
161
J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

Synthesis and Application of  
Orthogonal Signal Bases 

Possessing Enhanced  
Time-Frequency Localization  
for Mobile Wireless Networks

Dmitry Petrov



JYVÄSKYLÄ STUDIES IN COMPUTING 161

Dmitry Petrov

Synthesis and Application of  
Orthogonal Signal Bases Possessing 

Enhanced Time-Frequency Localization  
for Mobile Wireless Networks

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2

joulukuun 19. päivänä 2012 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, auditorium 2, on December 19, 2012 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2012



Synthesis and Application of  
Orthogonal Signal Bases Possessing 

Enhanced Time-Frequency Localization  
for Mobile Wireless Networks



JYVÄSKYLÄ STUDIES IN COMPUTING 161

Dmitry Petrov

Synthesis and Application of  
Orthogonal Signal Bases Possessing 

Enhanced Time-Frequency Localization  
for Mobile Wireless Networks

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2012



Copyright ©       , by University of Jyväskylä

URN:ISBN:978-951-39-5000-2
ISBN 978-951-39-5000-2 (PDF)

ISBN 978-951-39-4999-0 (nid.)
ISSN 1456-5390

2012

Jyväskylä University Printing House, Jyväskylä 2012

Editors 
Timo Männikkö 
Department of Mathematical Information Technology, University of Jyväskylä 
Pekka Olsbo, Ville Korkiakangas 
Publishing Unit, University Library of Jyväskylä



ABSTRACT

Petrov, Dmitry
Synthesis and application of orthogonal signal bases possessing enhanced time-
frequency localization for mobile wireless networks
Jyväskylä: University of Jyväskylä, 2012, 100 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 161)
ISBN 978-951-39-4999-0 (nid.)
ISBN 978-951-39-5000-2 (PDF)
Finnish summary
Diss.

This thesis concentrates on the development and theoretical validation of a frame-
work which can be used on the physical layer of modern and future wireless
multi-carrier, in particular OFDM-based, systems. From a practical perspective,
mobile networks set a very strict environment for different services, which should
be reliably provided even in harsh channel conditions. Thus the study addresses
several main problems of OFDM technology, such as poor localization of signal
basis in the frequency domain and reduced efficiency due to the cyclic prefix
utilization. These problems cannot be efficiently solved because of theoretical
limitations of the classical WH basis.

The main approach developed in this thesis is the utilization of modified
orthogonal signal bases possessing enhanced time-frequency localization. Their
practical application requires overcoming several challenges, which are consid-
ered and solved in the dissertation. First, the structure and synthesis of such bases
are dealt with. MWH bases have been chosen as the main object of the study.
Their generic construction algorithm has been developed, starting from given
continuous functions possessing desired localization characteristics. Proven or-
thogonality criteria allow a considerable increase in the efficiency of the algo-
rithm. Secondly, phase and sampling parameters of the basis are optimized. Fi-
nally, computationally efficient signal modulation algorithm is developed. These
results form the core of the OFTDM technology, where multiplexing in the fre-
quency domain is complimented with the multiplexing in the time domain.

Keywords: OFDM, Localization, Multiplexing, PHY, Filter bank, Signal process-
ing, Multi-carrier, Pulse-shaping
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1 INTRODUCTION

In recent years, there has been a considerable progress in the development and
implementation of high speed wireless telecommunication technologies. Con-
stantly increasing data rates and user demands require guaranteed connection
quality even in complicated and noisy conditions. However, it is a usual situa-
tion when a real radio channel is the subject to time-frequency dispersion [1, 2],
for example, in an urban environment, near strong sources of electromagnetic in-
terference, moving Mobile Terminals (MTs), etc. This highlights the importance
of the study of new signal processing algorithms, in general, and the research on
new types of signals and signal bases with optimal time-frequency characteris-
tics, in particular.

Time-frequency analysis started its development from the beginning of the
20th century. In 1950’s and in the beginning of the current century, its meth-
ods and applications were developed in numerous works of such scientists as
A. Haar, D. Gabor [3], J. Ville [4], I. Daubechie [5], S. Mallat [6], Y. Meyer [7], F.
Hlawatsch [2], H. Bölcskei [8], D. Proakis [9], M. Bellanger [10, 11], T. Strohmer
and H. G. Feichtinger [12], P. Siohan, A. V. Oppenheim and R. W. Schafer [13], V.
F. Kravchenko [14], W. Kozek, and many others. Theoretical ideas developed in
these works have found applications in many areas of science, in particular in sig-
nal processing and telecommunications. For example, in many already adopted
and still developing 3rd Generation (3G) and 4th Generation (4G) telecommu-
nication systems, Orthogonal Frequency Division Multiplexing (OFDM) is the
main technology on the Physical Level (PHY) [15]. An OFDM signal transmit-
ted over the channel is a sequence of symbols, each of which is constructed as
a linear combination of bases functions with complex information coefficients,
Phase-Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM) symbols
[16]. It is well known that modulation and demodulation procedures can be per-
formed efficiently with the help of Inverse Fast Fourier Transform (IFFT) and Fast
Fourier Transform (FFT) algorithms correspondingly.

This thesis is mainly aimed to improve interference robustness, as well as,
spectral and energy efficiency of wireless Multi-Carrier (MC) devices [17, 18].
During the exploitation of such systems the radio signal usually propagates through
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dispersive media and experiences Inter-Symbol Interference (ISI) and Inter-Carrier
Interference (ICI) [19]. ISI is the result of overlapping of consequent OFDM sym-
bols and of delayed copies of the same symbol. It arises from time selectivity of
the channel and from the propagation over multiple paths. These effects can be
almost completely removed with the help of Guard Interval (GI) or Cyclic Prefix
(CP). ICI is caused by phenomena such as frequency selectivity of the channel,
Doppler shifts/spreading, and impulse noise [20], resulting in the destruction of
the internal structure of the signal. Interference can even cause breaks in the con-
nection. These kinds of negative effects cannot be mitigated effectively enough
because the rectangular form of pulse-shaping function used in OFDM is not op-
timal from the point of localization in the frequency domain. This causes ob-
stacles in mobile broadband networks. Thus the problem of ICI reduction and
adaptation to the time-frequency dispersion does not always have an adequate
solution. Moreover, in real applications and computer simulations new problems
appear in addition to those related to the enhancement of signal basis localiza-
tion. The questions of practical realization of basis synthesis and signal process-
ing algorithms become prominent. For example, in modern Digital Video Broad-
casting (DVB) systems, the number of sub-carriers can amount to several tens of
thousands [21]. Thus the computationally-efficient (or "fast") algorithms of pulse-
shaping function generation and signal modulation presented in the thesis have
an important practical meaning.

Today, digital video and 3G and 4G wireless telecommunication systems
are widely adopted around the world. For example, DVB is the most widely-
used transmission standard in the world, and there are about 1.4 billion digital
receivers in use for television [22]. WiFi access points can be found almost in
every apartment. Long Term Evolution (LTE) networks are spreading very fast
as well. To the date of the publication of this thesis, 113 commercial networks
in 51 countries have been established and about 500 devices announced by 79
manufacturers [23]. Even though Worldwide Interoperability for Microwave Ac-
cess (WiMAX) has become mostly niche technology, it still has about 17 million
subscribers worldwide [24]. For that reason, the development of validated math-
ematical methods and algorithms, allowing the enhancement of the parameters
of modern telecommunication systems, can be considered as the solution of an
important scientific and practical problem.

1.1 Limited Radio Resources

Wireless communication systems are required for higher and higher data rates.
This goal is particularly challenging for systems that are power, bandwidth, and
complexity limited. In multiple access wireless networks, many users are sharing
the same media. This can be achieved by multiplexing, i.e. by the division of an
available channel into several sub-channels.

There are several ways to do that [25]. For example, in Time Division Mul-
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tiple Access (TDMA) systems, a channel is provided to different data streams in
different time-slots. In Frequency Division Multiple Access (FDMA) channel ac-
cess scheme, each user can be assigned to a specific frequency channel. In partic-
ular, 2nd Generation (2G) cellar systems like the Global System for Mobile (GSM)
are based on a combination of TDMA and FDMA. 3G Universal Mobile Telecom-
munications System (UMTS) systems are based on the Code Division Multiple
Access (CDMA) scheme, where several signals are transferred simultaneously
over the same frequency band, utilizing different spreading codes [26]. Orthogo-
nal Frequency-Division Multiple Access (OFDMA), used in particular in 4G cel-
lar communication systems, advances from FDMA. It is a very flexible scheme,
where each user can be allocated several sub-carriers dynamically in time, based
on the radio channel conditions and load [27].

Space also provides one additional degree of freedom, which increases the
efficiency of resource utilization. In cellular systems, each cell needs to have its
own group of channels according to some multiplexing principle. Otherwise,
inter-cell interference would occur. The first solution to this problem is resource
reuse. A tendency favoured currently is to deploy small sells and Heterogeneous
Networks (HetNets). Many mobile network operators see small cells, like femto-
cells, picocells, and microcells as vital to managing LTE Advanced (LTEA) spec-
trum more efficiently compared to using just macrocells [28]. The second ap-
proach for space utilization arises from the idea of parallel data transmission
using several transmitting and receiving antennas. This technology is called
Multiple Input Multiple Output (MIMO) and is already widely used in modern
telecommunication standards, for example in Institute of Electrical and Electron-
ics Engineers (IEEE) 802.11n, IEEE 802.16 and LTE [29].

It can be concluded that, together with all possible enhancements men-
tioned above, OFDM is currently the most advanced technology from the per-
spective of spectral efficiency. Nevertheless, there is still room for further en-
hancements. First of all, it is necessary to take into account that radio spectrum
resources are already highly occupied. To ameliorate the situation, cognitive ra-
dio has been introduced [30]. This technology detects available channels in the
wireless spectrum and allows their use on a concurrent basis. This approach can
be applied for licensed spectrum bands (IEEE 802.22 standard for Wireless Re-
gional Area Network (WRAN) operates on unused television channels [31]) and
also on unlicensed parts of the Radio Frequency (RF) spectrum (for example, the
IEEE 802.15.2 standard [32]). OFDM is affordable but is not the best solution for
such kinds of networks. Its low spectral localization may cause unexpected in-
terference for networks functioning in neighboring frequency bands. Guard fre-
quencies, which ensure low interference, result in the waste of valuable frequency
resources. Thus, the amelioration of spectrum localization of MC devices is one
of the important directions for further enhancement of OFDM-based systems.

Another positive effect that can be achieved, together with better local-
ization is more efficient and robust data transmission over error-prone wireless
channels. To ensure high characteristics of Quality of Service (QoS), future wire-
less networks should be flexible and adaptive. In many applications, the possi-
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bility to maintain the connection is even more valuable than the maintenance of
constant data rate. The internal structure of the MC signal plays here the essen-
tial role. Higher robustness means lower Bit Error Rate (BER) and, consequently,
Block Error Rate (BLER) in the same channel conditions. In normal transmis-
sion conditions, this allows the usage of higher Modulation and Coding Schemes
(MCSs), while in the case of deep fadings helps to maintain connectivity. Ad-
ditionally, it is desirable to achieve higher robustness without the overheads in-
troduced by CP, which reduces power and spectral efficiency of OFDM systems.
From a technical perceptive, these kinds of problems are solved in terms of the
Filter Bank (FB) theory considered in the following section.

1.2 Filter Banks

FB is a popular approach and has very efficient processing algorithms, which al-
low flexible extraction of different spectral components of the signal [33]. The
theory of FBs provides a convenient framework for both the study and the im-
plementation of signal decompositions [34]. A digital FB is a collection of digital
filters with a common input or a common output. In signal processing, a FB is
an array of band-pass filters that separates the input signal into multiple compo-
nents, each one carrying a single frequency sub-band of the original signal.

FBs are divided in two main groups: analysis FBs and synthesis FBs. The
former ones decompose the signal into a number of low-rate signal components
and usually consist of a set of filters and a set of down-samplers. The latter ones
construct these components back to a single high-rate signal. Synthesis FBs in-
clude a set of up-samplers and low-pass, band-pass and high-pass filters. There
are many different approaches to the creation of FBs. However, in practical ap-
plications the simplicity of realization should be among the foremost concerns.
For example, Modulated Filter Banks (MFBs) have easy-derived, efficient realiza-
tion of sub-band filters [33], and for that reason they became very popular. They
can be constructed from single initializing filter using cosine, sine, or exponential
modulation [35, 36, 37]. Moreover, exponentially modulated FBs can be synthe-
sized as a combination of cosine and sine MFBs, and thus effective processing
algorithms on base of lapped transform can be used [38].

MC modulation is an efficient transmission technique and closely related
to the FB theory [39]. The most reputed MC technology is, no doubt, OFDM,
where a transmitter should efficiently combine low-rate input signals into a sin-
gle high-rate signal, which is then transmitted over a channel, enabling a receiver
to reconstruct these low-rate signals. Thus OFDM can be considered as a par-
ticular case of the Filter Bank Multiple Carrier (FBMC) scheme with rectangu-
lar filter shapes. This type of filter does not possess optimal localization in the
frequency domain. Therefore FBs provide an alternative way to perform time-
frequency signal transforms, providing more frequency selectivity then Discrete
Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT). More ad-
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vanced MC techniques, such as discrete wavelet multitone [40], Filtered Multi-
Tone (FMT) [41], Cosine modulated MultiTone (CMT) [42], the OFDM with off-
set QAM (OFDM/OQAM) -based technique [43], the modified DFT based tech-
nique [36], and the Exponentially Modulated FB (EMFB)-based technique [37],
can achieve a much better frequency selectivity.

Improved frequency selectivity can be accomplished by using longer and
spectrally well-shaped initializing filters. Because of that, the side lobes of the
filters are considerably lower then in the case of OFDM, and a good spectral lo-
calization for all the sub-channels can be obtained. This also results in a good re-
sistance against narrowband interference. In practice, any sub-channel overlaps
significantly only with its neighboring sub-channels. It is necessary to mention
here that the corresponding symbols are highly overlapping in time, which is not
true for OFDM. Due to this overlapping, a CP approach need not and even cannot
be utilized.

1.3 Computer Simulations

There are several approaches to study wireless mobile networks, from direct mea-
surements on a real network to analytical, mathematical derivations. For the ex-
isting networks, the measurements of key indicators and their optimization are
performed with the help of traffic analyzers and drive tests. However, when talk-
ing about new technologies, it is necessary to take into account that a full-featured
network might not even exist. Moreover, the number of devices available on the
market can be limited. Until recently, the main method used prior to the imple-
mentation of new networks was test zones. Using them, it is possible to test the
ease of commissioning, settings and particularities of the equipment in simple
scenarios, which include several MTs and one of few Base Stations (BSs). For 2G
and even 3G networks with circuit-switched services this approach was reason-
able. Nevertheless, in the new generations of mobile networks based on packet
switched architecture, BSs have many more functionalities [44]. It is almost im-
possible to consider radio part of a network separately from its core. Creation of
a test zone that could represent a significant cluster of the network is a difficult
and very expensive task. On the other hand, purely analytical considerations are
also unacceptable for the overall study of such complicated dynamic system be-
cause many simplifications should be introduced. Therefore, it can be concluded
that the only way to get detailed characteristics of future generation networks is
by system level simulations [45, 46]. At the same time, one should not under-
estimate the role of the theoretical derivations of new features and technologies
during the research stage.

System level simulators are used for the modeling of quite big network
scenarios. For example, the 3rd Generation Partnership Project (3GPP) macro-
cell scenario [47] consists of 19 sites (3 sectors each) and, on average, of 10 User
Equipments (UEs) per sector. Currently the most popular architecture is discrete-
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event architecture. In this kind of system, event is one of the most important en-
tities. An event occurs in a defined point of the simulator’s time line and causes a
change in the system. Examples of such events include the packet transmission,
change in the UE’s position, Signal to Interference and Noise Ratio (SINR), etc.

System level simulators are usually static, quasi-static or dynamic. Static
simulators are usually used to study network planning and interference situation.
However, such time-dependent phenomena as fast fading cannot be taken into
account. In quasi-static simulators, these effects are included in the model, but
UEs still have a constant position during every drop even though the velocity
can be assigned to them. Fully dynamic simulators are the most complicated and
resource-consuming but enable realistic network behavior simulation: as MTs
move, handovers are possible and radio resource management can be performed
in real time.

Nowadays, big telecommunication equipment manufacturers usually use
their own privately developed simulation tools. However, there are also some
quite functional system level simulators with open source code. Among these,
it is necessary to mention Network Simulator v.2 (ns-2) [48], which is still quite
popular mainly because of the variety of already existing models for it. In Net-
work Simulator v.3 (ns-3) [49], which appeared in 2008, many problems of ns-2
(low performance, lack of support for heterogeneous devices, complicated log-
ging, etc.) had been taken into account and solved. In scientific community, the
OmNet++ [50] simulator is widely spread. In addition to these, there are several
open source simulators focused mainly on one technology, for example LTE-Sim
[51] and OpenWNS [52] for LTE. Taking into account such factors as performance,
functionality, architecture, development activity and licensing, the ns-3 simula-
tion environment looks as the most promising.

In order to reduce the computational complexity of system level simula-
tions the PHY is not usually precisely modeled in them. The scale of one or few
time slots (1 slot = 1560 chips = 0.6667 ms) is considered to be enough, but the
collection of necessary statistics over one scenario can even under this resolution
take several days. It is obvious that the use of a higher time resolution will con-
siderably increase the requirements for computational resources. To overcome
this problem, one can divide the simulation process in two phases: link level and
system level simulation. In link level simulations, bit-resolution is used. Such
features as encoding and decoding, MIMO gains, adaptive modulation and cod-
ing feedback, realistic channel effects, etc. are precisely modeled. The main result
of link level simulations are mapping tables or curves that link SINR and BER or
BLER, depending on user modulation, channel model and velocity. Afterwards,
when SINR is calculated in a system level simulator, the values are compared to
the link level results to get the probability of successful frame transmission.

One of the main goals of this thesis is to provide the initial theoretical and
algorithmic input that can be used in link level simulators, which in turn pro-
duce the necessary data for the evaluation of the technology on the system level.
A more detailed formulation of these kind of problems is presented in the next
section.
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1.4 Problem Statement

Despite its popularity and efficacy, OFDM suffers from several major drawbacks:

– Sensitivity to the interference in the frequency domain.
– Reduced power and spectral efficiency because of the utilization of CP.
– High Peak-to-Average Power Ratio (PAPR).

This thesis concentrates on the solution of the two problems mentioned above.
The main goal is to develop, evaluate and demonstrate an enhanced PHY MC
technique and signal processing methods and algorithms that fuction efficiently
with it. The main emphasis of the study is on optimally localized MC waveforms
that effectively use the available spectrum. Aiming at minimal modifications to
the currently existing standards, enhanced OFDM solutions are considered as
an alternative. The filter bank theory proposes an promising approach in this
direction. This thesis focuses on four main areas:

1. The first problem area is the structure and properties of enhanced signal ba-
sis. In engineering, Gabor’s idea flourished over the last decade due to the
increasing use of OFDM structured communication systems. The main rea-
son for the popularity of OFDM in modern telecommunication systems is
that it allows the achievement of high data rates without complicated signal
equalization and processing together with the mitigated ISI. However, ICI
together with insufficient signal localization in the frequency domain is still
an issue. Is it possible to construct a basis with such initializing function,
that is still quite well localized in the time domain, so that the energy of
its Fourier Transform (FT) would be concentrated in the limited frequency
interval? This problem is discussed in Chapter 2.

2. After the structure of the basis is defined, the next step is the construction of
its initialization function with the required localization and orthogonality
properties. For example, the Gaussian function possessing ideal localiza-
tion is continuous and defined on the whole real axis. However, in digital
signal processing one needs to work with finite discrete signals. Thus it is
necessary to propose a theoretically validated approach for the construction
of such function, with minimal losses in localization quality. These issues
are studied in Chapter 3 and 4.

3. The third problem area is the efficiency of the orthogonalization procedure.
It is possible to perform it with the use of Singular Value Decomposition
(SVD), but the operation is computationally inefficient. Is it possible to op-
timize the construction of the basis’ initialization function? This question
is closely related with the orthogonality conditions which should guaran-
tee the absence of ICI and ISI of the signal transmitted over ideal channel.
These problems are introduced and studied in Chapter 5 and in [PII].

4. The fourth and final problem area is signal processing. Because of the more
complicated signal structure, it is impossible to use directly the FFT algo-
rithm as in OFDM. For the direct procedure of matrix multiplication, which
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can be used for modulation, the number of operations grows like the square
function of basis length. Thus this direct approach cannot be used in prac-
tical systems and even makes simulations too long. A "fast" signal modula-
tion algorithm is proposed and derived in [PVI].

1.5 Outline of the Dissertation

The rest of the dissertation is organized as follows.
Chapter 2 installs theoretical connection between the methods of time-fre-

quency analysis and those of MC telecommunication systems, in particular OFDM.
It is shown that OFDM signal modulation is a special case of Windowed Fourier
Transform (WFT) with a rectangular window. The chapter explains why the lo-
calization of the classical OFDM signal basis cannot be enhanced. After the in-
troduction of the main features of the OFDM architecture, the Modified Weyl-
Heisenberg (MWH) basis is introduced. Based on its construction, the devel-
oped technique can be called Orthogonal Frequency-Time Division Multiplexing
(OFTDM): in contrast to OFDM, its basis functions can overlap in the time do-
main. Even in this case, the OFTDM signal can be demodulated due to the or-
thogonality of the basis.

Chapter 3 describes the algebraic problem of the search of optimal matrix
for the MWH basis. Using the Lagrangian principle the problem of approxima-
tion of any symmetrical complex function with discrete N-periodical function
from CN space is solved. In particular, this allows the construction of an N-
periodical approximation of the Gaussian function with ideal time-frequency lo-
calization. This is then used for the synthesis of the orthogonal basis. A generic
algebraic algorithm of orthogonal basis synthesis close in terms of Frobenius
norm to the non-orthogonal Gabor basis constructed from the Gaussian func-
tion is briefly considered. The disadvantage of this algorithm is computational
inefficiency due to its utilization of SVD.

Chapter 4 is devoted to the optimization of several MWH basis parame-
ters. Firstly, it is shown that the norm between any well-localized MWH basis
and constructed orthogonal MWH basis can be additionally reduced by an opti-
mal choice of the phase parameter. For the two types of symmetry of generating
functions the optimal values of α are found exactly. The second parameter that
can also be optimized is the choice of sampling frequency for the original function
with target time-frequency localization. For the Gaussian function, the optimal
value is computed. The chapter concludes with the results of computer simula-
tions, which include the comparison of OFDM and OFTDM and the values of the
Heisenberg parameter.

Chapter 5 presents the proof of the orthogonality criteria of the MWH ba-
sis. These criteria have their own theoretical interest and are also necessary for
the derivation of a more efficient basis construction algorithm. Within the deriva-
tions, it was necessary to introduce an additional family of functions, which is



23

orthogonal in the terms of regular scalar product together with the orthogonality
of the corresponding MWH basis. The connection between the proved orthogo-
nality conditions and Nyquist’s criteria and theorem for per-symbol transmission
model is shown. Their analogs for the OFTDM signals of a more complicated
form are formulated and proved. These results form the necessary basis for the
derivation of a "fast" synthesis algorithm. An anitializing function, which is com-
pletely identical to the initializing function constructed using the algorithm from
Chapter 2, is produced.

Finally Chapter 6 concludes the thesis. Also the applicability of the derived
algorithms in practice and in the simulation process are discussed.

The appendices to the thesis contain Matlab realizations of the algorithms
developed.

1.6 Main Contribution

A complete mathematical framework for the utilization of bases with enhanced
localization in MC telecommunication systems has been developed. The follow-
ing objectives were set and achieved:

– Study and development of synthesis methods for finite-dimensional signal
bases possessing optimal localization in the time and frequency domains.

– Theoretical explanation and optimization of the basis’ parameters and pulse-
shaping function form.

– Development of a practically implementable and computationally efficient
algorithm of signal processing.

– Implementation and verification of derived algorithms for further utiliza-
tion in link-level simulations.

In the dissertation, the choice of the symmetry type of the initializing function
and the phase parameter guaranteeing the optimal time-frequency localization
has been justified for the first time ever. For OFTDM signals, the orthogonality
criteria ensuring the minimization of ISI and ICI, analogical to the Frequency
Division Multiplexing (FDM) Nyquist theorem, has been proved. The advantages
of the OFTDM technology over the classical OFDM scheme are explained. This
allows the utilization of the received results in future wireless network devices
and in computer simulations.

During the work on the subject of the dissertation, the author has produced
several publications. The author of this thesis was the first author of all the pub-
lications presented and has the main responsibility for the results and themain
theoretical derivations. In addition, the author was the main contributor for the
analysis and article writing.

Publication [PI] considers the algebraic procedure of signal basis construc-
tion originated from SVD. Optimal time-frequency localization together with or-
thogonality are achieved because of the closeness of the pulse-shaping function
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to the Gaussian function. The problem of minimization of the Frobenius norm,
with its implied orthogonality condition, can be solved analytically. This gives
the exact values of the basis’ generation function. An important result of the pa-
per is the optimal values of the basis’ phase parameter, which are derived for
the two types of symmetry of the pulse-shaping function. The modeling results
confirm good localization characteristics. However, the synthesis algorithm con-
sidered becomes computationally inefficient for high dimensions of the basis, for
example, when thousands of sub-carriers are used in DVB.

Publication [PII] addresses the above problem. The sequence of proved or-
thogonality conditions allows the formulation of a computationally effective al-
gorithm of orthogonalization based on FFT. Moreover, it is shown how the Gaus-
sian function can be converted to a discrete N-periodical function with the same
localization properties. The tests performed confirm the identity of the initializ-
ing functions obtained as a result of the singular decomposition from [PI] and the
fast algorithm.

In publication [PIV], the practical and commercial benefits of OFTDM-based
systems are discussed. This technology utilizes the mathematical framework of
the developed orthogonal bases with optimal time-frequency localization. The
level of interference between sub-carrier channels in the frequency domain is
minimized. Orthogonality in the time domain, even when consecutive symbols
are overlapping, allows the reduction of the number of utilized GIs or CP. As a
result, higher spectral and energy efficiencies for telecommunication systems to-
gether with a better robustness against complex realistic channel conditions are
achieved.

Publication [PV] presents an additional application of the developed bases
in Ultra Wide Band (UWB) communications. One of the UWB modulation types
is multi-band-based and created by using multi-carrier. With the OFDM type
of modulation, systems can effectively deal with the delay spread or frequency
selectivity of UWB channels. In the media, with strong time-frequency dispersion
especially, well-localized bases ensure the best signal reconstruction. The paper
also presents the optimal sampling frequency which should be selected in the
process of initializing function creation.

Publications [PIII] and [PVI] are devoted to the most important issue in the
practical application of OFTDM: that is, the signal modulation algorithm. To be
competitive with OFDM, the number of its operations required for signal con-
struction should be comparable to that of the FFT algorithms. In [PVI], the whole
algorithm derivation process is presented in detail. Firstly, a finite analogue of
polyphase decomposition is introduced. After that it is used to reduce the modu-
lation algorithm to the combination of several FFTs and multiplications of sparse
matrices. Moreover, the algorithm is also formulated in a matrix form.

In addition to the included articles, the author of this thesis has published a
number of conference and journal articles dealing with modern mobile networks.
Of these articles, the following were published in English:

– D. Petrov, I. Repo and M. Lampinen. Overview of Single Frequency Mul-
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tipoint Transmission Concepts for HSDPA and Performance Evaluation of
Intra-site Multiflow Aggregation Scheme. The 75th IEEE Vehicular Technology
Conference (VTC), 2012.

– D. Petrov, I. Repo and M. Lampinen. Performance of Multiflow Aggrega-
tion Scheme for HSDPA with Joint Intra-Site Scheduling and in Presence
of CQI Imperfections. The 12th International Conference on Next Generation
Wired/Wireless Networking (NEW2AN), 2012.



2 TIME-FREQUENCY ANALYSIS FOR

MULTI-CARRIER SYSTEMS

This chapter overviews several main techniques of time-frequency analysis, espe-
cially WFT [6] while demostrating the solid theoretical connection between these
approaches and OFDM. Furthermore, the methods considered and their limita-
tions pave the way towards mathematical formulation of OFTDM technology.

2.1 Time-Frequency Analysis

Presentation of a function as a linear combination of functions from some prede-
fined set is a popular approach used in different areas of science [6, 53, 54, 55, 56].
In many circumstances, this approach allows simplification of solutions for a
large class of problems. FT is one of the most widely-spread instruments of signal
processing in linear time-invariant systems. Additionally, there is a constantly
growing number of different bases and transforms which can be used in more
complicated scenarios when signals are changing rapidly in time.

A family of functions possessing a specially defined structure is used in
many signal processing technologies. Such a family can be constructed by uti-
lizing one or several prototype functions (window, mother wavelet, impulse,
"atom", etc.)[57, 58]. Then unitary transform groups (shift in time, hift in fre-
quency, spreading, etc.) are applied to them. The group structure is a fundamen-
tal requirement because it allows computationally efficient realizations of these
transforms. The most popular of these groups are the affine group, which re-
sults in wavelet transform, and the Weyl-Heisenberg (WH) group, which results
in Short Time Fourier Transform (STFT) or WFT [59, 60]. For that reason, bases
constructed by uniform shift in time and frequency are called WH bases.

Historically, the classical signal processing theory paid the most attention
to the study of systems and corresponding operators invariant in time (or space).
The action of these operators results in the change of signals’ stationary param-
eters. Theoretically, optimal signal processing is usually associated with the so-
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lution of the eigenvalue problem, i.e. with the search of eigenvalues and eigen-
vectors of a liner operators. Furthermore, sinusoidal waves eiωt represent the
eigenvectors of linear, time-invariant systems L, which can be entirely defined by
its eigenvalues λ(ω):

For ∀ω ∈ R, Lejωt = λ(ω)ejωt.

For the sake of convenience signal s(t) is presented as the combination of eigen-
vectors

{
ejωt}

ω∈R
with coefficients S(ω):

s(t) =
1

2π

∫ ∞

−∞
S(ω)ejωt.

If signal s(t) has finite energy

Es =
∫ ∞

−∞
|s(t)|2dt,

then from the properties of the Fourier integral it follows that amplitude S(ω) of
every sinusoidal wave ejωt is the FT of s(t):

S(ω) =
∫ ∞

−∞
s(t)ejωtdt.

In such a case the impact of the operator L results in the amplification or depletion
of the corresponding components ejωt of the signal s(t) by the value λ(ω):

Ls(t) =
1

2π

∫ ∞

−∞
S(ω)λ(ω)ejωtdω.

Thus until we are working with time-invariant operators, for example with the
problems of stationary signal processing, FT remains the most simple and conve-
nient tool. The long predominance of FT in the communication theory, which has
left aside other approaches in the area of signal processing, is most probably due
to this.

However, the world of short-time, transient processes encompasses more
than just the stationary signals. FT becomes a very complicated tool for practi-
cal applications when phenomena is localized in time or space. Indeed, Fourier
coefficients, calculated as the correlation of the signal with sinusoidal waves ejωt,
which are non-zero on the whole real axis R, are determined by the values of s(t)
for all t ∈ R. Thus S(ω) contains all information about the signal changing in
time. It makes it practically very difficult to get local characteristics of s(t) from
S(ω). Nevertheless this goal can be achieved if the signal is decomposed in wave
components, which are well localized in the time and in frequency domains.

In 1946, the physicist Dennis Gabor [3] working on the problems of quan-
tum mechanics introduced, for the first time, elementary time-frequency "atoms"
as functions with minimal dispersion on the time-frequency plane. To get time-
frequency information about the signals, he proposed to decompose them over
these elementary "atoms".
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Gabor’s "atoms" are constructed by translation in time and frequency of the
symmetrical function g(t) = g(−t):

gμ,ξ(t) � g(t − μ)ejξt.

The energy of the functions gμ,ξ(t) is concentrated in the neighborhood of μ

on interval σt, which is the standard deviation of |g(t)|2.
It can be easily seen that FT G(ω) of the function g(t) is shifted for ξ in the

frequency domain:
Gμ,ξ(t) = G(ω)ejt(ω−ξ).

Thus the energy of gμ,ξ(t) in the frequency domain is concentrated in the interval
σω around ξ.

WFT introduced by Gabor in practice defines the degree of correlation of
the signal s(t) with every "atom" gμ,ξ(t):

Ws(μ, ξ) =
∫ ∞

−∞
s(t)g∗μ,ξ(t)dt =

∫ ∞

−∞
s(t)g(t − μ)e−jξtdt. (2.1)

This expression presents a Fourier integral, which is localized around u, with the
help of the window g(t − u). Using the Parseval’s theorem [61] the integral from
2.1 can be rewritten in the frequency domain:

Ws(μ, ξ) =
1

2π

∫ ∞

−∞
S(ω)G∗

μ,ξ(ω)dω.

Therefore the transform Ws(μ, ξ) depends only on s(t) and S(ω) in the area of
the time-frequency plane, where the energies of gμ,ξ and Gμ,ξ are concentrated.
Gabor himself interpreted this fact as "quanta of information" included in the
square σt × σω of the time-frequency plane.

In general case, one can consider the family of time-frequency "atoms" {φγ}γ∈Γ,
where γ is a multi-index. Assume that φγ ∈ L2(R) and ‖φγ‖ = 1, where L2(R) is
a Hilbert space of square integrable functions with the inner product:

〈 f , g〉 =
∫ ∞

−∞
f (t)g∗(t)dt.

The corresponding linear time-frequency transform of the function f (t) ∈ L2(R)
can be introduced in the following way:

T f (γ) =
∫ ∞

−∞
f (t)φ∗

γ(t)dt = 〈 f , φγ〉.

Using again Parseval’s theorem, one finds that

T f (γ) =
1

2π

∫ ∞

−∞
F(ω)Φ∗

γ(ω)dω.

From the last two formulas, it follows that the values T f (γ) = 〈 f , φγ〉 character-
ize the function f (t) and its FT F(ω) in some area of the time-frequency plane
defined by the localization of "atoms" φγ.
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Notice, that the "atoms" of WFT correspond to the case, when

φγ(t) = gμ,ξ(t) = g(t − μ)ejξt. (2.2)

Another important example is that of wavelet "atoms", which are constructed
by the scaling and translation of the mother wavelet ψ(t):

φγ(t) = ψs,u(t) �
1√

s
ψ

(
t − u

s

)
. (2.3)

Wavelets 2.3 and window functions 2.2 have the energy localized in time,
whereas their FTs are also localised in the limited frequency band. When the pa-
rameters (μ, ξ) are changed along the whole real axis R, "atoms" gμ,ξ(t) cover the
whole time-frequency plane. Every function s(t) from L2(R) can be reconstructed
from the known WFT Ws(μ, ξ):

s(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ws(μ, ξ)g(t − u)ejξtdμdξ,

if the energy is conserved:∫ ∞

−∞
|s(t)|2dt =

∫ ∞

−∞

∫ ∞

−∞
|Ws(μ, ξ)|dμdξ.

It is necessary to notice that because of the redundancy of this transform not every
function from L2(R2) will be WFT for some function from L2(R).

In practice, especially in digital signal processing, it is a usual situation
when the values of the function s(t) ∈ are known only in a number of samples
received as a result of discretization with period T. Moreover, signals usually
have a finite length. For that reason, we index the components of the vector s by
JN � {0, 1, . . . , N − 1} and additionally use the periodization over the modulo N,
which gives the finite-dimensional space CN [62, 63]. The elements of this space
are discrete finite signals

s = s[n] = {s(0), s(1), . . . , s(N − 1)}T,

where sT denotes the transpose of vector s. To emphasize the periodical nature
of the space (s[n + N] = s[N]) we will use the notation

s[(n + k)N ] � s[(n + k) mod N]

when it will be needed in the further text.
The inner (or scalar, or dot) product in CN can be introduced in the follow-

ing way:

〈 f , g〉 =
N−1

∑
n=0

f [n]g∗[n], (2.4)

where f , g ∈ CN. The norm in CN is induced by this scalar product:

‖s[n]‖ �
√
〈s, s〉.
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The DFT F : CN → CN plays fundamental role in time-frequency analysis.
It is given pointwise by

F s[p] � S[p] =
N−1

∑
n=0

s[n]e
−2πjnp

N , p ∈ JN. (2.5)

WFT or STFT [64, 6] in this case can be constructed using discrete "atoms"

gm,l [n] � g[(n − m)N ]e
j2πln

N , (2.6)

where ‖g[n]‖ = 1. The DFT of the functions from this WH family will look like

Gm,l[p] = G[(p − l)N ]
−j2π(p − l)m

N
,

, where G[n] is the DFT (2.5) of the initialization function g[n]. Thus the discrete
WFT of the signal s[n] is defined as

Ws[m, l] � 〈s, gm,l〉 =
N−1

∑
n=0

s[n]g[(n − m)N ]e
−j2πln

N . (2.7)

Signal reconstruction can be made as follows:

s[n] =
1
N

N−1

∑
m=0

N−1

∑
l=0

Ws[m, l]g[(n − l)N ]e
j2πln

N , (2.8)

if the energy is conserved:

N−1

∑
n=0

|s[n]|2 =
1
N

N−1

∑
l=0

N−1

∑
m=0

|Ws[m, l]|2.

It is necessary to notice, that the transform Ws[m, l] is the N2 image of the one-
dimensional signal s[n] and for that reason it is redundant. The answer to the
question of the existence of an inverse transform is given in the frame theory
[65].

At this point, it is important to mention that the family of functions de-
scribed by (2.6) and created by the discrete translations in time and frequency of
g[n] can be regarded by construction as the classical WH basis. Its applications in
the telecommunication theory will be discussed in the next section.

2.2 Orthogonal Frequency Division Multiplexing

MC modulation was used for the first time in the 1950’s [66]. At that time, it
did not get popularity because of its complexity for analog devices. In 1966, R.
Chang patented the OFDM structure and published the concept of orthogonal
signals utilization for telecommunication systems [67]. Several year later, in 1971,
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S. B. Weinstein and P. M. Ebert overcame the main problem in the application and
published their pioneering work, where they describe the multichannel systems
with DFT /IDFT [68]. At the end of the 80’s, the work on the first commercial
OFDM systems, Digital Audio Broadcasting (DAB) [69], was underway. Later
on, the principles of multichannel transmission formed the basis for many main
industrial standards.

OFDM is a particular case of information transmission technology with FDM,
also called MC modulation. In FDM systems, a high-bit-rate stream is divided
into a number of streams with lower bit rate, which are then transmitted over
parallel frequency channels (sub-carriers). Assuming M is the number of such
sub-carriers, then the bit rate on each of them decreases as a function of M. If
the value of M is big enough, each sub-carrier occupies the bandwidth less than
the coherence bandwidth of the channel and uniform attenuation is observed.
For that reason, at the receiver a simple equalization scheme can be used, which
compensates the attenuation and phase shifts caused by a non-ideal channel.

Currently, OFDM technology is widely used in many wired and wireless
communication standards, including Very high rate Digital Subscriber Line (VDSL),
Power Digital Subscriber Line (PDSL), DAB, Wireless Local Area Network (WLAN)
(IEEE 802.11 family of standards) [70], WiMAX (IEEE 802.16 family) [71], DVB
[72]. Moreover, many standards which are still under development, among them
LTE [73], Digital Video Broadcasting, Second Generation Terrestrial (DVB-T2)[21]
are also based on OFDM.

2.2.1 Mathematical Model

In this subsection, the mathematical model describing OFDM signal and its pro-
cessing will be considered. The conceptual scheme of OFDM transmitter and
receiver is presented on the Figure 1.

Usually the transmitter includes a number of blocks, like coding, interleav-
ing, Serial/Parallel transformer (S/P), etc., but for this study it is enough to con-
centrate on OFDM modulation.

At the input of the transmitter comes the binary information flow with bit
rate Rb = 1

Tb
. If the symbol period of the OFDM system equals T, then at the exit

of S/P in the q-th symbol period we will get vector of B = RbT bits:

dq = {d0,q, d1,q, . . . , dB−1,q}T,

where si,q = d(i + qB) is the i-th bit transmitted in the q-th symbol period.
The structure and properties of the OFDM signal are determined by the cor-

responding finite-dimensional WH basis. The signal is constructed as a linear
combination of basis’ functions with the coefficients, which contain transmitted
information. These coefficients can be real or complex. That is determined by the
selected signal constellation (for example, QAM or PSK). As a result of modula-
tion, bit vector dq is identically associated with the vector of information symbols
of length M:

aq = {a0,q, a1,q, . . . aM−1,q}T.
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FIGURE 1 Structural scheme of OFDM-base communication.

Thus am,q are used as the coefficients (modulating symbols) in the linear combi-
nation of sub-carriers gm,q(t). The signal transmitted in the q-th symbol period
[qT, (q + 1)T] is constructed as follows:

sq(t) =
M−1

∑
m=0

am,qgm,q(t).

Furthermore, the OFDM signal transmitted in consecutive periods can be written
as

s(t) =
∞

∑
q=−∞

M−1

∑
m=0

am,qgm,q(t).

Every information symbol am,q is transmitted by sub-carrier m in symbol interval
q.

Therefore every function gm,q(t) represents the element of synthesis basis
with indexes q inZ, m ∈ JM. It is received with the help of time-frequency trans-
form of function g(t):

gm,q(t) � ej2πFmtg(t − qT), (2.9)

where F is the distance between subcarriers in the frequency domain (frequency
step). For the reason which will be shown a bit later, it is set equal to 1

MT . Thus
the basis of functions gm,q(t) is the sequence of impulses, located in time intervals
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of length T and shifted in frequency for the bands divisible by F. The density of
the time-frequency lattice of such OFDM system equals 1

TF .
In classical OFDM systems, prototype function is selected as a rectangular

impulse

g(t) =

⎧⎨
⎩

1√
T

for 0 ≤ t ≤ T

0 for all other t.
(2.10)

The scalar product of any two functions of the signal basis with g(t) from
(2.10) equals

〈gq,m, gq′,m′ 〉 =
∫ ∞

−∞
gq,m(t)g∗q′,m′(t)dt =

∫ ∞

−∞
ej2π(m−m′)Ftg∗(t − qT)g(t − q′T)dt =

=
1
T

∫ (q+1)T

qT
ej2π(m−m′)Ftdt =

ej2π(m−m′)T) − 1
j2π(m − m′)T

.

Only if TF = 1
〈gq,m, gq′,m′ 〉 = δm,m′δq,q′ , (2.11)

where δm,m′ is the Kronecker symbol, it follows that the functions gq,m and gq′,m′
are orthogonal. This explains the density of the time-frequency lattice mentioned
above.

The OFDM signal r(t) at the receiver will look like

r(t) = h ∗ s(t) + n(t) =
+∞

∑
q=−∞

M

∑
m=0

hm,qgm,q(t) + n(t),

where h is the channel impulse response (hm,q are the characteristic of every sub-
channel on every sub-carrier, varying in time), n(t) - additive nose, which is usu-
ally modeled as Additive White Gaussian Noise (AWGN), ∗ - symbolizes the
operation of convolution.

At the receiver, the signal r(t) passes through M parallel correlator demod-
ulators from the analyszing basis. This basis is identical to the synthesis basis
(2.9), however it is not an obligatory requirement. At the l-th exit in time interval
qT ≤ t ≤ (q + 1)T, it will be the value

ãq(l) = 〈gl,q, r〉 =
+∞

∑
k=−∞

M−1

∑
m=0

hm,kam,k〈gm,n, gm,k〉+ {gl,q, n} =

=
+∞

∑
k=−∞

M−1

∑
m=0

hm,kam,kδl,mδq,k + nq(l) =
M−1

∑
m=0

hm,kam,kδl,q + nq(l) = (2.12)

= hl,qal,q + nq(l).

In the detector, this signal is multiplied by the channel coefficients 1
hl,n

. Thus
transmitted symbols are recovered after the demodulation with the presence of
noise, which can be filtered from the signal.
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The spectral efficiency of the OFDM system is

η =
β

TF
=

log2 N
TF

= log2N[bit/s/Hz], (2.13)

where β = log2N is the amount of bits per QAM symbol.

2.2.2 Spectrum of OFDM Signal
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FIGURE 2 PSD of OFDM signal.
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Let the bits dq,i, i ∈ JM, q ∈ Z be independent equally distributed random
variables, thus:

– Complex modulation symbols aq,i from the same q-th OFDM symbol are
equally distributed random variables;
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FIGURE 4 Example of the ICI in OFDM signal.

– modulation symbols from the different OFDM symbols are also equally dis-
tributed random variables.

Assuming additionally that symbols aq,i has zero mean and dispersion E[|aq,i|2] =
σ2

i , it can be shown [74] that Power Spectral Density (PSD) of the OFDM signal is

Ps( f ) =
M−1

∑
i=0

(
σi sinc

((
f − i

T

)
T
))2

.

Therefore it is a combination of sinc functions in the frequency domain. The total
bandwidth occupied by the signal is

WOFDM =
2
T
+

M − 1
T

≈ M
T

.

Figure 2 shows the PSD of OFDM signal received from Matlab simulations.
Several OFDM frames have been used to construct it. Figure 3 demonstrates that
OFDM sub-carriers have an overlapping spectrum, which is in accordance with
the idea of frequency multiplexing. However, the sub-carriers or corresponding
sub-channel filters are not spectrally well isolated. They consist of a main lobe
overlapping with immediately adjacent sub-channels and high side lobes that ex-
tend over a wide frequency band. The first side lobe of a sub-channel is only 13
dB below the main lobe. These side lobes interfere with the main lobes across the
entire band and this can lead to an extensive ICI problem in case of fast fading
or carrier frequency offsets. Also, the system performance may degrade signifi-
cantly in the presence of narrowband interference. The energy of a narrowband
interference spreads into many adjacent sub-channels and this cannot be avoided
by simply switching-off the sub-channel in which the interference lies. Figure 4
shows the effect of strong frequency fading on the sub-carriers.



36

2.2.3 Discrete realization

In practice, OFDM is used in digital communication systems where a discrete
realization of the approach considered above is utilized. It was shown in the
previous subsection that the signal is band-limited and thus can be made discrete
with sampling period Ts = 1

WOFDM
= T

M (corresponding sampling frequency 1
Ts

)
in each time interval qT ≤ t ≤ (q + 1)T:

sq[k] � s(qT + kTs) =
M−1

∑
m=0

am,nej2πmFkTs =
M−1

∑
m=0

am,nej2π mk
M , (2.14)

where k ∈ JM, q ∈ Z.
It is easy to notice that discrete signal sq[k] is in fact the IDFT of the modu-

lating symbols am,n within one symbol period. Thus, the OFDM modulator can
be changed with the block, which makes IFFT.

Analogically, on the receiver side the discretization of the signal r(t) is made
with frequency 1

Ts
. From (2.9) it follows that

ãq(l) = 〈gl,q, r〉 =
∫ (q+1)T

qT
g∗q,l(t)r(t)dt �

�
M−1

∑
m=0

r(qT + mTs)e−j2π ml
2 =

M−1

∑
m=0

rq[m]e−j2π ml
M . (2.15)

Symbols ãq(l), q ∈ Z, l = 0, 1, . . . , M − 1 also overcome the DFT of discrete
signal rq[m], m = 0, 1, . . . , M − 1.

Let’s introduce notation sq = {sq[0], sq[1], . . . , sq[M − 1]}T,
aq = {a0,q, a1,q, . . . , aM−1,q}T, rq = {rq[0], rq[1], . . . , rq[M − 1]}T. Using these nota-
tions, the modulation and demodulation procedures can be rewritten

sq = IDFT(aq); ãq = DFT(rq).

This shows that for modulation and demodulation in OFDM systems the
algorithms of FFT can be used and makes this scheme of modulation attractive
when high data rates are needed.

Moreover, it can be easily noticed that formula (2.15) is in fact a variant of
the inverse WFT (2.8) in the case of the rectangular window form (2.10). The
modulation of the signal in(2.15) is the analogue of (2.7).

2.2.4 Cyclic Prefix

In high-bit-rate wireless distributed systems, the channel possesses time-frequency
dispersion. The signal comes to the receiver by several paths after multiple reflec-
tions from unstationary inhomogeneities of the media (city buildings, moving ob-
jects, ionosphere layers, etc.). In addition, such effect as amplitude-phase fading,
Doppler shift and spreading are observed. These phenomena result in ICI and ISI
which can considerably worsen the receiving characteristics. ISI appears mainly



37

as a result of multipath propagation, when copies of the same OFDM propagated
by different paths are overlapping in the receiver. This results in the decrease of
the system performance because of the higher number of errors. In practice, a
quite simple but effective approach is used to cope with this problem. GI or CP
are added to the initializing function g(t). Its length Tc should be longer than
the dispersion time of the channel Td. In this case, ISI will be removed almost
completely.

After the addition of CP, the forming function of the basis will be

p(t) =

⎧⎨
⎩

1√
T0

for −Tg ≤ t < T

0 for all other t,

where T0 = Tg + T is the length of the OFDM frame. According to that, the
synthesis basis will look like

pm,n = ej2πmFt p(t − qT0).
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FIGURE 5 Amplitude of the OFDM basis function in time domain after propagation
through SUI channel.

On the receiver side, the analyzing basis stays without changes, but with
time step T0 and interval of integration [qT0; qT0 + T]. The orthogonality condi-
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tion (2.11) in this case will have the form

〈gm,q, pm′,q′ 〉 =
∫ ∞

−∞
ej2π(m′−m)Ftg∗(t − qT0)p(t − q′T0)dt =

=
1
T

∫ qT0+T

qT0

ej2π(m′−m)Ft p(t − q′T0)dt =

=

⎧⎪⎪⎨
⎪⎪⎩

√
T
T0

, for m = m′ and q = q′

0 , for all other m and q.

.

Setting the length of the GI Tg = τTs, τ ∈ N and sampling p(t) with previ-
ously used frequency 1

Ts
inside the interval [qT0 − Tg; qT0 + T0] we get

s̃q[k] � s(qT0 + kTs) =
M−1

∑
m=0

am,qej2π mk
N ,

where k = −τ,−τ + 1, . . . , M − 1, q ∈ Z.
This expression can be rewritten in a vector from

s̃q =
[
sq[−τ], sq[−τ + 1], . . . , sq[−1], sq[0], . . . , sq[N − 1]

]T
=

=

⎡
⎢⎢⎣sq[N − τ], sq[N − τ + 1], . . . , sq[N − 1]︸ ︷︷ ︸

last τ elements of sq

, sq[0], . . . , sq[N − 1]︸ ︷︷ ︸
sq

⎤
⎥⎥⎦

T

,

where the last equality follows from the periodicity of DFT and the first τ ele-
ments are referenced to the CP. Therefore, the addition of GI to the g(t) is equiv-
alent to the addition of CP to the OFDM symbol after modulation.

Figure 5 demonstrates the effect of multipath propagation on the OFDM
symbol. The Stanford University Interim (SUI) channel model was used to pro-
duce this result [75]. On the receiver side the first τ elements, which contain ISI,
are simply removed.

Because of the utilization of the CP, the spectral efficiency of the system
(2.13) reduces

ηCP =
β

TF
=

log2 M
(T + Tg)F

=

(
1 − Tg

T0

)
log2 M[bit/s/Hz]

in Tg
T0

times. In practice, the size of the CP Tg
T0

≤ 1
4 and thus the loss of spectral

efficiency is up to 25%.
After the analysis of the structure of OFDM signals presented in the section

above, it is logical to deal with the problems of localization enhancement of signal
basis and of the elimination of the CP. Some of the limitations to this will be
discussed in the next section.
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2.3 Theoretical localization Constraints

Is it possible to construct such a function f , which is well localized in the time
domain so that the energy of its FT F would be concentrated in the limited fre-
quency interval? For example, Dirac impulse δ(t − u) has the support concen-
trated in only one point t = u, but its FT e−juω has energy equally distributed
over all frequencies. It is well known that |F(ω)| decays fast on high frequencies
only when f changes periodically in time. In other words, the energy of f should
be distributed in a quite wide area.

For instance, it is possible to reduce the spread of the signal f in the time
domain using the scaling coefficient m < 1 without the change in its energy:

fm(t) =
1√
m

f
(

t
m

)
, ‖ fm‖2 = ‖ f ‖2.

However, the FT Fm(ω) =
√

mF(mω) will spread in 1
m times, thus reducing the

localization in the frequency domain. Therefore, it is necessary to keep the bal-
ance between time and frequency localization.

The concentration of energy is regulated by the Heisenberg’s uncertainty
principle [76]. This principle has an important interpretation in quantum me-
chanics, similar to that of uncertainty in the position of the free particle[77]. The
state of one-dimensional particle is described by wave function f ∈ L2(R). The
probability density function that the particle is in point t has the form 1

‖ f ‖2 | f (t)|2.
The probability density function that the impulse of the particle equals ω is

1
2π‖ f ‖2 |F(ω)|2. The averaged position of the particle is

u =
1

‖ f ‖2

∫ ∞

−∞
t| f (t)|2dt

and the averaged value of the momentum is

ξ =
1

2π‖ f ‖2

∫ ∞

−∞
ω|F(ω)|2dω. (2.16)

Dispersion around these average value is correspondingly

σ2
t =

1
‖ f ‖2

∫ ∞

−∞
(t − u)2| f (t)|2dt,

σ2
ω =

1
2π‖ f ‖2

∫ ∞

−∞
(ω − ξ)2|F(ω)|dω.

The larger σt is, the bigger the uncertainty in the particle’s position. Analogically,
the larger σω is, the higher the uncertainty in its momentum.

Theorem 2.1 (Heisenberg’s uncertainty principle). Time and frequency dispersion of
function f ∈ L2(R) meets the following inequality

σ2
t σ2

ω ≥ 1
4

. (2.17)
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FIGURE 6 Heisenberg’s rectangle on time-frequency plane.

In particular, this inequality becomes equality if and only if ∃(u, ξ, a, b) ∈ R2 × C2 so
that

f (t) = aejξte−b(t−u)2
.

In quantum mechanics, it means that it is impossible to simultaneously re-
duce the uncertainty in the position of the particle and in its impulse.

In signal processing, this principle means that it is impossible to improve
the localization in the time domain without the loss in the frequency localization
of the function, and vice versa (see Figure 6). Moreover, modulated Gaussian
functions have minimal joint time-frequency dispersion because they are contin-
uous functions with asymptotically decaying "tails". Regardless the limitation
introduced by the Heisenberg uncertainty function, there is still a potential possi-
bility to create such a function with compact support simultaneously in time and
frequency. From the presented theorem it follows that it is not possible:

Theorem 2.2. If f �= 0 has compact support, then F(ω) cannot be equal to zero on any
closed interval. Analogically, if F(ω) has compact support than f (t) cannot be equal to
zero on any closed interval.

The frame theory continues and develops the theoretical analysis of redun-
dant linear signal presentations and their properties such as completeness and
stability [65]. Initially, this theory was proposed by R. J. Duffin and A.C. Schaeffer
upon the construction of band-limited signals from the values of non-periodical
discrete functions [78]. After that, these authors tried to define some generic con-
ditions according to which it would be possible to reconstruct element f from the
Hilbert space H if its scalar products with the family of elements {φm}m∈Γ are
known. The set of indexes Γ might be either finite or infinite. In fact, the fam-
ily of functions {φm}m∈Γ, which describes any signal through the scalar products
〈 f , φm〉, can be considered a frame, or more exactly:
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Definition 2.1 (Frame). The set {φm}m∈Γ is the frame in H, if there are such con-
stants A > 0 and B > 0 that for ∀ f ∈ H

A‖ f ‖2 ≤ ∑
m∈Γ

|〈 f , φm〉|2 ≤ B‖ f ‖2. (2.18)

Moreover, if A = B, the frame is called tight.

The most important is that equation (2.18) is the necessary and sufficient
condition of the invertibility of the operation that presents f as the set of scalar
products 〈 f , φm〉m∈Γ. This is true even though this presentation is redundant.
When ‖φm‖ = 1 this redundancy is defined by the borders of the frame A and
B. If functions {φm} are linearly independent, then it is possible to prove [6] that
A ≤ 1 ≤ B. Frame is an orthonormal basis if and only if A = B = 1.

Let’s consider again the family of functions {gμn,ξk(t)} received by transla-
tions of function g(t) in time and frequency

gμn,ξk(t) = g(t − μn)ejξkt,

where n, k ∈ Z. In this case, the discrete form of WFT for function s(t) will look
like

{Ws(μn, ξk) = 〈s(t), gμn,ξk(t)〉}.

This presentation of s(t) is complete and stable if the family {gμn,ξk(t)} is frame
in L2(R).

Setting the time-frequency lattice to be uniform, i.e. shifts in time and fre-
quency are constant and equal to μ0 and ξ0, notations

gm,l(t) = g(t − mμ0)ejkξ0t

can be used.
I. Daubechies [5] proved several necessary conditions on g(t), μ0 and ξ0

guaranteeing that {gm,l(t)} is a frame in L2(R):

Theorem 2.3 (Daubechies). The family of Fourier window functions {gm,l(t)} is the
frame only if the condition

2π

μ0ξ0
≥ 1 (2.19)

is fulfilled. Moreover, the borders of the frame A and B should be so that

A ≤ 2π

μ0ξ0
≤ B.

Inequality (2.19) is the measure of the density of window Fourier "atoms" on
the time-frequency plane. Frame {gμn,ξk(t)} becomes the orthonormal basis only
when A = B = 1, i.e. in the case the critical time-frequency lattice μ0ξ0 = 2π. It
is important to notice here that this density corresponds exactly to the one used
in OFDM systems ( 1

TF = 1).
Unfortunately, the Balian-Low theorem [79] says that in the case of criti-

cal time-frequency density g(t) can be either non-continuous or slowly decaying
(slower than linear):
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Theorem 2.4 (Balian-Low). If {gμn,ξk(t)}n,k∈Z is window Fourier frame with μ0ξ0 =

2π, then either
∫ ∞
−∞ t2|g(t)|2dt = ∞ or

∫ ∞
−∞ ω2|G(ω)|2dω = ∞.

For that reason, in practice it is necessary to use oversampled decomposi-
tions with density μ0ξ0 < 2π. For example, when1 ≤ 2π

μ0ξ0
≤ 2, only neighboring

windows are overlapping. This limitation became a considerable obstacle in the
development of WFT with good time-frequency localization and WH bases.

2.4 Modified WH Basis

As it was shown in the previous section, it is impossible to construct an orthog-
onal WH basis with good frequency localization, on one hand, and with a dense
time-frequency lattice, on the other. However such bases can be synthesized with
the extension of the class of considered bases:

– Let’s pass from the Hilbert space with regular dot product to the space with
so-called real scalar product;

– Instead of one initializing function, a family of initializing functions can be
utulized.

Definition 2.2. The family of function B[R] � {ΨR
k,l(t), ΨI

k,l(t)} which satisfies
the assumptions mentioned above where functions

ΨR
k,l(t) = g(t − lT)e2πjFk(t− αT

2M ),

ΨI
k,l(t) = −jg(t +

T
2
− lT)e2πjFk(t− αT

2M ),

for t ∈ R, k ∈ JM and l ∈ Z are normed and orthogonal

〈ΨR
k,l, ΨR

k′,l′ 〉R = δk,k′δl,l′ , 〈ΨI
k,l, ΨI

k′,l′ 〉R = δk,k′δl,l′ , 〈ΨR
k,l, ΨI

k′,l′ 〉R = 0, (2.20)

in terms of real scalar product (δl,l′ is Kronecker’s symbol)

〈x(t), y(t)〉R = �
[∫ ∞

−∞
x(t)y∗(t)dt

]

will be called orthogonal MWH basis.

Functions ΨR
k,l and ΨI

k,l result from uniform shifts in time and frequency of the

tow families of functions {g(t)e−2πjFk αT
2M }k∈JL and {g(t + T

2 )e
−2πjFk αT

2M }k∈JL cor-
respondingly. Physically the parameters of the basis can be interpreted in the
following way:

– M > 2 is the number of sub-carriers;
– F = 1

T inter-carrier distance;
– T - symbol period;
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– α ∈ R - phase parameter.

Upon that, the decomposition of a complex function or signal over the basis B[R]
can be written like

s(t) =
M−1

∑
k=0

[
∞

∑
l=−∞

cR
k,lΨ

R
k,l(t)−

∞

∑
l=−∞

cI
k,lΨ

I
k,l(t)

]
, (2.21)

where cR
k,l = 〈s(t), ΨR

k,l(t)〉 and cI
k,l = 〈s(t), ΨI

k,l(t)〉 are real-valued decomposition
coefficients. One of the first proposals for this construction can be found in [80].

Algorithm (2.21) can be used for the modulation of the signal, where cR
k,l =

�(ak,l) and cI
k,l = �(ak,l) are the real and imaginary parts of complex QAM infor-

mation symbols ak,l.
As it was discussed earlier, in digital signal processing we deal with discrete

signals of finite length. Thus, a discrete realization of the modified WH basis
should be introduced, i.e. it is necessary to pass from the space L(R) to the space
CN with introduced the real scalar product

〈x[n], y[n]〉R = �{
N−1

∑
n=0

x[n]y∗[n]}, (2.22)

where x[n], y[n] ∈ CN.
If the forming window function g(t) has the bandwidth F = 1

T then with
the account of M shifts in the frequency domain the signal’s bandwidth will be
W = M

T . Assuming M to be even, the signal (2.21) can be easily sampled on the
finite interval [0, NT] with the frequency fs = W. The discrete signal and the
corresponding modified WH bases will now have the following form:

s[n] =
M−1

∑
k=0

(
cR

k,lΨ
R
k,l[n]− cI

k,lΨ
I
k,l[n]

)
, (2.23)

ΨR
k,l [n] = g[(n − lM)N ]ej 2π

M k(n− α
2 ), (2.24)

ΨI
k,l[n] = −jg[(n +

M
2

− lM)N ]ej 2π
M k(n− α

2 ), (2.25)

B[JN ] � {ΨR
k,l[n], ΨI

k,l[n]}, (2.26)

where s[n] = s( n
fs
) = s(nT

M ) and N = ML, L - is the number of shifts in the time
domain.

Thus the system of basis’ functions B[JN ] is the discrete analogue of system
B[R] and orthogonal in terms of real scalar product (2.22).

In the following text bases (2.26) will be called MWH bases. The correspond-
ing signal processing technology will be called OFTDM.

2.5 Conclusions of OFDM Time-Frequency Analysis

From the analysis presented above, several important conclusions can be made.
First of all, WH bases and WFT are powerful and useful tools in time-frequency
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analysis. OFDM technology is based on them and uses a rectangular initializing
function. This allows the utilization of efficient FFT algorithms for modulation
and demodulation. The addition of CP solves the problem with ISI but reduces
the efficiency of the OFDM systems.

With the introduction of MWH bases, it is possible to overcome the limita-
tion of the Balian-Low theorem and to come closer to the fundamental limit in-
troduced by the Heisenberg uncertainty relation. The OFTDM technology, which
rises from the MWH bases, posseses better signal localization, in particular lower
out-of-band emission. Thus the system becomes more robust in complicated
channel conditions and more efficient because of the absence of CP and smaller
GIs in the frequency domain.



3 SYNTHESIS OF MWH BASES

As it was mentioned in the previous chapter, the Gaussian function possesses op-
timal time-frequency localization. However, the MWH basis constructed out of
it will not be orthogonal. Thus, the following generic problem can be posed: it
is necessary to find such basis that, firstly, will be orthogonal and, secondly, will
have the initializing function close to some given function. If the last condition is
fulfilled, then it is possible to have an orthogonal basis with required localization
characteristics. This property cannot be achieved with standard orthogonaliza-
tion procedures. For example, the Gram-Schmidt procedure [81] might result in a
considerable change in the shape of the initial function. To avoid this effect, sev-
eral authors [82, 53, 83] have proposed to form the basis with the help of special
digital filters. The disadvantage of this approach is due to the structural limita-
tions of these filters, which create obstacles during their application. Later in this
chapter, a generic algebraic method of basis synthesis free from these limitations
will be overviewed. However, before that it is necessary to know how to create
discrete initial function which afterwards can be orthogonalized.

3.1 CN Approximation of Symmetrical Continuous Function

For example, the Gaussian function discussed above is defined and continuous
on the whole real axis, thus it is impossible to use it directly as an initializing
function for discrete MWH basis. First of all, it is necessary to solve the problem
of function search from CN that will approximate a given continuous function. In
this section, this problem will be considered in the most general case, when the
only applied constraint is the function’s symmetry, i.e. g0(t) = g0(−t) [84].

After sampling of g0(t) with period Ts, the original property of symmetry
can be kept in two ways:

1. if g0(t) is sampled so that g0[n] = g0(nTs), n ∈ Z and g0[n] =0 [−n];
2. if g0(t) is sampled so that g0[n] = g0((n+ 1

2)Ts), n ∈ Z and g0[n] = g0[−n−
1].
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FIGURE 7 Sampling of symmetrical continuous function.

The first variant corresponds to the case when discrete function g0[n] is symmet-
rical relative to the center of interval [−N; N]. In the second case, g0[n] overcomes
symmetrical relatively to the center of interval [−N; N − 1]. The examples of such
sampling are given in Figure 7 for a real function g0(t). In the case when it is
complex-defined, the same considerations are also true but there may be several
more variants of symmetry, for instance conjugated symmetry: g0[n] = g∗0 [−n]
[13].

In the N-periodical discrete space CN it is possible to introduce symmetry
in the two following ways:

Definition 3.1 ((N − 1)-symmetry). Function g[n] from CN is (N − 1)-symmetrical
if

g[N − 1 − n] = g∗[n], n ∈ JN.
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Definition 3.2 ((N)-symmetry). Function g[n] from CN is (N)-symmetrical if

g[n] = g∗[(−n)N ], n ∈ JN.

Using Lagrange’s method of undetermined coefficients, it is possible to find
the exact expression for the approximating functions from CN. Moreover, in the
case of the symmetry of the given initial function g0[n] the approximating func-
tions will also be symmetrical.

It is necessary to introduce several new notations:

– Discrete interval interval {−N,−N + 1, . . . , N − 1, N} � J−N,N equals to
two periodicity intervals N from CN.

– Let g(N)[n] � g[(n) mod N] = g[(n)N ] be N-periodical function defined
by N values of any complex function g[n] from JN.

Now it is more convenient to formulate the main theorem:

Theorem 3.1. Let g0[n] be any conjugate-symmetrical function (g0[n] = g∗0 [−n]) de-
fined for all n ∈ J−N,N.

Then the best N-periodical approximation g̃(N)
0 ∈ CN for the function g0[n], which

brings the minimum in the following extremal problem:

g̃(N)
0 [n] :

N−1

∑
n=−N

|g0[n]− g(N)[(n)N ]|2 → min
g(N)[n]∈CN

(3.1)

with constraint (conservation of energy or normalization)

N−1

∑
n=−N

|g0[n]|2 =
N−1

∑
n=0

|g(N)[n]|2 (3.2)

has the following form:

g̃(N)
0 [n] =

1√
A

(
g(N)

0 [n] + g(N)
0

∗
[N − n]

)
, n = 1, 2, . . . , N − 1;

g̃(N)
0 [0] =

1√
A
(g0[0] + g∗0 [0]) ,

where normalizing coefficient

A =
∑N−1

n=1 |g(N)
0 [n] + g(N)

0

∗
[N − n]|2 + |g0[0] + g∗0 [N]|2

∑N−1
n=−N |g0[n]|2

. (3.3)

Proof. Let’s define two functionals on the linear space CN:

X
(

g(N) [n]
)
�

N−1

∑
n=−N

∣∣∣g0 [n]− g(N) [n]
∣∣∣2

,

Φ
(

g(N) [n]
)
�

N−1

∑
n=−N

|g0 [n]|2 −
N−1

∑
n=0

∣∣∣g(N) [n]
∣∣∣2

.
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It is not difficult to check that for these functionals Jensen’s inequality [85]

F
(

αg(N)
1 [n] + (1 − α) g(N)

2 [n]
)
≤ αF

(
g(N)

1 [n]
)
+ (1 − α) F

(
g(N)

2 [n]
)

is true and for that reason they are convex.
Therefore, the initial problem (3.1) can be changed with the following prob-

lem of convex programming:

X
(

g(N) [n]
)
→ min, Φ

(
g(N) [n]

)
= 0, g(N) [n] ∈ CN. (3.4)

To solve this problem, the Lagrange’s method of undetermined coefficients
can be used [86]. Firstly, it is necessary to construct the Lagrangian function

L
(

g(N) [n] , ξ0, ξ
)
� ξ0X

(
g(N) [n]

)
+ ξ Φ

(
g(N) [n]

)
. (3.5)

It is obvious that for any given g0 [n] from the hypotheses of the theorem it
is possible to find such function g(N)

0 [n] ∈ CN, that Φ
(

g(N)
0 [n]

)
< 0. Thus the

Slater’s condition [87] is fulfilled and ξ0 = 1.
Function g(N) [n] ∈ CN is N-periodical and can be presented in the form of

Fourier series

g(N) [n] =
1
N

N−1

∑
k=0

λkej 2π
N kn, n ∈ JN. (3.6)

Moreover g(N) [n] is defined uniquely by its Fourier coefficients λk, which are
complex numbers

λk = λR
k + jλI

k, k ∈ JN.

In order to reduce the complexity of formulas, notations

λ �
{

λR
0 , . . . , λR

N−1, λI
0, . . . , λI

N−1

}
will be used.

Next, it is necessary to introduce functions

XR (λ) �
N−1

∑
n=−N

(
�

(
g0 [n]− g(N) [n]

))2
=

=
N−1

∑
n=−N

{
� (g0 [n])− 1

N

N−1

∑
k=0

(
λR

k cos
(

2π

N
kn

)
− λI

k sin
(

2π

N
kn

))}2

,

XI (λ) �
N−1

∑
n=−N

(
�

(
g0 [n]− g(N) [n]

))2
=

=
N−1

∑
n=−N

{
� (g0 [n])− 1

N

N−1

∑
k=0

(
λI

k cos
(

2π

N
kn

)
+ λR

k sin
(

2π

N
kn

))}2

.
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With the account of the presentation (3.6), the problem (3.4) will look like

X (λ) = X
(

g(N) [n]
)
= XR (λ) + XI (λ) → min, Φ (λ) = 0, λ ∈ R2N. (3.7)

Upon that the Lagrangian function (3.5) will be

L (λ, ξ) � X (λ) + ξ Φ (λ) .

In accordance with the Lagrange’s method of undetermined coefficients the
necessary condition of local extremum in problem (3.7) is the equality to zero of
all partial derivatives of the Lagrangian function:

∂L
∂λR

0

∣∣∣∣∣
λR

0 =λ̃R
0

= 0, . . . ,
∂L

∂λR
N−1

∣∣∣∣∣
λR

N−1=λ̃R
N−1

= 0,
∂L
∂λI

0

∣∣∣∣∣
λI

0=λ̃I
0

= 0, . . . , (3.8)

. . . ,
∂L

∂λI
N−1

∣∣∣∣∣
λI

N−1=λ̃I
N−1

= 0,
∂L
∂ξ

∣∣∣∣
ξ=ξ̃

= 0.

Let’s consider, in more detail, the expression of partial derivatives of func-
tional Φ (λ) and components XR(λ) and XI(λ) of functional X(λ):

∂XR

∂λR
p
= 2

N−1

∑
n=−N

{
�

(
g0 [n]− g(N) [n]

) (
− 1

N
cos

(
2π

N
np

))}
,

∂XR

∂λI
p
= 2

N−1

∑
n=−N

{
�

(
g0 [n]− g(N) [n]

) (
1
N

sin
(

2π

N
np

))}
,

∂XI

∂λR
p
= 2

N−1

∑
n=−N

{
�

(
g0 [n]− g(N) [n]

) (
− 1

N
sin

(
2π

N
np

))}
,

∂XI

∂λI
p
= 2

N−1

∑
n=−N

{
�

(
g0 [n]− g(N) [n]

) (
− 1

N
cos

(
2π

N
np

))}
,

∂Φ
∂λR

p
= −ξ

N−1

∑
n=0

{
2�

(
g(N) [n]

) 1
N

cos
(

2π

N
np

)}
−

− ξ
N−1

∑
n=0

{
2�

(
g(N) [n]

) 1
N

sin
(

2π

N
np

)}
,

∂Φ
∂λI

p
= ξ

N−1

∑
n=0

{
2�

(
g(N) [n]

) 1
N

sin
(

2π

N
np

)}
−

− ξ
N−1

∑
n=0

{
2�

(
g(N) [n]

) 1
N

cos
(

2π

N
np

)}

for any p ∈ JN.
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Then the extremum conditions (3.8) for any p ∈ JN can be rewritten like

∂L
∂λR

p

∣∣∣∣∣
λR

p =λR
p

= �
{

N−1

∑
n=−N

(
g0[n]− g̃(N)

0 [n]
)

e−j 2π
N pn+

+ξ
N−1

∑
n=0

g̃(N)
0 [n]e−j 2π

N pn

}
= 0,

∂L
∂λI

p

∣∣∣∣∣
λR

p =λR
p

= �
{

N−1

∑
n=−N

(
g0[n]− g̃(N)

0 [n]
)

e−j 2π
N pn+

+ξ
N−1

∑
n=0

g̃(N)
0 [n]e−j 2π

N pn

}
= 0,

∂L
∂ξ

∣∣∣∣
ξ=ξ̃

=
N−1

∑
n=−N

|g0 [n]|2 −
N−1

∑
N=0

∣∣∣g̃(N)
0 [n]

∣∣∣2
= 0.

From these expressions it directly follows that the extremum conditions are

N−1

∑
n=−N

(
g0 [n]− g̃(N)

0 [n]
)

e−j 2π
N pn+ (3.9)

+ξ
N−1

∑
n=0

g̃(N)
0 [n]e−j 2π

N pn = 0,

N−1

∑
n=−N

|g0 [n]|2 −
N−1

∑
N=0

∣∣∣g̃(N)
0 [n]

∣∣∣2
= 0. (3.10)

for ∀p ∈ JN.
Taking into account that g0

(N) [n] � g0 [n], n ∈ JN and g0 [n] = g0
∗ [−n],

n ∈ J−N,N, one gets that

N−1

∑
n=0

g0 [n]e−j 2π
N pn =

N−1

∑
n=0

g0
(N) [n]e−j 2π

N pn

and

−1

∑
n=−N

g0 [n]ej 2π
N pn =

−1

∑
n=−(N−1)

g0
∗ [−n]ej 2π

N pn + g0 [−N] =

=
−1

∑
n=−(N−1)

g0
(N)∗ [−n]ej 2π

N pn + g0
∗ [N] =

=
N−1

∑
n′=1

g0
(N)∗ [

N − n′]ej 2π
N p(n′) + g0

∗ [N] ,

where n′ = n + N.
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Therefore, from the first condition (3.9) it follows that for ∀p ∈ JN

N−1

∑
n=0

(2 − ξ) g̃(N)
0 [n] e−j 2π

N pn =

=
N−1

∑
n=1

(
g0

(N) [n] + g(N)∗
0 [N − n]

)
e−j 2π

N pn + g0
(N) [0] + g0

∗ [N] .

This conditions means the equality of the Fourier coefficients of two functions,
which in turn should be the same. That is why

g̃(N)
0 [n] =

1
(2 − ξ)

(
g0

(N) [n] + g(N)∗
0 [N − n]

)
, n = 1, 2, ..., (N − 1) , (3.11)

g̃(N)
0 [0] =

1
(2 − ξ)

(
g0

(N) [0] + g0
∗ [N]

)
.

In order to find the Lagrangian coefficient, ξ the second condition (3.10) can
be used:

N−1

∑
n=−N

|g0 [n]|2 − 1

(2 − ξ)2

{
N−1

∑
n=1

∣∣∣(g0
(N) [n] + g(N)∗

0 [N − n]
)∣∣∣2

+

+
∣∣∣g0

(N) [0] + g0
∗ [N]

∣∣∣2
}

= 0,

which is, in fact, a square equation in respect to ξ. Consequently,

ξ = 2 ±
√

A,

where A is defined by (3.3).
Taking into account that in the case, when ξ > 0 functions g̃(N)

0 [0] and
g̃(N) [0] have different signs, ξ = 2 −√

A should be selected.
In accordance with the Kuhn–Tucker theorem, [86] conditions (3.7) are not

only necessary but also sufficient conditions for the function g̃(N)
0 [n] from (3.11)

to be the solution of the posed extremal problem (3.1) with constraint (3.2).

Additionally, in the case when function g0 [n] has a real value in point N, i.e.
g0 [N] = g0

∗ [−N] = g0 [−N], then the constructed function g̃(N)
0 [n] is conjugated

N-symmetrical. Indeed,

g̃(N)∗
0 [−n] =

1√
A

(
g(N)

0 ∗ [−n] + g(N)
0 [N + n]

)
=

=
1√
A

(
g(N)∗

0 [N − n] + g(N)
0 [n]

)
= g̃(N)

0 [n] ,

and

g̃(N)∗
0 [0] =

1√
A
(g0

∗ [0] + g0 [N]) =
1√
A
(g0 [0] + g0

∗ [N]) = g̃(N)
0 [0] .
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FIGURE 8 Examples of N-periodical approximation.

It is also possible to prove the same theorem but in the case when the given
function is sampled so that g0[n] = g∗0 [−n − 1], n ∈ J−N,N � {−N, . . . , N − 1.
Then the optimal N-periodical function will resemble

g̃(N)
0 [n] =

1√
A

(
g0

(N) [n] + g(N)∗
0 [N − 1 − n]

)
, n ∈ JN, (3.12)

where the normalizing coefficient

A =

N−1
∑

n=0

∣∣∣(g0
(N) [n] + g0

(N)∗ [N − 1 − n]
)∣∣∣2

N−1
∑

n=−N
|g0 [n]|2

.

Moreover, if function g0 [n] has a real value in the point N, i.e. g0 [N] =
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g0
∗ [−N] = g0 [−N],then the received function g̃(N)

0 [n] is conjugated N-symmetrical.
Indeed,

g̃(N)∗
0 [n] =

1√
A

(
g(N)∗

0 [n] + g(N)
0 [N − 1 − n]

)
= g̃(N)

0 [N − 1 − n] .

The algorithms of N-periodical approximation for two types of symmetry
were realized in Matlab and can be found in the Appendix.

Figure 8 present the simulation results, when the initial function is Gaussian
and is sampled in two different ways that keep symmetry:

g0[n] = gG[n] = (2σ)
1
4 e−πσn2

,

g′0[n] = g′G[n] = (2σ)
1
4 e−πσ(n+0.5)2

.

Function gG[n] corresponds to the conditions of Theorem 3.1 and is plotted on
Figure 8a together with its N-periodical approximation. Figure 8b shows function
g′G[n] and its approximation defined by (3.12).

3.2 Algebraic Basis Synthesis Algorithm

In the previous section, it was shown how to construct the initial discrete function
from CN out of any given complex symmetrical continuous function. There is no
guarantee that the modified WH basis constructed from it will be orthogonal. For
that reason special orthogonalization algorithm is needed.

For further considerations, it is important to introduce matrix presentation
of the MWH basis. Basis B[JN ] can be rewritten in the form of bloc rectangular
matrix U = [UR, UI] of size N × 2N. Blocs UR and UI are square complex matri-
ces of size N × N constructed from the basis’ functions ΨR

k,l[n] and ΨI
k,l[n] taken

as the columns of length N for all k = 0, 1, . . . , M − 1; l = 0, 1, . . . , L − 1; n ∈ JN.
Thus matrices UR and UI consist from L blocs of M columns and their elements
are

UR[n, lM + k] = ΨR
k,l[n]; UI[n, lM + k] = ΨI

k,l[n].

Instead of the complex matrix U it is also possible to consider a real square
matrix of size 2N × 2N:

UB =

[�(UR) �(UI)
�(UR) �(UI)

]
. (3.13)

Let G be the matrix of some non-orthogonal basis constructed in the same
way as the MWH basis, using some symmetrical function from CN with some
desired localization properties. In particular, if the initial function is Gaussian
then G represents the Gabor basis. The idea is to find the orthogonal MWH basis
with matrix Uopt close to matrix G. The closeness of matrices (and consequently
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of two bases) will be understood in terms of root-mean-square Frobenius norm
of difference between the corresponding basis matrices U1 and U2:

‖ � U‖E = ‖Uopt − G‖E, (3.14)

where ‖A‖E � tr(AA∗).

3.2.1 Difference Norm of Two MWH Bases

It is possible to show that in order to calculate the difference norm (3.14) between
two MWH bases it is enough to consider the norm of difference between their
initializing functions. The following theorem proves that:

Theorem 3.2. Let B1[JN ] and B1[JN ] be modified WH bases constructed from functions
g1[n] and g2[n], n ∈ JN. U1 and U2 are their matrices.

Then the difference norm (3.14) equals

‖� U‖2
E = ‖U1

B − U2
B‖2

E = 2N‖g1[n]− g2[n]‖2 = 2N
N−1

∑
n=0

(g1[n]− g2[n])2. (3.15)

Proof. Firstly, it is necessary to prove that the norm of the complex matrix of
MWH basis U1 and its real matrix

U1
B =

[� {
U1

}
� {

U1
}]

are equal, i.e. ∥∥U1
∥∥2

E =
∥∥U1

B

∥∥2
E . (3.16)

Taking into account that matrix U1 is the block-matrix

‖U1‖2
E = tr

([
U1

R U1
I

] [
U1

R U1
I

]∗)
=

= tr
([

U1
R U1

I

] [
U1

R
∗

U1
I
∗
])

= tr
(

U1
RU1

R
∗
+ U1

I U1
I
∗)

=

= tr
((

�
{

U1
R

}
+ j�

{
U1

R

}) ((
�

{
U1

R

})T − j
(
�

{
U1

R

})T
)
+

+
(
�

{
U1

I

}
+ j�

{
U1

I

}) ((
�

{
U1

I

})T − j
(
�

{
U1

I

})T
))

=

= tr
(
�

{
U1

R

}
�

{(
U1

R

)T
})

+ tr
(
�

{
U1

I

}
�

{(
U1

I

)T
})

+

+ tr
(
�

{
U1

R

}
�

{(
U1

R

)T
})

+ tr
(
�

{
U1

I

}
�

{(
U1

I

)T
})

.

On the other hand

∥∥U1
B

∥∥2
E = tr

([� {
U1

R
} � {

U1
I
}

� {
U1

R
} � {

U1
I
}]

×
[(� {

U1
R
})T (� {

U1
R
})T(� {

U1
I
})T (� {

U1
I
})T

])
,
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which is equivalent to the last expression in the previous formula. That proves
the equality (3.16).

For a new notation ΔU =
[
ΔUR ΔUI

]
� U1 − U2, it can be shown that

‖ΔU‖2
E =

∥∥U1 − U2
∥∥2

E =

= tr
(
� {ΔUR} �

{
(ΔUR)

T
})

+ tr
(
� {ΔUI} �

{
(ΔUI)

T
})

+

+ tr
(
� {ΔUR} �

{
(ΔUR)

T
})

+ tr
(
� {ΔUI} �

{
(ΔUI)

T
})

.

it is enough to consider only the first member of this sum because the derivations
for all the other members will be the same.

The elements of square (N × N) matrix �{ΔUR} are all possible multiplica-
tions of difference in initializing functions Δg [(n − lM)N ] � g1 [(n − lM)N ] −
g2 [(n − lM)N ] and cos

(2π
M k(n − α

2 )
)
. The columns of this matrix are vectors

Δg [n] , n = 0, 1, ..., N − 1, which are multiplied by cosine functions (M columns).
Then these vectors are cyclically shifted for M points and again multiplied by
cosines (next M columns). In this way, we get L blocks with M columns each.

Transposed matrix �
{
(ΔUR)

T
}

has a similar structure, but it consists from
L blocks out of M rows each.

Matrix � {ΔUR} �
{
(ΔUR)

T
}

of size (N × N) has N diagonal elements.
Each of them is equal to the sum of all elements of the matrix � {ΔUR} (or of
matrix �

{
(ΔUR)

T
}

) corresponding to some fixed n and squared:

tr
(
� {ΔUR} �

{
(ΔUR)

T
})

=

=
N−1

∑
n=0

{
L−1

∑
l=0

M−1

∑
k=0

(
Δg2 [(n − lM)N ] cos2

(
2π

M
k(n − α

2
)

))}
.

Analogically,

tr
(
� {ΔUR} �

{
(ΔUR)

T
})

=

=
N−1

∑
n=0

{
L−1

∑
l=0

M−1

∑
k=0

(
Δg2 [(n − lM)N ] sin2

(
2π

M
k(n − α

2
)

))}
,

thus

tr
(
� {ΔUR} �

{
(ΔUR)

T
})

+ tr
(
� {ΔUI} �

{
(ΔUI)

T
})

=

= M
N−1

∑
n=0

L−1

∑
l=0

Δg2 [(n − lM)N ] ,

and

tr
(
� {ΔUR} �

{
(ΔUR)

T
})

+ tr
(
� {ΔUI} �

{
(ΔUI)

T
})

=

= M
N−1

∑
n=0

L−1

∑
l=0

Δg2
[(

n − lM +
M
2

)
N

]
.
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Notice, that functions g1 [n] and g2 [n] are N-periodical. For that reason
function Δg [n] keeps this property. Consequently, the shift of Δg2 [n] on any

integer number of samples in the sum
N−1
∑

n=0
Δg2 [n] will not change it. Thus

N−1

∑
n=0

L−1

∑
l=0

Δg2 [(n − lM)N ] = L
N−1

∑
n=0

Δg2 [n],

N−1

∑
n=0

L−1

∑
l=0

Δg2
[(

n − lM +
M
2

)
N

]
= L

N−1

∑
n=0

Δg2 [n].

From here it directly follows, that

∥∥U1 − U2
∥∥2

E = 2N
N−1

∑
n=0

Δg2 [n].

It means that the theorem is proved.

3.2.2 Main Extremal Problem

Unfortunately, to construct the wanted optimal bases it is not enough just to min-
imize the difference norm between the two bases because the orthogonality prop-
erty is required in practice. Therefore, it is necessary to solve the extremal prob-
lem with an orthogonality constraint:

Problem 3.1 (Main). On the subset U = {U ∈ MN,2N(C) : �(U∗U) = I2N} of
complex rectangular matrix of size N × 2N with the orthogonality condition �(U∗U) =
I2N it is necessary to find optimal matrix Uopt which minimises the difference norm

Uopt : min
U∈U

‖G − U‖2
E, (3.17)

where G ∈ MN,2N is the matrix of initial non-orthogonal basis.

This problem can be solved theoretically with the help of SVD [88]. The real
matrix of optimal basis is calculated from the SVD components of real matrix GB:

UB,opt = SWT,

where GB = VΣWT. Matrices S and S are real, square and orthogonal. They
are composed from the eigenvalues of matrices GBGB

T and GB
TGB correspond-

ingly. Matrix Σ is square diagonal and contains singular values of matrix GB in
a descending order on the main diagonal. The complex matrix Uopt of optimal
MWH basis can be found from upper V1,opt and lower blocks U2,opt of matrix
UB,opt:

Uopt = V1,opt + jV2,opt,

where UB,opt =

[
V1,opt
V2,opt

]
. Moreover the optimal initializing function gopt[n] of the

MWH basis is defined by the first column of matrix Uopt, i.e.

gopt[n] = Uopt[n, 1].
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A computer representation of this algorithm can be found in the Appendix to the
thesis.

The actual value of the minimum in problem (3.17) can also be found exactly
and equals

min
U∈U

‖G − U‖2
E = ‖G − Uopt‖2

E =

= ‖GB − UB,opt‖2
E = 2N

N−1

∑
n=0

Δg2 [n] =
2N

∑
i=1

(σi − 1)2, (3.18)

where Δg[n] is the difference between the given initializing function and found
optimal gopt[n]; σi are the singular values of matrix GB.

3.3 Conclusions of MWH Basis Synthesis

The study conducted in this chapter allows the formulation of several important
conclusions.

It is necessary to have a construction algorithm of the functions from space
CN for given continuous functions. For symmetrical functions, the optimal pre-
sentation has been found in the direct form. However, it is not enough just to
orthogonalize the given function to construct an optimal MWH basis because re-
quired localization properties can be lost. A special extremal problem should be
posed. This problem has an analytical solution. The disadvantage is that the
basis construction algorithm, which has SVD in its core, is not optimal from the
computational point of view and should be modified

Additionally, the MWH basis can be presented in a matrix form. The dis-
tance between any two such bases can be estimated by the distance between its
initializing functions.



4 PARAMETERS OPTIMIZATION

Even though the initializing function gopt[n] found in the previous chapter is the
solution of the optimization problem (3.17), there are several ways to adjust the
parameters of the MWH basis, which define its localization on the time-frequency
plane. Firstly, one could use the phase parameter α of the basis (2.24),(2.25). Sec-
ondly, it is the sampling frequency of the initial function which is used for basis
synthesis. These problems are studied in this chapter.

4.1 Phase Parameter

It is possible to make the optimal orthogonal MWH bases even closer to the ini-
tial non-orthogonal bases with a desired localization, i.e. to reduce additionally
the norm (3.2.2) between matrices G and Uopt. This can be achieved because the
phase parameter α of the basis can be considered as the subject for extra optimiza-
tion. It means that the main extremal problem depends on α as on a parameter:

F(α) = min
UB∈UB

‖GB(α)− UB‖2
E = ‖GB(α)− UB,opt‖2

E.

Thus it is possible to reduce additionally the value of the norm by the optimal
choice of α. To do that, it is necessary to solve a new extremal problem

F(α) → min
α∈R

,

or in the equivalent form

αopt : min
α

(
‖GB − UB,opt‖2

E

)
. (4.1)

Unfortunately, this problem is too complicated for analytical solution, but
the introduction of the following norm can solve this problem:

X(α) = ‖GB(α)GB
T(α)− I‖2

E. (4.2)
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Theorem 4.1. Norm X(α) majorizes the norm F(α), i.e. for all α ∈ R

‖GB(α)− UB,opt‖2
E ≤ ‖GB(α)GB

T(α)− I‖2
E.

Proof. Let’s modify expression (4.2), skipping α in the derivation for the sake of
simplicity∥∥∥GB (α)GB

T (α)− I
∥∥∥2

E
=

∥∥∥GBGB
T − I

∥∥∥2

E
= tr

[(
GBGB

T − I
) (

GBGB
T − I

)T
]
=

= tr
[(

GBGB
T − I

) (
GBGB

T − I
)]

= tr
[
GBGB

TGBGB
T − 2GBGB

T + I
]

.

Taking into account the SVD of matrix GB and the orthogonality of matrices
S and W one tends up with

tr
[
GBGB

T
]
= tr

[
SΣWTWΣST

]
= tr

[
ΣIΣSTS

]
= tr

[
Σ2

]
,

tr
[
GBGB

TGBGB
T
]
= tr

[
SΣWTWΣSTSΣWTWΣST

]
= tr

[
Σ4

]
.

Consequently ∥∥∥GB · GB
T − I

∥∥∥2

E
= tr

[
Σ4 − 2Σ4 + I

]
=

=
2N

∑
i=1

(
(σi (α))

4 − 2(σi (α))
2 + 1

)
=

2N

∑
i=1

(
(σi (α))

2 − 1
)2

.

Now it is possible to consider the difference between the old (3.2.2) and the new
norm (4.2):

‖GB(α)− UB,opt‖2
E −

∥∥∥GB (α)GB
T (α)− I

∥∥∥2

E
=

=
2N

∑
i=1

(
(σi (α))

2 − 1
)2 −

2N

∑
i=1

(σi (α)− 1)2 =

=
2N

∑
i=1

[(
(σi (α))

2 − 1
)2 − (σi (α)− 1)2

]
=

2N

∑
i=1

σi (σi − 1)
(

σ2
i + σi − 2

)
.

For the reason that singular numbers of matrix GB are non-negative (σi ≥ 0)

if σi ∈ [0, 1] : σi ≥ 0, (σi − 1) ≤ 0,
(

σ2
i + σi − 2

)
≤ 0;

if σi ∈ [1,+∞) : σi ≥ 0, (σi − 1) ≥ 0,
(

σ2
i + σi − 2

)
≥ 0.

Therefore,

‖GB(α)− UB,opt‖2
E −

∥∥∥GB (α) · GB
T (α)− I

∥∥∥2

E
≥ 0,

which was to be proved.

Thus, instead of the problem F(α) → minα∈R the problem X(α) → minα∈R

can be considered. It can be solved analytically for symmetrical functions from
CN.
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4.1.1 Phase Parameter Derivation

Theorem 4.1 proved in the previous subsection allows the transform of the prob-
lem (4.1) into the problem

αopt : min
α∈R

(
‖GBGB

T − I‖2
E

)
(4.3)

The solution of this optimization problem can be formulated in the form of
the theorem:

Theorem 4.2. Let function g[n] ∈ CN be (N − 1)-symmetrical and be used as the
initialization function of MWH basis B[JN ]. Then the best localization of the basis upon
the criteria

‖G(α)− Uopt‖2
E → min

α∈R
(min

U∈U
)

is achieved for the following optimal values

αopt =
M
2

− 1 + q
M
2

, q ∈ Z. (4.4)

Proof. For the sake of simplicity and compactness here it will be presented only
the scheme of the proof. Some of the longest derivations will be omitted.

Notice that

‖GBGB
T − I‖2

E = tr
[(

GBGB
T
)2

]
− 2 tr

[
GBGB

T
]
+ 2N.

2N does not depend on α. For that reason the problem 4.3 can be rewritten
like

tr
[(

GBGB
T
)2

]
− 2 tr

[
GBGB

T
]
→ min (4.5)

It overcomes that tr
[
GBGB

T
]

also does not depend on α. Thus, the opti-
mization problem deduces to

tr
[(

B(α)2
)]

→ min, (4.6)

where B � GBGB
T.

It is possible to prove that permutation of any two rows in matrix GB will

not change tr
[(

GBGB
T
)2

]
.

The block structure of matrix GB is given by (3.13). Let’s change it so
that, firstly, the row from block [�(GR)�(GI)] goes, then the row from block
[(�GR) (�GI)], after that next row from [(�GR)�(GI)] and so on. The matrix
received in such a way will be denoted as G̃B. Correspondingly, B̃ = G̃BG̃T

B.
According to the previous statement

tr
[
(G̃BG̃B

T
)
]
= tr

[
B̃

]
= tr

[
(GBGB

T)
]
= tr [B] .



61

Therefore in further derivation matrix B̃ will be used instead of B. At that,
problem (4.6) can be changed with the problem

tr
[(

G̃BG̃T
B

)2
]
= tr

[
B̃2

]
α→ min (4.7)

Let’s decompose matrix B̃ in the following way:

B̃ =
M−1

∑
m=0

Bm =
M−1

∑
m=0

(
Ũ (α)

)m
A

(
ŨT (α)

)m
, (4.8)

where it can be checked directly that matrix A is symmetrical and has size (2N ×
2N). It does not depend on α and has the following structure:

A =
L

∑
l=0

GlG
T
l .

Gl are block matrices of size (2N × 2):

Gl =
[
G

(1)
l G

(2)
l ... G

(N)
l

]T
,

where G
(n)
l are diagonal matrices of size (2 × 2):

G
(n)
l =

[
G

(n)
l,R 0

0 G
(n)
l,I

]
.

Thus

A =

⎡
⎣ A11 ... A1N

... ... ...
AN1 ... ANN

⎤
⎦ ,

where Ak,n =
L−1
∑

l=0
G

(k)
l G

(n)
l are matrices of size (2 × 2), or in more details:

Ak,n =

⎡
⎢⎢⎣

L−1
∑

l=0
G

(k)
l,RG

(n)
l,R 0

0
L−1
∑

l=0
G

(k)
l,I G

(n)
l,I

⎤
⎥⎥⎦ ,

where G
(n+1)
l,R = g [(n − lM)N ], G

(n+1)
l,I = g

[(
n − lM + M

2

)
N

]
and n ∈ JN. Notice,

that matrices Ak,n are symmetrical, i.e. Ak,n = An,k.
Matrix Ũ (α) is block-diagonal of size (2N × 2N):

Ũ (α) =

⎡
⎢⎢⎣

U1 (α) 0 ... 0
0 U2 (α) ... 0
... ... ... ...
0 ... 0 UN (α)

⎤
⎥⎥⎦ ,
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which has matrices of rotation of size (2 × 2) on its diagonal

Un+1 (α) =

[
cos

( 2π
M

(
n − α

2

)) − sin
( 2π

M
(
n − α

2

))
sin

( 2π
M

(
n − α

2

))
cos

(2π
M

(
n − α

2

)) ]
,

Finally, the structure of matrix Bm looks like

Bm =

⎡
⎢⎢⎢⎣
(U1)

mA1,1
(
UT

1
)m

(U1)
mA1,2

(
UT

2
)m ... (U1)

mA1,N
(
UT

N
)m

(U2)
mA2,1

(
UT

1
)m

(U2)
mA2,2

(
UT

2
)m ... (U2)

mA2,N
(
UT

N
)m

... ... ... ...
(UN)

mAN,1
(
UT

1
)m

(UN)
mAN,2

(
UT

2
)m ... (UN)

mAN,N
(
UT

N
)m

⎤
⎥⎥⎥⎦

Using these notations and decomposition (4.8) one gets that

tr
[
B̃2

]
= tr

⎡
⎣(

M−1

∑
m=0

Bm

)2
⎤
⎦ =

M−1

∑
m=0

tr
[
(Bm)

2
]
+

M−1

∑
m1=0

M−1

∑
m2=0,m1 �=m2

tr [(Bm1Bm2)] .

M−1
∑

m=0
tr

(
(Bm)

2
)

does not depend on α. Therefore minimisation problem (4.7)

again can be reduced to

M−1

∑
m1=0

M−1

∑
m2=0 m1 �=m2

tr [Bm1Bm2 ]
α→ min . (4.9)

Thus it is necessary to consider the diagonal elements of matrices [Bm1Bm2 ]:

[Bm1Bm2 ] (n, n) =
N

∑
k=1

(Un)
m1An,k

(
UT

k

)m1
(Uk)

m2Ak,n

(
UT

n

)m2
.

Consequently,

tr [Bm1Bm2 ] =
N

∑
n=1

tr [[Bm1Bm2 ] (n, n)] =

=
N

∑
n=1

N

∑
k=1

tr
[
An,k

(
UT

k

)m1
(Uk)

m2Ak,n

(
UT

n

)m2
(Un)

m1
]
.

Matrices Un are the matrices of rotation and for that reason UT
n = U−1

n , so

tr [Bm1Bm2 ] =
N
∑

n=1

N
∑

k=1
tr

[
An,k(Uk)

m2−m1Ak,n(Un)
m1−m2

]
=

=
N−1
∑

n=0

N−1
∑

k=0
tr

[
An+1,k+1(Uk+1)

m2−m1Ak+1,n+1(Un+1)
m1−m2

]
.

It can be shown that

tr
[
An+1,k+1(Uk+1)

m2−m1Ak+1,n+1(Un+1)
m1−m2

]
=

= Γ2
k,n cos

(
Δm

2π

M
(k + n − α)

)
+ X2

k,n cos
(

Δm
2π

M
(k − n)

)
,
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where

Γ2
k,n � 1

2

((
L−1

∑
l=0

G
(k+1)
l,R G

(n+1)
l,R

)
−

(
L−1

∑
l=0

G
(k+1)
l,I G

(n+1)
l,I

))2

,

X2
k,n � 1

2

((
L−1

∑
l=0

G
(k+1)
l,R G

(n+1)
l,R

)
+

(
L−1

∑
l=0

G
(k+1)
l,I G

(n+1)
l,I

))2

and Δm � (m1 − m2).
The summand X2

k,n cos
(
Δm 2π

M (k − n)
)

does not depend on α and can be
excluded from the minimisation problem (4.9), which becomes

f (α) =
N−1

∑
n=0

N−1

∑
k=0

{
Γ2

n,k

[
M−1

∑
m1=0

M−1

∑
m2=0;m1 �=m2

cos
[
(Δm)

2π

M
(k + n − α)

]]}
α→ min .

The necessary condition of minimum for function f (α) is the equality of its
derivative f ′ (α) to zero. This condition is fulfilled, if

M−1

∑
m1=0

M−1

∑
m2=0;m1 �=m2

{
(Δm)

2π

M

[
N−1

∑
n=0

N−1

∑
k=0

[
Γ2

n,k sin
(
(Δm)

2π

M
(k + n − α)

)]]}
= 0.

It is enough to consider only internal sums over k and k for all fixed m1 =
0, 1, ..., M − 1; m2 = 0, 1, ..., M − 1; m1 �= m2, i.e. for all fixed Δm = 1, 2, ..., M − 1:

N−1

∑
n=0

N−1

∑
k=0

[
Γ2

n,k sin
(
(Δm)

2π

M
(k + n − α)

)]
.

This expression can be rewritten like

N−1

∑
p=0

[
N−1

∑
n=p

Γ2
p (n) · sin

(
(Δm)

2π

M
(2n − p − α)

)]
, (4.10)

where p = n − k = 0, 1, . . . , N − 1 and functions Γ2
p(n) = Γ2

n−p,n are fully defined
by initializing function g[n].

After that it is necessary to take into account the symmetry of function g[n]
(g[N − 1 − n] = g[n], n ∈ JN). In this case it overcomes that function Γ2

P(n)
and sin

(
(Δm)2π

M (2n − p − α)
)

has the same period M
2 . Moreover, when α is se-

lected in the optimal way (4.4) these two components follow in opposite phase
and makes the internal sum (4.10) equal to 0. Consequently f ′(α) = 0 for found
values of α, what proves the theorem.

An analogical study can be performed in the case where function g[n] ∈ CN

is N-symmetrical. The corresponding optimal values of phase parameter are

αopt =
M
2

+ q
M
2

, q ∈ Z. (4.11)

As it was shown in [PI], from simulations it follows that the optimal choice
of phase parameter ensures that the constructed orthogonal initializing function
keeps the initial symmetry. Moreover, a non-optimal choice of α results in big
non-symmetrical side lobes, and the synthesized function is not that close to the
original any more.
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4.2 localization Control and Sampling of the Gaussian Function

Construction of an optimal initialization function for the MWH basis is accom-
plished by the orthogonalization of some given function. Thus the parameters of
these functions can be considered as an additional tuning factor. In particular, if
the Gaussian function is taken as the initial one for the synthesis algorithm, then
its dispersion is the parameter which defines localization properties in time and
frequency.

As it was mentioned in Chapter 2, the Gaussian function is particular in a
sense that it turns the Heisenberg uncertainty relation into equality. Let’s take the
Gaussian function in the following form:

gG � (2σ0)
1
4 e−πσ0t2

, (4.12)

where t ∈ R.
It is easy to show that the energy of such function

∫ ∞

−∞
g2

G(t)dt = (2σ0)
1
2

∫ ∞

−∞
e−2πσ0t2

dt = (2σ0)
1
2

√
π√

2πσ0
= 1

is normalized.
The mean value of the signal equals 0. Its dispersion in the time domain (or

"width")

τ2
s = σ2

τ =
∫ ∞

−∞
t2(2σ0)

1
2 e−2πσ0t2

dt =
√

2σ0π

2
(√

2πσ0
)3 =

1
4πσ0

.

Thus the "width" of the Gaussian can be expressed though its dispersion

στ =
1√

4πσ0
.

In the frequency domain, function (4.12) has the form

GG(ω) = (2σ0)
1
4

∫ ∞

−∞
e−πσ0t2−jωtdt = (2σ0)

1
4

∫ ∞

−∞
e−πσ0

(
t2+

jω
πσ0

t
)

dt =

= (2σ0)
1
4

∫ ∞

−∞
e−πσ0

(
t+ jω

πσ0

)2− ω2
4πσ0 dt =

= (2σ0)
1
4 e

(
−ω2
4πσ0

) √
π√

πσ0
=

(
2
σ0

) 1
4

e
(
−ω2
4πσ0

)
,

∫ ∞

−∞
|GG(ω)|2dω = 2π.

The dispersion of gG(t) in the frequency domain (or its bandwidth) is

�ω2
s = σ2

ω =
1

2π

∫ ∞

−∞
ω2

(
2
σ0

) 1
2

e
(
−ω2
2πσ0

)
=

(
2
σ0

) 1
2 √

pi
(2πσ0)

3
2

4π
= πσ0
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and

σω =
√

π
√

σ0.

It can be easily seen that function (4.12) has the best possible localization.
Indeed, taking the Heisenberg uncertainty relation, one gets

σωστ =
1√
4π

1√
σ0

√
πσ0 =

1
2

.

With the introduction of

σf =
σω

2π
=

√
σ0

2
√

π

The Gaussian function can be rewritten like

gG(t) = (2π)
1
4
√

σωe−σ2
ωt2

= 2
3
4 π

1
4
√

σf e−4π2σ2
f t2

.

For the construction of a discrete MWH, it is necessary to use a discrete N-
periodical approximation of the Gaussian function. First of all, it is necessary to
sample function gG(t) with the sampling interval

Λ =
1

MKσf
=

T
M

,

where T = 1
Kσf

, M is the number of sub-carriers, K - is the scaling sampling
coefficient. Thus sampling frequency

fd =
1
Λ

= KMσf .

The sampled Gaussian function is

gG[n] = gG(Λn) = 2
3
4 π

1
4
√

σf e
−4πσ2

f
n2

M2K2σ2
f =

= 2
3
4 π

1
4
√

σf e−(
2πn
MK )

2

.

In so-called isotropic case, the resolutions in the frequency and time do-
mains are equivalent, i.e. στ = σf =

1√
4π

, thus

giso
G [n] = 2

1
4 e−(

2πn
MK )

2

.

This function is symmetrical because

giso
G [−n] = giso

G [n].

It means that its N-periodical approximation g0[n] can be found according to the
results of the previous chapter:

g0[n] =
1√
A

(
giso

G [n] + giso
G [n]

)
, n = 1, 2, . . . , (N − 1),

g0[0] =
1√
A

(
giso

G [0] + giso
G [N]

)
.
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The value of K, which defines the sampling frequency, is the parameter of
this function. Thus it can be used to minimize the norm of difference between
the initial basis constructed from g0[n] and the optimal orthogonal MWH basis.
It was shown in Chapter 2 that this norm is defined by the difference between
the initializing functions of the bases. The optimal value of K can be found as the
solution of the following extremal problem:

Kopt : min
K∈R+

(
‖g0[n](K)− gort[n]‖2

E

)
, (4.13)

where gort[n] is the initializing function of the optimal orthogonal MWH basis.
This problem can be solved numerically. These results together with some

other simulation results will be discussed in the next section.

4.3 Simulation Results

All simulations in this thesis were performed with the help of Matlab. The re-
alization of the main algorithms can be found at the end of the dissertation, in
Appendix 1. In the following subsections, it will be shown how optimization can
influence and improve the localization characteristics of the MWH basis.

4.3.1 Sampling Parameter K

A number of simulations for different values of K were introduced in the previous
section. Some of these results are presented in Figure 9.

It was decided to solve problem (4.13) numerically, i.e. with the help of Mat-
lab’s internal function fminsearch. It turns out (Figure 10 ) that the value of K is
constant in a wide range of main parameters M and L. This means that the found
value K = 2.5066 should be taken for the sampling of the Gaussian function to
keep the good localization of the constructed orthogonal optimal function gort[n].
This value will be used for the simulations presented in the subsection below.

4.3.2 localization and Comparison with OFDM

There are many ways to characterize the localization of the function in the time or
frequency domain, starting from it dispersion, which can be measured with the
help of an ambiguity function

Ag(τ, γ) =
∫ ∞

−∞
g(t +

τ

2
)g(t − τ

2
)e−jγtdt.

In the frequency domain, after the utilization of Parseval’s theorem this function
is like

Ag(τ, γ) =
1

2π

∫ ∞

−∞
G(ω +

γ

2
)G(ω − γ

2
)e−jτωdt.

Thus the shape of the ambiguity function is defined by the spreading of function
g(t) in the time domain and its FT G(ω) in the frequency domain.
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FIGURE 9 The localization quality depending on different values of K (black curves
indicate discrete Gaussian function, dotted grey curves show constructed
orthogonal initializing functions).

Figure 11 demonstrates the ambiguity function of the optimal initializing
function of the MWH bases constructed by the orthogonalization of the Gaussian
function.

Other popular figures that characterize localization are:

– Mean-square frequency band Δω, which is defined from the equality

|G
(

Δω
2

)
|2

|G(0)|2 =
1
2

.

– Maximal amplitude A of the first side-lobe, which is achieved in the points
±ω0:

A = 10 log10
|G(ω0)|2
|G(0)|2 .

– The power of polynomial function, which characterizes the decay rate of
G(ω) on high frequencies

|G(ω)| = O(ω−p−1).

– The uncertainty constant H � σtσω defined by the Heisenberg uncertainty
theorem.
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In the case of discrete function g[n] ∈ CN dispersion in time and frequency do-
mains can be calculated in the following way:

σ2
t =

1
‖g[n]‖2

E

1
N

N−1

∑
n=0

(n − ñ)2|g[n]|2, ñ =
1

‖g[n]‖2
E

N−1

∑
n=0

n|g[n]|2;

σ2
ω =

1
‖G[k]‖2

E

1
4π2N

N−1

∑
k=0

(k − k̃)2|G[k]|2, k̃ =
1

‖G[k]‖2
E

N−1

∑
n=0

k|G[k]|2,

where G[k] is DFT of g[n].
Hereby is the comparison of H values for used/constructed functions and

several known wavelets:

1. For sampled Gaussian function on the interval [−N; N], where M = 1024,
L = 10, N = ML and sampling parameter K = 2.5066 H = 0.5000 with high
precision.

2. Constructed N-periodical approximation of the Gaussian function does not
reduce the quality of localization, because again H = 0.5000.

3. In the result of optimal orthogonalization localization decreases but not con-
siderably: for gopt[n] H = 0.5118

4. A rectangular impulse on width M has much worse localization: H =
15.3831.

5. Uncertainty constants for several popular wavelets:

(a) Daubechies wavelets: H = 0.635
(b) Kravchnko wavelets (a = 4): H = 0.99270
(c) Meyer wavelets: H = 1.1149
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(d) Kotelnikov-Shenon wavelets: H = 1.6854.

Finally, Figure 12 presents the comparison of the time-frequency localization of
rectangular impulse used in the wg basis of OFDM and the optimal initialization
function of MWH for OFTDM.

4.4 Conclusions of Parameters Optimization

In this chapter, it was shown that the value of the phase parameter has a consid-
erable influence on the quality of basis localization. Unfortunately, in the most
general case of initializing function, the problem of analytical optimal α search is
too complicated. However, in two particular but common cases of conjugated N
and (N − 1) symmetry the optimal phase parameter values can be found exactly.

An other important parameter that can influence the localization of the basis
on the construction phase is the sampling frequency. This effect is studied in
the a particular case, when the initial function is Gaussian. The optimal value
of sampling parameter K, which defines sampling frequency, was found from
simulations.

Finally, the actual comparison of OFTDM with OFDM shows that MWH
basis functions possess better frequency localization in compare to rectangular
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FIGURE 12 Localization comparison of basis functions: OFDM/OFTDM.

impulses. Moreover, the presented initializing function outperforms several pop-
ular wavelets, from the point of view of the uncertainty parameter, and is quite
close to the Gaussian function.



5 ORTHOGONALITY AND NYQUIST CRITERIA

So far, one of the implementation problems of well-localised bases has been the
complexity of their constructing algorithm. In particular, it can be a consider-
able limitation for the devices for which it is necessary to correct or tune the sig-
nal bases dynamically. Regardless of the high theoretical importance of the SVD
based synthesis algorithm considered in the previous chapter it is difficult to use
it in practice. In modern telecommunication systems, the number of sub-carriers
can be up to several tens of thousands and consequently the size of the corre-
sponding MWH basis is the same. The overviewed algorithm includes the search
of the eigenvalues of the matrix of size (2N × 2N), highly resource-consuming
operation.

The basis synthesis algorithm with much higher computational efficiency is
presented in publication [PII]. In this chapter, orthogonality conditions, which
form the theoretical basis of this algorithm, are derived. An additional but still
important result of this chapter is the formulation of Nyquist-type criteria and
theorem ensuring the absence of ISI and ICI in OFTDM signals .

5.1 Orthogonality Conditions

Finite-dimensional discrete modified WH basis B[JN ] is orthogonal by definition,
if the following conditions are true:

〈ΨR
k,l, ΨR

k′,l′ 〉R = δk,k′δl,l′ , (5.1)

〈ΨR
k,l, ΨI

k′,l′ 〉R = 0, (5.2)

〈ΨI
k,l, ΨI

k′,l′ 〉R = δk,k′δl,l′ (5.3)

for all ∀k, k′ ∈ JM and ∀l, l′ ∈ JL, where δk,k′ is a Kronecker’s symbol.

5.1.1 Conditions for WH Basis

Conditions (5.1 - 5.3) can be rewritten in a more compact form:



72

Theorem 5.1. Necessary and sufficient conditions of the orthogonality of the basis B[JN ]
are equalities

〈ΨR
k,l, ΨR

0,0〉R = δk,0δl,0, (5.4)

〈ΨR
k,l, ΨI

0,0〉R = 0 (5.5)

for ∀k ∈ JM and ∀l ∈ JL.

Proof. 1. Necessity Equalities (5.1 - 5.3) are true for any k, k′ ∈ JM and any l, l′ ∈ JL,
thus taking k′ = 0 and l′ = 0 one gets equalities (5.4) and (5.4).

2. Sufficiency Let’s introduce indexes k0 � k − k′ and l0 � l − l′, then condi-
tions (5.1 - 5.3) will be〈

ψR
k′+k0,l′+l0 [n] , ψR

k′,l′ [n]
〉

R
= δk0,0δl0,0, (5.6)〈

ψR
k′+k0,l′+l0 [n] , ψI

k′,l′ [n]
〉

R
= 0, (5.7)〈

ψI
k′+k0,l′+l0 [n] , ψI

k′,l′ [n]
〉

R
= δk0,0δl0,0. (5.8)

Using the properties of DFT, N-periodicity of functions and Parseval’s the-
orem for the scalar product in (5.6) one can get

〈
ψR

k′+k0,l′+l0
[n] , ψR

k′,l′ [n]
〉

R
=

= �
(

N−1
∑

n=0

{
g [(n − (l′ + l0) M)N ] exp

(
j 2π

M (k′ + k0)
(
n − α

2

))
g∗ [(n − l′M)N ] exp

(−j 2π
M k′

(
n − α

2

))})
=

= �
{

N−1
∑

n=0
g [(n − (l′ + l0) M)N ] exp

(
j 2π

M k0
(
n − α

2

))
g∗ [(n − l′M)N ]

}
=

= �
{

exp
(−j 2π

M k0
α
2

) N−1
∑

k=0
G [(k − k0)N ] exp

(−j 2π
N (l′ − l0) Mk

)
G∗ [(−k)N ] exp

(
j 2π

N l′Mk
)}

=

= �
{

exp
(−j 2π

M k0
α
2

) N−1
∑

k=0
G [(k − k0)N ] exp

(
j 2π

N l0Mk
)

G∗ [(−k)N ]

}
=

= �
{

N−1
∑

n=0
g [(n − l0M)N ] g∗ [n] exp

(
j 2π

M k0
(
n − α

2

))}
=

〈
ψR

k,l [n] , ψR
0,0 [n]

〉
R

,

where G [k] �
N−1
∑

p=0
g [n] exp

(
j 2π

N kn
)

is the DFT of function g [n].

From here is directly follows that condition (5.6) is sufficient for the equality
(5.1) to be true.

Analogical considerations result in that condition〈
ψI

k,l [n] , ψI
0,0 [n]

〉
R
=

= �
{

N−1
∑

n=0
(−j) g

[(
n − lM + M

2

)
N

]
exp

(
j 2π

M k
(
n − α

2

))
jg∗

[(
n + M

2

)
N

]}
= δk,0δl,0

(5.9)
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is sufficient for the equality (5.8) and condition (5.5) - for (5.7).
Moreover, making the change of the variables n = n + M

2 in (5.9) and taking
into account that exp

(
j 2π

M k(n ± M
2 )

)
= exp

(
j 2π

M kn
)

and g [(n)N ] is N-periodical
function, we will get that conditions (5.9) and (5.5) are the same. That what was
to be demonstrated.

5.1.2 Supplementary Family of Functions E [JN ]

Let’s address the practical case of the conjugated N-symmetrical initializing func-
tion g[n] = g∗[(−n)N ] considered in the previous chapter. It was shown that for
such modified WH bases the optimal value of the phase parameter can be found
analytically and equals M

2 .
Based upon the conditions presented above, it can be proved that the family

of N
2 functions

E [JN ] = {gl,m[n]}, (5.10)

gl,m[n] = g[(n − lM)N ]ej 4π
M mn, m ∈ J M

2
, l ∈ JL (5.11)

is orthogonal in terms of regular scalar product (2.4) when the modified WH con-
structed from the same function g[n] is orthogonal in terms of real scalar product
(2.22).

Firstly, the following theorem should be proved:

Theorem 5.2. Let the initializing function of the modified WH basis B[JN ] be real and
N-symmetrical. The phase parameter is selected in an optimal way: α = M

2 .
Then the necessary and sufficient condition of B[JN ] is the equality

N−1

∑
n=0

g[n]g[(n − lM)N ]e
±j 2πmn

M
2 = δl,0δm,0 (5.12)

which is true for ∀m ∈ J M
2

and ∀l ∈ JL.

Proof. Firstly, let’s introduce function

f l
1 [n] � g [(n − lM)N ] g

[(
n +

M
2

)
N

]
.

It is symmetrical on the intervals n ∈ [
0; lM − M

2

]
for ∀l ∈ JL, because

f l
1

[
lM − M

2
− n

]
= g

[
(−M

2
− n)N

]
g[(lM − n)N ] =

= g
[
(n +

M
2
)N

]
g[(n − lM)N ] = f l

1 [n]

and also on the intervals n ∈ [
lM − M

2 + 1; N − 1
]
, because for all

p ∈ [
1; N − 1 − lM + M

2

]
f l
1 [N − p] = g [(N − p − lM)N ] g

[(
N − p +

M
2

)
N

]
=

= g
[(

p + lM − M
2

+
M
2

)
N

]
g

[(
p + lM − M

2
− lM

)
N

]
= f l

1

[
p + lM − M

2

]
.
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On the same intervals function sin
(2π

M k
(
n − π

2

))
is anti-symmetrical, i.e.

sin
(

2π

M
k
(

lM − M
2

− n − M
4

))
= sin

(
2π

M
k
(
−n − 3M

4

))
=

= − sin
(

2π

M
k
(

n − M
4

))
,

sin
(

2π

M
k
(

lM − M
2

+ p − M
4

))
= sin

(
2π

M
k
(

p +
M
4

))
=

= − sin
(

2π

M
k
(

N − p − M
4

))
.

Therefore orthogonality condition (5.5) of MWH basis B[JN ], which can be
rewritten like

�
{

N−1

∑
n=0

j f l
1 [n] exp

(
j
2π

M
k
(

n − α

2

))}
= −

N−1

∑
n=0

f l
1 [n] sin

(
2π

M
k
(

n − M
4

))
=

= −
lM− M

2

∑
n=0

f l
1 [n] sin

(
2π

M
k
(

n − M
4

))
−

−
N−1

∑
n=lM− M

2 +1

f l
1 [n] sin

(
2π

M
k
(

n − M
4

))
= 0,

is true automatically for ∀k ∈ JM and for ∀l ∈ JM, because in both sums there
are multiplications of symmetrical and anti-symmetrical functions, which equals
zero. It follows directly from here, that necessary and sufficient originality condi-
tions of the basis B [JN ] is only condition (5.4).

Now it is necessary to introduce a new function

f l
2 [n] � g [(n − lM)N ] g [(n)N ] . (5.13)

It is N-periodical and symmetrical on the interval n ∈ [0; lM], because

f l
2 [lM − n] = g [(−n + lM)N ] g [(−n)N ] = g [(n − lM)N ] g [n] = f l

2 [n] , (5.14)

and also on the interval n ∈ [lM + 1; N − 1], because for all p ∈ [1; N − lM − 1]

f l
2 [p + lM] = g [(p + lM)N ] g [(p)N ] = (5.15)

= g [(−p − lM)N ] g [(−p)N ] = f l
2 [N − p] .

Moreover, on the same intervals the symmetry of function cos
(2π

M k(n − M
4 )

)
de-
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pends on the odevity of index k:

cos
(

2π

M
k(lM − n − M

4
)

)
= cos

(
2π

M
k(n − M

4
) + πk

)
=

= (−1)k cos
(

2π

M
k(n − M

4
)

)
,

cos
(

2π

M
k(lM + p − M

4
)

)
= cos

(
2π

M
k(N − p − M

4
) + πk

)
=

= (−1)k cos
(

2π

M
k(N − p − M

4
)

)
.

Condition (5.4), which can be rewritten in the following form:

�
{

N−1

∑
n=0

f l
2 [n] exp

(
j
2π

M
k
(

n − α

2

))}
=

N−1

∑
n=0

f l
2 [n] cos

(
2π

M
k
(

n − M
4

))
=

=
Ml

∑
n=0

f l
2 [n] cos

(
2π

M
k
(

n − M
4

))
+

N−1

∑
n=Ml+1

f l
2 [n] cos

(
2π

M
k
(

n − M
4

))
= δl,0δk,0

becomes true automatically for odd k. In this case both sums in the left part of
the last equality equals zero because of the multiplication of symmetrical and
anti-symmetrical functions.

It rests to consider only the case, when k is even, i.e. when k = 2m, m ∈ JM/2
.

The DFT of function f l
2 [n] is

Fl
2 [v] =

N−1

∑
n=0

f l
2 [n] exp

(
−j

2π

N
vn

)
, v ∈ JN, (5.16)

consequently

Fl
2 [2Lm] =

N−1

∑
n=0

f l
2 [n] exp

(
−j

2π

N
2Lmn

)
. (5.17)

Taking into account the symmetry properties (5.14) and (5.15) of function
f l
2 [n] it is possible to show that

Fl
2 [−2Lm] = Fl

2 [2Lm] . (5.18)
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Indeed,

Fl
2 [−2Lm] =

N−1

∑
n=0

f l
2 [n] exp

(
−j

2π

N
(−2Lm) n

)
=

=
lM

∑
n=0

f l
2 [lM − n] exp

(
j
2π

N
2Lmn

)
+

N−1

∑
n=lM+1

f l
2 [N − n + lM] exp

(
j
2π

N
2Lmn

)
=

=
lM

∑
n′=0

f l
2
[
n′] exp

(
−j

2π

N
2Lmn′

)
exp

(
j
2π

N
2LmlM

)
+

+
N−1

∑
n′′=lM+1

f l
2
[
n′′] exp

(
−j

2π

N
2Lmn′′

)
exp

(
j
2π

N
2Lm (lM + N)

)
=

=
N−1

∑
n=0

f l
2 [n] exp

(
−j

2π

N
2Lmn

)
= Fl

1 [2Lm] ,

where two changes of variables n′ = lM − n and n′′ = N − n + lM have been
used. For even k = 2m the left side of condition (5.4) becomes

�
{

N−1

∑
n=0

f l
2 [n] exp

(
j
2π

M
2m

(
n − M

4

))}
= (−1)m

N−1

∑
n=0

f l
2 [n] cos

(
2π

M
2mn

)
=

=
(−1)m

2

(
N−1

∑
n=0

f l
2 [n] exp

(
j
2π

M
2mn

)
+

N−1

∑
n=0

f l
2 [n] exp

(
−j

2π

M
2mn

))
=

=
(−1)m

2

(
Fl

2 [2Lm] + Fl
2 [−2Lm]

)
.

The account of property (5.18) results in the following orthogonality condi-
tion

Fl
2 [2Lm] = Fl

2 [−2Lm] = δl,0δm,0, ∀m ∈ JM/2
; ∀l ∈ JL, (5.19)

which is the analogue of formula (5.4).
Remembering the definition (5.13) of function f l

2 [n] and expression (5.17)
for its DFT one can get from the equation (5.19) the required necessary and suffi-
cient orthogonality condition (5.12) for the MWH basis.

For the family of functions E [JN ] it is possible to receive orthogonality con-
ditions by proving the theorem analogical to Theorem 5.1 for modified WH basis.

Theorem 5.3. The necessary and sufficient conditions of orthogonality for the functions
(5.11) in terms of regular scalar product have the form

〈gl,m[n], g0,0[n]〉 = δm,0δl,0 (5.20)

for ∀m ∈ J M
2

and ∀l ∈ JL.

The proof of this theorem repeats almost completely the proof of Theorem
5.1 and won’t be presented here.

It is necessary to note that from Theorem 5.3 and the structure of functions
(5.10), (5.11) it follows directly that equation (5.12) is the necessary and sufficient
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condition of orthogonality for the family E [JN ]. Thus, if the assumptions of the
theorem 5.3 are true, then from the orthogonality of the basis B[JN ] follows the
orthogonality of the family E [JN ] and vice versa.

5.1.3 Additional Orthogonality Conditions for the E [JN ] Family

Irrespective of the symmetry type of the basis’ initializing function g[n] it is pos-
sible to prove two additional orthogonality criteria of function E [JN ] in te time
and frequency domains.

Theorem 5.4. The necessary and sufficient orthogonality condition for the family of
functions E [JN ] (5.10),(5.11) in the time domain is represented by the following expres-
sion

2L−1

∑
r=0

g[(n − r
M
2
)N ]g[(n − l

M
2
)N ] =

2
M

δl,0 (5.21)

for ∀n ∈ JN and ∀l ∈ JL.

Proof. Remembering the expression (5.16) for the DFT of function f l
2 defined by

(5.13) it can be presented in the form of IDFT:

f l
2[n] =

1
N

N−1

∑
ν=0

Fl
2[ν] exp

(
j
2π

N
nν

)
.

Therefore for ∀r ∈ J2L

f l
2[n − r

M
2

=
1
N

N−1

∑
ν=0

Fl
2[ν] exp

(
j
2π

N
(n − r

M
2
)ν

Let’s sum up the last expression over r from 0 up to 2L − 1 and take into account
the explicit from (5.13) of function f l

2[n]:

2L−1

∑
r=0

f l
2[n − r

M
2
] =

2L−1

∑
r=0

g
[
(n − r

M
2
)N

]
g

[
(n − r

M
2

− lM)N

]
=

=
1
N

N−1

∑
ν=0

exp
(

j
2π

N
νn

)
Fl

2[ν]
2L−1

∑
r=0

exp
(

j
2π

2L
r(−ν)

)
.

Notice, that

1
2L

2L−1

∑
r=0

exp
(

j
2π

2L
r(−ν)

)
=

{
1 for ν divisible by 2L
0 for all other ν

and taking into account that ν ∈ JN it can be concluded that last expression is
different from zero and equals 2L only when ν = 2Lm and m ∈ J M

2
. Thus

2L−1

∑
r=0

g
[
(n − r

M
2
)N

]
g

[
(n − r

M
2

− lM)N

]
=

2
M

M
2 −1

∑
m=0

exp
(

j
4π

M
mn

)
Fl

2[2Lm].

(5.22)
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It is obvious that when functions E [JN ] are orthogonal, i.e. when conditions
(5.19) are fulfilled, then the equality (5.21) is also true. This proves that conditions
(5.21) is necessary for the orthogonality of E [JN ].

To prove the sufficiency of this condition it is enough to notice, that when it
is fulfilled, then from (5.22) it follows:

Fl
2[2Lm] = 0 for∀m ∈ J M

2

and
2
M

M
2 −1

∑
m=0

exp
(

j
4π

M
mn

)
F0

2 [2Lm] = 1 for ∀m ∈ J M
2

.

Moreover the last equality is true only when

F0
2 [2Lm] = δm,0 for ∀m ∈ J M

2
.

Consequently, the necessary and sufficient orthogonality condition (5.19) is ful-
filled. That proves the theorem.

Analogical theorem on the necessary and sufficient orthogonality condition
for the family of functions E [JN ] can be formulated in frequency domain:

Theorem 5.5. The necessary and sufficient orthogonality condition for the family of
functions E [JN ] (5.10),(5.11) in the frequency domain is represented by the following
expression

M−1

∑
k=0

G[(p + kL)N ]G∗[(p + kL − 2Lm)N ] =
1
L

δm,0 (5.23)

for ∀p ∈ JN and ∀m ∈ J M
2

.

Verification results for some of the criteria presented above are shown in
paper [PII].

5.2 Nyquist Criterion and Theorem

Classical Nyquist’s theorem and criterion of ISI absence is formulated for the per-
symbol transmission model [16]. Thus it is necessary to overview it briefly to
make the comparison with OFTDM model more obvious.

5.2.1 Per-Symbol Transmission Model

In practice, a transmitted signal s(t) quite often can be represented as a sequence
of the same impulses shifted in time [89, 16]:

s(t) =
l

∑
k=−l

ak p(t − kT), (5.24)

where t ∈ R and
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– p(t) is the basic or initializing impulse;
– {ak, k = 0,±1, . . . ,±l} is the sequence of modulating symbols from some

finite alphabet, for example for binary transmission ak ∈ {−1, 1};
– ak p(t − kT) is the symbol corresponding to the kth time shift;
– 2l + 1 is the length of the sequence, i.e. the number of modulating symbols

in the sequence;
– T is time delay between neighboring symbols ans is called the symbol pe-

riod.

p(t) is a low-frequency impulse with band-limited limited spectrum. For that
reason, it has finite energy Ep =

∫ ∞
−∞ p2(t)dt, but infinite duration. The model

(5.24) itself describes the method for the transmission of information sequence
{ak} over the channel of bandwidth W, where shifted in time impulses p(t) are
used as carriers.

An amplitude spectrum of impulse p(t) is given by its FT P( f ) = FT[p(t)],
where P( f ) = 0 for | f | > W Its energy spectrum G( f ) � |P( f )|2 has the same
property.

At the receiver the signal

r(t) = s̃(t) + w(t), s̃(t) =
l

∑
k=−l

akh(t − kT),

is observed, where h(t) = p(t) ∗ c(t) =
∫ ∞
−∞ g(τ)c(t − τ), c(t) describes channel

amplitude response and w(t) ∼ N (0, σ2
w) is AWGN with zero mean and disper-

sion σ2
w.
Optimal reception of this signal is realised with the help of the filter matched

with the signal s̃(t). An output of this filter is

ys(t) = r(t) ∗ s̃(−t) =
∫ ∞

−∞
r(τ)s̃(τ − t)dτ =

∫ ∞

−∞
r(τ)

l

∑
k=−l

akh(τ − kT − t)dτ =

=
l

∑
k=−l

ak

∫ ∞

−∞
r(τ)h(τ − kT − t)dτ.

This filter can be realised as a Pulse Matched Filter (PMF) with impulse response
hPMF(t) = p(−t). Indeed,

ys(0) =
l

∑
k=−l

ak

∫ ∞

−∞
r(τ)h(τ − kT)dτ =

l

∑
k=−l

akyk,

where yk �
∫ ∞
−∞ r(τ)h(τ − kT)dτ = (r(t) ∗ h(−t)) |t=kT is the output of the filter

matched with the impulse p(t) taken in time moments t = kT. Furthermore,

yk =
l

∑
k′=−1

a′k
∫ ∞

−∞
h(τ − k′T)h(τ − kT)dτ + wk =

l

∑
k′=−1

a′kg(t − k′T),
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where
g(t − k′T) =

∫ ∞

−∞
h(τ − k′T)h(τ − t) = h(t) ∗ h(−t)

is the pulse representing the response of the receiving filter to the input pulse
h(t − kT).

Shifted in time impulses h(t − kT) are playing the role of orthonormal basis
functions if the following condition is fulfilled:∫ ∞

−∞
h(t − k′T)h(t − hT)dt = δk′,k. (5.25)

It is called the Nyquist criterion (in the time domain). It guarantees, that trans-
mitted symbols do not cause mutual interference, i.e. transmission takes place
without ISI.

Upon the convolution theorem the spectrum representation of the impulse
g(t) is

G( f ) = FT[g(t)] = H( f )H∗( f ) = |H( f )|2,

where h( f ) =
∫ W
−W H( f )ej2π f td f . Therefore, it is real-valued, positive and coin-

cides with the power density spectrum of the impulse h(t).
From the other hand, after the corresponding change of variables

g(t) =
∫ ∞

−∞
h(t + τ)h(τ)dτ,

i.e. it is, in fact, the autocorrelation of the impulse h(t).
From the orthogonality criterion (5.25) it follows that

g((k′ − k)T) =

{
1 , if (k′ − k) = 0
0 , otherwise

or in an equivalent form

g(lT) = δ0,l =

{
1 , when l = 0
0 , otherwise

In other words, the Nyquist criterion to be true it is necessary and sufficient that
the impulse g(t) passes through zero in all points t = kT, except t = 0.

An impulse g(t) satisfying the condition g(lT) = δ0,l is called Nyquist im-
pulse. Corresponding per-symbol transmission method, satisfying the Nyquist
condition for zero ISI is called the Nyquist transmission.

The Nyquist criterion can be formulated in the frequency domain with the
help of FT:

g(lT) =
∫ ∞

−∞
G( f )ej2π f lTd f =

∞

∑
n=−∞

∫ 2n+1

(2n−1)
G( f )ej2π f lTd f =

=
∞

∑
n=−∞

∫ 1
2T

− 1
2T

G( f +
n
T
)ej2π f lTd f =

∫ 1
2T

− 1
2T

∞

∑
n=−∞

G( f +
n
T
)ej2π f lTd f . (5.26)
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It is easy to notice, that

GD( f ) �
∞

∑
n=−∞

G( f +
n
T
), − 1

2T
≤ f ≤ 1

2T

is by its sense a spectrum of the discrete signal g(iT), i = 0,±1,±2, . . . . Indeed,

GD( f ) = T
∞

∑
i=−∞

g(iT)e−2π f iT = DFT[g(iT)].

From the following condition

GD( f ) = T, | f | ≤ 1
2T

(5.27)

and expression (5.2.1) it follows that the Nyquist criterion in the time domain

g(lt) = T
∫ 1

2T

− 1
2T

ej2π f lTd f =
sin(πl)

πl
= δ0,l

is true. Therefore, condition (5.27) is the equivalent of the Nyquist condition of
zero ISI in the frequency domain. Usually, this fact is formulated in the form of a
theorem:

Theorem 5.6 (Nyquist). The necessary and sufficient condition of zero ISI, i.e. of the
following condition for the impulse g(t)

g(lT) = δ0,l =

{
1 when l = 0
0 for all other l �= 0

is deduced to the condition on the FT G( f )

∞

∑
n=−∞

G( f +
n
T
) = T.

5.2.2 Analogue for OFTDM Signals

Let the OFTDM signal be transmitted over the Gaussian channel with ideal fre-
quency response. The signal at the receiver is

r[n] = s[n] + w[n], (5.28)

where w[n] ∼ N (0, σ2
w) is AWGN with zero mean and dispersion σ2

w.
Optimal reception of such signal is performed by the scheme combined

from a filter matched with the impulse response hMF[n] � s∗[(−n)N ] and of the
operator �(·) taking the real part of complex number. The output of such scheme
is

y[n] = �(r[n]⊗ hcons[n]) = �
(

N−1

∑
m=0

r[m]s∗[(m − n)N ]

)
, (5.29)
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where ⊗ means cyclic convolution of two functions.
It can be seen, that once n = 0 the real part of correlation sum is formed at

the output of the optimal receiver

y[0] = �(〈r, s〉) = �
(

N−1

∑
n=0

r[n]s∗[n]

)
= � (r[n]⊗ s∗[(−n)N ]|n=0) .

Taking into account the presentation of the OFTDM signal (5.1), it can be
shown that

y[0] =
M−1

∑
k=0

L−1

∑
l=0

(
cR

k,ly
R
k,l + cI

k,ly
I
k,l

)
, (5.30)

where

yR
k,l � �

(
N−1

∑
n=0

r[n]Ψ∗R
k,l [n]

)
= �

(
r[n]⊗ Ψ∗R

k,0[(−n)N ]
∣∣∣n=lM

)
,

yI
k,l � �

(
N−1

∑
n=0

r[n]Ψ∗I
k,l [n]

)
= �

(
r[n]⊗ Ψ∗I

k,0[(−n)N ]
∣∣∣n=lM

)
,

are the real outputs of filters matching with basis functions (5.2), (5.3).
Thus, an optimal reception of OFTDM signal can be performed with the

help of a filter bank matched with basis functions of size 2M, the output of which
is measured in time moments divisible by M.

As shown in the previous section, the conditions which are applied on the
signal structure and which ensure the absence of mutual interference are called
the Nyquist criteria. It is obvious that the complexity of OFTDM signals does not
allow the direct utilization of the Nyquist criteria formulated for the per-symbol
transmittance model. However, the criteria can be generalized on a wider class
of signals.

It can be seen, that in the case of Gaussian channel (5.28), zero ICI and ISI
will be observed, when orthogonality conditions (5.6)-(5.8) of MWH basis are ful-
filled. Indeed, if these conditions are true and noise is filtered out, then the signal
at the output of optimal receiver (5.30) does not contain interference components
and equals

y[0] =
M−1

∑
k=0

L−1

∑
l=0

(
(cR

k,l)
2 + (cI

k,l)
2
)

.

Therefore, conditions (5.6)-(5.8) describe the Nyquist criterion for the OFTDM
signals. The criteria proved in this chapter can be used to formulate it in the form
similar to (5.25):

Theorem 5.7 (Nyquist criteria for OFTDM signals). The necessary and sufficient con-
dition of ICI and ISI absence in channel (5.29) with OFTDM signal are the orthogonality
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conditions of the MWH basis B[JN ], which are deduced to the following equalities:

�
(

N−1

∑
n=0

g[(n − lM)N ]ej 2π
M k(n− α

2 )g∗[n]

)
= δk,0δl,0, (5.31)

�
(

N−1

∑
n=0

g[(n − lM)N ]ej 2π
M k(n− α

2 )g∗[(n +
M
2
)N ]

)
= 0, (5.32)

for ∀k ∈ JM and ∀l ∈ JL.

Let’s consider a particular case, when g[n] is conjugated N-symmetrical
function, i.e. g[n] = g∗[n], and phase parameter is selected in the optimal way
α = M

2 . Upon these conditions, the equality (5.32) becomes true automatically
and (5.31) can be rewritten like

p(l, k) �
N−1

∑
n=0

g[n]g[(n − lM)N ]e
j 2πkn

M
2 = δl,0δk,0 (5.33)

for ∀k ∈ J M
2

and ∀l ∈ JL.
The Nyquist impulse for the OFTDM signal can be defined in the following

form:

B(τ, ν) �
N−1

∑
n=0

g[n]g∗[(n + τ)N ]e−j 2π
N νn, (5.34)

where τ, ν ∈ JN.
In spite of the Nyquist impulse defined for the per-symbol transmission

model, impulse B(τ, ν) depends on two variables (time and frequency) and has
the sense of discrete ambiguity function

B(τ, ν) = 〈g0[n, m], g0[(n + τ)N, (m + ν)N ]〉

of the base impulse g0[n, m] � g[n]ej 2π
N mn, n, m ∈ JN.

From the expressions (5.33) and (5.34) it follows that

B(Ml, 2Lk) = p(l, k) = δl,0δk,0. (5.35)

Thus, the Nyquist impulse should be equal zero in all points (τ, ν) of the time-
frequency plane, which are dividable by M and 2L, consequently, except the point
(0, 0), where it is different from zero.

Finally, from Theorems 5.4 and 5.5 it follows the generalised Nyquist theo-
rem for the OFTDM signals:

Theorem 5.8 (Nyquist for OFTDM signals). Let the initializing function of MWH ba-
sis, which is used for the construction of the OFTDM signal, be conjugated N-symmetrical
and the phase parameter be selected equal to M

2 . Then the necessary and sufficient condi-
tions of zero ICI and ISI in the Gaussian channel is the equality (5.35), which is equivalent
in the time domain to (5.21) and in the frequency domain to (5.23).
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5.3 Conclusions of Orthogonality Criteria

Let’s formulate the main conclusions which follow from the study in this chapter.
Firstly, it was proved that the orthogonality criteria of the MWH basis can

be formulated in a quite compact form and also as conditions on the initializing
functions or its DFT. Secondly, received orthogonality criteria have important
theoretical considerations. They are the alternatives of Nyquist’s criteria and the-
orem for OFDM signals. Their practical value is that they ensure the absence
of ICI and ISI of the signal constructed from the basis function orthogonal in the
time and frequency domains. Finally, the presented results open the way towards
the formulation of an efficient basis synthesis algorithm [PVI]. The main idea is
the replacement of a complicated matrix decomposition with simpler conditions
on the initializing function.



6 CONCLUSION

Based on the study performed in the thesis, it is possible to formulate several
important statements:

1. Based on the overview of the currently existing methods of time-frequency
analysis and approaches for digital signal processing, it can be concluded
that well-localized MWH bases are actual and promising tool for practical
applications.

2. The main value of the received results is that the algorithms and programs
developed present a complete mathematical and computational framework,
necessary for the effective utilization of MWH bases from its synthesis to
signal processing.

3. Sampling frequency is an important parameter: it defines time-frequency
localization in the case when continuous function is used as an input in a
basis generation algorithm. For the Gaussian function there is an optimal
value of sampling parameter, which can be found from simulations.

4. N-periodical approximation of complex discrete symmetrical functions was
constructed. Several types of symmetry have been studied.

5. The localization quality of the MWH basis can be additionally improved by
the choice of phase parameter. Its optimal values were found theoretically
for two types of symmetry of the initializing function.

6. The orthogonality conditions of the MWH basis can be formulated in a com-
pact form, and also in the time and frequency domains. The generalized
variant of the Nyquist theorem was formulated for OFTDM signals.

7. The orthogonality criteria of the MWH basis can be presented as the condi-
tions on the corresponding Wiener basis. This result is used for the creation
of the "fast" basis synthesis algorithm strongly based on FFT.

8. Poliphase decomposition was introduced in finite-dimensional N-periodical
spaces CN. It turns out that its structure corresponds very well to the inter-
nal structure of OFTDM signals. This allows the development of the "fast"
signal modulation algorithm with a number of operations of the same order
with IFFT used in OFDM.
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The generic scheme of the developed mathematical framework, including MWH
basis construction and utilization, is shown on Figure 13. The numbers in the
scheme correspond to the numbers in the list of statements presented above.

Continous function
with desirable localization characteristics

Discrete function

N-periodical approximation

Paramters
(M, L, bandwidth, etc)

SVD-based
basis synthesis algorithm

Fast
basis synthesis algorithm

Optimal, orthogonal
MWH basis

Modulation symbols
(QAM, PSK, etc.)Fast signal modulation

8

3

4

5

7

FIGURE 13 Scheme of the developed framework.

FT became a very popular and widely used instrument for signal process-
ing in linear time-invariant systems. However, it is difficult to use in the study of
short-time transient processes. For such more complicated phenomena, it is nec-
essary to know the information about the spectrum localized in time. Synthesis
of an universal basis, which could simplify the analysis of wide class of signals,
is a very complicated problem. The most important examples of such bases are
the WH (or Gabor) bases and wavelets. There are several reasons motivating the
implementation and study of MWH bases in connection with wireless technolo-
gies:

– Shifted in time and frequency versions of prototype signal (initializing func-
tion or impulse) are used in many already existing applications, including
digital communications, coding, voice recognition, spectral analysis, image
compression etc. Thus, the main aim is the improvement of the characteris-
tics of currently existing devices by optimizing their parameters without a
complete change of the approach.

– Non-stationary media like radio channels can be characterized by two main
effects: Doppler shifts and time delays. They belong to basic components of
the WH group.

– It is well known that the requirements of symmetry and orthogonality can-
not be fulfilled simultaneously for wavelets with compact support.

– As it is shown in the dissertation, signal processing algorithms using WH
bases can be computationally efficient.
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The practical value of the research is in the application of optimal orthogonal
MWH bases as a core concept of OFTDM systems.

OFTDM technology can be used for the mitigation of ICI in currently exist-
ing standards such as WiMAX, WiFi, DVB, etc. However, the entire potential is
realized, when the MWH basis is used in the synthesis filter bank at the trans-
mitter and also in the analyzing filter bank of the receiver. This signal processing
implicitly includes L-time oversampling and can be considered as a further de-
velopment of Gabor’s atoms method. In this more generic case, the family of
initializing functions are shifted in time and frequency.

OFTDM technology is a perspective solution for next generation MC wire-
less mobile networks. The following advantages are realizable:

– Because of higher inter-carrier and time multiplexing limited frequency, re-
sources are used in a more efficient way. Refuse from CP increases the spec-
tral and power efficiency of the system.

– Due to better localization of the bases function, the level of out-of-band
emission is reduced. It becomes possible to weaken the requirements to the
output filter of the transmitter and to the GIs at the ends of the frequency
band.

– Wireless telecommunication systems become more reliable against ICI and
ISI. They can be adopted to the parameters of time-frequency dispersion.

Other benefits of OFTDM technology, including economic and other positive im-
pacts, can be found in [PV]. For now, it is important to mention that this technol-
ogy can be considered as one of the possible applications of the theoretical results
considered in the thesis. In effect, the number of areas where it can be used is
much wider. In particular, the developed methods and algorithms can be used
for efficient time-frequency analysis of different processes. In this case, it is pos-
sible to perform flexible multi-level analysis of signals at the exit of registration
devices. Examples of such devices include

– sensors in bio-medical devices;
– receivers of echo-signals in radio or hydro-radars;
– seismographic sensors, etc.

Further research topics include system level performance evaluation of OFTDM
system using developed MWH bases under realistic channel conditions. Further-
more, the results of these simulations might be used in system level simulators,
in particular, in WiFi, WiMAX or LTE modules of ns-3.
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YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja, jonka nimi on "Parannetun aika-taajuuslokalisaation omaavien
ortogonaalisten signaali-kantojen synteesi ja soveltaminen liikkuvissa langatto-
missa tietoliikenneverkoissa"keskittyy kehittämään ja validioimaan viitekehys-
tä, jota voidaan käyttää fyysisellä tasolla moderneissa langattomissa monikanto-
aaltojärjestelmissä, etenkin OFDM-järjestelmissä. Käytännön näkökulmasta liik-
kuva tietoliikenneverkko on erittäin haastava ympäristö palveluille, joiden tulisi
toimia luotettavasti jopa huonoissa kanavatilanteissa. Tämä tutkimus ottaa kan-
taa moneen OFDM-teknologian ongelmaan, kuten huonoon signaali-kantojen lo-
kalisointiin taajuustasossa ja syklisen etuliitteen aiheuttamaan pienentyneeseen
hyötysuhteeseen. Näitä ongelmia ei voida ratkaista tehokkaasti klassisten WH-
kantojen teoreettisten rajoitusten vuoksi.

Väitöskirjan tärkein menetelmä on paranneltujen aika-taajuus -lokalisoitujen
ortogonaalisten signaalikantojen käyttö. Niiden käytännöllinen hyödyntäminen
sisältää useita haasteita, jotka käydään läpi ja ratkaistaan tässä väitöskirjassa. En-
simmäinen ongelma on kantojen rakenne ja synteesi. MWH-kannat on valittu tut-
kimuksen pääkohteeksi. Niiden yleinen rakennusalgoritmi kehitettiin aloittaen
annetuista jatkuvista funktioista, joilla on halutut lokaalit ominaisuudet. Todis-
tettu ortogonaalisuuskriteeri johtaa algoritmin hyötysuhteen huomattavaan kas-
vuun. Toisessa ongelmassa optimoidaan kantojen taajuus- ja näytteistysparamet-
rit. Viimeisenä esitellään laskennallisesti tehokas signaalin modulointialgoritmi.
Nämä tulokset muodostavat OFTDM-tekniikan perusteet, jossa taajuusjakoista
kanavointia täydennetään aikataajuusjaon kanavoinnilla.
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APPENDIX 1 MAIN ALGORITHMS

This appendix contains the listings of algorithms developed in the thesis. Algo-
rithms have been realised and tested in Matlab.

APPENDIX 1.1 Construction of symmetrical N-periodic approxi-
mation

APPENDIX 1.1.1 Conjugated N-symmetry

function aprox = N_sym_aprox(Input)
%Input - sampled initial function on the interval (-N:N)

N = (length(Input)-1)/2; %the length of the period

%Symmetry check (g(n)=g*(-n))
for i=0:1:N

if Input(N+1+i) ~= conj(Input(N+1-i))
N+1+i
N+1-i
error(’Symmetry condition is not fulfilled’)
break
return

end
end
if Input(2*N+1) ~= conj(Input(2*N+1))

2*N+1
error(’Symmetry condition is not fulfilled’)
return

end

%Approximation construction
Input_r = Input(N+1:2*N);
A=0;
for tau=0:N-1 % Conjugated N-symetry

if tau==0
aprox(1)=Input(N+1)+Input(2*N+1);
A = A + (abs(Input(N+1)+Input(2*N+1)))^2;

else
aprox(tau+1)=Input_r(1+tau)+ conj(Input_r(1+N-tau));
A = A + (abs(Input_r(1+tau)+ conj(Input_r(1+N-tau))))^2;

end
end



96

NInput=0; %Norm of the incoming function
for k=0:1:2*N-1

NInput = NInput + (abs(Input(k+1)))^2;
end
A = A/NInput;

aprox = aprox./(sqrt(A));

APPENDIX 1.1.2 Conjugated (N − 1)-symmetry

function aprox = N_1_sym_aprox(Input)
%Input - sampled initial function on the interval (-N:N-1)

N = length(Input)/2; %the length of the period
%Symmetry check (g(n)=g*(-n-1))
for i=0:1:N-1

if Input(N+1+i) == conj(Input(N-i))
’Ok’;

else
N+1+i
N-i
error(’Symmetry condition is not fulfilled’)
break
return

end
end

%Approximation construction
Input_r = Input(N+1:2*N);
A=0;
for tau=0:N-1 % Conjugated (N-1) symmetry

aprox(tau+1)=Input_r(tau+1)+conj(Input_r(N-tau));
A = A + (abs(Input_r(1+tau)+ conj(Input_r(N-tau))))^2;

end
NInput=0; %Norm of the incoming function
for k=0:1:2*N-1

NInput = NInput + (abs(Input(k+1)))^2;
end
A = A/NInput;

aprox = aprox./(sqrt(A));
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APPENDIX 1.2 SVD-based basis construction

function H = MWHrSVD_SyMh (g, M, alfa)
%Input variables:
%g - initial non-orthogonal function
%M - number of sub-carriers
%alfa - phase parameter

N = length(g); %Length of the initialising function
L = N/M; %Number of symbols in OFTDM frame
j = sqrt(-1);

%Initialisation of matrices
Ur=zeros(N,M*L);
Ui=zeros(N,M*L);

%Construction of basis’ matrix
for n=0:N-1

gr=g(mod(n*ones(1,L)-M*[0:L-1],N)+1);
gi=-j*g(mod(n*ones(1,L)+M/2-M*[0:L-1],N)+1);
ee=exp(j*2*pi*(n-alfa/2)*[0:M-1].’/M);

gr_=ee*gr.’;
Ur(n+1,:)=(gr_(:)).’;
gi_=ee*gi.’;
Ui(n+1,:)=(gi_(:)).’;

end

GG=[Ur,Ui]; %Complex matrix of non-orthogonal MWH basis
GGr=[real(GG);imag(GG)]; %Real matrix of
%non-orthogonal MWH basis

%SVD decomposition
[V,S,W] = svd(GGr);
U = V*W’;
Hr = U; %Real matrix of optimal orthogonal MWH basis

%Different ways to calculate difference norm
%between orthogonal and non-orthogonal bases
FSigmaNorm = sum((diag(S)-1).^2)
eenormn = norm(GGr- Hr,’fro’)^2
FNorm = trace((GGr-U)*((GGr-U)’))
%Majorizing norm
B=eye(2*N);
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F0Norm = trace(((GGr)*((GGr)’)-B)*(((GGr)*((GGr)’)-B)’))

%Complex matrix of optimal orthogonal MWH basis
H=Hr(1:N,:)+j*Hr(N+1:end,:);

%Initialising function of optimal orthogonal MWH basis
g_opt=[H(N/2+1:N,:);H(1:N/2,:)]

APPENDIX 1.3 Fast basis synthesis

function go = FastOrt (g, M)
%Input variables:
%g - initial non-orthogonal function
%M - number of sub-carriers

N = length(g); %Length of the initialising function
L = N/M; %Number of symbols in OFTDM frame

%Initialisation of matrices
G = zeros(2*L,N);
Z = zeros(2*L,N);
dZ = zeros(2*L,N);
Zo = zeros(2*L,N);
go = zeros(1,N);
NN = 0:1:N-1;

for i = 0:1:2*L-1
G(i+1,:)=g(mod(NN+M/2*i,N)+1);

end
Z=fft(G);
dZ(1:L,:)=Z(L+1:2*L,:);
dZ(L+1:2*L,:)=Z(1:L,:);
Zo = Z.*2./sqrt(abs(Z).^2.*M + abs(dZ).^2.*M);

%Initialising function of orthgonal MWH basis
go = sum(Zo,1)./(2*L);

APPENDIX 1.4 Fast signal modulation

function signal = sigfastform(c, g, M, alfa)
%% Input parameters
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% c - a colomn of information symbols
%(complex numbers) of length 2N.
% g - initialisation function of the basis
% M - number of sub-carriers
% alfa - phase parameter of the basis
N = length(g);
L = N/M; % number of shifts in time domain
j = sqrt(-1); % imaginary 1

%% Initialisation of the matrices
D = zeros(M,2*L); D6 = zeros(M,2*L);
Cr = zeros(M,L); Ci = zeros(M,L);
Phi = zeros(2*L, 2*L); A = zeros (M, M);
E = zeros(M,L); E1 = zeros(M,L);
E2 = zeros(M,2*L); E3 = zeros(M,2*L);
W = zeros(M,N);

%% Preliminary steps
%1)Matrix of information symbols D
Cr = reshape(c(1:N),M,L);
Ci = reshape(c(N+1:2*N),M,L);
lr = 1:2:2*L-1;
li = 2:2:2*L-2;
D(:,lr) = Cr;
D(:,li) = Ci(:,2:L);
D(:,2*L) = Ci(:,1);
%2)Diagonal matrices Phi and A
Adiag = exp( (0:1:(M-1)).*(-j*pi/M*alfa) );
A = diag(Adiag,0);
Phidiag = ones(1,2*L);
Phidiag(2:2:2*L)= ones(1,L).*(-j);
Phi = diag(Phidiag,0);
%3)Poliphase components
for i = 1:1:M

E(i,:) = g(i:M:N).’;
end
E1 = fft(E,[],2);
E2 = [E1 E1];
E3(1:M/2,:)=E2(1:M/2,:);
for r = 0:1:2*L-1

E3(M/2+1:M,r+1) = E2(M/2+1:M,r+1).*exp(ones(M/2,1)...

*(-j*2*pi/(2*L)*r));
end
E3=E3*M;
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%% Main algorithm
ticID = tic;
D(2:2:M,2:2:2*L) = -D(2:2:M,2:2:2*L);
D6 = ifft( fft((ifft(A*D*Phi)),[],2).*E3, [], 2);
signal = reshape (D6(1:M/2,:),N,1) +...
reshape (D6(M/2+1:M,:),N,1);
calc_time = toc(ticID)
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INTRODUCTION

Orthogonal well localized bases are applied to obtain time�frequency information on signals, in spec�
tral analysis, in the processing of images, and in radiolocation. It should be noted that the expansion by
orthogonal bases obtained by uniform shifts in the time and frequency of several initializing functions (the
Weyl�Heisenberg generalized bases) yields a time�frequency description of signals similar to the wavelet
transform [1]. From the Balian�Low theorem, it follows that the use of only one initializing function leads
to the fact that the obtained Weyl�Heisenberg bases are poorly localized. Thus, the development of meth�
ods of synthesis of the generalized well localized Weyl�Heisenberg bases is highly important, regardless of
the field of their further application.

One of the most relevant applications of such bases is in the field of information transmission. In the
systems with orthogonal frequency�time division multiplexing (OFTDM), it is these bases that make it
possible to effectively withstand the difficult conditions in real channels, i.e., the interchannel interfer�
ence caused by multibeam propagation, the Doppler shift, and impulse noise. In a disperse medium, in
addition to the additive interference, noise as intersymbol interference (ISI) and interchannel interfer�
ence (ICI) appear. Physically, the appearance of ISI and ICI in channels with frequency�time scattering
is explained by a loss of orthogonality between the disturbed basis functions of the signal at the channel
output. As a result, the procedure of signal demodulation is no longer optimal at the receiving side. Infor�
mation from each subcarrier channel leaks to neighboring ones [3, 4].

In this way, in a medium with spatial�time scattering, well localized bases provide the best restoration
of the signal. In particular, in systems of communication using OFTDM communications, these bases
have the lowest sensitivity (robustness) to interchannel and intersymbol interference.

Up to now, one of the main problems in the application of well�localized bases has been the complexity
of the algorithm of their formation. In particular, this is a substantial barrier in the use of such bases in sub�
scriber telecommunication devices. The paper shows in detail how, from the algorithm of the formation
of a well�localized Weyl�Heisenberg basis, through an ideally localized but nonorthogonal Gabor basis, by
means of a number of orthogonality criteria, it is possible to come to a computationally effective algorithm
by use of the fast Fourier transform. Thus, the procedure of basis construction is simplified, which leads
to a considerable increase of its range of possible application.

GENERALIZED WEYL�HEISENBERG BASIS

An ensemble of discrete functions (or signals) s[n], n ∈ JN  {0, 1, …, N – 1}is defined as a linear enve�
lope thrust on the Weyl�Heisenberg basis �[JN]:

=
Δ
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(1)

(2)

(3)

(4)

where N = ML ≥ M (M ≥ 2 is even�numbered, L is any natural number), and α is a phase parameter.
The system of functions �[JN] (generalized Weyl�Heisenberg basis) is normalized and orthogonal

(5)

in the sense of a real scalar product, which is defined as the real part of a common scalar product:

(6)

where (*) is the sign of complex conjugation.

The condition of orthogonality (5) can be presented in the matrix form

(7)

where (*) is the symbol of the Hermitean conjugation; I2N is the identity (2N × 2N) matrix; and U = (UR,
UI) is the block�structured rectangular matrix of dimensionality (N × 2N), in which blocks UR, UI are rect�

angular (N × N) matrices composed of the columns of the appropriate basis functions  = ( [0], …,

[N – 1])T,  = ( [0], …, [N – 1])T for all values of indices k = 0, …, M – 1, l = 0, …, L – 1.

Note that formula (1) can be considered as the algorithm of the formation (modulation) of the
OFTDM signal in discrete time. The appropriate algorithm of demodulation is

Let us consider in more detail the algebraic approach to the construction of the Weyl�Heisenberg bases
proposed by V.P. Volchkov in [3].

We emphasize again that in practical applications, an important role is played just by the good local�
ization of basis functions in both the frequency and time domain. However, the Heisenberg uncertainty
principle restricts the possibility of improving such localization by the following inequality:

The equality in this expression is achieved only when g(t) is the Gauss function [5]. For all other functions,
this expression turns into an inequality.

Unfortunately, the basis built up on the Gaussian as the initializing function (the Gabor basis) is not
orthogonal.

Accordingly, the basic idea underlying the algorithm is to construct such a basis that, on the one hand,
has the forming function close to the Gauss function, i.e., has good localization, and, on the other, is
orthogonal.
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We define the complex signal basis with the desirable characteristics of localization in time and fre�
quency as a block matrix

(8)

(9)

where n = 0, …, N – 1, l = 0, …, L – 1, l = 0, …, L – 1.
Clearly, the forming function g0(t) determines the characteristics of the localization of the given basis.

For the Gabor basis �0[JN] as g(t), the Gaussian g0(t) = , t ∈ �, having the best char�
acteristics of localization by time and frequency, is chosen.

Note that since the Gabor basis is not always orthogonal, its matrix G does not fulfill the condition of
orthogonality (5).

We denote by Mm, n(�) the set of all matrices of dimension m × n over the field �. If m = n, the abbrevi�
ated notation Mn(�) is used. Here, � is either the field of real numbers �, or the field of complex numbers
�; in addition, we denote the set of integers by �.

The problem of finding the matrix U of the generalized orthogonal Weyl�Heisenberg basis that is the

closest to the matrix of the Gabor basis G by the matrix norm  =  is considered.

Problem 1 (basic). On the subset � = {U ∈ MN, 2N(�) : Re(U*U) = I2N} of the complex orthogonal matri�
ces for which the expression

(10)

is true, we find the optimal matrix Uopt that provides a minimum in the problem on the extremum

(11)

where G ∈ MN, 2N(�) is the matrix of the Gabor basis.
Note that the solution Uopt will assign the orthogonal basis (4) with the best characteristics of localiza�

tion.

Finding the extremum Uopt is simplified if instead of problem 1 the following auxiliary problem is
solved:

Problem 2 (auxiliary). On the set � = {V ∈ M2N(�) : V*V) = I2N} of real orthogonal matrices, we find the
optimal matrix Vopt that provides a minimum in the problem

(12)

where  ∈ M2N(�) is assigned by the complex matrix of the Gabor basis G.

In [3], it is shown that the extremal problems (11) and (12) are equivalent, and their solutions are inter�
related by the relation

Uopt = V1opt + jV2opt, (13)

where matrices V1opt and V2opt ∈ MN × 2N(�)are found from the block partition Vopt = .

Thus, matrix Uopt of the sought for optimal Weyl�Heisenberg basis can be obtained from the solution
of Problem 2 by formula (13). Then, matrix Vopt is determined by the following theorem:

Theorem 1. Optimal matrix Vopt providing a maximum in extremum problem (12) is determined by the
expression

(14)

where S, W ∈ � are a pair of real orthogonal matrices included in the singular transform of the matrix GB =
SΣWT.
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Matrices S, W are composed of eigenvectors of matrices  and , respectively; Σ = (σi, j) ∈
M2N is the diagonal matrix in which on the main diagonal there are singular numbers σi = σii of matrix GB

in a nonincreasing order: σ1 ≥ σ2 ≥ … σ2N ≥ 0.
The value of the achieved extreme in problem (12) is

(15)

and the optimal forming function g[n] n ∈ JN for basis (4) is set by the first column of this matrix, i.e.,

(16)

The deficiency of this algorithm is that at its core lies a singular transform (Procrustean transform),
which requires a greater number of mathematical operations and is inefficient, in particular, at high values
of N (several thousand and over).

ORTHOGONALITY CRITERIA AND THE WIENER BASIS

Since the only forming function �[JN] actually lies at the core of the basis g[n], though shifted by
phase, it is possible to simplify the algorithm for obtaining it by using the orthogonality criteria of the basis
as the condition for this function.

We consider special criteria of the orthogonality of the Weyl�Heisenberg basis allowing a computation�
ally more effective algorithm.

We dwell on the case where g[n] is a real function and has the property of the conjugated N symmetry:
g[n] = .

This type of symmetry is in correspondence with the optimal value of the phase parameter α =
 [6]. Note that when α is not optimal, the forming function for the Weyl�Heisenberg basis,

resulting from the orthogonolization algorithm, is no longer symmetrical and its localization is worse.
Under the above�mentioned conditions of symmetry, it is possible to show that the basis

(17)

is orthonormal in the sense of a common scalar product only in the case where the generalized Weyl�
Heisenberg basis constructed on the same initializing function g[n] is orthonormal in the sense of a real
scalar product (6), and the following theorem [7] holds:

Theorem 2. A necessary and sufficient condition for the orthonormality of basis E[JN] (17) (and of the
Weyl�Heisenberg basis �[JN]) in the time domain is the following equality:

(18)

We take the next step and transfer from the orthogonality condition of the reduced basis E[JN] to the
condition of the orthogonality of the appropriate Wiener bases.

Definition 1 [8]. The body of functions f0, f1, …, fN – 1 of the linear subspace V ⊂  (  is the space of
the N periodic complex functions of the integer argument) is called the Weiner basis of subspace V, if the dis�

crete�periodic analogue of the Wiener theorem is good for it; functions  form the basis of

the space V if and only if g ∈  and is presentable as , where all ak differ from zero.

Therefore, the existence of the Wiener basis is necessary and sufficient for the existence of function g,
whose vector of shifts

g[n]  (19)

is the basis of the subspace V.
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Definition 2. The transformation allowing the transfer from the vector of shifts to the orthogonal Wiener
basis is called the Wiener transform and can be written as

(20)

The inverse Wiener transformation will be determined in the following way:

(21)

We formulate the basic properties of the Wiener transformation:

(1) .

(2) 

(3) If g[n] is a real function, then .

Using (7) and the above�mentioned properties, we prove the following theorem:
Theorem 3. The necessary and sufficient condition for orthogonality of basis E[JN] (17) in the time domain

is the following equation:

(22)

Proof. First, we will prove the necessity of this condition. The components of orthogonality condition (18)
are presented as the inverse Wiener transformation

Then, the left part of orthogonality condition (18) is
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where the properties of the Wiener transformation are utilized, k' = k1 – L.

Taking into account that δl, 0 can be presented as the inverse discrete Fourier transform from unities

we obtain the desired type of orthogonality criterion.
The sufficiency of condition (22) can be directly seen, having performed all actions applied in the proof

of the necessity of this condition in the reverse order.

FAST ALGORITHM FOR CONSTRUCTION OF THE ORTHOGONAL BASIS

The criterion proved in Theorem 3 allows us to form an effective procedure of orthogonalization.
We take a certain function g0[n], n ∈ JN that is conjugated N symmetrical. To obtain good localization

of the orthogonal basis as g0[n], we should choose the Gauss function.
We build the Wiener basis in the following form:

(23)

where 

It is easy to demonstrate that with the direct substitution of expression (23) into the orthogonality cri�

terion (22), we obtain an equality (in doing this, Property 2 of the Wiener transformation for  is
used). It follows from this that the basis E[JN] and, respectively, also the Weyl�Heisenberg basis �[JN] con�

structed on function g[n] obtainable by the inverse Wiener transformation from basis  are orthog�
onal. The obtained forming function g[n] has the same property of conjugated N symmetry as the initial
function g0[n].

Note that obtaining the elements of the Wiener basis (20) based on function g0[n] is actually the discrete
Fourier transform (DFT), for the implementation of which special fast algorithms have been developed.
Their utilization allows a considerable increase in the computational effectiveness of the orthogonaliza�
tion algorithm.

Let us formulate the set of sequential steps of the algorithm:
1. We build matrix Z of dimensionality N × 2L, the lines of which are vectors of shifts g0[n] of type (19)

of the function g0[n], n ∈ JN.

2. To perform the Wiener transformation of function g0[n] (i.e., to obtain functions ), we apply
the fast discrete Fourier transform over the lines of matrix Z. As a result, we obtain matrix Zf of dimen�

sionality N × 2L, the lines of which are functions , n ∈ JN answering all k = 0, 1, …, 2L – 1.

3. Since functions  are 2L periodic by index k (Property 2 of the Wiener transformation), to

obtain functions , it is sufficient to interchange the positions of the first and the last L lines of

=  1/2L ηk1

M/2 n[ ]
2

j2π
L

�����k1l
⎝ ⎠

⎛ ⎞exp
k1 0=

L 1–

∑ 1/2L ηk1

M/2 n[ ]
2

j2π
L

�����k1l
⎝ ⎠

⎛ ⎞exp
k1 L=

2L 1–

∑+

=  1/2L ηk1

M/2 n[ ]
2

j2π
L

�����k1l
⎝ ⎠

⎛ ⎞exp

k1 0=

L 1–

∑ 1/2L ηk ' L+
M/2 n[ ]

2
j2π

L
�����k 'l

⎝ ⎠

⎛ ⎞exp

k ' 0=

L 1–

∑+

=  1/2L ηk1

M/2 n[ ]
2

ηk L+
M/2 n[ ]

2
+( ) j2π

L
�����kl

⎝ ⎠

⎛ ⎞exp
k 0=

L 1–

∑ 2/M( )δl 0, ,=

δl 0,
1
L
��� 1 j2π

L
�����kl

⎝ ⎠

⎛ ⎞ ,exp
k 0=

L 1–

∑=

ηk
M/2 n[ ]

2η̃k
M/2 n[ ]

M η̃k
M/2

n[ ]
2

M η̃k L–
M/2

n[ ]
2

+
����������������������������������������������������������,=

η̃k
M/2 n[ ] g0 n rM/2–( )N[ ]

2πj
2L
������rk
⎝ ⎠

⎛ ⎞ .exp
r 0=
2L 1–

∑=

η̃k
M/2 n[ ]

ηk
M/2 n[ ]

η̃k
M/2

n[ ]

η̃k
M/2

n[ ]

η̃k
M/2 n[ ]

η̃k L–
M/2 n[ ]



580

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 2  No. 5  2010

PETROV

matrix Zf. As a result, we obtain matrix dZf, the lines of which are functions , n ∈ JN, for each k =
0, 1, …, 2L – 1.

4. We obtain the Wiener basis  in accordance with formula (23). To do this, we build matrix

, where all operations (multiplication by the number, division, squaring, etc.) are

performed over the elements of the matrix. The lines of matrix V are the elements of the Wiener basis

.

5. In order to obtain the desired forming function g[n], it remains only to apply the inverse Wiener
transformation of the columns of matrix V.

MODELING RESULTS

As a result of the performed mathematical modeling of the operation of the algorithms of the Weyl�
Heisenberg generalized basis built on the orthogonal transform and new fast transformations, it has been
found that using the same initializing functions g0[n], the same forming functions are obtained. The figure
shows the graphs of the initializing Gauss function chosen as g0[n] (dashed curves) and obtained as a result
of both algorithms of the forming function g[n] of the orthogonal well�localized basis in the time and fre�
quency domain (solid curves).
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From the performed study, it can be concluded that the developed algorithm achieves two purposes:
first, it is computationally effective due to the application of the Fourier fast transform and, second, it
allows the construction of bases with good localization due to their closeness to the ideally localized Gauss
function.
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Abstract. The main aim of this paper is to show on the conceptual level the 
practical and commercial benefits of signal construction and processing 
technology based on orthogonal frequency and time domains multiplexing 
(OFTDM). This technology utilizes mathematical framework of special 
orthogonal bases with the best time-frequency localization. Higher spectral and 
energy efficiency of telecommunication systems together with robustness 
against complex realistic channel conditions are achieved. In particular, the 
level of interference between subcarrier channels in time and in frequency 
domain is minimized. This approach can have wide implementation in 
wideband mobile networks (WiMAX, LTE), digital television (DVB-T/H) and 
other telecommunication systems. 

Keywords: WiMAX, LTE, OFDM, OFTDM, Well-localized bases, 
time-frequency dispersion. 

1   Introduction 

Constriction of high-speed wireless digital telecommunication systems often faces the 
problem that real radio channel (propagation media) is time-frequency dispersive [1]. 
In particular this follows from the fact that radio signal comes to the receiver through 
multiple paths after many reflections from the nonstationary media inhomogeneities 
like city buildings, moving objects, hydrometeors, ionospheric layers, etc. Among the 
examples of such dispersive channels are wideband multiple access radio lines 
(mobile WiMAX, LTE), digital television (DVB-T / H), short-wave and ultra-short-
wave radio lines. 

Currently one of the most popular physical layer technologies for data transmission 
is multiplexing with orthogonal frequency division (OFDM). There is no doubt that 
this technology will be also used in future telecommunication standards.  

As a result of time-frequency dispersion of the OFDM signal such effects as 
multipath propagation, amplitude-phase fading, Doppler shift and spreading are 
observed at the receiving side. Those effects are even stronger if receiver is moving in 
a car, situated in the building or near the strong source of electromagnetic emission 
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like airport. As a consequence intercarrier (ICI) and intersimbol interferences (ISI) 
considerably worsen the quality of the received signal. Moreover ICI cannot be 
compensated or filtrated by regular digital processing methods. 

It is necessary to mention that the structure and properties of OFDM signals are 
determined by the basis, which was used for its construction (signal basis). In 
classical OFDM systems the role of such basis plays the family of rectangular 
initializing functions shifted in time and frequency. Thus OFDM signals are 
constructed as the linear combination of such basis functions with real or complex 
data symbols (determined by the signal constellation: QAM, PSK, ets.) as the 
coefficients. Channel equalization is simplified because OFDM may be viewed as 
many slowly modulated narrowband signals rather than one rapidly modulated 
wideband signal. 

In channels with time-frequency dispersion complex multiplicative interference 
affects the signal in addition to additive noise. Such interference has the factor of time 
dispersion characterized by multiplicative action in frequency domain, which is 
equivalent to the convolution with the signal in time domain. For the factor of 
frequency dispersion it is vice versa: multiplicative action in time domain and 
convolution in frequency domain. As a result signal basis is distorted, it becomes 
nonorthogonal and Nyquist theorem [2] is not fulfilled any more. 

In other words the appearance of ICI and ISI in time-frequency dispersive channels 
is caused by the loss of orthogonality between disturbed basic functions. The 
demodulation procedure in the receiver becomes nonoptimal. The leakage of 
information from every channel subcarrier to the neighboring channels takes place. 
Notably the value of this mutual interference depends on the time-frequency 
localization of signal basis functions and is determined by the support of their 
uncertainty functions. The faster decay the tails of the uncertainty function the better 
is time-frequency localization of the signal basis and thus the less is the level of ISI 
and ICI. 

The low symbol rate of OFDM systems allows to use a guard interval or cyclic 
prefix (CP) between consecutive OFDM symbols. The length of the CP - Ts is longer 
than the time dispersion of the channel. Because of that it is possible to handle time 
spreading and eliminate ISI. Thus the effect of time dispersion can be effectively 
compensated but with the loss of spectral and energy efficiency. In particular, the 
cyclic prefix coasts a loss of spectral efficiency by Ts/(Ts+T0), where T0 is the initial 
OFDM symbol duration [3]. It also implies the same order of power loss. In spite of 
several efforts [4], [5] towards the reduction of these overheads CP rests very simple 
and effective approach.  

The rectangular form of forming functions used in classical OFDM systems in time 
domain correspond to sinc(x) or sin(x)/x functions in frequency domain. It is not 
optimal from the point of ICI. The level of out-of-band emission is overrated. 

This is one of the reasons of connection breaks when a subscriber enlarges its 
velocity or when the signal/noise limit is exceeded. It causes synchronization upsets 
or inaccurate assessments of channel parameters when frequency dispersion and ICI 
are strong. 

Now we will briefly consider several known methods of ICI reduction: 
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• In telecommunication systems based on OFDM principals signal basis functions 
represent the segments of harmonics. In frequency domain they have slowly 
decaying tails. It is possible to improve the robustness of such signals against 
Doppler effects by spreading the spectrum of basic functions, e.g. by shortening 
the duration of harmonics. This results in spreading of the signal’s spectrum and in 
extension of distance between subcarriers. However such changes are not always 
allowable in terms of existing standard. In addition they do not rescue against the 
part of intercarrier interference caused by overlapping of side lobes of sinc 
functions.  

• Sometimes ICI could be additionally mitigated by adding guard intervals in the 
form of dummy subcarriers at the borders of frequency range and between 
informational subcarriers. 

• Other approach to the decision of ICI problem is based on the usage of window 
Fourier transform. In this case nothing is changed at the transmitting side but at the 
receiver the initial orthogonal FFT basis is replaced with nonorthogonal basis of 
weighted FFT with better localization in frequency domain. This method allows to 
reduce the component of ICI caused by overlapped side lobes of basis’ functions. 
However window function spreads the spectrum of each subcarrier at the receiver. 
This results in overlapping of main peaks of basic functions and again in the leak 
of information from one subcarrier to another but in different from. In addition 
refusal from orthogonality increases the noise level. 

• Next approach is based on the generalization of Nyquist-Kotel’nikov-Shannon 
sampling theorem. The main idea of this approach is based on oversampling and 
usage of series with well-localized core functions for signal interpolation. In other 
words received signal is discretized with frequency much higher than critical 
Nyquist frequency. After that for signal reconstruction so called atomic functions 
[5] are used. Family of such functions shifted in frequency domain can also be 
considered as a signal basis [6]. Because of oversampling the main lobe of atomic 
function can be selected in correspondence with frequency range of subcarrier 
channel of OFDM signal. Moreover such functions have fast decaying side lobes. 
This approach seems to be one of the most promising. Nevertheless basis 
constricted from atomic functions cannot be always made orthogonal. This 
complicates signal processing and reduces robustness against noise interference. 

From the foresighted analysis it follows that the problem of ICI reduction in mobile 
OFDM systems is still actual and does not always have satisfactory decision. 

2   Orthogonal Frequency and Time Domains Multiplexing 

The main idea our research is to use well-localized basis function instead  
of rectangular ones used in classical OFDM. The optimal localization and “tuning” of 
basis parameters reduce the out-of-band emission and mutual interference of 
subcarriers in frequency domain. 

Utilization of well-localized bases requires more complex synthesis and processing 
procedures. That is why the important part of the research is devoted to the 
development of computationally efficient methods which are comparable to discrete 
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Fourier transform (DFT) used in classical OFDM. Thus the whole scope of works 
includes the following stages: 

1. Determine the type and structure of signal basis that fulfills several important 
requirements: 

• From the digital nature of signal processing it follows that the basis should be 
discrete and defined in finite number of points (finite support of basic 
functions). This makes clearer it’s practical utilization and future technical 
realization. 

• Of cause, basis should be orthogonal. 
• Basis should have good time-frequency localization under some criteria. 
• The symmetry of basis’ functions is not an imperative requirement but there is 

no reason to make overlapping of functions stronger from one of the sides in the 
signal. 

2. After the structure of the basis was determined it was necessary to develop efficient 
methods of its synthesis. 

3. In addition to that it was necessary to explain theoretically the choice of basis 
parameters which allow to adjust localization characteristics. 

4. The matrix form of the basis gives rather straightforward approach to signal 
modulation and demodulation: these operations can be performed by vector matrix 
multiplication. However it is possible to achieve much better computational 
efficiency taking into account the structural particularities of basis’ functions.  

Steps from 1 to 4 are described in more details in works [7], [8], [9] and will be 
briefly considered in section 3. They form the mathematical framework of the 
OFTDM technology. 

The next part of the research which is on the go now is more practical and includes 
following steps: 

5. Analyze on the link level how channel conditions influence the characteristics of 
OFTDM system. In particular, it is necessary to receive bloc error rates (BLER) for 
different values of interference and block size. It will be the input for the next step. 

6. Analyze the performance of the OFDTM based system on the system level and 
compare it to classical OFDM systems. 

Future benefits of proposed approach are given in section 4. 

3   Well-Localized Weyl-Heisenberg Bases and Signal Structure 

Fourier transform is a powerful instrument of signal analysis in linear time invariant 
systems. Nevertheless it is complicated to use it for short-term or transitional 
processes when we need information about spectrum localized in time. Development 
of some universal basis (analogical to Fourier basis) which could simplify the 
processing of most types of signals is a very difficult problem [10]. Several known 
examples of such bases exit including wavelet bases, bases constructed from splines 
and atomic functions, etc. Weyl-Heisenberg bases were initially derived from Gabor 
bases and can be constructed by discrete shifts in time and frequency of initializing 
function (or family of initializing functions in more general case). 
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The quality of time-frequency localization of such bases is limited by two 
constrains: 

• Fundamental Heisenberg uncertainty principle which states that with improvement 
of localization of function in time domain we lose in frequency localization and 

vice versa. Mathematically it is described by the following relation: 2 2 1 4,t ωσ σ ≥  

where 2
tσ  and 2

ωσ  is variance in time and frequency domain correspondingly. The 

equality is attained only for Gaussian function. 
• From the Balian-Low theorem, it follows that the use of only one initializing 

function leads to the fact that the obtained Wey-Heisenberg bases are poorly 
localized in the case of maximum density of discrete time-frequency lattice. 

However the last constraint can be overcame by the use of two types of initializing 
functions in the basis and special orthogonality condition. Thus the number of basis’ 
functions doubles in compare to classical Weyl-Heizenberg basis used in OFDM. At 
the same time instead of complex QAM modulation coefficients their real and 
imaginary parts are used so that changes should be made manly in the physical layer. 
This idea was firstly proposed in the paper [11]. The main difference and  advantage 
at the same time of our approach is that the basis is initially considered in the finite-
dimensional space of N -periodical functions. N L M= ⋅ , where 2M ≥  is the 
number of subcarriers, L  - any natural number unequal zero which corresponds to the 
number of shifts in time domain. 

Generalized Weyl-Heisenberg basis [ ]NJ  and transmitted OFTDM signal ( )s t  

in discrete time can be presented in the following form 

 

[ ] [ ] [ ]
1 1 1

, , , ,
0 0 0

,  
M L L

R R I I
k l k l k l k l N

k l l

s n c n c n n Jψ ψ
− − −

= = =

= − ∈ .                          (1) 

[ ] ( ) ( ), mod

2
exp 2 ,R

k l N
n g n lM j k n

M

πψ α= − −
                           

(2) 

[ ] ( ) ( ), mod

2
/ 2 exp 2 ,I

k l N
n jg n M lM j k n

M

πψ α= − + − −
        

(3) 

[ ] [ ] [ ]{ }, ,, ,
def

R I
N k l k lJ n nψ ψ=

                                         
 (4) 

where , ,Re( )R
k l k lc a=  and , ,Im( )I

k l k lc a=  are real and imaginary parts of complex 

information QAM symbols ,k la  used in OFDM; [ ] ( )s n s nT M= ; [ ] [ ]g n g nT M=  

and [ ]2g n M+  - initializing functions; { }0,1,..., 1NJ N= − ; α  - phase parameter. 

The system of basic functions [ ]NJ  is orthogonal in terms of real scalar product 

defined on the Hilbert space of discrete functions on NJ  
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[ ] [ ] [ ] [ ]
1

0

,, Re *
N

R
n

n n n nx y x y
−

=
= ⋅

                            
(5) 

where *  is the sign of complex conjugation. 
Matrix representation of basis (4) ( ),R I=U U U  is a 2N N×  block matrix with 

blocks RU , IU  - square N N×  matrixes constructed from columns of basis’ 

functions ψ
k ,l
R = ψ

k ,l
R 0 ,...,ψ

k ,l
R N −1( )T

 and ψ
k ,l
I = ψ

k ,l
I 0 ,...,ψ

k ,l
I N −1( )T

 for all 

indexes 0,..., 1k M= − , 0,..., 1l L= − . This presentation makes easier theoretical 
investigation of the basis. In particular, orthogonality condition in matrix form is 

( ) 2Re * ,N=U U I                                                    (6) 

where 2NI  is 2 2N N×  identity matrix; signal modulation and demodulation will look 

like 

ST = UCT ; CT = Re U * ST{ }.
                                         

(7) 

It is necessary to mention that Weyl-Heisenberg basis constructed from rectangular 
functions is orthogonal in time domain only because these functions do not overlap. 
Thus this orthogonality is artificial in some sense. In real dispersive channel 
consecutive OFDM symbols will overlap and that is why it is impossible to refuse 
from cyclic prefix. In OFTDM this problem does not exits ever more. Basis functions 
can be overlapped not only in frequency but also in time domain if orthogonality 
conditions (5) or (7) are fulfilled. Time-frequency structure of OFTDM signal is 
described on Fig-1. Thus CP can be used less often mainly to divide OFTDM symbols 
and for synchronization purpose. 

In addition to that generalized Weyl-Heisenberg bases can have much better 
localization in frequency domain without the loss in spectral efficiency. Initializing 
functions [ ]g n  in (2), (3) can be selected in such a way that the matrix optU  of the 

basis will minimize the following functional on the space of orthogonal matrixes: A 

2
: min ,opt E∈

−
U

U G U
A                                                    

(8) 

where G  is the matrix of some nonorthogonal basis with desired localization 

characteristics; 
2

tr( *)
E

=A AA  is a Frobenius norm. The quality of localization can 

be estimated, for example, with the help of ambiguity function: 

A τ ,υ( ) g n g * n + τ( )
N

n=0

N −1

exp − j
2π
N

υn .  (9) 

In general case any function with necessary localization properties can be used as 
an impute to problem (8). In particular, the ambiguity function of orthogonal 
generalized Weil-Heisenberg basis constructed from Gaussian function is presented on 
Fig. 2. The size of side lobes is very small in compare to the main lobe. 
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Fig. 1. Time-frequency structure of generalized Weyl-Heisenberg basis. Basis functions in time 
domain (dotted lines) and in frequency domain (solid lines) are shown. 

 

Fig 2. Module of ambiguity function of initializing function of generalized Weyl-Heisenberg 
function constructed from Gaussian function (left) and rectangular impulse (write) 

Presented figures show two main advantages of proposed technique: firstly it is 
denser packing of the signal not only in frequency but also in time domain (Fig. 1) and, 
secondly, better localization in frequency domain (Fig. 2). 

4   Conclusions 

Of cause more simulation results are still required to justify the advantage of OFTDM 
scheme over classical OFDM. In particular in work [9] it has been already shown that 
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OFTDM signals have higher robustness against Doppler shift. Nevertheless the model 
used in that paper was rather simple and didn’t include such important blocks as 
coding, interleaving, etc. Thus our future work includes such necessary and logical 
steps as: 

• Extension of WiMAX link level model with OFTDM modulator. 
• Utilization of link level model output in system level simulator [12]. 
 
In the conclusion it is important to formulate expected advantages of OFTDM 
technology: 

• Application of OFTDM instead of OFDM on physical layer in channels with 
time-frequency dispersion improves spectral and energy efficiency. This effect is 
achieved because of additional intersymbol multiplexing used in OFTDM. 

• In OFTDM signals the level of out of band emission is lower. Thus the 
requirements on the quality of transmitter’s filter and on the guard intervals on the 
edges of the frequency range can be weaken. 

• It is possible to improve the robustness of the system against ICI an ISI and to 
adopt better to the parameters of time-frequency dispersion. 

In addition to factors mentioned above several economic benefits can be mentioned: 

• One of the main effects of proposed approach is better interference resistance of 
the system and thus better reception quality of mobile users. It means that in equal 
conditions guaranteed quality will be achieved for the lower value of signal to 
interference and noise ratio (SINR). As a result less number of base stations is 
required in a given service area. 

• Bad reception quality results in the necessity to use lower modulation indexes. 
Throughput and the number serviced subscribers go down. Thus in the same 
conditions OFTDM technology makes it possible to transmit data to larger number 
of users in compare to OFDM realisation. Increase in the maximum number of 
users with the constant number of base stations gives direct increase of profits. 

• Improvement of the quality of services is the important factor in competitive 
struggle. It stimulates the demand for the new devices with better performance 
based in particular on proposed OFDTM technology. 
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