Digia.

Originally Qt supported just *nix and Windows, but throughout the years many
platforms have been added to the support. For example, Java (JVM), embedded
Linux, Linux-based mobile platforms (Meego, Maemo), and S60-Symbian have been
included. Development language with Qt is C++ but many bindings for different
programming languages have been made. For example, Java, Python, C#, Haskell,
and many others are supported officially or via community made bindings.

Today Qt is a comprehensive framework that includes everything needed to
make platform independent software. Because Qt is offered free via the LGPL li-
cense, many open source projects have adopted Qt. For example, Google Earth,
Skype, Opera, and VLC media player have been created using Qt.

3.2 License

When Qt was originally released it was under Trolltechs proprietary FreeQt-licence
and Windows development was closed and required a license from Trolltech. The
free licence applied only to software written to *nix and that made the source code
available after release. Also commercialization of software was forbidden under the
FreeQt licence. Trolltech was also the highest power when considering changes to
the Qt-framework. This kind of licencing was frowned upon by the open source
community and they required changes to the licence.

Trolltech changed the FreeQt-licence to comply closer to GPL (Gnu Public Li-
cence) and renamed the license to QPL (Qt Public Licence). This was not enought
to please Free Software Foundation (FSF) and as a compromise Trolltech announced
that if they ever stopped developing the open source version of Qt, the open source

23

community could take it under their wing. In the end of 2000 Trolltech moved Qt
under GPL and after Nokia purchased them, the license was changed to LGPL.

Today, there are 3 different types of licences used in conjuction with Qt: Com-
mercial, GPL, and LGPL. Commercial licence is needed to make commercial soft-
ware and the licences are bought from Digia. The license also brings full support
from Digia and offers extra components to be used in the applications. The free lin-
censes (LGPL and GPL) have their own requirements on how the source code is to
be handled after the application has been released.

3.3 Qt framework

This chapter is based on Qt modular class library site [19].

Figure 3.1: The Qt Class Library, from qt.nokia.com [19]

In Figure 3.3, the Qt frameworks class library is depicted. Qt has components to
make full-fledged software that is platform independent. The framework is modu-
lar so that the developer can include only the parts that are needed. I will go through
the framework and give examples of the contents of each module [19].

• Core module includes all of the basic classes needed for development. The
classes include file I/O, event/object handling, multi-threading and concur-
rency, plugin and setting management and the Signal & Slot interobject com-
munication mechanism.

• GUI module contains functions needed to create GUI (graphical user inter-
face)’s. The functions include widgets, 2D-canvas with OpenGL-integration,
Style engine, and other functions that help shape the interface. With the style

24

engine developer can change the programs style to match his/her vision. With
the GUI-module developer can change the look and feel of the UI very liber-
ally. The structure of the user interface resides in a *.ui file that is in XML-
format.

• Declarative module is is the key component of QtQuick user interface creation
kit that will be the preferred means of UI creation in Qt5. It provides classes for
creating highly dynamic, custom user interfaces for touch-enabled and mobile
devices.

• Qt Webkit module is an implementation of the WebKit web browser engine to
Qt. It allows easy integration of web pages to applications.

• Qt Script module is an ECMA standard scripting engine based on JavaScript-
Core back-end. Qt Script provides QObject integration, brings Qt’s Signal &
Slot mechanism to scripting, and allows integration between C++ and script-
ing.

• Networking module provides provides complete client and server socket ab-
straction, and implements common protocols such as HTTP, FTP, and DNS,
i ncluding support for asynchronous HTTP 1.1.

• Database module brings database integration to Qt applications. It supports all
major database drivers, and lets the developer send SQL to the database, or
have the Qt SQL classes generate queries automatically.

• Unit testing module provides the abilities that are normally found on testing
frameworks to Qt applications and graphical user interfaces.

• XML module provides a stream reader and writer for XML documents, C++
implementations of SAX, and DOM and an XQuery & XPath engine. XQuery is
a simple SQL-like query language for traversing XML documents to select and
aggregate XML elements of interest and transform them for output as XML or
in some other format. XQuery simplifies query tasks by eliminating the need
for large amounts of procedural programming in C++.

• OpenGL module offers classes that make it easy to incorporate 3D graphics with
OpenGL and OpenGL ES in Qt applications. OpenGL is the standard graphics
library for building cross-platform, hardware-accelerated, high performance

25

visualization applications. While OpenGL is ideal for 3D visualization, it of-
fers little support for creating application user interfaces.

• Multithreading features Qt’s cross-platform multi-threading functionality sim-
plifying parallel programming, while added concurrency features make it eas-
ier to take advantage of multi-core architecture.

• Qt Graphics View module provides a surface for managing and interacting with
a large number of custom-made 2D graphical items, and a view widget for
visualizing the items, with support for zooming and rotation. Graphics View
uses a BSP (Binary Space Partitioning) tree to provide very fast item discovery,
and as a result of this, it can visualize large scenes in real-time, even with
millions of items.

3.4 Compilation

Figure 3.2: The compilation process of Qt software, from qt-project.org [33]

Compilation of a program that uses Qt framework depends on which language
binding is used. Because Qt framework is implemented in native C++, I will con-
centrate on the compilation process of C++ language programs. The compiling of
a program is automated in Qt, but the process is quite complicated behind the au-
tomation. The process can be seen in the Figure 3.2. Because Qt is a C++ framework

26

the developer can choose the compiler according to the platform and personal pref-
erence. For example, MinGW for Windows or GCC for *nix systems. After com-
piling the program the developer still has to link the object files and include the Qt
platform files. In this section I will go through the tools that a developer uses and
the Qt specific steps.

3.5 qmake

While Qt-programs can be compiled manually there are many required steps. That’s
why in Qt there is the qmake tool. qmake is a Qt version of the regular makefiles.
With the help of qmake the developer only has to write the source code andqmake
will take care of the rest. qmake will create a makefile according to the information
in the project file. Project files are manually made files that include the instructions
how to compile and what to include in the application. The instructions can be
made to take into account the platform that the program is compiled in, so a pro-
gram written with Qt can be compiled by the user on any platform. Project files
can also contain instructions to the compiler including enabling debugging and op-
timizations.

qmake and project files are meant to help the development of Qt applications,
but changes in the application can cause the developer to change the project files.
The changes are minuscule but they need to be made. If the developer is using the
Qt Creator IDE (Intelligent Development Enviroment), Qt Creator does the project
files and changes to them automatically.

3.6 UIC - User Interface Compiler

In Qt there are two methods for building an UI: writing the code yourself or using
an editor. The compilation of a self-written UI is easy, just compiling it, but when an
UI made with an editor is compiled, it has to go through the uic. UI-editor makes
an xml-file that has the definitions for the structure and items in the UI. This is then
driven through the uic that makes the needed C++ files from the UI files.

27

Figure 3.3: Signal & Slots from Qt-project [29]

3.7 Signals & Slots

Signals and slots is one of the key aspects of the Qt-framework, and they allow com-
munication between objects as seen in Figure 3.3. For example, in GUI programming
the developer wants a widget to be notified of changes to another widget when the
user clicks a button. In other toolkits this is achieved via callbacks. Callback is a
pointer to a function so if the function wants to be notified on changes elsewhere,
it passes a function pointer to the wanted function. The wanted function then calls
the function to be notified via the function pointer when something happens.

Signals can be emitted by an object when its internal state has changed and other
objects would like to know about that. The restriction is that only a class that defines
the signal, or a subclass, can emit the signal. When the signal is emitted the functions
connected to it are executed immediately and the execution takes place outside the
GUI event loop. The execution of code will continue after all of the functions in slots
have finished. If several slots have been connected to one signal they will be called
in the order they have been connected.

Slots are called when signal connected to them are emitted. Slots are normal C++
functions and can be called like functions are called. The only difference is that also

28

signals can connect to them. Slots have no restrictions on what can be connected to
them. Slots can be also defined to be virtual. Virtual is a keyword of C++ related
to inheritance. The implementation of a virtual function can be replaced by the
derivided class.

The Signal & Slot model is slightly slower compared to callbacks because the
emitting of a signal causes the following steps:

1. locating the connecting object

2. checking that receivers have not been destroyed during the emission

3. marshalling the parameters of the signal

The whole process is 10 non-virtual function calls, but the overhead is till less than
any new or delete operation.

The S&S model is provided by the Meta-Object System (MOS) inside Qt. It also
provides run-time type information and dynamic property system. The MOS is
based on three things:

1. The QObject class provides base class for objects that can take advantage of
the MOS.

2. The Q_OBJECT macro inside the private section of the class definition is used
to enable meta-object features.

3. The Meta-Object Compiler (moc) supplies each QObject subclass with the nec-
essary code to implement meta-object features.

Next I will go through the moc and it’s purpose.

3.7.1 MOC - Meta-Object Compiler

MOC is the tool that handles the C++ extensions of Qt. moc analyzes the header
files of the project and if it finds Q_OBJECT macro from it, it produces another C++
file that includes the meta-object code for the class. The generated file must be then
compiled and linked with the original file. The meta-object code is required for the
extra properties that Qt has when compared to standard C++. The calls to moc are
usually done automaticly by the build system so it does not require any extra trouble
from the developer. With the usage of moc and uic the Qt-specific properties can be
compiled using a ’regular’ C++ compiler.

29

3.8 Qt5

In this chapter, I will talk about what kind of changes the new Qt5 brings to Qt, and
how the development paradigm will change.

Qt4 was published in June 28, 2005, and it is over 7 years old. Application devel-
opment has changed much after that and new devices have emerged that has to be
taken into account. For example, the smartphone revolution has lead to the rise of
touchscreens in mobile phones.

Qt5 will change the paradigm of developing with Qt. Qt Quick will be the driv-
ing force in app development as it allows much more state-of-the-art interfaces to
be designed and implemented. The C++ aspects will be hidden in the data layer
doing the intensive tasks as the Qt Quick layer will take care of the interface logic.
Qt5 allows OpenGL/OpengGL ES to be used in the GUI design.

Lars Knoll who is R&D (Research and Development) leader at Qt Software busi-
ness unit wrote a blog post of the changes in the architecture of Qt that was done in
transition to Qt5 [23]:

• Base all Qt ports on Qt Platform Abstraction layer (QPA).

• Re-architech the Qt graphics stack.

• Modularize the Qt repository structure.

• Separate QWidget functionality to own library.

Qt5 includes also at least the following new features [24]:

• Qt Quick:

– See Section 3.9.2

• Qt Qml

– New module containing the QML engine.

– Performance improvements and enchancements to the language.

– Some changes required to old QML items written in C++ to comply with
the new SceneGraph.

• Qt 3D

30

– Now belongs to the Essentials module.

• Qt Webkit

– Qt Webkit essential module is now based on WebKit2. The C++ APIs have
not changed.

– Better performance and HTML5 compliance.

– The module based on WebKit1 as in Qt 4.x is now called Qt WebKit Wid-
get and available as an add-on.

• Qt Core

– QStandardPaths class giving standard locations for files.

– JSON parser and speed optimized binary format for JSON.

– MIME type recognition.

– New compile-time check of signal/slot connection syntax.

– New Perl-compatible regular expression engine.

– Many data structures have been rewritten and optimized for better per-
formance.

– C++11 support where it makes sense (but Qt continues to compile and
work with C++98 compilers).

• Qt Gui

– Support for top-level surfaces through the QWindow class.

– Built-in OpenGL support.

• Qt Network

– Support for DNS lookups.

– QHttp and QFtp classes removed (they are available stand-alone for those
that need them).

• Qt Location

– Maps and geolocation-related classes formerly part of Qt Mobility are
now in their own essential module.

31

• Qt Widgets

– All former QWidget based classes in Qt Gui have been separated out into
the new Qt Widgets library.

– Ported over to the new Qt Platform Abstraction architecture.

The most essential additions in the light of this thesis are the support for JSON
and the removal of QHttp. The QHttp has been replaced with QNetworkAccess-
Manager which is used to handle the communications between internet and appli-
cation. There has been many delays in the release of Qt5 Beta, and the first beta was
delayed for almost 3 months. Qt5 Beta1 was released on August 31st, and Qt5 RC1
was released on December 6th.

3.9 QtQuick and QML

QtQuick is a collection of modules that helps the developers to develop modern
fluid user interfaces. It was added to Qt after Nokia aquired Trolltech and they
needed another way to create UIs. The desktop world differs from the mobile and
the use cases are also different. QtQuick consists of a rich set of user interface ele-
ments, a declarative language for describing user interfaces (QML), and a language
runtime. A collection of C++ APIs are used to connect the high level functions to
classic Qt applications [17]. Next I will describe the declarative language and talk a
bit about the differences of QtQuick 1.0/1.1 and QtQuick 2.0 that Qt5 brings to the
table.

3.9.1 QML

QML or Qt Modeling Language is a high level declarative language. It was de-
signed to describe the user interface of the application. It can define the look and
application logic. JavaScript is used as the scripting language of QML so any imple-
mentation is done with it.

3.9.2 From QtQuick 1.0 to QtQuick 2.0

QtQuick 1.0 was intended for building applications for mobile devices and not so
much for desktop. QtQuick 2.0 will bring the same development paradigm to the

32

desktop applications. QtQuick 2.0 includes also many other improvements and new
features and I will now shortly review the most important ones.

• New JS engine: QtQuick 1.x used the JavaScriptCore engine to handle JS. QtQuick
2.0 changed that to Google’s V8 engine that should bring better performance.

• New Canvas Item: A canvas item that is similar to the HTML5 Canvas.

• OpenGL integration: The graphics stack has been remade and the new imple-
mentation uses OpenGL 2.0. This should bring performance improvements
compared to the QtQuick 1.x.

QtQuick 1.0 will be available as a separate library and a module.

3.9.3 QtCreator

Figure 3.4: Qt Creator IDE

QtCreator (QtC) is a cross-platform IDE (Integrated Development Enviroment) that
is provided with Qt. It has been tailored to ease the Qt application development.
QtC has features that are almost standard in the IDE’s of today including syntax
highlighting, code completion, easy source refactoring, parenthesis matching, and a
visual debugger. QtC also has an integrated UI designer and simulator for mobile
devices. Languages supported in QtC are C++, JS, and QML.

33

In Figure 3.4 is basic structure of QtC is illustrated. On the left side are all of the
different modes of the IDE (edit, design, debug, analyze etc..) and on the center is
the code view. Qt SDK includes the examples that can be also found from the qt-
project.org website. These samples can be viewed at the right side of the designer,
allowing easy learning.

3.10 QDoc

Qt documentation presents QDoc with the following sentence [21]: "QDoc is a tool
used by Qt Developers to generate documentation for software projects. It works
by extracting qdoc comments from project source files and then formatting these
comments as HTML pages or DITA XML documents, etc." QDoc comments always
begin with /!* and end with */. QDoc tool only searches .cpp and .doc files from the
project and comments placed in header files are disregarded. QDoc is mainly used
in the automatic documentation creation for Qt framework, wider adoptation has
not yet happened.

/*!

\class QCloudConnection

\brief Cloud connection Interface. Provides nesesary

functions for basic operations in file storage

that is located in the cloud.

QCloudConnection is the interface for a cloud connection

object. These methods are required and should be

implemented as documented.

*/

Figure 3.5: Documentation in QDoc format

3.11 QTestLib

QTestLib is a unit testing framework created by Nokia [25], and it is meant for test-
ing Qt’s libraries and software that uses them. QTestLib has the following proper-

34

ties, as mentioned by QTestLib documentation [25]:

• Lightweight: QTestLib consists of about 6000 lines of code and 60 exported sym-
bols.

• Self-contained: QTestLib requires only few symbols from the Qt Core library for
non-GUI testing.

• Rapid-testing: QTestLib needs no special test-runners; no special registration
for tests.

• Data-driven testing: A test can be executed multiple times with different test
data.

• Basic GUI testing: QTestLib offers functionality for mouse and keyboard simu-
lation.

• Benchmarking: QTestLib supports benchmarking and provides several mea-
surement back-ends.

• IDE friendly: QTestLib outputs messages that can be interpreted by Visual Stu-
dio and KDevelop.

• Thread-safety: The error reporting is thread safe and atomic.

• Type-safety: Extensive use of templates prevent errors introduced by implicit
type casting.

• Easily extendable: Custom types can easily be added to the test data and test
output.

3.11.1 Usage

Using QTestLib is easy, all developer needs to do is to create a new class that is
a subclass of QObject and add one or more private slots to it [25]. Private slots
represent the test functions in the class. There is four specified functions that can be
used to initialize and clean up the test structure:

• initTestCase(): is called before the first test function is called. If this fails no test
functions will be ran.

35

class Test : public QObject {

Q_OBJECT

private slots:

void initTestCase() { qDebug("Ran before anything else"); }

void firstTest() { int a = 1; int b = 1; QVERIFY(a == b); }

void secondTest() { int a = 1; int b = 1; QCOMPARE(a, b); }

void cleanupTestCase() { qDebug("Ran after everything else") }

};

Figure 3.6: Example test program using QTestLib

• cleanupTestCase(): is called after the last test function.

• init(): is called before every test function. If this fails the next test function will
not be ran.

• cleanup(): is called after every test function.

The testing is done with macros that QTestLib provides. There are 15 different
macros that provide different types of checks for the data. For example, QVERIFY(x)
checks if something is true (QVERIFY(1==1)), and QCOMPARE(x,y) checks if the
values x and y differ. QCOMPARE expects the values to be same and returns an
error if they differ. The macros also provide QEXPECT_FAIL that marks the next
QVERIFY or QCOMPARE to fail, thus not braking the testing structure. In Figure
3.6 an example test program that uses QTestLib is provided.

3.12 Example Qt program

Qt-project has an extensive archive of example programs that present how to do a
certain kind of operation. They range from simple Ftp client that shows how QFtp is
used to larger database examples that show how SQL and other relational databases
can be used in Qt. I will now present the QFtp example program as it was an initial
starting point to the QCloud API. I will also compare QFtp and QNetworkAccess-
Manager.

36

Figure 3.7: QFtp GUI

3.12.1 QFtp example

In Figure 3.7 one can see the basic GUI that provides needed functionality for the
program. The user first supplies an address to which the program then connects.
The connection is done via QFtp. QFtp has been part of Qt since Qt3, and it’s usage
is not recommended [22]. In the documentation the usage of QNetworkAccessMan-
ager (QNAM) is recommended for new programs as it provides simpler but more
powerful API [22]. I will now present the parts that connect to the given server and
how QFtp uses signals to give the results of the query. I will not go through the
whole example as it is not nessesary. The example can be found from qt-project [12].

ftp = new QFtp(parent);

connect(ftp, SIGNAL(commandFinished(int, bool)), this,

SLOT(ftpCommandFinished(int, bool)));

connect(ftp, SIGNAL(listInfo(QUrlInfo)), this,

SLOT(addToList(QUrlInfo)));

connect(ftp, SIGNAL(dataTransferProgress(qint64,qint64)),

this, SLOT(updateDataTransferProgress(qint64,qint64)));

37

QUrl url(ftpServerLineEdit->text());

ftp->connectToHost(url.host(), url.port(21));

In the listing above one can see the usage of QFtp. The first thing is creating
new QFtp object. After that it’s singals are connected to local slots that perform
certain actions. QFtp’s replacement QNAM is also used like this. After that new
QUrl is made from the address the user has inputted to LineEdit, and after that
the connection is made using the URL. Again this same type of syntax is used with
QNAM. As Qt uses signals to indicate that the operation has finished, it is easy to
make asynchronious calls to Internet.

QString fileName = fileList->currentItem()->text(0);

file = new QFile(fileName);

...

ftp->get(fileList->currentItem()->text(0), file);

The get request is made in the listing above, and when the download has finished
QFtp emits ftpCommandFinished(int, bool)-signal.The structure of first creating the
connection, connecting the needed signals, doing requests, and finally getting the
file can be used with QNAM. I will present a small example of QNAM’s usage as it
will show the similar nature of the two.

QUrl url("http://sisuguild.fi/~jage/examplefile.zip");

QNetworkAccessManager *qnam = new QNetworkAccessManager(this);

QNetworkReply *reply;

connect(reply, SIGNAL(finished), this, SLOT(requestFinished()));

reply = qnam->get(url);

In the listing above zip file is downloaded from the given address. QNAM re-
turns a pointer to the reply object that contains the downloaded file. When the
download has finished the reply object emits finished()-signal and after that the data
can be read from it.

In this chapter I have explained the history of Qt framework, what it contains,
what is the special features about it, how Qt5 will change the development paradigm,

38

and different tools that help the developer. The last part was an example that shows
how network connections are created with QFtp and QNAM, and how they inform
the developer when the action has been completed.

39

4 Software development for cloud

Developing software to cloud is similar to developing programs to ’regular’ com-
puters. The API’s can differ from SP to SP so there is a need to find a best suited
offering for the program before deciding where to deploy it. In this chapter I will
give a couple of examples how the Cloud can help the regular programs. After
that I will explain how Qt can be integrated to cloud services. The different levels
of the software stack are placed on different levels and I will present use cases of
each of the possiblities. After this the reader should have a knowledge of how soft-
ware development for cloud is done and how the integration of Qt to Cloud can be
achieved.

4.1 Differences in architectural views

The real inspection of the Cloud requires an inspection of how the Cloud differs
from the traditional local software development. Software development has been
regularly modeled using the three-tier model (Data, Logic, View). In this model the
lowest level is the data-level where data is stored. The separation of data from the
software logic helps to keep the data neutral since it is not related to the upper levels
of the model. The separation also brings better scalability and performance. In the
Cloud this level can be thought to be on the border of PaaS and IaaS.

The second level of the model is logic. This level refers to the application logic
and controls the program execution. This level is the controller of everything the
program does. With the separation of data, this level can exist without needing to
know where the data is located.

The third and the highest level is the view. View is the user interface of the
program. It does not have any application logic in it but it communicates with the
logic-layer to provide the user with the wanted features.

With the separation of data, logic, and view gives the program an elasticisty,
scalability, and performance that is hard to achieve with all of the aspects being
in the same layer. In the cloud, developer can create a new data layer object for
every user and place them in different instances. This way the user will see an

40

improvement in the performance. With the Cloud the separation is clearer because
the Cloud stack is divided according to the three-tier-model.

The implementations of API’s differ from SP to SP. This can be a hindering fact
to the developer as he/she has to change a portion of the codebase as the program is
transferred to another SP. Armstrong et al. [40] mentioned the lack of standardized
APIs as one of the risks of the Cloud. To alleviate the different implementations in
this thesis I will concentrate on the REST (Representational state transfer). REST
allows the ability to use the API’s via standardized protocol making an implemen-
tation of a general Cloud API possible. The REST-implementations are similar for
all of the SP’s, but they do have some differences.

When developer decides to incorporate elements from the Cloud to the applica-
tion, there are some questions that the developer to consider: what level of integra-
tion is needed to provide the wanted features, and how does the application work
if the Cloud is not accessible. I will now analyze these two questions a bit.

The three-tier model presented earlier provides a nice frame of reference to in-
spect the different levels of integration between the software and the Cloud. I
present the following model to represent the cloud integration:

• Integrating the data layer: The developer decides to use the storage(table, blob),
or computational services of the SPs.

• Integrating the logic layer: The developer decides to use the two lowest layers
of the cloud stack (IaaS, PaaS) and implementing the view on the application.

• Integrating the view layer: The developer deploys the application to the Cloud
and it is used via browsers. This includes all of the layers of the cloud stack
(SaaS)

In the first scenario the developer uses only the storage aspects of the SP’s. De-
veloper can take the stored application data to the Cloud, thus providing accessibil-
ity to it almost universally. If the data is not also kept locally, there is the possibility
that the application can not access the data at a given point and time. This could
lead to malfunctions, of course depending on the type of application. This is the
stepping stone of the Cloud as it requires access to the Internet, and it is still not
available everywhere. The other data layer service would be to integrate calcula-
tions done in the Cloud to an application. This can help if the used device is starved
on computational resources, or the calculation jobs would be really intensive. Of

41

course the calculation can not be used in a program that requires the calculations
done instantly as the transfer of data will take some amount of time. This would be
the developers job to decide if the gains of using the Cloud are larger compared to
the transfer times.

In the second scenario the developer uses the two lowest levels that the SP’s
provide. In this scenario the developer only has to do a ’stupid terminal’ on the
device that then connects to the cloud to use the software logic and data. This could
be the most versatile approach as the developer can choose via design choices that
something could be done in the cloud and something could be done in the device.
Size of the application would also be small and the required resources on the device
are small, almost the only crucial thing is somekind of a way to access the web.

The last scenario is that the developer uses the SaaS level. This means that the
whole software is located in the Cloud and it would not be necessary to install any
extra applications on the device.

4.2 Development using Qt

In this section I will inspect the Qt framework and how it could be integrated with
different cloud services and different SP’s. The inspection will be on the three-tier
model and how these three tiers could be integrated in the Cloud.

Like I have previously mentioned, Qt is a platform independent framework, and
it has bindings for almost all of the major operating systems. The ability to code
once and run everywhere is a major bonus in Qt. In the second chapter I introduced
cloud computing and the different service providers, but I did not address how the
Cloud paradigm changes the developers view. I will now go through the chosen
service providers and ponder, how the Qt applications could be deployed there.
There are two different scenarios that can be thought to be realistic: placing the data
layer to the cloud, or placing data and logic layers to the cloud.

4.2.1 Amazon

The best possiblity to integrate Qt applications is to make them in the Cloud. Ama-
zon provides IaaS-services so that the developer can start an instance in the Cloud
and then place the developed program there. The developer can choose from Linux
and Windows operating systems to which Qt provides support. As Amazon pro-

42

vides fully fledged operating systems in the cloud there is a possiblity to do the
software development in there. In the case of QtCreator this would require graph-
ical user interface, but, for example in Linux, the command line is enough (qmake
etc...). It is possible to start a window manager in Linux, and Windows Server pro-
vides it out-of-the-box.

The integration of data layer to the cloud is the simplest way to integrate the
Cloud to software. Application would still be run on the users device, but the stored
data would be in the Cloud. Amazon provides blob and table storage to incorporate
in the programs. The connection to the cloud can be done via RESTful interfaces
that Amazon provides. Amazon provides also computation in the cloud and it also
could be integrated in the software.

Amazon instances could be used to host the whole program and then provide a
user interface on a website. In this scenario everything should be in the cloud. This
possibility is only available on the Amazon services at the moment, as Microsoft’s
virtualization services are in the beta stage.

The open source implementations of private clouds are similar to Amazon’s APIs
so there is a way to move from the corporate cloud to a private cloud if the need
arises [57, 59].

4.2.2 Azure

Like I mentioned in the Azure section of the Cloud computing chapter, Azure has
three different compute roles: web-, backend-, and, in the beta stage, legacy. Web
roles are ran on the IIS7 (Internet Information Service) web server. Integration be-
tween Qt software and this role is not feasible because the web technology nature
of the service. As QML and JS is used on Qt applications the integration of the user
interface can someday be possible, but at this moment its not.

Azure provides data storage that is usable via RESTful interfaces. Thus the sce-
nario of integrating the data layer is possible in Azure. The use cases are similar to
Amazon.

Azure has a rentable VM service, but it is still in the beta stage. The service of-
fers a customizable Windows Server 2008 instance in the Cloud. Microsoft requires
that the developer keeps the VM up to date so there is some extra work required
from time to time. As the VM offers a full operating system, there is the possibility
of running Qt applications there. However there are some restrictions to the VM
role. Azure requires that the application running in the VM complies to the stateless

43

requirement shared by all of the roles. For example, SharePoint, SQL Server, Small
Business Server, and Terminal Server are applications that can not be used in the
VM role [34]. The requirement can be complied via using Azure’s own services in
the application.

4.2.3 Google App Engine

GAE is the most strict of the chosen SPs and the integration of Qt applications can
prove to be too hard. Applications running in the GAE are made with the GAE SDK
and the language support of the SDK is small. Google provides support for Java,
Go, and Python. A Qt application could use the GAE as a backend, but it should be
written in the aforementioned languages. The extra work makes this option worse
than the others. Google does provide storage services that could be used from a Qt
application, but, in this thesis, I won’t take this into account. This decision comes
from the fact that further integration is at the moment not possible.

4.3 REST API comparison between Azure and Amazon

In earlier sections I presented the general properties of each SP, and now I will com-
pare them in the context of this work. The integration of different SP’s can be chal-
lenging because almost all of them have differences in their API implementations.
For example, App Engine is made so that one can not use it in the same manner as
the Azure and Amazon to save files. File storage is the first feature of the QCloud
API so this leads to the fact that App Engine will be left out of the later comparisons.
Both of the remaining SPs offer REST interfaces in conjuction with their own propi-
etary interfaces so when designing a general API that would work on both, REST is
the way to go.

For the sake of this example I presume that the storage account/account name is
exampleaccount and there exists the following file structure in the cloud:

• Bucket/Container: example

Blob: examplefile.txt

In Azure all of the containers are within a certain storage account that has its own
namespace and user can have many active storage accounts at the same time. In
Amazon the user has an account that has the buckets inside of it and the namespace

44

is shared with all of the users of S3. This can create interesting situations as the most
used bucket names have already been taken. Next I will introduce the structures of
the signature strings.

Str ingToSign = VERB + "\n" +
Content−Encoding + "\n"
Content−Language + "\n"
Content−Length + "\n"
Content−MD5 + "\n" +
Content−Type + "\n" +
Date + "\n" +
I f−Modified−Since + "\n"
I f−Match + "\n"
I f−None−Match + "\n"
I f−Unmodified−Since + "\n"
Range + "\n"
CanonicalizedHeaders +
Canonical izedResource ;

(a) Azure

Str ingToSign = HTTP−Verb + "\n" +
Content−MD5 + "\n" +
Content−Type + "\n" +
Date + "\n" +
CanonicalizedAmzHeaders +
Canonical izedResource ;

(b) Amazon

Figure 4.1: Strings to sign

In Figure 4.1 one can see the differences of the strings that are used to com-
pute the signature to the request. These are created and after that hashed with
HMAC (Hash-based message authentication code) and the chosen SHA-algorithm
(1 or 256). In the QCloud API I used SHA1 for Amazon and SHA256 for Azure. The
difference in hash algorithms is explained later in the Section 5.2.

As the created signatures differ also the required headers in the requests differ.
Next I will present the structure of the requests.

Amazon

• Request URL:

http://example.s3.amazonaws.com/examplefile.txt

• Required headers:

45

AWSAccessKeyID: The unique access key of the user.

Signature: The result of hashing the string to sign with HMAC-SHA1.

Expires: Seconds from Epoch added the amount of time one wants the
request to be valid.

Azure

• Request URL:

http://exampleaccount.blob.core.windows.net/

example/examplefile.txt

• Required headers:

Authorization: Includes the used authentication (SharedKey or Shared-
KeyLite), storage account name and the HMAC-SHA256 hash.

x-ms-date: RFC1123 formatted date string.

x-ms-version: The API version used.

I will explain the differences from the Qt point of view in Section 5.2, as the
minute differences brought a lot of troubles in the creation of API. Azure also re-
quires that one specifies the wanted operation in the request. If one wants to list
all of the files in a certain container the following operation specifier is added to the
URL: ?comp=list. In Amazon this would be done with GET operation on the bucket,
and it would need no further specification.

PUT-requests differ from the GET- and HEAD-operations in both services. In
Amazon PUT-operation adds Content-Type-header that is the MIME-type of the
sent file and Content-Length which is the length of the message without the head-
ers, as specified in RFC 2616. Azure, on the other hand, needs the same Content-
Length, but it is needed also in the signature string. Also Azure needs x-ms-blob-
type-header which specifies if the file is page blob or block blob. The differences of
these two blob types are as follows [32]:

• Page blob: Page blobs are a collection of 512-byte pages optimized for random
read and write operations. When creating page blob one needs to specify the
maximum size of the page and also initialize it. When writing to a page blob
the user can write over the old page or add to the page by continuing from the
end. The maximum size of a page blob is 1TB.

46

• Block blob: Block blobs are comprised of blocks, each of which is identified by
a block-ID. Blocks can be different sizes but the maximum size is 4MB. The
maximum total size for a block blob is 200GB and it cannot contain no more
than 50000 blocks. Files larger than 64MB cannot be uploaded in a single PUT-
operation. For larger files the developer needs to chop the file in to pieces and
send them one by one. If the file is sent in a one go, the file is uploaded and
the change is committed to Azure. If the file is uploaded in many parts, the
developer needs to first upload all of the part using the same operation, and
after that call the Put Block List-request. In the request the developer specifies
the changed blobs and thus making the commit to the service. If the developer
does not commit the blobs, the service discards the uncommitted ones in one
week.

Amazons service differs from Azure as it does not have two different types of
blobs, but it has only one type: object. The size of object an can range from 1 byte
to 5TB. The user can upload a object in a one go or in many different parts. When
dividing the upload Amazon requires user to take the following steps [20]:

• Initiation: The developer initiates the upload, and Amazon returns a unique
multipart upload id which is required in each of the requests.

• Part upload: The developer specifies the upload id of the part and also specifies
a part number. Part number can be any number between 1 and 10000 and it
specifies the position of part in the whole object. If the part number is already
used the new upload overrides the old part.

• Completion: Complete multipart upload request contains the upload id, object
metadata if it was not provided in the initiation, the part numbers uploaded
and the corresponding E-Tags of the objects. After the request is sent Amazon
constructs the final object from the parts and the parts cease to exist.

4.3.1 Comparison of REST API’s using example

Next I will compare the REST-implementations of Azure and Amazon from the stor-
age point of view. I will compare the required headers of the requests, the differ-
ences in the requests, and the authentication strings. I will elaborate the differences
using the following example:

47

Figure 4.2: Sequence and responses

• Getting the list of buckets/containers,

• getting the file listing of a bucket/container,

• getting a file from a certain bucket/container.

This is decipted in Figure 4.2. From now on I will refer both containers and buck-
ets as CloudDir. This is the name that they are called in the QCloud API. Getting
the list of containers and buckets is similar in both SP’s. The basic structure is a
GET-request on the root of the account.

• Amazon request URL: http://s3.amazonaws.com/

• Azure request URL: http://exampleaccount.blob.core.windows.net
/?comp=list

In both services this will return an XML-file that contains information of the
clouddirs in the account for example: creation date, size, owner, name and many
other. The structure of the XML responses are quite similar and the names of the
clouddirs are contained in the Name-field. The next step is to get the content listing
of a certain CloudDir called example:

• Amazon request URL: http://example.s3.amazonaws.com/

48

• Azure request URL: http://exampleaccount.blob.core.windows.net
/example?comp=list&restype=container

These requests return the contents of CloudDir example. Again the response is
XML formatted and contain many more fields than just the names of the contained
files. After this the, last step is to get a certain file from the CloudDir. In this example
the file is named examplefile.txt.

• Amazon request URL: http://example.s3.amazonaws.com/examplefile.txt

• Azure request URL: http://exampleaccount.blob.core.windows.net
/example/examplefile.txt

The return message from SP’s contain the contents of the examplefile.txt. In ev-
ery step, except getting the listing of CloudDirs, if the requeted blob/CloudDir does
not exist, the service returns an error message. As this example shows, the basic
structure of the REST API’s is quite similar, only the requests differ in some sense.

In this chapter I explained the differences and the similarities of the REST API
implementations of the chosen SP’s. I also explained how the services differ from
each other in the sense of the storage aspect, and how cloud storage could enhance
programs.

49

5 QCloud API

The end result of this thesis is QCloud API which brings the Cloud to the developer.
The driving idea behind QCloud was that the developer would have an easy way
to add cloud storage to programs with minimal changes and without many new
dependencies. In this chapter I will first explain generally on API design and what
qualifies as a good API. After that I will present the QCloud API and the design
choices behind it. Last I will evaluate the QCloud API according the good API
design priciples I presented.

5.1 On API design

In this Section I will present four different views on what constitutes a good API.
After that I will try to find the similarities in these four views. After this section the
reader should have a good understanding on the basic priciples of API design and
what makes a API good.

In the book "API design for C++", Martin Reddy describes the design of a good
API as follows [58] : "An API is written to solve a particular problem of perform a
specific task. So, first and foremost, the API should provide a coherent solution for
that problem and should be formulated in such a way that models the actual domain
of the problem." This is a strict view of thinking about API’s. It constricts an API to
do one thing and do the one thing without difficulties and side effects. Reddy also
talks about that the API should use the same kind of terms as the domain where the
API would deployed, as it would help the users to fantom the concepts easier.

Michi Henning gives another good explanation in his article "API Design Mat-
ters" [51]: "Good APIs are joy to use. They work without friction and almost disap-
pear from sight: the right call for a particular job is available at just the right time,
can be found and memorized easily, is well documented, has an interface that is
intuitive to use, and deals correctly with boundary conditions." Even though Hen-
nings definition is broader, the same underlying issues are present here. Both au-
thors have an idea that the API should have just the needed functions and tools
for a certain job, nothing more. Henning’s view mentions intuitive use and cor-

50

rect boundary condition handling. These can be thought to be the logical match to
Reddy’s coherent solution.

In his presentation: "How to design a good API and why it matters", Joshua
Bloch [43] presents the following qualifications for a good API: easy to learn, easy
to use even without documentation, hard to misuse, easy to read and maintain code
that uses it, sufficiently powerful to satisfy requirements, easy to extend, and appro-
priate to the audience. There are again many similarities in Bloch’s definition and
the two earlier ones. All of them mention that the API’s should be easy to use to
a level where one can learn the API just by using it from the IDE. Also all of them
mention that an API should just do one thing well and not include useless methods.
Bloch and Henning mention documentation that Reddy does not. Documentation
is important as it is the place where the developers learn how to use the API and if
the documentation does not tell them how to use the API they wont use it.

From these three one can extract the following rules for a good API: it should
do one thing and one thing well, it should be documented so that one could learn
to use the API just by reading the documentation, it should be tested well, and it
should be easy to use.

Qt has it’s own API design instructions [46] that I will now go through. Qt’s API
design guidelines mention six properties of a good API: be minimal, be complete,
have clear and simple semantics, be intuitive, be easy to memorize, lead to writeable
code. As one can see from the previously mentioned definitions, Qt API’s guidelines
have the same principles behind them. The guideline has also other rules for things
to avoid. These include:

• The Convenience trap: Less code is not always better. Code can be written once,
but it is read many times after that.

• The Boolean Parameter trap: Boolean values can lead to unreadable code.

• Static polymorphishm: Similar classes should have the same kind of API and
inheritance should be used when possible.

• The Art of Naming: The naming should reflect the conventions of the problems
domain and naming can make or brake an API.

• Pointers or References: In Qt pointers are preferred, because it can make the user
code more readable.

51

These four different views on API design are quite similar and I will evaluate the
QCloud API with these in mind in Section 5.5.

5.2 Implementation

In this Section I will present the construct QCloud API. First I will explain what ser-
vices could be integrated to the API and after that I will explain what services I chose
to include. Then I will explain why I chose to build the API the way I did. I will go
through the basic structure, explain the functions and present the difficulties I had
with certain parts. After this chapter the reader should have a good understanding
what QCloud API is, how is it used and what it can give to a software developer.

The design of the API started with inspection of the QFtp example that I pre-
sented earlier in Section 3.12. It provided a nice logical match to the operation of
putting and getting files from the Cloud, and the only real difference would be that
the communication would be little more complicated. In the beginning I also looked
at the different database services in the Cloud and how they could be integrated to
the API. They were left out of the first prototypes, as they differ from file storage in
many ways. Earlier in the Section 4.1 I presented the three different levels of Cloud
integration. The API would be placed on the lowest levels, as it uses the Cloud only
as a storage device.

As the development of the QCloud API began the first step was to compare the
different REST API implementations of Amazon and Azure. As I have previously
mentioned the basic structure is almost same, but there are couple of differences:
Amazon accepts the signature to be done with HMAC-SHA1 and HMAC-SHA256,
but Azure accepts only SHA-256. As Qt did not provide SHA-256 implementation
at that moment, I decided to start the implementation process with Amazon.

Qt provided QNetworkAccessManager (QNAM) that contained the needed func-
tionality to send GET-, PUT-, and HEAD-requests to the service. QNAM is a asyn-
chronious, and thus the responses from the service are not usable until the response
object, QNetworkReply, emits a signal finished. This requires a certain type of struc-
ture to the program as the parsing and overall usage of the response can only begin
after the response is finished.

The development of the API continued with an example program demostrating
the possibilities that the API would offer. The first draft of the implementation in-
cluded getting the list of buckets, and their contents. The draft revolved around a

52

class named QRestHelper, that took care of everything. As the good design princi-
ples require that a class should have minimal responsibilities, QRestHelper would
next be sliced in to pieces. QRestHelper contained the basic structure of the encod-
ing methods that would later take care of creating the requests and signatures. As
the development progressed, first alpha versions of Qt5 began to surface. Qt5 con-
tained SHA256-algorithm that was required to start working on Azure. I ported the
algorithm from Qt5 to Qt 4.8.3 that I used for the development. This allowed me to
really start looking at the differences between the two SP’s.

The most striking difference was that Azure required more headers in every re-
quest, and the operation had to be included in every request. Amazon’s API did
not require a operation as the request itself contained the information needed to dif-
ferentiate the requests. Signature strings were constructed in a similar fashion from
the headers of the requests. This led to the current iteration of the API structure.

Figure 5.1: QCloudConnection and it’s subclasses

In Figure 5.1 the inheritance from interface QCloudConnection is shown. QAmazon-
and QAzureConnection implement the interface and thus provide the same func-
tions for the developer. I will go through the functions in the next Section. As the
basic operations for both services did not differ too much this approach could be
used. The defining use-case of the QCloudAPI would be handling the data transfer
to and from the cloud.

During the development I realized that there should be a corresponding class for
a item that would be located in the Cloud. Using the regular QFile and QDir did not

53

seem possible as the items had the following three different states:

1. Item was purely local: The item was created on the computer and there weren’t
a corresponding item in the Cloud.

2. Item was purely in the Cloud: The item was in the Cloud, but a local copy did
not exist.

3. Item existed in both: The item existed in the Cloud and locally.

I created a container class called interface called QCloudItem that would help
with handling of these states.

Figure 5.2: QCloudItem inheritance

In Figure 5.2 the inheritance of QCloudItem is shown. QCloudFile and QCloud-
Dir are wrapper classes for QFile And QDir that also contain information on if they
are local or just in the Cloud. They implement the QCloudItem interface that only
has one function, isLocal(), that returns a boolean value containing the information
that where the file was created from.

There is also three different types of response-classes that are used with the asyn-
chronous methods (asyncGetCloudDirs, asyncGetCloudDirContents, and asyncGet-
CloudFile): QCloudFileResponse, QCloudResponse, and QCloudListResponse.
QCloudListResponse is returned when the operation is a listing, for example, when
getting the list of clouddirs or when getting the contents of a clouddir. The QCloud-
FileResponse is returned when the operation deals with a file, for example, getting

54

a cloudfile from the Cloud. QCloudResponse is returned when the return value of
the operation can be considered to be a boolean, for example, putting a cloudfile to
the Cloud. I will explain the need for response-classes later in Section 5.5.

5.3 QCloud API

In this Section I will present the API and it’s structure. First I will present the struc-
ture of the QCloudConnection-interface, and after that I will go through an example
case of usage. After that I will explain the difficulties that were encountered in the
construction and last I will reflect on the construction and critically review the API.

In Appendix A you can see the structure of QCloudConnection. There are total
of 20 functions and four different signals that are required to provide the needed
functionality. The design choice of creating an interface that then would be inherited
was made because the overall structure of the calls are so similar. This is because the
QCloudConnection is basicly a program that translates the users requests to REST
requests. As I have previously mentioned the REST implementations are similar.
For example getting a certain file from a certain bucket would have the following
operations:

• Create new connection: Create new connection object for the wanted service
provider

• Get list of buckets: Get the list of buckets with QCloudConnection::getCloudDirs()

• Get contents of bucket: Get the contents of certain bucket with QCloudConnec-
tion::getCloudDirContents(QString bucketName)

• Get the file: Get the file with get(QString bucketName, QString fileName)

The same structure works for both services and the only real difference to the de-
veloper is in the creation of the connection. The scenario presented above happens
when the location, in which bucket the file recides, is not know. If the developer
knows where the files is, he/she can call get(bucketName, fileName) after the cre-
ation of the CloudConnection. The biggest differences in the implementation are
in the encode(const Request &r)-functions. Encode function creates the signature
strings that the services uses to autenticate the request. The flow of operations in-
side the encode function is similar in both services:

55

• Create stringToSign: StringToSign contains the structure of the request.

• Create signature: Signature is created using HMAC-SHA1/256 where the string-
ToSign is the message and the secret key of the user is the key.

• Create request: The request URL is created inside a QUrl, and it is placed inside
QNetworkRequest.

• Return request: Return the created QNetworkRequest.

As the encode functions are the places where the real differences can be found, I
have included them in Appendices. Amazon’s implementation can be found from
Appendix D, and Azure’s from Appendix E. Otherwise the request creation is done
with the struct Request. The wanted operations are added to the struct and en-
code functions make the QNetworkRequest’s from them. The signature is created
by HmacSHA-class, that implements the HMAC hashing algorithm. The class con-
tains a enum called HmacSHAType that has two values: SHA1, and SHA256. The
only function in the class is hash that takes three parameters: HmacSHAType, the
stringToSign, and the users secret key. With these three parameters the class creates
the hash and returns it.

There are minute differences in the request creation between the services: Ama-
zon does not recognize requests if just the request URL is place inside QUrl and the
needed headers are then added to QNetworkRequest. This is the way that Azure
requires the request to be formed. Amazon requires the headers to be placed in the
QUrl object and that then placed in the QNetworkRequest.

5.3.1 Testing

QCloud API is tested using the QTest-unit test library that I presented in Section
3.11. The tests test every function both in Amazon and in Azure. The functions are
tested for a positive result (the operation was a success), and for a negative result
(the operation failed). The tests presume that there is a certain file structure present
in the Cloud. The creation of the structure is not automated at the moment, and it
really should be made so that when the tests are ran, initialization creates the file
structure to the Cloud. As all of the operations require valid credentials, the tests
included in the project cannot be ran before inserting one’s own credentials. Next I
will present the structure of tests and what functions they test.

56

There are a total of 27 tests: 5 for the QCloudFile and QCloudDir, 10 for QAma-
zonConnection, and 10 for QAzureConnection. The tested functions in the classes
inherting QCloudConnections are:

• getCloudDirs(): Positive and negative result.

• getCloudDirContents(QString cloudDir): Positive and negative result.

• get(QString bucket, QString file): Positive and negative result

• asyncGetCloudDirs(): Positive result.

• asyncGetCloudDirContents(QString cloudDir): Positive result.

• asyncGetCloudFile(QString bucket, QString file): Positive result.

The lack of negative case testing for the async-functions, is based on the fact that
the response-objects contain the QNetworkReply pointer, and thus the errors can be
seen from it. With these basic tests the functionality of the API can be proven. Next
I will present couple of example tests both for the positive and negative results.

void QCloudTest::testAzureGetCloudDirs() {

QCloudConnection *conn = new QAzureConnection("","","");

QList<QString> buckets = conn->getCloudDir();

QCOMPARE(buckets.at(0), QString("test"));

}

void QCloudTest::testAmazonGetCloudDirs() {

QCloudConnection *conn = new QAmazonConnection("","","");

QList<QString> buckets = conn->getCloudDir();

QCOMPARE(buckets.at(0), QString("test"));

}

Above you can see the basic structure of a test that gets the listing of buckets in
the Cloud. The test presumes that the first bucket in the list is named test. The test
are almost indentical, and the only difference is the creation of the QCloudConnection-
object. Both of the tests test for the positive case of the synchronous getCloudDir()-
methods. Next I will present how I tested the negative results.

57

void QCloudTest::testAzureGetCloudDirsFail() {

QCloudConnection *conn = new QAzureConnection("","","");

QList<QString> buckets = conn->getCloudDir();

QCOMPARE(0, buckets.size());

}

The test above shows how I tested the negative case usually. There is one kind of
error that can happen in the listing of clouddirs: the credentials are false. In the test
I test with wrong credentials and expect conn to return an empty list. I have tested
some functions using the QSignalSpy-class. QSignalSpy takes two parameters, the
object that you want to listen, and the signal you are listening for. As QCloudCon-
nection’s emit cloudError()-signal when the operation was not a success, testing can
also be done this way. Next I will present the way I tested the asynchronous func-
tions.

void QCloudTest::testAsyncAzureGetCloudDirContents() {

QCloudConnection *conn = new QAzureConnection("","",""));

QCloudListResponse *resp = conn->asyncGetCloudDirs();

QEventLoop l;

connect(resp, SIGNAL(finished()), &l, SLOT(quit()));

l.exec();

QCOMPARE(resp->getParsed().at(0), QString("test));

resp->deleteLater();

}

Above one can see how I tested the asynchronous functions. The tests differ
from the synchronous functions by the creation of a QEventLoop. There is a event
loop also in the synchronous functions, but it is ’hidden’ in the sendGet(), sendPut(),
and sendHead()-functions. I connect the QEventLoop’s slot quit() to the signal fin-
ished() of the QCloudListResponse, that is emitted when the operation has finished.
QCloudListResponse contains a parser that parses the XML-message received from
the Cloud to a list of QString’s. This test again presumes that there is a certain struc-
ture already present in the Cloud.

With the existing tests QCloud API is tested on a minimal level, as the error
handling that would be needed for input checking is totally missing. There is still a
lot to do in this part. The greatest defect is still that there is no initialization in the
test project. This is the first thing that should be done, as otherwise the developers

58

need to make the same file structure to their account before running the tests. There
should also be a test to cover the HmacSHA-class, but as the API is working, the
hash algorithm also works. All of the tests can be found from YouSource [31].

5.3.2 Documentation

The documentation for QCloud API has been done with QDoc tool that I presented
in Section 3.10. Every function, signal, and slot is documented and just by reading
the documentation the usage of the API should be clear. Documenting the API
was not easy as I was not familiar with the QDoc tool. The documentation for the
functions came easily, but when trying to use QDoc, a wall rose. Configuring QDoc
was not easy and there were almost none ready made configurations for my case. I
first used Doxygen [45] (a documentation system for C++, C, Java, and more), but
as the project is intended to be integrated to Qt, the change to QDoc was necessary.
Next I will present an example of the documentation from QCloud API.

/*!

\class QAzureConnection

\brief Implementation of the interface QCloudConnection for

Azure.

Constructor to create new QAzureConnections. This contains

three parameters and all should be in the right format. The

first parameter (\a url) is QByteArray containing the url of

the service i.e. "kikkare.blob.core.windows.net" where kikkare

is the storage accounts name and also the next parameter

\a storageAccountName. The last parameter \a storageKey is

the authentication key that one can get from Azure. It is

important to enter the key as it is in the web, as the

connection presumes that it is Base64-encoded.

\sa QCloudConnection

*/

Above is the documentation of QAzureConnection’s constructor. The important
information about the parameters is explained and one should be able to understand
how it works from the comments. The project also contains a readme-file that has all

59

of the different differences documented. The readme can be found from Appendix
C.

5.3.3 Summary

The whole project contains the following parts: two examples, documentation, tests,
and the QCloud API. QCloud API has automated unit tests made with QTestLib and
they confirm that the API works as intented. At the moment they only test the API
with positive tests: they expect that the inputs are always right. The project has total
of 3000 lines of code. All in all during the project, total line count is closer to 6000,
as there are many prototypes and prior example programs. The largest files are
the QAzureConnection and QAmazonConnection, as they contain almost all of the
logic needed to communicate with the services. I will now go through an example
program that uses QCloud API.

5.4 Example application

QCloudTransfer (QCT) is a simple program that takes input from the user in the
command line. The commands are what the wanted operation is (put, get) and if the
operation is put then the file that is wanted to transfer to the Cloud. The source code
for the program can be found from Appendix B. The first thing done is checking
the input parameters and making decisions based on them. If the param is get the
execution continues to getFile(), if the parameter is put then the putFile(QString
name) is called. The parameter name is second input parameter to the program.

In getFile() the program first creates a new QAmazonConnection object using
the credentials read from the auth.txt file. After that it gets the list of buckets in the
users account and displays them. Then the user picks one bucket from the list and
the program gets it’s contents. Then the program prints the contents to the user and
the chosen file is downloaded to the computer.

In putFile() the program first creates a new QAmazonConnection with the cre-
dentials. After that it gets the list of buckets in the users account and displays them.
Then the user chooses in which bucket he/she wants the file to be uploaded. Then
the file is sent to the Cloud. The example program is trivial in nature but showcases
the usage of QCloud API nicely.

QCloudExplorer which is an GUI-program that resembles a FTP-application can

60

Figure 5.3: QCloudExplorer

be seen in Figure 5.3. The program takes the users authentication credentials in the
settings menu, and also to which service the user wants to connect. After that the
connection can be created. The difference between QCE and QCT is that QCE sup-
ports uploading full directories at once. Both of the example programs use the API
in similar fashion, but the QCE uses the signals from the API to its full advantage.
The advantage of signals is really noticeable in GUI programming as the GUI can
respond to the events happening. For example, if the user decides to upload a direc-
tory, QCloudConnection emits a signal containing the amount of files in the folder.
GUI can then update the progress as the files are uploaded one by one, and when
the operation is finished QCloudConnection emits finished() and the GUI can up-
date the directory listing in the Cloud. The full source code for QCloudExplorer can
be found from YouSource [31].

61

5.5 Evaluation of the implementation

Evaluating something that one has done himself is hard, but I will try to be as non-
partial as possible. I will use the criteria for good API’s I presented in Section 5.1 as
a guideline and compare the design to them. This will give me a way to evaluate the
API. The API implementation has its good points, and it does comply to most of the
good API design guidelines. Anyhow there are many things that one could have
done differently. For example, the function that takes care of the creation of the
requests, QCloudConnection::encode(), could have been made in to its own class.
At the moment it is hidden so that the end user can not use it for him/herself. If
the encode()-function resided in its own class the API-user could easily make own
requests, and not be forced to use the ready functions.

Another big thing in the API is the sendHead(), sendPut(), and sendGet()-functions
are at the moment synchronous, as there is an eventloop running until the Cloud has
replied. This was a design choice that came from the fact that I wanted the getCloud-
Dir() and getCloudDirContents() return a list of their contents in a parsed form. If
there were no eventloop running in the send-functions, it would return the pointer
to the QNetworkReply before the reply would be finished. This would lead to ex-
ceptions in the parsing as it was not ready to be parsed. I started to incorporate the
asynchronous side with the functions that have async in their name. The next big
change will be to change the API to use them, thus providing a truly asynchronous
operation. When starting the development I looked at QNAM for guidance and I
cannot make the comparison unless the QCloud is truly asynchronous.

The three different QCloudResponse-classes provide the needed functionality,
as the functions can return a pointer to the object before the operation has finished.
Then the user can ask from the response is it ready to be used. Nothing is done
to the response before it is ready so there is less chance for errors. QNetworkRe-
ply contains a well designed error handling features so with including the reply in
the response brings to the table the ability to use them in conjunction with my own
errors. The user can also decide in which format the response is returned: parsed
or unparsed. Parsed messages leave a lot of information out, so the ability to use
unparsed messages is nice. Asynchronous functions could have returned the QNet-
workReply pointer that QNAM returns, but then the user would have to create a
parser for the XML-formatted response. This design provides the user much more
usability, but is also more error prone.

All of the writers that I named in the Section 5.1 mention the readability and the

62

documentation as a huge deal in API quality. When an developer can straight use
the API by just reading the function declarations and a little bit of documentation,
one could presume that he would recommend the API to others. I have documented
the classes and functions to a certain degree, and there is an readme file where I
explain the usage, and needed tools for compilation. There is still need for more
documentation and propably a third example that would show how to use the API
to store settings in the Cloud. The two examples that exist are pretty similar in the
usage.

In Section 5.1 all of the writers mention that the API should do one thing and that
well. Henning [51] also mentions that the API should handle the border conditions
well. For really being sure that these conditions are fullfilled, the API should be
tested well. Tests have been written with care and they should test every possible
combination of inputs and errors. At the moment the API is tested with 27 unit
tests, but the test coverage is not wide enough to be sure. The tests prove that the
API works as intended, but the error handling is still under construction.

The greatest problem with the API at the moment is that it is pretty much made
for the one task: sending and receiving files from the Cloud. The API should have
been designed so that it offered the tools needed. At the moment it does it, but for
example get and put functions should have been made for QFile and QDir, so that
there would be a chance to use the API without the QCloudFile and QCloudDir. As
I mentioned in the earlier, files transferred have many different states. The handling
of these states would have been easier if the API provided tangible version control.
This is what I tried to provide with the QCloudItem’s isLocal()-function. It does
provide information, but I think that it should be thinked through again. At the
moment it does not provide the needed functionality as there are three states and
isLocal() can only provide two. There should be a enumeration that handles the
different states of each QCloudItem.

Amazon’s decision that every user shares namespace for buckets has been a
enigma for me. As it now is implemented, QCloud API provides a way to transfer
a full folder to the Cloud. When using the put(QCloudDir*)-function it first creates
a new bucket with the name of the folder. This will lead to errors most of the times
as the most used folder names are already taken in the S3. Azure’s solution for this
is storage accounts. Every user has own namespace inside the storage account.

All-in-all there is still much to be done for the API to be complete, but it can
already be used in the way intended. In the beginning there was talk that the ta-

63

ble storage should be integrated also in the API. Tables are not supported at the
moment, but there is examples that show how the API could be used with tables.
Amazon’s table storage can be used in the same fashion as files, but there are some
differences. These differences make the generalization of the API a bit tougher, for
example synchronization between Cloud tables and locals can be really difficult as
Cloud databases are almost without exception key-value stores. The API could be,
with some modification, used to send tables to the Cloud and then make queries
from there.

64

6 Conclusion

The purpose for this thesis was to inspect the different service offerings of Cloud
providers and make an unified API to cover them. The services were later limited
to storage aspects. Both table and blob storage was inspected, but only blob storage
did make it to the final API. The complete exclusion of Qt and C++ in the official
API support from the SP’s made this study neccesary and acute, as easy integration
with the Cloud is a needed property in modern software development.

In this thesis I first presented the paradigm shift from distributed computing,
to grid computing and finally to cloud computing. I went through the history of
Cloud and how the first SP’s started offering their services. Then I presented the
different service providers and how they sell their Cloud services. This provided a
much needed comparison of the pricings and properties received from the service.
After that I presented the Qt framework and it’s history. Now the release of Qt 5 is
even closer as Digia released the Qt5 RC already and the final release should be out
soon. I also presented the needed addons I used in testing (QTest) and documenta-
tion (QDoc). After that I presented the differences in general software development
for the desktop and Cloud. And finally I presented the end product of the thesis:
QCloud API.

QCloud API does provide the wanted functionality, but there is still things to be
done before it can be thought to be complete. At the moment there is conversation
going on in the development mailing list of qt-project, and QCloud API will be
accepted to the Qt playground. There has also been some interest on continuing the
development of the API so that it someday could be integrated to the Qt framework.
I will continue to be active in the conversation and provide reasonings behind my
design choices.

There is still much to be done with Cloud API’s as the different service providers
have different implementations and different rules to comply to. This can make the
development for many Cloud platforms a cumbersome effort. With a general API
that would provide a abstraction between the developer and the Cloud, the usage
of different Cloud services would be easier. Now the developer needs to make sure
what Cloud provider to use and how their API’s differ from the others. QCloud API

65

can provide a real competitive edge for Qt as it can ease the move between SP’s, as
the needed changes on code level are minimal.

66

7 References

[1] Access Control Service 2.0. http://msdn.microsoft.com/en-us/

library/windowsazure/gg429786.aspx. Acessed 7.5.2012.

[2] Amazon cloudwatch. http://aws.amazon.com/cloudwatch/. Accessed
13.4.2012.

[3] Amazon elastic cloud compute(ec2). http://aws.amazon.com/ec2/. Ac-
cessed 10.4.2012.

[4] Amazon free usage tier. http://aws.amazon.com/free/. Accessed
4.4.2012.

[5] Amazon s3 pricing. http://aws.amazon.com/s3/pricing/. Accessed
12.4.2012.

[6] Amazon web services: Overview of security processes. http:

//d36cz9buwru1tt.cloudfront.net/pdf/AWS_Security_

Whitepaper.pdf. Accessed 13.4.2012.

[7] Aws security and compliance center. http://aws.amazon.com/

security/. Accessed 13.4.2012.

[8] BOINC. http://boinc.berkeley.edu/. Accessed 29.3.2012.

[9] Boinc stats. http://boincstats.com/. Accessed 29.3.2012.

[10] Cloud computing layers. http://upload.wikimedia.org/wikipedia/

commons/3/3c/Cloud_computing_layers.png. Accessed 30.3.2012.

[11] Did Google’s Eric Schmidt Coin "Cloud Computing" ? http://

cloudcomputing.sys-con.com/node/795054. Accessed 2.4.2012.

[12] Ftp Example. http://doc.qt.digia.com/latest/network-qftp.

html. Accessed 12.11.2012.

[13] Google app engine campfire one transcript. https://developers.

google.com/appengine/articles/cf1-text. Accessed 4.4.2012.

67

http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg429786.aspx
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/ec2/
http://aws.amazon.com/free/
http://aws.amazon.com/s3/pricing/
http://d36cz9buwru1tt.cloudfront.net/pdf/AWS_Security_Whitepaper.pdf
http://d36cz9buwru1tt.cloudfront.net/pdf/AWS_Security_Whitepaper.pdf
http://d36cz9buwru1tt.cloudfront.net/pdf/AWS_Security_Whitepaper.pdf
http://aws.amazon.com/security/
http://aws.amazon.com/security/
http://boinc.berkeley.edu/
http://boincstats.com/
http://upload.wikimedia.org/wikipedia/commons/3/3c/Cloud_computing_layers.png
http://upload.wikimedia.org/wikipedia/commons/3/3c/Cloud_computing_layers.png
http://cloudcomputing.sys-con.com/node/795054
http://cloudcomputing.sys-con.com/node/795054
http://doc.qt.digia.com/latest/network-qftp.html
http://doc.qt.digia.com/latest/network-qftp.html
https://developers.google.com/appengine/articles/cf1-text
https://developers.google.com/appengine/articles/cf1-text

[14] Google Apps. http://www.google.com/apps. Accessed 19.4.2012.

[15] Google Trends: cloud computing, grid computing. http://www.

google.com/trends/?q=cloud+computing,+grid+computing. Ac-
cessed 20.4.2012.

[16] Grid: More bytes for science. http://public.web.cern.ch/public/en/
spotlight/SpotlightGrid-en.html. Accessed 29.3.2012.

[17] Introduction to Qt Quick. http://doc.qt.nokia.com/4.7/qml-intro.
html. Accessed 3.5.2012.

[18] Making requests using the rest api. http://docs.amazonwebservices.

com/AmazonS3/latest/dev/RESTAPI.html. Accessed 11.4.2012.

[19] Modular Class Library. http://qt.nokia.com/products/library. Ac-
cessed 24.4.2012.

[20] Multipart Upload Overview. http://docs.amazonwebservices.com/

AmazonS3/latest/dev/mpuoverview.html. Accessed 22.10.2012.

[21] Qdoc Reference Documentation. http://doc.qt.digia.com/qdoc/

01-qdoc-manual.html. Accessed 9.11.2012.

[22] Qftp Class Reference. http://doc.qt.digia.com/latest/qftp.html#
details. Accessed 12.11.2012.

[23] Qt 5 Alpha. http://labs.qt.nokia.com/2012/04/03/qt-5-alpha/.
Accessed 3.5.2012.

[24] Qt5 Alpha. http://qt-project.org/wiki/Qt-5-Alpha. Accessed
11.5.2012.

[25] Qtestlib Manual. http://doc.qt.digia.com/qt/qtestlib-manual.

html. Accessed 9.11.2012.

[26] Securing the Cloud Infrastructure. http://cdn.

globalfoundationservices.com/documents/Strategy_Brief_

Securing_Cloud_Infrastructure.pdf. Accessed 29.5.2012.

68

http://www.google.com/apps
http://www.google.com/trends/?q=cloud+computing,+grid+computing
http://www.google.com/trends/?q=cloud+computing,+grid+computing
http://public.web.cern.ch/public/en/spotlight/SpotlightGrid-en.html
http://public.web.cern.ch/public/en/spotlight/SpotlightGrid-en.html
http://doc.qt.nokia.com/4.7/qml-intro.html
http://doc.qt.nokia.com/4.7/qml-intro.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAPI.html
http://qt.nokia.com/products/library
http://docs.amazonwebservices.com/AmazonS3/latest/dev/mpuoverview.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/mpuoverview.html
http://doc.qt.digia.com/qdoc/01-qdoc-manual.html
http://doc.qt.digia.com/qdoc/01-qdoc-manual.html
http://doc.qt.digia.com/latest/qftp.html#details
http://doc.qt.digia.com/latest/qftp.html#details
http://labs.qt.nokia.com/2012/04/03/qt-5-alpha/
http://qt-project.org/wiki/Qt-5-Alpha
http://doc.qt.digia.com/qt/qtestlib-manual.html
http://doc.qt.digia.com/qt/qtestlib-manual.html
http://cdn.globalfoundationservices.com/documents/Strategy_Brief_Securing_Cloud_Infrastructure.pdf
http://cdn.globalfoundationservices.com/documents/Strategy_Brief_Securing_Cloud_Infrastructure.pdf
http://cdn.globalfoundationservices.com/documents/Strategy_Brief_Securing_Cloud_Infrastructure.pdf

[27] Security first: Google apps and google app engine complete ssae-
16 audit. http://googleenterprise.blogspot.com/2011/08/

security-first-google-apps-and-google.html. Accessed 12.4.2012.

[28] Seti@home webpage. http://setiathome.berkeley.edu/. Accessed
29.3.2012".

[29] Signals & Slots. http://qt-project.org/doc/qt-5.0/

signalsandslots.html. Accessed 26.4.2012.

[30] Survey: Cloud computing ’no hype’, but fear of security and control slow-
ing adoption. http://www.circleid.com/posts/20090226_cloud_

computing_hype_security. Accessed 11.4.2012.

[31] Thesis-code. http://yousource.it.jyu.fi/thesis-code/. Accessed
17.11.2012.

[32] Understanding Page Blobs and Block Blobs. http://msdn.microsoft.

com/en-us/library/windowsazure/ee691964.aspx. Accessed
22.10.2012.

[33] Using CMake to Build Qt Projects. http://qt-project.org/quarterly/
view/using_cmake_to_build_qt_projects. Accessed 27.4.2012.

[34] Virtual Machine Role. http://msdn.microsoft.com/en-us/gg502178.
Accessed 11.5.2012.

[35] What is AWS. http://aws.amazon.com/what-is-aws/. Accessed
10.4.2012.

[36] What is google app engine. https://developers.google.com/

appengine/docs/whatisgoogleappengine. Accessed 4.4.2012.

[37] Why app engine. https://developers.google.com/appengine/

whyappengine. Accessed 12.4.2012.

[38] Windows azure dynamic scaling sample. http://archive.msdn.

microsoft.com/azurescale. Accessed 12.4.2012.

[39] Windows azure tour: What is windows azure. https://www.

windowsazure.com/en-us/home/features/overview/. Accessed
5.4.2012.

69

http://googleenterprise.blogspot.com/2011/08/security-first-google-apps-and-google.html
http://googleenterprise.blogspot.com/2011/08/security-first-google-apps-and-google.html
http://setiathome.berkeley.edu/
http://qt-project.org/doc/qt-5.0/signalsandslots.html
http://qt-project.org/doc/qt-5.0/signalsandslots.html
http://www.circleid.com/posts/20090226_cloud_computing_hype_security
http://www.circleid.com/posts/20090226_cloud_computing_hype_security
http://yousource.it.jyu.fi/thesis-code/
http://msdn.microsoft.com/en-us/library/windowsazure/ee691964.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee691964.aspx
http://qt-project.org/quarterly/view/using_cmake_to_build_qt_projects
http://qt-project.org/quarterly/view/using_cmake_to_build_qt_projects
http://msdn.microsoft.com/en-us/gg502178
http://aws.amazon.com/what-is-aws/
https://developers.google.com/appengine/docs/whatisgoogleappengine
https://developers.google.com/appengine/docs/whatisgoogleappengine
https://developers.google.com/appengine/whyappengine
https://developers.google.com/appengine/whyappengine
http://archive.msdn.microsoft.com/azurescale
http://archive.msdn.microsoft.com/azurescale
https://www.windowsazure.com/en-us/home/features/overview/
https://www.windowsazure.com/en-us/home/features/overview/

[40] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53:50–58, April
2010.

[41] D. Barkai. Technologies for sharing and collaborating on the net. In Peer-to-Peer
Computing, 2001. Proceedings. First International Conference on, pages 13 –28, aug
2001.

[42] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 4.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[43] Joshua Bloch. How to Design a Good API and Why it Matters. http:

//lcsd05.cs.tamu.edu/slides/keynote.pdf. Accessed 21.11.2012.

[44] Jon Brodkin. Gartner: Seven cloud-computing security risks. Network World,
July 2008.

[45] Dimitri van Heesch. Doxygen. http://www.stack.nl/~dimitri/

doxygen/. Accessed 9.12.2012.

[46] Matthias Ettrich. Designing Qt-Style C++ APIs. http://doc.qt.digia.

com/qq/qq13-apis.html. Accessed 21.11.2012.

[47] Ian Foster and Adriana Iamnitchi. On Death, Taxes, and the Convergence of Peer-
to-Peer and Grid Computing, volume 2735 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003.

[48] Ian Foster and Carl Kesselman. The grid: blueprint for a new computing infras-
tructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[49] Simson L. Garfinkel and Simson L. Garfinkel. An evaluation of amazon.s grid
computing services: Ec2, s3, and sqs. Technical report, Center for, 2007.

[50] Sharon Eisner Gillett and Mitchell Kapor. The self-governing internet: Coor-
dination by design. Working Paper Series 197, MIT Center for Coordination
Science, January 1997.

[51] Michi Henning. Api design matters. Queue, 5:24–36, May 2007.

70

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://doc.qt.digia.com/qq/qq13-apis.html
http://doc.qt.digia.com/qq/qq13-apis.html

[52] James B. D. Joshi, Walid G. Aref, Arif Ghafoor, and Eugene H. Spafford. Secu-
rity models for web-based applications. Commun. ACM, 44(2):38–44, February
2001.

[53] Charlie Kaufman and Ramanathan Venkatapathy. Windows azure. security
overview. 2010.

[54] Leonard Kleinrock. An internet vision: the invisible global infrastructure. Ad
Hoc Networks, 1(1):3 – 11, 2003.

[55] Peter Mell and Tim Grance. The nist definition of cloud computing. National
Institute of Standards and Technology, 53(6):50, 2009.

[56] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja1, Jim
Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer comput-
ing. Technical report, Hewlett-Packard Company.

[57] Open Stack. OpenStack - Open Source Cloud Computing Software. http:

//www.openstack.org/. Accessed 29.11.2012.

[58] Martin Reddy. Api design for C++. http://dl.acm.org/citation.cfm?
id=1971974. Accessed 19.11.2012.

[59] The Apache Software Foundation. CloudStack - Open Source Cloud
Computing Software. http://incubator.apache.org/cloudstack/

software.html. Accessed 29.11.2012.

[60] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1):50–55, December 2008.

[61] Aaron Weiss. Computing in the clouds. netWorker, 11(4):16–25, December 2007.

71

http://www.openstack.org/
http://www.openstack.org/
http://dl.acm.org/citation.cfm?id=1971974
http://dl.acm.org/citation.cfm?id=1971974
http://incubator.apache.org/cloudstack/software.html
http://incubator.apache.org/cloudstack/software.html

A API implementation

class QCloudConnection : public QObject

{

Q_OBJECT

public:

struct Request {

QHash<QString, QString> headers;

};

virtual QCloudFile* get(QString bucket, QString fileName) = 0;

virtual bool get(QCloudDir &d) = 0;

virtual bool put(QCloudFile &file, QString bucket) = 0;

virtual bool put(QCloudDir &dir) = 0;

virtual QList<QString> getCloudDir() = 0;

virtual QList<QString> getCloudDirContents(QString bucketName) = 0;

virtual bool deleteBlob(QString name, QString bucket) = 0;

virtual bool deleteCloudDir(QString bucket) = 0;

virtual QList<QString> parseCloudDirListings(QByteArray &data) = 0;

virtual bool cloudDirExists(const QString &dirName) = 0;

virtual bool createCloudDir(const QString &dirName) = 0;

virtual void setOverrideLocal(bool value) = 0;

virtual void setOverrideCloud(bool value) = 0;

virtual QCloudFileResponse* asyncGetCloudFile(QString &bucket, QString &fileName) = 0;

virtual QCloudListResponse* asyncGetCloudDir() = 0;

virtual QCloudListResponse* asyncGetCloudDirContents(QString &cloudDir) = 0;

protected:

QCloudConnection();

private:

virtual QNetworkReply* sendGet(const QNetworkRequest &req) = 0;

72

virtual QNetworkReply* sendPut(const QNetworkRequest &req, const QByteArray &payload) = 0;

virtual QNetworkReply* sendHead(const QNetworkRequest &req) = 0;

virtual QNetworkRequest encode(const Request &r) = 0;

signals:

void finished();

void failed();

void getCloudDirFinished();

void putCloudDirFinished();

};

73

B Source of demo application

include <QtCore/QCoreApplication >
include " qamazonconnection . h"
inc lude <iostream >

QList <QString > readAuthFromFile () {
QList <QString > auth ;
QFile f (" auth . t x t ") ;
i f (! f . open (QIODevice : : ReadWrite | QIODevice : : Text)) {

qDebug () << " could not open f i l e auth . t x t , you sure i t e x i s t s ? " ;
}
QByteArray l i n e ;
while ((l i n e = f . readLine ()) != 0) {

l i n e . r e p l a c e ("\ n " , " ") ;
auth . append (l i n e) ;

}
f . c l o s e () ;

re turn auth ;
}

void p r i n t L i s t (QList <QString > l i s t) {
foreach (QString s , l i s t) {

qDebug () << s ;
}

}

i n t g e t F i l e () {
qDebug () << " Doing get−operat ion " ;
qDebug () << " Reading a u t h e n t i c a t i o n from f i l e auth . t x t " ;
QList <QString > auth = readAuthFromFile () ;

74

QAmazonConnection conn (auth . a t (0) . t o A s c i i () , auth . a t (1) . t o A s c i i () , auth . a t (2) . t o A s c i i ()) ;
qDebug () << " Connection i n i t i a l i z e d " ;
QList <QString > buckets = conn . getCloudDir () ;
qDebug () << " Your account contained the fol lowing buckets : " ;
p r i n t L i s t (buckets) ;
qDebug () << " Which bucket would you l i k e to i n s p e c t " ;
s td : : s t r i n g s ;
s td : : cin >>s ;
QString bucket (s . c _ s t r ()) ;
qDebug () << " Gett ing contents of " + bucket ;
QList <QString > f i l e s = conn . getCloudDirContents (bucket) ;
qDebug () << " The bucket contained fol lowing f i l e s : " ;
p r i n t L i s t (f i l e s) ;
qDebug () << "What would you l i k e to get ? " ;
s td : : s t r i n g f i l e ;
s td : : cin >> f i l e ;
QString q f i l e (f i l e . c _ s t r ()) ;
qDebug () << " Downloading the f i l e " + q f i l e ;
QCloudFile∗ down = conn . get (bucket , q f i l e) ;
qDebug () << " F i l e downloaded , thx " ;
re turn 0 ;

}

i n t p u t F i l e (QString name) {
qDebug () << name ;
qDebug () << " Doing put−operat ion " ;
qDebug () << " Reading a u t h e n t i c a t i o n from f i l e auth . t x t " ;
QList <QString > auth = readAuthFromFile () ;
QAmazonConnection conn (auth . a t (0) . t o A s c i i () , auth . a t (1) . t o A s c i i () , auth . a t (2) . t o A s c i i ()) ;
qDebug () << " Connection i n i t i a l i z e d " ;
QList <QString > buckets = conn . getCloudDir () ;
qDebug () << " Your account contained the fol lowing buckets : " ;
p r i n t L i s t (buckets) ;
qDebug () << " Please s p e c i f y in which bucket would you l i k e to place the f i l e " ;
s td : : s t r i n g bucket ;

75

std : : cin >>bucket ;
QString qbucket (bucket . c _ s t r ()) ;
i f (! buckets . conta ins (qbucket)) {

qDebug () << " The bucket did not e x i s t s . e x i t t i n g " ;
re turn −1;

}
qDebug () << QString (" Putt ing f i l e %1 to bucket %2") . arg (name) . arg (qbucket) ;
QFile f (name) ;
i f (! f . e x i s t s ()) {

qDebug () << " F i l e did not e x i s t , e x i t t i n g " ;
re turn −1;

}
QCloudFile c f (f) ;
i f (conn . put (cf , qbucket)) {

qDebug () << " F i l e uploaded , e x i t t i n g " ;
re turn 0 ;

}

}

i n t main (i n t argc , char ∗argv [])
{

QCoreApplication a (argc , argv) ;
i f (argc < 2) {

qDebug () << "You did not s p e c i f y operation , p lease use q c l o u d t r a n s e f e r (put or get) " ;
re turn 0 ;

}

i f (strcmp (argv [1] , " put ") == 0) {
p u t F i l e (QString (argv [2])) ;

} e l s e i f (argv [1]) {
g e t F i l e () ;

} e l s e {
qDebug () << " Please s p e c i f y operation , put or get " ;

}

76

//return a . exec () ;
}

77

C Readme

QCloud−API

QCloud−API provides publ ic API to c a l l Windows Azure and
Amazon S3 .

Requirements :
Qt5 (t e s t e d with beta1)

I n s t a l l a t i o n :

Linux : (Tested : Debian 2.6 .32−45)
qmake
make

The user needs account on e i t h e r Amazon or Windows Azure .
The c r e d e n t i a l s to amazon can be found in the AWS dashboard
(ht tps :// console . aws . amazon . com /) . Azure ’ s c r e d e n t i a l s can
be found from ht tps ://manage . windowsazure . com/. I n s e r t the
c r e d e n t i a l s as c loudconnect ions params as they are presented
in the s i t e s . Do not do anything to them .

Note :

Amazon has a i n t e r e s t i n g naming content ion f o r the buckets .
The bucket names are shared between a l l of the users
(a s i n g l e namespace) , so the most used are already taken .
The r e s t of the naming r u l e s are as fo l lows :

Bucket names must be a t l e a s t 3 and no more than

78

63 c h a r a c t e r s long .
Bucket name must be a s e r i e s of one or more l a b e l s
separated by a period (.) , where each l a b e l :

Must s t a r t with a lowercase l e t t e r or a number
Must end with a lowercase l e t t e r or a number
Can conta in lowercase l e t t e r s , numbers and dashes
Bucket names must not be formatted as an

IP address (e . g . , 1 9 2 . 1 6 8 . 5 . 4)

Example usage .
Gett ing a f i l e from a c e r t a i n bucket in the cloud :

Include the l i b in your p r o j e c t .
Create a new CloudConnection f o r the s e r v i c e you want
(Azure ∗ , Amazon∗)

Get the l i s t of buckets with QCloudConnection : : getCloudDir ()
Get the contents of c e r t a i n bucket with

QCloudConection : : getCloudDirContents (QString name)

Get the f i l e using
QCloudConnection : : get (QString bucket , QString fileName)

Putt ing a f i l e to a c e r t a i n bucket in the cloud :
Include the l i b
Create new connect ion f o r the s e r v i c e
i f (bucketname not known)

Get bucket l i s t with getCloudDir ()
c r e a t e a QFile t h a t conta ins the f i l e
Create q c l o u d f i l e from the q f i l e
c a l l put (q c l o u d f i l e , bucket)

examples/QCloudTransfer/main . cpp i s a good i n d i c a t i o n how
to use the api .

79

TODO:
−Both s e r v i c e s need implementation of the de le teBlob and

deleteCloudDir −f u n c t i o n s .

−As AmazonS3 has the requirement t h a t buckets cannot conta in
uppercase l e t t e r s , somekind of check should be placed
somewhere . At the moment e r r o r i s thrown .

−The content−type−header should be replaced according to
the r e a l type of the f i l e sent . At the moment i t i s
always t e x t /pla in .

−As using QCloud should be as s i m i l a r to QNAM as poss ib le , the
s t r u c t u r e should be changed to use the async methods .

−QCloudTransfer−example supports only AmazonS3 at the moment .
There needs to be some change t h a t can change the s e r v i c e
provider according the params . Maybe in the auth . t x t the f i r s t
l i n e could be the provider (aws , azure) e t c . .

−As a cloudconnect ion i s crea ted check i f the c r e d e n t i a l s
are c o r r e c t

I f bugs are found please c o n t a c t me at j l a i t i n e n @ g m a i l . com , please
include [qcloud] in the header .

80

D Amazon’s encode function

/∗ ! i n t e r n a l
\ b r i e f Creates the request t h a t i s then sent to Amazon , everything should be as
general as p o s s i b l e and t h i s should take care of g e t t i n g buckets and f i l e s .
∗/

QNetworkRequest QAmazonConnection : : encode (const Request &r) {

QString t imeStr ing = QString : : number (QDateTime : : currentMSecsSinceEpoch ()
/ 1000 + 2 0 0) ;

QByteArray str ingToSign = r . headers . value (" verb ") . t o A s c i i () + "\n " ;

s t r ingToSign += "\n\n " ;
s t r ingToSign += t imeStr ing + "\n " ;

QString u r l S t r i n g = " " ;

i f (r . headers . conta ins (" bucket ")) {
QString bucket = r . headers . value (" bucket ") ;
s t r ingToSign += "/" + bucket + " / " ;
u r l S t r i n g = " ht tp ://" + bucket + " . " + t h i s−>host + " / " ;

i f (r . headers . conta ins (" f i lename ")) {
QString value = r . headers . value (" f i lename ") ;
u r l S t r i n g += value ;
s t r ingToSign += value ;

}
} e l s e {

s t r ingToSign += " / " ;
u r l S t r i n g = " ht tp ://" + t h i s−>host + " / " ;

}

81

QUrl u r l (u r l S t r i n g) ;

QByteArray hashedSignature = HmacSHA : : hash (HmacSHA : : SHA1, str ingToSign ,
t h i s−>s e c r e t) ;

replaceUnallowed(& hashedSignature) ;
QNetworkRequest req ;

u r l . addEncodedQueryItem (" AWSAccessKeyId " , t h i s−>password) ;
u r l . addEncodedQueryItem (" Signature " , hashedSignature) ;
i f (r . headers . value (" verb ") == "PUT") {

QString value = r . headers . value (" f i l e s i z e ") ;
i f (value != " 0 ") u r l . addEncodedQueryItem (" Content−Type " ,

r . headers . value (" Content−Type ") . t o A s c i i ()) ;
u r l . addEncodedQueryItem (" Content−Length " , value . t o A s c i i ()) ;

}
u r l . addEncodedQueryItem (" Expires " , t imeStr ing . t o A s c i i ()) ;
req . s e t U r l (u r l) ;
re turn req ;

}

82

E Azure’s encode function

n t e r n a l
∗/

QNetworkRequest QAzureConnection : : encode (const Request &r) {
QString u r l S t r i n g (" ht tp ://" + t h i s−>u r l) ;

i f (r . headers . conta ins (" path ")) {
u r l S t r i n g += r . headers . value (" path ") ;

}

i f (r . headers . conta ins (" operat ion ")) {
u r l S t r i n g += " ? " + r . headers . value (" operat ion ") ;

}

QUrl u r l = QUrl : : fromEncoded (u r l S t r i n g . t o A s c i i ()) ;
QNetworkRequest req ;
req . s e t U r l (u r l) ;

QByteArray str ingToSign ;
s t r ingToSign . append (r . headers . value (" verb ")) ;
s t r ingToSign . append ("\ n ") ;

f o r (i n t i = 0 ; i < head . requiredHeaders . s i z e () ; i ++) {
i f (head . requiredHeaders . a t (i) . f i r s t == " Content−MD5" && r . headers . value (" verb ")

== "PUT" && ! r . headers . conta ins (" s i z e ")) {
s t r ingToSign += "0\n " ;

} e l s e i f (r . headers . conta ins (" s i z e ") &&
head . requiredHeaders . a t (i) . f i r s t == " Content−MD5") {

s t r ingToSign += r . headers . value (" s i z e ") + "\n " ;
}
e l s e s t r ingToSign += head . requiredHeaders . a t (i) . second ;

83

}

QString date = dateInRFC1123 () ;

i f (r . headers . conta ins (" s i z e ") /∗&&
! r . headers . value (" operat ion ") . conta ins (" res type ")∗/) {

s t r ingToSign += "\nx−ms−blob−type : BlockBlob " ;
}
s t r ingToSign += "\nx−ms−date : " + date ;
s t r ingToSign += "\nx−ms−vers ion :2009−09−19\n " ;

s t r ingToSign += "/" + t h i s−>storageAccountName + r . headers . value (" path ") ;
i f (r . headers . conta ins (" operat ion ")) {

QString temp = r . headers . value (" operat ion ") ;
s t r ingToSign += "\n" + temp . r e p l a c e (" = " , " : ") . r e p l a c e (" & " , "\n ") ;

}
QByteArray key = QByteArray : : fromBase64 (t h i s−>storageKey) ;
QByteArray hash = HmacSHA : : hash (HmacSHA : : SHA256 , str ingToSign , key) ;

QString vers ion = "2009−09−19";
QByteArray t e s t = t h i s−>a u t h e n t i c a t i o n + " " + t h i s−>storageAccountName + " : " + hash ;

req . setRawHeader (" Authorizat ion " , t e s t) ;
req . setRawHeader (" x−ms−date " , date . t o A s c i i ()) ;
req . setRawHeader (" x−ms−vers ion " , vers ion . t o A s c i i ()) ;
i f (r . headers . value (" verb ") == "PUT") {

req . setRawHeader (" Content−Length " , r . headers . value (" s i z e ") . t o A s c i i ()) ;
req . setRawHeader (" x−ms−blob−type " , " BlockBlob ") ;

}

re turn req ;
}

84

	Glossary
	1 Introduction
	2 Cloud computing
	2.1 From Distributed Applications to Cloud
	2.2 The Cloud Stack
	2.2.1 SaaS
	2.2.2 PaaS
	2.2.3 IaaS
	2.2.4 Scalability
	2.2.5 Security

	2.3 Service providers
	2.4 Amazon
	2.4.1 Pricing
	2.4.2 Scalability
	2.4.3 Security
	2.4.4 REST implementation

	2.5 Windows Azure
	2.5.1 Pricing
	2.5.2 Scalability
	2.5.3 Security
	2.5.4 REST implementation

	2.6 Google App Engine
	2.6.1 Pricing
	2.6.2 Scaling
	2.6.3 Security
	2.6.4 REST implementation
	2.6.5 Summary of the service providers

	3 Qt
	3.1 History
	3.2 License
	3.3 Qt framework
	3.4 Compilation
	3.5 qmake
	3.6 UIC - User Interface Compiler
	3.7 Signals & Slots
	3.7.1 MOC - Meta-Object Compiler

	3.8 Qt5
	3.9 QtQuick and QML
	3.9.1 QML
	3.9.2 From QtQuick 1.0 to QtQuick 2.0
	3.9.3 QtCreator

	3.10 QDoc
	3.11 QTestLib
	3.11.1 Usage

	3.12 Example Qt program
	3.12.1 QFtp example

	4 Software development for cloud
	4.1 Differences in architectural views
	4.2 Development using Qt
	4.2.1 Amazon
	4.2.2 Azure
	4.2.3 Google App Engine

	4.3 REST API comparison between Azure and Amazon
	4.3.1 Comparison of REST API's using example

	5 QCloud API
	5.1 On API design
	5.2 Implementation
	5.3 QCloud API
	5.3.1 Testing
	5.3.2 Documentation
	5.3.3 Summary

	5.4 Example application
	5.5 Evaluation of the implementation

	6 Conclusion
	7 References
	A API implementation
	B Source of demo application
	C Readme
	D Amazon's encode function
	E Azure's encode function

