
Aku Kolu

MVC FRAMEWORKS IN WEB DEVELOPMENT

JYVÄSKYLÄN YLIOPISTO

TIETOJENKÄSITTELYTIETEIDEN LAITOS

2012

ABSTRACT

Kolu, Aku
MVC Frameworks in Web Development
Jyväskylä: University of Jyväskylä, 2012, 28 s.
Information Systems, Bachelor’s Thesis
Supervisor(s): Hirvonen, Pertti

With the increased demand of complex, well-scalable and maintainable web
applications, the MVC architecture is increasing in popularity and frameworks
(whether they utilize the MVC architecture or not) are quickly becoming de fac-
to –standard in web development. This Bachelor’s Thesis introduces the use of
MVC architecture in web development and how several web application
frameworks make use of it. This research introduces the concepts of both the
MVC architecture and web application frameworks but does not go into the
basics of web development.

Three examples of web application frameworks that utilize the MVC ar-
chitecture are introduced. Due to the constraints provided by the size of this
research, this paper does not have a thorough comparison between the three
frameworks. Instead, it focuses on finding out how each framework provides
answer to certain complexity often required in today’s modern Web 2.0 applica-
tions.

Keywords: MVC architecture, MVC model, web application frameworks, web
development

TIIVISTELMÄ

Kolu, Aku
MVC Frameworks in Web Development
Jyväskylä: Jyväskylän yliopisto, 2010, 28 s.
Tietojärjestelmätiede, kandidaatin tutkielma
Ohjaaja(t): Hirvonen, Pertti

Monimutkaisten web-sovellusten lisääntyessä MVC-arkkitehtuuri on kasvatta-
nut räjähdysmäisesti suosiotaan ja sovelluskehyksistä on tullut kiinteä osa web-
sovelluskehitystä. Tämä kandidaatintutkielma käsittelee MVC arkkitehtuuria
osana web-sovelluskehitystä ja sitä miten tämä sitä on hyödynnetty erilaisissa
sovelluskehyksissä. Käsitteinä määritellään MVC arkkitehtuuri sekä web-
sovelluskehykset, mutta ei keskitytä web-ohjelmoinnin perusteisiin.

Tämä tutkielma esittelee kolme käytännön esimerkkiä web-
sovelluskehyksistä, joissa MVC arkkitehtuuria on hyödynnetty. Kandidaatin-
tutkielman koko huomioonottaen, tässä tutkielmassa ei tehdä perustavanlaa-
tuista vertailua näiden sovelluskehysten välillä, vaan keskitytään vastaamaan
kysymyksiin miten kukin sovelluskehys vastaa nykypäivän vaatimuksiin ja
haasteisiin.

Asiasanat: MVC-arkkitehtuuri, web-sovelluskehykset, web-sovelluskehitys

FIGURES

Figure 1: Model-View-Controller pattern .. 10

TABLE OF CONTENTS

ABSTRACT ... 2

TIIVISTELMÄ... 3

FIGURES ... 4

TABLE OF CONTENTS ... 5

1 INTRODUCTION ... 7

2 MVC ARCHITECTURE .. 9

2.1 Introduction .. 9

2.1.1 Model ... 10

2.1.2 View ... 10

2.1.3 Controller .. 11

2.2 Benefits.. 11

2.3 Controversy .. 11

2.4 Variations ... 12

2.4.1 MVP ... 12

2.4.2 MVVM ... 13

3 MVC FRAMEWORKS .. 14

3.1 What defines a web framework .. 14

3.2 Benefits of using a framework .. 15

3.3 What makes a good framework.. 16

3.3.1 Simplicity ... 16

3.3.2 Documentation.. 16

3.3.3 Performance .. 17

3.3.4 Community ... 17

3.4 Dealing with complexity ... 17

3.4.1 Object-relational mapping ... 18

3.4.2 Template engines .. 18

3.4.3 Unit testing .. 18

3.4.4 URL routing .. 19

3.4.5 Security .. 19

3.4.6 AJAX .. 20

4 MVC UTILIZATION .. 21

4.1 Ruby on Rails ... 21

4.2 ASP.NET MVC 3 .. 22

4.3 Zend Framework ... 23

5 CONCLUSION .. 25

REFERENCES ... 27

1 INTRODUCTION

Web development has progressed greatly during the last decade. As the de-
mand for high quality web applications has increased, certain patterns and ar-
chitectures have emerged to help with the increased complexity of the applica-
tions. MVC – short of Model-View-Controller – is one of these design architec-
tures and while not necessarily being de facto standard at the time of writing
this thesis, it is indeed becoming a strong player in the field of web develop-
ment.

This research will give an overview of what is the MVC model, what are
its advantages and disadvantages and how it differs from preceding design pat-
terns. As the MVC in web development is utilized in the form of web frame-
works, this research will also find out what are the intrinsic features of a good
framework; why are they used and what differentiates them from each other.
The three research problems this paper will answer are as follows: “What are
the advantages and disadvantages of the MVC architecture” will be discussed
in chapter 2. “What makes a good web application framework” will be covered
in chapter 3 and finally, “How is the MVC implemented in practice” will be
answered in chapter 4.

To fully understand the contents of this paper, some basic understanding
about web development in general is required. As the basics of web develop-
ment will not be discussed, knowledge about the stateless nature of the web,
the separation between client-side and server-side code and the basic principles
of (object-oriented) software design are essential. The research itself is done as a
literature review. Pack publishing is one of the most prolific IT book publishers
out there and it offers a lot of credible, up-to-date information about the latest
phenomena in the field of web development. However, to rule out the possibil-
ity of any biases, at least the same amount of references from other publishers
will be used. Finally, academic articles from various libraries will be used to
back up the evidence provided by the books.

The following chapter introduces the reader to the architectural model of
the MVC. Illuminating the way each component works in conjunction with the
others, the chapter explains in detail why the MVC model is so widely-used

8

today. As well as pointing out its benefits, this chapter also takes in considera-
tion the controversy MVC has received and shortly introduces several alterna-
tive architectural patterns. Throughout the paper, MVC will be referred to as
design model, architectural model or MVC pattern. The third chapter, MVC frame-
works, links the design model to the frameworks in which the MVC can be uti-
lized. As well as describing the usefulness of the web frameworks, it also points
out the most important aspects a framework needs to take into consideration in
order to fulfill the requirements of modern web applications. Finally, MVC uti-
lization compares three very popular frameworks where the architectural mod-
el is used. As each framework introduced takes a bit different approach to tack-
le the same problems, the way they are evaluated is based on how well they
fulfill the modern framework requirements introduced in the preceding chapter.

9

2 MVC ARCHITECTURE

This chapter will introduce the MVC architecture, its benefits and drawbacks.
By breaking down the architectural pattern into three parts, each part (Model,
View and Controller, respectively) will be covered in detail as well as providing
some insight about the variations of the pattern. Throughout this research,
MVC architecture will also be referred to as MVC pattern or MVC design model.

2.1 Introduction

Several years ago, in the early 2000’s, the model-view-controller pattern was
introduced to web development (Hourieh, 2008, p.6). However, according to
Freeman et al. (2011, p.10), MVC pattern was originally invented as early as in
the 1970’s as a part of a Smalltalk project to better organize some early GUI ap-
plications. While some of its original design was very Smalltalk specific, the
broad concept is applicable and very well suited to modern web applications
today. Some people also consider modern MVC being the evolution of IPO (In-
put, Processing and Output), which was the best-practice functional model of
the past era (Lecky-Thompson et al. 2004, p.243).

MVC is short of Model, View and Controller. As described by Samisa
(2009, p.31), MVC pattern enables us to break down the system into three parts,
model, view and controller, which are responsible of business logic, presenta-
tion logic and programming logic, respectively. There’s actually the fourth
component as well – the infrastructure that glues the MVC components togeth-
er – but rather than being part of the actual design model its implementation
can vary greatly depending on the web application framework, which will be
covered in the following chapter (Lecky-Thompson et al. 2004, p.243).

Although the basic principle of the pattern is relatively easy to understand,
the details of its implementation can sometimes get very complex. Figure 1
highlights the process flow of a typical request in MVC-based system: first, the
user makes an action, which is managed by the controller. Controller handles

10

the required data manipulation with the model and passes it on to the view (re-
sulting in indirect relationship between Model and View), which builds the
markup based on the delivered data and shows it to the user.

FIGURE 1: Model-View-Controller pattern (Porebski et al. 2011, p.15)

2.1.1 Model

Model encapsulates the business logic of the application. However, there’s
more than just pulling out the data from the database. Ideally, it should contain
information about the database structure and all the dependencies and relation-
ships of the database tables. (Porebski et al. 2011, p.15) Although it is not neces-
sarily so, often a model classes in MVC frameworks represent a single database
table and holds all the relevant information of the table it is representing. Thus,
all the database validation rules should be contained in the model class and all
the data validated before executing the actual database operations. If every da-
tabase table is represented by a model class, database operations like modifying,
adding or deleting the data become much easier and better organized. (Ahsanul
et al. 2008, p.8)

2.1.2 View

View is responsible for showing the data to visitors and it’s often built us-
ing HTML with little embedded code. No database operations or programming
logic should be executed here - frameworks usually have a way of passing the
relevant data to the views, which then simply present it. This should make
views interchangeable at any time, without modifying the other layers. The
general principle is that all the programming operations more sophisticated
than conditional statements or loops should be done either in the controller or
in the model. (Winesett 2010, p.10. Porebski et al. 2011, p.15).

11

2.1.3 Controller

Controller is the programming logic and the link between the view and
the model. Typically it handles the user interactions, such as GET and POST –
requests, fetching the data from the appropriate model, processing it and finally
passing it on to the right view to be displayed. It’s generally suggested to keep
controllers simple and light – complex data processing should happen in the
model. As stated in the book by Ahsanul et al. (2008, p.8), “this design philoso-
phy is sometimes referred to as ‘fat models, thin controllers’ “.

2.2 Benefits

By forcing the separation of concerns, the benefits of using the MVC pattern are
clear: the designers can work on the user interface without having to worry
about the underlying data management and the developers can focus on the
data logic without getting into the details of the presentation. As it is possible to
have multiple views use the same model, the structure also helps the develop-
ers avoid code repetition. (Hourieh 2008, p.6. Pope 2009, p.10)

Another benefit of the architecture is its scalability. In classic software de-
sign patterns where the UI elements, data logic and the programming logic
were all in the same place, the maintenance quickly became cumbersome as the
application grew in size. As all the pieces in MVC are well-defined and self-
contained, it doesn’t really matter how large the application becomes as long as
the principles of the MVC are followed rigorously. However, most frameworks
only encourage this as it would be difficult to enforce. (Freeman 2011, p.64)

2.3 Controversy

Even though MVC architecture has numerous advantages from the soft-
ware engineering point of view and it handles some of the traditional choking
points of creating and maintaining a web application, it’s not suitable for every
project. Wang (2011) criticizes that even though MVC pattern seems to be supe-
rior in comparison due to the convenience of managing the project, it comes
with the expense of cost-efficiency. For small and medium-sized applications
which tend to emphasize loading speed and runtime efficiency, MVC might not
be the best solution as it creates additional workload and makes the application
more complicated. Every time the page sends a request, it goes through the
MVC engine (controller class), resulting in marginally slower loading speeds.
Another disadvantage is that the expenditure of time is large in the early stages
of the project (Wang, 2011). Thus, if the project life cycle is relatively small and
there is little need for maintenance or further development, there’s no point in
wasting a lot of time setting up a large MVC engine.

12

Crosscutting concerns are not fully addressed in the implementation of the
MVC framework either. As per the article written by Kojarski & Lorenz (2003),
crosscutting concerns can be divided in two patterns, Inter-crosscutting and
Intra-crosscutting. “The tangling of functionality, presentation, and control
within a single dynamic page is a result of intra-crosscutting of the application’s
concerns” (Kojarski et al. 2003). Basically this means mixing up the markup,
programming logic and data logic. These problems contributed to MVC being
introduced to web development as the MVC architecture handles those prob-
lems efficiently. It’s the inter-crosscutting concerns, the aspects of the program
which rely or affect other parts of the program, which the MVC architecture
doesn’t offer a solution. According to Kojarski et al. (2011), it poses much more
severe problem. As many separate parts of the web application depend on the
underlying data structure (tables in a SQL database, for instance), the result is
code being scattered in many different files. If the data structure is updated or
modified, all the code within the application which are dependent on that par-
ticular data model will need to be updated in their respective files as well
(Kojarski et al. 2003). This can be tedious and difficult if the system is large
enough. Aspect Oriented Programming (AOP) is introduced as one of the pos-
sible solutions to this problem, but it is not covered in this paper.

While not directly being an architectural problem per se, many MVC
frameworks also pose challenges to the programmer in the form of often having
to extensively study the framework documentation to be able to use it. While
this holds true to all kinds of development tools, the switching costs in time and
money might be so steep that the benefits of switching over to a framework
need to be tangible. When the programmer new to a framework is hit by a bug,
it can take excessive amounts of time to figure out whether it’s really in the code
or in the framework itself (Abeysinghe 2009, p.48). In the latter case, it might be
really hard to find a solution if it’s possible at all, due to the way many frame-
works are designed. Often complex systems in which the frameworks are used
require very fine-grained operations and if the framework doesn’t seem to flex
to the programmer’s needs, finding a solution around it can be a challenging
task without a thorough knowledge of the framework. This is where the Inter-
net community and the other developers using the framework come in handy
as it is much likely that someone else has run into a similar problem already. An
in-depth look into the frameworks, including the introduction of some of the
popular frameworks today, will be covered in the next two chapters.

2.4 Variations

2.4.1 MVP

Model View Presenter (MVP) is a variation of MVC created to solve the prob-
lems of MVC where the structure of the model-view coupling is too complex

13

(Zhang et al. 2010). In traditional MVC, models notify views when the data is
being modified. However, MVP takes more direct approach to a stateful view
as it forces all data transfer to go via Controller, which in this context is called
Presenter (Freeman 2011, p.68).

Because MVP pattern seems to be even better for web development than
the traditional MVC, most so-called MVC frameworks in web development ac-
tually follow MVP, despite of what they are called, because usually the Control-
ler does the majority of the data transfer between the model and the view
(Porebski 2011, p.15).

2.4.2 MVVM

Model View ViewModel (MVVM) pattern originated from Microsoft in 2005 as
a modification of the MVP pattern to support event-driven programming and
to leverage benefits of the WPF data binding and Silverlight (Jarnjak, 2010).
Models and views have largely the same roles in MVVM as they do in MVP.
The most notable difference in this pattern is the view model, which is an ab-
stract representation of the UI (Freeman 2011, p.68). Model contains the data
and does not know about the view or the view model, view model is an abstrac-
tion of the view and contains all of its data, making use of a data-binding mech-
anism. It doesn’t have a reference to the view (it’s the other way around), it
simply contains all the data view makes use of, and updates it accordingly
when the properties of the elements are exposed by the view. Finally, view has
all the UI elements which are bound to view model properties (Freeman 2011,
p.68, Jarnjak 2010). Although MVVM originates from Microsoft and most of its
implementations are associated with .NET platform, frameworks for other lan-
guages exist as well. Outside of the Microsoft stack, MVVM is called MVB
(Model View Binder).

14

3 MVC FRAMEWORKS

This chapter defines web application frameworks and discusses their ben-
efits and drawbacks. The answer for the question “What makes a good web ap-
plication framework” will be provided in the following subsections of this
chapter. Finally, certain complexity issues of the modern web development will
be looked into and they will be used as a reference when the implementations
of the MVC-model are being assessed in the next chapter.

3.1 What defines a web framework

Frameworks are essentially chunks of code wrapped up using a certain archi-
tecture or design pattern that (in theory) should speed up the development pro-
cess of the web applications. Frameworks can be seen as a set of abstractions,
sort of half-ready applications or application skeletons, which you can then ex-
tend and modify to suit your needs. However, it’s all about striking a balance
between bad flexibility and a steep learning curve, for the benefits of using a
framework come with a price and their greatest benefit can also be seen as their
weakness. To be able to benefit from using a framework, one does have to com-
ply with its regulations, coding methodology and conventions. If conventions
are heavily enforced and the configuration required to set up the framework is
at minimum, the flexibility can suffer. On the other hand, if the framework re-
quires heavy configuration and knowledge to start with, it makes the learning
curve significantly steeper. (Porebski et al. 2011, p.2).

Writing code is a constant struggle between the myriad solutions to a sin-
gle problem. While not necessarily being the most optimal solutions, many
frameworks offer a set of choices for the user (in this case, the programmer). If
they are sensible choices, they make writing code much simpler (Upton 2009,
p.15). After all, in the field of web development the chances that some other
software professionals have tackled the same problem are very high so there’s
no real point in trying to reinvent the wheel (Abeysinghe 2009, p.54).

15

Large systems tend to have complex problems and the best way to solve it
is to break it down into separate, more manageable parts and it is in these
smaller parts where we find similarities to the ones already solved by other de-
velopers, even though the problems as a whole are often unique (Abeysinghe
2009, p.59). Frameworks, much like libraries, aim to solve that kind of common
problems. However, frameworks go much beyond that. According to Porebski
et al. (2011, p.2), there’s one fundamental difference between a framework and a
library; where libraries are called from your code, frameworks call your code.
Basically this means that framework is a skeleton on top of which the developer
builds the application, whereas library is a set of attachable modules which can
be used on top of the application itself.

3.2 Benefits of using a framework

Even though MVC design architecture offers general benefits already men-
tioned above, the real difference of using an MVC framework greatly depend
on the server-side language and the actual implementation of the framework in
question. It really boils down to how using the framework compensates the ar-
chitectural flaws of the scripting languages the developer is using. In PHP in
particular, one of the most fundamental disadvantages is the excessive liberty of
code, which often results in difficult, even indecipherable coding structure in
terms of reading and management (Wang, 2011). In many other programming
languages, such as C# or Java, good programming practices are enforced
through their design, but PHP requires self-discipline, which is the main differ-
ence between an experienced and inexperienced developer. The lack of self-
discipline in rapid cycle PHP development is likely to create complex and tan-
gled, `spaghetti`-style code, which is very difficult to maintain and reuse
(Lecky-Thompson 2011, p.241). By introducing a set of rules the programmer
has to follow, the MVC addresses the problems above by separating backstage
PHP code and HTML pages, thus making the program more convenient to de-
bug. Emphasis of data-abstraction promotes code reusability and the separation
of data classes make the project easier to maintain. (Wang, 2011)

Many projects where frameworks are used today require multiple pro-
grammers working in conjunction and this is where a strict set of rules and
conventions comes in handy. Especially in API design, the programmers will
have to find a common ground and make sure each team member follows the
set of rules and conventions used – ‘I did it part my way’ kind of mindset is not
going to work in a large scale project (Abeysinghe 2009, p.15). Even then, not
everyone should be working on the same thing. Different parts of the system
need to be divided to the programmers evenly and that’s often referred to as
‘separation of concerns’. Frameworks following the MVC architecture promote
so-called horizontal division where different groups take care of different as-
pects of the MVC – one group for models, one for controllers and one for views
(Abeysinghe 2009, p.15). Since web development usually involves two different

16

types of professionals, UI developers (so-called web designers) and functionality
experts (web programmers), the horizontal separation of concerns where design-
ers can be allocated to the views and programmers to the models & controllers
offers substantial benefits as long as people working in the team do not cross
the borders of their area of responsibility (Kojarski et al. 2003).

3.3 What makes a good framework

There are lots of good frameworks around and most criteria for evaluating a
good framework apply not only to frameworks but any software projects in
general (Merkel 2010, p.252). Such criteria are e.g. documentation, code quality,
performance and scalability. However, not all frameworks are good for every
project. There are small, lightweight frameworks suitable for small applications
and then there are large, feature-packed frameworks which have solutions to
very specific problems at the cost of performance. Comprehensive web frame-
works often implement tools for specific tasks in order to save time or simplify
the process, such as ORM tools, template engines, automated unit tests etc.

3.3.1 Simplicity

Frameworks simplify the software development as they handle some of the ap-
plication complexity on developers’ behalf. However, if the framework requires
a lot of knowledge or configuration, it doesn’t really simplify development any-
more. Thus, the design philosophy of many successful frameworks is convention
over configuration. This means that if the file name or locations are set according
to the framework’s conventions, the framework can find and use them automat-
ically, without having to set configurations to everything. (Abeysinghe 2009,
p.55)

3.3.2 Documentation

Good documentation is arguably the most important aspect of a good frame-
work. If the documentation is lacking, the developer might spend hours figur-
ing out a simple framework-related issue, negating the reason why frameworks
are used in the first place – to speed up the rapid development process (Merkel
2010, p.254). Most frameworks are documented but the level of documentation
can differ greatly. Some may be designed in a way that the API is all that expe-
rienced programmers need to get the required information while others may
have central document library with comprehensive tutorials, code snippets,
FAQs etc. Either way, most of the popular frameworks out there have two types
of documentation that should be taken into consideration upon choosing the
framework. Formal documentation includes the API and all its related docu-
ments put forward by the framework developers while informal documentation,

17

such as mailing list logs or forum archives, are solutions to problems asked
(and answered by) the community members and fellow framework users.
(Abeysinghe 2009, p.58)

3.3.3 Performance

Performance is an important factor in modern web applications. As discussed
in the preceding chapter, using MVC framework usually results in marginally
slower loading times. The amount of memory and cache consumed by the
framework is called footprint, which largely depends on the framework size. It’s
often a compromise between choosing a bulky but feature-rich and light but
hardly scalable framework (Abeysinghe 2009, p.50). This is where frameworks
like Zend shine, as the user can pick the most favorable parts of the framework
to adjust the footprint to his/her needs. Zend Framework will be covered in the
following chapter.

3.3.4 Community

Documentation, no matter how thorough, can never cover all the possible sce-
narios. There can be situations where the use case is so unique that only a hand-
ful of other people have done that or situations where the developer’s expertise
just isn’t enough. When that occurs, it is luxury to have someone to tell you
what to do (Abeysinghe 2009, p.57). The community around most frameworks
is divided in two; those who contribute to the framework development itself
(this is the case especially in open-source frameworks) and those who use the
framework and help others tackling the most common problems and avoiding
the pitfalls. Naturally the quality and experience of the framework developers
is an important factor as well but this subsection will focus on the community
from the framework user’s point of view. A general rule of thumb is “the more
users who have invested time and resources into learning and using the frame-
work, the easier it will be to get support if something goes wrong” (Merkel,
2010). Many open source frameworks have forums, mailing lists or IRC chan-
nels to provide community support and answers to the most common questions
regarding the popular frameworks (such as the ones introduced in the follow-
ing chapter) can easily be found in the relevant documentation, forums or at the
programming community Stackoverflow. The communities around frameworks
vary in activeness and friendliness so it’s an important factor to be considered
when selecting the framework (Abeysinghe 2009, p.57-58).

3.4 Dealing with complexity

The demands of modern web applications include, but are not limited to the
following aspects of web development. This subsection will introduce the most

18

common areas that need to be covered in well-scalable, demanding web appli-
cations. In chapter 3 it will then be discussed how the three frameworks intro-
duced in that chapter actually deal with the following areas and their complexi-
ty.

3.4.1 Object-relational mapping

Object-oriented design is the most widely-used approach in web development
today, even though many of these systems have relational back-end databases.
Object-relational mapping (ORM) is a technique that performs a mapping of the
relational database tables into programming language objects. However, this is
not possible without proper tools, for there are a few inconsistencies and differ-
ences between object-oriented and relational models. Data types, for instance,
are not fully compatible. In SQL-databases the length of the field is often de-
clared whereas many programming language simply deal with different types
of variables (e.g. strings that can be of any length). That’s why ORM tools are
included in many frameworks – to provide a simple data access that can be
used from the within the programming language.

3.4.2 Template engines

Template engines are tools that were created to help with the development of
dynamically-created pages. A typical ‘view’ (or HTML page) created with a
template engine has references to some server-side functions or variables. The
original idea behind templates was to separate the UI from the business logic
(similar to two-tier architecture) and make markup code look clean. However,
rather than enforcing the principle of separation, most template engines only
encourage it. In the world of strict deadlines, it’s often easier to cut the corners
and slip some business logic into the template, resulting in tangled and messy
code. (Parr, 2004)

Template engines were very popular back in the days when web applica-
tion frameworks were seldom used. However, they are not nearly always used
in MVC frameworks as they tend to divide opinions. They are of limited use-
fulness to the developers and tend to have their own set of tags, in some cases
even their own language which steepens the learning curve. Still, a correctly
used template engine can be a valuable tool and whilst most MVC frameworks
don’t ship with one, they usually have the option to include it as a plugin.
(Porebski 2011, p.249).

3.4.3 Unit testing

There are myriad types of testing in software development cycle. Unit testing
are precise and only cover small bits of code related to algorithms, business log-
ic or other back-end infrastructure. Integration testing covers broader area, how

19

different classes or entities in the project work with each other. Finally, user ac-
ceptance testing happens when the customer starts using the final product.
(Freeman et al. 2011, p.78, Merkel 2010, p.291)

While tests covering broad areas of the project can seldom be automated,
unit test automation is often supported out-of-the-box by the frameworks. Even
though unit testing is always optional, it can provide tremendous support for
the application development. The goal of testing is to catch bugs within the
software but the cost and simplicity of fixing the bug often depend on when is
the testing done. As the unit tests are usually automatic once they have been set
up, the developers can catch bugs at the early stages and fixing them will be
relatively easy and cheap. Bugs that are discovered later during integration or
user acceptance testing will often require a professional to discover the problem
and fix it (Merkel 2010, p.294). That’s why automated unit tests are considered
an important part of a successful web framework.

Successful unit testing is often defined by several guidelines: only test
small parts of the code at a time, nothing larger than a class; isolate the testing
from the production code; and finally, running the test must yield automatic
pass/fail results (Galloway et al. 2011, p.292). In agile software development,
and XP (Extreme Programming), unit testing is the basis of writing an applica-
tion. Unlike in traditional software development, the tests in XP are defined up
front. This approach is called TDD (Test-Driven-Development). As the agile
software development has grown in popularity during the last few years, many
frameworks today provide support for easy and fast unit testing.

3.4.4 URL routing

Before the MVC architecture was used, URLs usually represented the actual
files on the server hard disk. However, with MVC this doesn’t make sense as
the user requests are processed by controller classes. URL routing has two func-
tions: examine the incoming URLs to allocate the request to the correct control-
ler and action and generate outgoing URLs that correspond to controller actions
to be rendered in HTML. This allows the developer to create user-friendly
URLs that are short, easy to type and reflect the site structure. Even though
most modern MVC frameworks have URL routing implemented automatically,
it is definitely worth mentioning as a core feature. After all, the URL is a user
interface for the Web like any other, even though it seldom gets much attention.
(Freeman et al. 2011, p.325, Galloway et al. 2011, p.213)

3.4.5 Security

Security is an important matter as disregarding security issues can lead to seri-
ous problems. Because its effects might not be visible until someone exploits the
vulnerabilities, the security enforcement might be one of the best reasons to use
a good framework. Security issues can also be fairly complex; the inexperienced
programmers benefit the most as they might otherwise leave security vulnera-

20

bilities or pigeon holes to their applications but it is also valuable for the sea-
soned veterans as it saves time not having to write them from scratch. (Porebski
2011, p.229)

While most developers know how to prevent SQL injection attacks (many
programming languages actually offer specific functions for the job), preventing
XSS (cross site scripting) or CSRF (cross-site request forgery) attacks is a bit
more complicated. XSS attacks can be done by exploiting a vulnerability which
allows the execution of JavaScript code on the webpage. Escaping, filtering or
sanitizing the HTML by validation can eliminate some XSS vulnerabilities, but
writing the sanitization functions can be tedious. CSRF attacks can be carried
out by manipulating forms and many developers have problems defending
against them as it takes so much knowledge how to do it (Porebski 2011, p.244).
Fortunately, many frameworks have the tools to prevent against both XSS and
CSRF attacks so the developers can focus on writing the content of their appli-
cations instead of reinventing the wheel in the security matters.

3.4.6 AJAX

AJAX (Asynchronous JavaScript and XML) is a combination of two technolo-
gies and it’s used to communicate with the server without having to refresh the
whole webpage. JavaScript’s XMLHttpRequest object, provided by modern
browsers, can be sent back to the server asynchronously, meaning that the
webpage doesn’t stall the functionality while waiting for the response (Rajsek-
har 2008, p.178). This is the basis for all modern web applications as it enhances
the user experience when only the required parts of the page can be loaded
separately without resetting text fields, cursor position etc. The benefits are not
limited to better user experience as it also increases performance by saving
bandwidth. (Hourieh 2008, p.94). Most modern web application frameworks
support AJAX out-of-the-box to some extent, by providing helpers and widgets
built around the one or more AJAX libraries.

21

4 MVC UTILIZATION

This chapter will focus on three very popular frameworks that utilize the MVC
pattern, Ruby on Rails, .NET MVC 3 and Zend Framework. Rather than com-
paring them with each other in detail, the following sections will find out how
certain complexity (introduced in the previous chapter) is met. It should be not-
ed that at the time of writing this paper, new versions from both .NET MVC
and Zend Framework have just been released (MVC 4 and ZF2, respectively)
but this research will focus on the prevalent versions of the respective frame-
works.

4.1 Ruby on Rails

Ruby on Rails (RoR), a full-stack web application framework written in Ruby
was developed in 2004 by David Heinemeier Hansson of 37signals (Langley,
2008). It follows MVC architecture and its features include full object-oriented
design, support for Web 2.0 features, RESTful web services and AJAX, making
it well-suited for projects that require scalability (Viswanathan, 2008).

Like many other web frameworks, RoR favors convention over configura-
tion. In this case, not only does it create a skeleton application but it also stocks
them with defaults so the developer doesn’t have to deal with messy XML con-
figuration files (Holzner 2007, p.89). It doesn’t stop there, Rails is as much a set
of guidelines and a way of writing an application as it is a framework. In addi-
tion to MVC architecture, RoR embodies the Agile Manifesto and is designed
with immediate feedback in development cycle, REST-based design and test-
driven development in mind (Benson 2008, p.22). RoR also implements a set of
high-level modules, so-called subframeworks which the developer is using most
of the time. ActiveRecord, ActionView and ActionController are such modules
for the M, V and C, respectively (Thomas et al. 2007, p.229).

ActiveRecord is an ORM-tool which establishes the connection between
the domain objects and the database. AR classes receive their attributes directly

22

from the databases and Rails handles the generation of classes automatically. If
the developer follows Rails naming conventions with the tables, no configura-
tion for running the ORM tool is required as would be the case with traditional
ORM tools (Bächle et al. 2007).

ActionView encapsulates the functionality to render templates, usually
HTML, XML or JavaScript back to the user. Comparable to other template en-
gines such as .NET Razor, ActionView separates the code with <%...%> -tags
inside of which the code fragments are placed. To prevent putting too much
code in template files, Rails provides helpers, small modules containing methods
that assist the view. By isolating these methods from the view, the code can be
tested as individual units and the same methods can be used in different views.

Finally, ActionController is where the programming logic in Rails takes
place and it handles the URL routing and other standard controller actions.
However, Rails differs from many other frameworks by providing resources, a
macro-route facility for a RESTful approach. It makes use of HTTPs request and
response-codes, GET, POST, PUT and DELETE, promoting application scalabil-
ity. (Thomas et al. 2007, p.409-410)

The best available RoR documentation is available at Ruby on Rails web-
site, api.rubyonrails.org. It features the full API but also getting started –guides
and several tutorials for building RoR web applications. There is also a Google
group, Ruby on Rails Talk, where Rails users seek help and discuss the frame-
work-related matters. Blog posts about RoR are gathered under one roof, called
Planet Ruby on Rails and there are also IRC channels for real-time conversation.
(rubyonrails.org, 2012)

4.2 ASP.NET MVC 3

Scott Guhrie of Microsoft designed the prototype of ASP.NET MVC back in
2007 to create an application that supports the MVC-design. The prevalent web
application framework, ASP.NET Web Forms supported two layers of abstrac-
tion and attempted to hide both HTTP and HTML by modeling the UI as a hi-
erarchy of server-side control objects in order to make web development feel
exactly the same as Windows Forms development (Freeman et al. 2011, p.5). In
theory it was possible to separate concerns following the MVC design pattern
but to do that, each developer had to build an implementation of their own.

After its initial release, ASP.NET MVC became so popular that it was de-
veloped even further, resulting in MVC 2 and MVC 3 being released within two
years of the first version. Although the previous versions of ASP.NET MVC im-
plemented the design model efficiently, MVC 3 makes learning it even easier.
Its other improvements over previous versions include extending the attribute-
driven validation system, annotation support, native support for jQuery AJAX
and JSON bindings. (Galloway et al. 2011, p.4-5)

ASP.NET MVC works in tune with HTTP, just like Ruby on Rails, giving
the developer total control over the requests passing between the browser and

23

the server and URL-routing is implemented automatically. This means that
clean URLs are provided by default, without the need of extra configuration.
However, unlike in Ruby on Rails, ASP.NET MVC does not have ORM-tools or
built-in automatic testing tools included. This is because .NET platform already
offers a wide range of tools for both jobs: object-relational mapping can be han-
dled with NHibernate, Subsonic or Microsoft’s Entity Framework and for unit
testing there are three different methods the developer can choose from: NUnit
and XUnit are open source test tools and Microsoft also has its own MSTest.
With ASP.NET MVC it’s also possible to create UI automation tests by writing
test scripts that simulate user interactions in a web page.

One strongpoint of MVC 3 is its template engine, called Razor. It ships
out-of-the-box, being part of the framework and it simplifies the generation of
views greatly. Previous versions of the Microsoft’s MVC-model had Web Forms
View Engine which used the same files and syntax as Microsoft’s previous de-
sign architecture, Web Forms. However, the syntax was heavily XML-like and
often difficult and awkward to read. Razor simplifies this syntax and uses @-
symbol to separate code snippets from the HTML markup, thus making the
syntax easier to type and read. (Galloway et al. 2011, p.52).

Where ASP.NET MVC 3 really stands out is the approach to Asynchro-
nous Programming Model (APM). With the help of asynchronous controllers
the developer can speed-up performance if multiple simultaneous I/O bound
requests are required. For instance, if multiple non-interdependent web service
requests are required, asynchronous controllers can greatly improve perfor-
mance. However, this comes at the cost of greatly increased complexity, for
parallel asynchronous operations tend to yield all kinds of problems, not least
being extremely difficult to test and debug properly. Still, albeit they address a
niche problem most MVC applications don’t suffer from, it may well be a decid-
ing factor for the platform & programming language if the application-to-be is
known to be large and complex. (Freeman et al. 2011, p.490)

The community and documentation of ASP.NET MVC 3 are, due to its
popularity, large and comprehensive. The Microsoft Developer Network
(MSDN) is a good general resource for ASP.NET and its MVC framework. Be-
cause ASP.NET MVC is open source, its source code can be seen (and down-
loaded) at CodePlex. (Freeman 2011, p.13)

4.3 Zend Framework

Zend Framework (ZF) is a PHP framework created by two core developers of
PHP, Andi Gutmans and Zeev Suraski. ZF follows solid object oriented design
principle and its key features are simplicity, component-based and loosely-
coupled architecture (Porebski 2011, p.9). Loosely coupled means that the com-
ponents in ZF have few (if any) dependencies on other components and the de-
velopers can cherry-pick the most suitable ones for their projects, thus enhanc-
ing flexibility. Following this design principle, the use of MVC architecture is

24

also optional. Other notable out-of-the-box features include authentica-
tion/authorization, database abstraction, session management and web services.
(Pope 2009, p.4)

ZF doesn’t have a fully functional ORM tools but it does provide a light-
weight wrapper for the PDO (PHP Data Objects), an extension that provides a
data-access interface. Zend_Db is a family of classes which manages the tables
and their relations allowing the execution of SQL queries in an object-oriented
way but if that’s not enough for the developer’s needs, Propel and Doctrine are
notable ORM solutions, which can easily be installed as plugins (PHP Docu-
mentation, 2012; Porebski 2011, p.58).

The use of template engines is entirely optional in ZF. It’s not included as
a core feature, but ZF provides out-of-the-box support for Smarty, one of the
most popular template engines written in PHP. If the developer can cope with
having to learn additional (Smarty) syntax, using it may simplify the views.
However, Smarty (amongst other PHP template engines) has received some
criticism as it replicates the features already offered by PHP by replacing the
smarty code with regular PHP code at runtime, which causes additional pro-
cessing overhead when each view is practically rendered twice. (Porebski 2011,
p.263)

In addition, Zend Technologies provides two products to go with the
framework, Zend Server and Zend Studio. Zend Server is a PHP application
server which includes PHP, code accelerator and monitoring & problem diag-
nostics tool and support for the most popular databases. It also automates soft-
ware updates, hotfixes and security patches for all platforms (Business Wire,
2009). Zend Server is not required to run ZF but it offers substantial benefits to
the developers. For instance, Zend_Log and Zend_Cache –tools help with log-
ging and caching respectively, and its Plaform as a Service –solution helps
streamlining the rapid deployment of web applications (Grehan, 2011). Opti-
mized for running ZF, using Zend Server can improve performance as much as
200%, according to PR Newswire’s article. Zend Studio is a commercial IDE
designed for coding PHP. It has all the standard functionalities of an advanced
IDE tool, from code completion to smart bracket matching but in addition, it
offers CVS (code versioning system) integration for both Git and Subversion
and unit test support (Gibbs, 2003). According to the article published in PR
Newswire (2011), Zend studio can provide 67% faster default startup on aver-
age, 40% smaller default disk footprint and a lower memory footprint.

Evans (2008, p.5) describes the active community of ZF to be its strongest
asset. Not only does ZF website (framework.zend.com) house the full documenta-
tion and API but also a bug-tracking system, tutorials and pointers to ZF user
groups, IRC channels, mailing lists etc. Finally, there’s a developer wiki for the
contributors of the framework – the framework being open-ended, anyone can
suggest features and start contributing. (Evans 2008, p.5, framework.zend.com,
2012)

25

5 CONCLUSION

This research discussed the MVC architecture as a concept, providing insight to
its benefits and drawbacks. Several variations of the pattern were also intro-
duced and it was noted that many web application frameworks which utilize
the MVC architecture actually use some of the variations of the original model.
As provided by the section 2.2., it is evident why the MVC is a very popular
phenomenon today. Even though the architectural model doesn’t provide a
clean solution to crosscutting concerns, the advantages far outweigh the disad-
vantages in web applications that meet the certain level of complexity and need
to be well scalable and easily maintained.

Another area of research, web application frameworks, was also discussed
in this paper. Even though they mostly utilize the MVC pattern, the real benefit
comes from dealing with complexity often required by modern web applica-
tions so that the programmer does not have to reinvent the wheel. Such issues
are object-relational mapping, template engines, URL routing, AJAX and securi-
ty, for instance.

Finally, three examples were provided of some popular frameworks that
utilize the MVC pattern. The literature reviewed in this research did not have
critical comparison between the frameworks – they rather focused on each re-
spective framework they were written about. Thus, this research did not go into
details of comparing each part of the frameworks but rather tried to provide
information how the three frameworks provided answers to aforementioned
complexity.

In addition to reviewing the benefits and controversy of the MVC architec-
ture and web application frameworks, the conclusion of this paper is that when
selecting a framework, it mostly boils down to the selection of server-side
scripting language. There are myriad frameworks to each programming lan-
guage that can be used on the back-end and while this research only reviewed
three of them, it was discovered that none of the examples were really lacking
in comparison. The open and community-driven nature of the frameworks en-
sures that high-demand features get implemented efficiently.

26

Pursuing the same subject, a more thorough follow-up about the web de-
sign architectures and web application frameworks could be used in a Pro
Gradu –research. Because the use of the MVC architecture is still rather new in
web development, academic research about the subject is nearly nonexistent.
For further research, the following topics are suggested:

• Comparison between MVC architecture and Java servlets in web devel-
opment

• The cost-efficiency and learning curve of the MVC frameworks
• Empirical study: how open-source benefits the MVC frameworks and its

users

27

REFERENCES

Abeysinghe, S. (2009). PHP Team Development. Packt Publishing.

Ahsanul, B., Anupom S. (2008). CakePHP Application Development. Packt Publis-
hing.

Benson, E. (2008). The Art of Rails. Wiley Publishing.

Bächle, M., Kirchberg, P. (2007). Ruby on Rails. Software, IEEE. 24:6.

Evans, C. (2008). php|architect’s Guide to Programming with Zend Framework.

Marco Tabini & Associates.

Faster and leaner zend studio 9.0 PHP IDE paves the way to develop and debug
web apps more productively in cloud and on-premise. (2011, Nov 15). PR
Newswire.

Freeman, A., Sanderson S. (2011). Pro ASP.NET MVC 3 Framework, Third Edition.
Apress.

Galloway, J., Haack, P., Wilson, B., Allen, K. Scott. (2011). Professional ASP.NET
MVC 3. p.5-6. Wiley Publishing.

Gibbs, M. (2003). The zen of zend studio. Network World, 20(13), 38-38.

Grehan, R. (2011). Fabulous PHP Frameworks : Zend Framework. Infor-
world.Com.

Hourieh, A. (2008). Learning Website Development with Django. Packt Publishing.

Holzner, S. (2007). Beginning Ruby on Rails. Wiley Publishing.

Jarnjak, F. (2010). Flexible GUI in robotics applications using Windows Presentation
Foundation framework and Model View ViewModel pattern. New Trends in Infor-
mation Science and Service Science (NISS).

Kojarski, S., Lorenz, D. (2003). Domain Driven Web Development With WebJinn.

Langley, N. (2008). Ruby on Rails takes Rest from Soap. Computer Weekly (Feb 12,
2008) : 34.

Lecky-Thompson, E., Eide-Goodman, H., Nowicki, S., Cove, A. (2004) Professio-

nal PHP5. Wiley Publishing.

28

Merkel, D. (2010). Expert PHP 5 Tools. Packt Publishing.

Parr, T. (2004). World Wide Web: Proceedings of the 13th international conference,
WWW '04, 2004.

Pope, K. (2009). Zend Framework 1.8 Web Application Development. Packt Pu-
blishing.

PHP Documentation (2012). http://php.net 04.10.2012.

Porebski, B., Przytalski, K., Nowak, L. (2011). Building PHP Applications with
Symfony, CakePHP, and Zend Framework. Wiley Publishing.

Rajshekar, A. P. (2008). Building Dynamic Web 2.0 Websites with Ruby on Rails.

Packt Publishing.

Ruby on Rails documentation. (2012). http://rubyonrails.org 14.10.2012.

Thomas, D., Hansson, D. (2007). Agile Web Development with Rails Second Edition.

The Pragmatic Programmers.

Upton, D. (2009). Codeigniter 1.7. Packt Publishing.

Wang, G. (2011). Application of lightweight MVC-like structure in PHP.

Viswanathan, V. (2008). Rapid Web Application Development: A Ruby On Rails Tu-
torial. Software, IEEE. 25:6.

Winesett, J. (2010). Agile Web Application Development With Yii 1.1 and PHP5.

Packt Publishing.

Zend Framework documentation. (2012). http://framework.zend.com
18.10.2012.

Zend server 5.6: Mac developers get a new tool for rapid web application deve-
lopment using PHP. (2012, Jan 19). PR Newswire.

Zhang, Y., Yanjing, L. (2010). An architecture and implement model for Model-View-
Presenter pattern. Computer Science and Information Technology (ICCSIT).

