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ABSTRACT

Kabardov, Muaed
Asymptotic and Numerical Studies of Electron Scattering in 2D Quantum Wave-
guides of Variable Cross-Section
Jyväskylä: University of Jyväskylä, 2012, 91 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 160)
ISBN 978-951-39-4997-6 (nid.)
ISBN 978-951-39-4998-3 (PDF)
Finnish summary
Diss.

We consider an infinite two-dimensional waveguide that far from the coordinate
origin coincides with a strip. The waveguide has two narrows which play the
role of effective potential barriers for the longitudinal electron motion. The part
of waveguide between the narrows becomes a "resonator" and there arise condi-
tions for electron resonant tunneling.

A magnetic field in the resonator can change the basic characteristics of this
phenomenon. In the presence of a magnetic field, the tunneling phenomenon is
feasible for producing spin-polarized electron flows consisting of electrons with
spins of the same direction.

Taking the narrows diameter as a small parameter, we derive asymptotics
for the resonant tunneling characteristics. The asymptotic formulas contain some
unknown constants. We find them by solving several auxiliary boundary value
problems in unbounded domains. Independently, we compute numerically the
scattering matrix and compare the asymptotic and numerical results.

The operation of the resonator systems discussed before has been analyzed
under the assumption that the electron energy lies between the first and the
second thresholds. This condition not always can be fulfilled by modern tech-
nologies. We analyze some properties of multichannel scattering in the situation
where the electron energy exceeds the second threshold.

Keywords: quantum waveguide, tunneling, resonance, spin, polarization, mag-
netic field, potential barrier, scattering matrix
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1 INTRODUCTION

At present the electron tunneling is being studied intensively in the systems
"metallic electrode–quantum dot–metallic electrode" (e.g., see [1], [2]). A quan-
tum dot (a conductive domain of diameter about 10 nm) is separated from the
electrodes by "tunnel" intervals (vacuum gaps or dielectric layers). Due to res-
onant tunneling, the conductivity of the system can abruptly vary with voltage
between the electrodes. There are prospects for building new nanosize electron-
ics elements (transistors, electron energy monochromators etc.) that are based
on the mentioned quantum dot systems and have frequency operating range
around 1012Hz. However, the tunneling probability heavily depends on inevitable
electron scattering by inhomogeneities of the interfaces electrode–vacuum and
quantum dot–vacuum. Therefore the production of the systems must satisfy not
easily accessible accuracy conditions.

The role of resonant structures can be given to quantum wires. Instead of a
system "electrode – quantum dot – electrode" one can use a quantum wire (two-
or three-dimensional) with two narrows. The narrows prove to be effective po-
tential barriers for the longitudinal electron motion and the part of the waveguide
between two narrows becomes a "resonator". The fact that in such conditions res-
onant tunneling can occur is confirmed by numerical experiments [3], [4]. Res-
onant devices based on quantum wires can provide some advantages in regard
to both operation properties and production technology. Such devices are ho-
mogeneous (i.e., are made of one material); when tunneling, an electron crosses
no interfaces of electrodes, dielectrics, or vacuum. Therefore the operation of the
devices is more stable under small perturbations of its geometry.

In [5], electron propagation was considered in a 3D waveguide with two
cylindrical outlets to infinity and two narrows of small diameter ε. There were
considered electrons with energy between the first and the second thresholds.
For the main characteristics of resonant tunneling (electron wave function, reso-
nant energy Eres, transition coefficient T(E) etc.) there were obtained asymptotic
formulas and estimates for the remainders as ε → 0. It was assumed, that the
limit waveguide in a neighborhood of each narrow coincided with two cones in-
tersecting only at their common vertex. To construct the asymptotics the method
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of "compound" asymptotic expansions (the general theory of which was exposed,
e.g., in [6]) was applied.

The asymptotic formulas in [5] include several unknown constant coeffi-
cients; the issue of calculation of them was not discussed. Without numerical val-
ues of the constants, the asymptotic formulas provide only a qualitative picture.
When the constants are found, the asymptotics can be used as an approximate
solution. It remains vague, for what band of parameters the approximation is
reliable. On the other hand, one should expect numerical approach to be efficient
only if the waveguide narrows are not too small in diameter, and the resonant
peak of the transition coefficient is sufficiently wide. Therefore a detailed pic-
ture of resonant tunneling can be achieved when the asymptotic and numerical
approaches are combined. We suggest a methodology of such a combined ap-
proach and show its application in concrete situations. In particular, we answer
the questions mentioned in this paragraph.

We consider a 2D waveguide with two narrows of the same diameter ε. In-
dependently of the article [5], we describe a new way of derivation of asymptotic
formulas, which is simpler and more universal than that in [5]; it is also based
on the method of compound asymptotic expansions (and can be applied to 3D
waveguide). The new derivation is mainly used here to give the background of
boundary value problems needed for calculation of the unknown constants in
the asymptotics. These BVPs are solved numerically. Besides, independently of
asymptotic approach, we approximately calculate the waveguide scattering ma-
trix by the method from [7]. After that we can compare the asymptotics with
calculated constants and the scattering matrix (the transition and reflection coef-
ficients). It turns out, that there is an interval of values of ε, where the asymptotic
and numerical results practically coincide. If ε goes outside the interval to the
right, the asymptotics ceases to work, but the numerical method for calculation
of the scattering matrix keeps efficient; if ε goes to the left of the interval, the nu-
merical method becomes ill-conditioned, and the asymptotics remains reliable.

The presence of a magnetic field can essentially affect the basic character-
istics of the resonant tunneling and bring new possibilities for applications in
electronics. In particular, in the presence of a magnetic field, the tunneling phe-
nomenon is feasible for producing spin-polarized electron flows consisting of
electrons with spins of the same direction. We suppose that a part of the resonator
is occupied by a homogeneous magnetic field. An electron wave function satis-
fies the Pauli equation in the waveguide and vanishes at its boundary (the work
function of the waveguide is supposed to be sufficiently large, so that the bound-
ary condition is justified). Moreover, we assume that only one incoming wave
and one outgoing wave can propagate in each outlet of the waveguide. In other
words, we do not discuss multichannel electron scattering and consider only elec-
trons with energy between the first and the second thresholds. We take ε as small
parameter and obtain asymptotic formulas for the aforementioned characteristics
of the resonant tunneling as ε → 0. The formulas depend on the limiting form
of the narrows. We suppose that, in a neighborhood of each narrow, the limiting
waveguide coincides with a pair of opposite angles.
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As before, the asymptotic formulas contain some unknown constants. To
find them, we numerically solve several boundary value problems in unbounded
domains independent of ε. After that we compare the asymptotic and numerical
results. We show that there is a band of ε where the results of the two approahes
practically coincide.

The operation of the resonator systems discussed before has been analyzed
under the assumption that the electron energy lies between the first and the sec-
ond thresholds. This condition not always can be fulfilled by modern technolo-
gies. In Chapter 4 we consider some properties of multichannel scattering in
the situation where the electron energy can be between the second and the fifth
thresholds. These considerations show that in designing electronic devices based
on the resonant tunneling in quantum waveguides of variable cross-section, it is
reasonable to choose the system parameters so that electron energies do not ex-
ceed the third threshold. Some of the effects discussed in Chapter 4 have been
studied by the authors of [8, 9] where they numerically analyze multichannel
scattering in cylindric heterostructures. The waveguide we are studying differs
from that used in [8, 9]. Also, the authors of [8, 9] do not give physical interpre-
tation of the effects that the numerical simulation shows. In Chapter 4 we give
explanations of physical phenomena coming along with multichannel scattering.

In Chapter 2 we carry out asymptotic and numerical analysis of resonant
tunneling in one-channel regime, i.e. the electron energy is assumed to be be-
tween the first and the second thresholds. We study the behavior of the charac-
teristics of the process as ε → 0 in a neighborhood of one of the resonant energies.
We find the range of efficiency of the asymptotic formulas by comparing it to
the scattering matrix numerically found by the method in [7]. The mathematical
model of the waveguide and statement of the problem are given in Section 2.1.
The boundary value problems needed for the method of compound asymptotic
expansions are discussed in Sections 2.2 and 2.3. We derive the asymptotics in
Section 2.4 and justify the formulas in Section 2.5. Section 2.6 is devoted to nu-
merical analysis and comparing numerical and asymptotic results.

In Chapter 3 we study the characteristics of electron flow in the presence
of magnetic field. The analysis is carried out in the same way as in Chapter 2.
The presence of the magnetic field changes the behavior of the asymptotic and
numerical results and their proximity, though the disparities between the two
approaches seen in the Chapters 2 and 3 are caused also by different openings
(ω = 0.5π in Chapter 2 and ω = 0.9π in Chapter 3). The mathematical model
of the waveguide and statement of the problem are in Section 3.1. The bound-
ary value problems needed for the method of compound asymptotic expansions
are discussed in Sections 3.2 and 3.3. The asymptotics derivation is given in Sec-
tion 3.4 and justification of the formulas are in Section 3.5. Section 3.6 is devoted
to numerical analysis and to comparison of numerical and asymptotic results.

Chapter 4 is devoted to the analysis of the same problem as in Chapter 2,
but here we study multichannel scattering. We do not consider the dependence
of the electron flow characteristics on the narrows diameters. On the contrary,
the waveguide geometry is constant. We analyze the behavior of the transversal
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states of the wave function with respect to increasing electron energy and the cor-
respondence between the waveguide resonant energies and the closed resonator
eigenvalues. Section 4.1 gives some backgrounds on the problem. Section 4.2
contains the closed resonator eigenvalues and eigenfunctions which can be re-
garded as approximations to the corresponding values of the open resonator. The
method used for calculation of the scattering matrix is described in Section 4.3.
Finally, we discuss some facts which follow from the results of numerical simula-
tions in Section 4.4.

Appendices 1 and 2 contain the description of FEM used in simulations.
The computations were carried out in the environments MATLAB and COM-
SOL, which also have short introductions to FEM and other numerical methods
mentioned in the appendices.

The results of the thesis were published as preprints in [10, 11, 12] and some
results of Chapter 3 were reported to ECCOMAS [13] held in Vienna, 2012.



2 ASYMPTOTIC AND NUMERICAL STUDIES OF

RESONANT TUNNELING

A waveguide coincides with a strip having two narrows of diameter ε. Electron
motion is described by the Helmholtz equation with Dirichlet boundary condi-
tion. The part of the waveguide between the narrows plays the role of resonator
and there can occur electron resonant tunneling. This phenomenon consists in
the fact that, for an electron with energy E, the probability T(E) to pass from
one part of the waveguide to the other part through the resonator has a sharp
peak at E = Eres, where Eres denotes a "resonant" energy. To analyze operation
of electronic devices based on the phenomenon of resonant tunneling, it is im-
portant to know Eres and behavior of T(E) for E close to Eres. In this section
asymptotic formulas for resonant energy and the coefficients of transition and
reflection for ε → 0 are obtained. Such formulas depend on the limit shape of
the narrows; we assume, that the limit waveguide in the neighborhood of each
narrow coincides with a pair of vertical angles. Asymptotic results are compared
with the corresponding numerical ones obtained by approximate computing the
waveguide scattering matrix. This allows to determine the band of ε where the
asymptotics and numerical results are in close agreement. The suggested meth-
ods are applicable to much more complicated models than that considered here.
In particular, the same approach will work for asymptotic and numerical analysis
of resonant tunneling in 3D quantum waveguides.

2.1 Statement of the problem

To describe the domain G(ε) in R2 occupied by the waveguide, we first introduce
two auxiliary domains G and Ω in R2. The domain G is the strip

G = R × D = {(x, y) ∈ R2 : x ∈ R = (−∞,+∞); y ∈ D = (−l/2, l/2)}.

Let us define Ω. Denote by K a double cone with vertex at the origin O that
contains the x-axis and is symmetric about the coordinate axes. The set K ∩ S1,
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O

Ω

ω

FIGURE 1 The set Ω.

where S1 is a unit circle, consists of two simple arcs. Assume that Ω contains the
cone K and a neighborhood of its vertex; moreover, outside a large disk (centered
at the origin) Ω coincides with K. The boundary ∂Ω of Ω is supposed to be
smooth (see Figure 1).

We now turn to the waveguide G(ε). Denote by Ω(ε) the domain obtained
from Ω by the contraction with center at O and coefficient ε. In other words,
(x, y) ∈ Ω(ε) if and only if (x/ε, y/ε) ∈ Ω. Let Kj and Ωj(ε) stand for K and Ω(ε)

shifted by the vector rj = (x0
j , 0), j = 1, 2. We assume that |x0

1 − x0
2| is sufficiently

large so the distance from ∂K1 ∩ ∂K2 to G is positive. We put (see Figure 2)

G(ε) = G ∩ Ω1(ε) ∩ Ω2(ε).

The wave function of a free electron of energy k2 satisfies the boundary value
problem

Δu(x, y) + k2u(x, y) = 0, (x, y) ∈ G(ε), (2.1.1)
u(x, y) = 0, (x, y) ∈ ∂G(ε).

Moreover, u is subject to radiation conditions at infinity. To formulate the condi-
tions we need the problem

Δv(y) + λ2v(y) = 0, y ∈ D, (2.1.2)
v(−l/2) = v(l/2) = 0.

The eigenvalues λ2
q of this problem, where q = 1, 2, . . . are called the thresholds;

they form the sequence λ2
q = (πq/l)2, q = 1, 2, . . .. We suppose that k2 in (2.1.1)

is not a threshold. Given a real k, there exist finitely many linearly independent
bounded wave functions. In the linear space spanned by such functions, a basis
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O1 O2

G(ε)

FIGURE 2 The waveguide G(ε).

is formed by the wave functions subject to the radiation conditions

um(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eiνmxΨm(y) +

M

∑
j=1

smj(k) e−iνjxΨj(y) + O(eδx), x → −∞,

M

∑
j=1

sm,M+j(k) eiνjxΨj(y) + O(e−δx), x → +∞;
(2.1.3)

uM+m(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M

∑
j=1

sM+m,j(k) e−iνjxΨj(y) + O(eδx), x → −∞,

e−iνmxΨm(y)+

+
M

∑
j=1

sM+m,M+j(k) eiνjxΨj(y) + O(e−δx), x → +∞;

Here M is the number of the thresholds satisfying λ2 < k2; νm =
√

k2 − λ2
m; Ψm

is an eigenfunction of the problem (2.1.2) that corresponds to the eigenvalue λ2
m,

Ψm(y) =
{ √

2/lνm sin λmy, m even,√
2/lνm cos λmy, m odd, m = 1, 2, . . . , M.

(2.1.4)

In the strip G the function Uj(x, y) = eiνjxΨj(y), j = 1, . . . , M, is a wave incoming
from −∞ and outgoing to +∞, while UM+j(x, y) = e−iνjxΨj(y) is a wave going
from +∞ to −∞. The matrix

S = ‖smj‖m,j=1,...,2M

with entries from the conditions (2.1.3) is called the scattering matrix; it is unitary.
The values

Rm =
M

∑
j=1

|smj|2, Tm =
M

∑
j=1

|sm, M+j|2

are called the reflection and transition coefficients, relatively, for the wave Um
incoming to G(ε) from −∞, m = 1, . . . , M. (Similar definitions can be given for
the wave UM+m incoming from +∞.)

In the present work we will discuss only the case (π/l)2 < k2 < (2π/l)2,
i.e. k2 is between the first and the second thresholds. Then the scattering matrix
is of size 2 × 2. We consider only the scattering of the wave incoming from −∞
and denote the reflection and transition coefficients as

R = R(k, ε) = |s11(k, ε)|2, T = T(k, ε) = |s12(k, ε)|2. (2.1.5)
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The goal is to find a "resonant" value kr = kr(ε) of the parameter k correspond-
ing to the maximum of the transition coefficient, and to describe the behavior of
T(k, ε) for k in a neighborhood of kr(ε) as ε → 0.

2.2 Limit problems

We derive the asymptotics of the wave function (i.e. the solution of the prob-
lem (2.1.1) as ε → 0) by use of the method of compound asymptotic expansions.
To this end we introduce "limit" boundary value problems independent of the
parameter ε.

2.2.1 First kind limit problems

Put G(0) = G ∩ K1 ∩ K2 (Figure 3); thus, G(0) consists of three parts G1, G2,
and G3, where G1 and G3 are infinite domains while G2 is a bounded resonator.
The problems

Δv(x, y) + k2v(x, y) = f , (x, y) ∈ Gj, (2.2.1)
v(x, y) = 0, (x, y) ∈ ∂Gj,

where j = 1, 2, 3, are called the first kind limit problems.
Introduce function spaces for the problem (2.2.1) in G2. Let φ1 and φ2 be

smooth real functions in the closure G2 of G2 such that φj = 1 in a neighborhood
of Oj, j = 1, 2, and φ2

1 + φ2
2 = 1. For l = 0, 1, . . . and γ ∈ R the space Vl

γ(G2) is the
completion in the norm

‖v; Vl
γ(G2)‖ =

⎛⎝∫
G2

l

∑
|α|=0

2

∑
j=1

φ2
j (x, y)r2(γ−l+|α|)

j |∂αv(x, y)|2 dx dy

⎞⎠1/2

(2.2.2)

of the set of smooth functions in G2 which vanish near O1 and O2; here rj is the
distance between (x, y) and Oj, α = (α1, α2) is a multi-index, and

∂α =
∂|α|

∂xα1∂yα2
.

Proposition 2.2.1 follows from well known general results, e.g. see [14, Chapters 2
and 4, §§1–3] or [6, v. 1, Chapter 1].

O1 O2

G1 G2 G3

FIGURE 3 The domain G(0).
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Proposition 2.2.1. Assume that |γ − 1| < π/ω. Then for every f ∈ V0
γ(G2) and

any k2 except the positive increasing sequence {k2
p}∞

p=1 of eigenvalues, k2
p → ∞, there

exists a unique solution v ∈ V2
γ(G2) to the problem (2.2.1) in G2. The estimate

‖v; V2
γ(G2)‖ ≤ c ‖ f ; V0

γ(G2)‖ (2.2.3)

holds with a constant c independent of f . If f is a smooth function in G2 vanishing
near O1 and O2, and v is any solution in V2

γ(G2) of the problem (2.2.1), then v is smooth
in G2 except at O1 and O2, and admits the asymptotic representation

v(x, y) =

{
b1 J̃π/ω(kr1)Φ(ϕ1) + O

(
r2π/ω

1

)
, r1 → 0;

b2 J̃π/ω(kr2)Φ(π − ϕ2) + O
(
r2π/ω

2
)
, r2 → 0

near the points O1 and O2, where (rj, ϕj) are polar coordinates with center at Oj, bj are
some constant coefficients, J̃μ stands for the Bessel function multiplied by a constant so
that J̃μ(kr) = rμ + o(rμ), and Φ(ϕ) = π−1/2 cos (πϕ/ω).

If k2 = k2
0 is an eigenvalue of problem (2.2.1), then the problem (2.2.1) is solvable

in G2 if and only if ( f , v0)G2 = 0 for any eigenfunction v0 corresponding to k2
0. The

condition being fulfilled, there exists a unique solution v to the problem (2.2.1) which is
orthogonal to the eigenfunctions and satisfies (2.2.3) (i.e. the Fredholm alternative holds).

We turn to the problems (2.2.1) for j = 1, 3. Let χ0,j and χ∞,j be smooth
real functions in the closure Gj of Gj such that χ0,j = 1 in a neighborhood of Oj,
χ0,j = 0 outside of a compact set, and χ2

0,j + χ2
∞,j = 1. We also assume that the

support suppχ∞,j is located in the cylindrical part of Gj. For γ ∈ R, δ > 0, and
l = 0, 1, . . . the space Vl

γ, δ(Gj) is the completion in the norm

‖v; Vl
γ, δ(Gj)‖ =

⎛⎝∫
Gj

l

∑
|α|=0

(
χ2

0,jr
2(γ−l+|α|)
j + χ2

∞,j exp(2δx)
)|∂αv|2 dx dy

⎞⎠1/2

(2.2.4)
of the set of smooth functions in Gj having compact supports and vanishing
near Oj.

Recall that according to our assumption, k2 lies between the first and the
second thresholds, so in every Gj there is only one outgoing wave. Let U−

1 = U2
be the outgoing wave in G1, and let U−

2 = U1 be the outgoing wave in G3 (the
definition of Uj in G see in Section 2.1). The next proposition follows, e.g., from
[14, Theorem 5.3.5].

Proposition 2.2.2. Let |γ − 1| < π/ω and suppose that there is no nontrivial solution
to the homogeneous problem (2.2.1) (where f = 0) in V2

γ, δ(Gj) with arbitrary small pos-
itive δ. Then for any f ∈ V0

γ, δ(Gj) there exists a unique solution v to the problem (2.2.1)
that admits the representation

v = u + Ajχ∞,jU−
j ,
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where Aj = const, u ∈ V2
γ, δ(Gj), and δ is sufficiently small. Furthermore, the inequality

‖u; V2
γ, δ(Gj)‖+ |Aj| ≤ c ‖ f ; V0

γ, δ(Gj)‖ (2.2.5)

holds with constant c independent of f . If the function f is smooth and vanishes near Oj,
then the solution v in G1 admits the representation

v(x, y) = a1 J̃π/ω(kr1)Φ(π − ϕ1) + O
(
r2π/ω

1

)
, r1 → 0,

and the solution in G3 admits the representation

v(x, y) = a2 J̃π/ω(kr2)Φ(ϕ2) + O
(
r2π/ω

2
)
, r2 → 0,

where aj are some constants.

2.2.2 Second kind limit problems

In the domains Ωj, j = 1, 2, introduced in Section 2.1, we consider the boundary
value problems

Δw(ξ j, ηj) = F(ξ j, ηj), (ξ j, ηj) ∈ Ωj,
w(ξ j, ηj) = 0, (ξ j, ηj) ∈ ∂Ωj,

(2.2.6)

which are called the second kind limit problems; (ξ j, ηj) are Cartesian coordinates
with origin at Oj.

Let ρj = dist((ξ j, ηj), Oj) and let ψ0,j, ψ∞,j be smooth real functions in Ωj
such that ψ0,j = 1 for ρj < N/2, ψ0,j = 0 for ρj > N, and ψ2

0,j + ψ2
∞,j = 1, N being

a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . . the space Vl
γ(Ωj)

is the completion in the norm

‖v; Vl
γ(Ωj)‖ =

(∫
Ωj

S(v) dξ jdηj

)1/2

(2.2.7)

of the set C∞
c (Ωj) of compactly supported in Ωj smooth functions; here

S(v) :=
l

∑
|α|=0

(
ψ0,j(ξ j, ηj)

2 + ψ∞,j(ξ j, ηj)
2ρ

2(γ−l+|α|)
j

)
|∂αv(ξ j, ηj)|2.

The next proposition is a corollary of [14, Theorem 4.3.6].

Proposition 2.2.3. Let |γ − 1| < π/ω. Then for every F ∈ V0
γ(Ωj) there exists a

unique solution w ∈ V2
γ(Ωj) to the problem (2.2.6) and

‖w; V2
γ(Ωj)‖ ≤ c ‖F; V0

γ(Ωj)‖ (2.2.8)

holds with a constant c independent of F. If F ∈ C∞
c (Ωj), then w is smooth in Ωj and

admits the representation

w(ξ j, ηj) =

{
αjρ

−π/ω
j Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0,

β jρ
−π/ω
j Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0,

(2.2.9)
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as ρj → ∞; here (ρj, ϕj) are polar coordinates in Ωj with center at Oj, and function Φ is
the same as in Proposition 2.2.1. The constant coefficients αj and β j are defined by

αj = −(F, wl
j)Ω, β j = −(F, wr

j )Ω,

where wl
j and wr

j are unique solutions to the homogeneous problem (2.2.6) such that,
as ρj → ∞,

wl
j =

⎧⎨⎩
(

ρπ/ω
j + αρ−π/ω

j

)
Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0;

βρ−π/ω
j Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0;

(2.2.10)

wr
j =

⎧⎨⎩βρ−π/ω
j Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0;(

ρπ/ω
j + αρ−π/ω

j

)
Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0;

(2.2.11)

the coefficients α and β depend only on the geometry of the set Ω and should be calculated.

2.3 Special solutions to the first kind homogeneous problems

Introduce special solutions to the homogeneous problems (2.2.1) in Gj, j = 1, 2, 3.
These solutions are needed for construction of the asymptotics in the next sec-
tion. Propositions 2.2.1 and 2.2.2 imply that the bounded solutions of homoge-
neous problems (2.2.1) are trivial (except the eigenfunctions of the problem in the
resonator), so we consider only solutions unbounded near the points Oj.

Let us consider the problem

Δu + k2u = 0 in K,
u = 0 on ∂K.

(2.3.1)

The function
v(r, ϕ) = Ñπ/ω(kr)Φ(ϕ) (2.3.2)

satisfies (2.3.1); Ñπ/ω stands for the Neumann function multiplied by a constant
such that

Ñπ/ω(kr) = r−π/ω + o(r−π/ω),

while Φ is the same as in Proposition 2.2.1. Let t 	→ Θ(t) be a cut-off function
on R equal to 1 for t < δ/2 and to 0 for t > δ, δ being a small positive number.
Introduce a solution

v1(x, y) = Θ(r1)v(r1, ϕ1) + ṽ1(x, y) (2.3.3)

of the homogeneous problem (2.2.1) in G1, where ṽ1 solves (2.2.1) with

f = −[Δ, Θ]v,
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the existence of ṽ1 is provided by Proposition 2.2.2. Thus,

v1(x, y)=

{(
Ñπ/ω(kr1) + aJ̃π/ω(kr1)

)
Φ(π − ϕ1) + O(r3π/ω

1 ), r1 → 0,

AU−
1 (x, y) + O(eδx), x → −∞,

(2.3.4)

where J̃π/ω is the same as in Propositions 2.2.1 and 2.2.2, and the constant A 
= 0
depends only on the geometry of the domain G1 and should be calculated.

Define the solution v3 to the problem (2.2.1) in G3 by v3(x, y) = v1(d − x, y),
where d = dist(O1, O2). Then

v3(x, y) =

{ (
Ñπ/ω(kr2) + aJ̃π/ω(kr2)

)
Φ(ϕ2) + O(r3π/ω

2 ), r2 → 0,

Ae−iν1dU−
2 (x, y) + O(e−δx), x → +∞.

(2.3.5)

Lemma 2.3.1. There holds the equality |A|2 = Im a.

Proof. Let (u, v)Q denote the integral
∫

Q u(x)v(x) dx and let GN, δ stand for the
truncated domain G1 ∩ {x > −N} ∩ {r1 > δ}. By the Green formula,

0 = (Δv1 + k2v1, v1)GN, δ
− (v1, Δv1 + k2v1)GN, δ

= (∂v1/∂n, v1)∂GN, δ
− (v1, ∂v1/∂n)∂GN, δ

= 2i Im (∂v1/∂n, v1)E,

where E = (∂GN, δ ∩{x = −N})∪ (∂GN, δ ∩{r1 = δ}). Taking into account (2.3.4)
as x → +∞ and (2.1.4), we have

Im (∂v1/∂n, v1)∂GN, δ∩{x=−N} = −Im
∫ l/2

−l/2
A

∂U−
1

∂x
(x, y)AU−

1 (x, y)
∣∣∣
x=−N

dy + o(1)

= |A|2ν1

∫ l/2

−l/2
|Ψ1(y)|2dy + o(1) = |A|2 + o(1).

Using (2.3.4) as r1 → 0 and the definition of Φ (see Proposition 2.2.1), we obtain

Im (∂v1/∂n,v1)∂GN, δ∩{r1=δ} = Im
∫ π+ω/2

π−ω/2

[
− ∂

∂r1

(
Ñπ/ω(kr1) + aJ̃π/ω(kr1)

)]
×
(

Ñπ/ω(kr1) + aJ̃π/ω(kr1)
)
|Φ(π − ϕ1)|2r1

∣∣∣
r1=δ

dϕ1 + o(1)

= −(Im a)
2π

ω

∫ π+ω/2

π−ω/2
|Φ(π − ϕ1)|2dϕ1 + o(1) = −Im a + o(1).

Thus |A|2 − Im a + o(1) = 0 as N → ∞ and δ → 0.

Let k2
0 be a simple eigenvalue for −Δ with Dirichlet boundary condition

in G2, and let v0 be an eigenfunction corresponding to k2
0 and normalized by∫

G2
|v0|2dx = 1. By Proposition 2.2.1

v0(x) ∼
{

b1 J̃π/ω(k0r1)Φ(ϕ1), r1 → 0,
b2 J̃π/ω(k0r2)Φ(π − ϕ2), r2 → 0.

(2.3.6)
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We assume that bj 
= 0; it is true, e.g. for the eigenfunction corresponding to the
least eigenvalue of the resonator. Since the resonator is symmetric with respect
to the mapping (x, y) 	→ (d − x, y), we have q = b1/b2 = ±1. For k2 in a punc-
tured neighborhood of k2

0 separated from the other eigenvalues, we introduce
solutions v0j to the homogeneous problem (2.2.1) in G2 by

v0j(x, y) = Θ(rj)v(rj, ϕj) + ṽ0j(x, y), j = 1, 2, (2.3.7)

where v is defined by (2.3.2), and ṽ0j is the bounded solution to the problem (2.2.1)
in G2 with

f j(x, y) = −[Δ, Θ(rj)]v(rj, ϕj).

Lemma 2.3.2. In a neighborhood V ⊂ C of k2
0 containing no eigenvalues of the prob-

lem (2.2.1) in G2 except k2
0, the equalities ṽ0j = −bj(k2 − k2

0)
−1v0 + v̂0j hold with bj

from (2.3.6) and functions v̂0j analytic in k2 ∈ V.

Proof. First check the equality (v0j, v0)G2 = −bj/(k2 − k2
0), where v0j are defined

by (2.3.7). We have

(Δv0j + k2v0j, v0)Gδ
− (v0j, Δv0 + k2v0)Gδ

= −(k2 − k2
0)(v0j, v0)Gδ

;

the domain Gδ is obtained from G2 by excluding discs with radius δ centered
at points O1 and O2. Using the Green formula, as in Lemma 2.3.1, we get the
equality

−(k2 − k2
0)(v0j, v0)Gδ

= bj + o(1).

It remains to let δ tend to zero.
Since k2

0 is a simple eigenvalue, we have

ṽ0j =
Bj(k2)

k2 − k2
0

v0 + v̂0j, (2.3.8)

where Bj(k2) does not depend on x, and v̂0j are some functions analytic wih re-
spect to k2 near the point k2 = k2

0. Multiplying (2.3.7) by v0 and taking into ac-
count (2.3.8), the obtained formula for (v0j, v0)G2 , and the condition (v0, v0)G2 = 1,
we get the equality

Bj(k2) = −bj + (k2 − k2
0)B̃j(k2),

where B̃j are some analytic functions. Together with (2.3.8) that leads to the re-
quired statement.

In view of Lemma 2.3.2 the expressions v21 = (k2 − k2
0)v01 and v22 = b2v01 −

b1v02 may be extended to functions continuous at k2
0 with respect to k2. According

to Proposition 2.2.1,

v21(x, y) ∼
{(

(k2 − k2
0)Ñπ/ω(kr1) + c1(k) J̃π/ω(kr1)

)
Φ(ϕ1), r1 → 0,

c2(k) J̃π/ω(kr2)Φ(π − ϕ2), r2 → 0,
(2.3.9)

v22(x, y) ∼
{(

b2Ñπ/ω(kr1) + d1(k) J̃π/ω(kr1)
)
Φ(ϕ1), r1 → 0,(−b1Ñπ/ω(kr2) + d2(k) J̃π/ω(kr2)
)
Φ(π − ϕ2), r2 → 0.

(2.3.10)

The proof of Lemma 2.3.2 shows that cj(k0) = −b1bj.
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2.4 Asymptotic formulas

This section is devoted to derivation of the asymptotic formulas. In Section 2.4.1,
we present a formula for the wave function (see (2.4.1)), explain its structure, and
describe the solutions of the first kind limit problems involved in the formula.
Construction of formula (2.4.1) is completed in Section 2.4.2, where the solutions
to the second kind limit problems are given and the coefficients in the expressions
for the solutions of the first kind limit problems are calculated. In Section 2.4.3 we
analyze the expression for s̃12 obtained in 2.4.2, and derive formal asymptotics
for the characteristics of resonant tunneling. Notice, that the remainders in the
formulas (2.4.20)–(2.4.22) arose in the intermediate stage of considerations while
simplifying the principal part of the asymptotics; they are not the remainders in
the final asymptotic formulas. The "final" remainders are estimated in the next
Section 2.5, see Theorem 2.5.3. First we derive the integral estimate (2.5.13) of
the remainder in the formula (2.4.1), which proves to be sufficient to obtain more
simplified estimates of the remainders in the formulas for the characteristics of
resonant tunneling. The formula (2.4.1) and the estimate (2.5.13) are auxiliary and
are analysed only to that extent which is necessary for deriving the asymptotic
expressions for the characteristics of resonant tunneling.

2.4.1 Asymptotics of the wave function

In the waveguide G(ε), we consider the scattering of the wave U = eiν1xΨ1(y)
incoming from −∞ (see (2.1.4)). The wave function admits the representation

u(x, y; ε) = χ1, ε(x, y)v1(x, y; ε)

+ Θ(r1)w1(ε
−1x1, ε−1y1; ε) + χ2, ε(x, y)v2(x, y; ε) (2.4.1)

+ Θ(r2)w2(ε
−1x2, ε−1y2; ε) + χ3, ε(x, y)v3(x, y; ε) + R(x, y; ε).

Let us explain the notation and the structure of this formula. When composing
the formula, we first describe the behavior of the wave function u outside of the
narrows, where the solutions vj to the homogeneous problems (2.2.1) in Gj serve
as approximations to u. The function vj is a linear combination of the special
solutions introduced in the previous section; v1 and v3 are subject to the same
radiation conditions as u:

v1(x, y; ε) =
1
A

v1(x, y) +
s̃11(ε)

A
v1(x, y)

∼U+
1 (x, y) + s̃11(ε)U−

1 (x, y), x → −∞; (2.4.2)
v2(x, y; ε) =C1(ε)v21(x, y) + C2(ε)v22(x, y); (2.4.3)

v3(x, y; ε) =
s̃12(ε)

Ae−iν1d v3(x, y) ∼ s̃12(ε)U−
2 (x, y), x → +∞; (2.4.4)

the approximations s̃11(ε), s̃12(ε) to the elements s11(ε), s12(ε) of the scattering
matrix and the coefficients C1(ε), C2(ε) are yet unknown. By χj,ε we denote cut-
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off functions defined by

χ1, ε(x, y) = (1 − Θ(r1/ε)) 1G1(x, y), χ3, ε(x, y) = (1 − Θ(r2/ε)) 1G3(x, y),
χ2, ε(x, y) = (1 − Θ(r1/ε)− Θ(r2/ε)) 1G2(x, y),

where rj =
√

x2
j + y2

j , and (xj, yj) are the coordinates of a point (x, y) in the sys-
tem obtained by shifting the origin to the point Oj; 1Gj is the indicator of Gj (equal
to 1 in Gj and to 0 outside Gj); Θ(ρ) is the same cut-off function as in (2.3.3) (equal
to 1 for 0 � ρ � δ/2 and to 0 for ρ � δ, δ being a fixed positive number). Thus, χj, ε

are defined on the whole waveguide G(ε) as well as the functions χj, εv3 in (2.4.1).
Being substituted to (2.1.1), the sum ∑3

j=1 χj, εvj gives a discrepancy in the
right-hand side of the Helmholtz equation supported near the narrows. We com-
pensate the principal part of the discrepancy by means of the second kind limit
problems. Namely, the discrepancy supported in the neighborhood of the point Oj

is rewritten into coordinates (ξ j, ηj) = (ε−1xj, ε−1yj) in the domain Ωj and is
taken as a right-hand side for the Laplace equation. The solution wj of the cor-
responding problem (2.2.6) is rewritten into coordinates (xj, yj) and multiplied
by a cut-off function. As a result, there arise the terms Θ(rj)wj(ε

−1xj, ε−1yj; ε)
in (2.4.1).

Proposition 2.2.3 provides the existence of solutions wj decaying at infinity
as O(ρ−π/ω

j ) (see (2.2.9)). But those solutions will not lead us to the goal, be-
cause substitution of (2.4.1) into (2.1.1) gives a discrepancy of high order which
has to be compensated again. Therefore we require the rate wj = O(ρ−3π/ω

j )

as ρj → ∞. By Proposition 2.2.3, such a solution exists if the right-hand side of
the problem (2.2.6) satisfies the additional conditions

(F, wl
j)Ωj = 0, (F, wr

j )Ωj = 0.

These conditions (two in each narrow) uniquely determine the coefficients s̃11(ε),
s̃12(ε), C1(ε), and C2(ε). The remainder R(x, y; ε) is small in comparison with the
principal part of (2.4.1) as ε → 0.

2.4.2 Formulas for s̃11, s̃12, C1, and C2

Now let us specify the right-hand sides Fj of the problems (2.2.6) and find s̃11(ε),
s̃12(ε), C1(ε), and C2(ε). Substituting χ1, εv1 into (2.1.1), we get the discrepancy

(Δ + k2)χ1, εv1 = [Δ, χε,1]v1 + χε,1(Δ + k2)v1 = [Δ, 1 − Θ(ε−1r1)]v1,

which is non-zero in a neighborhood of the point O1, where v1 can be replaced
by asymptotics; the boundary condition in (2.1.1) is fulfilled. According to (2.4.2)
and (2.3.4), as r1 → 0,

v1(x, y; ε) =
(
a−1 (ε)Ñπ/ω(kr1) + a+1 (ε) J̃π/ω(kr1)

)
Φ(π − ϕ1) + O(r3π/ω

1 ),

where

a−1 (ε) =
1
A
+

s̃11(ε)

A
, a+1 =

a
A
+

s̃11(ε)a
A

. (2.4.5)
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Choose in each summand the leading term and take ρ1 = r1/ε, then

(Δ + k2)χε,1v1 ∼ [Δ, 1 − Θ(ε−1r1)]
(

a−1 r−π/ω
1 + a+1 rπ/ω

1

)
Φ(π − ϕ1)

= ε−2[Δ(ρ1,ϕ1)
, 1 − Θ(ρ1)]

(
a−1 ε−π/ωρ−π/ω

1 + a+1 επ/ωρπ/ω
1

)
Φ(π − ϕ1). (2.4.6)

In the same way, by use of (2.4.3) and (2.3.9)–(2.3.10), write down the leading term
of the discrepancy from χε,2v2 supported in a neighborhood of O1:

(Δ + k2)χε,1v1 ∼ ε−2[Δ(ρ1,ϕ1)
, 1 − Θ(ρ1)]

(
b−1 ε−π/ωρ−π/ω

1 + b+1 επ/ωρπ/ω
1

)
Φ(ϕ1),
(2.4.7)

where

b−1 = C1(ε)(k2 − k2
0) + C2(ε)b2, b+1 = C1(ε)c1 + C2(ε)d1. (2.4.8)

As right-hand side F1 of the problem (2.2.6) in Ω1, we take the function

F1(ξ1, η1) =− [Δ, ζ−]
(

a−1 ε−π/ωρ−π/ω
1 + a+1 επ/ωρπ/ω

1

)
Φ(π − ϕ1)

− [Δ, ζ+]
(

b−1 ε−π/ωρ−π/ω
1 + b+1 επ/ωρπ/ω

1

)
Φ(ϕ1), (2.4.9)

where ζ+ (respectively ζ−) stands for the function 1 − Θ, first restricted to the
domain ξ1 > 0 (respectively ξ1 < 0), then extended by zero onto the whole
domain Ω1. Let w1 be the corresponding solution and then the term

Θ(r1)w1(ε
−1x1, ε−1y1; ε)

in (2.4.1), being substituted in (2.1.1), compensates the discrepancies (2.4.6)–(2.4.7).
Analogously, using (2.4.3)–(2.4.4), (2.3.9)–(2.3.10), and (2.3.5), we find the

right-hand side of the problem (2.2.6) for j = 2:

F2(ξ2, η2) =− [Δ, ζ−]
(

a−2 ε−π/ωρ−π/ω
2 + a+2 επ/ωρπ/ω

2

)
Φ(π − ϕ2)

− [Δ, ζ+]
(

b−2 ε−π/ωρ−π/ω
2 + b+2 επ/ωρπ/ω

2

)
Φ(ϕ2),

where
a−2 (ε) = −C2(ε)b1, a+2 (ε) = C1(ε)c2 + C2(ε)d2,

b−2 (ε) =
s̃12(ε)

Ae−iν1d , b+2 (ε) =
as̃12(ε)

Ae−iν1d .
(2.4.10)

Lemma 2.4.1. If the solution wj to the problem (2.2.6) with right-hand side

Fj(ξ j, ηj) =− [Δ, ζ−]
(

a−j ε−π/ωρ−π/ω
j + a+j επ/ωρπ/ω

j

)
Φ(π − ϕj)

− [Δ, ζ+]
(

b−j ε−π/ωρ−π/ω
j + b+j επ/ωρπ/ω

j

)
Φ(ϕj), j = 1, 2,

is O(ρ−3π/ω
j ) as ρj → ∞, then the relations

a−j ε−π/ω − αa+j επ/ω − βb+j επ/ω =0,

b−j ε−π/ω − αb+j επ/ω − βa+j επ/ω =0,
(2.4.11)

hold with α and β from (2.2.10) – (2.2.11).
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Proof. In view of Proposition 2.2.3 we have wj = O(ρ−3π/ω
j ) as ρj → ∞ if and

only if the right-hand side of the problem (2.2.6) satisfies the conditions

(Fj, wl
j)Ωj = 0, (Fj, wr

j )Ωj = 0, (2.4.12)

where wl
j and wr

j are solutions to the homogeneous problem (2.2.6), for which the
expansions in (2.2.10)–(2.2.11) hold. Introduce the functions f± on Ωj by equali-
ties

f±(ρj, ϕj) = ρ±π/ω
j Φ(ϕj).

To derive (2.4.11) from (2.4.12), it suffices to check that

([Δ, ζ−] f−, wl
j)Ωj = ([Δ, ζ+] f−, wr

j )Ωj = −1,

([Δ, ζ−] f+, wl
j)Ωj = ([Δ, ζ+] f+, wr

j )Ωj = α,

([Δ, ζ+] f−, wl
j)Ωj = ([Δ, ζ−] f−, wr

j )Ωj = 0,

([Δ, ζ+] f+, wl
j)Ωj = ([Δ, ζ−] f+, wr

j )Ωj = β.

Let us prove the first equality, the rest ones are treated in a similar way. Since
[Δ, ζ+] f− is compactly supported, in the calculation of ([Δ, ζ−] f−, wl

j)Ωj one may
replace Ωj by

ΩR
j = Ωj ∩ {ρj < R}

with sufficiently large R. Let E denote the set ∂ΩR
j ∩ {ρj = R} ∩ {ξ j > 0}. By the

Green formula

([Δ, ζ−] f−, wl
j)Ωj =(Δζ− f−, wl

j)ΩR
j
− (ζ− f−, Δwl

j)ΩR
j

=(∂ f−/∂n, wl
j)E − ( f−, ∂wl

j/∂n)E.

Taking account of (2.2.10) for ξ j < 0 and the definition of Φ in Proposition 2.2.1,
we arrive at

([Δ, ζ−] f−, wl
j)Ωj =S(R)

∫ π+ω/2

π−ω/2
Φ(π − ϕj)

2dϕj + o(1)

=− 2π

ω

∫ π+ω/2

π−ω/2
Φ(π − ϕj)

2dϕj + o(1) = −1 + o(1),

where S(R) stands for the expression

ρj

(
∂ρ−π/ω

j

∂ρj
(ρπ/ω

j + αρ−π/ω
j )− ρ−π/ω

j
∂

∂ρj
(ρπ/ω

j + αρ−π/ω
j )

)∣∣∣∣∣
ρj=R

.

It remains to pass to the limit as R → ∞.

Remark 2.4.2. The solutions wj mentioned in Lemma 2.4.1 can be represented as linear
combinations of functions independent of ε. We write down the corresponding expression
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which will be of use in the next section. Let wl
j and wr

j be the solutions of the prob-
lem (2.2.6) specified by conditions (2.2.10) – (2.2.11), and let ζ+ and ζ− be the same
cut-off functions as in (2.4.9). Put

wl
j = wl

j − ζ−
(

ρπ/ω
j + αρ−π/ω

j

)
Φ(π − ϕj)− ζ+βρ−π/ω

j Φ(ϕj),

wr
j = wr

j − ζ−βρ−π/ω
j Φ(π − ϕj)− ζ+

(
ρπ/ω

j + αρ−π/ω
j

)
Φ(ϕj).

A direct verification shows that

wj = a+j επ/ωwl
j +

1
β

(
a−j ε−π/ω − αa+j επ/ω

)
wr

j

=
1
β

(
b−j ε−π/ω − αb+j επ/ω

)
wl

j + b+j επ/ωwr
j . (2.4.13)

Using (2.4.5) and (2.4.8), we transform (2.4.11) with j = 1 to the expressions

γ(ε)s̃11(ε) + γ(ε) = C1(ε)c1 + C2(ε)d1,

δ(ε)s̃11(ε) + δ(ε) = C1(ε)(k2 − k2
0) + C2(ε)b2,

(2.4.14)

where

γ(ε) =
1

Aβ

(
ε−2π/ω − aα

)
, δ(ε) =

1
Aβ

(
α + a(β2 − α2)ε2π/ω

)
. (2.4.15)

For j = 2, taking (2.4.10) into account, reduce (2.4.11) to the equalities

γ(ε)s̃12(ε) = (C1(ε)c2 + C2(ε)d2)e−iν1d, δ(ε)s̃12(ε) = −C2(ε)b1e−iν1d. (2.4.16)

From (2.4.14) and (2.4.16), by means of Lemma 2.3.1, we find C1(ε), C2(ε), s̃11(ε),
and s̃12(ε):

C1(ε) =(b1c2)
−1 (γ(ε)b1 + δ(ε)d2) s̃12(ε)eiν1d,

C2(ε) =− b−1
1 δ(ε)s̃12(ε)eiν1d,

(2.4.17)

s̃11(ε) =(2ib1c2)
−1
(
(k2 − k2

0)b1|γ(ε)|2 + ((k2 − k2
0)d2 − b2c2)γ(ε)δ(ε)

− b1c1γ(ε)δ(ε)− (c1d2 − c2d1)|δ(ε)|2
)

s̃12(ε), (2.4.18)

s̃12(ε) =2ib1c2e−iν1d
(
−(k2 − k2

0)b1γ(ε)2

− ((k2 − k2
0)d2 − b1c1 − b2c2)γ(ε)δ(ε) + (c1d2 − c2d1)δ(ε)

2
)−1

. (2.4.19)

2.4.3 The formulas for the characteristics of resonant tunneling

The solutions of the first kind limit problems involved in (2.4.1) are defined for
complex k2 as well. The obtained expression (2.4.19) for s̃12 has a pole k2

p in the
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lower complex half-plane. To find k2
p we equate 2ib1c2e−iν1d/s̃12 to zero and solve

the equation for k2 − k2
0:

k2 − k2
0 =

(b1c1 + b2c2)γ(ε)δ(ε) + (c1d2 − c2d1)δ(ε)
2

b1γ(ε)2 + d2γ(ε)δ(ε)
.

Since the right-hand side of the last equation behaves like O(ε2π/ω) as ε → 0,
it may be solved by the method of successive approximations. Considering the
formulas (2.4.15), cj(k0) = −b1bj, b1 = ±b2, and Lemma 2.3.1, and dropping the
lower order terms, we get k2

p = k2
r − ik2

i , where

k2
r = k2

0 − 2αb2
1ε2π/ω + O(ε4π/ω),

k2
i = 2β2b2

1|A(k2
0)|2ε4π/ω + O(ε6π/ω).

(2.4.20)

For small k2 − k2
p the formula (2.4.19) takes the form

s̃12(k, ε) = −ε4π/ω 2iβ2A(k)2c2(k)e−iν1d

k2 − k2
p

(
1 + O(|k2 − k2

p|+ ε2π/ω)
)

.

Let k2 − k2
0 = O(ε2π/ω), then

|k2 − k2
p| = O(ε2π/ω), A(k) = A(k2

0) + O(ε2π/ω),

c2(k2) = −b1b2 + O(ε2π/ω), ν1(k) = ν1(k2
0) + O(ε2π/ω),

and

s̃12(k, ε) = ε4π/ω 2iβ2b1b2A(k0)
2e−iν1(k0)d

k2 − k2
p

(
1 + O(ε2π/ω)

)
=

q(A(k0)/|A(k0)|)2e−iν1(k0)d

1 − iP
k2 − k2

r
ε4π/ω

(
1 + O(ε2π/ω)

)
,

where q = b2/b1 and P = (2b2
1β2|A(k0)|2)−1. Thus,

T̃(k, ε) = |s̃12|2 =
1

1 + P2
(

k2 − k2
r

ε4π/ω

)2 (1 + O(ε2π/ω)). (2.4.21)

The obtained approximation T̃ to the transition coefficient has a peak at k2 = k2
r

whose width at its half-height is

Υ̃(ε) =
2
P

ε4π/ω. (2.4.22)
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2.5 Justification of the asymptotics

Introduce functional spaces for the problem

Δu + k2u = f G(ε), u = 0 ∂G(ε). (2.5.1)

Let Θ be the same function as in (2.3.3), and let the cut-off functions ηj, j = 1, 2, 3,
be nonzero in Gj and satisfy the relation

η1(x, y) + Θ(r1) + η2(x, y) + Θ(r2) + η3(x, y) = 1

in G(ε). For γ ∈ R, δ > 0, and l = 0, 1, . . . the space Vl
γ,δ(G(ε)) is the completion

in the norm ∥∥∥u; Vl
γ,δ(G(ε))

∥∥∥ =

(∫
G(ε)

S(u) dx dy
)1/2

(2.5.2)

of the set of smooth functions compactly supported on G(ε); here

S(u) :=
l

∑
|α|=0

(
2

∑
j=1

Θ2(rj) (r2
j + ε2

j )
γ−l+|α| + η2

1e2δ|x| + η2 + η2
3e2δ|x|

)
|∂αu|2

We denote by V0,⊥
γ,δ the space of functions f analytic in k2 which take values in

V0
γ,δ(G(ε)) and satisfy at k2 = k2

0 the condition (χ2,εσ f , v0)G2 = 0 with a small
positive σ.

Proposition 2.5.1. Let k2
r be a resonance, k2

r → k2
0 as ε → 0, and let

|k2 − k2
r | = O(ε2π/ω).

Assume, that γ satisfies the condition π/ω − 2 < γ − 1 < π/ω, f ∈ V0,⊥
γ,δ (G(ε)), and

u is the solution of the problem (2.5.1) which admits the representation

u = ũ + η1A−
1 U−

1 + η3A−
2 U−

2 ;

here A−
j = const, ũ ∈ V2

γ,δ(G(ε)) for small δ > 0. Then

‖ũ; V2
γ,δ(G(ε))‖+ |A−

1 |+ |A−
2 | ≤ c‖ f ; V0

γ,δ(G(ε))‖, (2.5.3)

where c is a constant independent of f and ε.

Proof. Step A. First we construct an auxiliary function up. As it was mentioned
before, s̃12 has a pole k2

p = k2
r − ik2

i (see (2.4.20)). Multiply the solutions to the
limit problems, involved in (2.4.1), by A(k)b2βε2π/ω/s12(ε, k)eiν1d, put k = kp,
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and denote the resulting functions by adding the subscript p. Then

v1p(x, y; ε) = ε2π/ω(b1β + O(ε2π/ω))v1(x, y; kp),

v3p(x, y; ε) = ε2π/ωb2βv1(x, y; kp);
(2.5.4)

v2p(x, y; ε) =

(
− 1

b1
+ O

(
ε2π/ω

))
v21(x, y; kp)

+ ε2π/ω

(
−α

b2

b1
+ O

(
ε2π/ω

))
v22(x, y; kp),

w1p(ξ1, η1; ε) = b1επ/ω
(

ε2π/ω
(

a(kp)β + O(ε2π/ω)
)

wl
1(ξ1, η1)

+
(

1 + O(ε2π/ω)
)

wr
1(ξ1, η1)

)
,

(2.5.5)

w2p(ξ2, η2; ε) = b2επ/ω
((

1 + O(ε2π/ω)
)

wl
1(ξ2, η2)

+ a(kp)βε2π/ωwr
1(ξ2, η2)

)
;

(2.5.6)

the dependence of kp on ε is not shown. We set

up(x, y; ε) = Ξ(x, y)
[
χ1,ε(x, y)v1p(x, y; ε) + Θ(ε−2σr1)w1p(ε

−1x1, ε−1y1; ε)

+ χ2,ε(x, y)v2p(x, y; ε) + Θ(ε−2σr2)w2p(ε
−1x2, ε−1y2; k, ε)

+χ3,ε(x, y)v2p(x, y; k, ε)
]

, (2.5.7)

where Ξ is a cut-off function in G(ε) that is equal to 1 on the set G(ε) ∩ {|x| < R}
and to 0 on G(ε) ∩ {|x| > R + 1} for a large R > 0. The principal part of the
norm of up is given by χ2,εv2p. Considering the definitions of v2p and v21 (see
Section 2.2) and Lemma 2.3.2, we get ‖χ2,εv2p‖ = ‖v0‖+ o(1).

Step B. Let us show that

‖(Δ + k2
p)up‖ ≤ cεπ/ω+κ, (2.5.8)

where κ = min{π/ω, 3π/ω − σ1, γ + 1}, σ1 = 2σ(3π/ω − γ + 1); until Step C,
‖ · ‖ stands for ‖· ; V0

γ, δ(G(ε))‖. If π/ω < γ + 1 and σ is sufficiently small so that
2π/ω > σ1, then κ = π/ω.

In view of (2.5.7),

(Δ + k2
p)up(x, y; ε)

=[Δ, χ1,ε]
(

v1(x, y; ε)− b1βε2π/ω(r−π/ω
1 + a(kp)rπ/ω

1 )Φ(π − ϕ1)
)

+ [Δ, Θ]w1p(ε
−1x1, ε−1y1; ε)− k2Θ(ε−2σr1)w1p(ε

−1x1, ε−1y1; ε)

+ [Δ, χ2,ε]
(

v2(x, y; ε)− Θ(r1)
(
b−1p(ε)r

−π/ω
1 + b+1p(ε)r

π/ω
1

)
Φ(π − ϕ1)

− Θ(r2)
(
a−2p(ε)r

−π/ω
2 + a+2p(ε)r

π/ω
2

)
Φ(ϕ2)

)
+ [Δ, Θ]w2p(ε

−1x2, ε−1y2; ε)− k2Θ(ε−2σr2)w2p(ε
−1x2, ε−1y2; ε)

+ [Δ, χ3,ε]
(

v3(x, y; ε)− b2βε2π/ω(r−π/ω
2 + a(kp)rπ/ω

2 )Φ(ϕ2)
)

+ [Δ, Ξ]v1(x, y; ε) + [Δ, Ξ]v3(x, y; ε),
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where
b−1p = O(ε2π/ω), b+1p = b1 + O(ε2π/ω),
a−2p = O(ε2π/ω), a+2p = b2 + O(ε2π/ω).

Taking into account the asymptotics of v1 as r1 → 0 and passing to the variables
(ξ1, η1) = (ε−1x1, ε−1y1), we obtain∥∥∥(x, y) 	→ [Δ, χ1,ε]

(
v1(x, y)− (r−π/ω

1 + a(kp)rπ/ω
1 )Φ(π − ϕ1)

)∥∥∥2

≤ c
∫

G(ε)
(r2

1 + ε2)γ
∣∣∣[Δ, χ1,ε]r−π/ω+2

1 Φ(π − ϕ1)
∣∣∣2 dxdy ≤ cε2(γ−π/ω+1).

This and (2.5.4) imply the estimate∥∥∥(x, y) 	→ [Δ, χ1,ε]
(

v1(x, y)− (r−π/ω
1 + a(kp)rπ/ω

1 )Φ(π − ϕ1)
)∥∥∥ ≤ cεγ+π/ω+1.

Analogously,∥∥∥(x, y) 	→ [Δ, χ2,ε]
(

v2(x, y)− Θ(r1)
(
b−1p(ε)r

−π/ω
1 + b+1p(ε)r

π/ω
1

)
Φ(π − ϕ1)

− Θ(r2)
(
a−2p(ε)r

−π/ω
2 + a+2p(ε)r

π/ω
2

)
Φ(ϕ2)

)∥∥∥ ≤ cεγ+π/ω+1,∥∥∥(x, y) 	→ [Δ, χ3,ε]
(

v3(x, y)− (r−π/ω
2 + a(kp)rπ/ω

2 )Φ(ϕ2)
)∥∥∥ ≤ cεγ+π/ω+1.

It is evident, that
‖[Δ, Ξ]vl‖ ≤ cε2π/ω, l = 1, 3.

Further, since wl
j behaves like O(ρ−3π/ω

j ) at infinity, we have

∫
G(ε)

(r2
j + ε2)γ

∣∣∣[Δ, Θ]wl
j(ε

−1xj, ε−1yj)
∣∣∣2 dxjdyj

≤ c
∫

Kj

(r2
j + ε2)γ

∣∣∣[Δ, Θ](ε−1rj)
−3π/ωΦ2(ϕj)

∣∣∣2 dxjdyj ≤ cε2(3π/ω−σ1),

where σ1 = 2σ(3π/ω − γ + 1). A similar inequality holds with wl
j replaced

by wr
j . Considering (2.5.5)–(2.5.6), we get the estimate∥∥[Δ, Θ]wjp

∥∥ ≤ cε4π/ω−σ1 .

Finally, using (2.5.5)–(2.5.6) once more, taking into account the estimate∫
G(ε)

(r2
j + ε2)γ

∣∣∣Θ(ε−2σrj)w
l
j(ε

−1xj, ε−1yj)
∣∣∣2 dxjdyj

= ε2γ+2
∫

Ω
(ρ2

j + 1)γ
∣∣∣Θ(ε1−2σρj)w

l
j(ξ j, ηj)

∣∣∣2 dξ jdηj ≤ cε2γ+2,

and a similar estimate for wr
j , we derive∥∥∥(x, y) 	→ Θ(ε−2σrj)wjp(ε

−1xj, ε−1yj)
∥∥∥ ≤ cεπ/ω+γ+1.
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Combining the obtained estimates, we arrive at (2.5.8).

Step C. This part contains somewhat modified arguments from the proof of The-
orem 5.5.1 in [6]. Rewrite the right-hand side of the problem (2.5.1) in the form:

f (x, y) = f1(x, y; ε) + f2(x, y; ε) + f3(x, y; ε)

+ ε−γ−1F1(ε
−1x1, ε−1y1; ε1) + ε−γ−1F2(ε

−1x2, ε−1y2; ε), (2.5.9)

where

fl(x, y; ε) = χl,εσ(x, y) f (x, y),
Fj(ξ j, ηj; ε) = εγ+1Θ(ε1−σρj) f (xOj + εξ j, yOj + εηj);

(x, y) are arbitrary Cartesian coordinates; (xOj , yOj) stand for the coordinates of Oj

in the system (x, y); xj, yj have been introduced in Section 2.4. From the definition
of the norms it follows that

‖ f1; V0
γ, δ(G1)‖+ ‖ f2; V0

γ(G2)‖+ ‖ f3; V0
γ, δ(G3)‖+ ‖Fj; V0

γ(Ωj)‖ ≤ ‖ f ; V0
γ, δ(G(ε))‖.

(2.5.10)
Consider solutions vl and wj to the limit problems

Δv + k2v = fl in Gl, v = 0 on ∂Gl,
Δw = Fj in Ωj, w = 0 on ∂Ωj,

respectively; moreover, vl with l = 1, 3 satisfy the intrinsic radiation conditions
at infinity, and v2 satisfies the condition (v2, v0)G2 = 0. According to Proposi-
tions 2.2.1, 2.2.2, and 2.2.3, the problems in Gl and Ωj are uniquely solvable and

‖v2; V2
γ(G2)‖ ≤ c2‖ f2; V0

γ(G2)‖,

‖vl; V2
γ,δ,−(Gl)‖ ≤ cl‖ fl; V0

γ,δ(Gl)‖, l = 1, 3,

‖wj; V2
γ(Ωj)‖ ≤ Cj‖Fj; V0

γ(Ωj)‖, j = 1, 2,

(2.5.11)

where cl and Cj are independent of ε. We set

U(x, y; ε) = χ1,ε(x, y)v1(x, y; ε) + ε−γ+1Θ(r1)w1(ε
−1x1, ε−1y1; ε)

+χ2,ε(x, y)v2(x, y; ε) + ε−γ+1Θ(r2)w2(ε
−1x2, ε−1y2; ε) + χ3,ε(x, y)v3(x, y; ε).

The estimates (2.5.10) and (2.5.11) lead to

‖U; V2
γ, δ,−(G(ε))‖ ≤ c‖ f ; V0

γ,δ(G(ε))‖ (2.5.12)

with c independent of ε. Denote the mapping f 	→ U by Rε. Arguing as in the
proof of Theorem 5.5.1 in [6], we obtain (Δ + k2)Rε = I + Sε, where Sε is an
operator in V0

γ,δ(G(ε)) of small norm.

Step D. Recall that the operator Sε is defined on the subspace V0,⊥
γ, δ (G(ε)). We need

the image of the operator Sε to be included in V0,⊥
γ, δ (G(ε)), too. To this end, replace
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the mapping Rε by R̃ε : f 	→ U( f ) + a( f )up, where up has been constructed in
Step A, a( f ) is a constant. Then (Δ+ k2)R̃ε = I + S̃ε with S̃ε = Sε + a(·)(Δ+ k2)up.
The condition (χ2,εσ S̃ε f , v0)G2 = 0 as k = k0 gives

a( f ) = −(χ2,εσ Sε f , v0)G2/(χ2,εσ(Δ + k2
0)up, v0)G2 .

Prove that ‖S̃ε‖ ≤ c‖Sε‖, where c is independent of ε, k. We have

‖S̃ε f ‖ ≤ ‖Sε f ‖+ |a( f )| ‖(Δ + k2)up‖.

The estimate (2.5.8) (with γ > π/ω − 2 and 2π/ω > σ1), the formula for kp, and
the condition k2 − k2

0 = O
(
ε2π/ω

)
imply the equality

‖(Δ + k2)up; V0
γ,δ‖ ≤ |k2 − k2

p| ‖up; V0
γ,δ‖+ ‖(Δ + k2

p)up; V0
γ,δ‖ ≤ cε2π/ω.

Since the supports of the functions (Δ + k2
p)up and χ2,εσ do not intersect, we have

|(χ2,εσ(Δ + k2
0)up, v0)G2 | = |(k2

0 − k2
p)(up, v0)G2 | ≥ cε2π/ω.

Further, γ − 1 < π/ω, so

|(χ2,εσ Sε f , v0)G2 | ≤ ‖Sε f ; V0
γ,δ(G(ε))‖ ‖v0; V0−γ(G2)‖ ≤ c‖Sε f ; V0

γ,δ(G(ε))‖.

Hence,
|a( f )| ≤ cε−2π/ω‖Sε f ; V0

γ,δ(G(ε))‖
and ‖S̃ε f ‖ ≤ c‖Sε f ‖. Thus, the operator I + S̃ε in V0,⊥

γ,δ (G(ε)) is invertible, which
is also true for the operator of the problem (2.5.1):

Aε : u 	→ Δu + k2u : V̊2,⊥
γ,δ,−(G(ε)) 	→ V0,⊥

γ,δ (G(ε));

here V̊2,⊥
γ,δ,−(G(ε)) denotes the space of elements of V2

γ,δ,−(G(ε)) that vanish on

∂G(ε) and are sent by the operator Δ + k2 into V0,⊥
γ,δ . The inverse operator

A−1
ε = R̃ε(I + S̃ε)

−1

is bounded uniformly with respect to ε, k. Therefore, the inequality (2.5.3) holds
with c independent of ε, k.

We consider a solution u1 to the homogeneous problem (2.1.1) defined by

u1(x, y) =

{
U+

1 (x, y) + s11 U−
1 (x, y) + O(exp (δx)), x → −∞,

s12 U−
2 (x, y) + O(exp (−δx)), x → +∞.

Let s11 and s12 be the elements of the scattering matrix determined by this so-
lution. Denote by ũ1,σ the function defined by (2.4.1) with Θ(rj) replaced by
Θ(ε−2σ

j rj) and with removed R; s̃11, s̃12 are the same as in (2.4.18)–(2.4.19).
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Theorem 2.5.2. Let the conjectures in Proposition 2.5.1 be fulfilled. Then the inequality

|s11 − s̃11|+ |s12 − s̃12| ≤ c|s̃12|ε2−δ

holds with constant c independent of ε and k, δ being an arbitrarily small positive number.

Proof. The difference R = u1 − ũ1,σ is in the space V2
γ, δ,−(G(ε)) and

f1 := (Δ + k2)(u1 − ũ1,σ)

is in V0,⊥
γ, δ (G(ε)). By Proposition 2.5.1,

‖R; V2
γ, δ,−(G(ε))‖ ≤ c ‖ f1; V0

γ,δ(G(ε))‖. (2.5.13)

Let us show that

‖ f1; V0
γ, δ(G(ε))‖ ≤ c|s̃12|(εγ−π/ω+1 + ε2π/ω−σ1), (2.5.14)

where σ1 = 2σ(3π/ω − γ + 1). The required estimate is a consequence of the last
two inequalities with γ = π/ω + 1 − δ and σ1 = δ.

Arguing as in Step B of the proof of the previous statement, we obtain the
estimate

‖ f1; V0
γ, δ(G(ε))‖ ≤ c(εγ+1 + ε3π/ω−σ1)

× max
j=1,2

(|a−j (ε)|ε−π/ω + |a+j (ε)|επ/ω + |b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω).

From (2.4.11) it follows that

(|a−j (ε)|ε−π/ω + |a+j (ε)|επ/ω) ≤ c(|b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω).

Using the formulas (2.4.8) and (2.4.10) for b±j and relations (2.4.17) and (2.4.15),
we get

|b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω ≤ cε−π/ω|s̃12(ε)|.
Comparing the obtained estimates, we arrive at (2.5.14).

Theorem 2.5.2 and formulas (2.4.21) – (2.4.22) imply the next statement.

Theorem 2.5.3. For |k2 − k2
r | = O(ε2π/ω) the asymptotic expansions

T(k, ε) =
1

1 + P2
(

k2 − k2
r

ε2π/ω

)2

(
1 + O(ε2−δ)

)
,

k2
r (ε) = k2

0 + 2b2
1βε2π/ω + O

(
ε2π/ω+2−δ

)
,

Υ(ε) =
∣∣∣ 1
P

∣∣∣ε4π/ω
(
1 + O(ε2−δ)

)
hold, where Υ(ε) is the width of the resonant peak at its half-height, δ is an arbitrarily
small positive number.
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2.6 Comparison of asymptotic and numerical approaches

The principal parts of the asymptotic formulas in Theorem 2.5.3 contain the con-
stants b1, |A|, α, β. To find them one has to solve numerically several boundary
value problems. We state the problems and describe a way to solve them. We
also outline a method for computing the waveguide scattering matrix taken from
the paper [7]. Then we compare the asymptotics with calculated constants and
the numerically found scattering matrix.

2.6.1 Problems and methods for numerical analysis

Calculation of b1

To find b1 in (2.3.6), we solve the spectral problem

Δv + k2v = 0 in G2, v = 0 on ∂G2,

by FEM (for the details see Appendix 1). Let v0 be an eigenfunction correspond-
ing to k2

0 and normalized by ∫
G2

|v0(x, y)|2 dxdy = 1.

Then b1 can be determined (approximately) by

b1 = ε−π/ω v0(ε, 0)
Φ(0)

=
√

πε−π/ωv0(ε, 0).

Calculation of |A|

The constant A 
= 0 has arisen in the asymptotics (2.3.4) of the solution v1 of
homogeneous problem (2.2.1) in G1; the solution is defined by the formula (2.3.3).
To avoid difficulties related to the unboundedness of v1 in a neighborhood of the
point O1, introduce v = (v1 − v1)/A,

v(x1, y1) ∼

⎧⎪⎨⎪⎩
arπ/ω

1 Φ(ϕ1) r1 → 0;(
e−iν1x1 +

A
A

eiν1x1

)
Ψ1(y1) + O(e−δ|x1|) x1 → −∞,

(2.6.1)

where a = 2iIm a/A. According to Lemma 2.3.1 in [5], we have Im a = |A|2, and
hence a = 2iA. Thus, it suffices to calculate a. Denote the truncated domain

G1 ∩ {(x1, y1) : x1 > −R}
by GR

1 and put ΓR := ∂GR
1 ∩ {(x1, y1) : x1 = −R}. Introduce the problem

ΔV(x1, y1) + k2V(x1, y1) = 0, (x1, y1) ∈ GR
1 ;

V(x1, y1) = 0, (x1, y1) ∈ ∂GR
1 \ΓR;

∂nV(x1, y1) + iν1V(x1, y1) = 2iν1eiν1RΨ1(y1), (x1, y1) ∈ ΓR;
(2.6.2)
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the function Ψ1 is defined by (2.1.4). The solution V is found by FEM (for the
details see Appendix 2). One may put

a =
√

πε−π/ωV(−ε, 0).

Calculation of α and β

We introduce the boundary value problem for calculation of α and β in (2.2.11),
denote the truncated domain Ω ∩ {(r, ϕ) : r < R} by ΩR, and put

ΓR := ∂Ω ∩ {(r, ϕ) : r = R}.

Consider the problem

Δw(ξ, η) = 0, (ξ, η) ∈ ΩR;
w(ξ, η) = 0, (ξ, η) ∈ ∂ΩR\ΓR;

∂nw(ξ, η) + ζw(ξ, η) = g(ξ, η), (ξ, η) ∈ ΓR.
(2.6.3)

If w is a solution and ζ > 0, then

‖w; L2(ΓR)‖ � ζ−1‖g; L2(ΓR)‖. (2.6.4)

Indeed, substitute u = v = w to the Green formula

(Δu, v)ΩR = (∂nu, v)∂ΩR − (∇u,∇v)ΩR

= (∂nu, v)∂ΩR\ΓR + (∂nu + ζu, v)ΓR − ζ(u, v)ΓR − (∇u,∇v)ΩR ,

and get
0 = (g, w)ΓR − ζ‖w; L2(ΓR)‖2 − ‖∇w; L2(ΩR)‖2.

From this and the obvious chain of inequalities

ζ‖w; L2(ΓR)‖2 � ζ‖w; L2(ΓR)‖2 + ‖∇w; L2(ΩR)‖2 = (g, w)ΓR

� ‖w; L2(ΓR)‖ ‖g; L2(ΓR)‖
we obtain (2.6.4). Denote the left (right) part of ΓR by ΓR− (ΓR

+). Let W be the
solution of (2.6.3) as ζ = π/ωR, g|ΓR−

= 0, and g|ΓR
+
= (2π/ω)R(π/ω)−1Φ(ϕ). Let,

in addition, wr be a solution to the homogeneous problem (2.2.6) in the domain Ω
with asymptotics of the form (2.2.11). Since the asymptotics can be differentiated,
wr − W satisfies (2.6.3) with g = O(R−(3π/ω)−1). According to (2.6.4),

‖wr − W; L2(ΓR)‖ � c
ωR
π

R−(3π/ω)−1 = c′R−3π/ω

as R → +∞. We find W with FEM (for the details see Appendix 2) and determine
β by the equality

β =
W(−R, 0)

Φ(0)
Rπ/ω =

√
πW(−R, 0)Rπ/ω.

Obviously, ‖(wr − Rπ/ωΦ(ϕ)) − (W − Rπ/ωΦ(ϕ)); L2(ΓR)‖ � c′R−3π/ω, there-
fore we put

α =
W(R, 0)− Rπ/ωΦ(0)

Φ(0)
Rπ/ω =

√
πW(R, 0)Rπ/ω − R2π/ω.
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2.6.2 Calculation of the scattering matrix

Let us describe the method for calculation of the scattering matrix, consider-
ing only electrons of energy between the first and the second threshold. Then
in (2.1.4) we have M = 1. Put

G(ε, R) = G(ε) ∩ {(x, y) : −R < x < d + R},
ΓR

1 = ∂G(ε, R) ∩ {(x, y) : x = −R}, ΓR
2 = ∂G(ε, R) ∩ {(x, y) : x = d + R}

for large R. As an approximation to the row (s11, s12) of the scattering matrix
S = S(k) we take the minimizer of a quadratic functional. To construct such a
functional we consider the problem

ΔX R + k2X R = 0 in G(ε, R),
X R = 0 on ∂G(ε, R) \ (ΓR

1 ∪ ΓR
2 ),

(∂n + iζ)X R = i(−ν1 + ζ)e−iν1RΨ1(y)
+a1 i(ν1 + ζ)eiν1RΨ1(y) on ΓR

1 ,
(∂n + iζ)X R = a2 i(ν1 + ζ)eiν1(d+R)Ψ1(y) on ΓR

2 ,

(2.6.5)

where ζ ∈ R \ {0} is an arbitrary fixed number, and a1, a2 are complex num-
bers. As an approximation for the row (s11, s12) we take the minimizer a0(R) =
(a0

1(R), a0
2(R)) of the functional

JR(a1, a2) =‖X R − e−iν1RΨ1 − a1eiν1RΨ1; L2(ΓR
1 )‖2

+ ‖X R − a2 eiν1(d+R)Ψ1; L2(ΓR
2 )‖2, (2.6.6)

where X R is a solution to the problem (2.6.5). From the results of [7] it follows
that a0

j (R, k) → s1j(k) with exponential rate as R → ∞. More precisely, there exist
positive constants Λ and C such that |a0

j (R, k)− s1j(k)| � C exp(−ΛR), j = 1, 2,
for all k2 ∈ [μ1, μ2] and sufficiently large R; the interval [μ1, μ2] of continuous
spectrum of the problem (2.1.1) lies between the first and the second thresholds
and does not contain the thresholds. (Note, that application of the method is not
hindered by possible presence on the interval [μ1, μ2] of eigenvalues of the prob-
lem (2.1.1) corresponding to eigenfunctions exponentially decaying at infinity.)
To express X R by means of a1, a2, we consider the problems

Δv±1 + k2v±1 = 0 in G(ε, R),
v±1 = 0 on ∂G(ε, R) \ (ΓR

1 ∪ ΓR
2 ),

(∂n + iζ)v±1 = i(∓ν1 + ζ)e∓iν1RΨ1 on ΓR
1 ,

(∂n + iζ)v±1 = 0 on ΓR
2 ,

(2.6.7)

and

Δv±2 + k2v±2 = 0 in G(ε, R),
v±2 = 0 on ∂G(ε, R) \ (ΓR

1 ∪ ΓR
2 ),

(∂n + iζ)v±2 = 0 on ΓR
1 ,

(∂n + iζ)v±2 = i(∓ν2 + ζ)e∓iν2(d+R)Ψ2 on ΓR
2 .

(2.6.8)
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Let v±j = v±j,R be solutions to problems (2.6.7), (2.6.8), then X R = v+1,R + ∑j ajv−j,R.
Now the functional (2.6.6) can be rewritten in the form

JR(a; k) = 〈aER(k), a〉+ 2Re 〈FR
1 (k), a〉+ GR

1 (k),

where 〈·, ·〉 is the inner product on C2, and ER stands for the 2 × 2-matrix with
entries

ER
11 =

(
(v−1 − eiν1RΨ1), (v−1 − eiν1RΨ1)

)
ΓR

1

+
(
v−1 , v−1

)
ΓR

2
,

ER
12 =

(
(v−1 − eiν1RΨ1), v−2

)
ΓR

1

+
(

v−1 , (v−2 − eiν1(d+R)Ψ1)
)

ΓR
2

,

ER
21 =

(
v−2 , (v−1 − eiν1RΨ1)

)
ΓR

1

+
(
(v−2 − eiν1(d+R)Ψ1), v−1

)
ΓR

2

,

ER
22 =

(
v−2 , v−2

)
ΓR

1
+
(
(v−2 − eiν1(d+R)Ψ1), (v−2 − eiν1(d+R)Ψ1)

)
ΓR

2

,

FR(k) is the row (FR
11(k),FR

12(k)) and GR
1 (k) is the number defined by the equal-

ities

FR
11 =

(
(v+1 − e−iν1RΨ1), (v−1 − eiν1RΨ1)

)
ΓR

1

+
(
v+1 , v−1

)
ΓR

2
,

FR
12 =

(
(v+1 − e−iν1RΨ1), v−2 )

)
ΓR

1

+
(

v+1 , (v−2 − eiν1(d+R)Ψj)
)

ΓR
2

,

GR
1 =

(
(v+1 − e−iν1RΨ1), (v+1 − e−iν1RΨ1)

)
ΓR

1

+
(
v+1 , v+1

)
ΓR

2
.

The minimizer a0 = (a0
1(R, k), a0

2(R, k)) satisfies a0ER + FR
1 = 0. The solution to

this equation serves as an approximation to the first row of the scattering matrix.
In the same way one can show that the approximation to the scattering matrix
S(k) is the solution SR = SR(k) to the matrix equation of the form SRER +FR = 0.
If one chooses ζ = −ν1, then v−1 = v−2 = 0, ER = (1/ν1)Id, and SR = −ν1FR.

2.6.3 Comparison of the results

Let us compare the asymptotics k2
res,a(ε) of resonant energy k2

res(ε) and the ap-
proximate value k2

res,n(ε) obtained numerically. Figure 4 shows good agreement
of the values for 0.1 � ε � 0.5. We have

|k2
res,a(ε)− k2

res,n(ε)|/k2
res,a(ε) � 10−3

for 0.1 � ε � 0.3 and only for ε = 0.5 the ratio approaches 2 · 10−2. For ε < 0.1 the
numerical method is ill-conditioned. This is caused by the fact, that the waveg-
uide tends to the ’limit’ (see Figure 3), on which the problems for calculation of
the scattering matrix are incorrect (ill-posed). This means that the round-off er-
rors cause the larger deviations in the solution and at some ε we get a random
vector instead of the sought-for vector of coefficients of the piecewise polyno-
mial function. The asymptotics moves this ’incorrectness’ out of numerical part
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FIGURE 4 Asymptotic description k2
res,a(ε) (solid curve) and numerical description

k2
res,n(ε) (dashed curve) for resonant energy k2

res(ε).
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FIGURE 5 The shape of resonant peak for ε = 0.2: asymptotic description Ta(k2 − k2
res,a)

(solid curve) and numerical description Tn(k2 − k2
res,n) (dashed curve) for

transition coefficient T(k2 − k2
res). The width of resonant peak at height h:

asymptotic Δa(h, ε) = AA; numerical Δn(h, ε) = BB.



41

10−1 100
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

Δ(
ε)

FIGURE 6 The dependence of the width Δ(h, ε) of resonant peak on ε for various heights
h (dashed line for numerical description, solid line for asymptotic descrip-
tion): the upper pair of lines for h = 0.2; the middle lines for h = 0.5; the
bottom lines for h = 0.7.
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FIGURE 7 Ratio Δn(h, ε)/Δa(h, ε) as a function of ε. The ratio is independent of h within
the accuracy of the analysis.
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(i.e. the problems for the constants that have to be solved numerically) and thus
remains efficient at ε → 0.

The difference between the asymptotic and numerical values becomes more
significant as ε increases going out of the interval; the asymptotics becomes un-
reliable. The numerical method shows that for ε ≥ 0.5 the resonant peak turns
out to be so wide that the resonant tunneling phenomenon dies out by itself. The
forms of "asymptotic" and "numerical" resonant peaks are almost the same (see
Figure 5). The difference between the peaks is quantitatively depicted in Fig-
ure 6. Moreover, it turns out that the ratio of the width Δn(h, ε) of numerical
peak at height h to Δa(h, ε) of asymptotic peak is independent of h. The ratio as a
function in ε is displayed in Figure 7.

Note that for ε = 0.1 (i.e. at the left end of the band where the numeri-
cal and asymptotic results can be compared) the disparity of the results is more
significant for the width of resonant peak than that for the resonant energy.



3 ELECTRON FLOW SPIN POLARIZATION IN 2D

WAVEGUIDES IN THE PRESENCE OF MAGNETIC

FIELD

We consider an infinite two-dimensional waveguide that far from the coordinate
origin coincides with a strip. The waveguide has two narrows of diameter ε. The
narrows play the role of effective potential barriers for the longitudinal electron
motion. The part of waveguide between the narrows becomes a "resonator" and
there can arise conditions for electron resonant tunneling. A magnetic field in
the resonator can change the basic characteristics of this phenomenon. In the
presence of a magnetic field, the tunneling phenomenon is feasible for produc-
ing spin-polarized electron flows consisting of electrons with spins of the same
direction.

We assume that the whole domain occupied by a magnetic field is in the res-
onator. An electron wave function satisfies the Pauli equation in the waveguide
and vanishes at its boundary. Taking ε as a small parameter, we derive asymp-
totics for the probability T(E) of an electron with energy E to pass through the
resonator, for the "resonant energy" Eres, where T(E) takes its maximal value, and
for some other resonant tunneling characteristics.

The asymptotic formulas contain some unknown constants. We find them
by solving several auxiliary boundary value problems (independent of ε) in un-
bounded domains. Having the asymptotics with calculated constants, we can
take the it as numerical approximation to the resonant tunneling characteristics.
Independently, we compute numerically the scattering matrix and compare the
asymptotic and numerical results.
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3.1 Statement of the problem

To describe the domain G(ε) in R2 occupied by the waveguide, we first introduce
two auxiliary domains G and Ω in R2. The domain G is the strip

G = R × D = {(x, y) ∈ R2 : x ∈ R; y ∈ D = (−l/2, l/2)}.

Let us define Ω. Denote by K a pair of opposite angles with vertex at the ori-
gin O. Assume that K is symmetric about the origin and contains the axis x. The
set K ∩ S1, where S1 is a unit circle, consists of two simple arcs. Assume that Ω
contains K and a neighborhood of its vertex. Moreover, outside a sufficiently
large disc the set Ω coincides with K. The boundary ∂Ω of Ω is supposed to be
smooth (see Figure 1).

We now turn to the waveguide G(ε). Denote by Ω(ε) the domain obtained
from Ω by contraction with center at O and coefficient ε. In other words, (x, y) ∈
Ω(ε) if and only if (x/ε, y/ε) ∈ Ω. Let Kj and Ωj(ε) stand for K and Ω(ε) shifted
by the vector rj = (x0

j , 0), j = 1, 2. We assume that |x0
1 − x0

2| is sufficiently large
so that the distance from ∂K1 ∩ ∂K2 to G is positive. We put (see Figure 8)

G(ε) = G ∩ Ω1(ε) ∩ Ω2(ε).

O1 O2

G(ε)
1

2

H

FIGURE 8 The waveguide G(ε) and the support of magnetic field H in the resonator.

Consider the equations

(−i∇+ A)2u ± Hu = k2u, (3.1.1)

which are 2D counterparts of the equations describing the motion of electrons of
spin ±1/2 in a magnetic field parallel to z-axis. Here ∇ = (∂x, ∂y)T; H = ∂x Ay −
∂y Ax. Let H depend only on ρ = ((x − x0)

2 + (y − y0)
2)1/2, and let H(ρ) = 0

as ρ > R, where R is a positive constant. Then we can put A = A(ρ)eψ, where
eψ = ρ−1(−y + y0, x − x0) and

A(ρ) =
1
ρ

min{ρ,R}∫
0

tH(t) dt.

It is evident, that the equality ∂x Ay − ∂y Ax = H defines A up to a summand of
the form ∇ f .
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Let (ρ, ψ) be polar coordinates in the plane xy with center at (x0, y0), the
angle ψ being measured from a ray parallel to x-axis. Introduce f (x, y) = cψ,
where

c =
∫ R

0
tH(t) dt.

We assume that −π/2 < ψ < 3π/2. The function f is uniquely determined in
the waveguide for |x − x0| > 0, moreover, ∇ f = A for |x − x0| > R. Let τ(t) be
a cut-off function on R+, equal to 1 as t > R + 2δ and to 0 as t < R + δ, δ being a
positive constant. Put A′(x, y) = A(x, y)−∇(τ(|x − x0|) f (x, y)). Then

∂x A′
y − ∂y A′

x = ∂x Ay − ∂y Ax = H

and A′ = 0 as |x − x0| > R + 2δ. The wave function u′ = u exp{iτ f } satis-
fies (3.1.1) with A replaced by A′. As |x − x0| > R + 2δ the equation (3.1.1) with
new potential A′ reduces to the Helmholtz equation

−Δu′ = k2u′.

In what follows we omit the primes in the notations. We look for solutions
to (3.1.1) satisfying the homogeneous Dirichlet boundary condition

u = 0 on ∂G(ε). (3.1.2)

The obtained boundary value problems are self-adjoint with respect to the Green
formulas

((−i∇+ A)2u ± Hu − k2u, v)G(ε) + ((∂n + iAn)u, v)∂G(ε)

= (u, (−i∇+ A)2v ± Hv − k2v)G(ε) + (u, (∂n + iAn)v)∂G(ε),

where An is a projection of A onto the outward normal to ∂G(ε); u, v ∈ C∞
0 (G(ε)).

Additionally, we require u to satisfy some radiation conditions at infinity. To
formulate the conditions, we consider the problem

Δv(y) + λ2v(y) = 0, y ∈ (−l/2, l/2), (3.1.3)
v(−l/2) = v(l/2) = 0.

The eigenvalues λ2
q of this problem are called thresholds; they form the sequence

λ2
q = (πq/l)2, q = 1, 2, . . .

Assume that k2 in (3.1.1) does not coincide with any of the thresholds. Let us
consider the equation (3.1.1) with ”+ ”. For a fixed real k there exist finitely many
linearly independent bounded wave functions. In the linear space spanned by
such functions, a basis is formed by the wave functions subject to the radiation
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conditions

u+
m(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eiνmxΨm(y) +

M

∑
j=1

s+mj(k) e−iνjxΨj(y) + O(eδx), x → −∞,

M

∑
j=1

s+m,M+j(k) eiνjxΨj(y) + O(e−δx), x → +∞;
(3.1.4)

u+
M+m(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M

∑
j=1

s+M+m,j(k) e−iνjxΨj(y) + O(eδx), x → −∞,

e−iνmxΨm(y) +
M

∑
j=1

s+M+m,M+j(k) eiνjxΨj(y) + O(e−δx), x → +∞.

Here M is the number of thresholds not exceeding k2; νm =
√

k2 − λ2
m; Ψm is an

eigenfunction to the problem (3.1.3) that corresponds to λ2
m, i.e.

Ψm(y) =
{ √

2/lνm sin λmy, m even,√
2/lνm cos λmy, m odd; m = 1, 2, . . . , M.

(3.1.5)

The function Uj(x, y) = eiνjxΨj(y), j = 1, . . . , M, in the strip G is a wave incoming
from −∞ and outgoing to +∞, while UM+j(x, y) = e−iνjxΨj(y) is a wave going
from +∞ to −∞. The matrix

S+ = ‖s+mj‖m,j=1,...,2M

with entries from (3.1.4) is called the scattering matrix; it is unitary. The values

R+
m =

M

∑
j=1

|s+mj|2, T+
m =

M

∑
j=1

|s+m, M+j|2

are called the reflection and transition coefficients, respectively, for the wave Um
incoming to G(ε) from −∞, m = 1, . . . , M. Similar definitions can be given for the
wave UM+m coming from +∞. The scattering matrix S− and the reflection and
transition coefficients R−

m, T−
m for the equation (3.1.1) with "−" are introduced in

the same way.
In the present work, we consider only the case when k2 lies between the

first and the second thresholds. Thereby, the scattering matrix is of size 2 × 2. We
discuss only the scattering of the wave coming from −∞ and denote the reflection
and transition coefficients by

R± = R±(k, ε) = |s±11(k, ε)|2, T± = T±(k, ε) = |s±12(k, ε)|2. (3.1.6)

The goal is to find a "resonant" value k±r = k±r (ε) of the parameter k, where the
transition coefficient takes its maximum, and to describe the behavior of T±(k, ε)
in a neighborhood of k±r (ε) as ε → 0.
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3.2 The limit problems

We construct the asymptotics of the wave function (i.e. the solution of (3.1.1)) as
ε → 0 by the compound asymptotics method. To this end, we introduce "limit"
boundary value problems independent of the parameter ε. We suppose the do-
main occupied by the magnetic field to be localized in the resonator, the part of
the waveguide between the narrows. Furthermore, we assume that |xj − x0| >
R + 2δ, j = 1, 2, so the vector potential A differs from zero only on a domain in-
side the resonator. Then outside the resonator and, in particular, near the narrows
the sought wave function satisfies the Helmholtz equation.

3.2.1 First kind limit problems

Let G(0) = G ∩ K1 ∩ K2 (Figure 9); therefore, G(0) consists of three parts G1, G2
and G3, where G1 and G3 are infinite domains, and G2 is a bounded resonator.

O1 O2

G1 G2 G3

H

FIGURE 9 The domain G(0) = G1 ∪ G2 ∪ G3.

The boundary value problems

Δv(x, y) + k2v(x, y) = f (x, y), (x, y) ∈ Gj,
v(x, y) = 0, (x, y) ∈ ∂Gj,

(3.2.1)

where j = 1, 3, and

(−i∇+ A(x, y))2v(x, y)± H(ρ)v(x, y) = k2v(x, y), (x, y) ∈ G2,
v(x, y) = 0, (x, y) ∈ ∂G2,

(3.2.2)

are called the first kind limit problems.
We introduce function spaces for the problem (3.2.2) in G2. Let φ1 and φ2 be

smooth real functions in the closure G2 of G2 such that φj = 1 in a neighborhood
of Oj, j = 1, 2, and φ2

1 + φ2
2 = 1. For l = 0, 1, . . . and γ ∈ R the space Vl

γ(G2) is
the completion in the norm

‖v; Vl
γ(G2)‖ =

⎛⎝∫
G2

l

∑
|α|=0

2

∑
j=1

φ2
j (x, y)r2(γ−l+|α|)

j |∂αv(x, y)|2 dx dy

⎞⎠1/2

(3.2.3)

of the set of smooth functions in G2 vanishing near O1 and O2; here rj is the
distance from (x, y) to the origin Oj, α = (α1, α2) is a multi-index, and ∂α =

∂|α|/∂xα1∂yα2 . Proposition 3.2.1 follows from the well-known general results; e.g.,
see [14, Chapters 2 and 4, Sections 1–3] or [6, vol. 1, Chapter 1].
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Proposition 3.2.1. Assume that |γ − 1| < π/ω. Then for f ∈ V0
γ(G2) and arbi-

trary k2, except the positive increasing sequence {k2
p}∞

p=1 of eigenvalues, k2
p → ∞, there

exists a unique solution v ∈ V2
γ(G2) to the problem (3.2.1) in G2. The estimate

‖v; V2
γ(G2)‖ ≤ c‖ f ; V0

γ(G2)‖ (3.2.4)

holds with a constant c independent of f . If f is a smooth function in G2 vanishing
near O1 and O2, and v is any solution in V2

γ(G2) to the problem (3.2.1), then v is smooth
in G2 except at O1 and O2 and admits the asymptotic representation

v(x, y) =

{
b1 J̃π/ω(kr1)Φ(ϕ1) + O

(
r2π/ω

1

)
, r1 → 0,

b2 J̃π/ω(kr2)Φ(π − ϕ2) + O
(
r2π/ω

2
)
, r2 → 0,

near the points O1 and O2, where (rj, ϕj) are polar coordinates centered at Oj, bj are some
constants coefficients, J̃μ stands for the Bessel function multiplied by a constant such that
J̃μ(kr) = rμ + o(rμ), and Φ(ϕ) = π−1/2 cos (πϕ/ω).

Let k2 = k2
0 be an eigenvalue of the problem (3.2.1). Then the problem (3.2.1) in G2

is solvable if and only if ( f , v0)G2 = 0 for any eigenfunction v0 corresponding to k2
0.

These conditions being fulfilled, there exists a unique solution v to the problem (3.2.1)
that is orthogonal to the eigenfunctions and satisfies (3.2.4) (i.e., the Fredholm alternative
holds).

We turn to the problems (3.2.1) for j = 1, 3. Let χ0,j and χ∞,j be smooth
real functions in the closure Gj of Gj such that χ0,j = 1 in a neighborhood of Oj,
χ0,j = 0 outside a compact set, and χ2

0,j + χ2
∞,j = 1. We also assume that the

support supp χ∞,j is located in the strip G. For γ ∈ R, δ > 0, and l = 0, 1, . . . the
space Vl

γ, δ(Gj) is the completion in the norm

‖v; Vl
γ, δ(Gj)‖ =

⎛⎝∫
Gj

l

∑
|α|=0

(
χ2

0,jr
2(γ−l+|α|)
j + χ2

∞,j exp(2δx)
)|∂αv|2 dx dy

⎞⎠1/2

(3.2.5)
of the set of smooth functions with compact supports on Gj vanishing near Oj.

Recall that, by assumption, k2 is between the first and the second thresholds,
therefore in each domain Gj there exists only one outgoing wave. Let U−

1 = U2
be the outgoing wave in G1 and let U−

2 = U1 be the outgoing wave in G3 (the
definitions of Uj and G are given in Section 3.1). The next proposition follows,
e.g., from Theorem 5.3.5 in [14].

Proposition 3.2.2. Let |γ − 1| < π/ω and suppose that there is no nontrivial solution
to the homogeneous problem (3.2.1) (where f = 0) in V2

γ, δ(Gj) with arbitrarily small
positive δ. Then for any f ∈ V0

γ, δ(Gj) there exists a unique solution v to (3.2.1) that
admits the representation

v = u + Ajχ∞,jU−
j ,
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where Aj = const, u ∈ V2
γ, δ(Gj), and δ is sufficiently small; herewith the estimate

‖u; V2
γ, δ(Gj)‖+ |Aj| ≤ c‖ f ; V0

γ, δ(Gj)‖, (3.2.6)

holds with a constant c independent of f . If f is smooth and vanishes near Oj, then the
solution v to the problem in G1 satisfies

v(x, y) = a1 J̃π/ω(kr1)Φ(π − ϕ1) + O
(
r2π/ω

1

)
, r1 → 0,

and the solution to the problem in G3 satisfies

v(x, y) = a2 J̃π/ω(kr2)Φ(ϕ2) + O
(
r2π/ω

2
)
, r2 → 0,

where aj are some constants.

3.2.2 Second kind limit problems

In the domains Ωj, j = 1, 2, introduced in Section 3.1, we consider the boundary
value problems

Δw(ξ j, ηj) = F(ξ j, ηj), (ξ j, ηj) ∈ Ωj,
w(ξ j, ηj) = 0, (ξ j, ηj) ∈ ∂Ωj,

(3.2.7)

which are called the second kind limit problems; (ξ j, ηj) stands for Cartesian co-
ordinates with origin at Oj.

Let ρj = dist((ξ j, ηj), Oj) and let ψ0,j, ψ∞,j be smooth real functions in Ωj
such that ψ0,j = 1 for ρj < N/2, ψ0,j = 0 for ρj > N, and ψ2

0,j + ψ2
∞,j = 1, where N

is a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . . the space Vl
γ(Ωj)

is the completion in the norm

‖v; Vl
γ(Ωj)‖ =

(∫
Ωj

S(v) dξ jdηj

)1/2

(3.2.8)

of the set C∞
c (Ωj) of smooth functions compactly supported in Ωj; here

S(v) =
l

∑
|α|=0

(
ψ0,j(ξ j, ηj)

2 + ψ∞,j(ξ j, ηj)
2ρ

2(γ−l+|α|)
j

)|∂αv(ξ j, ηj)|2.

The next proposition is a corollary of Theorem 4.3.6 in [14].

Proposition 3.2.3. Let |γ − 1| < π/ω. Then for F ∈ V0
γ(Ωj) there exists a unique

solution w ∈ V2
γ(Ωj) to (3.2.7) such that the estimate

‖w; V2
γ(Ωj)‖ ≤ c‖F; V0

γ(Ωj)‖, (3.2.9)

holds with a constant c independent of F. If F ∈ C∞
c (Ωj), then w is smooth on Ωj and

admits the representation

w(ξ j, ηj) =

{
αjρ

−π/ω
j Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0,

β jρ
−π/ω
j Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0,

(3.2.10)
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as ρj → ∞; here (ρj, ϕj) are polar coordinates in Ωj with center at Oj, and Φ is the same
as in Proposition 3.2.1. The constants αj and β j are found with the formulas

αj = −(F, wl
j)Ω, β j = −(F, wr

j )Ω,

where wl
j and wr

j are the unique solutions to (3.2.7) satisfying

wl
j =

⎧⎨⎩
(

ρπ/ω
j + αρ−π/ω

j

)
Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0;

βρ−π/ω
j Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0;

(3.2.11)

wr
j =

⎧⎨⎩βρ−π/ω
j Φ(π − ϕj) + O

(
ρ−3π/ω

j
)
, ξ j < 0;(

ρπ/ω
j + αρ−π/ω

j

)
Φ(ϕj) + O

(
ρ−3π/ω

j
)
, ξ j > 0;

(3.2.12)

as ρj → ∞; the coefficients α and β depend only on the geometry of Ω and have to be
calculated.

3.3 Special solutions to homogeneous first kind limit problems

In each of the domains Gj, j = 1, 2, 3, we introduce special solutions to the homo-
geneous problems (3.2.1). These solutions are necessary for construction of the
wave function asymptotics in the next section. It follows from Propositions 3.2.1
and 3.2.2 that the bounded solutions to the homogeneous problems (3.2.1) are
trivial (except the eigenfunctions of the problem in the resonator). Therefore, we
consider only solutions unbounded in the neighborhood of Oj.

Let us analyze the problem

Δu + k2u = 0 in K, u = 0 on ∂K. (3.3.1)

The function
v(r, ϕ) = Ñπ/ω(kr)Φ(ϕ) (3.3.2)

satisfies (3.3.1); here Ñπ/ω is the Neumann function multiplied by such a constant
that

Ñπ/ω(kr) = r−π/ω + o(r−π/ω),

and Φ is the same as in Proposition 3.2.1. Let t 	→ Θ(t) be a cut-off function
on R, equal to 1 for t < δ/2 and to 0 for t > δ, δ being a small positive number.
Introduce the solution

v1(x, y) = Θ(r1)v(r1, ϕ1) + ṽ1(x, y) (3.3.3)

to the homogeneous problem (3.2.1) in G1, where ṽ1 satisfies (3.2.1) with

f = −[Δ, Θ]v,



51

the existence of ṽ1 is provided by Proposition 3.2.2. Therefore,

v1(x, y)=

{(
Ñπ/ω(kr1) + aJ̃π/ω(kr1)

)
Φ(π − ϕ1) + O(r3π/ω

1 ), r1 → 0,

AU−
1 (x, y) + O(eδx), x → −∞,

(3.3.4)

where J̃π/ω is the same as in Propositions 3.2.1 and 3.2.2, and the constant A 
= 0
depends only on the geometry of G1 and has to be calculated.

Define the solution v3 to the problem (3.2.1) in G3 by v3(x, y) = v1(d − x, y),
where d = dist(O1, O2). Then

v3(x, y) =

{(
Ñπ/ω(kr2) + aJ̃π/ω(kr2)

)
Φ(ϕ2) + O(r3π/ω

2 ), r2 → 0,

Ae−iν1dU−
2 (x, y) + O(e−δx), x → +∞,

(3.3.5)

Lemma 3.3.1. There holds the equality |A|2 = Im a.

Proof. Let (u, v)Q denote the integral
∫

Q u(x)v(x) dx and let GN, δ stand for the
truncated domain G1 ∩ {x > −N} ∩ {r1 > δ}. By the Green formula,

0 = (Δv1 + k2v1, v1)GN, δ
− (v1, Δv1 + k2v1)GN, δ

= (∂v1/∂n, v1)∂GN, δ
− (v1, ∂v1/∂n)∂GN, δ

= 2i Im (∂v1/∂n, v1)E,

where E = (∂GN, δ ∩{x = −N})∪ (∂GN, δ ∩{r1 = δ}). Taking into account (3.3.4)
as x → +∞ and (3.1.5), we have

Im (∂v1/∂n, v1)∂GN, δ∩{x=−N} = −Im
∫ l/2

−l/2
A

∂U−
1

∂x
(x, y)AU−

1 (x, y)
∣∣∣
x=−N

dy + o(1)

= |A|2ν1

∫ l/2

−l/2
|Ψ1(y)|2dy + o(1) = |A|2 + o(1).

Using (3.3.4) as r1 → 0 and the definition of Φ (see Proposition 3.2.1), we obtain

Im (∂v1/∂n, v1)∂GN, δ∩{r1=δ} = Im
∫ π+ω/2

π−ω/2

[
− ∂

∂r1

(
Ñπ/ω(kr1) + aJ̃π/ω(kr1)

)]
×(Ñπ/ω(kr1) + aJ̃π/ω(kr1)

)|Φ(π − ϕ1)|2r1

∣∣∣
r1=δ

dϕ1 + o(1)

= −(Im a)
2π

ω

∫ π+ω/2

π−ω/2
|Φ(π − ϕ1)|2dϕ1 + o(1) = −Im a + o(1).

Thus |A|2 − Im a + o(1) = 0 as N → ∞ and δ → 0.

Let k2
0,± be a simple eigenvalue of (3.2.2) in G2 and let v±0 be a corresponding

eigenfunction normalized by
∫

G2
|v±0 |2dx = 1. By Proposition 3.2.1

v±0 (x) ∼
{

b±1 J̃π/ω(k0,±r1)Φ(ϕ1), r1 → 0,
b±2 J̃π/ω(k0,±r2)Φ(π − ϕ2), r2 → 0.

(3.3.6)

We assume that b±j 
= 0. For H = 0 it is true, e.g. for the eigenfunction corre-
sponding to the least eigenvalue of the resonator. For nonzero H this condition
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may not hold because of the Aharonov–Bohm effect. We do not describe the phe-
nomenon here. For k2 in a punctured neighborhood of k2

0,± separated from the
other eigenvalues, we introduce solutions v±0j to the homogeneous problem (3.2.2)
by

v±0j(x, y) = Θ(rj)v(rj, ϕj) + ṽ±0j(x, y), j = 1, 2, (3.3.7)

where v is defined by (3.3.2), and ṽ±0j is the bounded solution to the problem (3.2.2)
with

f j(x, y) = −[Δ, Θ(rj)]v(rj, ϕj).

Lemma 3.3.2. In a neighborhood V ⊂ C of k2
0,± containing no eigenvalues of the prob-

lem (3.2.2) in G2 except k2
0,±, the equalities

ṽ±0j = −b±j (k
2 − k2

0,±)−1v±0 + v̂±0j

hold with b±j in (3.3.6) and functions v̂±0j analytic in k2 ∈ V.

Proof. First check the equality (v±0j, v±0 )G2 = −b±j /(k2 − k2
0,±), where v±0j are de-

fined by (3.3.7). We have

(Δv±0j + k2v±0j, v±0 )Gδ
− (v±0j, Δv±0 + k2v±0 )Gδ

= −(k2 − k2
0,±)(v±0j, v±0 )Gδ

;

the domain Gδ is obtained from G2 by excluding discs with radius δ and centers
O1 and O2. Using the Green formula, as in Lemma 3.3.1, we get the equality

−(k2 − k2
0,±)(v±0j, v±0 )Gδ

= b±j + o(1).

It remains to let δ tend to zero.
Since k2

0,± is a simple eigenvalue, we have

ṽ±0j =
B±

j (k
2)

k2 − k2
0,±

v±0 + v̂±0j, (3.3.8)

where B±
j (k

2) does not depend on (x, y), and v̂±0j are some functions analytic
with respect to k2 near the point k2 = k2

0,±. Multiplying (3.3.7) by v±0 and tak-
ing into account (3.3.8), the obtained formula for (v±0j, v±0 )G2 , and the condition

(v±0 , v±0 )G2 = 1, we get the equality B±
j (k

2) = −b±j + (k2 − k2
0,±)B̃±

j (k
2), where

B̃±
j are some analytic functions. Together with (3.3.8) that leads to the required

statement.

In view of Lemma 3.3.2 the expressions v±
21 = (k2 − k2

0,±)v
±
01 and v±

22 =

b±2 v01 − b±1 v±02 may be extended to functions continuous at k2
0,± with respect to k2.

According to Proposition 3.2.1,

v±
21(x, y) ∼

{(
(k2 − k2

0,±)Ñπ/ω(kr1) + c±1 (k) J̃π/ω(kr1)
)
Φ(ϕ1), r1 → 0,

c±2 (k) J̃π/ω(kr2)Φ(π − ϕ2), r2 → 0,
(3.3.9)

v±
22(x, y) ∼

{(
b±2 Ñπ/ω(kr1) + d±1 (k) J̃π/ω(kr1)

)
Φ(ϕ1), r1 → 0,(−b±1 Ñπ/ω(kr2) + d±2 (k) J̃π/ω(kr2)
)
Φ(π − ϕ2), r2 → 0.

(3.3.10)

The proof of Lemma 3.3.2 shows that c±j (k0,±) = −b±1 b±j .
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3.4 Asymptotic formulas

This section is devoted to the derivation of the asymptotic formulas. In Sec-
tion 3.4.1, we present a formula for the wave function (see (3.4.1)), explain its
structure, and describe the solutions of the first kind limit problems involved in
the formula. The construction of formula (3.4.1) is completed in Section 3.4.2,
where the solutions to the second kind limit problems are given and the coef-
ficients in the expressions for the solutions of the first kind limit problems are
calculated. In Section 3.4.3, we analyze the expression for s̃12 obtained in 3.4.2,
and derive formal asymptotics for the characteristics of resonant tunneling. No-
tice, that the remainders in the formulas (3.4.20)–(3.4.22) arose in the intermediate
stage of considerations while simplifying the principal part of the asymptotics;
they are not the remainders in the final asymptotic formulas. The "final" remain-
ders are estimated in the next Section 3.5, see Theorem 3.5.3. First we derive
the integral estimate (3.5.13) of the remainder in (3.4.1), which proves to be suffi-
cient to obtain more simplified estimates of the remainders in the formulas for the
resonant tunneling characteristics. The formula (3.4.1) and the estimate (3.5.13)
are auxiliary and are analyzed only to that extent which is necessary for deriv-
ing the asymptotic expressions for the characteristics of resonant tunneling. For
brevity, in this section we omit "±" in the notations bearing in mind one of the
equations (3.1.1) and not specifying, which is considered.

3.4.1 Asymptotics of the wave function

In the waveguide G(ε), we consider the scattering of the wave U = eiν1xΨ1(y),
incoming from −∞ (see (3.1.5)). The corresponding wave function admits the
representation

u(x, y; ε) = χ1, ε(x, y)v1(x, y; ε)

+ Θ(r1)w1(ε
−1x1, ε−1y1; ε) + χ2, ε(x, y)v2(x, y; ε) (3.4.1)

+ Θ(r2)w2(ε
−1x2, ε−1y2; ε) + χ3, ε(x, y)v3(x, y; ε) + R(x, y; ε).

Let us explain the notation and the structure of this formula. When composing
the formula, we first describe the behavior of the wave function u outside of the
narrows, where the solutions vj to the homogeneous problems (3.2.1) in Gj serve
as approximations to u. The function vj is a linear combination of the special
solutions introduced in the previous section; v1 and v3 are subject to the same
radiation conditions as u:

v1(x, y; ε) =
1
A

v1(x, y) +
s̃11(ε)

A
v1(x, y)

∼ U+
1 (x, y) + s̃11(ε)U−

1 (x, y), x → −∞; (3.4.2)
v2(x, y; ε) = C1(ε)v21(x, y) + C2(ε)v22(x, y); (3.4.3)

v3(x, y; ε) =
s̃12(ε)

Ae−iν1d v3(x, y) ∼ s̃12(ε)U−
2 (x, y), x → +∞; (3.4.4)
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the approximations s̃11(ε), s̃12(ε) to the scattering matrix entries s11(ε), s12(ε) and
the coefficients C1(ε), C2(ε) are yet unknown. By χj,ε we denote the cut-off func-
tions defined by

χ1, ε(x, y) = (1 − Θ(r1/ε)) 1G1(x, y),
χ2, ε(x, y) = (1 − Θ(r1/ε)− Θ(r2/ε)) 1G2(x, y),
χ3, ε(x, y) = (1 − Θ(r2/ε)) 1G3(x, y),

where rj =
√

x2
j + y2

j , and (xj, yj) are the coordinates of a point (x, y) in the sys-
tem obtained by shifting the origin to the point Oj; 1Gj is the indicator of Gj (equal
to 1 in Gj and to 0 outside Gj); Θ(ρ) is the same cut-off function as in (3.3.3) (equal
to 1 for 0 � ρ � δ/2 and to 0 for ρ � δ, δ being a fixed positive number). Thus, χj, ε

are defined on the whole waveguide G(ε) as well as the functions χj, εv3 in (3.4.1).
Being substituted to (3.1.1), the sum ∑3

j=1 χj, εvj gives a discrepancy in the
right-hand side of the Helmholtz equation supported near the narrows. We com-
pensate the principal part of the discrepancy by means of the second kind limit
problems. Namely, the discrepancy supported near Oj is rewritten into coordi-
nates (ξ j, ηj) = (ε−1xj, ε−1yj) in the domain Ωj and is taken as a right-hand side
for the Laplace equation. The solution wj of the corresponding problem (3.2.7)
is rewritten into coordinates (xj, yj) and multiplied by a cut-off function. As a
result, there arise the terms Θ(rj)wj(ε

−1xj, ε−1yj; ε) in (3.4.1).
Proposition 3.2.3 provides the existence of solutions wj decaying at infinity

as O(ρ−π/ω
j ) (see (3.2.10)). But those solutions will not lead us to the goal, be-

cause substitution of (3.4.1) into (3.1.1) gives a discrepancy of high order which
has to be compensated again. Therefore we require the rate wj = O(ρ−3π/ω

j )

as ρj → ∞. By Proposition 3.2.3, such a solution exists if the right-hand side of
the problem (3.2.7) satisfies the additional conditions

(F, wl
j)Ωj = 0, (F, wr

j )Ωj = 0.

These conditions (two in each narrow) uniquely determine the coefficients s̃11(ε),
s̃12(ε), C1(ε), and C2(ε). The remainder R(x, y; ε) is small in comparison with the
principal part of (3.4.1) as ε → 0.

3.4.2 Formulas for s̃11, s̃12, C1, and C2

Now let us specify the right-hand sides Fj of the problems (3.2.7) and find s̃11(ε),
s̃12(ε), C1(ε), and C2(ε). Substituting χ1, εv1 into (3.1.1), we get the discrepancy

(Δ + k2)χ1, εv1 = [Δ, χε,1]v1 + χε,1(Δ + k2)v1 = [Δ, 1 − Θ(ε−1r1)]v1,

which is nonzero only near O1, where v1 can be replaced by asymptotics; the
boundary condition (3.1.2) is fulfilled. According to (3.4.2) and (3.3.4),

v1(x, y; ε) =
(
a−1 (ε)Ñπ/ω(kr1)+ a+1 (ε) J̃π/ω(kr1)

)
Φ(π− ϕ1)+O(r3π/ω

1 ), r1 → 0,
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where

a−1 (ε) =
1
A
+

s̃11(ε)

A
, a+1 =

a
A
+

s̃11(ε)a
A

. (3.4.5)

Choose in each summand the leading term and take ρ1 = r1/ε, then

(Δ + k2)χε,1v1 ∼ [Δ, 1 − Θ(ε−1r1)]
(

a−1 r−π/ω
1 + a+1 rπ/ω

1

)
Φ(π − ϕ1)

= ε−2[Δ(ρ1,ϕ1)
, 1 − Θ(ρ1)]

(
a−1 ε−π/ωρ−π/ω

1 + a+1 επ/ωρπ/ω
1

)
Φ(π − ϕ1). (3.4.6)

In the same way, by using (3.4.3) and (3.3.9)–(3.3.10), we write down the leading
term of the discrepancy from χε,2v2 supported near O1:

(Δ + k2)χε,1v1 ∼ ε−2[Δ(ρ1,ϕ1)
, 1 − Θ(ρ1)]

(
b−1 ε−π/ωρ−π/ω

1 + b+1 επ/ωρπ/ω
1

)
Φ(ϕ1),
(3.4.7)

where

b−1 = C1(ε)(k2 − k2
0) + C2(ε)b2, b+1 = C1(ε)c1 + C2(ε)d1. (3.4.8)

As right-hand side F1 of the problem (3.2.7) in Ω1, we take the function

F1(ξ1, η1) =− [Δ, ζ−]
(

a−1 ε−π/ωρ−π/ω
1 + a+1 επ/ωρπ/ω

1

)
Φ(π − ϕ1)

− [Δ, ζ+]
(

b−1 ε−π/ωρ−π/ω
1 + b+1 επ/ωρπ/ω

1

)
Φ(ϕ1), (3.4.9)

where ζ+ (resp. ζ−) stands for the function 1 − Θ, first restricted to the domain
ξ1 > 0 (resp. ξ1 < 0) and then extended by zero onto the whole domain Ω1. Let
w1 be the corresponding solution, then the term Θ(r1)w1(ε

−1x1, ε−1y1; ε) in (3.4.1),
being substituted in (3.1.1), compensates the discrepancies (3.4.6)–(3.4.7).

In the same way, using (3.4.3)–(3.4.4), (3.3.9)–(3.3.10), and (3.3.5), we find the
right-hand side of the problem (3.2.7) with j = 2:

F2(ξ2, η2) =− [Δ, ζ−]
(

a−2 ε−π/ωρ−π/ω
2 + a+2 επ/ωρπ/ω

2

)
Φ(π − ϕ2)

− [Δ, ζ+]
(

b−2 ε−π/ωρ−π/ω
2 + b+2 επ/ωρπ/ω

2

)
Φ(ϕ2);

a−2 (ε) = −C2(ε)b1, a+2 (ε) = C1(ε)c2 + C2(ε)d2,

b−2 (ε) =
s̃12(ε)

Ae−iν1d , b+2 (ε) =
as̃12(ε)

Ae−iν1d .
(3.4.10)

Lemma 3.4.1. If the solution wj to the problem (3.2.7) with right-hand side

Fj(ξ j, ηj) =− [Δ, ζ−]
(

a−j ε−π/ωρ−π/ω
j + a+j επ/ωρπ/ω

j

)
Φ(π − ϕj)

− [Δ, ζ+]
(

b−j ε−π/ωρ−π/ω
j + b+j επ/ωρπ/ω

j

)
Φ(ϕj), j = 1, 2,

is O(ρ−3π/ω
j ) as ρj → ∞, then the relations

a−j ε−π/ω − αa+j επ/ω − βb+j επ/ω = 0,
b−j ε−π/ω − αb+j επ/ω − βa+j επ/ω = 0,

(3.4.11)

hold with α and β in (3.2.11) – (3.2.12).
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Proof. In view of Proposition 3.2.3 we have wj = O(ρ−3π/ω
j ) as ρj → ∞ if and

only if the right-hand side of the problem (3.2.7) satisfies the conditions

(Fj, wl
j)Ωj = 0, (Fj, wr

j )Ωj = 0, (3.4.12)

where wl
j and wr

j are solutions to the homogeneous problem (3.2.7) for which the
expansions in (3.2.11)–(3.2.12) hold. Introduce the functions f± on Ωj by

f±(ρj, ϕj) = ρ±π/ω
j Φ(ϕj).

To derive (3.4.11) from (3.4.12), it suffices to check that

([Δ, ζ−] f−, wl
j)Ωj = ([Δ, ζ+] f−, wr

j )Ωj = −1,

([Δ, ζ−] f+, wl
j)Ωj = ([Δ, ζ+] f+, wr

j )Ωj = α,

([Δ, ζ+] f−, wl
j)Ωj = ([Δ, ζ−] f−, wr

j )Ωj = 0,

([Δ, ζ+] f+, wl
j)Ωj = ([Δ, ζ−] f+, wr

j )Ωj = β.

Let us prove the first equality, the rest ones are treated in a similar way. Since
[Δ, ζ+] f− is compactly supported, in the calculation of ([Δ, ζ−] f−, wl

j)Ωj one may
replace Ωj by ΩR

j = Ωj ∩ {ρj < R} with sufficiently large R. Let

E := ∂ΩR
j ∩ {ρj = R} ∩ {ξ j > 0}.

By the Green formula,

([Δ, ζ−] f−, wl
j)Ωj = (Δζ− f−, wl

j)ΩR
j
− (ζ− f−, Δwl

j)ΩR
j

= (∂ f−/∂n, wl
j)E − ( f−, ∂wl

j/∂n)E.

Taking account of (3.2.11) for ξ j < 0 and the definition of Φ in Proposition 3.2.1,
we arrive at

([Δ, ζ−] f−, wl
j)Ωj = S(R)

∫ π+ω/2

π−ω/2
Φ(π − ϕj)

2dϕj + o(1)

=− 2π

ω

∫ π+ω/2

π−ω/2
Φ(π − ϕj)

2dϕj + o(1) = −1 + o(1),

where S(R) stands for the expression⎡⎣∂ρ−π/ω
j

∂ρj
(ρπ/ω

j + αρ−π/ω
j )− ρ−π/ω

j
∂

∂ρj
(ρπ/ω

j + αρ−π/ω
j )

⎤⎦ ρj

∣∣∣∣∣
ρj=R

It remains to let R → ∞.

Remark 3.4.2. The solutions wj mentioned in Lemma 3.4.1 can be represented as linear
combinations of functions independent of ε. We write down the corresponding expression
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which will be of use in the next section. Let wl
j and wr

j be the solutions of the prob-
lem (3.2.7) specified by conditions (3.2.11) – (3.2.12), and let ζ+ and ζ− be the same
cut-off functions as in (3.4.9). Put

wl
j = wl

j − ζ−
(

ρπ/ω
j + αρ−π/ω

j

)
Φ(π − ϕj)− ζ+βρ−π/ω

j Φ(ϕj),

wr
j = wr

j − ζ−βρ−π/ω
j Φ(π − ϕj)− ζ+

(
ρπ/ω

j + αρ−π/ω
j

)
Φ(ϕj).

A direct verification shows that

wj = a+j επ/ωwl
j +

1
β

(
a−j ε−π/ω − αa+j επ/ω

)
wr

j

=
1
β

(
b−j ε−π/ω − αb+j επ/ω

)
wl

j + b+j επ/ωwr
j . (3.4.13)

Using (3.4.5) and (3.4.8), we transform (3.4.11) with j = 1 to the expressions

γ(ε)s̃11(ε) + γ(ε) = C1(ε)c1 + C2(ε)d1,

δ(ε)s̃11(ε) + δ(ε) = C1(ε)(k2 − k2
0) + C2(ε)b2,

(3.4.14)

where

γ(ε) =
1

Aβ

(
ε−2π/ω − aα

)
, δ(ε) =

1
Aβ

(
α + a(β2 − α2)ε2π/ω

)
. (3.4.15)

For j = 2, taking (3.4.10) into account, reduce (3.4.11) to the equalities

γ(ε)s̃12(ε) = (C1(ε)c2 + C2(ε)d2)e−iν1d, δ(ε)s̃12(ε) = −C2(ε)b1e−iν1d. (3.4.16)

From (3.4.14) and (3.4.16), by means of Lemma 3.3.1, we find C1(ε), C2(ε), s̃11(ε),
and s̃12(ε):

C1(ε) =(b1c2)
−1
(

γ(ε)b1 + δ(ε)d2

)
s̃12(ε)eiν1d, C2(ε) = −b

−1
1 δ(ε)s̃12(ε)eiν1d,

(3.4.17)

s̃11(ε) =(2ib1c2)
−1((k2 − k2

0)b1|γ(ε)|2 + ((k2 − k2
0)d2 − b2c2)γ(ε)δ(ε)

− b1c1γ(ε)δ(ε)− (c1d2 − c2d1)|δ(ε)|2
)
s̃12(ε)eiν1d, (3.4.18)

s̃12(ε) =2ib1c2e−iν1d(−(k2 − k2
0)b1γ(ε)2 − ((k2 − k2

0)d2 − b1c1 − b2c2)γ(ε)δ(ε)

+ (c1d2 − c2d1)δ(ε)
2)−1. (3.4.19)

3.4.3 The formulas for the characteristics of resonant tunneling

The solutions of the first kind limit problems involved in (3.4.1) are defined for
the complex k2 as well. The obtained expression (3.4.19) for s̃12 has a pole k2

p in
the lower complex half-plane. To find k2

p we equate 2ib1c2e−iν1d/s̃12 to zero and
solve the equation for k2 − k2

0:

k2 − k2
0 =

(
(b1c1 + b2c2)γ(ε)δ(ε) + (c1d2 − c2d1)δ(ε)

2
) (

b1γ(ε)2 + d2γ(ε)δ(ε)
)−1

.
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Since the right-hand side of the last equation behaves like O(ε2π/ω) as ε → 0,
it may be solved by the method of successive approximations. Considering the
formulas (3.4.15), cj(k0) = −b1bj, Lemma 3.3.1, and dropping the lower order
terms, we get

k2
p = k2

r − ik2
i ,

k2
r = k2

0 − α(|b1|2 + |b2|2)ε2π/ω + O(ε4π/ω),

k2
i = β2(|b1|2 + |b2|2)|A(k2

0)|2ε4π/ω + O(ε6π/ω).

(3.4.20)

For small k2 − k2
p the formula (3.4.19) takes the form

s̃12(k, ε) = −ε4π/ω 2iβ2A(k)2c2(k)e−iν1d

k2 − k2
p

(
1 + O(|k2 − k2

p|+ ε2π/ω)
)

.

Let k2 − k2
0 = O(ε2π/ω), then

|k2 − k2
p| = O(ε2π/ω), A(k) = A(k2

0) + O(ε2π/ω),

c2(k2) = −b1b2 + O(ε2π/ω), ν1(k) = ν1(k2
0) + O(ε2π/ω),

and

s̃12(k, ε) = ε4π/ω 2iβ2b1b2A(k0)
2e−iν1(k0)d

k2 − k2
p

(
1 + O(ε2π/ω)

)

=

b1

|b1|
b2

|b2|
(

A(k0)

|A(k0)|
)2

e−iν1(k0)d

1
2

( |b1|
|b2| +

|b2|
|b1|

)
− iP

k2 − k2
r

ε4π/ω

(
1 + O(ε2π/ω)

)
,

where P = (2|b1||b2|β2|A(k0)|2)−1. Thereby,

T̃(k, ε) = |s̃12|2 =
1

1
4

( |b1|
|b2| +

|b2|
|b1|

)2

+ P2
(

k2 − k2
r

ε4π/ω

)2 (1 + O(ε2π/ω)). (3.4.21)

The obtained approximation T̃ to the transition coefficient has a peak at k2 = k2
r

whose width at its half-height is

Υ̃(ε) =
( |b1|
|b2| +

|b2|
|b1|

)
P−1ε4π/ω, (3.4.22)

which determines the resonator Q-factor (quality factor) equal to k2
r /Υ̃(ε).

3.5 Justification of the asymptotics

As in the previous section, here we omit "±" in the notations and do not specify
which equation of (3.1.1) is considered. We return to the full notations in Theo-
rem 3.5.3.
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Introduce functional spaces for the problem

(−i∇+ A)2u ± Hu = k2u in G(ε), u = 0 on ∂G(ε). (3.5.1)

Recall, that the functions A and H are compactly supported, and besides, they are
nonzero only in the resonator at some distance from the narrows. Let Θ be the
same function as in (3.3.3), and let the cut-off functions ηj, j = 1, 2, 3, be nonzero
in Gj and satisfy the relation η1(x, y) + Θ(r1) + η2(x, y) + Θ(r2) + η3(x, y) = 1
in G(ε). For γ ∈ R, δ > 0, and l = 0, 1, . . . the space Vl

γ,δ(G(ε)) is the completion
in the norm

‖u; Vl
γ,δ(G(ε))‖ =

(∫
G(ε)

S(u) dx dy

)1/2

(3.5.2)

of the set of smooth functions compactly supported on G(ε); here

S(u) :=
l

∑
|α|=0

(
2

∑
j=1

Θ2(rj) (r2
j + ε2

j )
γ−l+|α| + η2

1e2δ|x| + η2 + η2
3e2δ|x|

)
|∂αu|2.

We denote by V0,⊥
γ,δ the space of functions f analytic in k2 which take values in

V0
γ,δ(G(ε)) and satisfy at k2 = k2

0 the condition (χ2,εσ f , v0)G2 = 0 with a small
positive σ.

Proposition 3.5.1. Let k2
r be a resonance, k2

r → k2
0 as ε → 0, and let

|k2 − k2
r | = O(ε2π/ω).

Assume, that γ satisfies the condition π/ω − 2 < γ − 1 < π/ω, f ∈ V0,⊥
γ,δ (G(ε)), and

u is the solution of the problem (3.5.1) which admits the representation

u = ũ + η1A−
1 U−

1 + η3A−
2 U−

2 ;

here A−
j = const, ũ ∈ V2

γ,δ(G(ε)) for small δ > 0. Then

‖ũ; V2
γ,δ(G(ε))‖+ |A−

1 |+ |A−
2 | ≤ c‖ f ; V0

γ,δ(G(ε))‖, (3.5.3)

where c is a constant independent of f and ε.

Proof. Step A. First we construct an auxiliary function up. As it was mentioned
before, s̃12 has a pole k2

p = k2
r − ik2

i (see (3.4.20)). Multiply the solutions to the
limit problems, involved in (3.4.1), by A(k)b2βε2π/ω/s12(ε, k)eiν1d, put k = kp,
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and denote the resulting functions by adding the subscript p. Then

v1p(x, y; ε) = ε2π/ω(b1β + O(ε2π/ω))v1(x, y; kp),

v3p(x, y; ε) = ε2π/ωb2βv1(x, y; kp);
(3.5.4)

v2p(x, y; ε) =

(
− 1

b1
+ O

(
ε2π/ω

))
v21(x, y; kp)

+ ε2π/ω

(
−α

b2

b1
+ O

(
ε2π/ω

))
v22(x, y; kp),

w1p(ξ1, η1; ε) = b1επ/ω
(

ε2π/ω
(

a(kp)β + O(ε2π/ω)
)

wl
1(ξ1, η1)

+
(

1 + O(ε2π/ω)
)

wr
1(ξ1, η1)

)
,

(3.5.5)

w2p(ξ2, η2; ε) = b2επ/ω
( (

1 + O(ε2π/ω)
)

wl
1(ξ2, η2)

+ a(kp)βε2π/ωwr
1(ξ2, η2)

)
;

(3.5.6)

the dependence of kp on ε is not shown. We set

up(x, y; ε) = Ξ(x, y)
(

χ1,ε(x, y)v1p(x, y; ε) + Θ(ε−2σr1)w1p(ε
−1x1, ε−1y1; ε)

+ χ2,ε(x, y)v2p(x, y; ε) + Θ(ε−2σr2)w2p(ε
−1x2, ε−1y2; k, ε)

+ χ3,ε(x, y)v2p(x, y; k, ε)
)

, (3.5.7)

where Ξ is a cut-off function in G(ε) that is equal to 1 on G(ε)∩{|x| < R} and to 0
on G(ε) ∩ {|x| > R + 1} for a large R > 0. The principal part of the norm of up is
given by χ2,εv2p. Considering the definitions of v2p and v21 (see Section 3.2) and
Lemma 3.3.2, we get ‖χ2,εv2p‖ = ‖v0‖+ o(1).

Step B. Let us show that

‖((−i∇+ A)2 ± H − k2
p)up; V0

γ, δ(G(ε))‖ ≤ cεπ/ω+κ, (3.5.8)

where

κ = min{π/ω, 3π/ω − σ1, γ + 1}, σ1 = 2σ(3π/ω − γ + 1).

If π/ω < γ + 1 and σ is sufficiently small so that 2π/ω > σ1, then κ = π/ω.
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In view of (3.5.7),

((−i∇+ A)2 ± H − k2
p)up(x, y; ε)

= [Δ, χ1,ε]
(

v1(x, y; ε)− b1βε2π/ω(r−π/ω
1 + a(kp)rπ/ω

1 )Φ(π − ϕ1)
)

+ [Δ, Θ]w1p(ε
−1x1, ε−1y1; ε)− k2Θ(ε−2σr1)w1p(ε

−1x1, ε−1y1; ε)

+ [Δ, χ2,ε]
(

v2(x, y; ε)− Θ(r1)
(
b−1p(ε)r

−π/ω
1 + b+1p(ε)r

π/ω
1

)
Φ(π − ϕ1)

− Θ(r2)
(
a−2p(ε)r

−π/ω
2 + a+2p(ε)r

π/ω
2

)
Φ(ϕ2)

)
+ [Δ, Θ]w2p(ε

−1x2, ε−1y2; ε)− k2Θ(ε−2σr2)w2p(ε
−1x2, ε−1y2; ε)

+ [Δ, χ3,ε]
(

v3(x, y; ε)− b2βε2π/ω(r−π/ω
2 + a(kp)rπ/ω

2 )Φ(ϕ2)
)

+ [Δ, Ξ]v1(x, y; ε) + [Δ, Ξ]v3(x, y; ε),

where

b−1p = O(ε2π/ω), b+1p = b1 + O(ε2π/ω), a−2p = O(ε2π/ω), a+2p = b2 + O(ε2π/ω).

Taking into account the asymptotics of v1 as r1 → 0 and passing to the variables
(ξ1, η1) = (ε−1x1, ε−1y1), we obtain∥∥∥(x, y) 	→ [Δ, χ1,ε]

(
v1(x, y)− (r−π/ω

1 + a(kp)rπ/ω
1 )Φ(π − ϕ1)

)∥∥∥2

≤ c
∫

G(ε)
(r2

1 + ε2)γ
∣∣∣[Δ, χ1,ε]r−π/ω+2

1 Φ(π − ϕ1)
∣∣∣2 dxdy ≤ cε2(γ−π/ω+1),

where ‖ · ‖ stands for ‖· ; V0
γ,δ(G(ε))‖. This and (3.5.4) imply the estimate∥∥∥(x, y) 	→ [Δ, χ1,ε]

(
v1(x, y)− (r−π/ω

1 + a(kp)rπ/ω
1 )Φ(π − ϕ1)

)∥∥∥ ≤ cεγ+π/ω+1.

In the same way,∥∥∥(x, y) 	→ [Δ, χ2,ε]
(

v2(x, y)− Θ(r1)
(
b−1p(ε)r

−π/ω
1 + b+1p(ε)r

π/ω
1

)
Φ(π − ϕ1)

− Θ(r2)
(
a−2p(ε)r

−π/ω
2 + a+2p(ε)r

π/ω
2

)
Φ(ϕ2)

)∥∥∥ ≤ cεγ+π/ω+1,∥∥∥(x, y) 	→ [Δ, χ3,ε]
(

v3(x, y)− (r−π/ω
2 + a(kp)rπ/ω

2 )Φ(ϕ2)
)∥∥∥ ≤ cεγ+π/ω+1.

It is evident, that
‖[Δ, Ξ]vl‖ ≤ cε2π/ω, l = 1, 3.

Further, since wl
j behaves like O(ρ−3π/ω

j ) at infinity, we have

∫
G(ε)

(r2
j + ε2)γ

∣∣∣[Δ, Θ]wl
j(ε

−1xj, ε−1yj)
∣∣∣2 dxjdyj

≤ c
∫

Kj

(r2
j + ε2)γ

∣∣∣[Δ, Θ](ε−1rj)
−3π/ωΦ2(ϕj)

∣∣∣2 dxjdyj ≤ cε2(3π/ω−σ1),
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where σ1 = 2σ(3π/ω − γ + 1). A similar inequality holds with wl
j replaced by

wr
j . Considering (3.5.5)–(3.5.6), we get the estimate∥∥[Δ, Θ]wjp

∥∥ ≤ cε4π/ω−σ1 .

Finally, using (3.5.5)–(3.5.6) once more, taking into account the estimate∫
G(ε)

(r2
j + ε2)γ

∣∣∣Θ(ε−2σrj)w
l
j(ε

−1xj, ε−1yj)
∣∣∣2 dxjdyj

= ε2γ+2
∫

Ω
(ρ2

j + 1)γ
∣∣∣Θ(ε1−2σρj)w

l
j(ξ j, ηj)

∣∣∣2 dξ jdηj ≤ cε2γ+2

and a similar estimate for wr
j , we derive∥∥∥(x, y) 	→ Θ(ε−2σrj)wjp(ε

−1xj, ε−1yj)
∥∥∥ ≤ cεπ/ω+γ+1.

Combining the obtained estimates, we arrive at (3.5.8).

Step C. This part contains somewhat modified arguments from the proof of The-
orem 5.5.1 in [6]. Rewrite the right-hand side of the problem (3.5.1) in the form:

f (x, y) = f1(x, y; ε) + f2(x, y; ε) + f3(x, y; ε)

+ ε−γ−1F1(ε
−1x1, ε−1y1; ε1) + ε−γ−1F2(ε

−1x2, ε−1y2; ε), (3.5.9)

where

fl(x, y; ε) = χl,εσ(x, y) f (x, y),
Fj(ξ j, ηj; ε) = εγ+1Θ(ε1−σρj) f (xOj + εξ j, yOj + εηj);

(x, y) are arbitrary Cartesian coordinates; (xOj , yOj) stand for the coordinates of Oj

in the system (x, y); xj, yj have been introduced in Section 3.4. From the definition
of the norms it follows that

‖ f1; V0
γ, δ(G1)‖+ ‖ f2; V0

γ(G2)‖+ ‖ f3; V0
γ, δ(G3)‖+ ‖Fj; V0

γ(Ωj)‖ ≤ ‖ f ; V0
γ, δ(G(ε))‖.

(3.5.10)
Consider solutions vl and wj to the limit problems

−(−i∇+ A)2v ± Hv + k2v = f2 in G2, v = 0 on ∂G2,

Δv + k2v = fl in Gl, v = 0 on ∂Gl, l = 1, 3,
Δw = Fj in Ωj, w = 0 on ∂Ωj,

respectively; moreover, vl with l = 1, 3 satisfy the intrinsic radiation conditions
at infinity, and v2 satisfies the condition (v2, v0)G2 = 0. According to Proposi-
tions 3.2.1, 3.2.2, and 3.2.3, the problems in Gl and Ωj are uniquely solvable and

‖v2; V2
γ(G2)‖ ≤ c2‖ f2; V0

γ(G2)‖,

‖vl; V2
γ,δ,−(Gl)‖ ≤ cl‖ fl; V0

γ,δ(Gl)‖, l = 1, 3

‖wj; V2
γ(Ωj)‖ ≤ Cj‖Fj; V0

γ(Ωj)‖, j = 1, 2,

(3.5.11)
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where cl and Cj are independent of ε. We set

U(x, y; ε) = χ1,ε(x, y)v1(x, y; ε) + ε−γ+1Θ(r1)w1(ε
−1x1, ε−1y1; ε)

+χ2,ε(x, y)v2(x, y; ε) + ε−γ+1Θ(r2)w2(ε
−1x2, ε−1y2; ε) + χ3,ε(x, y)v3(x, y; ε).

The estimates (3.5.10) and (3.5.11) lead to

‖U; V2
γ, δ,−(G(ε))‖ ≤ c‖ f ; V0

γ,δ(G(ε))‖ (3.5.12)

with c independent of ε. Denote the mapping f 	→ U by Rε. Arguing as in the
proof of Theorem 5.5.1 in [6], we obtain (−(−i∇ + A)2 ± H + k2)Rε = I + Sε,
where Sε is an operator in V0

γ,δ(G(ε)) of small norm.

Step D. Recall that the operator Sε is defined on the subspace V0,⊥
γ, δ (G(ε)). We need

the image of the operator Sε to be included in V0,⊥
γ, δ (G(ε)), too. To this end, replace

the mapping Rε by R̃ε : f 	→ U( f ) + a( f )up, where up has been constructed in
Step A, a( f ) is a constant. Then (−(−i∇+ A)2 ± H + k2)R̃ε = I + S̃ε with

S̃ε = Sε + a(·)(−(−i∇+ A)2 ± H + k2)up.

The condition (χ2,εσ S̃ε f , v0)G2 = 0 as k = k0 gives

a( f ) = − (χ2,εσ Sε f , v0)G2

(χ2,εσ(−(−i∇+ A)2 ± H + k2
0)up, v0)G2

.

Prove that ‖S̃ε‖ ≤ c‖Sε‖, where c is independent of ε, k. We have

‖S̃ε f ‖ ≤ ‖Sε f ‖+ |a( f )| ‖(−(−i∇+ A)2 ± H + k2)up‖.

The estimate (3.5.8) (with γ > π/ω − 2 and 2π/ω > σ1), the formula for kp, and
the condition k2 − k2

0 = O
(
ε2π/ω

)
imply the inequality

‖(−(−i∇+ A)2 ± H + k2)up; V0
γ,δ‖

≤ |k2 − k2
p| ‖up; V0

γ,δ‖+ ‖(−(−i∇+ A)2 ± H + k2
p)up; V0

γ,δ‖ ≤ cε2π/ω.

Since the supports of the functions (−(−i∇+ A)2 ± H + k2
p)up and χ2,εσ do not

intersect, we have

|(χ2,εσ(−(−i∇+ A)2 ± H + k2
0)up, v0)G2 | = |(k2

0 − k2
p)(up, v0)G2 | ≥ cε2π/ω.

Further, γ − 1 < π/ω, so

|(χ2,εσ Sε f , v0)G2 | ≤ ‖Sε f ; V0
γ,δ(G(ε))‖ ‖v0; V0−γ(G2)‖ ≤ c‖Sε f ; V0

γ,δ(G(ε))‖.

Hence,
|a( f )| ≤ cε−2π/ω‖Sε f ; V0

γ,δ(G(ε))‖
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and ‖S̃ε f ‖ ≤ c‖Sε f ‖. Thus, the operator I + S̃ε in V0,⊥
γ,δ (G(ε)) is invertible, which

is also true for the operator of the problem (3.5.1):

Aε : u 	→ −(−i∇+ A)2u ± Hu + k2u : V̊2,⊥
γ,δ,−(G(ε)) 	→ V0,⊥

γ,δ (G(ε));

here V̊2,⊥
γ,δ,−(G(ε)) denotes the space of elements in V2

γ,δ,−(G(ε)) that vanish on

∂G(ε) and are sent by the operator −(−i∇+ A)2 ± H + k2 into V0,⊥
γ,δ . The inverse

operator A−1
ε = R̃ε(I + S̃ε)−1 is bounded uniformly with respect to ε, k. Therefore,

the inequality (3.5.3) holds with c independent of ε, k.

We consider a solution u1 to the homogeneous problem (3.1.1) defined by

u1(x, y) =

{
U+

1 (x, y) + s11 U−
1 (x, y) + O(exp (δx)), x → −∞,

s12 U−
2 (x, y) + O(exp (−δx)), x → +∞.

Let s11 and s12 be the elements of the scattering matrix determined by this so-
lution. Denote by ũ1,σ the function defined by (3.4.1) with Θ(rj) replaced by
Θ(ε−2σ

j rj) and with removed R; s̃11, s̃12 are the same as in (3.4.18) – (3.4.19).

Theorem 3.5.2. Let the conjectures in Proposition 3.5.1 be fulfilled. Then the inequality

|s11 − s̃11|+ |s12 − s̃12| ≤ c|s̃12|ε2−δ

holds with constant c independent of ε and k, δ being an arbitrarily small positive number.

Proof. The difference R = u1 − ũ1,σ is in the space V2
γ, δ,−(G(ε)) and

f1 := (−(−i∇+ A)2 ± H + k2)(u1 − ũ1,σ)

is in V0,⊥
γ, δ (G(ε)). By Proposition 3.5.1,

‖R; V2
γ, δ,−(G(ε))‖ ≤ c ‖ f1; V0

γ,δ(G(ε))‖. (3.5.13)

Let us show that

‖ f1; V0
γ, δ(G(ε))‖ ≤ c|s̃12|(εγ−π/ω+1 + ε2π/ω−σ1), (3.5.14)

where σ1 = 2σ(3π/ω − γ + 1). The required estimate is a consequence of the last
two inequalities with γ = π/ω + 1 − δ and σ1 = δ.

Arguing as in Step B of the proof of the previous statement, we obtain the
estimate

‖ f1; V0
γ, δ(G(ε))‖ ≤ c(εγ+1 + ε3π/ω−σ1)

× max
j=1,2

(|a−j (ε)|ε−π/ω + |a+j (ε)|επ/ω + |b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω).

From (3.4.11) it follows that

(|a−j (ε)|ε−π/ω + |a+j (ε)|επ/ω) ≤ c(|b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω).

Using the formulas (3.4.8) and (3.4.10) for b±j and relations (3.4.17) and (3.4.15),
we get

|b−j (ε)|ε−π/ω + |b+j (ε)|επ/ω ≤ cε−π/ω|s̃12(ε)|.
Comparing the obtained estimates, we arrive at (3.5.14).
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Now we return to the detailed notations introduced in the first three sec-
tions. Theorem 3.5.2 and formulas (3.4.21)–(3.4.22) lead to the next statement.

Theorem 3.5.3. For |k2 − k2
r,±| = O(ε2π/ω) the asymptotic expansions

T±(k, ε) =
1

1
4

(
|b±1 |
|b±2 |

+
|b±2 |
|b±1 |

)2

+ P2±

(
k2 − k2

r,±
ε4π/ω

)2 (1 + O(ε2−δ)),

k2
r,± = k2

0,± − α(|b±1 |2 + |b±2 |2)ε2π/ω + O
(
ε2π/ω+2−δ

)
,

Υ±(ε) =

(
|b±1 |
|b±2 |

+
|b±2 |
|b±1 |

)
P−1
± ε4π/ω

(
1 + O(ε2−δ)

)
,

hold, where Υ±(ε) is the width of the resonant peak at its half-height,

P± = (2|b±1 ||b±2 |β2|A(k0)|2)−1,

and δ is an arbitrarily small positive number.

3.6 Comparison of asymptotic and numerical approaches

The principal parts of the asymptotic formulas in Theorem 3.5.3 contain the con-
stants b±j , |A|, α, β. To find them one has to solve numerically several boundary
value problems. In this section, we state the problems and describe a way to solve
them. We also outline a method for computing the waveguide scattering matrix S
taken from the paper [15]. Then we compare the asymptotics having calculated
constants and the numerically found scattering matrix.

3.6.1 Problems and methods for numerical analysis

Calculation of bj

To find bj, we solve the spectral problem

(−i∇+ A(x, y))2v(x, y)± H(ρ)v(x, y) = k2v(x, y) in G2,
v(x, y) = 0 on ∂G2,

(3.6.1)

by FEM (for the details see Appendix 1). Let V0 be an eigenfunction correspond-
ing to k2

0 and normalized by ∫
G2

|V0(x, y)|2 dxdy = 1.

We have

V0(x, y) ∼
{

b±1 rπ/ω
1 Φ(ϕ1) as r1 → 0,

b±2 rπ/ω
2 Φ(π − ϕ2) as r2 → 0,

(3.6.2)
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where (ρj, ϕj) are polar coordinates centered in rj, and Φ(θ) = π−1/2 cos(πθ/ω).
Then b±1 and b±2 in (3.6.2) can be defined by

b±1 = ε−π/ω V0(ε, 0)
Φ(0)

=
√

πε−π/ωV0(ε, 0), b±2 =
√

πε−π/ωV0(d − ε, 0),

where ε is a small positive number.

Calculation of |A|

To calculate |A| we must solve numerically the problem

−Δv(x, y) = k2v(x, y) in G1,
v(x, y) = 0 on ∂G1,

(3.6.3)

with conditions

v(x, y) ∼ 2iAρπ/ωΦ(π − ϕ) as ρ → 0,

v(x, y) =

(
e−iν1x +

A
A

eiν1x

)
Ψ1(y) + O(e−γ|x|) as x → −∞,

(3.6.4)

where (ρ, ϕ) are polar coordinates centered in r1. Denote the truncated domain

G1 ∩ {(x, y) : x > −D}

by GD
1 and the artificial part of the boundary ∂GD

1 ∩ {(x, y) : x = −D} by ΓD.
Consider the following problem

ΔvD(x, y) + k2vD(x, y) = 0 in GD
1 ,

vD(x, y) = 0 on ∂GD
1 \ΓD,

(∂n + iν1) vD(x, y) = f (x, y) on ΓD.
(3.6.5)

If ν1 ∈ R\0 and f ∈ L2(ΓD), the problem has a unique solution vD, and vD

satisfies the inequality

‖vD‖GD
1
� C1‖ f ‖ΓD ,

where ‖vD‖GD
1

:= ‖vD‖L2(GD
1 ); similar notation is used for the norms and the

inner products below.
Let v be a solution to the problem (3.6.3), (3.6.4), and let V be a solution to

the problem (3.6.5) with f = 2iν1eiν1DΨ1(y). Then u = v − V satisfies (3.6.5) with
f = O(e−γD). Hence, ‖v − V‖GD

1
� C0e−γD.

We find V with FEM (for the details see Appendix 2) and put

A = i
√

πε−π/ωV(−ε, 0)/2.
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Calculation of α and β

To calculate α and β, we consider the boundary value problem

−Δw(ξ, η) = 0 in Ω,
w(ξ, η) = 0 on ∂Ω,

(3.6.6)

with the following conditions at infinity

w(ξ, η) =

{
(ρπ/ω + αρ−π/ω)Φ(ϕ) + O(ρ−3π/ω) as ρ → ∞, ξ > 0,

βρ−π/ωΦ(π − ϕ) + O(ρ−3π/ω) as ρ → ∞, ξ < 0,
(3.6.7)

where (ρ, ϕ) are polar coordinates centered in r1. Introduce the notations

ΩD = Ω ∩ {(ρ, ϕ) : ρ < D},

ΓD = ∂ΩD ∩ {(ρ, ϕ) : ρ = D}.

Consider the problem

ΔwD(ξ, η) = 0 in ΩD,
wD(ξ, η) = 0 on ∂ΩD\ΓD,

(∂n + ζ)wD(ξ, η) = g(ξ, η) on ΓD.
(3.6.8)

If wD is a solution and ζ > 0, then

‖wD‖ΓD � ζ−1‖g‖ΓD . (3.6.9)

Denote the left-hand part of ΓD by ΓD− and the right-hand part of ΓD by ΓD
+.

Let W satisfy (3.6.8) with

ζ = π/ωD, g|ΓD−
= 0, g|ΓD

+
= (2π/ω)D(π/ω)−1Φ(ϕ).

Since the conditions (3.6.7) can be differentiated, w − W satisfies (3.6.8) with

g = O(D−(3π/ω)−1).

According to (3.6.9),

‖w − W‖ΓD � c
ωD
π

D−(3π/ω)−1 = c′D−3π/ω

as D → +∞. We find W with FEM (for the details see Appendix 2) and take

β =
W(−D, 0)

Φ(0)
Dπ/ω =

√
πW(−D, 0)Dπ/ω.

Obviously, ‖(w − Dπ/ωΦ(ϕ))− (W − Dπ/ωΦ(ϕ))‖ΓD � c′D−3π/ω, therefore we
put

α =
W(D, 0)− Dπ/ωΦ(0)

Φ(0)
Dπ/ω =

√
πW(D, 0)Dπ/ω − D2π/ω.
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Now the coefficients in the asymptotic formulas have been calculated, so we
can use the asymptotics for a quantitative description of the polarization process.
However, the formulas are designed for sufficiently small narrows’ diameters.
Thus, it remains to estimate the range of ε where asymptotics works. To this end
we calculate the scattering matrix employing the method suggested in [7]. Here
we present the needed description of the method. Introduce

G(ε, D) = G(ε) ∩ {(x, y) : −D < x < d + D},

ΓD
1 = ∂G(ε, D) ∩ {(x, y) : x = −D},

ΓD
2 = ∂G(ε, D) ∩ {(x, y) : x = d + D}

for large D. As an approximation to the row (s11, s12) of the scattering matrix S(k)
we take the minimizer of a quadratic functional. To construct such a functional
we consider the problem

(−i∇+ A)2X D± ± HX D± = k2X D± in G(ε, D),
X D± = 0 on ∂G(ε, D) \ (ΓD

1 ∪ ΓD
2 ),

(3.6.10)

(∂n + iζ)X D± = i(−ν1 + ζ)e−iν1DΨ1(y) + a1 i(ν1 + ζ)eiν1DΨ1(y) on ΓD
1 ,

(∂n + iζ)X D± = a2 i(ν1 + ζ)eiν1(d+D)Ψ1(y) on ΓD
2 ,

(3.6.11)

where ζ ∈ R \ {0} is an arbitrary fixed number, and a1, a2 are complex num-
bers. As approximation to the row (s11, s12) we take the minimizer a0(D) =
(a0

1(D), a0
2(D)) of the functional

JD(a1, a2) =
∥∥∥X D± − e−iν1DΨ1 − a1eiν1DΨ1

∥∥∥2

ΓD
1

+
∥∥∥X D± − a2 eiν1(d+D)Ψ1

∥∥∥2

ΓD
2

,

(3.6.12)
where X D± is a solution to problem (3.6.10). From the results of the paper [7] it
follows that a0

j (D, k) → s1j(k) with exponential rate as D → ∞. More precisely,
there exist positive constants Λ and C such that

|a0
j (D, k)− s1j(k)| � Ce−ΛD, j = 1, 2,

for all k2 ∈ [μ1, μ2] and sufficiently large D; the interval [μ1, μ2] of continuous
spectrum of the problem (3.1.1) lies between the first and the second thresholds
and does not contain the thresholds. (Note, that application of the method is not
hindered by possible presence on the interval [μ1, μ2] of eigenvalues of the prob-
lem (3.1.1) corresponding to eigenfunctions exponentially decaying at infinity.)
To express X D± by means of a1, a2, we consider the problems

(−i∇+ A)v±±,1 ±Hv±±,1 = k2v±±,1 in G(ε, D),
v±±,1 = 0 on ∂G(ε, D) \ (ΓD

1 ∪ ΓD
2 ),

(∂n + iζ)v±±,1 = i(∓ν1 + ζ)e∓iν1DΨ1 on ΓD
1 ,

(∂n + iζ)v±±,1 = 0 on ΓD
2

(3.6.13)
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and

(−i∇+ A)v±±,2 ±Hv±±,2 = k2v±±,2 in G(ε, D),
v±±,2 = 0 on ∂G(ε, D) \ (ΓD

1 ∪ ΓD
2 ),

(∂n + iζ)v±±,2 = 0 on ΓD
1 ,

(∂n + iζ)v±±,2 = i(∓ν1 + ζ)e∓iν1(d+D)Ψ1 on ΓD
2 .

(3.6.14)

In v±±,j the upper and lower ± correspond to ∓ in the condition on ΓD
1 ∪ ΓD

2 and
to the sign in the Pauli equation, respectively. Let us express X D±,m by means of
the solutions v±±,j to problems (3.6.13) and (3.6.14). We have

X D± = v+± + a1v−±,1 + a2v−±,2.

The functional (3.6.12) can be rewritten in the form

JD(a, k) = 〈aED(k), a〉+ 2 Re
(
〈FD

1 (k), a〉
)
+ GD

1 (k),

where 〈·, ·〉 is the inner product on C2, and ED stands for the 2 × 2–matrix with
entries

ED
11 =

(
(v−±,1 − eiν1DΨ1), (v−±,1 − eiν1DΨ1)

)
ΓD

1

+
(

v−±,1, v−±,1

)
ΓD

2

,

ED
1,2 =

(
(v−±,1 − eiν1DΨ1), v−±,2

)
ΓD

1

+
(

v−±,1, (v−±,2 − eiν1(d+D)Ψ1)
)

ΓD
2

,

ED
2,1 =

(
v−±,2, (v−±,1 − eiν1DΨ1)

)
ΓD

1

+
(
(v−±,2 − eiν1(d+D)Ψ1), v−±,1

)
ΓD

2

,

ED
2,2 =

(
v−±,2, v−±,2

)
ΓD

1

+
(
(v−±,2 − eiν1(d+D)Ψ1), (v−±,2 − eiν1(d+D)Ψ1)

)
ΓD

2

;

FD
1 (k) is the row (FD

11(k),FD
12(k)) and GD

1 (k) is the number defined by

FD
11 =

(
(v+±,1 − e−iν1DΨ1), (v−±,1 − eiν1DΨ1)

)
ΓD

1

+
(

v+±,1, v−±,1

)
ΓD

2

,

FD
12 =

(
(v+±,1 − e−iν1DΨ1), v−±,2)

)
ΓD

1

+
(

v+±,1, (v−±,2 − eiν1(d+D)Ψ1)
)

ΓD
2

,

GD
1 =

(
(v+±,1 − e−iν1DΨ1), (v+±,1 − e−iν1DΨ1)

)
ΓD

1

+
(

v+±,1, v+±,1

)
ΓD

2

,

The minimizer a0 = (a0
1(D, k), a0

2(D, k)) satisfies a0ED +FD
1 = 0. The solution to

this equation serves as an approximation to the first row of the scattering matrix.
In the same way one can show that the approximation to the scattering matrix
is the solution SD(k) to the matrix equation of the form SDED + FD = 0. If one
chooses ζ = −ν1, then v−±,1 = v−±,2 = 0, ED = (1/ν1)Id, and SD = −ν1FD.

3.6.2 Comparison of asymptotic and numerical results

Let us compare the asymptotics k2
res,a(ε) of resonant energy k2

res(ε) and the ap-
proximate value k2

res,n(ε) obtained by the numerical method.
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The ’numerical’ and ’asymptotic’ resonant energies are shown in Figure 10.
The discrepancy between the curves depends on the magnetic field H0 and the
narrows’ opening ω. Numerical resonance is calculated by the iteration process,
the asymptotic resonant energy taken for initial value.

The shapes of "asymptotic" and "numerical" resonant peaks are almost the
same (see Figure 11). The difference between the peaks is quantitatively depicted
in Figure 12 (note the logarithmic scale on the axes). Moreover, it turns out that
the ratio of the width Δn(h, ε) of numerical peak at height h to the width Δa(h, ε)
of asymptotic peak is independent of h. The ratio as function of ε is displayed in
Figure 13.

0 0.1 0.2 0.3 0.4 0.5
15

15.5

16

16.5

17

17.5

18

ε

k2 re
s

FIGURE 10 Asymptotic description k2
res,a(ε) (solid curve) and numerical description

k2
res,n(ε) (dashed curve) for resonant energy k2

res(ε).

The obtained data show that asymptotic and numerical methods give equiv-
alent results at the band of the narrows’ diameters 0.1 < ε < 0.5 (see Figures 10
and 12). The numerical method becomes ill-conditioned as ε < 0.1, while the
asymptotics remains reliable. The explanation is the same as in the previous chap-
ter. On the other hand, the asymptotics gives way to the numerical method as the
diameter increases.

The difference between the asymptotic and numerical values is more signif-
icant for larger ε because the asymptotics becomes unreliable. However, as the
numerical method shows, for ε ≥ 0.5 the resonant peak turns out to be so wide
that the resonant tunneling phenomenon dies out by itself.

Numerical simulations show sharp decrease of T(k2
res) at certain values Hcr

of the magnetic field (see Figure 14). The phenomenon is connected with the
Aharonov–Bohm effect and is caused by the phase shift and mutual interference
of electron waves bypassing the magnetic field along curves 1 and 2 (see Figure 8).
At H = Hcr the waves cancel each other out.
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FIGURE 11 Transition coefficient for ε = 0.2, asymptotic description Ta(k2 − k2
res,a)

(solid curve) and numerical description Tn(k2 − k2
res,n) (dashed curve). The

width of resonant peak at height h: asymptotic Δa(h, ε) = AA; numerical
Δn(h, ε) = BB.
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FIGURE 12 The width Δ(ε) of resonant peak at half-height of the peak (dashed line for
numerical description, solid line for asymptotic description).
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FIGURE 13 Ratio Δn(h, ε)/Δa(h, ε) as function in ε. The ratio is independent of h within
the accuracy of the analysis.
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FIGURE 14 The transition coefficient at resonance for R = 0.2.



4 MULTICHANNEL SCATTERING

We consider an infinite two-dimensional waveguide that far from the coordinate
origin coincides with a strip. The waveguide has two narrows which play the role
of effective potential barriers for the longitudinal electron motion and, thereby,
form a resonator between them. We analyze the resonator scattering character-
istics. The results show that the eigenvalues of the resonator and the resonant
energies of the waveguide are effectively approximated by a simple formula.

Also, as the obtained data show, to avoid dealing with transmission be-
tween transversal states and to get sharp resonant peaks, the devices based on the
phenomenon must be designed with such parameters (geometry, voltage, etc.)
that ensure the electron energy being below the third threshold.

4.1 Preliminaries

The total energy E of an electron moving in a cylindrical quantum waveguide can
be represented in the form

E = E⊥ + E||, (4.1.1)

where E⊥ is the transversal and E|| is the longitudinal components.
The values of E⊥ are quantized and depend on the form of the waveguide

cross-section. For instance, if the waveguide cross-section is a disk of radius R,
then the n-th level of E⊥ satisfies

E⊥(n) =
h̄2

2m∗
t R2 μ2

n, (4.1.2)

μn being the n-th root of the Bessel function J0, J0(μn) = 0, and m∗
t the transversal

effective electron mass (see, e.g. [16]). The effective mass of an electron takes into
account the average effect of the grating periodic potential on the electron motion.
For the anisotropic gratings the effective mass depends on the motion direction.
In the simplest two-dimensional case, where the waveguide is a strip of width D,
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we have

E⊥(n) =
h̄2π2

2m∗
t D2 n2. (4.1.3)

The spectrum of E|| is continuous,

E|| =
h̄2k2

||
2m∗

l
. (4.1.4)

Here k|| is an electron wave number, m∗
l is the effective electron mass along the

waveguide axis. In the dimensionless form for the strip

Ẽ⊥(n) =
π2

D̃2
n2, Ẽ|| =

m∗
t

m∗
l

k̃2
||, (4.1.5)

where Ẽ⊥ = E⊥/E0 and Ẽ|| = E||/E0 are the transverse and longitudinal dimen-
sionless energies, D̃ = D/D0 is the dimensionless waveguide width, k̃|| = k||D0

is the dimensionless wave number, E0 = h̄2/(2m∗
t D2

0) is the unit of energy, D0 is
the unit of length.

In what follows we analyze in the dimensionless form a waveguide coinsid-
ing with a strip, where m∗

l = m∗
t , and omit ∼ in the notations. Then

E = E⊥ + E||, E⊥(n) =
π2

D2 n2, E|| = k2
||, (4.1.6)

Assume that inside a waveguide the electron potential energy vanishes while
outside it is equal to infinity (i.e. sufficiently large). Then the wave function of an
electron going along the x-axis (from −∞ to +∞) can be written in the form

ψ(x,�x⊥, t) = e−i
√

Et
nmax

∑
n=1

anχn(�x⊥)e
i
√

E||x. (4.1.7)

Here �x⊥ is a vector in the cross-sectional plane; χn(�x⊥) are solutions to the equa-
tion

Δχn + E⊥(n)χn = 0,

satisfying the condition χn = 0 on the cross-section boundary. The number nmax
is found from the condition that E|| be non-negative.

The summands in (4.1.7) are called modes, and E⊥(n) is called n-th energy
threshold. If the electron energy satisfies E⊥(1) < E < E⊥(2), then only one
mode (a wave with transversal number n = 1) can propagate in the waveguide.
The value of E⊥(n) depends on the shape and the area of the cross-section (it
increases as the cross-section area decreases). In the simplest two-dimensional
case (a strip of width D), we have E⊥(n) = π2n2/D2 and χn(y) = cos(πny/D).

Note that an electron with the same total energy can be in distinct trasnver-
sal states. For example, in the waveguide of width D = 1, an electron with energy
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E = 300 can be in the five distinct states:

n = 1 : E⊥(1) = 9.87, E|| = 290.13,
n = 2 : E⊥(2) = 39.5, E|| = 260.5,
n = 3 : E⊥(3) = 88.8, E|| = 211.2,
n = 4 : E⊥(4) = 157.9, E|| = 142.1,
n = 5 : E⊥(5) = 246.7, E|| = 53.3.

(4.1.8)

An electron with E = 100 can have the three distinct states:

n = 1 : E⊥(1) = 9.87, E|| = 90.13,
n = 2 : E⊥(2) = 39.5, E|| = 60.5,
n = 3 : E⊥(3) = 88.8, E|| = 11.2,

(4.1.9)

The representation E = E⊥ + E|| is valid only for the cylindrical waveg-
uides. However, if a waveguide cross-section slowly changes, then (4.1.6) are
approximately satisfied (with D changed for D(x)). For the quallitative analysis,
we assume such relation to be fulfilled.
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FIGURE 15 The potential corresponding to the 2D waveguide.

Let us consider an electron moving from −∞ to +∞ along a waveguide with
D(−∞) = 1. If the waveguide width decreases along the x-axis, then E⊥(n, x)
increases. Since the total energy E remains constant, E|| decreases. This can be
interpreted as arising a potential barrier depending on x,

Vn(x) = π2n2
(

1
D2(x)

− 1
)

. (4.1.10)

A point x1 such that E||(x1) = 0 is called a turning point (Figure 15). The
coordinate of such a point is determined by E = π2n2/D2(x1). At x1, an electron
with energy E is reflected while the electron wave function exponentially decay-
ing for x > x1 (under the barrier). Let us emphasize that the barrier depends on
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the transversal quantum number n. At a certain point xmin the waveguide width
becomes minimal, D(xmin) = Dmin. The electrons with total energy

E > π2n2/D2
min = Ecr,n

go over the barrier. The barrier height (the maximal Vn(x)) is equal to

Vn = π2n2(D−2
min − 1).

If E slightly exceeds Ecr,n then there is some probability of over-barrier reflection.
The electrons with E < π2n2/D2

min are reflected with probability close to 1.
If the resonator becomes wider behind the narrow, then Vn(x) decreases and at a
point x2 (also called a turning point) the electron appears over the barrier; there
exists a small probability for tunneling through the potential barrier. The tunnel-
ing probability is proportional to

exp
[
−α

∫ x2

x1

√
Vn(x)− E||dx

]
.

The larger the integral in the expression, the less the width of the resonant peak.
In our calculations we have assumed Dmin = 0.3, so the barrier heights

(depending on n) are V1 = 99.8, V2 = 399.1, V3 = 898.1, and V4 = 1597. The
critical values of the total electron energy are Ecr,1 = 109.7, Ecr,2 = 438.6, Ecr,3 =
987 and Ecr,4 = 1755.

If there are two narrows in a waveguide, then the domain between the nar-
rows plays the role of a quantum resonator. If an electron went under the barrier
corresponding to the first narrow and entered the resonator, it would be reflected
at the point x3 by the barrier created by the second narrow (see Figure 15). If

k||(x4 − x3) = k||Le f f ≈ πm, m = 1, 2, . . . (4.1.11)

then there arise conditions for strengthening waves moving in the resonator in
opposite direction (the so-called constructive interference). In such a process, the
probability sharply inreases for the electron to pass through the resonator. If the
narrows are identical, the probability turns out to be 1 for certain values of the
energy (the resonant energies). The full resonant electron energy satisfies

Eres = π2n2 +
π2m2

L2
e f f

. (4.1.12)

For the narrows considered in this work, Le f f ≈ L, where L is the resonator
length, i.e. the distance between the xmin-coordinates of the two barriers.

For electrons with the same full energy having distinct transversal quantum
numbers, the resonant conditions can be distinct. For example, for the resoantor
with length L = 1.5, an electron with energy E = 49.3 and transversal quantum
number n = 1 passes through the resonator with probability close to 1 (this en-
ergy is resonant for n = 1, m = 3). However, an electron with the same full
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energy and transversal quantum number n = 2 has a negligible transition prob-
ability (the resonant conditions are not fulfilled). An electron with E = 43.9 will
pass through the resonator for n = 2, m = 1 will not pass for n = 1.

Due to scattering by an effective potential, when entering the resonator, an
electron can change its transversal state (keeping the full energy). For the waveg-
uide with axial symmetry, only such changes are possible that keep the transver-
sal state evenness.

Even in the case that the original electron state is not resonant, for the new
state with changed transversal quantum number the resonant condition can be
fulfilled. Leaving the resonator, such an electron can recover its original state.
As a result, the transition probability sharply increases for formally non-resonant
energy values.

The aforementioned resonator systems can serve as a base for building var-
ious amplifiers, in particular, transistors. Their operation has been analyzed un-
der the assumption that the electron energy lies between the first and the second
thresholds. However, this condition is not always fulfilled. With modern tech-
nologies the waveguide diameter cannot apparently be made less than 15–20 pe-
riods of crystal lattice, i.e. 5–8 nm, and the operation voltage (and consequently,
the energy of electrons in the channel) less than 0.1–0.2 eV. The energy corre-
sponding to the first threshold (in the dimensional units) is E1 = π2h̄2/2m∗D2.
Only if the effective mass of the electron is not greater than 0.01me, the mentioned
assumption is fulfilled. If the effective mass m∗ of an electron in the conductor is
close to the free electron mass me, the current is affected by electrons with nmax
up to 4–5. For wider waveguides the number of channels is even greater.

In elastic scattering of the incident wave by the waveguide narrows, tran-
sitions between transversal states are possible with particle’s total energy being
invariant. This process of multichannel scattering can cause significant decrease
of tunneling probability at resonance and operation problems in the devices cre-
ated on the basis of the effect of resonant tunneling.

The frequency characteristics of the quantum resonance devices are deter-
mined by the time τR during which the electron resides in the resonator. The
parameter also determines the Coulomb extrusion of incident electrons by the
space charge of electrons in the resonator (Coulomb blockade). To find τR we
have to consider the process of scattering of wave packet moving in the quantum
waveguide towards the resonator.

Even in one-dimensional case the scattering of wave packets on one poten-
tial barrier leads to unexpected results [17, 18]. For instance, in the scattering
of a spatially narrow wave packet, the appearance of a transmitted packet of
small amplitude is possible before the packet fully transits through the barrier
(the Hartman paradox, see [19]). This is conditioned by the influence of the wave
packet components with large energies for which the probability of tunneling is
high.

Naturally, in the two-dimensional case the process of transition of a wave
packet through a narrow and, a fortiori, through a quantum resonator has even
more complicated character. It is explained by the fact, that the components of
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the wave packet with large energies can change the transversal part of the en-
ergy during the scattering (i.e. switch from one scattering channel to another).
Determination of the transition amplitudes with respect to parameters of the res-
onator (the narrows diameter and shape, the resonator length, etc.) is necessary
for calculation of time characteristics of the devices based on resonant tunneling.

4.2 The eigenfunctions of the closed resonator

A necessary condition of electron resonant tunneling consists in proximity of the
incident electron energy E to one of the eigenenergies k2

ev of the closed resonator
(Figure 16). Therefore we expose the calculated values of k2

ev and figures of the
corresponding eigenfunctions in Table 1.

D

Leff

L
ω

FIGURE 16 The resonator.

For the rectangular resonator with unit width (i.e. D = 1) and length L

k2
ev = π2n2 + π2m2/L2, (4.2.1)

where n and m are transversal and longitudinal quantum numbers. Since the
shape of the resonator is close to rectangular, the eigenvalues are well approxi-
mated by the expression (4.2.1) with L replaced by Le f f (this Le f f is slightly less
than Le f f in the previous section). For the resonator with angle ω = 0.9π at the
vertex and with length L = 1.5 the value of Le f f is approximately equal to 1.45
for n = 1 and to 1.42 for n > 1.

TABLE 1 The closed resonator eigenvalues and eigenfunctions

n
�
�
m

1 2 3 4 5 6 7

1

k2
ev = 14.5765 k2

ev = 28.6845 k2
ev = 52.1479 k2

ev = 84.8217 k2
ev = 125.6741 k2

ev = 180.1483 k2
ev = 240.3497

2

k2
ev = 44.3978 k2

ev = 59.1481 k2
ev = 83.7015 k2

ev = 117.9935 k2
ev = 161.2690 k2

ev = 214.9305 k2
ev = 273.2698

3

k2
ev = 93.7270 k2

ev = 108.5681 k2
ev = 134.3437 k2

ev = 165.5023 k2
ev = 209.7926 k2

ev = 261.8551 k2
ev = 326.4400

4

k2
ev = 163.4579 k2

ev = 177.5804 k2
ev = 202.4174 k2

ev = 237.7302 k2
ev = 287.1038 k2

ev = 330.8411

k2
ev > 370
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The disparity between the calculated eigenvalues and approximations by
formula (4.2.1) is less than 0.5%. Note, that such an accuracy is achieved in spite
of the significant difference between the considered eigenfunctions and those for
the rectangular resonator (see the figures in Table 1).

4.3 The method for computing the scattering matrix

Here we give a description of the scattering matrix calculation method used in
the computations (see [7]). We consider only the scattering of waves incident on
the resonator from −∞, i.e. we consider solutions of the form

un(x, y) = Uin
n (x, y) +

2nmax

∑
j=1

snjUout
j (x, y) + O(eδ|x|), |x| → ∞,

where

Uin
n (x, y) := 1le f te

i
√

E||(n)xχn(y), n = 1, 2, . . . , nmax,

Uout
j (x, y) := 1le f te

−i
√

E||(j)xχj(y), j = 1, 2, . . . , nmax,

Uout
j (x, y) := 1righte

i
√

E||(j−nmax)xχj−nmax(y), j = nmax + 1, nmax + 2, . . . , 2nmax,

E||(j) = E− E⊥(j) and 1le f t, 1right are the indicators of the left and the right outlets
of the waveguide. The matrix s = {snj}, n = 1, 2, . . . , nmax, j = 1, 2, . . . , 2nmax, is
the upper half of the waveguide scattering matrix. Denote the domain occupied
by the waveguide by G. Introduce the notations:

GR := G ∩ {(x, y) : −R < x < L + R},
ΓR := ∂GR ∩ {(x, y) : |x − L/2| = L/2 + R}.

Here R is a sufficiently large positive constant (see Figure 17).

ΓR ΓR

GR

L0−R L+R

−0.5D

0

0.5D

FIGURE 17 The truncated domain GR.

As an approximation for the n-th row of the scattering matrix we take the
minimizer a0

n = (a0
n1, a0

n2, . . . , a0
n,2nmax

) of the functional

JR
n = ‖X R

n − Uin
n −

2nmax

∑
j=1

anjUout
j ‖2

L2(ΓR).
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Here X R
n is a solution to the problem

(Δ + E)X R
n = 0 in GR,

X R
n = 0 on ∂GR \ ΓR,

(∂ν + iζ)X R
n = (∂ν + iζ)

(
Uin

n +
2nmax

∑
j=1

anjUout
j

)
on ΓR,

where ζ ∈ R \ {0} is an arbitrary fixed number, ν being the outward normal.
From the results of the paper [7] it follows that a0

nj(R, k) → snj(k) with exponen-
tial rate as R → ∞. More precisely, there exist positive constants Λ and C such
that

|a0
nj(R, k)− snj(k)| � C exp(−ΛR), j = 1, 2, . . . , 2nmax,

for all k2 ∈ [μ1, μ2] and sufficiently large R; the interval [μ1, μ2] of continuous
spectrum of the problem lies between two consequent thresholds and does not
contain the thresholds. (Note, that application of the method is not hindered by
possible presence on the interval [μ1, μ2] of eigenvalues of the problem).

We can put X R
n = vin

n + ∑2nmax
j=1 anjvout

j , where vin
n , vout

n are solutions to the
problems

(Δ + E)vin
n = 0 in GR,

vin
n = 0 on ∂GR \ ΓR,

(∂ν + iζ)vin
n = (∂ν + iζ)Uin

n on ΓR

and

(Δ + E)vout
j = 0 in GR,

vout
j = 0 on ∂GR \ ΓR,

(∂ν + iζ)vout
j = (∂ν + iζ)Uout

j on ΓR, j = 1, 2, . . . , 2nmax.

Now we can rewrite the functional JR
n in the form

JR
n = 〈anER, an〉+ 2Re 〈FR

n , an〉+ GR
n ,

where 〈·, ·〉 is the inner product on C2nmax , by ER we denote the matrix with entries

ER
pq =

(
vout

p − Uout
p , vout

q − Uout
q

)
L2(ΓR)

, p , q = 1, 2, . . . , 2nmax,

the row FR
n consists of the elements

FR
nq =

(
vin

n − Uin
n , vout

q − Uout
q

)
L2(ΓR)

, q = 1, 2, . . . , 2nmax,

and the number GR
n is defined by

GR
n =

∥∥∥vin
n − Uin

n

∥∥∥2

L2(ΓR)
.

The minimizer of JR
n satisfies anER + FR

n = 0. We take the solution of this equa-
tion for an approximation to n-th row of the scattering matrix.
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4.4 Discussion

A transversal quantum number is an adiabatic invariant. Therefore, for smooth
variations of the waveguide cross-section, the change of a transversal quantum
number will be unlikely. However, with sharp variation of the cross-section di-
ameter (at distances comparable to the electron wavelength) the probability of a
change of transversal state becomes high.

If the resonator is symmetric about x-axis, then only scattering with pre-
served evenness is possible (the incident and scattered waves have the same
evenness). It is explained by the fact, that the matrix element 〈ψin|V|ψout〉 of
transition between channels vanishes for wave functions of different evenness
because of the symmetry of the potential V providing the transition. Let us ex-
plain the fact in more detail. The original problem reads

Δun + k2un = 0 in G,
un = 0 on ∂G,

(4.4.1)

un = Uin
n +

2nmax

∑
j=1

snjUout
j + O(e−δ|x|) as |x| → ∞.

Let vn(x, y) = un(x,−y) and n ≤ nmax (we consider only the upper half of the
scattering matrix). The function vn satisfies

Δvn + k2vn = 0 in G,
vn = 0 on ∂G,

(4.4.2)

and

vn = (−1)n+1Uin
n +

nmax

∑
j=1

snj(−1)j+1Uout
j +

2nmax

∑
j=nmax+1

snj(−1)j−nmax+1Uout
j + O(e−δ|x|)

as |x| → ∞. Let n be even. Then wn = (un + vn)/2 satisfies

Δwn + k2wn = 0 in G,
wn = 0 on ∂G,

(4.4.3)

and

wn =
nmax

∑
j=1

snjUout
j +

2nmax

∑
j=nmax+1

snjUout
j + O(e−δ|x|) as |x| → ∞,

where the sums do not contain the terms with even j and j − nmax, respectively.
The solution of the problem is wn = 0 and, consequently, snj with odd j (for
j ≤ nmax) and j − nmax (for j > nmax) are zero.

If n is odd, then we consider wn = (un − vn)/2 and conclude that snj with
even j (for j ≤ nmax) and j − nmax (for j > nmax) are zero.
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FIGURE 18 Transition probability for the wave Uin
1 (nmax = 1, the transversal quantum

number n = 1 for the scattered wave).

For example, if the electron energy is between the second and the third
thresholds (4π2 < E < 9π2), we have s12 = s14 = 0. It means that there are
no transitions between the transversal states.

The energies E ≈ 14.58 and E ≈ 28.68 are resonant and correspond to n = 1
and m = 1, 2 (Figure 18). For 4π2 < E < 9π2 (the electron energy between the
second and the third thresholds) there are no changes of the transversal states
due to the evenness invariance. For the incident wave with n = 1, the resonant
tunneling occurs at E ≈ 48 and E ≈ 76 (Figure 19), which correspond to the
closed resonator eigenvalues E ≈ 52.15 and E ≈ 84.8 with n = 1, m = 3, 4. The
shift of the resonant energies to the left is caused by small increase of the distance
between the turning points in the open resonator.
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FIGURE 19 Transition probability for the wave Uin
1 (nmax = 2, the transversal quantum

number n = 1 for the scattered wave).

For incident wave Uin
2 , resonant tunneling occurs at energies E ≈ 44.4, 59.1,

and 83.7 (Figure 20), which correspond to n = 2, m = 1, 2, 3. The width of
the resonant peaks for this case is significantly less than that for the wave Uin

1 .
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FIGURE 20 Transition probability for the wave Uin
2 (nmax = 2, the transversal quantum

number n = 2 for the scattered wave).

The explanation is that the height of the potential barrier is much greater for the
wave Uin

2 . This also explains the smaller distance between the resonant peaks and
the corresponding eigenvalues of the closed resonator.
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FIGURE 21 Transition probability for the wave Uin
1 (nmax = 3, the transversal quantum

number n = 1 for the scattered wave).

For a waveguide symmetric about x-axis, transition between channels be-
comes possible only when 9π2 < E < 16π2, i.e. when the electron energy is
between the third and the fourth thresholds. Since for the wave Uin

1 the longitu-
dinal energy E|| is large (it is above the barrier height for E > Ecr,1 = 109, 7), the
probability of electron transition without change of a transversal quantum num-
ber is fairly high (Figure 21). The probability of electron transition with a change
of transversal state (n = 1) → (n = 3) is high as well (Figure 22). Both |s14|2
and |s16|2 have sharp resonance at E ≈ 93, which corresponds to the eigenenergy
of the closed resonator with n = 3, m = 1. For |s16|2 the peak is natural, since
for the longitudinal component the conditions of resonance hold. But for |s14|2
the resonance is caused by transition (n = 1) → (n = 3) at the entrance into the
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FIGURE 22 Transition probability for the wave Uin
1 (nmax = 3, the transversal quantum

number n = 3 for the scattered wave).

resonator, resonant magnification of the wave amplitude, and subsequent transi-
tion to the initial state (n = 3) → (n = 1). Similarly behaves the wave Uin

3 , with
strong direct (n = 3) → (n = 1) and reverse (n = 1) → (n = 3) transitions with
a change of the transversal quantum number and the resonance at E ≈ 93.
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FIGURE 23 Transition probability for the wave Uin
2 (nmax = 3, the transversal quantum

number n = 2 for the scattered wave).

For incident electrons with n = 2 no change of transversal state is possi-
ble and there is a sharp resonance of unit height at E ≈ 117 (Figure 23). For an
incident electron with energy 16π2 < E < 25π2 the situation is even more com-
plicated, since transitions with change of transversal quantum number become
possible for n = 2, too. We do not analyze the obtained results here, because
qualitatively the effects are similar to those for 9π2 < E < 16π2.

The wave Uin
3 with energy greater than Ecr,1 approaches the narrows and

partially goes in the state with n = 1, so the probability to pass through the
resonator is large even for non-resonant energies (due to passing over the bar-
rier), see Figure 26. The crititcal energy Ecr,3 for the original mode is greater than
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FIGURE 24 Total transition probability for Uin
1 .
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FIGURE 26 Total transition probability for Uin
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FIGURE 27 Total transition probability for Uin
4 .

the electron energy and the transition probability without changing the state has
peaks at the energies which are resonant for the state with n = 3. The sharp
oscilations at energies close to the eigenvalues of the resonator for n = 3 (see Fig-
ure 26) is apparently the manifestation of the interference of the modes with n = 1
and n = 3 at the exit of the resonator. An electron with n = 1 whose energy ex-
ceeds the third threshold partially goes in the state with n = 3, having resonances
at the same energies as an electron in the state with n = 3.

Figures 24–27 show the graphs of T1–T4 as functions in E; here Tn stands
for total transition probability of Uin

n . The numbers (n, m) are the transversal
and longitudinal quantum numbers of the respective eigenvalues of the closed
resonator. Similarly to Uin

3 , the wave Uin
4 partially changes its transversal state

(goes in the state with n = 2) and has resonances corresponding to the states
n = 4 and n = 2. However, the forth threshold is less than Ecr,2 and, a fortiori,
than Ecr,4 (the barriers are very high), so the free path through the resonator is
impossible for n = 2 and n = 4. Therefore, the peaks in Figures 25, 27 are very
narrow regardless the interference of the modes with n = 2 and n = 4 (causing
the slight asymmetry of the peaks).

The peaks in Figure 27 corresponding to the resonant energies for n = 2
(E ≈ 160 and E ≈ 212) are wider than the nearest peaks with n = 4 because the
barrier height for the state with n = 2 is notably lower than n = 4.

Evidently, the sharp resonances with transition probability T close to unit
exist only below the third threshold. Therefore, in designing electronic devices
based on the resonant tunneling in quantum waveguides of variable cross-section,
the parameters of the system (the cross-section area, the waveguide material, the
operation voltage) should be chosen so that the energy of an electron in the sys-
tem would not exceed the third threshold.
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YHTEENVETO (FINNISH SUMMARY)

Väitöskirjassa tutkitaan elektronisirontaa kvanttiaaltojohtimissa, joiden poikki-
leikkaus ei pysy vakiona.

Elektronit liikkuvat äärettömän pituisessa kaksiulotteisessa aaltojohtimes-
sa. Johtimessa on kaksi kapeikkoa, jotka toimivat kuten potentiaalivallit. Kapeik-
kojen välisestä aaltojohtimen osasta muodostuu resonaattori, jolloin sillä alueel-
la tapahtuu elektronin tunneloitumista. Ilmiön ominaisuuksia voidaan muuttaa
lisäämällä resonaattoriin magneettikenttä. Tällöin elektronivirta voidaan polari-
soida siten, että sen elektroneilla on samansuuntainen spin.

Kapeikkojen läpimitta määritetään parametriksi, minkä avulla johdetaan
asymptoottiset kaavat tunneloitumisen ominaisuuksille. Kaavojen sisältämät tun-
temattomat vakiot määrätään ratkaisemalla useita reuna-arvotehtäviä rajoitta-
mattomissa alueissa. Vastaavasti sirontamatriisi lasketaan numeerisesti, minkä
jälkeen asymptoottisia ja numeerisia tuloksia verrataan toisiinsa.

Resonaattorin toiminnan analysoinnissa oletetaan, että elektronien energia
on ensimmäisen ja toisen kynnysarvon välillä. Tätä ehtoa ei välttämättä pystytä
aina täyttämään tämän päivän teknologialla. Väitöskirjassa analysoidaan moni-
kanavasironnan ominaisuuksia myös tilanteessa, jossa elektronien energia ylittää
toisen kynnysarvon.
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APPENDIX 1 THE SPECTRAL PROBLEM IN G2

Let us rewrite the problem in the weak form

(∇v,∇u)− 2i(A∇v, u) + (|A|2v, u)± (Hv, u)− k2(v, u) = 0, (A1.1)

where u ∈ H1
0(G2) :=

{
v : v ∈ H1(G2), v = 0 on ∂G2

}
and the inner products

mean those in L2(G2).
Let PN be N-dimensional space of piecewise polynomial functions equal to 0

on ∂G2, and let {ηp}N
p=1 be a basis in PN. The space PN is defined by dividing the

geometry into small elements and choosing the basis functions ηp. In the calcula-
tions we used triangular mesh (for triangulation the ’advancing front’ method is
used) and second order Lagrange elements.

We replace both the sought-for function v and the test function u by func-
tions V ,U ∈ PN. Then using the representation

V =
N

∑
p=1

Vpηp

and writing the equation (A1.1) for U = ηq, q = 1, 2, . . . , N, we get the generalized
eigenvalue problem

A�V = k2B�V , (A1.2)

where A and B are matrices with entries

Apq = (∇ηp,∇ηq)− 2i(A∇ηp, ηq) + (|A|2ηp, ηq)± (Hηp, ηq),
Bpq = (ηp, ηq),

and �V = (V1,V2, . . . ,VN). The eigenvalue problem (A1.2) is solved by the Arnoldi
method (see, e.g. [20]). This description includes the case of a resonator without
magnetic field (Chapter 2), which is specified by setting H = 0. The calculations
have been carried out in the environments MATLAB and COMSOL, where one
can also find elementary introductions to the used methods and techniques.



APPENDIX 2 THE PROBLEMS IN G(ε), G1, Ω

Consider the problem

(−i∇+ A)2v ± Hv = k2v in X,
v = 0 on Y1,

(∂n + iζ)v = f on Y2,
(A2.1)

where Y1 + Y2 = ∂X. Let us rewrite the problem in the integral form

(∇v,∇u)X − 2i(A∇v, u)X + (|A|2v, u)X ± (Hv, u)X

− k2(v, u)X + iζ(v, u)Y2 = ( f , u)Y2 , (A2.2)

where u ∈ H1
0(X) :=

{
v : v ∈ H1(X), v = 0 on Y1

}
and the inner products mean

that in L2.
As in Appendix 1, we choose a sequence of spaces PN ⊂ H1

0(X) of piecewise
polynomial functions and replace v and u by V ,U ∈ PN. Then we expand V in
the basis {ηp}:

V =
N

∑
p=1

Vpηp

and writing the equation (A1.1) for U = ηq, q = 1, 2, . . . , N, we get the equation

A�V = B, (A2.3)

where A is a matrix and B is a column with elements

Apq =(∇ηp,∇ηq)X − 2i(A∇ηp, ηq)X

+ (|A|2ηp, ηq)X ± (Hηp, ηq)X − k2(ηp, ηq)X + iζ(ηp, ηq)Y2 ,
Bq =( f , ηq)Y2 ,

and �V = (V1,V2, . . . ,VN). The system (A2.3) is solved by incomplete LU-fac-
torization (LU-factorization for sparse SLAE). The environments MATLAB and
COMSOL have been used in the computations.

This description includes several cases. To solve the problems for scattering
matrix in the presence of magnetic field (Chapter 3), we set

X = G(ε), Y2 = ΓD
1 ∪ ΓD

2 .

Additional setting H = 0 corresponds to the problem without magnetic field.
The problems for multichannel scattering matrix (Chapter 4) correspond to X =
GR, Y2 = ΓR. Assuming X = GD

1 , Y2 = ΓD, we get the problem in G1 in Chap-
ters 2 and 3. Finally, the problem in Ω in Chapters 2 and 3 are solved by setting
X = ΩD, Y2 = ΓD.

We use ’advancing front’ method for triangulation and second order La-
grange elements as basis functions. We do not carry out any analysis of theoreti-
cal aspects of FEM, like convergence, accuracy, etc. For the issues we refer to the
wide literature devoted to the theory of FEM, e.g. see [21, 22, 23].
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