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ABSTRACT

Haanpää, Tomi
Approximation Method for Computationally Expensive Nonconvex Multiobjec-
tive Optimization Problems
Jyväskylä: University of Jyväskylä, 2012, 180 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 157)
ISBN 978-951-39-4967-9 (nid.)
ISBN 978-951-39-4968-6 (PDF)
Finnish summary
Diss.

The importance of optimization for decision makers solving real-life engineering
problems has increased in recent decades. In the literature, methods created for
multiobjective optimization problems are typically directed for problems where
objective function values can be calculated fast. If function evaluations are com-
putationally expensive, i.e. time-consuming, then only few methods are available
and, usually, they involve assumptions like convex objective functions. To be able
to solve more demanding multiobjective optimization problems in future, both
the nonconvexity and the computational cost of the problem in question must
be considered. In this thesis, an approximation method, Interactive HyperBox
Exploration (IHBE), is proposed for computationally expensive nonconvex mul-
tiobjective optimization problems.

The IHBE method has been developed so that a decision maker can con-
veniently investigate the objective space and learn about possibilities and limita-
tions of solutions which are available for the multiobjective optimization problem
at hand. In order to lessen the computational expense of the problem, an approx-
imation of the Pareto front is used in the method. The approximation is based
on a surrogate function and pre-calculated Pareto optimal objective vectors. By
specifying desirable upper and lower bounds for the vectors, the decision maker
makes queries about what kind of approximated Pareto optimal objective vectors
are available. The method either presents approximated Pareto optimal objective
vectors satisfying the bounds or helps the decision maker in setting the bounds
in a way that approximated Pareto optimal objective vectors can be found.

Keywords: Multiobjective optimization, computational cost, computational ef-
ficiency, Pareto front approximation, surrogate function, interactive
decision making, decision maker, psychological convergence, Pareto
dominance, Pareto optimality.
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1 INTRODUCTION

Multiobjective optimization [123] has been created for real-life problems in which
several conflicting goals, such as the cost of the product to be minimized and
the profit of the product to be maximized, are to be considered simultaneously.
Increased computation power has motivated engineers in various real-life ap-
plication areas to model more and more complex systems mathematically in an
attempt to find an optimal (i.e. “the best”) solution to a problem for which it is
not yet known. In practice, the complexity means that a great number of calcula-
tions must be done in order to solve the problem. Typically, for the calculations,
simulators are used, and a single simulation can take a considerable amount of
time, see e.g. [5, 60]. In this thesis, problems for which the calculations are time-
consuming are called computationally expensive (costly) problems.

Methods created in the seventies, eighties and nineties for multiobjective
optimization problems are not necessarily in themselves best suited for today’s
computationally expensive problems. During the 21st century, multiobjective op-
timization using evolutionary algorithms [33, 43, 44] has become popular and
commonly used, but the applicability of the methods for computationally expen-
sive multiobjective problems still requires further developments. The time re-
quired to solve these problems is still a challenge for the methods and algorithms.
In the worst case, it can take several days for the methods to solve the problem
because of the time-consuming calculations. This may not be acceptable, for ex-
ample, in radio therapy treatment planning [158]. However, in numerical math-
ematics and statistics, so-called surrogate (regression) functions [28, 53, 160, 181]
have been developed for problems in which estimates are required. The estimate
can concern, for example, the growth of the population of a country over certain
years or even in the future based on some numeric data. This leads to the topic
of this thesis.

In this thesis, a new method, Interactive HyperBox Exploration (IHBE), is
proposed for computationally expensive multiobjective problems. The method
is based on a surrogate function which approximates (generates educated guesses
of) optimal solutions to the problem at hand. In fact, the use of surrogate func-
tions in multiobjective optimization is introduced in a new and innovative way in
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this thesis and opens doors for methods to be used for computationally expensive
multiobjective optimization problems. These methods were originally created for
computationally inexpensive problems, for which calculation of solutions is fast.
To mention some advantages of the IHBE method, approximated solutions for com-
putationally expensive multiobjective optimization problems can be calculated in
a reasonable time, and numerical details such as approximated trade-off rates for
the solutions can be calculated without a need for long computation times.

In what follows, first, in Section 1.1, the mathematical notation and termi-
nology used in this thesis are fixed. Then, the basics of multiobjective optimiza-
tion, interactive methods and the decision maker are briefly discussed in Sec-
tion 1.2. In order to beat the time challenge in multiobjective optimization prob-
lems, so-called Pareto front of the multiobjective optimization problem is approx-
imated by a surrogate function. This is the topic in Section 1.3. Then, surrogate
functions are briefly discussed in Section 1.4. Finally, in Section 1.5, the structure
and the contributions of this thesis are outlined.

1.1 Mathematical Notation and Terminology Used

In this thesis, we assume that the Euclidian vector space Rn is familiar for the
reader. A vector x ∈ Rn is denoted by (x1, x2, . . . , xn)T, where xj is called the jth
coordinate value of the vector x. If there is an index i for a vector x ∈ Rn, then
the index is denoted by a superscript xi.

A dot product between vectors x, y ∈ Rn is a real number

〈x, y〉 :=
n

∑
i=1

xiyi

and a norm of x is a real number ‖x‖ :=
√
〈x, x〉. In addition, vectors x and y are

said to be perpendicular if the dot product 〈x, y〉 is equal to zero.
The following sets have important roles in this thesis. The positive orthant

of Rn is the set Rn
+ := {x ∈ Rn : xj ≥ 0 for all j = 1, . . . , n}. Respectively, the

negative orthant of Rn is the set Rn
− := {x ∈ Rn : xj ≤ 0 for all j = 1, . . . , n}. Let

x ∈ Rn and r ≥ 0. Then a set B(x, r) := {x′ : ‖x − x′‖ < r} is called an open ball.
In what follows, let A ⊂ Rn, A �= ∅. A vector x ∈ Rn is called

– an interior vector of A if there exists an open ball B(x, r), r > 0, so that
B(x, r) ⊂ A; the set of interior vectors of A (the interior of A) is denoted
by int A,

– an exterior vector of A if there exists an open ball B(x, r), r > 0, so that
B(x, r)∩ A = ∅; the set of exterior vectors of A (the exterior of A) is denoted
by ext A,

– a boundary vector of A if it is neither an exterior nor an interior vector of A;
the set of boundary vectors of A (the boundary of A) is denoted by ∂A,

– a limit vector of A if for all r > 0 there exists ar ∈ A so that ar ∈ B(x, r) \ {x}.
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The set A is called

– open if int A = A,
– closed if the complement of A, that is, AC := {x ∈ Rn : x �∈ A}, is open,
– bounded if there exist r > 0 and x ∈ Rn so that A ⊂ B(x, r),
– compact if A is closed and bounded,
– an open neighborhood of x ∈ Rn if A is open and x ∈ A,
– convex if every closed line segment [a1, a2] := {x ∈ Rn : x = λa1 + (1 −

λ)a2, λ ∈ [0, 1]} of A, where a1, a2 ∈ A, is a subset of A,
– nonconvex if it is not convex,
– disconnected if there exist nonempty open sets B, C ⊂ Rn so that A ∩ B �= ∅,

A ∩ C �= ∅, B ∩ C �= ∅ and A ⊂ B ∪ C,
– connected if it is not disconnected.

For a set A ⊂ Rn, the following sets are essential. The closure of A is the set A :=
A ∪ {x ∈ Rn : x is a limit vector of A}. The convex hull of A is a set CH A :=

⋂
B,

B ⊂ Rn is a convex set and A ⊂ B. A subset B of A is called relatively open, if there
exists an open set C ⊂ Rn so that A ∩ C = B. Similarly, a subset B of A is called
relatively closed, if there exists a closed set C ⊂ Rn so that A ∩ C = B.

A function f : Rn → R is continuous if for each open set B ⊂ R the preim-
age f {−1}(B) := {x ∈ Rn : f (x) ∈ B} is open. Function f : Rn → Rk is said to be
differentiable at a ∈ Rn if there exists a linear transformation L : Rn → Rk so that

lim
h→0

‖ f (a + h)− f (a)− L(h)‖
‖h‖ = 0.

The linear transformation L is denoted by D f (a) and called derivative of f at a. If
the derivate exists for all a ∈ A, then function f is called differentiable on A.

Let a function f be real valued (i.e. f : Rn → R) and a ∈ Rn. If the limit

lim
h→0

f ((a1, . . . , ai + h, . . . , an)T)− f ((a1, . . . , ai, . . . , an)T)

h
=:

∂ f
∂ai

(a)

exists, then the limit is called the ith partial derivative of f at a. The vector of partial
derivatives at a is called a gradient of f at a and denoted by ∇ f (a). The function
f is called convex on A if the epigraph epi f := {(a, α) ∈ A × R : f (a) ≥ α} is a
convex set. Respectively, function f is called nonconvex if it is not convex. On the
other hand, function f is called concave on A, if the hypograph hyp f := {(a, α) ∈
A × R : f (a) ≤ α} is a convex set.

1.2 Multiobjective optimization

In this section, basics of multiobjective optimization are discussed. A problem
formulation considered in this thesis is given and interactive methods for mul-
tiobjective optimization problems involving a decision maker are briefly intro-
duced.
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A multiobjective optimization problem is a problem in which several ob-
jective function values are optimized simultaneously [123]. More formally, let S
be a nonempty set called a feasible set in the space Rn, which is called a decision
(design,variable) space. Let the function f be a vector-valued function defined on
S, that is, f : S → Rk,

f (x) = ( f1(x), f2(x), . . . , fk(x))
T,

where real valued functions fi, i = 1, . . . , k, defined on S are called objective func-
tions. The space Rk is called objective (outcome) space and vectors in it are called
objective(outcome) vectors. A vector f (x) is called a feasible objective vector (outcome)
and the image f (S) is called a feasible set in Rk. An objective vector z ∈ Rk is
called infeasible, if z �∈ f (S).

In this thesis, the MultiObjective Optimization (MOO) problem considered
has the form

min
x∈S

f (x),

where every continuous (nonconvex) objective function fi is assumed to be min-
imized simultaneously over a (nonconvex) set S. A MOO problem is called non-
convex if some of the objective functions is nonconvex or S is nonconvex. Respec-
tively, the problem is convex if every objective function is convex and S is convex.
A unique set of solutions to the MOO problem (no matter whether or not it is con-
vex) is a set consisting of feasible objective vectors satisfying the so-called Pareto
optimality.

Definition 1 (Pareto optimality). A decision vector x ∈ S is called a Pareto optimal
decision vector if there does not exist another decision vector x̄ ∈ S so that fi(x̄) ≤
fi(x) for all i = 1, . . . , k and f (x̄) �= f (x). Respectively, a vector f (x) is called a
Pareto optimal objective vector, if the vector x is a Pareto optimal decision vector.
We call the set of Pareto optimal objective vectors on f (S) a Pareto front, and we
denote it by PF( f , S).

In Figure 1, we have illustrated a Pareto front PF( f , S) of a nonconvex MOO
problem by black bold curves. Note that the front may contain infinitely many
vectors, which are in the mathematical sense equally good.

The ideal vector of the Pareto front is

ideal :=
(

inf
z∈PF( f ,S)

z1, . . . , inf
z∈PF( f ,S)

zk

)T

.

Respectively, the nadir vector of the Pareto front is

nadir :=

(
sup

z∈PF( f ,S)
z1, . . . , sup

z∈PF( f ,S)
zk

)T

.

For vector-wise comparisons in subsets of the objective space, a concept of
dominance is essential and in this thesis we consider the following:



17

FIGURE 1 A Pareto front PF( f , S) illustrated in R2.

Definition 2 (Pareto dominance). Let Z be a nonempty subset of the objective
space. A vector z ∈ Z is said to be nondominated in the set Z if there does not exist
another vector z̄ ∈ Z so that z̄i ≤ zi for all i = 1, . . . , k and z̄ �= z. Otherwise, the
vector z is said to be dominated (by vector z̄, or vector z̄ dominates vector z) in the
set Z. We denote the set of nondominated vectors of Z by Z∗. In addition, we say
that the set Z is nondominated if Z = Z∗.

In this thesis, solving the MOO problem means that the entire Pareto front is cal-
culated. However, in practical (engineering type of) MOO problems, there is no
need to calculate the entire Pareto front. In other words, a vector in the Pareto
front considered to be implemented in practice is called a compromise solution
(preferred solution) to the MOO problem. In this thesis, the process of selecting
the compromise solution in one way or another is called a solution process. To
calculate a compromise solution, several methods have been proposed in the
literature of Multiple Criteria Decision Making (MCDM). To mention the most
well-known of these, achievement (scalarizing) function methods [188], the ε-
constraint method [30, 59] and the weighted sum method [52, 198] are often used
in the literature. However, in this thesis, the search for a compromise solution
to the MOO problem with the IHBE method is done interactively involving a hu-
man decision maker. Here, the word interactively means that the IHBE method is
classified to the fourth class of the methods presented in [123] (1. no-preference
methods, 2. a posteriori methods, 3. a priori methods, 4. interactive methods).
The decision maker is assumed to be an expert on the application area related to
the MOO problem. In other words, the decision maker knows and understands
the meanings of objective function values of the problem in practice.

In the literature, well-known interactive methods include GUESS [24], NIM-
BUS [124, 126, 129], STEM [15] and STOM [135, 136] (for method comparisons,
see [9, 23, 25, 36, 82, 103, 125, 183]). To put it briefly, the idea of an interactive
method is that the decision maker selects the compromise solution based on his
or her preferences, which may evolve during the process. Typically, the compro-
mise solution will be found by taking the following steps iteratively [131]):

(1) present a starting Pareto optimal objective vector to the decision maker,
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(2) ask for preference information from the decision maker,
(3) calculate one or more new objective vectors according to the preferences and

present it or them with additional information, if available, to the decision
maker,

(4) ask the decision maker to select the best one so far, and stop if the decision
maker is satisfied. Otherwise, go to step (2).

Based on the four basic steps introduced above, the solution process with interac-
tive methods can be divided into two phases [131]: a learning phase and a deci-
sion phase, which can also be used iteratively. In this thesis, the IHBE method is
focused to the learning phase, meaning that it is especially created for supporting
and helping the decision maker in learning about the problem and Pareto opti-
mal objective vectors in relation to the preferences the decision maker may have.
Then, based on the facts learned, the decision maker may be able to make a final
decision about the compromise solution to the MOO problem while being confi-
dent about the decision. In this thesis, the construction of the IHBE method is to
be done from the decision maker’s point of view in order to create a method that
most decision makers would like to use. This means that the method should be
easy, understandable and useful in searching for desirable compromise solutions
to MOO problems.

It is the decision maker, who uses the IHBE method for searching for the
compromise solution. In order to make this possible in practice, an analyst (a
human or a computer program, see e.g. [123]) is also required and is responsible
for the mathematical side of the solution process with the IHBE method.

Now, we have introduced the basics of the multiobjective optimization that
are required in the IHBE method. For further details of multiobjective optimiza-
tion, we refer to [20, 46, 123, 165, 176, 194] and references therein.

1.3 Approximating Pareto Front

In this section, the topic is an approximation to be used in the IHBE method.
First, we discuss why some MOO problems are computationally expensive and
then we point out the main concern, which may arise when a decision maker
is searching for a compromise solution to such a problem. Then, we briefly in-
troduce an idea for an approximation found in the literature that we follow in
some sense in this thesis. After this, we set up the goals for the approximation as
research objectives. Finally, other approximation methods are briefly discussed.

Through the thesis, it is assumed (unless stated otherwise) that the MOO
problem is computationally expensive, meaning that, for any x ∈ S, it is time-
consuming to evaluate f (x). In other words, it may take at least from minutes
to hours or even days in the worst case to evaluate a single objective vector f (x).
The MOO problem can be computationally expensive if e.g. simulators are used
instead of explicitly known objective functions fi or if the objective functions fi
are solutions of partial differential equations that can be occasionally very diffi-
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cult to be solved, see e.g. [5, 6, 60, 61, 62, 68]. Note that to calculate a single Pareto
optimal objective vector, several hundreds (maybe thousands) of objective func-
tion values must be typically calculated, which introduces waiting times for the
decision maker in the solution process of the MOO problem. This point out the
main concern in searching compromise solutions to computationally expensive
MOO problems: the solution process, due to its time-consuming, may stop with-
out a proper compromise solution, as indicated in [104] (the decision maker can
be bored of waiting and then stop the process too early). In order to avoid these
long computation times, approximations created for Pareto fronts can be used.
The idea in the IHBE method is to mainly calculate approximated Pareto optimal
objective vectors, instead of true Pareto optimal objective vectors.

In this thesis, we follow the general idea of approximating the Pareto front
by a hypersurface as presented, for example, in [118], where the authors propose
to use a regression function fr : Rk → R to create the hypersurface. In their
case, the hypersurface is the preimage f {−1}

r (0), meaning that an objective vec-
tor z ∈ Rk is considered to be an approximated Pareto optimal objective vector
if fr(z) is equal to zero. On the other hand, if fr(z) �= 0, then the vector z is
either dominated or infeasible. The advantage of this method can be attributed
to the simplicity of evaluating whether or not an objective vector is (can be) a
Pareto optimal objective vector. In addition, according to [16, 118, 131], it is eas-
ier for the decision maker to consider only the objective vectors in the learning
phase. However, the hypersurface can be constructed in different ways, and in
this thesis a different approach is proposed. The main technical difference in the
approximation proposed in this thesis compared to the approximation in [118] is
the characterization of the approximated Pareto front. As said, in [118], the ap-
proximation is the preimage f {−1}

r (0). In this thesis, a function fa is constructed
so that the image of a specific simple set Δk−1 (to be defined later) is the approx-
imated Pareto front. In other words, the approximated Pareto front is the image
(set) fa(Δk−1).

From a practical point of view, the mathematical structure of the function
fa allows us to construct computationally efficient methods to be used, for exam-
ple, in identifying dominated and nondominated vectors in the approximation
(the methods are developed and discussed in later chapters). Then, for example,
a validation of the approximation can be done computationally efficiently. The
methods are simple and they can be applied after modifications to the approx-
imation presented in [118], but the computational costs of these methods may
increase. Note that the approximation presented in [118] does not in itself deter-
mine whether or not the vectors in the approximation are nondominated.

Another focused topic in this thesis is the actual use of the approximation.
The approximation is constructed so that it can be suited to the learning phase
in the solution process of the MOO problem without increasing computational
costs. The use of the approximation in the IHBE method is discussed from the
decision maker’s point of view, because, as noted in [65, page 33], this aspect
has not been widely considered in constructing approximations for Pareto fronts.
In other words, the challenges the decision maker may face during the solution
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process of a nonconvex MOO problem and how the approximation can help him
or her in such cases are discussed in this thesis. We demonstrate that noncon-
vex MOO problems can be much more complicated for the decision maker than
convex MOO problems.

To get an idea of the approximation proposed in this thesis, we present a
simple example, in which we have a continuous nonconvex MOO problem with
three objective functions. Let us have a set of pre-calculated Pareto optimal objec-
tive vectors to the MOO problem, and let them be located in the objective space
as shown in Figure 2 (black dots). Because the MOO problem is continuous, then
it is possible that there exist other Pareto optimal objective vectors between the
pre-calculated Pareto optimal objective vectors. Then a hypersurface created to
approximate the Pareto front (as the set of the vectors between the pre-calculated
Pareto optimal objective vectors) can be, for example, the dark surface presented
in Figure 3.

FIGURE 2 A set of Pareto optimal objec-
tive vectors in R3.

FIGURE 3 A surface including the set of
Pareto optimal objective vec-
tors in R3.

As said, the IHBE method is based on the approximation. Therefore, we list
certain goals as research objectives for the approximation. In later chapters, the
following goals are referred to by symbols of the form GX, where X indicates the
goal number X.

In addition to the formulation of the MOO problem, the approximation
must be suitable for the following goals.

G1 The MOO problem considered can consist of more than two objective func-
tions.

G2 The MOO problem considered can be nonconvex.
G3 The MOO problem considered can be computationally expensive.
G4 Only a set consisting of a finite number of known Pareto optimal objective

vectors to the MOO problem is available in generating the approximation.
G5 The approximation can be generated computationally efficiently.
G6 The approximation can be validated computationally efficiently.
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G7 Generating vectors on the approximation can be done computationally effi-
ciently.

G8 An external interface for specifying the decision maker’s preferences can be
constructed for the approximation.

G9 The approximation provides additional information for the decision maker
in the solution process of the MOO problem.

The first four goals G1-G4 guarantee that the approximation is as general as possi-
ble for various continuous MOO problems. Note that although we have assumed
the MOO problem to be nonconvex, the approximation can be used also for con-
vex MOO problems. However, the goal G4 can be considered as a minimum
requirement to be known for the MOO problem before constructing an approx-
imation for the Pareto front. Then, goals G5-G7 mean in practice that the usage
of the approximation is computationally efficient covering the construction and
validation of the approximation, and the actual use of it in generating vectors
on the approximated Pareto front to be presented for the decision maker in the
solution process of the MOO problem. The last two goals, G8-G9, mean that the
approximation is more than a theoretical approximation. In other words, it can
be used in the IHBE method for learning about the problem. The contents of the
goal G9 are clarified later in this thesis.

Next, we briefly review other approximations proposed for the Pareto fronts
in the MCDM literature. The simplest ones produce a set consisting of finite num-
ber of Pareto optimal objective vectors [7, 33, 42, 43, 121, 166] while in methods
such as ’sandwich’ or polyhedral approximations [48, 50, 95, 96, 133, 153] piece-
wise linear sets (faces) are generated for computationally expensive convex MOO
problems. Approximation methods created originally for nonconvex MOO prob-
lems are introduced, for example, in [13, 66, 67, 113, 197], in which the idea is
to approximate only the set of Pareto optimal objective vectors. Other methods
used in the literature approximate the objective functions by surrogate functions
(metamodels) [99, 191] or achievement scalarizing functions [97]. Another way is
to express one of the coordinates of the Pareto optimal objective vectors by a func-
tion of the other coordinates [56, 170], that is, to represent the Pareto front by a
graph of a function. By using the surrogate functions, it is possible to have a con-
nection to the decision space, meaning that it can be known approximately how
an outcome can be implemented in practice. Note that most of the approxima-
tions constructed in the objective space lose the connection to the decision space,
that is, for an approximated Pareto optimal objective vector the corresponding
decision vector values are not known. Approximations constructed in the de-
cision space also exist and the idea is to approximate the set of Pareto optimal
decision vectors, see e.g. [110, 114, 200]. Overviews and discussions of over 50
different approximations can be found e.g. in [65, 159].

In this thesis, comparisons to other approximation methods are not pre-
sented for the following reasons. Most of the other approximations generate a
discrete set of Pareto optimal objective vectors. The approximation proposed in
this thesis requires a discrete set of Pareto optimal objective vectors, which means
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that some of the approximation methods are, in fact, a pre-step for the approxi-
mation. In other words, there is no sense to compare the approximation to these
ones. On the other hand, a comparison between an approximation in [65] and the
approximation proposed in this thesis should be presented and discussed. How-
ever, for a fair comparison, an independent group of researchers who would like
to use the approximations, but who are not developers of the approximations,
should make the comparisons and evaluations. Thus the properties measured in
the tests would not be biased by the developers, who might be tempted to select
indicators, that high-light the positive sides of their approximation and denigrate
the other approximations. However, we are honest in this thesis and we discuss
openly the possible drawbacks of the approximation used in the IHBE method.
Nevertheless, making comparisons between the approximations can be challeng-
ing, because the approximation proposed in this thesis is more suited for learning
about the problem. This means that it is more than an approximation created only
to generate approximated Pareto optimal objective vectors.

Even though the approximation proposed in this thesis is as general as pos-
sible for many kinds of continuous MOO problems, it must be clarified that
approximations tailored for certain problem types can be much better for their
niche. However, the mathematical structure of the approximation proposed in
this thesis can provide new aspects for the Pareto fronts of MOO problems for
which different kinds of approximations have already been tailored. For exam-
ple, the approximation can be used in identifying computationally whether or not
the Pareto front of a nonconvex MOO problem is disconnected. These aspects are
pointed later, when the approximation is plugged to the IHBE method.

1.4 On Surrogate Functions

As said, we construct an approximation for the Pareto front. The approximation is
based on the function fa in which we use a surrogate function. Next, we introduce
what surrogate functions are.

Surrogate functions (also known as metamodels or response surfaces) are
typically real-valued functions defined on Rn, and they are used, for example,
in replacing computationally expensive functions. Surrogate functions include
radial basis functions [28], support vector regressions [181] and Kriging models
as in [160]. Vector-valued surrogate functions include also neural networks [69],
but in this thesis, only real-valued surrogate functions are considered.

This section has been organized as follows. First, in Subsection 1.4.1, we
present, in a general level, what surrogate functions are, how they are typically
used and how they are constructed. Then, in Subsections 1.4.2 and 1.4.3, radial
basis functions and Kriging functions are respectively discussed. Finally, in Sub-
section 1.4.4, we briefly discuss regression functions.



23

1.4.1 Surrogate Functions Generally

A surrogate function fsurrogate typically replaces some other function which can
be computationally expensive or a black box function of a simulator. Basically,
the idea is that the surrogate function approximates (interpolates, models) some
other function or data.

To replace or model a function g : Rn → R or data by a surrogate function
fsurrogate, some pre-calculated data D consisting of m pairs (xi, yi) ∈ Rn × R,
i = 1, . . . , m, must be available. In the previous, vectors xi are called input (design)
vectors and the corresponding real values yi (=: g(xi)) are called output (target)
values. Then the actual replacement can be done by fitting fsurrogate to data D so
that

fsurrogate(x
i) = yi + ε(xi),

where ε(·) is an error estimation function.
Depending on the data D, surrogate functions can be divided into two cat-

egories: interpolative and regression functions. If for all i = 1, . . . , m we have
fsurrogate(xi) = yi, then we say that the function fsurrogate is interpolative (the
function interpolates). Otherwise, we say that the function fsurrogate is a regres-
sion function. On the left hand side in Figure 4, we have illustrated a radial basis
function (black curve) interpolating a given data D (gray dots). On the right hand
side, a support vector regression has been fitted to noisy data. In what follows,
we assume that the data used in constructing the approximation does not contain
noise. This actually follows from the goal G4 set on page 20. In other words,
we do not have to consider regression functions for noisy data. However, with
certain selections, regression functions might interpolate. Therefore, they are dis-
cussed here because we need a surrogate function that interpolates the data.

FIGURE 4 On the left hand side, a radial basis function has been fitted to data, which is
not noisy. If the data is noisy, then a regression function can be used, as on
the right hand side, where a support vector regression has been fitted to the
data.

A common feature in all surrogate functions is their computational effi-
ciency in evaluating function values, that is, the wall-clock time for an evalua-
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tion of a function value fsurrogate(x) is significantly short. This means that the use
of surrogate functions in the approximation is justified if we consider the goal
G7, meaning that generating vectors in the approximation should not be time-
consuming. However, to enjoy of the fast calculations by surrogate functions,
they must be fitted to the data.

Typically, fitting a surrogate function to the data means that values for some
unknown constants or parameters included to the function must be selected or
optimized. However, if we consider the goal G5 for generating the approxima-
tion, then surrogate functions such as kriging functions may be out of the ques-
tion unless some fixed values are selected for the parameters. Otherwise, the
parameter values must be optimized which can be a time-consuming task. With
fixed values, a statistical model used in kriging may not be the best one, i.e. it is
not the optimal one to be used in approximating (interpolating) the data. How-
ever, a radial basis function can be fitted to the data by solving only a system of
linear equations, but it may also have parameters to be optimized in certain basis
functions.

In selecting a surrogate function to be used in practice, we refer to [10, 17,
55, 69, 77, 81, 85, 93, 99, 139, 144, 157, 171, 174, 182], where comparisons and sug-
gestions are presented. It is obvious that different kinds of approximations can be
generated by different kinds of surrogate functions. However, in this thesis, we
do not suggest which surrogate function the analyst should select for the approx-
imation. What we recommend is that the selection must be based on validations
introduced later in this thesis. With the help of the validations, the analyst might
find a proper surrogate function for approximating the Pareto front of the MOO
problem.

In general, it must be clarified that surrogate functions are fitted to the data
D, which means that the outcomes of the surrogate functions adapt the data. In
other words, surrogate functions model the data and not necessarily the natural
phenomena or the physical object behind the data. Occasionally, an approxima-
tion created for Pareto front approximates in some sense the vectors in the front,
but the vectors in the approximation may not be Pareto optimal objective vec-
tors or even nondominated. It is possible that some of them are only objective
vectors in the objective space and nothing else. This means that the approxima-
tion does not necessarily approximate the state of a nondominated vector, but the
approximation as a set has in some sense the same “shape” of the set of Pareto op-
timal objective vectors. However, we believe that to find at least one “shape” or a
sufficiently good approximation for the Pareto front of a computationally expen-
sive nonconvex MOO problem is essential for the decision maker, who then can
have estimations of feasible Pareto optimal objective vectors without spending
too much time in calculating the true ones.

Next, we introduce some well-known surrogate functions the analyst can
use in constructing an approximation in the IHBE method. We also briefly com-
ment on the challenges the analyst may face in fitting the surrogate function.
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1.4.2 On Radial Basis Functions

In this subsection, we present the basics of Radial Basis Functions (RBF) [28]. Ac-
cording to [181, page 387], radial basis functions are originally developed from
the method of potential functions. To mention some examples of the wide range of
the application area of RBFs, we might point out a design of a passenger train [18],
intrusion detection [73], an explosively-formed oil well penetrator [119], charac-
terization of porous materials [169], solving differential equations [149] and fore-
casting financial time series [180]. In optimization, RBFs have been applied even
in optimization algorithms created for computationally expensive objective func-
tions, see e.g. [58]. Different variations include Adaptive RBF [74, 75], Extended
RBF [134] and Constrained Optimization using Response Surfaces RBF [150, 151, 152].
In addition, RBFs have been used, for example, in evolutionary single-objective
optimization [27, 45, 100, 155, 164].

In the literature, an RBF surrogate function for data D consisting of m pairs
(xi, yi) is typically introduced as follows.

fRBF(x) =
m

∑
i=1

λiφ(||x − xi||), (1)

where

– || · || is, for example, the Euclidian norm on the space Rn and vectors xi ∈ Rn

are called centers,
– coefficients λi ∈ R are solutions of problem

Φλ = Y, (2)

where

λ =
[
λ1 λ2 . . . λk

]T

Φ =

⎡
⎢⎢⎢⎣

φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xm||)
φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − xm||)

...
... . . . ...

φ(||xm − x1||) φ(||xm − x2||) · · · φ(||xm − xm||)

⎤
⎥⎥⎥⎦

Y =
[
y1 y2 · · · ym]T .

– mapping φ is a given basis function from R into R, see typical choices in
Table 1.

In other words, an RBF surrogate function is a linear combination of a basis func-
tion, which only depends on the radius to the centers. Therefore, the name radial
basis function. The basic construction is very simple and for each (xi, yi) ∈ D we
have

fRBF(x
i) = yi.

However, depending on the basis function used and vectors xi, the matrix Φ in (2)
can be singular. This means that the analyst cannot fit the surrogate function
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TABLE 1 Typical choices in the literature for φ.

name φ(r)
polyharmonic spline rd, d = 1, 3, 5, . . .
thin plate spline rd ln r, d = 2, 4, 6, . . .
multiquadric

√
r2 + ε2, ε > 0

Gaussian e−εr2
, ε > 0

for the approximation. In order to avoid singular matrices, a polynomial can be
included to the RBF form (1), see e.g. [58]:

fRBF(x) =
m

∑
i=1

λiφ(||x − xi||) + p(x). (3)

In order to fit an RBF containing a polynomial to D, let us assume for simplicity
that the polynomial in (3) is a first degree polynomial, p(x) = aTx + b. Then,
coefficients λi, aj and b (i = 1, 2, . . . m, j = 1, 2, . . . , n) can be solved from a system
of equations [

Φ P
PT 0

]
·
[

λ

c

]
=

[
Y
0

]
, (4)

where Φ is a m × m matrix with Φij = φ(||xi − xj||) and

P =

⎡
⎢⎢⎢⎢⎣

x1T 1
x2T 1

...
...

xkT
1

⎤
⎥⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎢⎣

λ1
λ2
...

λk

⎤
⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
...

an
b

⎤
⎥⎥⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦ .

For certain basis functions, the degree of the polynomial must be selected in a
proper way to get the matrix of the system of linear equations nonsingular in (3).
Proper degrees are presented, for example, in [58].

1.4.3 On Kriging Functions

A kriging function is a stochastic function originally developed for efficient min-
ing [40]. In the field of global optimization, kriging functions are applied, for
example, in an algorithm called EGO (Efficient Global Optimization) [87] and
in its variants [79, 97, 98, 108, 147, 148]. Through the optimization algorithms,
kriging functions have been applied in various applications: circuit optimiza-
tion [11], metal-forming [78], aerodynamic design [84], production of liquid am-
monia [144], oil and gas production [148] and in finite element methods [161, 162].
A free implementation can be found e.g. in [141].

To get started with kriging functions, let us first assume that we have a
random mapping (a random process or a stochastic process)

Y : Rn → R (5)
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and let yi be realizations of Y (Y(xi) = yi for all i = 1, 2, . . . , m). Then a kriging
function1 to (5) based on m data pairs (xi, yi) is a function fK : Rn → R so that

fK(x) =
k

∑
i=1

K∗
xiY(xi),

where coefficients K∗
xi ∈ R are solutions of a minimization problem of a variance

subject to an expectation value condition:

min
K

xi
Var(YK − Y(x)),

s.t. E(YK) = E(Y(x)),
(6)

where

YK =
m

∑
i=1

KxiY(xi).

In practice, it has been typically assumed that the stochastic process Y in (5)
has the form

Y(x) = g(x) + Z(x), (7)

where

– g is a mapping from Rn into R consisting of l (l < m) functions gi : Rn → R

that were selected beforehand and which are called global models (universal
models),

g(x) =
l

∑
i=1

λigi(x),

where λi ∈ R are unknown constants to be solved or optimized,
– Z is a random process from Rn into R with a mean zero and a covariance

Cov(Z(x), Z(y)) = σ2
ZR(x, y),

where σ2
Z is the variance and R(x, y) is the correlation of Z. Usually, corre-

lation R has been selected to be

R(x, y) =
n

∏
i=1

e−θi|xi−yi|2

and parameters θi are suggested to be optimized through the Maximum
Likelihood Estimation (MLE) [41, 160].

Then, according to [160], the kriging function to (7) is

fK(x) = gT
x λ̂ + rT

x R−1
s (Ys − Gsλ̂), (8)

1 In the literature, a kriging function is also known as the Best Linear Unbiased Predictor
(BLUP) or the Best Linear Unbiased Estimator (BLUE).
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where

λ̂ = (GT
s R−1

s Gs)
−1GT

s R−1
s Ys,

Ys =
[
YD(x

1) YD(x
2) · · · YD(x

m)
]T ,

gx =
[
g1(x) g2(x) · · · gl(x)

]T ,

Gs =

⎡
⎢⎢⎢⎣

g1(x
1) g2(x

1) · · · gl(x
1)

g1(x
2) g2(x

2) · · · gl(x
2)

...
... . . . ...

g1(x
m) g2(x

m) · · · gl(x
m)

⎤
⎥⎥⎥⎦ ,

rx =
[
R(x1, x) R(x2, x) · · · R(xm, x)

]T ,

Rs =

⎡
⎢⎢⎢⎣

R(x1, x1) R(x1, x2) · · · R(x1, xm)
R(x2, x1) R(x2, x2) · · · R(x2, xm)

...
... . . . ...

R(xm, x1) R(xm, x2) · · · R(xm, xm)

⎤
⎥⎥⎥⎦ .

It is easy to show that fK(x
i) = yi for all i = 1, . . . , m, see e.g. [86]. In

addition, an error estimation for a value fK(x) can be calculated as follows

MSE( fK(x)) = σ̂2
Z

(
1 −

[
gT

x rT
x

] [ 0 GT
s

Gs Rs

]−1 [gx

rx

])
,

where

σ̂2
Z =

1
k
(Ys − Gsλ̂)

TR−1
s (Ys − Gsλ̂)

is an estimation through the MLE, see e.g. [160]. Note that the minimization
problem (6) means, in fact, solving a Mean Square Error problem [160].

In practice, the analyst may have to use some time in solving the optimal θi if
he or she has decided to use a kriging function in the approximation. Otherwise,
the fitting process of the kriging function is computationally efficient.

1.4.4 Briefly on Regression Functions

As said, the analyst may not have fsurrogate(xi) = yi for all i = 1, . . . , m, if he or
she has used a regression function for the surrogate function. However, by prop-
erly choosing parameters in the regression function, it can also interpolate the
data in D. Therefore, we present here some of the commonly known regression
functions, which have this property.

Regression functions have a long history in constructing a function to rep-
resent data. Already in the fifties, polynomial-based regression functions were
used in modeling real life problems [19] and, nowadays for example, in produc-
ing liquid ammonia [144] or in aero dynamical problems [76, 171].

Typically, regression functions are considered under the Response Surface
Methods (RSM), and the most widely used response function has the form of a
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linear regression,

flr(x) =
l

∑
i=1

λigi(x) + ε(x), (9)

where ε(·) is an error estimation, coefficients λi ∈ R are unknown and to be
selected properly, and functions gi : Rn → R are given.

To fit a regression function to data D, a system of linear equations derived
from (9) can be written in a matrix notation as follows:

y :=

⎡
⎢⎢⎢⎣

y1

y2

...
yk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g1(x
1) g2(x

1) · · · gl(x
1)

g1(x
2) g2(x

2) · · · gl(x
2)

...
... . . . ...

g1(x
k) g2(x

k) · · · gl(x
k)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

λ1
λ2
...

λl

⎤
⎥⎥⎥⎦ =: gλ.

Then the unknown coefficients λi can be calculated by using the formula

λ = (gTg)−1gTy,

which is commonly known as a solution of a linear least square problem, see e.g.
[142]. In order to interpolate the data, the analyst can select l in (9) to be equal to
m, the number of pairs (xi, yi) in D. Normally, l < m.

Recently, Support Vector Regression (SVR) (a variant of a Support Vector Ma-
chine (SVM) [37, 168, 173, 181]) has become more popular as a regression function.
It has been used, for example, in tourism demand forecasting [32], face detec-
tion [109], image processing [140], software efforts [143], flood forecasting [195],
gene expression [186], traffic data analysis [192], protein predictions [199] and in
solving optimization problems [137, 138, 196, 197]. A free implementation can be
found in [29]. Basically, a support vector regression takes the form of

fSVR(x) =
l

∑
i=1

λiK(x, xi) + b,

where

– the function K from Rn × Rn into R is called a kernel, and is, for example,
some of the kernels presented in Table 2.

– coefficients λi and b are solutions of an optimization problem. See, for ex-
ample, [168, 181] for several optimization problem formulations and com-
putationally efficient solving techniques for them.

– number l is the number of so-called support vectors.

Depending on the kernel function and the method used for calculating coeffi-
cients λi and b, the analyst can have an interpolative support vector regression, if
the number of support vectors is increased or some other parameters in calculat-
ing coefficients λi and b are selected properly.
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TABLE 2 Typical choices in the literature for the kernel.

name K(x, xi)

polynomial (
〈
x, xi〉+ 1)d, d = 1, 2, 3, . . .

radial basis exp(− 1
2σ2‖x − xi‖2), σ2 > 0

multilayer perceptron tanh(β0
〈
x, xi〉+ β1)

a sum of kernels ∑m
j=1 Kj(x, xi)

a function that holds Mercer’s condition [120]
Coefficients d, σ2, β0 and β1 are typically given.

1.5 Outline of This Thesis

The main contribution of this thesis is the IHBE method (Interactive HyperBox
Exploring). The method is designed for supporting the decision maker in learn-
ing about the MOO problem and his or her preferences in relation what is avail-
able. Then, the decision maker may found a compromise solution to a computa-
tionally expensive nonconvex MOO problem and be confident about it. During
the construction of the method, three major aspects are considered: theoretical
aspects, computational aspects and the decision maker’s aspects. However, the
contribution of this thesis is divided into four different steps as follows.

In order to find a compromise solution for the computationally expensive
MOO problem, the first step is to create an approximation for the Pareto front.
The approximation is introduced in Chapter 2. The approximation must be the-
oretically valid for computationally expensive nonconvex MOO problems, but
from the practical point of view, the actual use of the approximation must be
computationally efficient because it is designed for practical problems. Contri-
bution: a fast method for evaluations of approximated Pareto optimal objective
vectors.

Since the approximation models the Pareto front, then the second part of this
thesis is the IHBE method based on the approximation. The IHBE method is in-
troduced in Chapter 3, and it consists of well-known interactive methods. In this
way, the IHBE method is supposed to be easy to use by the decision maker, and
informative in helping and supporting him or her through the solution process.
In other words, the decision maker’s perspective is considered in the construction
of the IHBE method without forgetting the computational aspects in calculating
approximated Pareto optimal objective vectors that obey, in some sense, the deci-
sion maker’s preferences. Contribution: an easy method for the decision maker
to investigate approximated Pareto optimal objective vectors.

The third part is presented in Chapters 4 and 5, where methods created for
validating the approximation are discussed. The methods are modifications of
other methods or theories used in MCDM. The new contributions of the methods
are based on their computationally efficient characterizations of whether or not a
vector in the approximation is dominated. The computational methods are based
on mathematically proved theorems. Contribution: fast methods for validating
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the approximation.
The fourth and the last part of this thesis is an interpretation of dominated

vectors in the approximation. The interpretation is illustrated in Chapter 6. From
the decision maker’s point of view, the nonconvexity of the MOO problem may
cause some challenging situations, which require special tools to be used in the
solution process. Contribution: methods for analyzing the approximation.

Finally, all the methods used in the IHBE method are summarized in Chap-
ter 7, and concluding remarks are presented in Chapter 8.



2 APPROXIMATING THE PARETO FRONT BY A

SURROGATE FUNCTION

In this chapter, we propose a mathematical model for approximating the Pareto
front of the MOO problem. While constructing the approximation, we focus on
goals G1-G5 and G7 presented on page 20. In other words, everything related to
the approximation must be computationally efficient. In addition, only a finite set
of Pareto optimal objective vectors is assumed to be available in the construction.
Note that the dimension of the vectors can be more than two. And finally, the
MOO problem can be computationally expensive and even nonconvex.

This chapter has been organized as follows. First, in Subsection 2.1, a basis
for the mathematical model is set and then, in Subsection 2.2, the actual approx-
imation is introduced. It uses a surrogate function for approximating the Pareto
front. After this, a concluding discussion and remarks for the approximation are
presented in Subsection 2.3.

2.1 Setting up a Basis for the Approximation

In this section, we construct a basis for the approximation. It is based on m ≥ 2
distinct pre-calculated Pareto optimal objective vectors. The vectors are denoted
by z1, z2, . . . , zm, and the set consisting of them is denoted by Zm. To put it briefly,
the basis contains three different elements: a set Δk−1, vectors zsi and scalars λi.
The set Δk−1 is a domain space for a surrogate function, which is fitted to data
consisting of vectors zsi and scalars λi. In this section, we introduce only the
basis, but in the next section, we show how the basis is used in approximating
the Pareto front.

To get started with the basis, we first define the set Δk−1.

Definition 3. A set

Δk−1 := {z ∈ Rk : ∃λΔ
i ≥ 0 so that z =

k

∑
i=1

λΔ
i ei and

k

∑
i=1

λΔ
i = 1},
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where ei is the i:th standard basis vector of the space Rk, is called a (k − 1)-
dimensional simplex. If the dimension k − 1 is obvious from the context, then it
is called a simplex.

Geometrically, a (k − 1)-dimensional simplex is a convex hull of the standard
basis vectors of Rk. In space R2, the simplex Δ1 is a closed interval from (1, 0)T to
(0, 1)T as illustrated in Figure 5 (black line).

For later use and calculations, we define two useful vectors in the objective
space denoting the extreme vectors of Zm

idealZm = ( min
i=1,...,m

zi
1, . . . , min

i=1,...,m
zi

k)
T ∈ Rk (10)

and
nadirZm = ( max

i=1,...,m
zi

1, . . . , max
i=1,...,m

zi
k)

T ∈ Rk. (11)

An example of a two-dimensional case of idealZm and the corresponding set Zm
is illustrated in Figure 5 (black dots).

FIGURE 5 Set Δ1 and vector idealZ11

based on Z11.
FIGURE 6 Mapping vectors of Z11 into a

simplex.

Remark 4. Note that idealZm dominates every vector in Zm and if one of the
coordinates of idealZm is increased, then there is a vector in Zm so that it is not
anymore dominated by idealZm . In other words, for all zi ∈ Zm and for all j =
1, . . . , k we have

zi
j − idealZm

j ≥ 0

and for some index j the inequality is strict, because Zm contains at least two dif-
ferent Pareto optimal objective vectors. Thus, for later use, we have an essential
property:

k

∑
j=1

zi
j − idealZm

j > 0. (12)
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Let a function f p
Zm

: (idealZm + Rk
+) \ idealZm → Δk−1 be defined as fol-

lows:

f p
Zm

(z) =
z − idealZm

∑k
j=1 zj − idealZm

j

. (13)

Next we prove that the function f p
Zm

is well-defined.

Lemma 5. For each vector z ∈ (idealZm +Rk
+) \ idealZm , we have f p

Zm
(z) ∈ Δk−1.

Proof. Let z ∈ (idealZm + Rk
+) \ idealZm . To show that f p

Zm
(z) ∈ Δk−1, we have

to find coefficients λz
j ≥ 0 so that

f p
Zm

(z) =
k

∑
j=1

λz
j ej and

k

∑
j=1

λz
j = 1.

By choosing

λz
j =

zj − idealZm
j

∑k
l=1 zl − idealZm

l

≥ 0, j = 1, . . . , k,

where the last inequality follows from Remark 4, we have ∑k
j=1 λz

j = 1 and

k

∑
j=1

λz
j ej =

k

∑
j=1

zj − idealZm
j

∑k
l=1 zl − idealZm

l

ej =
z − idealZm

∑k
l=1 zl − idealZm

l

= f p
Zm

(z).

Geometrically, the function f p
Zm

first shifts all vectors in the set (idealZm + Rk
+) \

idealZm by −idealZm . Then the vector-wise ideal, as in (10), for all the vectors
zi ∈ Zm shifted is the origin. After this, all the vectors shifted are mapped into
the simplex by multiplying by scalars 1/(∑k

j=1 zj − idealZm
j ), respectively. The

shift and the multiplication are illustrated in Figure 6 as gray dashed lines for the
vectors z1, z2 ∈ Zm.

For the basis to the approximation, we calculate representative vectors zsi ∈
Δk−1 for each zi ∈ Zm by using the function f p

Zm
. In other words,

zsi := f p
Zm

(zi), i = 1, . . . , m. (14)

We denote the set of the vectors zsi by Zs
m.

Next, we show how to calculate zi from zsi . Then the calculation is used for
the scalar values λi for the basis of the approximation.

Lemma 6. There exist unique scalars λi > 0 for each zi ∈ Zm, i = 1, . . . , m, so that

zi = idealZm + λizsi , i = 1, . . . , m.

Proof. We divide the proof into two steps. First, we show the existence and then
the uniqueness.
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1. By choosing

λi =
k

∑
j=1

zi
j − idealZm

j > 0,

we have

idealZm + λizsi = idealZm +

(
k

∑
j=1

zi
j − idealZm

j

)
zi − idealZm

∑k
j=1 zi

j − idealZm
j

= idealZm + zi − idealZm = zi.

2. Let us assume that there exist two different scalars λi1 and λi2 so that

idealZm + λi1zsi = zi = idealZm + λi2zsi .

Then,

λi1zsi = λi2zsi ⇔ (λi1 − λi2)zsi = 0.

Since zsi ∈ Δk−1 and 0 �∈ Δk−1, then λi1 = λi2 . In other words, the scalar λi

is unique.

Lemmas 5 and 6 show that connections between zi and zsi exist, i.e., we can cal-
culate one from the other. Note that it is possible that for two arbitrary vectors
ẑ, z̄ ∈ Rk of the form ẑi, z̄i ≥ idealZm

i , i = 1, . . . , k, we might have ẑs := f p
Zm

(ẑ) =

f p
Zm

(z̄) =: z̄s. This is the case in Figure 7, where vectors ẑs, z̄s, ẑ, z̄ are depicted by
black dots.

FIGURE 7 Two different vectors ẑ, z̄ so that they are mapped by f p
Zm

to the same vector
in the simplex Δ1.

Remark 7. The reason why cases as in Figure 7 exist is obvious. The function f p
Zm

is not injective - it is surjective, because f p
Zm

(idealZm + Δk−1) = Δk−1. However,
it is not possible that there exists a vector in Δk−1 so that it is a representative one
for two different vectors zi, zj ∈ Zm. This is guaranteed by the assumption of
Pareto optimality for the vectors in Zm, as we will see next.
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Theorem 8. Let zi, zj ∈ Zm. Then zi �= zj if and only if zsi �= zsj .

Proof.

“⇒” Let us assume that there exist two different Pareto optimal objective
vectors zi, zj ∈ Zm so that zsi = zsj . According to Lemma 6, we have unique
scalars λi, λj ≥ 0 so that zi = idealZm + λizsi and zj = idealZm + λjzsj .
Since zi �= zj, then λi �= λj. We can assume that λi < λj without loss of
generality. Now for all l = 1, . . . , k, we have

zi
l = idealZm

l + λizsi
l < idealZm

l + λjz
sj
l = zj

l ,

which means that zi dominates zj, and that is a contradiction.
“⇐” This follows directly from the definition of the function f p

Zm
via a con-

tradiction.

Now that the elements for a basis for the approximation have been pre-
sented, we are ready to use them (the simplex Δk−1, vectors zsi and scalars λi

calculated in Lemma 6) in constructing an approximation for the Pareto front.

2.2 Pareto Front Approximation with Surrogate Models

In Section 2.1, a basis for the Pareto front approximation was created: the set Δk−1,
vectors zsi and scalars λi were introduced. In this section, we illustrate how they
are used in approximating the Pareto front.

We have assumed that pre-calculated Pareto optimal objective vectors to the
MOO problem are available in the set Zm. Then by using the function f p

Zm
, defined

in (13), we map every vector in Zm into Δk−1. As a result, we obtain a unique set
of vectors in Δk−1 (Lemma 5 and Theorem 8). Then in Lemma 6, we proved that
there exist unique scalars λi for each zi ∈ Zm so that zi = idealZm + λizsi . Next,
we generalize this to be a function for approximating the Pareto front.

Definition 9. We model the Pareto front by a function fa : Δk−1 → Rk,

fa(z) = idealZm + fs(z)z, (15)

where fs is a function from Δk−1 into R. The image fa(Δk−1) is referred to as an
approximated Pareto front.

In Definition 9, the function fs can be any surrogate function presented in Sec-
tion 1.4, but it must satisfy the following condition:

Definition 10. Function fs in (15) must be selected so that for the data consisting
of pairs (zsi , λi) we have

fs(z
si) = λi, i = 1, . . . , m, (16)
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where λi = ∑k
j=1 zi

j − idealZm
j is a scalar as calculated in Lemma 6. In addition,

the function fs must be positive on Δk−1 in order to avoid having vectors in the
approximation that dominate the vector idealZm and the vectors in Zm.

Now, it can be seen how the basis created in Subsection 2.1 is used in ap-
proximating the Pareto front. The set Δk−1 is the domain space for functions fa
and fs. Then, the vectors zsi and the scalars λi are used in fitting fs to the data
D consisting of m pairs (zsi , λi). Note that condition (16) is important because it
forces the function fs to interpolate the data. Then the function fa interpolates
data consisting of m pairs (zsi , zi), that is, fa(zsi) = zi for all i = 1, . . . , m. This
means that the approximation contains at least the vectors in the set Zm, which
contains Pareto optimal objective vectors.

A geometrical illustration of the approximated Pareto front is presented in
Figure 8, where an RBF model with a polyharmonic spline of a third degree has
been used for fs. On the right hand side, the approximated Pareto front based
on vectors in Z21 (black dots on the left hand side of Figure 8) has been depicted
as a gray dashed curve. As discussed in Subsection 1.4.1, RBFs interpolate the
data, and thus, the analyst can be sure about the condition (16) that it holds when
an RBF is used for fs. Basically, the function fs approximates scalar values for
vectors on the simplex so that the vectors multiplied by the scalars end up to
approximate the Pareto front when they are shifted by idealZm . In other words,
the function fs captures the shape of the Pareto front in terms of vectors zsi and
scalars λi. However, to put the shape into a right position in the objective space,
a shift by idealZm is needed.

FIGURE 8 Pareto front approximation fa(Δ1).

The image (set) fa(Δk−1) is a subset of the objective space. Likewise is the
Pareto front, but vectors in the Pareto front are nondominated. The formulation
of the function fa is simple, but some of the vectors in fa(Δk−1) can be domi-
nated (the interpretation of dominated vectors in the approximation is presented
in Chapter 6). However, the nondominated vectors in fa(Δk−1) are the main core
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of the approximation we are constructing. Let us first present a definition and
then illustrate this geometrically.

Definition 11. Let z ∈ fa(Δk−1). If the vector z belongs to fa(Δk−1)
∗ (i.e. it is

nondominated in fa(Δk−1)), then the vector z is said to be an approximated Pareto
optimal objective vector.

Definition 11 means in practice that the set fa(Δk−1) is approximating the
set of Pareto optimal objective vectors of the MOO problem, but only vectors
in fa(Δk−1)

∗ are interpreted as approximated Pareto optimal objective vectors.
By Definition 11, we particularly consider the approximation to be suitable for
nonconvex MOO problems. We demonstrate this as follows. Let us have a non-
convex MOO problem, which has been solved, i.e. the entire Pareto front has
been calculated. Let the Pareto front be as on the left hand side in Figure 9 (black
curves). On the right hand side, we have depicted the set fa(Δk−1) as a gray
dashed curve, and on top of it bold gray curves illustrate the set fa(Δk−1)

∗. We
have also included the Pareto front on top of fa(Δk−1)

∗ as black curves. As it can
be seen, nondominated vectors in fa(Δk−1)

∗ approximate (represent) the Pareto
front. The dominated vectors in the approximation can be interpreted in a special
way, but we return to them in Chapter 6.

FIGURE 9 A pareto front approximation fa(Δ1) and the nondominated subset fa(Δ1)
∗.

As seen in the above example, the approximation may contain dominated
vectors. Now, a justified question is the following. Can dominated vectors in
the approximation be avoided? The answer is “yes” and “no”, depending on
the MOO problem. Usually, in nonconvex MOO problems, the approximation
contains dominated vectors because of the mathematical structure of the function
fa. We illustrate this as follows. In theory, a Pareto front can be, for example, a set
of consisting of vectors

{λ(0, 2)T + (1 − λ)(0.5, 1.5)T : λ ∈ (0, 1]} ∪ {λ(0.5, 0.5)T + (1 − λ)(1, 0)T : λ ∈ [0, 1]}.
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Now, for this set it is not possible to construct a function fa : Δ1 → R2 so that
fa(Δ1) = fa(Δ1)

∗ and PF( f , S) ⊂ fa(Δ1). This can be seen in the following. In
Figure 10, we have illustrated the set PF( f , S). Let vector z be (0.4, 0.6)T ∈ Δ1 (a
black dot in Figure 10).

FIGURE 10 A Pareto front that cannot be modeled by the approximation so that the
approximation does not contain dominated vectors.

Now, if the coordinate value fa(z)1 is

1. less than 0.5, then the vector fa(z) dominates the vector (( fa(z)1 + 0.5)/2, 2−
( fa(z)1 + 0.5)/2)T ∈ PF( f , S), or

2. greater or equal to 0.5, then the vector (0.5, 0.5)T ∈ PF( f , S) dominates the
vector fa(z).

In other words, the nonconvexity of the MOO problem has forced the approxi-
mation to contain dominated vectors.

Definition 11 for approximated Pareto optimal objective vectors may seem
to be a nice theoretical definition, and it might be useless in practice because it
should be possible to identify whether or not a vector fa(z) is nondominated in
the set fa(Δk−1). However, the situation is not hopeless, because the mathemat-
ical structure of the function fa sets a good basis for such an analysis. It turns
out that computationally efficient methods can be created to identify nondomi-
nated and dominated vectors in the approximation. The methods are discussed
in Chapters 4 and 5.

The main idea of the function fa is to provide a simple access to calculate
vectors on the approximation. This can be done as follows (we present the steps
next and after that we discuss the details of the steps):

Method 12.

(1) Select vector(s) in the simplex Δk−1.
(2) Use function fa to map the selected vector(s) into the approximation.

Method 12 is a computationally efficient method to be used in calculating vectors
on the approximation. Note that the function fs is a surrogate function, which by
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a definition is a computationally efficient function, and the other operations used
in the function fa are not computationally expensive to be evaluated. However,
in the solution process of a MOO problem, selecting the vectors on the simplex
may be unintuitive for the decision maker. Therefore, in Section 3.2, a method is
proposed for the selection. The method generates vectors on the simplex so that
they correspond to the decision maker’s preferences. In other words, the decision
maker does not have to select them in the simplex by himself or herself.

As said, the simple structure of the function fa can be used in identifying
dominated vectors in the approximation. We believe that the analyst might be
interested in knowing the error estimations (confidence levels) for vectors in the
approximation. However, an error estimation for vectors in the approximation is
not necessarily that straightforward in practice because we are approximating a
set by a set. On the other hand, if error estimations for the function fs are available
and calculated, then they can be included into fa as follows:

f̃a(z) = idealZm + ( fs(z)± εz)z, (17)

where εz is the error estimation for fs at z. However, the above error estimation
does not calculate, for example, any probability for an objective vector to be non-
dominated in the set fa(Δk−1). It only reflects the error estimations calculated for
the function fs into the approximation. Other challenges in error estimations are
discussed in Subsection 3.1.2.1.

To conclude this section, a mathematical model (function fa) has been pro-
posed for approximating the set of Pareto optimal objective vectors of the MOO
problem. After having constructed the function fa, the set fa(Δk−1)

∗ contains vec-
tors, which are interpreted as approximated Pareto optimal objective vectors to
the MOO problem.

2.3 Discussion and Conclusions on the New Approximation

In this section, we summarize the main features of the approximation. In order to
make cross-references for later use, we use notation AMfX to indicate feature X
of the Approximation Model consisting of the functions fa, fs and the set Δk−1.

AMf1 Let us start with the function fa defined in (15). It contains a shift
by idealZm and multiplication of a scalar value fs(z) and vector z, where
z ∈ Δk−1. These two operations are not computationally expensive. This
means that we have reached the seventh goal G7, set on page 20 for the
approximation. In other words, generating vectors on the approximated
Pareto front can be done computationally efficiently with the approxima-
tion. However, for some vectors in Δk−1, the corresponding vectors in the
approximation can be dominated.

AMf2 The second feature is the condition (16) for the function fs in Defini-
tion 10. Condition fs(zsi) = λi for all i = 1, . . . , m, and Theorem 8 guarantee
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that fa(zsi) = zi for all i = 1, . . . , m. Therefore, the set Zm is a subset of
fa(Δk−1), meaning that the approximation contains true Pareto optimal ob-
jective vectors.

Calculation of data pairs (zsi , λi) does not include computationally ex-
pensive operations. However, if the function fs requires some parameters
to be optimized like in kriging models [160], then some computation time is
required. On the other hand, if a radial basis function with a polyharmonic
spline of a third degree [28] has been selected, then only a system of linear
equations must be solved. Thus, depending on the surrogate function se-
lected and its fitting to the data, it can be said that goal G5 has been reached
partially.

As mentioned in Section 1.4, we have several different types of sur-
rogate functions which interpolate the data. Therefore, we do not have to
construct such a function by ourselves. However, the great variety of surro-
gate functions may cause a so-called selection problem for the analyst: which
surrogate function should be selected as the function fs? This is not a trivial
problem to be solved, but the analyst might find a proper one after validat-
ing different surrogate functions by methods introduced in later chapters.
In other words, we propose to use special methods created for validations
in selecting a proper surrogate function.

AMf3 The third feature is more theoretical. It is easy to show (here we leave it
for the reader because it follows immediately from Definition 9, Lemmas 5,
6 and Theorem 8) that every Pareto optimal objective vector zp satisfying
zp

i ≥ idealZm
i , for all i = 1, . . . , k, can be modeled by fa. So, from the theo-

retical point of view, the function fa is justified in modeling the Pareto front.
However, to have fa(Δk−1)

∗ ⊂ PF( f , S) in practice is extremely rare unless
something concrete of the true front, for example the front is a hyperplane,
is known.

A possible drawback related to the Pareto optimal objective vectors
of a MOO problem and the function fa based on vectors in Zm is the fol-
lowing. A Pareto optimal objective vector zp satisfying zp

i < idealZm
i for

some i = 1, . . . , k cannot be obtained by fa because fa is restricted to Δk−1.
Such vectors might exist if Zm does not represent the true Pareto front well
enough.

AMf4 The fourth feature is related to the simplex Δk−1. It is a convex hull de-
fined by the standard basis vectors of Rk, meaning that it is easy to construct
also from the computational point of view. However, a simple structure for
a set is not the main purpose for the simplex. Instead, no matter what the
MOO problem is, the domain spaces for functions fa and fs are always the
same (naturally, the number k of objective functions affects to the “dimen-
sion” of the simplex). Thus, the goal G1 has been reached. In other words,
it does not matter for the approximation what the number of the objective
functions of the MOO problem is.

AMf5 The fifth and the last feature is probably the most important feature for
the approximation. We have not assumed anything of the MOO problem
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when constructing the function fa. We have only assumed that vectors in
the set Zm are distinct Pareto optimal objective vectors. The MOO problem
behind the vectors can be nonconvex or computationally expensive! Thus,
goals G2, G3 and G4 have been reached.

The approximation proposed in this thesis is rather simple from the mathematical
point of view. Next, we demonstrate how it can be used efficiently in the solution
process of a MOO problem.



3 THE NEW APPROXIMATION IN THE SOLUTION

PROCESS OF MULTIOBJECTIVE OPTIMIZATION

PROBLEMS

In this chapter, we introduce and discuss in detail the IHBE method (Interactive
HyperBox Exploration), which is created for the solution process of the MOO
problem. The method is based on the approximation constructed in Chapter 2.
By the approximation, we enable an easy way for the decision maker to learn
what kind of approximated Pareto optimal objective vectors are available without
having long computation times even in computationally expensive problems. In
this chapter, we focus more to the actual use of the approximation in the solution
process of the MOO problem, because, as noted in [65, page 33], only few papers
introduce an approximation for interactive methods so that the decision maker’s
point of view has been considered in the use of the approximation.

To clarify terminology, we define two working environments for the solu-
tion process of the MOO problem: an approximation environment and a Pareto front
environment. Generally speaking, the approximation environment means that the
decision maker is using an approximation of the Pareto front. In the Pareto front
environment, the decision maker deals directly with the true Pareto front without
using any approximation. In what follows, sometimes the word approximation
is in brackets, meaning that the sentence is meant to be understood in the Pareto
front environment, but the same message in the sentence can also be considered
in the approximation environment.

The importance of learning in decision making has been pointed out, for
example, in [14, 131]. Through the learning, the decision maker is dealing with a
constructive process, where he or she is building a conviction of what is possible.
This is extremely important in the solution process, because if it happens that a
preferred solution is infeasible, then the decision maker must learn about his or
her preferences in relation to what is available. It will then be obvious that the
decision maker has to vary his or her preferences in order to find a (an approxi-
mated) Pareto optimal objective vector to the MOO problem. The decision maker
may even consider a totally different (approximated) Pareto optimal objective
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vector compared to the preferred one at the beginning of the solution process.
This would mean that he or she has changed his or her opinion regarding which
objective function value is the most important. Therefore, the decision maker
should not aim at a mathematical convergence when searching for the compro-
mise solution during the solution process. Instead, the decision maker should
aim at a psychological convergence, which means to learn about the importance
of his or her preferences in relation to what kind of (approximated) Pareto opti-
mal objective vectors are available. As a result of the psychological convergence,
the decision maker might find a (an approximated) Pareto optimal objective vec-
tor, which satisfies him or her as a compromise solution to the MOO problem.
The satisfaction1 means in this thesis that the decision maker is convinced that no
other Pareto optimal objective vector is better than the compromise solution. To
be convinced about the compromise solution, learning about what kind of (ap-
proximated) Pareto optimal objective vectors are available is naturally needed.
Otherwise, the decision maker cannot be sure why some Pareto optimal objective
vector could be the compromise solution and no other is better than that par-
ticular one. For this purpose, we discuss a process called a creation of an overall
understanding of available (approximated) Pareto optimal objective vectors in the solu-
tion process of the MOO problem.

To clarify the purpose and significance of the creation of the overall under-
standing of available (approximated) Pareto optimal objective vectors, we first
assume that the decision maker has presented clearly at the beginning of the so-
lution process of the MOO problem what kind of objective vector(s) he or she is
preferring as the compromise solution(s) to the problem. Then we assume that a
Pareto optimal objective vector(s) corresponding to the decision maker’s prefer-
ences has (have) been calculated. Now, the final assumption is that the decision
maker is disappointed with the Pareto optimal objective vector calculated, that is,
the vector does not satisfy the decision maker. After getting over the setback, we
believe that the decision maker will start making compromises and reconsidering
what is really important in relation to the problem. Then, in our opinion, the only
way to find a new preferred Pareto optimal objective vector is by investigating
the available vectors in the (approximated) Pareto front and after this to decide
what is the compromise solution to the problem based on the facts of the available
vectors. Based on this, the importance of the creation of an overall understand-
ing of available (approximated) Pareto optimal objective vectors is obvious in the
solution process of the MOO problem, because the decision maker may have to
decide which one would be the compromise solution in a set consisting of “not
necessarily good vectors”. Naturally, the situation is totally different if the deci-
sion maker can get what he or she is looking for. Then, there is not necessarily
any need to learn about the preferences and the problem. However, if the deci-
sion maker can get what he or she is looking for, then he or she may still wonder
or be curious to know whether or not there is something better available after all.

1 The definition of a psychological convergence in this thesis is less strict compared to the
definition given, for example, in [89] where trade-off rates are also included in the defini-
tion.



45

We have assumed that the MOO problem is computationally expensive. To
beat the time challenge in calculating vectors for the creation of an overall under-
standing of available (approximated) Pareto optimal objective vectors, a method
called HyperBox Exploration (HBE) is proposed in this chapter. It is based on ele-
ments of well-known interactive methods proposed in the MCDM literature, and
the approximation constructed in Chapter 2. The main idea in HBE is that the
decision maker asks questions in a form of a query, and then a mathematical tool
(which will be introduced in Section 3.2) answers the query. By simplifying, the
question in the query is the following.

I am interested in these kinds of (approximated) Pareto optimal objective vectors.
Do those vectors exist?

By the question, we focus on the creation of an overall understanding of available
(approximated) Pareto optimal objective vectors by offering a simple way for the
decision maker to start the exploration in the objective space. In what follows,
the HBE method is constructed so that in a case, where the decision maker cannot
have (approximated) Pareto optimal objective vectors he or she is interested in,
the method provides an explanation why such vectors do not exist. In this way,
the HBE method may support the decision maker in the learning phase because
then the decision maker may realize how his or her preferences are related to the
(approximated) Pareto front. At the beginning of the solution process, the deci-
sion maker might have optimistic or pessimistic expectations for the compromise
solution and then he or she must be educated about the preferences. In addition,
during the learning phase, the decision maker may proportion his or her expecta-
tions to what is available. On the other hand, the situation is totally different if the
decision maker gets what he or she is looking for. Then the decision maker does
not necessarily have to reconsider the preferences or present new ones in order
to find (approximated) Pareto optimal objective vectors. However, the question
in the query is over-simplified and, therefore, some conversions must be done.
In what follows, we present the conversions as steps of HBE, and then we briefly
discuss the steps.

Method 13 (HBE).

(1) The decision maker defines his or her preferences as aspiration and reser-
vation levels.

(2) The decision maker defines a number for vectors to be generated on the
approximation.

(3) Generate vectors on the approximation so that they correspond to the
aspiration and reservation levels.

(4) Present the findings (at least nondominated vectors generated in the pre-
vious step if they exist) to the decision maker.

In the first step, the decision maker presents his or her preferences in the form
of aspiration and reservation levels. Then the computer can “understand” which
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part of the objective space should be searched. Aspiration and reservation lev-
els are described and discussed in more detail in Subsection 3.1.1.1. The num-
ber asked in the second step of HBE is essential in several ways. The use of the
approximation created in this thesis is based on the number of sample vectors
related to the decision maker’s preferences. When that number is small, the de-
cision maker does not receive too many vectors for making, for example, vector-
wise comparisons at the end of the solution process after having found interest-
ing (approximated) Pareto optimal objective vectors. However, if the number is
large, the decision maker can get more detailed information of the approximated
Pareto front, because a larger set of vectors represents the approximated Pareto
front more accurately. A detailed discussion about the role of the number of these
vectors is given in Subsection 3.1.1.2. In the third step of HBE, a mathematical
model based on the approximation constructed in Chapter 2 is used to gener-
ate vectors on the approximation so that they, in some sense, correspond to the
aspiration and reservation levels. The mathematical model is introduced in Sec-
tion 3.2. After this, in the fourth and the last step of HBE, nondominated vectors,
i.e. approximated Pareto optimal objective vectors, corresponding to the aspira-
tion and reservation levels (if they exist) are presented to the decision maker. Ad-
ditional findings related to the vectors are discussed in Section 3.3. Basically, the
fourth step consists of several methods introduced in later sections and chapters
in this thesis.

It must be clarified that HBE is not in itself an interactive method for the so-
lution process of the MOO problem, because it does not allow the decision maker
to redefine new aspiration and reservation levels for an overall understanding of
available approximated Pareto optimal objective vectors. Redefining the levels is
important, because in practice the decision maker might first check whether cer-
tain types of (approximated) Pareto optimal objective vectors are available and,
if not found, look for other types for a “backup plan”. Keeping this in mind, the
IHBE method (Interactive HyperBox Exploration) is presented next. After this
we briefly discuss the steps of IHBE.

Method 14 (IHBE).

(1) Initialize the set Zm by calculating Pareto optimal objective vectors for
the original computationally expensive MOO problem.

(2) Generate the function fa for the Pareto front approximation.
(3) Validate the approximation to make it sufficiently good for the solution
process of the MOO problem. If the approximation is not sufficiently good,
then generate a different approximation, for example, by replacing the func-
tion fs by another.

(4) Collect information of the regions in the objective space the decision maker
is interested in by using the HBE method.

(5) If the decision maker needs some new information from the approxima-
tion, then go to step (4).

(6) Calculate (if it can be done in a reasonable time) and present true Pareto
optimal objective vector(s) corresponding to the approximated one(s) the
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decision maker is interested in. Otherwise, stop the solution process tem-
porarily and continue with the decision maker when the vectors are calcu-
lated and ready to be analyzed by the decision maker.

(7) If the decision maker feels that the psychological convergence still re-
quires more (approximated) Pareto optimal objective vectors, then add the
calculated true Pareto optimal objective vector(s), which does(do) not yet
exist in Zm into Zm and go to step (2). Otherwise, stop.

Generally speaking, in steps (1)-(3) initializations for the approximation are done
by the analyst. The content of step (3) will be clarified later in Chapters 4 and 5, in
which we show how to do the validations computationally. After the validations,
the approximation should not contain vectors, which, for example, dominate vec-
tors in the set Zm. A sufficiently good approximation is an informal definition, but
to present a formal definition for a good approximation can be difficult because
of the nature of nonconvex MOO problems (the Pareto front can have the most
pathological “shape” a human can imagine). In cases of invalid approximations,
there is no single rule what to do in order to obtain a valid approximation. How-
ever, the simplest rule is perhaps to replace the function fs by a different one and
then do the validation again. In this way, the analyst might find a proper surro-
gate function as discussed in Section 1.4. On the other hand, validation methods
proposed in later chapters provide information which tells in which sense the
approximation is invalid. It may happen that the approximation is invalid only
in a very particular small region in the objective space, and therefore there is no
need to generate a new one. This would mean that the approximation is suffi-
ciently valid. Therefore, we encourage the use of common sense in validating the
approximation instead of just repeating the steps of IHBE.

During the initializations, the decision maker is not needed, but, in steps
(4)-(7), the decision maker is gaining overall understanding of available (approx-
imated) Pareto optimal objective vectors while aiming at psychological conver-
gence. To be more exact, in steps (4) and (5), the decision maker is operating
in the approximation environment, meaning that he or she is dealing with the
approximation. In steps (6) and (7), the environment is the Pareto front environ-
ment. In step (6), reasonable time cannot be exactly specified, but if the decision
maker has to wait, for example, longer than is needed to drink a cup of coffee or
tea, then we can start to talk about overrunning reasonable times. Step (7) is the
final step of IHBE. If the IHBE method stops at that step, then the compromise
solution to the MOO problem is the Pareto optimal objective vector for which the
psychological convergence has been obtained, i.e., there does not exists a better
vector for the vector2.

What comes to the computation efficiency of the IHBE and HBE methods,
we have not yet touched these issues. In the HBE method, the only time-consuming
step might be the third one in which vectors on the approximation are calculated
2 It is possible that the decision maker might not have found a compromise solution to the

problem. While learning, he or she may have noticed that, for example, the formulation of
the MOO problem is not a correct one, that is, an important objective or constraint has not
been included in the formulation of the problem.
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corresponding to the aspiration and reservation levels. However, a mathemat-
ical model introduced later in Section 3.2 is generated so that the calculation is
computationally efficient. Therefore, the HBE method can be considered as a
computationally efficient method in the approximation environment. The com-
putational cost of the IHBE method is an issue that is a bit tricky. Basically, most
of the steps of IHBE (i.e. (4)-(7)) in which the decision maker is involved with
are dealt with in the approximation environment. However, step (6) is naturally
computationally costly, because at least one Pareto optimal objective vector to the
MOO problem must be calculated. This is something that cannot be avoided in
practice. Therefore, the IHBE method is computationally costly, but in practice
the decision maker knows that the problem is computationally expensive and be-
cause of this (we believe) he or she might try to avoid unnecessary calculations
in step (6). From this point of view, the IHBE method can be considered as a
computationally efficient method to be used in the solution process of the MOO
problem.

The IHBE method combines learning and aspiration and reservation levels
into one packet. However, the combination is not a new idea in the MCDM litera-
ture. In methods like AIM (Aspiration-level Interactive Method) [111], GUESS [24],
LBS (Light Beam Search) [83] or reference point methods [131], the idea is to tell
something reasonable of the preferences (in the form of aspiration and reservation
levels) for the decision maker for the learning purposes. According to [111], the
idea of learning something of the preferences was presented already in the fifties
[117]. From the solution process point of view, learning trough the aspiration and
reservation levels seems to be understandable for most of the decision makers,
see e.g. [111, 167, 185, 188, 189]. What comes to the psychological convergence,
studies like [23, 25, 36] support the idea of utilizing the free-search in creating an
overall understanding of available (approximated) Pareto optimal objective vec-
tors. Thus, the IHBE and HBE methods can be considered for the solution process
of MOO problems.

The rest of this chapter has been organized as follows. In Section 3.1, we
discuss the assumptions the decision maker must satisfy and deal with when
using the IHBE and HBE methods. In Section 3.2, we propose a computational
method to be used in step (3) of HBE. Through the vectors calculated in step
(3) of HBE, several additional findings can be presented to the decision maker.
These findings are considered in Section 3.3. Finally, Section 3.4 summarizes this
chapter.

3.1 Decision Maker and the IHBE and HBE Methods

In this section, the actual use of the IHBE and HBE methods from the deci-
sion maker’s viewpoint is discussed. As said, the IHBE method is an interac-
tive method, and therefore it may contain some assumptions or features that
the decision maker might see as problems in the solution process of the MOO
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problem. These aspects must be discussed because interactive methods have
also been criticized in the literature of MCDM. For example, the mathematics
used in the method do not necessarily match the decision making, or how the
decision making is used or should be used in an interactive method, see e.g.
[26, 34, 35, 51, 71, 91].

This section has been organized as follows. Assumptions set on the decision
maker when using IHBE and HBE are discussed in Subsection 3.1.1. The IHBE
method connects together both approximation and Pareto front environments,
meaning that switching from the approximation to a true Pareto front may not
be that simple for the decision maker. These concerns are discussed in Subsec-
tion 3.1.2.

3.1.1 Assumptions on Decision Maker

The IHBE and HBE methods are rather simple, and it can be stated that the HBE
method is the core of the IHBE because it is the method which communicates
with the decision maker. Therefore, some assumptions must be set on the deci-
sion maker so that he or she would be able to use and receive support for the
creation of an overall understanding of available (approximated) Pareto optimal
objective vectors from the IHBE and HBE methods.

When using IHBE and HBE the decision maker is assumed to

(1) be able to express his or her preferences as aspiration and reservation levels,
(2) be able to set the number of sample vectors to be generated from the ap-

proximation,
(3) be willing to explore and learn about the objective space and (approximated)

Pareto optimal objective vectors within it.

To clarify, assumptions (1) and (2) are needed in HBE and assumption (3) in IHBE.
Next, we further discuss these assumptions, which we have organized in sepa-
rate subsections so that in Subsection 3.1.1.X we discuss assumption (X).

3.1.1.1 Aspiration and Reservation Levels

The HBE method assumes in step (1) that the decision maker is able to define
his or her preferences as aspiration and reservation levels for each objective func-
tion. Aspiration and reservation levels mean in practice that the decision maker
defines the lower and upper bounds for each objective function. An aspiration
level is a real value, which the decision maker would like to obtain. A reserva-
tion level is a real value, which is still admissible and should at least be achieved.
In addition, every value between the aspiration and reservation level is admissi-
ble for the decision maker.

In a state-of-the-art article [131], aspiration and reservation levels are dis-
cussed and included in the category of reference point methods in the solution pro-
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cess of MOO problems. In addition, the authors have presented the fundamen-
tals of reference point methods also from the learning point of view. The aspects
pointed out are based on the intuition of the decision maker [189] and sovereignty
of the decision maker [188]. It is easier for the decision maker to handle the objec-
tive function values directly instead specifying preferences in some other ways,
as e.g. weights, because objective function values are connected to the problem in
a natural way. This means that the levels are more meaningful and understand-
able as numbers for the decision maker. Therefore, the use of aspiration and
reservation levels is justified in HBE. In addition, empirical studies also support
the justification, see e.g. [111, 167].

In HBE, we do not use reference point methods as they have been pro-
posed in the literature, because the MOO problem considered in this thesis has
been assumed to be computationally expensive. Typically, in a reference point
method, a maximization problem (or minimization, depending on formulation)
of an achievement (scalarizing) function3 based on the objective functions fi must be
solved. This means that a lot of function evaluations must be done, which is time-
consuming in this case. To avoid unnecessary objective functions evaluations, we
propose in Section 3.2 a computationally efficient method instead of achievement
functions to be used in HBE.

In principle, we are not criticizing reference point methods and achievement
functions, but we believe that these methods are not the best suited for the solu-
tion process of computationally expensive MOO problems. However, criticism
about and problems in using aspiration and reservation levels in the solution
process can be found mainly in two categories in the literature of MCDM. In the
first category, the concern is about how the decision maker can set the levels with-
out seeing the ranges of the objective functions (see e.g. [104, 177]). The second
category is related to problems in setting some parameters (e.g. weights) in op-
timization problems related to certain scalarization functions, see e.g. [139, 177].
The concerns in the first category are valid also in HBE and, therefore, they must
be discussed. However, the issues in the second category do not exist in HBE be-
cause we do not use achievement functions or methods like goal programming4

in HBE. Goal programming is mentioned here because, as said in [177, 179] (and
noticed already in [101]), the reference point method can be regarded as a method
of goal programming, or as a generalization of goal programming with certain
order-consistent scalarization functions [190, page 237].

In the first category, the generation of objective function ranges in the set
of Pareto optimal objective vectors forms a problem. To have the exact ranges of
Pareto optimal objective vectors and in order to have the upper bounds, global
optimization problems must be solved. Note that calculating the nadir vector is
not a trivial problem to be solved [123, page 16]. Instead of solving the optimiza-
tion problems in HBE, the ranges are generated by the minimal and maximal
coordinate-wise values of the pre-calculated Pareto optimal objective vectors in
Zm. This is not necessarily the best way to generate the ranges, but it is a start as

3 Different achievement scalarizing function formulations can be found e.g. in [127, 187, 190].
4 The term goal programming was originally proposed in [31].
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proposed in [50]. However, we want to remind that the approximation fa(Δk−1)
for the Pareto front can only approximate Pareto optimal objective vectors for
which the ith coordinate value can be greater than or equal to the corresponding
minimum value of the coordinates of the vectors in Zm (see AM f 3). In other
words, the lower bounds are justified, because there is at least one known Pareto
optimal objective vector for which at least one of the coordinate values is equal to
the lower bounds. Setting the upper bounds is not that critical in HBE as long as
they are at least the coordinate-wise maxima of the vectors in Zm. Otherwise in
the worst case, it might be possible that (approximated) Pareto optimal objective
vectors for which the objective function values are between the aspiration and
reservation levels at the same time do not exist, no matter what the levels are as
long as they are in the ranges. This has been demonstrated in Figure 11, where
the selected upper bounds (gray lines) are too small.

FIGURE 11 If the upper bounds selected for the ranges are too small, then it is possible
that (approximated) Pareto optimal objective vectors do not exist inside the
ranges.

Another concern in the first category related to the aspiration and reserva-
tion levels can be attributed to the trial-error problem [104, 177, 183]: how to set
or find feasible levels before seeing any (approximated) Pareto optimal objective
vectors even when the ranges are presented for the decision maker? In practice,
the trial-error problem means that the decision maker tries some levels and then
sees what happens. If the levels tried are not feasible, that is, no (approximated)
Pareto optimal objective vector is found between the levels, then an error would
occur. Otherwise, there is no error and the decision maker has found what he
or she was looking for. In a case of an error, the decision maker must try some
other levels and then see what happens. In the HBE method, it cannot be said be-
forehand what the feasible levels are for the decision maker because one cannot
know beforehand what part of the objective space the decision maker wants to ex-
plore and study for the creation of an overall understanding of available (approx-
imated) Pareto optimal objective vectors. However, HBE presents to the decision
maker approximated Pareto optimal objective vectors (if they exists) correspond-
ing in some sense to the aspiration and reservation levels, see Section 3.2. Thus,
the problem of the trial-error has been fixed only partially in the HBE method.



52

However, we believe that the decision maker is able to set new aspiration and
reservation levels based on the information presented to him or her.

To summarize, aspiration and reservation levels are selected to be used in
HBE because it has been pointed out that these levels supports the learning and
are easy to use as numbers in the interaction between a computer software and
the decision maker.

3.1.1.2 The Number of Sample Vectors in the HBE Method

The second assumption set on the decision maker is related to the ability to de-
fine the number of sample vectors to be generated on the approximation. The use
of the approximation is based on these sample vectors corresponding in some
sense to the aspiration and reservation levels provided by the decision maker.
In this section, we discuss that number from the decision maker’s point of view.
To put it briefly, the greater the number is, then more detailed information of
the approximated Pareto front can be obtained, that is, different kinds of ap-
proximated Pareto optimal objective vectors. However, with a small number,
vector-wise comparisons are easier for the decision maker. Next, we investigate
briefly these two options starting from great numbers and then moving towards
small(er) ones.

At the beginning of the creation of an overall understanding of available
(approximated) Pareto optimal objective vectors, the decision maker may first
set aspiration and reservation levels close to the bounds of the ranges for the
objective functions. Then he or she may select a large number for vectors to be
generated on the approximation because by a large number of vectors a larger
set of different (approximated) Pareto optimal objective vectors can be obtained.
There is an analogy with people: ten persons do not necessarily represent the
whole nation of 100 000 people. In this way, the decision maker may receive a
good distribution of different kinds of approximated Pareto optimal vectors to get
an idea of what is available. However, when dealing with numbers, the capacity
of processing information in a human mind must be considered.

In [132], Miller studied the magical number seven, plus or minus two in pro-
cessing information. The special significance of that number is based on sev-
eral different studies by other researches. Their studies point out that a human
starts to make mistakes in judgments if there are more than 7 ± 2 alternatives5

to remember or choose from. In addition, it is cognitively valid for the decision
maker if the amount of information is low [107]. Therefore to choose, for example,
from 1000 different (approximated) Pareto optimal objective vectors may highly
exceed the decision maker’s information processing capacity. However, before
processing information, i.e. making vector-wise comparisons between (approxi-
mated) Pareto optimal objective vectors, the decision maker must have an idea
of different kinds of vectors. There is no sense in starting to make vector-wise
comparisons if better vectors, which would make the previous vector-wise com-

5 Depending on studies, the number of alternatives may vary. However, typically, the num-
ber is from three to nine [39, 72, 116].



53

parisons meaningless, can be found. In other words, we believe that the decision
maker makes judgments on superiority of vectors or vector-wise comparisons af-
ter having found interesting regions (or approximated Pareto optimal objective
vectors) in the objective space. To find interesting regions from a large set of vec-
tors, methods like filtering data as in [8] or visualizations [105, 112] can be used.

The number of vectors generated on the approximation is a technical detail
in HBE, but in IHBE it has a significant role in creating an overall understanding
of available approximated Pareto optimal objective vectors. However, setting a
strict limit for the number is not that clear. In MCDM, many researchers believe
that the number of vectors to be generated is a result of an individual dynamic
process, see for example [122, 201]. It is also said that the fixed set of alternatives
is the third of the ten myths in MCDM. Although, the fixed number of vectors
to be generated is not directly related to the fixed set of alternatives, we do not
see a difference between them. Therefore, the number of vectors to be generated
should not be fixed by the method (or the analyst or some other method or algo-
rithm) because dynamic changes must be possible while using IHBE and HBE.
It is thus assumed that the decision maker must be able to define the number by
himself or herself in HBE. We believe that he or she is always able to do that after
seeing the vectors and other findings discussed in Section 3.3.1 in step (4) of HBE.

To summarize, balancing between the accuracy and vector-wise compar-
isons was briefly discussed from the perspective of creating of an overall under-
standing of available (approximated) Pareto optimal objective vector.

3.1.1.3 Willingness to Learn

The third and the last assumption set on the decision maker is the willingness
to learn what kind of (approximated) Pareto optimal objective vectors are avail-
able. Compared to the two previous assumptions for the HBE method, this one
is needed in steps (4) and (7) of IHBE. In the creation of an overall understanding
of available (approximated) Pareto optimal objective vectors, we believe that the
decision maker must be interested in learning about the problem. Therefore, we
have to assume this when the decision maker is using the IHBE method. How-
ever, we would like to categorize IHBE into the interactive methods based on how
it is used. If the decision maker is willing to use an interactive method for the so-
lution process, then he or she is willing to learn about the problem [123, 131, 178].
Thus, if the decision maker is willing to use the IHBE method, then the assump-
tion of willingness to learn holds.

Next, we briefly discuss how learning about the problem has been treated
in the MCDM literature. In that discussion, we investigate both IHBE and HBE,
and how they behave in relation to these issues according to the literature.

In a state-of-the-art article on learning [14], the researchers in the field of
MCDM consider several aspects. In their article, several interesting questions are
presented as titles of sections:

1. “What Does a Decision Maker Learn?”,
2. “How Do We Know if a Decision Maker Has Learned?”,
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3. “How Does a Decision Maker Learn?” and
4. “How do We Investigate Learning?”.

To summarize the answers given in [14], a decision maker learns what is feasible
and desirable. Learning can be indicated if the decision maker can explain his or
her decisions and choices. To enable learning, the decision maker must be mo-
tivated to learn, and the interaction between a computer program and a human
must be easy and understandable for the decision maker. In addition, factors
such as losses rather than gains may have influence on the decision maker and
his or her motivation to learn. According to [14], investigation of the learning is
challenging, because learning is a process of an individual.

To put it briefly, in the solution process of the MOO problem, the psycho-
logical convergence requires that the decision maker is aware of different kinds
of (approximated) Pareto optimal objective vectors, and after having reached the
convergence he or she knows why the compromise solution is really the com-
promise solution, i.e. no other Pareto optimal objective vector is better than that.
This means that the first two questions above are considered in the IHBE method
through psychological convergence. However, it must be clarified although that
the IHBE and HBE methods are tools to be used when aiming at psychological
convergence, but they do not necessarily guarantee the convergence in every case
with all decision makers.

The third question is partially covered by the third assumption of the will-
ingness to learn, but keeping up the motivation to learn is highly related to the
decision maker himself or herself and to a possible user interface for the IHBE
method. In the literature of MCDM, the importance of user interfaces in learning
was recognized already in the eighties and nineties [101, 102, 104] and nowadays
even in the applications running on the Internet [184]. As mentioned in [14], the
user interface affects the motivation to learn and thus the ability to understand
available (approximated) Pareto optimal objective vectors. To support and help
the decision maker in this understanding, a graphical user interface and different
types of visualizations [104, 105, 112, 145] for the (approximated) Pareto optimal
objective vectors must be available, if needed. However, the appearance of these
graphical user interfaces is out of the scope in this thesis. Therefore, the IHBE
method partially provides an answer to the third question.

The fourth question is a tricky one, if we consider how the IHBE and HBE
methods handle or investigate the learning of available (approximated) Pareto
optimal objective vectors or overall understanding of the vectors. Handling here
means that either IHBE or HBE maintain the process of learning and, based on
that, are able to guide the decision maker to find new (approximated) Pareto op-
timal objective vectors, which are significantly different from the already studied
or preferred ones. The challenges in investigating individual learning may arise
from many aspects, for example, from those presented in [104]:

– “The DM wants to control the search process. Also he/she wants that sup-
port is available when needed.”

– “The DM does not always want to have maximal support.”
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– “The DM does not always recognize the necessity of support.”

The IHBE and HBE methods do not provide tools or methods to recognize when
or how much support (in learning) is needed. Therefore, one can state that IHBE
is not meant for learning. This can be true, and it must be admitted that a tool
or a mechanism or a method created for the Pareto optimal objective vectors the
decision maker has learned and investigated would be an essential element in
IHBE. Then it would be possible to guide the decision maker to alternatives that
should be considered at least when aiming at psychological convergence. How-
ever, creation or construction of such a mechanism can be difficult because to
know beforehand the alternatives, which should be considered at least, is per-
haps impossible in arbitrary MOO problems. Therefore, the decision maker con-
trols his or her individual learning in the IHBE method. In other words, we rely
on the decision maker’s expertise on the topic of the MOO problem and ability to
be interested in studying and learning about new possible (approximate) Pareto
optimal objective vectors. It has been said that interactive methods are for creat-
ing new possible alternatives [91].

In guiding the decision maker to new areas in the objective space, machine
learning can be used and so has been done in MCDM. There are positive results,
see e.g. [57, 64] and references therein, on machine learning created for learning
the preference structure of the decision maker. Typically, a so-called utility func-
tion and its updating based on the decision maker’s new preferences are used for
this purpose. The benefit of such an approach is clear. The utility function can
be used in guiding the decision maker to study and consider some other alterna-
tive (approximated) Pareto optimal objective vectors corresponding to his or her
preferences. However, we have doubts on these methods and on how they detect
mistakes committed by the decision maker in judging, for example, which one of
two alternatives he or she prefer. These doubts may be due to examples such as
those presented e.g. in [107]. On the other hand, in practice, the decision maker
might think that

“This alternative is miserable, but might satisfy me if it turns out that there are no better
ones.”,

which means that the decision maker is not able to decide about his or her prefer-
ence without seeing other possible alternatives. To have a more concrete example,
let us consider a decision maker who is unemployed. He or she has been lucky
to receive a dream job offer in a neighboring city, but there is one problem. There
is no public transportation between the city and the house of the decision maker,
and the job will start the following week. Therefore, the decision maker has to
buy a car. He or she may have to consider older ones, because a brand new car
may be out of reach financially. In other words, an old rusty car might be fine for
the decision maker if no better one is available within the budget. Based on these
examples, we (in some sense) believe that machine learning is not necessarily
suitable in the creation of the overall understanding of available (approximated)
Pareto optimal objective vectors. Machine learning is (in our opinion) more suit-
able for problems, where mathematical convergence matters more, i.e. where a
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method or an algorithm decides what is the best for the decision maker rather
than psychological convergence which allows the decision maker to decide what
is finally the best for him or her.

Because it is difficult to investigate the learning about the problem, then it
can be asked whether or not the IHBE method helps the decision maker in aiming
at the psychological convergence. Because no graphical user interface has yet
been created, then we have to leave the empirical studies of IHBE use in practice
to the future. However, we believe that the basis of IHBE is good, because it is
based on aspiration and reservation levels as discussed in Subsection 3.1.1.1. In
addition, the free-search in learning is supported by studies [23, 25, 36].

Actual willingness to learn has been briefly discussed in this subsection.
Generally, it is very difficult to say how and when the decision maker should be
supported in learning because the learning process is always individual. How-
ever, the importance of learning is essential in the solution process of the MOO
problem because the compromise solution is a result of the learned facts no mat-
ter how much of time and patience might have been expended.

3.1.2 Possible Challenges in the IHBE Method for the Decision Maker

The IHBE method is very simple. However, IHBE operates in both approxima-
tion and Pareto front environments. As noted in [65, page 33], the use of an ap-
proximation in the solution process of MOO problems has not been investigated
much. This becomes evident as follows. In articles dealing with method com-
parisons [9, 22, 23, 25, 36, 83, 125, 130, 183], approximations have not been used.
In articles such as [50, 90, 95, 153, 159, 170], approximations are used in the solu-
tion process of the MOO problem, but there is no indication about how confident
the decision maker was with the approximation used in a method. However, in
the above papers where approximations were used, the convexity of the MOO
problem plays a great and important role, which may mean that the approxima-
tions used were rather accurate and close to the Pareto front. This means that the
approximated Pareto front can be almost equal to the true front and, therefore,
it makes no difference to the decision maker whether he or she is dealing with
an approximation or not. Let us remind ourselves that the IHBE and HBE meth-
ods are suited for nonconvex MOO problems, which are not that straightforward
compared to convex MOO problems, as we point out in this subsection.

In this subsection, we address several elements in the IHBE method that
the decision maker may consider difficult or problematic in practice when using
an approximation in the solution process. To clarify, the elements discussed in
this subsection are not only problems in the IHBE method: other methods like
PAINT [65] and Pareto navigator [50] may suffer from these problems.

When using IHBE, the decision maker must understand that

(1) the psychological convergence is created in both the approximation envi-
ronment and the Pareto front environment,

(2) the interpretation of error estimations can be challenging for him or her,
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(3) he or she can decide himself or herself whether the solutions presented in
step (4) of IHBE guide him or her or not and

(4) the values of decision variables are not available in the approximation envi-
ronment.

Each concern listed above is discussed in separate subsections as follows. In Sub-
section 3.1.2.X concern (X) is discussed.

3.1.2.1 Psychological Convergence in the Approximation Environment

As said, the HBE method operates in the approximation environment. In other
words, the approximated Pareto optimal objective vectors presented in step (4) of
HBE are based on educated guesses of the Pareto front. Therefore, the decision
maker must understand that the information for psychological convergence in
steps (4) and (5) of IHBE is based on educated guesses. Occasionally, those edu-
cated guesses may not present accurate information of the true Pareto front. This
is the price the decision maker must pay (or risk to take) when using approxima-
tions in the solution process of computationally expensive MOO problems.

Operating in the approximation environment with the HBE method can be
questioned when the focus is on the psychological convergence. In addition, it
might be thought that the psychological convergence in computationally expen-
sive nonconvex MOO problems is pointless because of time-consuming calcula-
tions of Pareto optimal objective vectors. This means that only few vectors can
be calculated in practice. In other words, the decision maker may not have an
overall understanding of available Pareto optimal objective vectors for the deci-
sion about the compromise solution because those few vectors may not represent
all possible and interesting Pareto optimal objective vectors. We do not know
whether or not the psychological convergence should be considered in the ap-
proximation environment but we believe that investigating approximated ones
is a better option than doing nothing or having long waiting times for calculat-
ing single Pareto optimal objective vectors for computationally nonconvex MOO
problems. However, dealing with the approximated Pareto optimal objective vec-
tors of a nonconvex MOO problem is not necessarily that straightforward and we
illustrate this as follows.

Because the MOO problem can be nonconvex, then in a pathological exam-
ple the set Zm can be the Pareto front and no other Pareto optimal objective vector
exists. In addition, there can be a hyperplane H so that all the vectors in Zm may
lie on it. Such a case has been illustrated in Figure 12 (vectors in Z3 are black dots
and the hyperplane H is the black dashed line). Now, the hyperplane can be a
very good educated guess to approximate the front, as can be seen in Figure 12.
In Figure 13, we have selected on purpose the image Z to be a black curve of two
arcs of circles so that the Pareto optimal objective vectors are the vectors in Z3.
As it can be seen, every vector in H \ Z3 is nondominated in H, and, therefore,
they are considered by Definition 11 as approximated Pareto optimal objective
vectors. However, one cannot know beforehand how far, for example, vector
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(0.5, 1.5)T ∈ H is from the true Pareto front. In other words, in the worst case, the
closest true Pareto optimal objective vectors can be too far away from (0.5, 1.5)T,
which means that some of the coordinate values of the vector are not desirable
for the decision maker. Then the approximation might be providing “too good
promises” of the Pareto front by vector (0.5, 1.5)T for the decision maker, even
though it is a nondominated vector in the approximation.

FIGURE 12 A set Z3 included into a hy-
perplane.

FIGURE 13 A Pareto front of a con-
tinuous nonconvex MOO
problem in which only three
Pareto optimal objective
vectors exist.

Because approximated Pareto optimal objective vectors are only guesses,
then the decision maker, in the worst case, may feel uncertain about the available
approximated Pareto optimal objective vectors. To remove that uncertainty, true
Pareto optimal objective vectors which correspond to the approximated ones that
the decision maker is interested in are calculated in step (6) of IHBE. The only
way to be sure here is by calculating Pareto optimal objective vectors. However,
to convince the decision maker that some approximated Pareto optimal objective
vectors are reliable, that is, that they are rather close to the Pareto front of the
MOO problem, error estimations might be suggested as suitable means for the
purpose. However, the error estimations can also be challenging in practice and,
especially, in nonconvex MOO problems.

3.1.2.2 Challenges in Interpretations of Error Estimations in the Approxima-

tion Methods

The approximation fa(Δk−1) constructed in Chapter 2 highly depends on the sur-
rogate function fs. In addition, if error estimations for function fs are available
and calculated, then error estimations for the vectors in the approximation can be
calculated, as in (17). Typically, error estimations for functions are calculated to
get an idea of the reliability of a surrogate function in approximating some other
function or phenomenon. In other words, by error estimations the decision maker
may estimate how reliable an approximated Pareto optimal objective vector is. In
IHBE, this reflects immediately to step (6), in which the decision maker decides
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about the approximated Pareto optimal objective vectors for which correspond-
ing true Pareto optimal objective vectors should be calculated. In this subsection,
we briefly discuss the use of error estimation in step (6) of IHBE that might be
occasionally challenging for the decision maker.

Let us consider the case in Figure 12 from the viewpoints of error estima-
tion and step (6) of IHBE. The error estimations of vectors on the approximation
can be very close to zero or even zero because the hyperplane describes the data
in Zm completely. In other words, the decision maker would be able to under-
stand that the approximated Pareto optimal objective vectors represent or de-
scribe the Pareto front completely and that such Pareto optimal objective vectors
corresponding to the approximated ones exist. However, in a pathological case,
Pareto optimal objective vectors “very close” to approximated ones may not exist
(Figure 13). This reflects immediately to step (6) of IHBE. How can the decision
maker know for which approximated Pareto optimal objective vectors the corre-
sponding true Pareto optimal objective vectors should be calculated? Note in this
case that the error estimation can be misleading. A wise choice for the decision
maker would be to make a list of interesting approximated Pareto optimal ob-
jective vectors and have the corresponding true ones calculated in one session as
allowed by step (6) of IHBE. However, the decision maker must accept that the
calculation may take some time because the MOO problem is computationally
expensive.

Generally speaking, it is not clear how the error estimations in cases of non-
convex MOO problems should be handled in the solution processes of MOO
problems. Typically, in convex MOO problems, approximated Pareto optimal
objective vectors are either Pareto optimal objective vectors or vectors dominated
by some previously unknown Pareto optimal objective vectors. This means that
it does not necessarily matter what the error estimations are because the approx-
imated Pareto optimal objective vectors are not going to be infeasible. In non-
convex problems, the approximated Pareto optimal objective vectors can also be
infeasible objective vectors as seen in Figure 13. In addition, it is not clear how the
error estimations may affect the decision maker, that is, how uncomfortable the
decision-making may feel to him or her if error estimations are constantly being
presented.

To summarize this and the previous subsection: balancing between the ap-
proximation and Pareto front environments might be challenging for the deci-
sion maker when creating the overall understanding of available (approximated)
Pareto optimal objective vectors. This is because the computational cost of the
MOO problem may force the decision maker to deal most of the time with ap-
proximated Pareto optimal objective vectors which are educated guesses. Un-
certainty might increase or the trust to the approximation decreases if the corre-
sponding true Pareto optimal objective vectors do not match with the approxi-
mated ones. This may happen in pathological cases, and it is not clear whether
or not such situations take place when dealing with practical problems.
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3.1.2.3 Full Power to Control

In step (5) of IHBE, a new region in the objective space defined by the new aspi-
ration and reservation levels given by the decision maker is searched. However,
giving new levels can be occasionally challenging for the decision maker in the
solution process of the MOO problem. In the IHBE method when creating the
overall understanding of available (approximated) Pareto optimal objective vec-
tors, the decision maker decides himself or herself which regions of the objective
space must be investigated in aiming at psychological convergence. This is some-
thing the decision maker must understand when using the IHBE method. Next,
the full power to control the method is considered.

In the literature of MCDM, it is recommended for interactive methods that
the decision maker control the method [104]. We follow this recommendation in
the IHBE method. In other words, the IHBE or the HBE method do not inform
the decision maker what to do in step (5) of IHBE, that is, whether to continue to
step (4) or move forward to step (6). This so-called “no-guidance” can sometimes
be a problem for the decision maker as reported in [23]. The decision maker may
face a situation where he or she does not know what to do next or which Pareto
optimal objective vector would be the compromise solution. If the previous one is
the case, then one may wonder whether or not it matters for the decision maker
which Pareto optimal objective vector is implemented in practice. In addition,
is then an interactive method really needed in the solution process of the MOO
problem with the decision maker? The question is in our opinion very deep and
philosophical, and we believe that there is no single answer for it. The deci-
sion maker can become frustrated in searching the compromise solution, or be
confused about the massive amount of different kinds of (approximated) Pareto
optimal objective vectors, not being able to see much difference between them. It
is difficult to say how often the decision maker is faced this dilemma or whether
such decision makers are in a minority because the free-search has been noted to
be rather successful in practice.

We believe that positive results reported in [25, 36, 111, 167, 185, 188, 189] of
the AIM, GUESS and other methods that are based on aspiration and reservation
levels used in the solution process of a MOO problem are due to the full power
to control the method (even though it can be occasionally problematic for the de-
cision maker). In addition, we believe that the full control and through that free-
search in the objective space makes it easier for the decision maker to achieve an
overall understanding of available (approximated) Pareto optimal objective vec-
tors. In this way, the decision maker can easily find (or create or investigate) new
possible (approximated) Pareto optimal objective vectors to the MOO problem.
In addition, we believe that it is also easier for the decision maker to reconsider
already rejected alternatives. It has been noted, for example, in [23, 104] that the
decision maker may sometimes want to reconsider them. Let us remind ourselves
that the decision maker may think that

“This alternative is miserable, but might satisfy me if it turns out that there are no better
ones.”
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This illustrates the goodness of having a full controlling power over the IHBE
method because “returning” to investigate old vectors is not a problem. Conse-
quently, there is no reason to ask in steps (4) and (7) of IHBE whether the alterna-
tive(s) presented for the decision maker satisfy the decision maker, who cannot
necessarily affirm that beforehand.

Full power to control the IHBE method has thus been discussed in this sub-
section. This full power enables the decision maker freely choose the regions in
the objective space where to investigate (approximated) Pareto optimal objective
vectors.

3.1.2.4 Decision Variables in the Approximation Environment

In practical MOO problems, the values of decision variables may be of impor-
tance to the decision of the compromise solution to be implemented for the MOO
problem. For example, these variables can correspond to the amount of radiation
in radio therapy treatment planning [133, 158], their values are describing how
the compromise solution can be produced or implemented in practice.

The approximation fa(Δk−1) created in Section 2.2 and used in HBE oper-
ates only in the objective space. The approximation is based on the Pareto optimal
objective vectors in the set Zm and the simplex Δk−1. At this step, the connection
to the decision space has been lost. The approximation does not use the informa-
tion of the decision variables and, therefore, the decision maker cannot have that
information while using HBE. This is something what the decision maker must
understand. However, in step (6) of IHBE the connection to the decision space
is opened again for the decision maker. When calculating a true Pareto optimal
objective vector corresponding to the approximated one, the values of decision
variables are calculated and available for the true ones.

3.1.3 Summary of Section 3.1

In Section 3.1 we have discussed the assumptions the decision maker must satisfy
in order to use the IHBE and HBE methods. Generally, he or she must be will-
ing to learn what kinds of (approximated) Pareto optimal objective vectors are
available for aiming at the psychological convergence. From the technical point
of view, while learning, the decision maker must be able to define the number
of approximated Pareto optimal objective vectors to be generated on the approx-
imation related to the preferences given by him or her in the form of aspiration
and reservation levels.

Several aspects of the use of the IHBE and the HBE methods were discussed.
The decision maker must understand that the information created for the psycho-
logical convergence is generated in both the approximation environment and the
Pareto front environment. This means that, for example, the decision variables
are not constantly available for the decision maker. On the other hand, the deci-
sion maker is allowed to enjoy a full power to control the solution process with
the IHBE method.
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3.2 A Method to be Used in Step (3) of HBE

The HBE method is rather simple. It consist of four steps, where in the first two
steps the decision maker is asked to present preferences in the form of aspiration
and reservation levels, and specify the number of sample vectors to be generated
on the approximation. Then, in the last two steps, the vectors corresponding in
some sense to the aspiration and reservation levels are calculated and presented
for the decision maker. So, basically, HBE answers the question “Do those vectors
exist?” formulated in the query

“I am interested in these kinds of (approximated) Pareto optimal objective vectors.
Do those vectors exist?”

In other words, if some of the vectors satisfy the preferences, then the decision
maker can have such vectors, i.e. they exist. Then the answer is naturally “Yes,
they exist”. Otherwise, the answer would be “No, they do not exist”, which
would mean that the decision maker cannot have such (approximated) Pareto
optimal objective vectors.

In this section, we propose a method for HBE’s step (3), where vectors on
the approximation related in some sense to the decision maker’s preferences are
calculated. Based on the vectors calculated, the HBE method can then answer
whether or not such (approximated) Pareto optimal objective vectors exist in
practice. However, in this section, we only introduce the way to calculate vec-
tors on the approximation so that they correspond to the decision maker’s pref-
erences. Note that when the HBE method was introduced, we mentioned that it
would inform the decision maker why such (approximated) Pareto optimal ob-
jective vectors do not exist if that happened to be the case. This is the topic of the
next section where we introduce the use of the calculated vectors on the approx-
imation to explain why the decision maker cannot have (approximated) Pareto
optimal objective vectors asked in the query.

In order to calculate the vectors on the approximation that correspond to the
preferences, first, a geometrical illustration for the correspondence between the
vectors and preferences is presented in Subsection 3.2.1. The rest of this section
has been organized as follows. To calculate vectors which correspond in some
sense to the preferences, a geometrical sketch of the calculation is presented in
Subsection 3.2.2. Then, space sampling techniques used in the calculation are
discussed in Subsection 3.2.3. Subsection 3.2.4 provides the mathematical proofs
for the geometrical presentations earlier. Finally, in Subsection 3.2.5, there are the
concluding remarks.

3.2.1 Aspiration and Reservation Levels as a Hyperbox and a Motivation for

the Method to be used in Step (3) of HBE

Geometrically, aspiration and reservation levels define a hyperbox in the objective
space. This is illustrated in Figure 14, where on the left-hand side the levels for
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a three-objective problem are presented on a line representing the corresponding
objective function values. On the right-hand side of Figure 14, the hyperbox de-
fined by the levels is illustrated by a gray box in the three-dimensional objective
space.

FIGURE 14 Aspiration and reservation levels for each objective function and the corre-
sponding hyperbox in the objective space.

During the solution process of the MOO problem, the decision maker may
define the levels in infinitely many ways. Figure 15 demonstrates three different
hyperboxes (gray boxes) in the objective space related to the approximated Pareto
front. One of them intersects the approximated Pareto front and, to be more pre-
cise, the set of nondominated vectors of the approximation. This means that there
exist vectors which belong to both the approximation and the hyperbox. Thus the
HBE method can answer the question in the query with “Yes, they do exist!”. On
the other hand, the other two hyperboxes do not intersect the approximation,
which means that the answer might be, for example, “No, they do not exist!”.
In such a case, the vectors in the approximation corresponding to the aspiration
and reservation levels should be calculated because the decision maker should
be informed about where the existing approximated Pareto front is in a relation
to the levels, in order to help him or her to find approximated Pareto optimal ob-
jective vectors. In addition, the vectors calculated provide an explanation for the
decision maker why he or she cannot have such (approximated) Pareto optimal
objective vectors asked in the query. The method for step (3) of HBE should thus
be flexible enough to be able to deal with different kinds of hyperboxes, no matter
where they are in the objective space.

When calculating vectors on the approximation that in some sense corre-
spond to the aspiration and reservation levels, we propose to select them from
the following set.

Definition 15. We say that vector z ∈ fa(Δk−1) corresponds to the aspiration and
reservation levels if there exists a vector zl ∈ idealZm + Rk

+ and a multiplier r > 0
so that the vector zl belongs to the hyperbox (the coordinates of it are between
the levels) and

r(zl
i − idealZm

i ) = zi − idealZm
i , i = 1, . . . , k.
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FIGURE 15 Hyperboxes can be located in several regions in the objective space, and
therefore the calculation of the vectors corresponding in some sense to the
aspiration and reservation levels must be done in a general way.

The set of vectors z ∈ fa(Δk−1) corresponding to the aspiration and reservation
levels is denoted by fa(Δk−1)

res
asp, and it is said that set fa(Δk−1)

res
asp corresponds to

the aspiration and reservation levels.

Geometrically, Definition 15 means that the vector z in Figure 16 (black
dot) corresponds to the aspiration and reservation levels (gray box), because
for the vector zl, which belongs to the hyperbox, can be found r > 0 so that
r(zl

i − idealZm
i ) = zi − idealZm

i , i = 1, . . . , k. Actually, the vector z corresponds to
the aspiration and reservation levels, if a line going through the vectors idealZm

and z intersects the hyperbox. In Figure 17, we have illustrated several sets (bold
gray curves on a black curve representing fa(Δ1)) corresponding to different as-
piration and reservation levels (the gray boxes are the same as the boxes in Fig-
ure 15).

FIGURE 16 Vector z corresponds to the
aspiration and reservation
levels.

FIGURE 17 Several hyperboxes and cor-
responding subsets of the
approximated Pareto front.

As can be seen in Figure 17, there exist nondominated vectors in the ap-
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proximated Pareto front (light gray curve) that correspond to the aspiration and
reservation levels (in this case, the nondominance property can be identified by
methods proposed in later chapters). On the other hand, the two other sets (dark
gray curves) corresponding to the aspiration and reservation levels do not inter-
sect the hyperbox defined by the levels. In other words, by selecting a vector
in the set fa(Δk−1)

res
asp, the HBE method can, indeed, tell whether or not (approx-

imated) Pareto optimal objective vectors preferred by the decision maker exist.
However, it must be clarified that the method does not generate the whole set
fa(Δk−1)

res
asp but a discrete subset of it. As can be seen in Figure 17, there are vec-

tors in the light gray curve that do not belong to the corresponding hyperbox.
Then, the discrete subset generated by the method proposed in this section can
also contain vectors, which do not belong to the hyperbox. However, they can be
easily removed from the subset, if needed. On the other hand, the set fa(Δk−1)

res
asp

can contain vectors for which some of the objective function values are better
than the corresponding aspiration levels and the other function values being be-
tween the corresponding levels. This is the case in Figure 17 for the vectors in the
light gray set outside the hyperbox. This can be essential information for the de-
cision maker. However, the correspondence in Definition 15 needs some further
clarification.

The correspondence in Definition 15 means that the relative importances of
objective functions have been considered in defining the set fa(Δk−1)

res
asp. In other

words, if the objective function fi is important and f j is less important for the
decision maker, then he or she sets the aspiration and reservation levels so that
for the function fi the levels are as small as possible when compared to the lev-
els for f j. The vectors in the approximation corresponding to the aspiration and
reservation levels are then selected so that the relative importances of objective
functions are considered through values r(zl

i − idealZm
i ), zi − idealZm

i and condi-
tions r(zl

i − idealZm
i ) = zi − idealZm

i , i = 1, . . . , k. Thus, it can be stated that the
set fa(Δk−1)

res
asp corresponds to the aspiration and reservation levels because the

vector zl satisfies the levels. Therefore for the hyperbox pointed by an arrow in
Figure 17 the set fa(Δk−1)

res
asp consists only of vectors for which the first objective

function value is close to idealZm
1 , because the aspiration and reservation levels to

the first objective function have been selected close to idealZm
1 .

Now, we are ready to present a proposal for a method to be used in step
(3) of HBE in calculating vectors on the approximation that correspond to the
aspiration and reservation levels defined by the decision maker.

Method 16.

(1) Sample vectors within the aspiration and reservation levels (given in step
(1) of HBE) so that the sample size is the number given in step (2) of HBE.

(2) Map each of the sample vectors into the approximation so that each one
of the mapped sample vectors corresponds to a sample vector as in Defi-
nition 15. (That is, a mapped sample vector is the vector z, and the corre-
sponding sample vector is the vector zl in Definition 15.)
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Before introducing the explicit formulas of step (2) in Method 16, we present
the mapping in a geometrical way. Then we briefly discuss the tools, such as
space sampling techniques, required in the realization for sampling. After this,
we confirm that the formulas used in step (2) generate vectors on the approxima-
tion so that the vectors really correspond to the aspiration and reservation levels.

3.2.2 Generating Geometrically Vectors on the Approximation Correspond-

ing to the Aspiration and Reservation Levels

To answer the question “Do they exist?” in the query of the HBE method, we
start an investigation to find out whether or not (approximated) Pareto optimal
objective vectors exist in the hyperbox, i.e. whether the hyperbox and the set
fa(Δk−1)

∗ intersect. In step (2) of HBE, the decision maker is asked to state how
many vectors he or she would like to have on the approximation to be generated.
Let that number be nh. Then, the hyperbox is sampled by this number of sample
vectors. The sample vectors can be selected randomly in the simplest case, but
more advanced space sampling (hyperbox sampling) techniques are presented in
the next subsection.

Let the sample vectors be denoted by

zhi , i = 1, . . . , nh. (18)

Figure 18 illustrates sample vectors zhi as black dots and a hyperbox as black
lines, indicating that we have passed step (1) of Method 16.

FIGURE 18 Randomly selected sample
vectors zhi in a hyperbox in
the objective space.

FIGURE 19 Sample vectors zhi mapped
into the simplex Δ1.

Once the sample vectors have been generated, they are mapped into the
simplex Δk−1 used in the construction of the approximation. The mapping for
this purpose is the same function f p

Zm
that is used to map Pareto optimal objective

vectors in Zm into the simplex Δk−1. Now, let the mapped sample vectors on the
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FIGURE 20 Vectors zshi mapped by
function fa into the approx-
imated Pareto front.

FIGURE 21 Sample vectors zhi mapped
into fa(Δ1).

simplex be denoted by

zshi := f p
Zm

(zhi), i = 1, . . . , nh. (19)

In Figure 19, we have depicted vectors zshi as black dots. Now, because zshi ∈
Δk−1, i = 1, . . . , nh, we naturally use function fa to map them into the approxi-
mation6. This is the case in Figure 20. In fact, we have used Method 12 for the
sample vectors in the simplex. Thus, a function for generating vectors on the
approximation in relation to the aspiration and reservation levels is the function

fp := fa ◦ f p
Zm

(20)

and the sample vectors originally sample in the hyperbox. In other words, we
have passed step (2) of Method 16, and with the help of the vectors fp(zhi) we
can answer the question “Do those vectors exist?”, as already discussed in the
previous subsection.

In Figure 21, where we have mapped vectors zhi by function fp (the vectors
fp(zhi) are depicted as black dots, and the gray dots being vectors zhi). As can
be seen, the approximated Pareto front related to the aspiration and reservation
levels has been found by vectors fp(zhi) quite well. In fact, we have proposed a
computational method to be used in investigating whether two sets containing
infinitely many vectors intersect. This is not a trivial problem to be solved. A
good coverage of the approximated Pareto front in Figure 21 was obtained be-
cause the sample vectors zhi were initially covering the hyperbox well: that is,
they are initially everywhere in the hyperbox. In Figure 22, we have not sampled
the hyperbox well enough, and because of that we have only partially obtained
vectors in the approximated Pareto front related to the aspiration and reservation
levels. Here, the Pareto front is the same as in Figures 18- 21.

6 In the case of Figure 21, the approximated Pareto front is an arc of an origin-centered circle
with radius 2 in the positive orthant.
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FIGURE 22 If the sample vectors are not
distributed everywhere in
the hyperbox, then the pos-
sible approximated Pareto
front can be found partially.

FIGURE 23 Mapped sample vectors do
not belong to the hyperbox.

The reader may wonder that the “end-parts” of the approximated Pareto
front (parts of the Pareto front close to the edges of the hyperbox) in Figure 20
are not necessarily well represented by vectors fp(zhi). In MOO problems con-
sisting of two objective functions, visualization as in Figure 20 can be done. Then
the decision maker “sees” such behavior. However, let us consider a MOO prob-
lem consisting of ten objective functions and a hyperbox, which intersects the set
fa(Δ9)

∗. In this particular case, it is not necessarily that simple to “see” whether
such “end-parts” exist because there can be arbitrary many of them. Note that a
discrete set may not always represent a subset of a hypersurface well enough. On
the other hand, we do not know whether or not the decision maker is interested
in knowing how well the vectors represent the intersection. Also, it is not always
that simple to find computationally the intersection of the hyperbox and the set
fa(Δk−1)

∗. However, if it happens that the decision maker is really interested in
“seeing” whether or not such “end-parts” exist, then he or she can make a new
query targeting a region he or she is suspecting to be an “end-part” by specify-
ing new aspiration and reservation levels there. Note that if vectors fp(zhi) do
not exist in a certain region in the hyperbox, then it does not necessarily mean
that approximated Pareto optimal objective vectors do not exist in that particular
region. In Figure 22, a resampling (a new query) has been done in one of the
“end-parts” and, as it can be seen, approximated Pareto optimal objective vectors
have been found. To cover the intersection well enough at first hand, there must
be a sufficient large number of sample vectors zhi initially covering the hyperbox,
but to say how many vectors must be sampled naturally depends on the approx-
imated Pareto front. If there is a lot of variety in the approximated Pareto front,
then more sample vectors are probably needed.

A technical advantage of Method 16 is the computational efficiency of the
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function fp in generating vectors on the approximation in relation to the aspira-
tion and reservation levels (AMf1 and the function f p

Zm
do not contain computa-

tionally expensive operations). Note that Method 16 does not contain optimiza-
tion problems to be solved likewise the reference point methods [131] discussed
in Subsection 3.1.1.1 require. However, it must be mentioned that vectors fp(zhi)
may not necessarily be uniformly distributed on the set fa(Δk−1) limited to the as-
piration and reservation levels. This can be seen, for example, in Figure 21, where
vectors fp(zhi) have been clustered to the middle part of the approximation. In
order to remove similar fp(zhi) in the set of the sample vectors by methods cre-
ated for clusters, we refer to [12]. However, a clear drawback in the method is
the property to generate vectors which are sometimes dominated in the approx-
imated Pareto front. This can be seen in Figure 23. However, in this case the
dominated vectors can be removed, and in general cases most of dominated vec-
tors can be detected, see Chapters 4 and 5. We continue with the case presented
in Figure 23 in Subsection 3.3.3, where we discuss how the sample vectors are
used in supporting and helping the decision maker in the solution process.

Next, we study in more detail the whole process of generating vectors fp(zhi).
We start by the vectors zhi defined in (18), and then we continue with the function
fp defined in (20) to make sure that it maps vectors zhi into the approximation so
that the mapped ones correspond to the aspiration and reservation levels as de-
fined earlier.

3.2.3 On Space Sampling Techniques

With the aspiration and reservation levels in step (1) of HBE, a hyperbox has been
defined in the objective space. Then the question is: do the hyperbox and the ap-
proximation intersect each other, i.e does there exist at least one vector, which
belongs to both sets? In the geometrical illustration of Method 16, a space sam-
pling technique was used at the beginning to generate sample vectors. Note, that
vectors zhi were selected randomly for simplicity and this technique is a simple
space sampling technique. However, sampling the hyperbox by random vectors
may not be the best technique for high-dimensional objective spaces.

Sampling the hyperbox by random vectors may cause some unexpected sit-
uations, for example, the vectors do not cover the hyperbox well enough. This
can be shown by a simple probability calculation. Let us assume that we have
a ten-dimensional hyperbox [0, 10]10. Then the probability that a uniformly dis-
tributed random vector vr belongs to [1, 9]10 (= the “interior” of the hyperbox)
is

p(vr ∈ [1, 9]10) =
810

1010 ≈ 0.1074.

This means that approximately every tenth random vector is in the “interior” of
the hyperbox, and it must be mentioned that the margin from the “interior” to the
boundary of [0, 10]10 is quite small. In other words, most of the random vectors
in [0, 10]10 belong to the “margin”, that is, a set [0, 10]10 \ [1, 9]10 (note that the
margin as a set contains most of the hyperbox in the sense of a volume) of the
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hyperbox7.
If space sampling by random vectors does not produce a good distribution

in the hyperbox, then a regular grid in the hyperbox will sample the hyperbox
uniformly. However, the number of grid points increases exponentially when the
dimension increases. To illustrate this, let us mention that there are 210 = 1024
corner vectors and 1110 = 25 937 424 601 vectors of form (i1, i2, . . . , i10)

T, where ij
is integer from 0 to 10, in the ten-dimensional hyperbox discussed above.

Now by the simple illustrations by numbers, it can be stated that space sam-
pling can be challenging in high-dimensional objective spaces. However, quasi-
random sequences like Halton [63], Hammersley [88] or Sobol [21] can be used
and are recommended to be used in sampling the hyperbox as vectors zhi . Ba-
sically, they combine the randomness of random vectors and put the vectors in
some sense regularly in the objective space so that in small regions there do not
exist several similar vectors as it is possible with random vectors. In other words,
these vectors combine the randomness and a regular grid into one packet mean-
ing that the sample vectors are initially covering the hyperbox well. Further
discussion on the sequences can be found, for example, in [115] and references
therein.

Once we have generated the sample vectors, we have passed the first step
of Method 16. Then it is time to consider the second step.

3.2.4 Function fp Related to the Aspiration and Reservation Levels

Function fp defined in (20) is rather simple. It uses the same functions defined in
Subsection 2.2 and therefore it is computationally efficient. However, the prop-
erty to generate vectors on the approximation fa(Δk−1) corresponding to the as-
piration and reservation levels requires further considerations. In other words,
we must show that the mapped sample vectors belong to fa(Δk−1)

res
asp.

Let us start from the simplest case.

Theorem 17. Let zh ∈ fa(Δk−1). Then fp(zh) = zh.

Proof. Because zh ∈ fa(Δk−1), then there is a vector zsh ∈ Δk−1 so that fa(zsh) =
zh. In other words, there exists a scalar λsh > 0 so that idealZm + λshzsh = zh.
Now,

f p
Zm

(zh) = f p
Zm

(idealZm + λshzsh) =
λshzsh

∑k
i=1 λshzsh

i

=
λshzsh

λsh ∑k
i=1 zsh

i

= zsh.

Thus,
fp(z

h) = fa ◦ f p
Zm

(zh) = fa(z
sh) = zh.

7 This case is opposite to the situation in Figure 21, where most of the mapped sample vec-
tors lie on the middle part of the approximated front related to the levels. In a higher-
dimensional space, most of the mapped random vectors may not cluster to the “interior”,
because the volume for the “margin” is much larger.
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To see that fp(zh) ∈ fa(Δk−1)
res
asp, select r = 1 in Definition 15. In other words, ap-

proximated Pareto optimal objective vectors satisfying the aspiration and reser-
vation levels belong to fa(Δk−1)

res
asp. For later use, Theorem 17 provides a useful

result.

Corollary 18. If the function f p
Zm

has been limited on fa(Δk−1), then the function
fa is the inverse function of f p

Zm
.

Proof. The result follows immediately from Theorem 17.

To simplify the notation, let HB denote the hyperbox defined by the aspiration
and reservation levels and

HBA := fa(Δk−1) ∩HB,
HBA∗ := fa(Δk−1)

∗ ∩ HB.

In other words, if HBA �= ∅, then every vector in HBA is a fixed point of func-
tion fp, that is, fp(z) = z. However, a sample vector zh does not, usually, belong
to fa(Δk−1), meaning that the situation in Theorem 17 is rare in practice. In other
words, it is quite rare that a sample vector belongs initially to the approximated
Pareto front.

In cases where the hyperbox does not intersect the set fa(Δk−1) (or the sam-
ple vectors do not belong to the approximation), we have to show that there exists
a multiplier r > 0 for a sample vector and the corresponding mapped vector so
that they correspond to each other as required in Definition 15. However, what
joins vectors zh, idealZm + zsh and fp(zh) together is a line and this line is the
key element in finding the multiplier r. In Figure 24, vectors zh, idealZm + zsh

and fp(zh) are depicted as black dots. The line to which the vectors belong is the
black dashed line.

FIGURE 24 A line joining vectors zh, idealZm + zsh and fp(zh) together in the objective
space.
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In other words, it is clear that there are scalars λ1 > 0 and λ2 > 0 so that

zh = idealZm + λ1zsh (definition of function f p
Zm

)

fp(z
h) = idealZm + λ2zsh (definition of function fa).

Then

zsh =
1

λ2
( fp(z

h)− idealZm),

zh = idealZm +
λ1

λ2
( fp(z

h)− idealZm),

which means that for each i = 1, . . . , k, we have

zh
i − idealZm

i =
λ1

λ2
( fp(z

h)i − idealZm
i ) =: r( fp(z

h)i − idealZm
i ).

This means that fp(zh) ∈ fa(Δk−1)
res
asp, and we have proved that the function fp

in Method 16 produces vectors corresponding to the aspiration and reservation
levels in the sense of Definition 15.

3.2.5 Summary of Section 3.2

In Section 3.2, we have presented a method to be used in step (3) of HBE for the
calculation of vectors on the approximation that correspond to the aspiration and
reservation levels defined by the decision maker. Technically, first, a hyperbox
defined by the aspiration and reservation levels is sampled by sample vectors zhi ,
which can be selected randomly or as Halton, Hammersley or Sobol sequences.
Then the vectors zhi are mapped into the approximation by the function fp, which
is a computationally efficient function. Thus, the method (Method 16) consist of
the generation of sample vectors zhi and the use of function fp. This means in
practice that the decision maker does not have long waiting times in calculation
of approximated Pareto optimal objective vectors corresponding to his or her as-
piration and reservation levels in the solution process of the MOO problem even
when the problem is computationally expensive. Method 16 completes the HBE
method to be used in practice, in the IHBE method. Next, the topic would be the
interpretation of the sample vectors generated in step 3 of HBE.

3.3 Additional Information for the Decision Maker

In Section 3.1 we discussed the assumptions the decision maker must satisfy in
order to use the IHBE and HBE methods. In Section 3.2, we proposed a method to
be used in HBE’s step (3) in which vectors on the approximation corresponding
to the aspiration and reservation levels defined by the decision maker are calcu-
lated. In other words, the IHBE and HBE methods are ready for action in practice.
However, we have not yet considered how the HBE method could explain why
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the decision maker cannot have (approximated) Pareto optimal objective vectors
if those vectors asked in the query do not exist. Now, sample vectors zhi and the
corresponding vectors fp(zhi) in the approximation calculated are used for this
purpose. They are used for characterizing a type of the hyperbox, and with the
help of the type of the hyperbox, the HBE method can explain why those vectors
do not exist.

In naming the type of the hyperbox, we investigate the aspiration and reser-
vation levels. It is possible that the decision maker cannot have the (approx-
imated) Pareto optimal objective vectors he or she is interested in because the
levels are either optimistic or pessimistic. By relating the optimism or pessimism
of the levels, the HBE method can explain in an intuitive way for the decision
maker why he or she cannot have those (approximated) Pareto optimal objective
vectors he or she is interested in. When the sample vectors and the type of the
hyperbox are presented to the decision maker, he or she might be able to under-
stand why he or she cannot have such vectors, and then he or she can set more
realistic levels in order to find (approximated) Pareto optimal objective vectors.
This can be essential at the beginning of the solution process in educating the
decision maker to set feasible levels as discussed the error-trial problem in Sub-
section 3.1.1.1. In addition, a lot of other information that can help the decision
maker to learn about the approximated Pareto front are calculated for the sample
vectors. Thus, in this section, we consider additional findings which are based on
the sample vectors calculated in step (3) of HBE.

In what follows, we have organized the discussion into separate subsec-
tions. The contents of the subsections depend on the hyperbox and its location in
the objective space in relation to the approximated Pareto front. We start with an
optimistic hyperbox in Subsection 3.3.1. Briefly, an optimistic hyperbox means that
the decision maker has set too optimistic values for each objective function to be
achieved simultaneously, i.e. objective vectors satisfying the levels are infeasible.
In Subsection 3.3.2, the topic a pessimistic hyperbox, an opposite hyperbox of an op-
timistic hyperbox. In the case of a pessimistic hyperbox, the decision maker can
improve all the objective function values related to the aspiration levels at the
same time. Thus improving some objective function value does not mean that
some other objective function value must get worse. However, in cases of opti-
mistic and pessimistic hyperboxes, it is shown that the subsets of nondominated
vectors in the approximated Pareto front do not intersect the hyperbox. Then
in Subsection 3.3.3, other types of hyperboxes, which intersect the approximated
Pareto front, are discussed. Finally, in Subsection 3.3.4, additional numerical in-
formation such as approximated trade-off rates is discussed.

To clarify the notation in the following subsections, let the vector za be the
vector of aspiration levels given in step (1) of HBE, that is, za

i is the ith aspiration
level. Similarly, let the vector zr be the vector of reservation levels.
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3.3.1 Optimistic Hyperbox

Let us start the discussion of an optimistic hyperbox with a geometrical illustra-
tion in a two-dimensional objective space and then continue with general cases
in higher-dimensional objective spaces. In Figure 25, the approximated Pareto
front has been depicted by a black curve and an optimistic hyperbox by a gray
box (note that in this case fa(Δ1) = fa(Δ1)

∗). As can be seen in Figure 25, it is
not possible to have approximated Pareto optimal objective vectors for which all
objective function values are between the aspiration and reservation levels8.

FIGURE 25 An optimistic hyperbox in the objective space.

More formally, an optimistic hyperbox is defined as follows.

Definition 19. A hyperbox defined by the aspiration and reservation levels in
step (1) of HBE is called an optimistic hyperbox, if zr dominates some vector z ∈
fa(Δk−1)

∗.

First of all, let us prove that if a hyperbox is optimistic, then the decision maker
cannot have an approximated Pareto optimal objective vector so that every coor-
dinate value of the vector is between the corresponding aspiration and reserva-
tion levels.

Theorem 20. Let a hyperbox HB be optimistic. Then HB ∩ fa(Δk−1) = ∅ (i.e.
HBA = ∅).

Proof. On the contrary, let z̃ ∈ HBA. Since the hyperbox is optimistic, then the
vector zr dominates some vector z̄ ∈ fa(Δk−1)

∗. In other words, the vector z̃

dominates the vector z̄, which is a contradiction. Thus, an optimistic hyperbox
does not intersect the set fa(Δk−1).

Theorem 20 proves that an optimistic hyperbox such as in Figure 25 does not
contain approximated Pareto optimal objective vectors. In addition, Theorem 20

8 An optimistic hyperbox does not mean that the objective function values between the as-
piration and reservation levels do not exist separately for each objective.
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and Definition 19 clarify that the term optimistic can be used for an optimistic
hyperbox. In other words, the decision maker can now be informed in step (4)
of HBE about the infeasible region in the objective space he or she is investigat-
ing. Basically, it is enough to tell the decision maker that the region defined by
the levels is infeasible. This explains why he or she cannot have (approximated)
Pareto optimal objective vectors in the query. Thus, the HBE method can explain
to the decision maker that the aspiration and reservation levels are optimistic.

The definition presented for an optimistic hyperbox in Definition 19 is ob-
vious, but in practice it can be quite difficult to identify computationally whether
a hyperbox is optimistic or not because a vector in fa(Δk−1)

∗ dominated by zr

should be found. However, in step (3) of HBE, sample vectors zhi in the hyperbox
and corresponding vectors fp(zhi) in the approximation are calculated. We use
them now to investigate whether or not a hyperbox is optimistic.

Method 21. If the three following conditions hold,

(1) every sample vector zhi dominates the corresponding fp(zhi),
(2) vectors fp(zhi) do not belong to the hyperbox, and
(3) the vector zr dominates some of the vectors fp(zhi),

then the hyperbox can be optimistic. If the vector fp(zhi) dominated by the vector
of reservation levels belongs to fa(Δk−1)

∗, then the hyperbox is optimistic.

We have demonstrated Method 21 in characterizing whether a hyperbox is
optimistic or not in Figure 26. As can be seen, every vector zhi dominates the
corresponding fp(zhi) and none of the vectors fp(zhi) belong to the hyperbox. In
addition, there exists a nondominated vector fp(zhi) in the set fa(Δ1) so that the
vector of reservation levels dominates it. Thus, the hyperbox is optimistic.

To identify whether or not a vector fp(zhi) is nondominated in fa(Δk−1),
methods introduced in Chapters 4 and 5 are required. Note that to conclude the
optimism of the hyperbox by using only the vector of reservation levels and the
corresponding vector in the approximation is not enough. The corresponding
vector can be dominated in fa(Δk−1) as it is in Figure 26 (the gray dots connected
by dashed line). Therefore, the whole set of sample vectors zhi is proposed to be
used in identifying the optimism.

Method 21 is rather simple. However, its simplicity means that the method
may occasionally identify a hyperbox to be optimistic that is not. This is the case
in Figure 27, where dominated vectors in the approximated Pareto front cannot
be used for a correct identification. Thus, more studies and developments are
required in the future for identifying computationally whether a hyperbox is op-
timistic or not in nonconvex MOO problems. However, Method 21 is a compu-
tationally efficient way to characterize the optimism by using already calculated
vectors in step (3) of HBE.

So far, an optimistic hyperbox defined by the aspiration and reservation lev-
els given in step (1) of HBE has been discussed. Briefly, an optimistic hyperbox
lies between the vector idealZm and the set fa(Δk−1) meaning that the decision
maker has set too optimistic levels for approximated Pareto optimal objective



76

FIGURE 26 An example to demonstrate
how to identify an opti-
mistic hyperbox.

FIGURE 27 A hyperbox which might be
identified as optimistic.

vectors. In practice, the decision maker is investigating an infeasible region in
the objective space. This may happen at the beginning of the solution process
of the MOO problem because the decision maker might not have a clear under-
standing of available (approximated) Pareto optimal objective vectors. Inform-
ing the decision maker about the optimism of the preferences could be essential,
especially, when creating an overall understanding of available (approximated)
Pareto optimal objective vectors. To identify an optimistic hyperbox, a very sim-
ple computational method has been proposed. By Method 21, the HBE method
can give a clear explanation for the decision maker about why he or she cannot
have (approximated) Pareto optimal objective vectors if the aspiration and reser-
vation levels were optimistic.

3.3.2 Pessimistic Hyperbox

Occasionally at the beginning of the solution process of a MOO problem, the de-
cision maker may set pessimistic values for the aspiration and reservation levels.
In such a case, every objective function value can be improved at the same time
without impairing any of them. In other words, the decision maker is investigat-
ing a region in the objective space that is an “opposite” of an optimistic hyperbox.
Informing the decision maker about the pessimism of the levels can be essential
in the creation of an overall understanding of available (approximated) Pareto
optimal objective vectors. In other words, pessimism explains why the decision
maker cannot have (approximated) Pareto optimal objective vectors asked in the
query.

Theoretically, a pessimistic hyperbox can be defined as follows.

Definition 22. A hyperbox defined by the aspiration and reservation levels in
step (1) of HBE is called a pessimistic hyperbox, if there exists a vector z ∈ fa(Δk−1)

∗

so that it dominates vector za.
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As with an optimistic hyperbox, we obtain a similar result for a pessimistic hyper-
box. In other words, a pessimistic hyperbox does not intersect the set fa(Δk−1)

∗.

Theorem 23. If a hyperbox is pessimistic, then HB∩ fa(Δk−1)
∗ = ∅ (i.e. HBA∗ =

∅).

Proof. On the contrary, let us assume that z̃ ∈ HBA∗. Since the hyperbox is pes-
simistic, then there is a vector z̄ ∈ fa(Δk−1)

∗ so that it dominates the vector of the
aspiration levels. In other words, vector z̄ dominates z̃, which is a contradiction.
Thus, a pessimistic hyperbox does not intersect the set of nondominated vectors
of fa(Δk−1).

Theorem 23 means in practice that a pessimistic hyperbox is located “be-
yond” the nondominated vectors of the approximated Pareto front from the per-
spective of the vector idealZm as depicted in Figure 28. Therefore, labeling the
hyperbox pessimistic is justified.

FIGURE 28 A pessimistic hyperbox in the objective space.

To identify whether a hyperbox is pessimistic or not, the characterization
can be done as follows.

Method 24. If some of the following holds

(1) fp(za) dominates the vector of aspiration levels za, or
(2) some of the sample vectors fp(zhi) dominates vector za,

then the hyperbox is pessimistic.

We have illustrated Method 24 in Figure 29 in order to identify the pessimism of
a hyperbox. As can be seen, there are vectors which are dominating the vector of
aspiration levels, i.e. the hyperbox is pessimistic. However, Method 24 might not
find all the pessimistic hyperboxes, and therefore, more developments must take
place in future studies. In Figure 30, we have illustrated a pessimistic hyperbox,
which cannot be identified by Method 24. However, the proposed technique is
computationally efficient and is based on pre-calculated vectors in identifying the
pessimism.
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FIGURE 29 An example to demon-
strate how to identify a
pessimistic hyperbox.

FIGURE 30 A pessimistic hyperbox in
an objective space.

To conclude this subsection, a pessimistic hyperbox has been discussed.
In cases of pessimistic hyperboxes, there exists at least one vector in fa(Δk−1)

∗,
which dominates the vector of aspiration levels. This means that the decision
maker can improve each objective function value without sacrificing any of them.
In creating the overall understanding of available approximated Pareto optimal
objective vectors, this additional information can be useful for the decision maker
in step (4) of HBE. We have also proposed a simple method for identifying pes-
simistic hyperboxes. In other words, the HBE method can explain in such a case
for the decision maker why he or she cannot have the (approximated) Pareto op-
timal objective vectors he or she is interested in.

3.3.3 Neither Optimistic nor Pessimistic Hyperbox

If the hyperbox and the set fa(Δk−1)
∗ intersect, then the decision maker has found

approximated Pareto optimal objective vectors between the aspiration and reser-
vation levels. However, we do not label such hyperbox because it is clear that
the decision maker has found a region of the approximated Pareto front he or she
is interested in. It is up to the decision maker now whether he or she wants in-
vestigate the vectors any further. For that eventuality, the next subsection covers
additional numerical information about the vectors.

In step (6) of IHBE, calculations are made for the Pareto optimal objective
vectors corresponding to approximated ones the decision maker is interested in.
Occasionally, the true ones may not be close to the approximated ones, as dis-
cussed in Subsection 3.1.2.1. In such cases, the decision maker may start to won-
der about the reason for it. This is one of the topics discussed in this subsection.
We also set up a specific case for which additional information must be created
and presented to the decision maker in step (4) of HBE. The information can be
essential in interpreting “strange looking” results in nonconvex MOO problems.
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Basically, this special information concerns about a special hyperbox which is
neither optimistic nor pessimistic. Note that there are the hyperboxes which are
neither optimistic nor pessimistic, just like the one described in the previous para-
graph.

We have assumed that the MOO problem is nonconvex. This means that
the set of approximated Pareto optimal objective vectors can be depicted as in
Figure 31 (black lines). A hyperbox defined by the aspiration and reservation
levels can be located in the objective space, as it is presented in the same figure.
In this kind of situation, the decision maker should be informed about the region
in the objective space where Pareto optimal objective vectors do not exist and
where the hyperbox is neither optimistic nor pessimistic. Note that the hyperbox
could contain (approximated) Pareto optimal objective vectors because it is, in a
way, in the middle of the (approximated) Pareto front (the vectors could be, for
example, on the gray dashed line). Example presented in Figure 31 introduces
a special case. However, to present an exact definition for the hyperbox in this
case, philosophical issues must first be considered. Therefore, a more detailed
discussion will follow in Chapter 6.

FIGURE 31 A hyperbox located in an
objective space so that it
does not intersect the set
of approximated Pareto op-
timal objective vectors and
where it is neither opti-
mistic nor pessimistic.

FIGURE 32 A hyperbox in an objec-
tive space, which is neither
optimistic nor pessimistic
nor intersecting the approx-
imated Pareto front.

The case in Figure 31 introduces also a challenge, which might occur in step
(6) of IHBE, and we can demonstrate it as follows. Let us assume that the approx-
imation also contains the gray dashed line in Figure 31, but let the Pareto front be
the two black lines (i.e. the set fa(Δ1)

∗). It may happen that the decision maker
is interested in the approximated Pareto optimal objective vector zp in step (6) of
IHBE. He or she might be interested in knowing what is in some sense a closest
true Pareto optimal objective vector to zp. If, for example, reference point meth-
ods [131] are used in the step, then the decision maker may receive the vector
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z1. Even though the first objective function value at z1 is better than the corre-
sponding value at zp, the decision maker may not be happy with z1 because the
second objective function value is too high. By slightly changing the vector zp,
the decision maker may receive the vector z2, for which he or she may have corre-
sponding feelings. However, after having seen the vectors z1 and z2, the decision
maker may start to wonder why he or she cannot get anything else between the
vectors and why the second vector is totally different when compared to the first
vector. The decision maker should now be informed clearly about the region in
the objective space where Pareto optimal objective vectors do not exist and where
the region is neither optimistic nor pessimistic. This would enable the decision
maker to understand why, for example, a Pareto optimal objective vector gen-
erated by the reference point method may be a way off from an approximated
one.

The cases discussed above are rather theoretical, and the first one, requir-
ing philosophical discussions, can be handled by the approximation, see Chap-
ter 6. However, the second case described in the previous paragraph is here an
unsolved problem (this problem might be difficult one as already discussed in
Subsection 3.1.2.2). The value of having been informed about the situation in the
second case might be significant for the decision maker as it enables him or her
to continue the investigation in other regions in the objective space instead of the
original one. We do not yet know how this information could be generated by
computationally efficient methods. Note that even though reference point meth-
ods can be used but in this case they could be computationally extremely costly.

In this subsection, two different types of hyperboxes have been discussed
(the one which intersects the set fa(Δk−1)

∗ and the one which does not but is nei-
ther optimistic nor pessimistic). Here the idea is not to introduce all possible vari-
ations of them - even as a collection of hyperboxes they do not necessarily cover
all possible hyperboxes in the objective space. In Figure 32, we have illustrated
a hyperbox, which is not one of the labeled and discussed hyperbox in this sec-
tion. Cases seen in Figure 32 may occur especially in nonconvex MOO problems,
but creating straightforward rules in naming such hyperboxes can be difficult.
However, as an explanation for the decision maker about why he or she cannot
have (approximated) Pareto optimal objective vector asked in the query, the HBE
method can inform him or her that that the sample vectors do not belong to the
hyperbox and the sample vectors generated originally in the hyperbox dominate
the mapped ones in the approximation. That is, the decision maker might have
set aspiration and reservation levels too optimistic.

To conclude this subsection, we can say that the nonconvexity of the MOO
problem introduces special cases in which creating an explanation for the deci-
sion maker can be challenging. Some of the challenges can be solved computa-
tionally, but some of them are still open for good ideas.
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3.3.4 Additional Numerical Information for the Decision Maker

Hyperboxes discussed in this section provide additional information for the de-
cision maker about how the hyperbox is located in the objective space in relation
to the approximated Pareto front. Naturally, this information is not necessarily
the only information the decision maker is interested in, especially once he or
she has found the most promising and interesting regions of the (approximated)
Pareto front. In other words, the decision maker may want to have some more
specific information for the (approximated) Pareto optimal objective vectors in
the interesting regions.

In this subsection, we assume that the sample vectors generated in the third
step of the HBE method satisfy the decision maker’s aspiration and reservation
levels. In general, the additional numerical information can be calculated for the
sample vectors even though they do not necessarily satisfy the preferences.

The following numerical information can be included into HBE in order
to help the decision maker reach the psychological convergence after having
achieved in some sense, an overall understanding of available (approximated)
Pareto optimal objective vectors:

1. The closest vectors zj ∈ Zm corresponding to nondominated vectors fp(zhi)
and the corresponding decision variable values for each zj.

2. A local approximated trade-off rates9 for the sample vectors on the approx-
imation.

3. A certainty number (defined later) for the sample vectors on the approxima-
tion (the number describes how reliable the vector is when it is considered
as a Pareto optimal objective vector).

With the numerical information, the decision maker can focus the investigation
to the details of the (approximated) Pareto optimal objective vectors by doing,
for example, vector-wise comparisons. The first piece of numerical information
is obvious, but the second one can divide opinions in the field of MCDM. Meth-
ods like ISWT [30], GDF [54], GRIST [193] and Z-W [202] are based on trade-off
rates, but the use of trade-off rates can also be difficult for decision makers, see
[25, 36, 92, 107, 177]. However, we want to include the approximated trade-off
rates into the HBE method because then it is possible to investigate variations
on the approximated Pareto front. With the help of trade-off rates, the decision
maker can obtain information about approximated improvements for some ob-
jective function values if some other is impaired by one unit. However, this is
local information based on tangent hyperplanes, meaning that the approximated
improvement based on the hyperplane is a very rough one and does not neces-
sarily approximate the reality well. For example, the derivative value of function
f (x) = x2 at the origin is zero, but this does not mean that no changes would take
place in the function values when moving away from the origin. We present the
calculation of approximated trade-off rates in Chapter 4.

9 Here, we discuss local approximated trade-off rates, because the rates are based on the ap-
proximation. Detailed discussion of trade-off rates can be found e.g. in [123, 131]
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The third piece of numerical information can also divide opinions. As dis-
cussed in Subsection 3.1.2.1, error estimations are educated guesses and they may
not represent the truth. However, they are convenient for the decision maker in
establishing the reliability of the approximated Pareto optimal objective vector in
question. A proposal for such a number in a general case is presented in Chap-
ter 5.

Let us clarify that the additional numerical information listed above is not
necessarily the only information that can be presented in step (4) of HBE. In var-
ious steps of IHBE and HBE, data and numerical information have been calcu-
lated, and, in this thesis, the aim is to use that efficiently for several purposes.
The listed numerical information consists of by-products of some other calcula-
tions. For example, the methods for identifying the type of a hyperbox (optimism,
pessimism) are by-products of vectors calculated in step (3) of HBE. In this way,
the IHBE and HBE methods aim at being as computationally efficient as possible,
without destroying the capability to be informative for the decision maker in the
solution process. However, there are some limitations to the numerical informa-
tion that is to be presented to the decision maker.

Additional numerical information for aiming at psychological convergence
in the solution process can be both positive and negative. If too much informa-
tion is presented, then the decision maker may become saddled with a cognitive
load [107]. On the other hand, if too little information is presented, then the deci-
sion maker may become misled as pointed out in [104]. Thus, although the liter-
ature of MCDM knows about the possible drawbacks of extremes, it seems that
pinpointing the limit for a reasonable amount of information is still incomplete in
that field of research. However, if we assume that the decision maker gets a suf-
ficient amount of information, then the actual presentation of additional numeric
information remains as the challenge for the user interface between a human de-
cision maker and a computer software. A handful set of various kinds of nice
visualizations [105, 112] and interfaces for selecting the information to be visu-
alized should be made available. As said earlier, future studies will provide a
graphical interface and deal with the outcomes of HBE and IHBE.

In the IHBE and HBE methods, the decisions about the amount of infor-
mation to be presented are made as follows. Because it is not clear how much
information should be presented at a time, then the decision maker decides what
information is presented. In this way, the decision maker can proportion the in-
formation to his or her capacity to handle information. This, in turn, is based
on his or her knowledge about the (approximated) Pareto front and available
(approximated) Pareto optimal objective vectors. After having found interesting
regions in the (approximated) Pareto front, the decision maker may first want
to examine some basic information about, for example, the so-far closest known
true Pareto optimal objective vector to an approximated one. As the understand-
ing about the (approximated) Pareto optimal objective vectors increases, then the
decision maker may increase the amount of information in order to see the differ-
ences between the vectors and be able to select a compromise solution. In other
words, it is the decision maker’s responsibility to choose the information to be
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presented in the IHBE and HBE methods. In this way, the decision maker enjoys
the power of control over the methods, but problems discussed in the previous
paragraph may still remain.

In this subsection, additional numerical information to be presented in step
(4) of HBE for the sample vectors the decision maker is interested in was dis-
cussed. By calculating, for example, approximated trade-off rates, the decision
maker may get more details of the approximated Pareto front for aiming at psy-
chological convergence. In general, numerical information has been proposed to
be used in the final steps in the creation of an overall understanding of available
(approximated) Pareto optimal objective vectors, but if the decision maker wants
that information to be available at the beginning, it is possible in the HBE method.

3.3.5 Summary of Section 3.3

For the decision maker analyzing the MOO problem at hand, we have proposed
the use hyperboxes defined by the aspiration and reservation levels given in step
(1) of HBE as information to be presented at the beginning of the creation of an
overall understanding of available (approximated) Pareto optimal objective vec-
tors. After having created some overall understanding, the decision maker may
want to have more detailed information for the vectors. Such information can
consist of, for example, values of decision variables of the closest known true
Pareto optimal objective vectors or approximated trade-off rates.

3.4 Summary of Chapter 3

Chapter 3 has been organized so that the reader can have an idea of the approxi-
mation created in Chapter 2 and its computationally efficient use in the solution
process of computationally expensive continuous nonconvex MOO problems. In
Chapter 3, we have discussed how the two last goals (G8 and G9) set on page 20
can be achieved with the approximation. In other words, we have shown how
well-known and empirically studied methods used in the literature of MCDM
can be applied and to be compatible with the approximation. In addition, we
have discussed what kind of information the approximation can provide for the
decision maker. Next, we summarize the main topics discussed in Chapter 3.

In the solution process of the MOO problem, psychological convergence
was selected as the main goal. For this convergence, the creation of an overall
understanding of available (approximated) Pareto optimal objective vectors has
been discussed. To achieve that understanding, first, a method called Hyper-
Box Exploring was proposed. It is a method created for investigating whether or
not the decision maker will be able to obtain the approximated Pareto optimal
objective vectors he or she is interested in. A special feature of the method is its
ability to present an explanation about why the decision maker cannot have those
approximated Pareto optimal objective vectors in case they do not exists. Then
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a method called Interactive HyperBox Exploring uses the HBE method interac-
tively in order to create an overall understanding of available (approximated)
Pareto optimal objective vectors.

In the solution process, when using HBE and IHBE, the decision maker must
satisfy several assumptions. Briefly, the decision maker should be able to express
his or her preferences in a form of aspiration and reservation levels. Then the
decision maker should give the number of sample vectors he or she would like
to have generated on the approximation. The third and the last assumption is
the willingness to learn what kinds of (approximated) Pareto optimal objective
vectors are available.

A computationally efficient method was constructed for the step (3) of HBE,
where sample vectors in the approximation related to the decision maker prefer-
ences are calculated. Technically speaking, space sampling techniques and func-
tions used in Chapter 2 are the basis of that method. As a bonus, the method
provides by-products based in the sample vectors that can be used in helping the
decision maker to achieve psychological convergence in the solution process of
the MOO problem.



4 NONDOMINANCE AND NORMAL VECTORS

The approximation created in Chapter 2 is a simple and computationally effi-
cient model to approximate Pareto fronts. In Chapter 3, the IHBE method was
proposed for the solution process. In step (3) of IHBE, the approximation is vali-
dated by the analyst in order to guarantee that it does not contain vectors which,
for example, dominate the Pareto optimal objective vectors in Zm. If the approx-
imation has not been validated before the decision maker starts to use it in the
solution process, then it is possible that the approximation may provide unre-
alistic visions of possible compromise solutions that cannot be implemented or
produced in practice.

The main goal in this chapter is to introduce two methods for validating the
approximation. Basically, the idea is to find computational techniques to identify
whether or not a vector in the approximation is nondominated. The methods
for validations can be based on these findings. In this chapter, normal vectors
on the approximation and their connections to dominated and nondominated
vectors in the approximation are investigated. A brief geometrical definition of
a normal vector would state that it is a vector that belongs to space Rk, and it is
perpendicular to a tangent hyperplane at z ∈ fa(Δk−1) to the approximated Pareto
front. In this thesis, a normal vector at z is depicted by a black arrow, and in
figures it has typically been shifted to z.

We can demonstrate, geometrically, the connection between normal vectors
and nondominated or dominated vectors in the approximation as follows. Fig-
ure 33 illustrates how normal vectors can be used in identifying whether a vector
on the approximation is either dominated or nondominated. As can be seen, a
normal vector (black arrow) in Figure 33 shifted to z1 ∈ fa(Δ1) belongs to the
interior of negative orthant R2

−. In addition, the vector z1 is (locally) nondomi-
nated in fa(Δ1) as can be seen in the figure. On the other hand, a normal vector
(black arrow) at z2 does not belong to the negative orthant and the vector z2 is
dominated in fa(Δ1) as it can be seen in Figure 33. In this chapter, these findings
are generalized with mathematical proofs to higher-dimensional objective spaces.
Then the results are extended to also cover subsets of the approximation instead
of single vectors in the approximation.



86

FIGURE 33 A simple example to illustrate how normal vectors can be used in investi-
gating whether a vector in fa(Δk−1) is dominated or nondominated. Here
vector z1 is locally nondominated and vector z2 is a dominated.

The results obtained with the normal vectors are significant as they enable
one to say whether a vector in the approximation is nondominated, i.e., an ap-
proximated Pareto optimal objective vector. It is obvious that these results are
used in validating the approximation. In the solution process, normal vectors
are also calculated for the approximated Pareto optimal objective vectors the de-
cision maker is investigating. Then approximated trade-off rates discussed in
Section 3.3 can be calculated efficiently with the help of the normal vectors with-
out solving any optimization problems. This means that the decision maker can
obtain useful information of the approximated Pareto optimal objective vectors
in step (4) of IHBE without having long computation times that the use of the
by-products of normal vectors would entail.

Normal vectors are investigated in this chapter as follows. In Section 4.1,
we establish a mathematical basis for calculating normal vectors, and then we
present the main results related to the Pareto dominance. After this, in Section 4.2,
we consider the results from the viewpoints of IHBE and HBE methods, that is,
how to implement the results in a computationally efficient way for the methods.
Finally, in Section 4.3, we present a brief summary.

4.1 Normal Vectors in Characterizing Pareto Dominance

In this section, we investigate normal vectors on the approximated Pareto front
and their connection to the Pareto dominance. In the MCDM literature, such
studies have already been done, for example, in [128, 163]. It turns out that the
connection in question exists. However, in what follows, we do not assume the
MOO problem to be convex or certain constraint conditions to hold at a Pareto
optimal decision vector. This means that the results presented in this thesis are
more general compared to the results presented in [49, 70, 128, 163].

To get started, we define the basis for calculating normal vectors as follows.
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Definition 25. Relative interior of Δk−1 is a set denoted by

Δ◦
k−1 := rel int(Δk−1) = {v ∈ Δk−1 : vi > 0 for all i = 1, . . . , k}.

Correspondingly, set fa(Δ◦
k−1) is called a relative interior of fa(Δk−1).

In order to calculate normal vectors, we have to assume that the function
fs in the function fa is continuously differentiable on Δ◦

k−1 (for example, a radial
basis function with polyharmonic spline of a third degree is such surrogate func-
tion). Then a normal vector at fa(z), z ∈ Δ◦

k−1, is a vector

fa(z)
⊥ :=

[
∂ fs
∂z1

(z) · · · ∂ fs
∂zk

(z)
] ⎡⎢⎣g1

1(z) · · · g1
k(z)

... . . . ...
gk

1(z) · · · gk
k(z)

⎤
⎥⎦− 1T, (21)

where

gi
j(z) =

⎧⎨
⎩

1−zi
fs(z)

, i = j

− zi
fs(z)

, i �= j
.

If for all fa(z), z ∈ Δ◦
k−1, there exists a normal vector, then the set fa(Δ◦

k−1) is
called smooth.

Remark 26. Typically, normal vectors are defined through a local affine approx-
imation to a manifold, see e.g. [175], and that is the case also for the function
formulation (21) derived in Appendix 1.

In addition, the calculation of normal vectors by function 21 is also valid for
nonconvex MOO problems. In other words, it does not matter whether or not the
MOO problem is convex. This means that normal vectors illustrated in Figure 33
are calculated by using function (21).

Normal vectors define several sets in the objective space Rk. Let z ∈ Δ◦
k−1. Then

a set
Tz := {z̃ ∈ Rk :

〈
fa(z)

⊥, z̃
〉
= 0}

is called a tangent space. A tangent hyperplane at fa(z) is a set

T fa(z) := {z̃ ∈ Rk :
〈

fa(z)
⊥, z̃ − fa(z)

〉
= 0}.

In Figure 34, we have illustrated the normal vector fa(z)⊥ at fa(z) by a black
arrow. The gray dashed line in the figure is the tangent hyperplane T fa(z). As it
can be seen, the normal vector is perpendicular to the tangent hyperplane (note
that the tangent hyperplane is a shifted tangent space, which is actually a vector
space, see [175]). The example seen in Figure 34 also introduces a smooth set
fa(Δ◦

k−1). In other words, geometrically, a smooth set fa(Δ◦
k−1) does not contain

shapes such as “spikes” or “angles” or “corners” as in Figure 35 at fa(z).
The tangent hyperplane T fa(z) is essential in many cases because it intro-

duces a local affine approximation to fa(Δ◦
k−1) at fa(z) ∈ fa(Δ◦

k−1). According
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FIGURE 34 A normal vector fa(z)⊥ and
the corresponding tangent
hyperplane T fa(z) at fa(z) in
the objective space R2.

FIGURE 35 Shapes like “spikes”, “an-
gles” or “corners” do not ex-
ist in a smooth set fa(Δ◦

k−1).

to Theorems 5-1, 5-2 and Problems 2-29, 5-13 in [175], we have an open neigh-
borhood W of fa(z) and a differentiable function g : T fa(z) ∩ W → R so that
z̃ + g(z̃)( fa(z)⊥)T ∈ fa(Δ◦

k−1), where z̃ ∈ T fa(z) ∩ W, see Figure 36. Then, for
example,

lim
t→0

tzd + g(tzd)( fa(z)⊥)T − fa(z)∥∥tzd + g(tzd)( fa(z)⊥)T − fa(z)
∥∥ =

zd∥∥zd
∥∥ , zd ∈ T fa(z) ∩ W, and

lim
z̄→ fa(z)

〈
fa(z)⊥∥∥ fa(z)⊥

∥∥ ,
z̄ − fa(z)

‖z̄ − fa(z)‖

〉
= 0, z̄ ∈ fa(Δ◦

k−1) ∩ W,
(22)

where the first limit describes a directional derivative, and the second limit says
that normalized vectors of vector sequences converging to fa(z) are becoming
perpendicular to the normalized normal vector fa(z)⊥.

We are now ready to start investigating relations between normal vectors
and Pareto dominance. First, we show a condition which is characteristic of a
situation where a vector in the approximated Pareto front is dominated by some
other vector in the approximation.

Theorem 27. Let fa(Δ◦
k−1) be smooth and vector z ∈ fa(Δ◦

k−1). If z⊥ �∈ Rk
+ ∪ Rk

−,
then z �∈ fa(Δ◦

k−1)
∗.

Proof. Because z⊥ �∈ Rk
+ ∪ Rk

− we have non-empty index sets I+ and I− so that
z⊥j < 0 when j ∈ I− and z⊥j > 0 when j ∈ I+. Let rz be selected so that B(z, rz) ⊂
idealZm + int Rk

+. Now, let vector zd ∈ Tz be selected so that zd
j < 0, for all

j = 1, . . . , k, and z + zd ∈ B(z, rz) (the existence of the vector zd follows from Tz

and non-empty index sets I+, I−).
Now, because fa(Δ◦

k−1) is smooth at z, then according to (22) for each |t| < r,
a sufficiently small r > 0, there exists a scalar λt so that z+ tzd + λtz

⊥ ∈ fa(Δ◦
k−1)
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FIGURE 36 A smooth approximated Pareto front can be locally represented from the
tangent hyperplane by a differentiable function g.

and

lim
t↘0

z + tzd + λt(z⊥)T − z∥∥z + tzd + λt(z⊥)T − z
∥∥ =

zd∥∥zd
∥∥ .

Because zd
j < 0 for all j = 1, . . . , k, then there exists t̃ ∈ (0, r) so that

zj + t̃zd
j + λt̃z

⊥
j < zj for all j = 1, . . . , k.

In other words, the vector z + t̃zd + λt̃z
⊥ ∈ fa(Δk−1) dominates the vector z,

which means that z does not belong to fa(Δ◦
k−1)

∗.

Theorem 27 proves that the vector z2 introduced in Figure 33 is dominated, but it
does not say what or where the dominating vector is. However, we immediately
obtain a more important result, which starts to show how the Pareto dominance
is related to the normal vectors.

Theorem 28. Let fa(Δ◦
k−1) be smooth and z ∈ fa(Δ◦

k−1). If z ∈ fa(Δ◦
k−1)

∗, then
z⊥ ∈ Rk

+ ∪ Rk
−.

Proof. If the argument had not been true, then we would have a contraction to
Theorem 27.

Theorems 27 and 28 present a necessary condition for a nondominated vector
z ∈ fa(Δ◦

k−1). In other words, to be a nondominated vector in a smooth approx-
imated Pareto front, the normal vector must belong to Rk

+ ∪ Rk
−. However, the

converses of Theorems 27 and 28 do not hold. In other words, if some vector
z̃ dominates the vector z, then z⊥ can belong to the negative orthant. We have
presented a case in Figure 37, where for a vector z ∈ fa(Δ1) \ fa(Δ1)

∗ the normal
vector is (−1,−1)T. This means that the converse of Theorem 27 does not hold.
To show that the converse of Theorem 28 does not hold, see the case illustrated
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in Figure 38, where the normal vector for a dominated vector z = (1, 1/4)T is
(−1, 0)T ∈ R2

+ ∪ R2
−. However, the examples discussed in this paragraph moti-

vate us to study the Pareto dominance locally.

FIGURE 37 A dominated vector z so
that the corresponding nor-
mal vector is (−1,−1)T.

FIGURE 38 Condition z⊥ ∈ Rk
+ ∪ Rk

−
does not guarantee Pareto
dominance.

Normal vectors are based on local affine approximations [175] (tangent hy-
perplane T fa(z)). Therefore, being a nondominated vector in the whole set fa(Δ◦

k−1)
cannot be concluded for sure. However, the local affine approximations and nor-
mal vectors through them establish a connection between vectors in fa(Δ◦

k−1) and
Pareto dominance locally as we see next.

Definition 29. Let fa(Δ◦
k−1) be smooth. The vector z ∈ fa(Δ◦

k−1) is said to be
locally nondominated, if there exists a radius r > 0 so that none of the vectors in
fa(Δ◦

k−1) ∩ B(z, r) dominate z.

Typically, in the MCDM literature e.g. [123], local nondominance has been
defined in the decision space and not in the objective space as we have done.
Next, we show that locally nondominated vectors can be identified by the normal
vectors, that is, we prove that the vector z1 in Figure 33 is locally nondominated.

Theorem 30. Let fa(Δ◦
k−1) be smooth and z ∈ fa(Δ◦

k−1). If z⊥ belongs to int(Rk
+ ∪

Rk
−), then z is locally nondominated.

Proof. On the contrary, let us assume that for each ri = 1/i, i = 1, 2, . . ., we have
a vector z̄i ∈ B(z, ri) ∩ fa(Δ◦

k−1) so that it dominates the vector z. We can assume
that a sequence (z̄i) has been selected so that z̄i �= z̄j when i �= j. From the
smoothness of fa(Δ◦

k−1), we obtain

lim
i→∞

〈
z̄i − z

‖z̄i − z‖ ,
z⊥∥∥z⊥

∥∥
〉

= 0. (23)

Let a subsequence (z̄ij) be selected so that for some index l and for all ij, we
have

|z̄ij
l − zl|

‖z̄ij − z‖
>

1√
k

.
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(Note that such a sequence exists because otherwise for all i we would have∥∥∥∥ z̄i−z
‖z̄i−z‖

∥∥∥∥ < 1, which cannot be true.) Now, let

0 < ε <
1√
k

min
i=1,...,k

|z⊥i |
‖z⊥‖ .

Because (23) holds, then there exists an index ij̃ so that∣∣∣∣∣∣
〈

z̄
ij̃ − z∥∥∥z̄
ij̃ − z

∥∥∥ ,
z⊥∥∥z⊥

∥∥
〉∣∣∣∣∣∣ < ε. (24)

Now, we have two cases, which we have to study separately.

1. If z⊥i < 0 for all i = 1, . . . , k, then some of the terms

(z̄
ij̃
m − zm)z⊥m

‖z̄
ij̃ − z‖‖z⊥‖

, m �= l, (25)

in (24) must be negative because for the index l we have

(z̄
ij̃
l − zl)z⊥l

‖z̄
ij̃ − z‖‖z⊥‖

=

∣∣∣∣∣∣
(z̄

ij̃
l − zl)z⊥l

‖z̄
ij̃ − z‖‖z⊥‖

∣∣∣∣∣∣ >
∣∣∣∣∣ 1√

k

z⊥l
‖z⊥‖

∣∣∣∣∣ > ε.

Now, for some index m �= l only one of the numbers z̄
ij̃
m − zm or z⊥m can be

positive and the other negative to obtain a negative term in (25). However,
we know that for each m �= l the two above numbers are negative because
the vector z̄i dominates z and the normal vector belongs to the negative
orthant. In other words, we have met a problem, which means that this case
cannot hold.

2. If z⊥i > 0 for all i = 1, . . . , k, then some of the terms

(z̄
ij̃
m − zm)z⊥m

‖z̄
ij̃ − z‖‖z⊥‖

, m �= l, (26)

in (24) must be positive, because for the index l we have

(z̄
ij̃
l − zl)z⊥l

‖z̄
ij̃ − z‖‖z⊥‖

< − 1√
k

z⊥l
‖z⊥‖ < −ε.

However, to have a positive term in (26), the term z̄
ij̃
m − zm should be pos-

itive for some m. This cannot be true because z̄
ij̃ dominates z. This is a

contradiction.

Because we have ended up with impossible situations in the above two cases we
have a contradiction. Thus, the vector z is locally nondominated.
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With minor changes in the proof of Theorem 30, we obtain the following.

Theorem 31. Let fa(Δ◦
k−1) be smooth and z ∈ fa(Δ◦

k−1). If z⊥ belongs to int(Rk
+ ∪

Rk
−), then z does not dominate any of the vectors in fa(Δ◦

k−1) ∩ B(z, r).

Proof. The proof is very similar to the proof of Theorem 30.

Geometrically, the result obtained in Theorem 30 can be illustrated as fol-
lows. In Figure 39, there exist radii r1 and r2 so that vectors z1, z2 ∈ fa(Δ◦

k−1),
for which the normal vectors belong to the negative orthant, are locally nondom-
inated. Note that the vector z1 dominates z2, which means that the vector z2 is
only locally nondominated. However, Theorem 30 shows only an existence for
radii r1 and r2 and, therefore, it cannot be said generally how small (large) the
radii r1 and r2 must be (can be) for the local nondominance.

FIGURE 39 Two locally nondominated
vectors on the approxi-
mated Pareto front.

FIGURE 40 An example to illus-
trate that condition
z⊥ ∈ int(Rk

+ ∪ Rk
−) cannot

be relaxed in Theorem 30.

The condition z⊥ ∈ int(Rk
+ ∪ Rk

−) is essential in Theorem 30 and it cannot
be relaxed. It is possible that for a vector z dominated by some other vector
in fa(Δ◦

k−1) the normal vector belongs to ∂(Rk
+ ∪ Rk

−). In Figure 40, it does not
matter how small a radius r1 for the vector z1 is because the vector (z1

1 − r1/2, 1)T

dominates it. However, it is possible that for a locally nondominated vector z, the
normal vector belongs to ∂(Rk

+ ∪ Rk
−). This is the case at z2 in Figure 40. In other

words, the converse of Theorem 30 does not hold generally.
Vectors z1 and z2 depicted in Figure 40 can also be used to show the im-

portance of having the condition z⊥ ∈ int(Rk
+ ∪ Rk

−) in Theorem 31. In other
words, no matter how small a radius r2 is, the vector z2 dominates the vector
(z2

1 + r2/2, 0.4)T. On the other hand, the vector z1 does not dominate any of
the vectors in fa(Δ◦

k−1) ∩ B(z1, r1) for a sufficiently small r1 but (z1)⊥ belongs to
∂(Rk

+ ∪ Rk
−), which means that the converse of Theorem 31 does not generally

hold.
In Theorems 30 and 31, the continuous differentiability of the function fs has

not been used explicitly. However, in the derivation of formula (21), it has been
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assumed that the function fs is continuously differentiable, see Appendix 1. The
continuous differentiability of the function fs means in practice that all normal
vectors on a relative open neighborhood of z ∈ Δ◦

k−1, for which the normal vector
fa(z)⊥ belongs to int(Rk

+ ∪ Rk
−), belong to int(Rk

+ ∪ Rk
−) as we show next.

Theorem 32. Let fa(Δ◦
k−1) be smooth and z ∈ Δ◦

k−1. If fa(z)⊥ ∈ int(Rk
+ ∪ Rk

−),
then there exists a relatively open neighborhood W of z on Δ◦

k−1 so that for every
z′ ∈ W we have fa(z′)⊥ ∈ int(Rk

+ ∪ Rk
−), and fa(W) = fa(W)∗.

Proof. We first prove the existence of a relatively open neighborhood W. The
continuous differentiability of function fs means that the function defined in (21)
used for calculating normal vectors is continuous. Then, for a sufficient small
ε > 0 there exists δ > 0 so that for all z′ ∈ B(z, δ) we have for the corresponding
normal vectors, ‖ fa(z′)⊥ − fa(z)⊥‖ < ε meaning that fa(z′)⊥ ∈ int(Rk

+ ∪Rk
−). In

other words, there exists a relatively open neighborhood W of z on Δ◦
k−1, which

can be assumed, without loss of generality, to be also convex. Next, we prove that
the sets fa(W) and fa(W)∗ are the same.

Inclusion “⊃” is obvious. To prove the other inclusion, let us suppose by
a contradiction that we have z, z̄ ∈ W so that fa(z̄) dominates fa(z). Let curve
fc : [0, 1] → Rk be defined as follows: zt := fc(t) = fa(tz + (1 − t)z̄). Let L be a
set consisting of vectors {ẑ ∈ Rk : ẑ = λ( fa(z̄)− fa(z)) + fa(z), λ ∈ R}. Now, let
the function dL : [0, 1] → R be defined as follows:

dL(t) = inf
v∈L

‖v − fc(t)‖.

Note that the function dL is continuous. Then for all t ∈ [0, 1], there exists a vector
vt ∈ L so that ‖vt − fc(t)‖ = dL(t), because [0, 1] is a compact set. Similarly, there
exists t∗ ∈ [0, 1] so that

dL(t∗) = sup
t∈[0,1]

dL(t).

Now, because fa(Δ◦
k−1) is smooth, then so is fc ([175, Theorems 5-1, 5-2 and Prob-

lem 2-9]), meaning that 〈
(zt∗)⊥, fa(z)− fa(z̄)

〉
= 0. (27)

Because fa(z̄) dominates fa(z), then fa(z)i − fa(z̄)i ≥ 0 for all i = 1, . . . , k, and
for some i the inequality is strict. Without loss of generality, we can assume that
(zt∗

i )
⊥ < 0 for all i = 1, . . . , k. Then

〈
(zt∗)⊥, fa(z)− fa(z̄)

〉
=

k

∑
i=1

(zt∗)⊥i︸ ︷︷ ︸
<0

( fa(z)i − fa(z̄)i︸ ︷︷ ︸
≥0

) < 0,

which contradicts with (27). In other words, there do not exist vectors z̄ and z in
W so that fa(z̄) dominates fa(z). Thus fa(W) ⊂ fa(W)∗.

Now, we immediately obtain the following corollary.
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Corollary 33. Let fa(Δ◦
k−1) be smooth. If for all z ∈ Δ◦

k−1 normal vectors fa(z)⊥

belong to int(Rk
+ ∪ Rk

−), then fa(Δ◦
k−1) = fa(Δ◦

k−1)
∗.

Proof. The result follows immediately from Theorem 32.

Before we demonstrate the significance of Corollary 33 in practice, differences
between Theorems 30, 31 and 32 must be clarified because a careful reader may
have noticed that Theorems 30 and 31 are corollaries of Theorem 32. However,
Theorems 30 and 31 do not necessarily require the function fs to be continuously
differentiable. The proofs of Theorems 30 and 31 require that a differentiable
function g, as in (22), at fa(z) exists. Note that such a function g may exist for a
differentiable function fs. This means that the theorems can be proved by only
using the tangent hyperplane and the normal vector, as it has been done in this
thesis. The continuous differentiability of function fs guarantees that a function
g exists at any vector fa(z) in the relative interior of fa(Δk−1). In other words,
Theorems 30 and 31 are valid for fewer assumptions set on the function fs. On
the other hand, relaxing the continuous differentiability of the function fs in The-
orem 32 to be only differentiable allows us to create examples in which for every
radius r > 0 a pair of vectors can be found so that one dominates the other. Such
a case has been sketched in Appendix 2. Another difference between the theo-
rems can be pointed to the proof of Theorem 32. Note that the theorem could
be proved by using Theorem 30. However, in this thesis, we have proved Theo-
rem 32 without using Theorem 30.

Corollary 33 is essential in analyzing whether or not the whole set fa(Δ◦
k−1)

is nondominated. Let us illustrate this as follows.

Example 34. Let us consider an arc of an origin-centered circle with radius 1 in
R2

+ as an approximated Pareto front. Then

fs(z) =
1√

z2
1 + z2

2

,
∂ fs

∂z1
(z) = − z1

(z2
1 + z2

2)
3/2

,
∂ fs

∂z2
(z) = − z2

(z2
1 + z2

2)
3/2

,

meaning that the function fs is continuously differentiable. Now, at any z =
(z1, z2) ∈ Δ◦

1 we have

fa(z)
⊥ = −

[
z1

(z2
1+z2

2)
3/2

z2
(z2

1+z2
2)

3/2

] [ 1−z1
fs(z)

− z1
fs(z)

− z2
fs(z)

1−z2
fs(z)

]
− 1T

= −
[

z1−z2
1−z2

2
z2

1+z2
2

z2−z2
2−z2

1
z2

1+z2
2

]
− 1T = −

[
z1

z2
1+z2

2

z2
z2

1+z2
2

]
< 0T.

In other words, for each z ∈ Δ◦
1 the normal vector belongs to int(R2

+ ∪R2
−). Thus,

fa(Δ◦
1) = fa(Δ◦

1)
∗.

Example 34 can be easily modified to show that a set consisting of vectors
{z ∈ Rk : ‖z‖ = 1, zi > 0 for all i = 1, . . . , k} is nondominated. However, the
set considered in Example 34 can be proved easily to be nondominated, without
using normal vectors. Next, we present a nontrivial example.



95

Example 35.

Let

fs(z1, z2) = 1 +
1

6π
sin(6πz1)

and idealZm = 0.

Then fa(Δ◦
1) is nondominated because for an arbitrary z = (z1, z2) ∈ Δ◦

1, we have

fa(z)
⊥ =

[
cos(6πz1) 0

] [ 1−z1
fs(z)

− z1
fs(z)

− z2
fs(z)

1−z2
fs(z)

]
− 1T

=
[

cos(6πz1)(1−z1)

1+ 1
6π sin(6πz1)

− cos(6πz1)(z1)

1+ 1
6π sin(6πz1)

]
− 1T ≤

[
1−z1
1+z1

− z1
1+z1

]
− 1T < 0T.

Example 35 demonstrates how Corollary 33 characterizes an approximated Pareto
front to be nondominated. Note that the approximated Pareto front can be visu-
alized very easily because the objective space is only two-dimensional. However,
the front visualized may inform that the relative interior of the approximated
Pareto front would be nondominated. As we know, visualization does not prove
anything, but Corollary 33 confirms the set seen in the visualization as nondomi-
nated. In other words, what we see is true! Note that to show that a set containing
infinitely many vectors is nondominated is not a trivial problem to be solved by
using some other methods than normal vectors.

To conclude this subsection, normal vectors on the relative interior of the
approximated Pareto front have been studied. It has been proved that Pareto
dominance is highly related to the normal vectors. As a main result of this section,
we have proved that if normal vectors for all vectors on the relative interior of
the approximated Pareto front belong to the interior of the union of negative and
positive orthants then the relative interior of the approximated Pareto front is
nondominated.

4.2 Normal Vectors Before and During the Solution Process

Normal vectors have been pointed out to be useful in the investigation whether
a vector in the approximation is nondominated i.e. an approximated Pareto opti-
mal objective vector. This is an essential feature for the IHBE and HBE methods
because the approximation can now be validated, as we show in this section. In
addition, approximated trade-off rates at vectors on the approximation can be
calculated through normal vectors. In other words, the normal vectors can be
used in step (3) of IHBE to validate the approximation, and in step (4) of HBE to
present additional numerical information to the decision maker.

The implementation of the calculation of normal vectors on the approxi-
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mation can be done efficiently because we have the derived formula (21). The
essential attribute of (21) is its validity for nonconvex MOO problems. The actual
methods to be used in the steps of IHBE are introduced as follows. In Subsec-
tion 4.2.1, we discuss the validation based on normal vectors. Then, in Subsec-
tion 4.2.2, approximated trade-off rates are calculated with the help of the normal
vectors.

4.2.1 Validating the Approximation by Normal Vectors

Before the decision maker starts the actual solution process with the IHBE method,
the approximation must be validated by the analyst. In this way, it is possible to
avoid situations where some of the vectors in the approximation may dominate
Pareto optimal objective vectors in Zm. Such situation may occur if, for example,
the function fs has been selected to be a polynomial. As known, a polynomial
may occasionally oscillate [94] which means that the approximated Pareto front
resemble the one illustrated in Figure 41 (black curve).

FIGURE 41 In validating the approximated Pareto front, normal vectors can be used at
vectors in Z6 in order to avoid these kinds of approximations.

If we calculate normal vectors at z ∈ Z6 of Figure 41 then most of the normal
vectors at vectors in Z6 do not belong to Rk

+ ∪Rk
−. According to Theorem 27 such

vectors are dominated in the approximation. This indicates that the approxima-
tion is not valid because some of the known Pareto optimal objective vectors are
dominated (for a valid approximation, vectors in Zm should be nondominated).
In practice, this means that the function fs in fa should be replaced by some other
surrogate function in order to remove vectors in the approximation that domi-
nate Pareto optimal objective vectors in Zm. To clarify, the normal vectors do not
characterize dominated vectors caused by the oscillation of the function fs, but
they can indicate such behavior in the approximated Pareto front. Since normal
vectors can be used when investigating whether vectors in Zm are nondominated
in the approximation, a validation method for the approximation is, for example,
the following:
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Method 36.

(1) Calculate normal vectors at vectors in Zm.
(2) Validate the approximation as follows:

(2.1) If every normal vector belongs to Rk
+ ∪ Rk

− then the approximation is
valid.

(2.2) If some of the normal vectors do not belong to Rk
+ ∪ Rk

− then the
approximation is not valid and present the dominated and nondomi-
nated vectors if needed.

Method 36 is rather simple, and the validation in it is based on Theorems 27
and 28. However, the method only validates vectors in Zm. For a larger set of
vectors, we propose the following:

Method 37.

(1) Generate sample vectors on Δ◦
k−1 and calculate normal vectors at the cor-

responding vectors in the approximation.
(2) Validate the approximation as follows:

(2.1) If every normal vector belongs to Rk
+ ∪ Rk

−, then the approximation
may be a nondominated set.

(2.2) If some of the normal vectors do not belong to Rk
+ ∪ Rk

−, then the ap-
proximation contains dominated vectors and present them, if needed.

Method 37 is clearly a computational counterpart to Corollary 33. In other words,
Method 37 validates computationally whether or not the set fa(Δ◦

k−1) is nondom-
inated. However, the validation is based on sample vectors on the simplex, and,
to be sure of nondominance, a large set of sample vectors must be generated.
On the other hand, this is not a problem because generating vectors on the sim-
plex is not a problem (see, AM f 4) and carrying out the calculation of normal
vectors can be considered a computationally efficient operation. Note that if the
partial derivatives are not available or are computationally costly, then they can
be approximated efficiently by finite differences because the function fs has been
assumed to be computationally efficient.

When it happens that some of the sample vectors in the approximation are
dominated (detected by Method 37), the interpretation of these vectors is dis-
cussed in Chapter 6. However, if Method 36 indicates dominated vectors in Zm,
then there are several possible actions that can be performed to fix the problem.
For example:

1. Replace function fs by some other surrogate function.
2. Use function fs in the approximation, but if the decision maker is investigat-

ing a region close to a dominated vector (∈ Zm), then inform the decision
maker about the dominated vector and invalid behavior of the approxima-
tion related to the Pareto dominance between the vectors in the approxima-
tion.
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3. Add some dummy vectors to the fitting data of the function fs so that nor-
mal vectors at Zm will belong to Rk

+ ∪ Rk
− after having fitted the function fs

again to the data.

To make it clear, the validations discussed in this subsection are meant to be
done by the analyst. Methods proposed in this subsection are meant to be used
side by side in validating the approximation. In later chapters, we propose other
methods for the validation purposes. Therefore, the information returned by the
methods must be proportioned to the feature in the approximation the method is
validating. For example, if Method 37 indicates that some of the vectors are dom-
inated then this does not mean that the function fs must be replaced by some
other because the nonconvexity of the MOO problem may have forced the ap-
proximation to contain dominated vectors, as discussed in Section 2.2. Later, in
Chapter 6, we discuss how these dominated vectors can be interpreted in the
solution process of the MOO problem.

4.2.2 Approximated Trade-off Rates and Normal Vectors

In step (3) of HBE, sample vectors on the approximated Pareto front in relation
to the decision maker’s preferences are calculated. At the end of the solution
process of the MOO problem, when an interesting region containing a possible
compromise solution has been located, the decision maker may be interested in
detailed information for the sample vectors. For example, he or she may have
found certain interesting vectors, but some fine-tuning of the objective function
values is required. Here, the fine-tuning means that by changing slightly some
objective function values, a better (approximated) Pareto optimal objective vector
may be found. In other words, the decision maker may be interested in know-
ing how much the value of objective function fi must be approximately impaired
if the value of the objective function f j is to be improved by one unit while the
other objective function values remain unchanged. Alternatively, how much the
value of the objective function fi will approximately improve if the value of the
objective function f j is impaired by one unit and the other objective function val-
ues remain unchanged1. In the literature, this is known as calculating a (partial)
trade-off rate [49, 123, 131]. In other words, the trade-off rate λij approximates
the impairment/improvement between the values of the objective functions fi
and f j, and, typically in the literature, it has been defined at a feasible decision
vector x with a feasible direction d ∈ Rn (there exists an α′ > 0 so that for all
α < α′ the vector x + αd belongs to S) as follows:

λij := lim
α→0+

fi(x + αd)− fi(x)

f j(x + αd)− f j(x)
. (28)

1 Occasionally, improving/impairing the value of the objective function fi by one unit may
be too much. The impairment/improvement for the value of the objective function f j can
also be calculated for any 0 < ε < 1 improvement/impairment for the value of the objective
function f j.
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Definition (28) for the trade-off rate is as general as possible because the trade-
off rate can be calculated for any feasible decision vector and feasible direction.
Figure 42 illustrates geometrically the trade-off rate, and it can be said that the
trade-off rate defines a tangent line (a tangent space) at f (x) to the values of the
objective functions fi and f j at the vector x to the direction d.

FIGURE 42 A trade-off rate λij is the slope between the values of the objective functions
fi and f j at x ∈ S to a feasible direction d.

In order to connect the trade-off rate λij to the explanation given above
for the impairments/improvements of objective function values at vectors in the
Pareto front that the decision maker is interested in, a specific direction d in the
decision space must be determined. For this purpose, the trade-off rate must be
connected to the Pareto front in a special way. Note that the trade-off rate λij
may not always represent the impairment between the coordinate values i and j
of the objective vectors in the Pareto front no matter which direction d has been
selected. That is, the tangent line at f (x) is not necessarily a tangent line for the
Pareto front. This may happen, especially when the MOO problem is nonconvex.
This is actually the case at x in Figure 43, where S = [0, 1] and subsets A, B, C
have been mapped to the objective space by a continuously differentiable func-
tion f : [0, 1] → R2 so that the objective vectors in the set f (A) are dominated
by the vectors in the sets f (B) and f (C), which are subsets of the Pareto front
PF( f , [0, 1]) in this case. In addition, f (x) ∈ PF( f , [0, 1]). Note that the curves
can be connected together by the function f , but for the simplicity we have not
illustrated the other parts of the image in the figure.

We say that the trade-off rate λij at x to a direction d is in relation to the Pareto
front if there exists a continuously differentiable injective function c̄ : [−1, 1] →
Rk so that c̄(0) = f (x), c̄([−1, 1]) ⊂ PF( f , S), c̄(t)l = fl(x) for all t ∈ [−1, 1],
l = 1, . . . , k, l �= i, j and λij is equal to the ratio of derivatives

c̄′i(0)
c̄′j(0)

.

In other words, if a trade-off rate is in relation to the Pareto front, then the slopes
(i.e. the rates) are the same, as it can be seen in Figure 44. Note that the trade-off
rate λij is not in relation to the Pareto front in the case presented in Figure 43
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FIGURE 43 For nonconvex MOO problems, the trade-off rate λij does not necessarily
express the impairments/improvements for the vectors in the Pareto front.

because the tangent hyperplane at f (x) is not a tangent hyperplane at f (x) for
the Pareto front.

FIGURE 44 The trade-off rate λij at x to some direction d is in relation to the Pareto
front, if a hyperplane defined by the trade-off rate is a tangent hyperplane
for the Pareto front at f (x).

Now, if a direction d is based on derivatives of a continuously differen-
tiable function c : [−1, 1] → Rn for which c(0) = x, c′(0) �= 0, the function
f ◦ c : [−1, 1] → Rk is injective and continuously differentiable, f ◦ c([−1, 1]) ⊂
PF( f , S), f ◦ c(t)l = fl(x) for all t ∈ [−1, 1] and l = 1, . . . , k, l �= i, j, as follows

d = (c′1(0), . . . , c′n(0))
T,

then the trade-off rate λij is in relation to the Pareto front. We have illustrated
the above in Figure 45. However, constructing such a smooth curve c can be
challenging in practice. Therefore, in the literature, trade-off rates considered in
our terminology in a relation to the Pareto front are calculated in a different way.

According to [131], it has been proved under certain regularity and second
order conditions in [30] that if the KKT coefficients [106] of a minimization prob-
lem (also known as the ε-constraint method [30, 59])

min fi(x)

s.t. f j(x) ≤ ε j for all j = 1, . . . , k, j �= i,

x ∈ S,
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FIGURE 45 A Pareto optimal decision vector x and a direction d so that the trade-off
rate is in a relation to the Pareto front.

where ε j are upper bounds for the objectives, are positive, then by multiply-
ing by -1 the KKT coefficient of the jth constraint is equal to the trade-off rate
λij in relation to the Pareto front. It can also be proved that the trade-off rates
λi1, . . . , λi(i−1), λi(i+1), . . . , λik in relation to the Pareto front define a tangent space
at a vector f (x) in a smooth Pareto front, see e.g. [131]. This can be seen, for ex-
ample, in Figure 44, where the gray dashed line is the shifted tangent space. The
tangent space shifted to f (x) is a tangent hyperplane similar to the tangent hy-
perplane T fa(z) at fa(z) ≈ f (x) for some previously unknown Pareto optimal
decision vector x. Therefore, the tangent space Tz corresponding to the hyper-
plane T fa(z) can be considered as an approximated tangent space for the Pareto
front at the vector f (x).

Because the trade-off rates define the tangent space at a vector in the Pareto
front and the tangent space Tz can be considered to approximate it, then the
normal vector fa(z)⊥ to the tangent space Tz can be used for calculating ap-
proximated trade-off rates in relation to the Pareto front at fa(z). Calculating
trade-off rates in relation to the Pareto front through normal vectors is not a new
idea, because in the MCDM literature such studies are presented, for example,
in [70, 128, 163]. However, the calculations are based on KKT coefficients, which
can be obtained by solving a system of nonlinear equations. This means that
the decision maker may have to deal with long waiting times due to the com-
putationally expensive calculations of objective functions in solving the system
of equations. In the HBE method, approximated trade-off rates in relation to the
Pareto front can be calculated without solving the KKT coefficients, as follows.

An approximated trade-off rate in relation to the Pareto front at fa(z) in the
approximated Pareto front can be calculated by using the normal vector fa(z)⊥.
Here, the approximated trade-off rate is denoted by a function value of the func-
tion f tor

ij : Δ◦
k−1 → R,

f tor
ij (z) = −

fa(z)⊥j
fa(z)⊥i

, (29)

which approximates a trade-off rate λij in relation to the Pareto front at some
unknown Pareto optimal decision vector x for which f (x) ≈ fa(z). Note that
in this chapter the approximated Pareto front has been assumed to be smooth,
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and, consequently normal vectors on it can be calculated. In order to see that the
function f tor

ij (z) calculates approximated trade-off rates in relation to the Pareto
front, we have depicted the trade-off rate −λij by r in Figure 46, and r can be
solved as follows:

FIGURE 46 The normal vector fa(z)⊥ can be used in calculating approximated trade-off
rates, which are in relation to the approximated Pareto front.

For the angle a in Figure 46, we have

tan(a) =
1
r

and tan(a) =
fa(z)⊥i
fa(z)⊥j

.

In other words,

r =
fa(z)⊥j
fa(z)⊥i

and, thus, λij ≈ f tor
ij (z).

Now, a method for approximated trade-off rates to be used in the steps (3-4)
of HBE, where sample vectors on the approximation are calculated in relation to
the decision maker’s preferences, can be formulated as follows:

Method 38.

(1) Calculate approximated trade-off rates at vectors fp(zhi) by the formula
given in (29), where the vector fp(zhi) is the vector in the approximation cor-
responding to a sample vector zhi satisfying the aspiration and reservation
levels given by the decision maker.

(2) If the decision maker wants to see the approximated trade-off rates cal-
culated, then present the rates.

Method 38 is rather simple and computationally efficient for calculating the
approximated trade-off rates at the vectors in the approximated Pareto front.
However, to clarify the first step, the function f t

ij must be used at vectors zshi ,

which are the vectors in Δ◦
k−1 corresponding to zhi as defined in Subsection 3.2.2.

Note that the function f tor
ij has been defined on Δ◦

k−1.
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The approximated impairment/improvement in (29) is based on the local
affine approximation T fa(z) to the approximated Pareto front. This means that
the impairment/improvement is a very rough estimation as is the actual trade-
off rate itself. However, if the decision maker is willing to improve/impair only
0 < ε < 1 instead of one unit, then the value ε f tor

ij (z) is valid for the approximated
impairment/improvement.

The significance of formula (29) compared with the traditional ways of cal-
culating trade-off rates is explained by the use of formula (21). Typically, in the
literature, see e.g. [49, 131, 163, 193], trade-off rates are calculated through KKT
coefficients [106], which are solutions of a system of nonlinear equations. How-
ever, to solve the equations, in the worst case a time-consuming step must be
taken. In addition, the MOO problem must be convex in order to use the coeffi-
cients. In other words, calculating approximated trade-off rates without the KKT
coefficients by formula (21) is significant in three ways:

1. there is no need to solve a system of nonlinear equations,
2. the MOO problem can be nonconvex and computationally expensive and
3. there is no need to introduce a direction for the trade-off rate, which is in a

relation to the approximate Pareto front. (Note that the Pareto front can be
nonsmooth, even though the objective functions are continuously differen-
tiable e.g. for linear problems. In addition, there does not necessarily exist
a direction for a vector x so that a trade-off rate will be in a relation to the
Pareto front, as in the case presented in Figure 43.)

In practice, the above means that the decision maker does not have to wait in
order to see the approximated trade-off rates in the HBE method. In this way, the
decision maker can make local fine-tunings2 around interesting approximated
Pareto optimal objective vectors without time-consuming calculations.

4.3 Summary of Chapter 4

The simplicity of the approximation introduced in Chapter 2 has been a key ele-
ment in implementing the approximation to be used in the HBE and IHBE meth-
ods. In this chapter, the simplicity has provided an easy access to calculate nor-
mal vectors on the approximated Pareto front. Therefore, calculations of (ap-
proximated) trade-off rates can be achieved very fast for supporting the decision
maker in psychological convergence. In addition, normal vectors can be used
in characterizing (non)dominated vectors, i.e. that normal vectors can be used in
validating the approximation. Next, we summarize the main results of Chapter 4.

Theorem

2 The statement about the fine-tuning can be supported by the studies and notes presented
in [25].
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27 The main point in Theorem 27 is to prove that if the normal vector fa(z)⊥

at fa(z) ∈ fa(Δ◦
k−1) does not belong to Rk

+ ∪ Rk
−, then the vector fa(z) is

dominated in fa(Δ◦
k−1). In other words, the normal vector describes when a

vector in the approximated Pareto front is dominated, and this is essential
in validating the approximation.

28 If we assume that fa(z) ∈ fa(Δ◦
k−1) ∩ fa(Δk−1)

∗, then the normal vector
fa(z)⊥ belongs to Rk

+ ∪ Rk
−. This is the case proved in Theorem 28. In other

words, for an approximated Pareto optimal objective vector, the normal vec-
tor must belong to the negative or positive orthant.

30 In this theorem, it is shown that a vector z ∈ fa(Δ◦
k−1), for which the normal

vector belongs to int(Rk
+ ∪ Rk

−), is locally nondominated. Locally means
in this case that there exists a radius rz > 0 so that none of the vectors in
B(z, rz) ∩ fa(Δ◦

k−1) dominate z.
31 If for a vector z ∈ fa(Δ◦

k−1) the normal vector belongs to int(Rk
+ ∪ Rk

−) then
there exists a radius rz > 0 so that vector z does not dominate any of the
vectors in B(z, rz) ∩ fa(Δ◦

k−1). This was proved in this theorem.
32 This theorem can be used to show that a set on the approximation is non-

dominated. In other words, if every normal vector on a relatively open
convex neighborhood of z ∈ Δ◦

k−1 belongs to int(Rk
+ ∪ Rk

−) then fa(W) ⊂
fa(W)∗.

It is obvious that the mathematical model introduced in Chapter 2 is flexible be-
cause of its simplicity. As seen in this chapter, its simplicity provides an easy
access to the calculation of normal vectors as a function on Δ◦

k−1 (formula (21)).
Therefore, it is worthwhile to name several features for the approximation, as it
has been done already on page 40.

AMf6 In feature AMf4, we discussed the simplex Δk−1. It is the domain space
for the function fa. Now, its relative interior serves as a domain space for the
normal vectors. In other words, when calculating a vector on the approx-
imation and normal vector at it, both can be calculated at the same vector
z ∈ Δ◦

k−1.
AMf7 Normal vectors provide information about whether or not a vector in

the approximation is nondominated. However, to calculate normal vectors,
we have to assume that the function fs in fa is continuously differentiable,
and this is not a problem because such surrogate functions exist, e.g. RBFs.
Note that it has been typically assumed in the literature of MCDM that the
objective functions fi are continuously differentiable i.e. the partial deriva-
tive functions of them must be available. This means that, in this thesis,
the assumptions about the problem are on the same level as in the liter-
ature. However, the next feature clarifies the main significant difference
when compared with the literature.

AMf8 The most important feature of normal vectors introduced in this thesis
is their simple calculation. We do not have to solve for example the KKT
coefficients, as it has been done in the MCDM literature. In other words, if
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the partial derivative functions of fs have been calculated, then calculations
of normal vectors can be performed computationally efficiently. And best
of all, the normal vectors can be calculated even if the MOO problem is
nonconvex.

AMf9 Because the calculation of normal vectors is based on formula (21), the
information concluded or derived from the normal vectors related to the
Pareto dominance can be easily applied to the solution process of the MOO
problem. This is a clear advantage because there is no need to use external
solvers for calculating the KKT coefficients.

AMf10 In Section 3.3, we introduced approximated trade-off rates as addi-
tional numerical information to be presented to the decision maker in step
(4) of HBE. The rates can be obtained computationally efficiently through
the normal vectors. In addition, normal vectors have been used in sim-
ple validation methods for the approximation. In other words, normal vec-
tors can be used in several different ways in the HBE and IHBE methods
strengthening the mathematical model by validation methods. This means
that goals G6 and G9 set on page 20 for the approximation are considered in
this thesis.



5 NONDOMINANCE AND FUNCTION fs

In Chapter 4, we have studied normal vectors in characterizing whether vectors
in the approximated Pareto front are nondominated or dominated. The charac-
terization is naturally used in validating the approximation before the decision
maker starts to use it in the solution process of the MOO problem. However, this
characterization must be improved, and we demonstrate the reason for the im-
provement as follows. In Figure 47, vectors in the set Z9 have been depicted as
gray dots, and we have selected two vectors in the approximated Pareto front z1

and z2 (black dots) for which the normal vectors belong to the negative orthant,
meaning that they are locally nondominated (Theorem 30). However, there are
vectors in Z9 which dominate the vector z1. In addition, the vector z2 dominates
at least one of the Pareto optimal objective vectors in Z9. In other words, vectors
like z2 question the approximation to be used in the solution process of the MOO
problem. Thus, we have geometrical evidence that improvements to the charac-
terization of dominated vectors based on normal vectors are needed in validating
the approximation.

In this chapter, we introduce functions fl, fu : Δ◦
k−1 → R as a lower func-

tion and an upper function, respectively, for function fs. That is, if we select a
vector z ∈ Δ◦

k−1, then we can calculate how much we can multiply the vector
z by a scalar value fs(z) without dominating any of the vectors in Zm by fa(z).
In addition, we can calculate how much the vector z can be multiplied without
dominating fa(z) by any of the vectors in Zm. In other words, we prove that, if
a scalar value fs(z) is too small ( fs(z) < fl(z)), then the vector fa(z) dominates
some of the Pareto optimal objective vectors in Zm. On the other hand, if a scalar
value fs(z) is too large ( fu(z) < fs(z)), then some of the vectors in Zm domi-
nate fa(z). In addition, if fl(z) < fs(z) < fu(z), then the vector fa(z) does not
dominate any of the vectors in Zm and none of the vectors in Zm dominate fa(z).

Geometrically, functions fl and fu are defined so that by replacing the func-
tion fs in the function fa by the function fl, we have a Pareto front approxima-
tion, which is illustrated in Figure 48 as a black dashed curve. In addition, by
replacing fs by the function fu, we have a Pareto front approximation, which is
illustrated as a black dotted curve. The sets (curves) presented in Figure 48 follow
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FIGURE 47 Two vectors on the approx-
imated Pareto front so that
they either dominate some
of the vectors in Z9 or some
of the vectors in Z9 domi-
nate them.

FIGURE 48 Lower and upper limits for
function fs so that the vec-
tor z in the approximated
Pareto front does not domi-
nate any of the vectors in Z9

and any of the vectors in Z9

do not dominate vector z.

in some sense the ideas presented in [47, 146]. However, the calculations of the
sets (curves) in Figure 48 are based on the mathematical structure of the function
fa. In addition, the black dashed curve (bdc) is not a lower bound set as defined
in [47, 146] for Zm because it does not satisfy the condition bdc ⊂ (bdc + Rk

+)
∗

proposed in [47, 146] for a lower bound set. Similarly, the black dotted curve
(btc) is not an upper bound set for Zm because it does not satisfy the condition
btc ⊂ (btc + Rk

+)
∗. Even though the sets (curves) presented in Figure 48 do not

satisfy the conditions of bound sets, the function value comparisons discussed
in the previous paragraph are more essential for our purposes in validating the
approximation. Let us demonstrate this as follows.

If we compare Figures 47 and 48, in which the set Z9 is the same (gray dots),
then we can see that vectors z1 and z2 do not belong to the boxes defined by
the functions fl and fu in Figure 48. Here, belonging to the boxes means that
fl(z) < fs(z) < fu(z). To see that the vectors do not belong to the boxes, let
z̃1, z̃2 ∈ Δ◦

1 so that fa(z̃1) = z1 and fa(z̃2) = z2. It turns out that fs(z̃2) < fl(z̃
2)

and fu(z̃1) < fs(z̃1) meaning that z2 dominates some of the vectors in Z9, and
some of the vectors in Z9 dominate vector z1. These findings of the functions fl,
fu and fs are the elements in characterizing dominated vectors in this chapter.
However, the characterization of dominated vectors is not the only use for the
functions.

The functions fl and fu define the bounds for the function fs. Let us as-
sume that the vector fa(z) is an approximated Pareto optimal objective vector
(i.e. condition fl(z) < fs(z) < fu(z) holds, and the normal vector belongs to the
negative orthant (or the positive orthant)). The decision maker may now wonder
how reliable the vector is, that is, how certain he or she can be about the vector,
if the vector is considered as a Pareto optimal objective vector to the MOO prob-
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lem. Now, the number fu(z)− fl(z) indicates how much the value fs(z) can vary
without dominating any of the vectors in Zm or vice versa. Then, if fu(z)− fl(z)
is small, then it is rather certain that the vector fa(z) can be a Pareto optimal
objective vector compared to a case in which the number fu(z) − fl(z) is very
large. To calculate such a certainty number for the reliability of the vector as being
a Pareto optimal objective vector, a function fc : Δ◦

k−1 → [0, 1] is proposed in this
chapter.

The results of this chapter are essential for the IHBE and HBE methods be-
cause we can both validate the approximated Pareto front and also provide ad-
ditional numerical information for the decision maker about the approximated
Pareto optimal objective vectors. In applying the results to the IHBE and HBE
methods, computationally efficient calculations are used, i.e. the use of the func-
tions fl and fu during the solution process of the MOO problem does not intro-
duce waiting times for the decision maker.

To get started, explicit forms of the functions fl and fu are presented in Sec-
tion 5.1 with studies of characterizations of dominated vectors. In Section 5.2, we
combine the result of the previous section to the HBE method, introducing the
certainty calculation. Finally, in Section 5.3, we conclude this chapter.

5.1 Scalar values fs(z) in Characterizations of Dominated Vectors

This chapter concerns the functions fl and fu from Δ◦
k−1 into R and the explicit

forms of them are the following.

Definition 39. Functions fl and fu are defined as follows:

fl(z) = max
i=1,...,m

min
j=1,...,k

zi
j − idealZm

j

zj
, fu(z) = min

i=1,...,m
max

j=1,...,k

zi
j − idealZm

j

zj
,

where zi ∈ Zm, i = 1, . . . , m.

The explicit forms of functions fl and fu are rather simple, and the construction
of them is presented in Appendix 3. Next, we prove that functions fl and fu
characterize dominated vectors in the approximation.

Theorem 40. Let z ∈ Δ◦
k−1.

1. Then fl(z) ≤ fu(z).
2. Functions fl and fu are continuous at z.
3. If fs(z) < fl(z), then fa(z) dominates at least one vector zl ∈ Zm.
4. If fu(z) < fs(z), then some vector zu ∈ Zm dominates fa(z).
5. If fl(z) < fs(z), then fa(z) does not dominate any of the vectors in Zm.
6. If fs(z) < fu(z), then none of the vectors in Zm dominate fa(z).
7. If fl(z) < fs(z) < fu(z), then none of the vectors in Zm dominate fa(z)
and fa(z) does not dominate any of the vectors in Zm.
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Proof. We split the proof into its corresponding parts.

1. Let us assume by a contradiction that there is z ∈ Δ◦
k−1 so that fl(z) >

fu(z). Let il and iu be the indices for which we have

fl(z) = min
j

zil
j − idealZm

j

zj
and fu(z) = max

j

ziu
j − idealZm

j

zj
.

Now, for all j = 1, . . . , k we have

zil
j − idealZm

j =
zil

j − idealZm
j

zj
zj ≥ fl(z)zj > fu(z)zj ≥

ziu
j − idealZm

j

zj
zj

= ziu
j − idealZm

j .

In other words, we have zil
j > ziu

j for all j = 1, . . . , k. This means that the

vector ziu dominates the vector zil , which is a contradiction.
2. Because

max{a1, a2} =
a1 + a2

2
+

|a1 − a2|
2

, min{a1, a2} =
a1 + a2

2
− |a1 − a2|

2
,

then functions fl and fu can be written in a form of a sum of continuous
functions.

3. Let z ∈ Δ◦
k−1 and let i∗ be the index for which we obtain

min
j

zi∗
j − idealZm

j

zj
= max

i
min

j

zi
j − idealZm

j

zj
.

Then

fa(z)l = idealZm
l + fs(z)zl < idealZm

l + max
i

min
j

zi
j − idealZm

j

zj
zl

= idealZm
l + min

j

zi∗
j − idealZm

j

zj
zl ≤ idealZm

l +
zi∗

l − idealZm
l

zl
zl = zi∗

l .

In other words, inequality fa(z)l < zi∗
l holds for all l = 1, . . . , k, which

means that fa(z) dominates zi∗ .
4. The proof is similar to the one above.
5. Let us assume by contradiction that fa(z) dominates z̃ ∈ Zm. It is clear
that the vector idealZm + fl(z)z dominates fa(z). Then

idealZm
l + fl(z)zl < z̃l for all l = 1, . . . , k. (30)

By calculating, we obtain

idealZm
l + fl(z)zl = idealZm

l + max
i

min
j

zi
j − idealZm

j

zj
zl

≥ idealZm
l + min

j

z̃j − idealZm
j

zj
zl

(31)
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for all l. By combining (30) and (31), inequalities

z̃l − idealZm
l > min

j

z̃j − idealZm
j

zj
zl

holds for all l = 1, . . . , k and especially for the index j∗ for which we obtain

minj
z̃j−idealZm

j
zj

. Therefore z̃j∗ − idealZm
j∗ > z̃j∗ − idealZm

j∗ , which is a contra-
diction. Thus, the vector fa(z) does not dominate any of the vectors in Zm.

6. The proof is similar to the one above.
7. Follows from the two previous cases.

One may wonder why in Theorem 40 only strict inequalities are considered. If
we relax the strict inequalities to also cover equalities in 3.-7., then we cannot
conclude for sure, for example, whether fa(z) dominates some vector in Zm. We
demonstrate this as follows. Let vectors in Z3 be as presented in Figure 49 (gray
dots) and let z′, z′′ ∈ {z̃ ∈ Rk : z̃ = 0 + fl(z)z, z ∈ Δ◦

1} (black dots). For sim-
plicity, let zs′ = f p

Zm
(z′) and zs′′ = f p

Zm
(z′′). Now, we have fs(zs′) = fl(z

s′) and
fs(zs′′) = fl(z

s′′), which means that z′ dominates z2 ∈ Z3. However, the vector
z′′ (= z2) does not dominate any of the vectors in Z3 because a vector in the ob-
jective space cannot be dominated by itself. In other words, the characterization
of dominated vectors in Theorem 40 is not clear because of the equalities.

FIGURE 49 Strict inequality conditions in Theorem 40 are essential.

To allow equalities in Theorem 40, several special cases must be considered. After
that, we modify Theorem 40 to include the equalities.

As seen in Figure 49, vectors z′′ and z2 are the same. Note that the condition
fl(z) = fs(z) for a vector z ∈ Δ◦

k−1 does not guarantee that fa(z) ∈ Zm. In
Figure 49, we have fl(z

s′) = fs(zs′), but fa(zs′) �∈ Zm. However, if we also have
fs(z) = fu(z), then fa(z) ∈ Zm as we show next.
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Proposition 41. Let z ∈ Δ◦
k−1. Then fl(z) = fs(z) = fu(z) if and only if fa(z) ∈

Zm.

Proof.

“⇒” Let il and iu be the indices for which we have

fl(z) = min
j

zil
j − idealZm

j

zj
and fu(z) = max

j

ziu
j − idealZm

j

zj
.

Now, for all j = 1, . . . , k

zil
j − idealZm

j =
zil

j − idealZm
j

zj
zj ≥ fl(z)zj = fu(z)zj ≥

ziu
j − idealZm

j

zj
zj (32)

= ziu
j − idealZm

j ,

⇒ zil
j ≥ ziu

j . (33)

Because every vector in Zm is Pareto optimal, then any of the inequalities
cannot be strict in (33). Otherwise, the vector ziu would dominate the vector
zil . In other words, the vectors ziu and zil are the same. This means that the
indices il and iu are the same. Thus

fa(z) = idealZm + fs(z)z = idealZm + fl(z)z = zil ∈ Zm,

where the last equality follows from (32).
“⇐” If we have fs(z) < fl(z), then by Theorem 40 the vector fa(z) dom-
inates some of the vectors in Zm, which cannot be possible because every
vector in Zm is Pareto optimal. Therefore, we must have fl(z) ≤ fs(z).

If we have fl(z) < fs(z), then for all j = 1, . . . , k we have

fa(z)j − idealZm
j = fs(z)zj > fl(z)zj = max

i
min

l

zi
l − idealZm

l
zl

zj

≥ min
l

fa(z)l − idealZm
l

zl
zj.

(34)

Let l∗ be the index for which we have

fa(z)l∗ − idealZm
l∗

zl∗
zj = min

l

fa(z)l − idealZm
l

zl
zj.

Since (34) holds for all j = 1, . . . , k, also for l∗, then

fa(z)l∗ − idealZm
l∗ >

fa(z)l∗ − idealZm
l∗

zl∗
zl∗ = fa(z)l∗ − idealZm

l∗ ,

which is a contradiction. Thus fs(z) = fl(z).
The proof for fs(z) = fu(z) is very similar to the one above.
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Now, Proposition 41 completes Theorem 40 in the following way:

Theorem 42. Let z ∈ Δ◦
k−1.

1. We have fs(z) ≤ fl(z) and fs(z) < fu(z) if and only if fa(z) dominates
some vector in Zm.

2. In addition, fu(z) ≤ fs(z) and fl(z) < fs(z) if and only if some vector in
Zm dominates fa(z).

3. The vector fa(z) does not dominate any of the vectors in Zm, and none of
the vectors in Zm dominate fa(z) if and only if either fl(z) < fs(z) < fu(z)
or fl(z) = fs(z) = fu(z) is true.

Proof.

1. “⇒” If we have fs(z) < fl(z), then Theorem 40 guarantees that we have
a vector in Zm, which is dominated by fa(z). Let us next have fs(z) =
fl(z). Then fa(z) cannot belong to Zm. Otherwise, we would have
fs(z) = fu(z) by Proposition 41, and that would be a contradiction
with the assumption fs(z) < fu(z).

Let il be the index for which we have

fl(z) = min
j

zil
j − idealZm

j

zj
.

Now, for all j = 1, . . . , k we have

zil
j − idealZm

j =
zil

j − idealZm
j

zj
zj ≥ fl(z)zj = fs(z)zj

⇒
zil

j ≥ idealZm
j + fs(z)zj = fa(z)j. (35)

Since fa(z) �∈ Zm, then some of the inequalities in (35) must be strict.
Thus, the vector fa(z) dominates the vector zil .

“⇐” Let us assume, on the contrary, that the statement does not hold for
some z ∈ Δ◦

k−1. In other words,

¬
[[

fs(z) ≤ fl(z)
]
∧

[
fs(z) < fu(z)

]]
=

¬
[

fs(z) ≤ fl(z)
]
∨ ¬

[
fs(z) < fu(z)

]
=[

fs(z) > fl(z)
]
∨

[
fs(z) ≥ fu(z)

]
is true. Thus, at least one of the following must be true

(a) fs(z) > fl(z) and fs(z) ≥ fu(z),
(b) fs(z) > fl(z) and fs(z) < fu(z),
(c) fs(z) ≤ fl(z) and fs(z) ≥ fu(z).
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If (a) is true, then fa(z) does not dominate any of the vectors in Zm
by Theorem 40. This is a contradiction, and therefore (a) cannot be
true. Similarly, alternative (b) cannot be true. Case (c) would be true
if fl(z) = fs(z) = fu(z), but then fa(z) ∈ Zm by Proposition 41 and
therefore it does not dominate any of the vectors in Zm. Thus (c) is
not true. Because neither (a) nor (b) nor (c) is true, then we have a
contradiction.

2. The proof is similar to 1.
3. “⇐” Follows immediately from Theorem 40 and Proposition 41.

“⇒” Let us assume, on the contrary, that for some z ∈ Δ◦
k−1 none of the

conditions fl(z) < fs(z) < fu(z) and fl(z) = fs(z) = fu(z) is true. In
other words,

¬
[[
( fl(z) < fs(z)) ∧ ( fs(z) < fu(z))

]
∨

[
( fl(z) = fs(z)) ∧ ( fs(z) = fu(z))

]]
=

¬ [( fl(z) < fs(z)) ∧ ( fs(z) < fu(z))] ∧ ¬ [( fl(z) = fs(z)) ∧ ( fs(z) = fu(z))] =

[¬( fl(z) < fs(z)) ∨ ¬( fs(z) < fu(z))] ∧ [¬( fl(z) = fs(z)) ∨ ¬( fs(z) = fu(z))] =

[( fl(z) ≥ fs(z)) ∨ ( fs(z) ≥ fu(z))] ∧ [( fl(z) �= fs(z)) ∨ ( fs(z) �= fu(z))]

is true. This means that at least one of the following conditions

(a) fs(z) ≤ fl(z) and fl(z) �= fs(z)

(b) fs(z) ≤ fl(z) and fs(z) �= fu(z)

(c) fu(z) ≤ fs(z) and fl(z) �= fs(z)

(d) fu(z) ≤ fs(z) and fs(z) �= fu(z)

(e) fs(z) ≤ fl(z) and fu(z) ≤ fs(z) and fl(z) �= fs(z)

(f) fs(z) ≤ fl(z) and fu(z) ≤ fs(z) and fs(z) �= fu(z)

(g) fs(z) ≤ fl(z) and fl(z) �= fs(z) and fs(z) �= fu(z)

(h) fu(z) ≤ fs(z) and fl(z) �= fs(z) and fs(z) �= fu(z)

(i) fs(z) ≤ fl(z) and fu(z) ≤ fs(z) and fl(z) �= fs(z) and fs(z) �=
fu(z)

must be true.
If (a) is true, then fs(z) < fl(z) and Theorem 40 guarantees that

fa(z) dominates at least one vector in Zm. This is contrary to the as-
sumption that fa(z) does not dominate any of the vectors in Zm. Thus
(a) is not true.

If (b) is true, then we have two possible alternatives:

– fs(z) < fl(z) and fs(z) �= fu(z), which cannot be true by Theo-
rem 40,

– fs(z) = fl(z) and fl(z) < fu(z), which cannot be true by 1.

Thus (b) is not true.
If (c) is true, then we have two possible alternatives:

– fu(z) < fs(z) and fs(z) �= fu(z), which cannot be true by Theo-
rem 40,

– fu(z) = fs(z) and fl(z) < fu(z), which cannot be true by 1.
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Thus (c) is not true.
If (d) is true, then fu(z) < fs(z) and Theorem 40 guarantee that

some vector in Zm dominates fa(z). This is against the assumption
that none of the vectors in Zm dominates fa(z). Thus (d) is not true.

None of the cases (e)-(i) is true, because otherwise some of the
cases (a)-(d) would be true. In other words, none of the possible cases
(a) - (i) is true. This is a contradiction.

Now, we are ready to discuss how functions fl and fu are used in the IHBE and
HBE methods.

5.2 Functions fl, fu and fs in the IHBE and HBE Methods

Functions fl, fu and fs can be used in investigating whether or not a vector fa(z)
dominates some of the vectors in Zm or vice versa. Implementations of the results
of theorems presented in the previous section for the IHBE and HBE methods
can be done easily because only values fs(z), fl(z) and fu(z) must be calculated
and each of them is not a computationally expensive operation to be performed.
Then making comparisons, i.e. fs(z) < fl(z), is not a problem. In other words,
functions fl and fu can be implemented and used without high computational
costs.

In this section, we update Method 37 to cover also dominated vectors identi-
fied by theorems found for functions fl, fu and fs. This is done in Subsection 5.2.1.
In other words, we strengthen the validation, which is based on the normal vec-
tors, to make it more accurate. In Subsection 5.2.2, we propose a method to be
used in steps (3-4) of HBE in estimating how reliable or certain an approximated
Pareto optimal objective vector is.

5.2.1 Validating the Approximation by Functions fl, fu and fs

Before the decision maker starts the solution process of the MOO problem, the
approximation must be validated in order to avoid cases where e.g. an approxi-
mated Pareto optimal objective vector dominates some of the vectors in Zm. As
shown in Theorem 40, if fs(z) < fl(z), then fa(z) dominates some of the vectors
in Zm, and this motivates us to update Method 37 as follows.

Method 43 (“Method 37.1”).

(1) Generate sample vectors zsi on Δ◦
k−1 and calculate both the normal vec-

tors and function values fl, fu and fs at them.
(2) Validate the approximation as follows.

(2.1) If every normal vector belongs to Rk
+ ∪ Rk

− and for all sample vectors
the condition fl(z

si) < fs(zsi) < fu(zsi) holds, then the approximation
may be a nondominated set.
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(2.2) If for some of the sample vectors the condition fs(zsi) < fl(z
si) holds,

then the approximation contains vectors which dominate Pareto opti-
mal objective vectors to the MOO problem.

(2.3) If some of the normal vectors do not belong to Rk
+ ∪Rk

− or for some of
the sample vectors condition fu(zsi) < fs(zsi) holds, then the approxi-
mation contains dominated vectors.

Method 43 is still simple after the update. However, one may wonder why
condition fu(zsi) < fs(zsi) is not in step (2.2). As shown, Theorem 40 guarantees
that at least one of the vectors in Zm dominates vector fa(zsi), if fu(zsi) < fs(zsi).
The reason why it has not been included in Method 43 can be illustrated as fol-
lows. As already discussed in Section 2.2, the nonconvexity of the MOO problem
may force the approximation to contain dominated vectors. In Figure 50, we have
a case in which fu(z) < fs(z) at z ∈ Δ◦

1. This means that the vector fa(z) is domi-
nated by Theorem 40. However, vectors (0, 1)T, (0.2, 0.8)T, (0.79, 0.79)T, (0.8, 0.2)T

and (1, 0)T (gray dots) in the set Z5 define a very narrow margin [ fl(z), fu(z)] for
the scalar fs(z) at z ∈ Δ1. Note that the margin can be arbitrarily small if we re-
place vector (0.79, 0.79)T by vector (0.8 − ε, 0.8 − ε)T, ε > 0. In other words, stay-
ing between the ranges [ fl(z), fu(z)] can be sometimes difficult in practice with
the surrogate functions. That is, the black curve representing the approximated
Pareto front is not inside the boxes defined by the functions fl and fu. However, if
it turns out that for some vector z ∈ Δ◦

k−1 the difference fs(z)− fu(z) is extremely
large, then we have an indication that the function fs may not behave properly in
its relation to the Pareto dominance, i.e. it can oscillate as in cases illustrated in
Figures 41 and 47. An update for Method 43 can be done here as well, but it is not
clear how much the difference must be. Therefore, we have left out the condition
fu(zsi) < fs(zsi) in step (2.2).

FIGURE 50 Condition fu(z) < fs(z) is not necessarily that critical in investigating dom-
inated vectors in fa(Δ◦

k−1).

When using functions fl and fu in validating the approximation, it must be
clarified that the validation is based on vectors in Zm and a vector z ∈ Δ◦

k−1. In
other words, the validation is done in a vector-wise sense in Theorems 40 and 42,
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and not as a local neighborhood validation likewise the validation based on nor-
mal vectors. However, a validation based on functions fl and fu can be estab-
lished on an open neighborhood, as we see next.

Theorem 44. Let z ∈ Δ◦
k−1. If the function fs is continuous, then there exists

a radius r > 0 so that for all z′ ∈ B(z, r) ∩ Δ◦
k−1 we have fs(z′) < fl(z

′) or
fu(z′) < fs(z′) if fs(z) < fl(z) or fu(z) < fs(z) respectively.

Proof. Because the function fl is continuous (Theorem 40), then for a sufficiently
small 0 < ε < ( fl(z)− fs(z))/3, we have a radius rz > 0 so that

| fs(z)− fs(z
′)| < ε, | fl(z)− fl(z

′)| < ε

for all z′ ∈ Δ◦
k−1, ‖z′ − z‖ < rz. Now,

| fl(z)− fs(z)| = | fl(z)− fl(z
′) + fl(z

′)− fs(z
′) + fs(z

′)− fs(z)|
≤ | fl(z)− fl(z

′)|+ | fl(z
′)− fs(z

′)|+ | fs(z
′)− fs(z)|

≤ 2ε + | fl(z
′)− fs(z

′)| < 2
3
| fl(z)− fs(z)|+ | fl(z

′)− fs(z
′)|

⇔

0 <
1
3
| fl(z)− fs(z)| < | fl(z

′)− fs(z
′)|

⇔
ε < | fl(z

′)− fs(z
′)|.

In other words, for all z′ ∈ Δ◦
k−1, ‖z′ − z‖ < rz, we have fs(z′) < fl(z

′) or
fl(z

′) < fs(z′). However, if the last one holds then fl(z
′) < fs(z), because

| fs(z)− fs(z′)| < ε and fs(z′)− fl(z
′) > ε, which means that

| fl(z)− fs(z)| < | fl(z)− fl(z
′)| < ε < | fl(z)− fs(z)|/3.

Thus, for all z′ ∈ Δ◦
k−1, ‖z′ − z‖ < rz, we have fs(z′) < fl(z

′).
The proof for the function fu is similar.

Theorem 44 extends Theorem 40 to an open neighborhood of z ∈ Δ◦
k−1.

Thus, for example, on an relatively open neighborhood of z ∈ Δ◦
k−1 every vector

dominates some vector in Zm if fs(z) < fl(z). This increases the value of the
functions fl and fu in the validations. However, Theorem 44 does not present
any clue about how large the open set can be. In other words, we can now find
dominated vectors in the approximation more accurately. This leads to a question
presented in the next paragraph.

In Method 43, dominated vectors in the approximation are detected. Now
one can ask whether all dominated vectors can be detected. The answer is, un-
fortunately, no. In nonconvex MOO problems, it is possible that a vector fa(z)
is dominated in the approximated Pareto front even though conditions fl(z) <
fs(z) < fu(z) and the normal vector belong to the negative orthant hold. We
have illustrated such a case in Figure 51 at fa(z3). This means that more attention
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must be paid in future studies to cases like the vector fa(z3) because neither nor-
mal vectors nor functions fl and fu indicate that the vector is dominated in the
approximated Pareto front. However, methods proposed in this thesis for detect-
ing dominated vectors complete each other. In other words, if a normal vector
does not indicate a dominated vector, then the function fl may indicate that it
is dominated, see vector fa(z1) in Figure 51. On the other hand, functions fl or
fu may not indicate the dominance, but then normal vector indicates something
else, see vector fa(z2). Thus, both of them are justified for characterizing domi-
nated vectors in the approximated Pareto front (note that it can be possible that
both of them detect a dominated vector, that is, the normal vector does not belong
to Rk

+ ∪ Rk
− and fu(z) < fs(z)). This is essential for the validation and for a later

use in Chapter 6.

FIGURE 51 Dominated vectors which can be detected by using the validation methods
proposed in this thesis. However, they do not cover all the cases.

Remark 45. We believe that it would be quite unlikely (or impossible) to be able
to present in one thesis a complete collection of computational methods which
detect all dominated vectors correctly. To see this, let us assume that we have a
collection of computational methods which detect both nondominated and dom-
inated vectors correctly in a set which can contain infinitely many vectors. Then it
can be said that we have a computational method (a combination of the methods)
which characterizes the definitions of Pareto optimality and Pareto dominance.
Does such a computational method exist? We do not know for sure, but we be-
lieve that it is not possible to construct such computationally methods, which
work perfectly with all arbitrary nonconvex MOO problems. On the other hand,
we do not underestimate the results obtained by normal vectors and functions
fl and fu. They are pointing out that such computational methods can be cre-
ated, and in practice they can provide good results in detecting nondominated
and dominated vectors.

To conclude this subsection, validating the approximation by functions fl, fu
and fs was discussed. It turned out that a computationally efficient method can be
formulated for validating the approximation. In this subsection, the validation of
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the approximation means finding out whether or not the approximation contains
vectors which dominate some of the vectors in Zm.

5.2.2 Reliability of Vectors in the Approximated Pareto Front

In this subsection, we propose a function fc : Δ◦
k−1 → [0, 1] estimating how re-

liable an approximated Pareto optimal objective vector is if it is considered as a
Pareto optimal objective vector to the MOO problem. By the function value, the
HBE method can provide an estimation of the reliability in step (4) for a sam-
ple vector in the approximation that has been generated based on the decision
maker’s preferences. Another use for the function could be in step (6) of IHBE,
where the decision maker can point the approximated Pareto optimal objective
vectors for which the corresponding true Pareto optimal objective vectors should
be calculated. With the help of the value of the function fc, the decision maker
may estimate for which vectors there is no need to calculate a true Pareto optimal
objective vector. Let us illustrate this as follows. If the certainty number fc(z) is
close to one, then the vector fa(z) can be interpreted to be rather reliable (certain),
that is, it could be a Pareto optimal objective vector to the MOO problem. In other
words, there is not necessarily a need to calculate a true Pareto optimal objective
vector to the approximated one1. On the other hand, if fc(z) is close to zero,
then the vector fa(z) is uncertain, i.e. we cannot be sure whether or not the vec-
tor fa(z) can be considered as a Pareto optimal objective vector. This means that
a true Pareto optimal objective vector corresponding to the approximated one
should be calculated. Note that calculating the true ones requires time because
the MOO problem is computationally expensive. In other words, with the help of
the certainty number, the decision maker may save computation time by reject-
ing calculations of certain (reliable) approximated vectors. However, we want to
remind that the function fc is only an educated guess and situations discussed in
Subsection 3.1.2.2 may take place with it.

To put it briefly, we propose the value fc(z) to be calculated as follows:

fc(z) := 1 − min

{
fu(z)− fl(z)

∑k
i=1 nadirZm

i − idealZm
i

, 1

}
.

Geometrically, the numerator fu(z) − fl(z) measures the range of scalar values
fs(z) such that the vector fa(z) does not dominate any of the vectors in the set
Zm and vice versa. The denominator ∑k

i=1 nadirZm
i − idealZm

i is in some sense
a scaling factor in order to get the value to the range [0, 1]. The scaling factor
represent in some sense a maximum of differences fu(z)− fl(z) that can be pos-
sible in practice. This can be seen as follows. Let Z3 consists of three vectors:
(1, 0, 0)T, (0, 1, 0)T and (0, 0, 1)T. Then the function value fu((1/3, 1/3, 1/3)T)−
fl((1/3, 1/3, 1/3)T) is ∑3

i=1 nadirZm
i − idealZm

i and that is the maximum differ-
ence, which can be found in this case. However, as demonstrated in Appendix 3,

1 If the decision maker is interested in decision variable values, then a corresponding true
Pareto optimal objective vector must be calculated.
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the function fu can have arbitrarily large values, meaning that the number fu(z)−
fl(z) can be arbitrarily large. In other words, the difference fu(z) − fl(z) can
be more than the corresponding ∑k

i=1 nadirZm
i − idealZm

i , which means that the
difference has, in some sense, crossed a theoretical maximum for the difference.
Therefore, the function fc contains the minimum-operator in order to keep the
certainty number in the range of [0, 1].

Next, we demonstrate the values of the function fc. Let us assume that for
all vectors z in Δ◦

k−1 we have fl(z) < fs(z) < fu(z). In Figure 52, we have plotted
function values fc(z), where Z5 consists of vectors (2, 0)T, (0.4, 1.6)T, (1.0, 1.2)T,
(1.6, 0.4)T and (0, 2)T. The objective space R2 is the xy-plane in Figure 52 and
the function values fc(z) on the simplex Δ1 are plotted in parallel to z-axis. As it
can be seen, if the function value fc(z) is close to 1, then the vector fa(z) can be
interpreted as a Pareto optimal objective vector because the vector fa(z) is close
to a known Pareto optimal objective vector. However, the value fc(z) should not
be confused with a probability to be a Pareto optimal objective vector because it
has nothing to do with probabilities.

FIGURE 52 Function values fc(z) on simplex Δ1. Note that the certainty value 1 is ob-
tained at vectors on the relative interior of the simplex that map to Zm by
function fa.

In implementing the function fc to be used in the HBE method, one has to
calculate values fl(z) and fu(z). Then one must calculate the difference and nor-
malize it by vectors idealZm and nadirZm and check whether the result is smaller
than 1. Finally, one must calculate the difference to 1. In other words, to calcu-
late function values fc(z) in the HBE method is not a computationally expensive
operation. This means that the decision maker does not have to wait during the
calculation. Therefore, we propose to use the following method in steps (3-4) in
HBE.

Method 46.

(1) Calculate in step (3) of HBE certainty numbers as function values fc at
vectors fp(zhi), where the vector fp(zhi) is the vector in the approximation
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corresponding to the sample vector zhi satisfying the aspiration and reser-
vation levels given by the decision maker.

(2) If the decision maker wants to see the certainty numbers in step (4) of
HBE, then present the calculated numbers.

Method 46 is rather simple computationally efficient method to be used in HBE.
However, to clarify the first step, the function fc must be applied to vectors zshi ,
which are the vectors on Δ◦

k−1 corresponding to zhi .
Because of the simplicity, Method 46 has several drawbacks. First, the func-

tion fc has been defined on Δ◦
k−1. This means that estimations on the relative

boundary of Δk−1 cannot be calculated by the function fc. In addition, the cer-
tainty numbers may not be close to one for vectors in the relative interior of
fa(Δk−1) that are close to vectors, which belong to Zm and the relative bound-
ary of fa(Δk−1), see the values in Figure 52 at vectors close to vectors (1, 0)T and
(0, 1)T in the simplex. However, it is possible in higher-dimensional objective
spaces that for vectors in fa(Δ◦

k−1) close to the relative boundary of fa(Δ◦
k−1)

there does not exist a vector in Zm so that it is close to the vectors, see Ap-
pendix 3. Another drawback in the function fc is that it does not take into ac-
count the value fs(z). In other words, the certainty value fc(z) is the same for all
fs(z) ∈ ( fl(z), fu(z)). This means that further investigations related to the func-
tion fc must be done in the future studies. However, its simplicity for compu-
tationally expensive nonconvex MOO problems defends its position in the IHBE
and HBE methods.

In this subsection, a computationally efficient function fc was proposed for
estimating how reliable an approximated Pareto optimal objective vector is, if it
is interpreted as a Pareto optimal objective vector to the MOO problem. Then a
method based on the function fc and sample vectors generated on the approx-
imated Pareto front that somehow corresponds to the decision maker’s prefer-
ences were proposed for the HBE method.

5.3 Summary of Chapter 5

Chapter 5 has introduced functions fl and fu to the function fs as a lower function
and an upper function, respectively. They can be used, for example, in validating
the approximation or in calculating how reliable an approximated Pareto optimal
objective vector is. Next, we briefly summarize the main theorems of this chapter.

Theorem

40 In this theorem, it was shown how the functions fl and fu can be used in
characterizing dominated vectors in the approximation. First, it was proved
that fl(z) ≤ fu(z) for all z ∈ Δ◦

k−1. Then dominance relations between vec-
tors in Zm and fa(z) were considered. If fs(z) < fl(z), then fa(z) dominates
at least one of the vectors in Zm. In addition, if fu(z) < fs(z), then at least
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one of the vectors in Zm dominates fa(z). However, if fl(z) < fs(z) < fu(z),
then fa(z) does not dominate any of the vectors in Zm and none of the vec-
tors in Zm dominates fa(z).

Proposition

41 Theorem 40 does not directly say when fa(z) belongs into Zm. In Propo-
sition 41, it has been shown that fl(z) = fs(z) = fu(z) if and only if
fa(z) ∈ Zm.

Theorem

42 Proposition 41 completes Theorem 40 to contain equalities instead of strict
inequalities which were studied in this theorem.

44 For validation purposes, Theorem 44 introduces a condition through the
continuity of the function fs when dominated vectors on an open neigh-
borhood of z ∈ Δ◦

k−1 are studied. It turned out that if fs is continuous,
then there exists a radius r > 0 so that fs(z′) < fl(z

′) or fu(z′) < fs(z′),
if fs(z) < fl(z) or fu(z) < fs(z), respectively, for all z′ ∈ B(z, r) ∩ Δ◦

k−1,
z ∈ Δ◦

k−1. This means that on an open neighborhood of z the corresponding
vectors in the approximation are either dominating some of the vectors in
Zm or vice versa.

From the approximation model AM’s point of view, several features must be
mentioned.

AMf11 Functions fl and fu can be considered as computationally efficient
functions. They do not contain any computationally expensive operation
to be evaluated.

The simplex Δ◦
k−1 has also a significant role with functions fl and fu.

Both functions are defined on Δ◦
k−1 and this is one of the reason why the

explicit expressions of functions fl and fu are simple.
AMf12 The surrogate function fs has been fitted to data consisting of pairs

(zsi , λi) in Definition 10. The data does not contain in itself any information
of the Pareto dominance relation between objective vectors. As discussed
in Subsection 5.2.1, functions fl, fu and fs can be used in validating the ap-
proximation. Especially, through the function fl, it can be detected, when a
vector in the approximation dominates at least one of the vectors in Zm. In
other words, in some sense, we have provided answers to the goal G6 set on
page 20 to the approximation, where the approximation must be validated
computationally efficiently.

AMf13 In supporting the decision maker in the solution process of the MOO
problem, the function fc was proposed in this chapter. It is computationally
efficient, and it calculates a number between [0,1] for each z ∈ Δ◦

k−1 to indi-
cate how reliable the corresponding approximated Pareto optimal objective
vector is. The number can be used in estimating whether the approximated
Pareto optimal objective vector could be a Pareto optimal objective vector



122

to the MOO problem. This means that the decision maker can get signifi-
cant information of the Pareto front. Thus we have answered the goal G9 on
page 20.

We have proposed in this chapter computational methods for identifying dom-
inated vectors in the solution process produced by the HBE method. Next, we
discuss how the dominated vectors are proposed to be interpreted in the solution
process.



6 INTERPRETATION OF DOMINATED VECTORS

AND SOME TOPOLOGICAL PROPERTIES OF THE

APPROXIMATION

Normal vectors studied in Chapter 4 characterize dominated and nondominated
vectors together with the functions fl and fu introduced in Chapter 5. In the IHBE
method, they are used in validating the approximation. After the validation, the
approximation should not, for example, contain vectors which dominate Pareto
optimal objective vectors in the set Zm. In other words, after having validated
the approximation, it does not present, to the decision maker, unrealistic (infeasi-
ble) objective vectors, as it may happen for an invalid approximation. However,
the nonconvexity of the MOO problem may introduce challenging situations dis-
cussed already in Subsection 3.3.3. In this chapter, we focus to the case, where
philosophical discussion is required.

Let us assume exceptionally in this chapter that a Pareto front is available
for visualizations and only for visualizations. Otherwise, it would be difficult
to illustrate geometrically the cases discussed in this chapter. However, the as-
sumption of having the exact Pareto front available is only for visualization, the
theories presented in this chapter are not based on available Pareto fronts (the
case is reintroduced in this chapter).

The IHBE method proposed in Chapter 3 allows the decision maker to freely
study the objective space by the HBE method. The search is based on aspiration
and reservation levels, which define a hyperbox in the objective space. Let us
now assume that the decision maker is dealing with the IHBE method in the
Pareto front environment. That is, the decision maker deals with the true Pareto
front instead of an approximated one (having assumed that the front is available).
We have assumed that the MOO problem can be nonconvex. The Pareto front
could then be the dark surface illustrated in Figure 53. In informal terms, the
Pareto front in the figure contains a hole. The hole is in the middle of the Pareto
front, and through it we can partially see the coordinate planes of the objective
space behind the Pareto front. In other words, the hole is in some sense a missing
piece of the Pareto front. However, because the decision maker may search freely
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the objective space with the HBE method, then a hyperbox (a gray dashed box)
defined the by aspiration and reservation levels given by the decision maker can
be located in the hole as we have demonstrated in Figure 54, where the Pareto
front is the same as in Figure 53 but from a different perspective. This leads to the
main concern of this chapter.

FIGURE 53 A Pareto front in objective
space R3 with an obvious
hole.

FIGURE 54 Occasionally, the decision
maker may search for
Pareto optimal objective
vectors in the hole.

It is obvious that the decision maker cannot have Pareto optimal objective
vectors he or she prefers because the hyperbox is in the hole (the Pareto front and
the hyperbox as sets do not intersect). Now, the main concern is what to do if the
hyperbox is in the hole. How to inform the decision maker about the situation?
How to guide him or her away from the hole? What should the HBE method
present for the decision maker in such a situation? The challenges in answering
the questions emerge in the following paragraphs.

In the MCDM literature, Pareto fronts containing holes1 are not that widely
studied, especially from the decision maker’s point of view. We believe that the
reason for this is that many interactive methods created for nonconvex MOO
problems present a Pareto optimal objective vector in some sense close to the
decision maker’s preferences. Then it would not matter whether or not there is a
hole in the Pareto front. However, it is typically an algorithm that decides what
is in some sense close to the preferences. In our opinion, this is not simple in
practice. Also, selecting a close one by an algorithm can be counterproductive for
the decision maker. Let us illustrate this as follows.

In Figure 54, we have added a black circle, which illustrates in some sense
closest Pareto optimal objective vectors to the hyperbox. As it can be seen in the
figure, there are several types of Pareto optimal objective vectors, which are close
to the hyperbox and which we have classified in the following way:

1 We use the word hole because there is not yet a standard word for the concept in the liter-
ature. Words such as a disconnected set [43], hole [80, 154], branch [114] or non-convex or
discontinuous frontier [191] are occasionally used.
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Class 1. the first objective function value is better than the corresponding aspira-
tion level,

Class 2. the second objective function value is better than the corresponding as-
piration level,

Class 3. the third objective function value is better than the corresponding aspi-
ration level,

Class 4. the first and the second objective function values are better than the cor-
responding aspiration levels,

Class 5. the first and the third objective function values are better than the corre-
sponding aspiration levels and

Class 6. the second and the third objective function values are better than the
corresponding aspiration levels.

In other words, if an algorithm presents a Pareto optimal objective vector to the
decision maker, then the algorithm probably selects one vector, which belongs to
some of the classes introduced above. This is the main concern discussed in this
chapter because the decision maker may have different opinions about the vec-
tor selected by the algorithm. For example, the algorithm may have presented
a Pareto optimal objective vector, which belongs to the first class, although the
decision maker might have liked (or was hoping/preferring) to have a vector,
which belongs to the sixth class because the second and the third objective func-
tions can be more important for the decision maker. Because the algorithm has
presented a Pareto optimal objective vector, which belongs to the first class, then
the decision maker may think that there does not exist Pareto optimal objective
vectors, which belong to the sixth class. Note that it is possible in this case to have
Pareto optimal objective vectors in the sixth class. In other words, the algorithm
can in the worst case mislead the decision maker and this is something we do not
want to happen with the IHBE and HBE methods.

In order to avoid misleading the decision maker, presenting vectors in each
class may sound like a good idea. Nevertheless, the number of classes increases
exponentially when the number of objective functions increases. This means that,
in a MOO problem consisting of four objective functions, the decision maker may
receive up to 24 − 1 = 15 different types of Pareto optimal objective vectors close
to the hyperbox. This could exceed the decision maker’s capability to process
information as discussed in Subsection 3.1.1.2. Another way to avoid providing
misleading information is to visualize the hole as in Figure 54. However, to “see”
a hole in the Pareto front of a MOO problem consisting of four objective func-
tions is not necessarily that straightforward because visualization is no longer as
simple as in Figures 53 and 54. Note that with the help of the visualization, the
decision maker can “see” alternative Pareto optimal objective vectors close to the
hyperbox.

We have seen that “getting out of the hole or seeing a hole”, that is, pre-
senting Pareto optimal objective vectors close to the hyperbox in a hole can be
challenging. Note that “getting out of the hole” is important, because a compro-
mise solution should be found and such a vector does not exist in a hole in the
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Pareto front. However, if the analyst introduces the concept of holes in the Pareto
front for the decision maker, then we believe that the decision maker receives
more support for and understanding about the (approximated) Pareto front for
the creation of an overall understanding of available (approximated) Pareto op-
timal objective vectors. The concept of holes in the Pareto front then explains
why the decision maker cannot have the (approximated) Pareto optimal objec-
tive vectors he or she is asking for if it turned out that the hyperbox is in a hole.
In addition, the decision maker may realize that it is possible to find different
kinds of Pareto optimal objective vectors which in some sense are close to the
preferences instead of presenting a single vector selected by some algorithm. In
other words, the concept of holes in the Pareto front must be clear for the deci-
sion maker. Then he or she can benefit of that information in the solution process.
The decision maker understands that the hyperbox is in the middle of the Pareto
front, where no Pareto optimal objective vectors exist but close to the hyperbox
different kinds of Pareto optimal objective vectors can be found. In addition, de-
pending on the decision maker’s interest to mathematical details about the MOO
problem, the analyst can clarify to the decision maker that the Pareto front may
contain holes because the MOO problem is nonconvex. It must be noted that
in continuous convex MOO problems there are no holes in the Pareto front, and
this is guaranteed by the convexity of the set S and convexities of the objective
functions.

In the IHBE and HBE methods, a hyperbox in a hole is understood in the
following way. As illustrated, there can be different kinds of Pareto optimal ob-
jective vectors close to a hyperbox in a hole in the Pareto front. In addition, it
can be challenging to present all of them to the decision maker. Therefore, (ap-
proximated) Pareto optimal objective vectors close to the hyperbox in a hole are
not calculated in the IHBE and HBE methods. Let us remind ourselves that the
IHBE method is based on the HBE method and the HBE method is created for
answering a query in a form of a question:

I am interested in these kinds of (approximated) Pareto optimal objective vectors.
Do those vectors exist?

If a hyperbox defined by the aspiration and reservation levels is in a hole, then,
by using the concept of holes in the Pareto front, the HBE method can provide an
explanation about why the decision maker cannot have (approximated) Pareto
optimal objective vectors. For example, the explanation can be “They do not exist,
because the particular region you are interested in is in an approximated hole in
the Pareto front” (an approximated hole in the Pareto front will be clarified in the
next section, and the answer is naturally possible only after the concept of holes
has been computationally implemented later in this chapter).

The answer by the HBE method is honest and explains why the decision
maker did not receive any (approximated) Pareto optimal objective vectors. In
other words, it is not forcing the decision maker to some direction defined by
some algorithm. It will be up to the decision maker to determine which part of
the objective space to investigate next. In this way, the IHBE and HBE methods
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can be directed to the regions that are of interest to the decision maker. This is
the advantage of having a free-search -feature in the creation of an overall un-
derstanding of available (approximated) Pareto optimal objective vectors, as dis-
cussed in Subsection 3.1.2.3. However, in case the decision maker has no idea
where to continue in the objective space, the vectors in the set Zm can be pre-
sented to him or her as proposed in Subsection 3.3.4.

The result of the characterization of approximated holes in the Pareto front
is significant in the creation of an overall understanding of available (approxi-
mated) Pareto optimal objective vectors, i.e. the decision maker can be informed
about the region, where (approximated) Pareto optimal objective vectors do not
exist and where the preferences are neither optimistic nor pessimistic. The de-
cision maker can thus save time for some other regions where (approximated)
Pareto optimal objective vectors may exist.

The rest of this chapter has been organized as follows. First, we geometri-
cally illustrate the way approximated holes in the Pareto front can be identified
by the approximation created in Chapter 2. The dominated vectors in the approx-
imated Pareto front are the key elements in the characterization. This takes place
in Section 6.1, where approximated holes are defined geometrically. Then, a for-
mal definition for approximated holes is defined mathematically in Section 6.2.
After this, the characterization of approximated holes in practice is discussed in
Section 6.3. Thus we introduce computational counterparts for the mathematical
and theoretical characterizations for the approximated holes. Section 6.4 slightly
differs by its contents from the other sections of this chapter. We discuss how
the analyst can use topological properties of the approximation in validating the
approximation. Finally, this chapter is summarized in Section 6.5.

6.1 Characterization of Holes in the Pareto Front Using the Ap-
proximation

In nonconvex MOO problems, Pareto fronts can be disconnected, that is, they
can consist of separate sets as in Figure 55 (black curves). In Subsection 3.3.3, we
have briefly discussed a case in which the hyperbox defined by the aspiration and
reservation levels can be located in the objective space, as it has been depicted in
Figure 55 (gray box). The decision maker may wonder why no approximated
Pareto optimal objective vectors inside the hyperbox can be obtained while very
close to the hyperbox they can be found if the aspiration and reservation levels
are slightly changed. However, if a visualization (similar to that of Figure 55) of
the Pareto front was available for the decision maker, the decision maker could
immediately realize why he or she cannot get Pareto optimal objective vectors
inside the hyperbox. He or she can see that the hyperbox is in some sense in
the middle of the Pareto front, where Pareto optimal objective vectors do not
exist (the hyperbox is between the Pareto optimal objective vectors z1 and z2 in
the figure, and between them no other Pareto optimal objective vectors exist).
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Informally stated, the hyperbox is in a hole in the Pareto front.

FIGURE 55 In nonconvex MOO prob-
lems, the Pareto front can
consist of several separated
sets and, occasionally, the
decision maker may study
a region, defined by aspira-
tion and reservation levels,
where (approximated)
Pareto optimal objective
vectors do not exist.

FIGURE 56 The decision maker is sup-
ported by the information
that he or she is investi-
gating a hole which can be
characterized by dominated
vectors in the approxima-
tion.

To detect computationally that the hyperbox is in a hole can be done by us-
ing the approximation. We demonstrate this as follows. In Figure 56, we have
added the approximation in the figure (gray dashed/bold curves, where bold
curves represent nondominated vectors in the approximation and dashed repre-
sent dominated vectors). Note that the nonconvexity of the MOO problem has
forced the approximation, which is a “nice” smooth curve, into a “shape”, which
contains dominated vectors. As shown by Figure 56, the approximated Pareto
front intersects the hyperbox, and the vectors in the intersection are dominated
in the approximation. Note that the dominated vectors and especially the ones
in the intersection can be detected to be dominated by the methods introduced in
Chapters 4 and 5. Now, the dominated vectors are used in Method 16 to indicate
that the hyperbox is in an approximated hole in the Pareto front. We use the term an
approximated hole because the identification of the hole is based on information
the approximation is providing with the help of the dominated vectors. Note that
the dominated vectors in the hyperbox can be found by using Method 16 created
for calculating vectors on the approximated Pareto front.

Indeed, dominated vectors in the approximation can be used for indicating
approximated holes in the Pareto front. However, here we have only a geomet-
rical representation illustrating how holes in the Pareto front can be detected. To
do this computationally, we first have to set up a mathematical basis for a concept
of a hole in the Pareto front. For that, we have to determine what a hole actually
is.
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FIGURE 57 A clear hole in the wall. FIGURE 58 A piece of the wall is miss-
ing.

In this thesis, a hole is defined mathematically based on our example about
“hole in the wall”. In Figure 57, we have a wall (the gray rectangle) with a hole
(the white disc). Intuitively, a hole can be considered a piece that is missing from
the wall. Through that hole we can see behind the wall (the white paper in this
case). To understand better what characterizes a hole, let us consider the wall in
Figure 58. There we have a piece missing from the wall. We believe that most of
the people would not probably consider the missing piece a hole because the wall
does not surround it as it does in Figure 57. In other words and semi-formally, to
consider an object O1 to be a hole in an object O2 (a part of a plane) requires that

1. elements in O2 do not belong to O1 and elements in O1 do not belong to O2,
2. it must be possible to go from one side of O2 to the other through O1 and
3. the object O2 must surround O1 everywhere.

The term surrounding means that there exists a clear border, which separates the
object O1 from the object O2 and no matter which point and direction in the object
O1 have been selected, a point in the border will be hit eventually when moving
from the point selected to the direction selected.

The semi-formal definition above based on the objects O1 and O2 for a hole
is the basis for an approximated hole in the Pareto front. However, to define
an approximated hole directly in the Pareto front can be challenging because the
Pareto front can be a twisted or a bended hypersurface making it difficult to say
which of the vectors in the objective space actually belong to the hole. However,
the above semi-formal definition for approximated holes in a plane (the wall may
be considered a two-dimensional plane) can be interpreted to mean that vectors
in O1 inside the object O2 are hole vectors. This is an important observation
because then the “hole in the wall” example can be adapted to the simplex Δk−1,
which is one of the elements in the basis of the approximation. We claim that
the “hole in the wall” example is an intuitive demonstration of a hole in real life.
This intuition can now be adapted to the approximated Pareto front, as we will
demonstrate in the next section.
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6.2 On Dominated Subsets of the Set fa(Δk−1) and Approximated
Holes in the Pareto Front

To start the discussion on approximated holes in the Pareto front, we propose the
following set as a basis.

Definition 47. A vector z ∈ Δk−1 is called a hole vector , if

z ∈ rel int
(

CH(Δ∗
k−1) ∩ (Δ∗

k−1)
C
)
=: Δh

k−1,

where Δ∗
k−1 is the set of vectors for which the corresponding vector in the ap-

proximation is nondominated. The vector fa(z) is called a hole vector if z is a
hole vector.

The vector z ∈ Δk−1 is called a boundary hole vector if fa(z) is not a hole
vector, but

z ∈ CH(Δ∗
k−1) ∩ (Δ∗

k−1)
C.

The set of boundary hole vectors of Δ∗
k−1 is denoted by Δ∂h

k−1. In addition, the
vector fa(z) is called a boundary hole vector if z is a boundary hole vector. If
Δh

k−1 ∪ Δ∂h
k−1 = ∅ and fa is continuous on Δ∗

k−1, then fa(Δ∗
k−1) (= fa(Δk−1)

∗) is
said to be continuous.

Definition 47 for an approximated hole in the Pareto front may seem cryptic
at first. However, it follows the analogy of the “hole in the wall” example, and we
demonstrate this as follows. Let us consider the set Δ∗

k−1 as the wall (the light
gray part on the left hand side in Figure 59). As we can see, there is a hole in
Δ∗

k−1 caused by the dominated vectors in the approximation (the white faces of
triangles in the middle picture). Now, the (separated) set(s) of dominated vectors
in the approximation indicate an approximated hole in the Pareto front as can be
seen on the right hand side in Figure 59. In other words, if the dominated vectors
in the approximation are removed, then we have a hole in the approximation.
However, the dominated vectors in the approximation are not removed in prac-
tice. Nevertheless, if a hyperbox contains such vectors, then the hyperbox is in an
approximated hole in the Pareto front, as discussed in the previous section. Note
that this example is in a three-dimensional objective space. Definition 47 is valid
for any k-dimensional objective space (k ≥ 2).

The border, which was introduced in the “hole in the wall” example and
which separates the hole from the approximated Pareto front is, naturally, the
set Δ∂h

k−1 and, correspondingly in the approximated Pareto front, the set fa(Δ∂h
k−1).

Note that a boundary hole vector in fa(Δk−1) can be nondominated or domi-
nated. Next, we prove that the set Δ∂h

k−1 surrounds holes, i.e. (separated) set(s)
Δh

k−1. In other words, we show that no matter which hole vector zh and direction
zd ∈ {z′ : z′ �= 0, z′ = z′′ − (1/k, . . . , 1/k), z′′ ∈ Δk−1} have been selected, then
we will eventually end up at the boundary Δ∂h

k−1 when we start to move from zh

to the direction zd.
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FIGURE 59 A “wall” on the simplex representing the nondominated vectors in the
approximation. The dominated vectors in the approximation are subse-
quently interpreted as an approximated hole in the Pareto front.

Theorem 48. The set Δ∂h
k−1 surrounds the set Δh

k−1, i.e. for all vectors zh ∈ Δ∂h
k−1 and

directions zd in the simplex, there exists a scalar λd > 0 so that zh + λdzd ∈ Δ∂h
k−1

and the vector zh + λzd is a hole vector for all λ < λd.

Proof. It is clear that a radius r > 0 exists so that every vector on line zh + rzd is
a hole vector, because zh belongs initially to a relatively open set of the simplex.
Now, for some λd > 0 the vector zh + λdzd belongs to Δ∂h

k−1, and this can be seen
as follows. Because the set Δk−1 is compact, then there is a maximal λm > 0 so
that for some i the coordinate value (zh + λmzd)i is equal to zero and the vector
zh + λmzd belongs to Δk−1. If for all λd < λm the vector zh + λdzd does not
belong to Δ∂h

k−1, then the vector zh + λmzd does because it belongs to the relative
boundary of the set rel int Δk−1.

In other words, Theorem 48 proves the semi-formal “surrounding” require-
ment between objects O1 and O2. Next, we present illustrative examples of holes,
and after that we consider the theoretical conditions which characterize hole vec-
tors.

Example 49. Hole vectors are defined on the simplex, therefore in the following
examples we only illustrate sets on the simplex.

1. Let
Δ∗

2 = {z ∈ Δ2 : there exists i so that zi < 0.1}.

In Figure 60, the set Δ∗
2 is depicted as the black part on the simplex. The

set Δh
2 has been colored dark gray, and the set Δ∂h

2 consists of three dashed
white lines. Now, sets Δh

2 and Δ∂h
2 have an intuitive connection to the “hole

in the wall” example. Note that the set Δ∗
2 also surrounds the hole. However,

it is possible that the set Δ∗
2 does not surround the hole. We demonstrate

this next.
2. Let Δ∗

2 be consisting of vectors of the form 0 ≤ z3 ≤ 0.5 and 0.4 ≤ z1 ≤ 0.5
or 0.4 ≤ z2 ≤ 0.5. In Figure 61, the set Δ∗

2 is represented by the black part
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on the simplex. The set Δh
2 has been colored dark gray, and the set Δ∂h

2 is
represented by the dashed light gray lines. Note that Δ∗

2 does not surround
the set Δh

2, but Δ∂h
2 does.

3. If Δ∗
k−1 is convex, then sets Δh

k−1 and Δ∂h
k−1 are empty. In other words, the

set fa(Δ∗
k−1) is continuous if Δ∗

k−1 is convex and the function fs is continu-
ous. Thus, for example, the set

{z : ‖z‖ = 1, zi ≥ 0},

considered as fa(Δ∗
k−1), is continuous, which is trivial.

4. Let Δ∗
2 consist of only vectors of rational coordinate values. Then the set

Δh
2 is empty, but Δ∂h

2 = Δ2.

FIGURE 60 A simple example of the
simplex for the a hole in the
wall example.

FIGURE 61 Set Δ∂h
2 artificially separates

the hole vectors from the
vectors for which the corre-
sponding vectors in the ap-
proximation are nondomi-
nated.

Example 49.2. demonstrates Definition 47 in an interesting way. It shows
that the set of hole vectors is only defined “inside” the convex hull of Δ∗

k−1 (the
dark gray part is “inside” the black part, i.e. the set Δ∗

k−1) and not “outside” the
convex hull of Δ∗

k−1, see Figures 60 and 61. In other words, Definition 47 does not
characterize vectors close to the corners of the simplex (the standard unit vectors)
in Example 49.2. as hole vectors, as seen in Figure 61. The corresponding vectors
in the approximation are dominated, but they are not hole vectors because they
are not “surrounded” by nondominated vectors. This is a consequence of having
the set CH(Δ∗

k−1) ∩ (Δ∗
k−1)

C in Definition 47. On the other hand, in Figure 58, we
came up to a conclusion that the missing piece in the wall is not a hole, because
the wall does not surround it. However, one can see that the missing piece, i.e.
the hole in the approximated Pareto front in Example 49.2., corresponds to this
missing piece in the wall. This is a challenging situation for us because it is diffi-
cult to say whether or not the set Δh

k−1 in Example 49.2. is a hole “geometrically”
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or a by-product or a drawback of taking the convex hull of the set Δ∗
k−1 in Defi-

nition 47. However, there is a clear explanation for it being considered as a hole.
In Example 49.2., the situation is a natural consequence of taking the convex hull
of Δ∗

k−1. Note that the nondominated vectors in the set Δ∗
k−1 “surround” the hole

vectors because the set Δh
k−1 is a subset of the convex hull of the set Δ∗

k−1. In other
words, the set Δh

k−1 is “inside” the convex hull of the set Δ∗
k−1, and the set Δh

k−1
does not contain vectors, which do not belong to the convex hull of the set Δ∗

k−1.
Therefore, the hole in Example 49.2. can, indeed, be interpreted as a hole.

So far, we have geometrically demonstrated holes in the simplex and the
corresponding vectors in the approximation. Next, we show how the character-
ization of hole vectors can be done theoretically based on the theories already
presented in this thesis.

Theorem 50. Let z ∈ rel int CH(Δ∗
k−1) and let the function fs be continuously

differentiable. If the normal vector fa(z)⊥ does not belong to Rk
− ∪Rk

+ or fu(z) <
fs(z), then z is a hole vector.

Proof. To show that z is a hole vector, we should find a radius rz > 0 so that for
each z′ ∈ rel int CH(Δ∗

k−1), ‖z′ − z‖ < rz, vector fa(z′) is dominated in fa(Δk−1).
Theorem 44 guarantees that such a radius exists if we have fu(z) < fs(z). A
radius for the condition of normal vector follows similarly from the proof of The-
orem 32 applied to Theorem 27.

As said, Theorem 50 is a theoretical way to identify hole vectors. However,
it is a basis for a computational method to be used in the HBE method when
investigating whether or not a hyperbox is located in an approximated hole in
the Pareto front.

6.3 Implementing the Concept of a Hole

Calculating normal vectors fa(z)⊥ and function values fu(z) can be done compu-
tationally efficiently. As proved in Theorem 50, they can be used in characterizing
hole vectors. Naturally, Theorem 50 would be the one to be implemented for the
HBE method. However, there are two challenges in Theorem 50 from a practi-
cal point of view. Firstly, the set Δ∗

k−1 should be known. Secondly, the vector z

should belong to the relative interior of the set CH(Δ∗
k−1) ∩ (Δ∗

k−1)
C. Once the

first challenge has been solved, the second one can be easily checked.
Instead of using CH Δ∗

k−1 in the HBE method, we propose to use CH Zs
m

(Zs
m = f p

Zm
(Zm) and the function f p

Zm
was used to map vectors in Zm into the sim-

plex). Let us assume that the approximated Pareto front fa(Δk−1) has been vali-
dated, i.e. vectors in Zm are nondominated in fa(Δk−1). Then, Zs

m ⊂ Δ∗
k−1, which

means that rel int CH Zs
m ⊂ rel int CH Δ∗

k−1. Now, if we replace rel int CH Δ∗
k−1

by rel int CH Zs
m, then the vector z in Theorem 50 is a hole vector (small changes

must be done in the proof of Theorem 50). However, rel int CH Zs
m covers less
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than rel int CH Δ∗
k−1 on the simplex, so we are not necessarily able to characterize

as many hole vectors as Theorem 50 does.
The reason for the use of CH Zs

m is obvious, because Zm is finite. Then, to
calculate whether or not z belongs to CH Zs

m is much simpler, as we show next.
Let us consider the following linear minimization problem at z ∈ Δk−1.

min
α1,...,αm,t

t

subject to
m

∑
i=1

αiz
si
j − zj ≤ t, j = 1, . . . , k,

zj −
m

∑
i=1

αiz
si
j ≤ t, j = 1, . . . , k,

m

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , m.

(36)

Let t∗ be the minimum value of the minimization problem (36) satisfying all the
constraints. Then we have∣∣∣∣∣

m

∑
i=1

αiz
si
j − zj

∣∣∣∣∣ ≤ t∗, j = 1, . . . , k.

In addition, if t∗ = 0 and all the constraints hold, then we have

z =
m

∑
i=1

αiz
si ,

m

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , m,

which means that the vector z is a convex combination of vectors in Zs
m. In other

words, if t∗ = 0 and the constraints hold in (36), then z ∈ CH Zs
m. On the other

hand, if t∗ �= 0 and all the constraints hold, then z �∈ CH Zs
m, because there exists

always at least one j so that
∣∣∣∑m

i=1 αiz
si
j − zj

∣∣∣ > 0 no matter what αi:s are as far
as conditions ∑m

i=1 αi = 1, αi ≥ 0, i = 1, . . . , m, hold. This means that we cannot
represent z as a convex combination of vectors zsi . Thus, the minimal t to the
linear optimization problem (36) determines whether or not z belongs to CH Zs

m.
This means that we have solved the first challenge related to the implementation
of Theorem 50 in the HBE method.

To solve the second challenge, we should be able to identify whether z be-
longs to rel int CH Zs

m or not. Note that the linear minimization problem (36) does
not characterize this because it is possible that the vector in CH Zs

m is a boundary
hole vector. However, to identify that a vector belongs to the relative interior, we
propose the following procedure for the HBE method.

Let ε > 0 be sufficiently small. If each of the vectors

ε(ei − (1/k, . . . , 1/k)T) + z, i = 1, . . . , k (37)

belongs to CH Zs
m, then z ∈ rel int CH Zs

m, because the relative interior of the
convex hull of the vectors is an open neighborhood of z. We have geometrically
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FIGURE 62 A simple method to characterize a vector as an interior vector.

sketched this in Figure 62. Thus, we have a proposal to the second problem re-
lated to the implementation of hole vectors for the HBE method.

Now, we are ready to propose a method to be used in the HBE method to
characterize hole vectors. Then the method can be used in investigating whether
a hyperbox is located in an approximate hole in the Pareto front.

Method 51. Let z be a dominated vector in the approximation identified by the
normal vector or functions fu and fs.

(1) Solve the linear minimization problem (36) at z.

(1.1) If solution t∗ to the problem is positive, then the vector z is not a hole
vector by the approximation.

(2) Investigate whether all vectors in (37) with a sufficiently small ε > 0 are
hole vectors (check first that they are dominated, and then use the linear
optimization problem (36) for checking that they belong to the convex hull
of CH Zs

m).

(2.1) If all of them belong to CH Zs
m, then the vector z is a hole vector.

(2.2) If some of them do not belong to CH Zs
m, then the vector z is not nec-

essarily a hole vector by the approximation.

Method 51 requires an external solver for the linear minimization prob-
lem (36). However, problem (36) does not contain any special requirements.
Therefore, any commercial solver such as IBM ILOG CPLEX [3], Optimization
toolbox™ [4] or noncommercial ones like GLPK [1] or GNU Octave [2] can be
used. However, what comes to the computational cost of Method 51, it can be
said that the cost does not increase that significantly, even though problem (36)
must be solved k + 1 times for a single vector. Note that the problem is a linear
optimization problem, which can be considered fast solvable.

In Subsections 3.3.1 and 3.3.2, we have proposed simple methods to be used
in identifying optimistic and pessimistic hyperboxes by using the sample vectors
fp(zhi) calculated in step (3) of HBE (the sample vectors fp(zhi) in the approxi-
mation correspond to the aspiration and reservation levels given by the decision
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maker). Then the identification of whether or not a hyperbox is in an approxi-
mated hole in the Pareto front can be done similarly.

Method 52.

(1) If every sample vector fp(zhi) is a hole vector identified by Method 51
and some of these vectors belong to the hyperbox defined by the aspiration
and reservation levels, then the decision maker may be informed about the
hyperbox which is in a hole.

(2) If some of the vectors fp(zhi) are hole vectors identified by Method 51 and
some of them belong to the hyperbox defined by the aspiration and reser-
vation levels, then inform the decision maker about the hyperbox which is
partially in a hole.

Next, we briefly discuss Method 52 and how it can be used in the HBE
method. Let us remind that the HBE method provides an answer to whether
or not the decision maker can have the (approximated) Pareto optimal objective
vector he or she is interested in. If it happens that the hyperbox is in an approx-
imated hole in the Pareto front, then Method 52 explains the situation for the
decision maker. This is the first case in Method 52. Now, we need to clarify that
Method 52 investigates whether or not a hyperbox is in an approximated hole in
the Pareto front. The method does not investigate whether or not the hyperbox
contains nondominated vectors in the approximation. In other words, the sec-
ond case in Method 52 informs the decision maker about the hyperbox which is
partially in an approximated hole in the Pareto front. It may be possible that the
hyperbox contains both nondominated and hole vectors, i.e. that the hyperbox
is around the border of an approximated hole in the Pareto front. Note that the
HBE method presents at least the nondominated vectors to the decision maker,
but now his or her preferences can be clarified by informing about the approxi-
mated hole in the Pareto front close to the nondominated vectors.

Method 52 for the approximated holes in the Pareto front is rather simple,
but it does not necessarily characterize all holes, which means that further inves-
tigations must be carried out in future research. An undetected hole may exist,
because Method 52 is based on normal vectors and the condition fu(z) < fs(z).
As known, these conditions do not detect every dominated vector in the approx-
imated Pareto front. However, for the future studies, we have illustrated in Fig-
ures 63 and 64 several different cases in which detection of hole vectors must be
improved in order to find more details of the approximated hole in the Pareto
front. In the figures, we have used the following coloring theme. Vectors in Zm
are depicted as black dots, and the approximated Pareto front is a black curve.
Dominated vectors characterized by normal vectors are bold dark gray curves
on the black curves. The bold light gray curves represent dominated vectors de-
tected by the condition fu(z) < fs(z). Dotted black lines illustrate the upper
bounds to the function fs, i.e. they are the approximated Pareto fronts defined by
the function fu as discussed in the introduction of Chapter 5. As it can be seen,
some of the dominated vectors in the approximation do not belong to the bold
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curves as they should because they are dominated vectors in the approximation
and “inside” the convex hull of nondominated vectors.

FIGURE 63 Normal vectors and condi-
tion fu(z) < fs(z) char-
acterize hole vectors. In
future studies, more atten-
tion must be paid to investi-
gate whether or not the hole
is larger than the methods
used indicate.

FIGURE 64 Occasionally, it may happen
that there are dominated
vectors between hole vec-
tors even though the meth-
ods in the HBE method in-
dicate something else. In fu-
ture studies, this must be in-
vestigated in more detail.

To conclude this section, we have proposed Method 52 for the HBE method
in order to explain for the decision maker the reason of having not received (ap-
proximated) Pareto optimal objective vectors in a special case. It indicates that
the decision maker is investigating a region in the objective space that is inter-
preted as an approximated hole in the Pareto front. There, naturally, are no (ap-
proximated) Pareto optimal objective vectors. After having this information, the
decision maker can use his or her valuable time for other regions in the objective
space, where (approximated) Pareto optimal objective vectors may exist.

6.4 Convexity and Connectedness of Sets fa(Δ∗
k−1) and Δ∗

k−1

A convex hull of the set Δ∗
k−1 was used in defining hole vectors. However, we

have not studied convexity of the set Δ∗
k−1 and, especially, convexity of the func-

tion fs in this thesis. In this section, we investigate these aspects briefly. In this
way, the analyst can obtain useful information of the approximation and its na-
ture in the objective space in relation to the MOO problem. This information can
be used in selecting and validating the function fs in the function fa. Note that
the selection of the approximation through the function fs can also be based on
topological features discussed in this section.

In this section, the studies are separated as follows. First, in Subsection 6.4.1,
we investigate convexity and concavity of the function fs. Then, in Subsection 6.4.2,
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connectedness of sets Δ∗
k−1 and fa(Δ∗

k−1) is briefly discussed. Finally, in Subsec-
tion 6.4.3, the results are discussed from the practical point of view.

6.4.1 On Convexity and Concavity of Function fs

Here, we focus on the function fs because the function fa is a vector-valued func-
tion for which defining convexity is not necessarily that straightforward. In addi-
tion, a convex set fa(Δ∗

k−1) is not interesting for further investigations regarding
its topological features because trivially a convex nondominated set in the ob-
jective space is a convex subset of a hyperplane. Instead, here we investigate a
specific set we call a relative epigraph in which the function fs has an essential role
to play. Then, we can consider “convex” functions fa on Δ∗

k−1.

Definition 53. Set fa(Δ∗
k−1) is said to be relatively convex, if the relative epigraph

epi( fa, Δ∗
k−1) := {z′ ∈ Rk : z′ = idealZm + αz, 0 < fs(z) ≤ α, z ∈ Δ∗

k−1}

is convex. Correspondingly, the set fa(Δ∗
k−1) is said to be relatively concave, if a set

called a relative hypograph

hyp( fa, Δ∗
k−1) := {z′ ∈ Rk : z′ = idealZm + αz, 0 < α ≤ fs(z), z ∈ Δ∗

k−1}

is convex.

Geometrically, sets epi( fa, Δ∗
k−1) and hyp( fa, Δ∗

k−1) lie on different sides of
the set fa(Δ∗

k−1) as demonstrated in Figure 65, where the function fs is a constant,
fs = 1.2 at every vector on Δk−1. The relative epigraph epi( fa, Δ∗

k−1) is the light
gray area and the relative hypograph hyp( fa, Δ∗

k−1) is the dark gray area in the
figure. In this example, both sets epi( fa, Δ∗

k−1) and hyp( fa, Δ∗
k−1) are convex, but

usually not at the same time or none of them is convex.

FIGURE 65 Sets epi( fa, Δ∗
k−1) and hyp( fa, Δ∗

k−1) in a simple example, where fa(z) =

1.2z.

Definition 53 connects the function fs and the relative convexity of fa. In this
way, we are able to consider convexity of functions as it has been done in [156].
However, first we have to prove the following:
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Theorem 54. If fa(Δ∗
k−1) is relatively convex, then the epigraph

epi( fs, Δ∗
k−1) := {(z, α) ∈ Δ∗

k−1 × R : α ≥ fs(z)}

is convex.

Proof. Let (z′, α′), (z′′, α′′) ∈ epi( fs, Δ∗
k−1), 0 < λ < 1 and zλ := λz′ + (1 − λ)z′′.

Let

t =
λα′′

(1 − λ)α′ + λα′′
(0 < t < 1).

Then

λ =
tα′

tα′ + (1 − t)α′′
, (1 − λ) =

(1 − t)α′′

tα′ + (1 − t)α′′
.

Let

z̃λ := t(idealZm + α′z′) + (1 − t)(idealZm + α′′z′′)

= idealZm + tα′z′ + (1 − t)α′′z′′.

Because z′, z′′ ∈ Δ∗
k−1, then

k

∑
i=1

z′i = 1 =
k

∑
i=1

z′′i

and, thus

f p
Zm

(z̃λ) =
tα′z′ + (1 − t)α′′z′′

tα′ + (1 − t)α′′
=

tα′

tα′ + (1 − t)α′′
z′ +

(1 − t)α′′

tα′ + (1 − t)α′′
z′′

= λz′ + (1 − λ)z′′ = zλ.

Clearly, vectors idealZm + α′z′ and idealZm + α′′z′′ belong to epi( fa, Δ∗
k−1) and

because epi( fa, Δ∗
k−1) is convex, then so does the vector z̃λ. In addition, we have

tα′ + (1 − t)α′′ ≥ fs(zλ) because epi( fa, Δ∗
k−1) is convex.

Next, we show that λα′ + (1 − λ)α′′ ≥ tα′ + (1 − t)α′′.

0 ≤ (α′ − α′′)2

⇔
0 ≤ (λ − λ2)(α′2 + α′′2) + 2(λ2 − λ)α′α′′

= (λ − λ2)(α′2 + α′′2) + (λ2 + (1 − λ)2 − 1)α′α′′

⇔
α′α′′ ≤ λα′(1 − λ)α′ + λα′λα′′ + (1 − λ)α′′(1 − λ)α′ + λα′′(1 − λ)α′′

= (λα′ + (1 − λ)α′′)((1 − λ)α′ + λα′′)

⇔

λα′ + (1 − λ)α′′ ≥ α′α′′

(1 − λ)α′ + λα′′
=

λα′′α′

(1 − λ)α′ + λα′′
+

(1 − λ)α′α′′

(1 − λ)α′ + λα′′

= tα′ + (1 − t)α′′.



140

Therefore, λα′ + (1 − λ)α′′ ≥ fs(zλ) = fs(λz′ + (1 − λ)z′′), which means that

(λz′ + (1 − λ)z′′, λα′ + (1 − λ)α′′) ∈ epi( fs, Δ∗
k−1).

Thus, the relative epigraph epi( fs, Δ∗
k−1) is convex.

Practically, Theorem 54 means that, if fa(Δ∗
k−1) is relatively convex, then fs is a

convex function on Δ∗
k−1. However, the converse of Theorem 54 does not hold in

general. In other words, if an epigraph epi( fs, Δ∗
k−1) is convex (the function fs is

convex), then the relative epigraph epi( fa, Δ∗
k−1) is not necessarily convex. This

can be seen in the following:
Let idealZm = 0 and fs on Δ1 be defined as follows:

fs(z) = 2 − z1.

In other words, for 0 < λ < 1 and z′, z′′ ∈ Δ1, we have

fs(λz′ + (1 − λ)z′′) = 2 − (λz′1 + (1 − λ)z′′1 ) = λ(2 − z′1) + (1 − λ)(2 − z′′1 )
= λ fs(z

′) + (1 − λ) fs(z
′′),

which means that fs is a convex function [156]. Let

z′ := (0, 1)T, z′′ := (1, 0)T,

z̃′ := idealZm + fs(z
′)z′ = 0 + 2z′ = (0, 2)T,

z̃′′ := idealZm + fs(z
′′)z′′ = 0 + 1z′′ = (1, 0)T,

z̃1/2 :=
1
2

z̃′ + (1 − 1
2
)z̃′′ = (1/2, 1)T.

Then

z1/2 := f p
Zm

(z̃1/2) = (1/3, 2/3)T

(
=

z̃1/2 − idealZm

∑2
i=1 z̃1/2

i − idealZm
i

)

and furthermore

fs(z
1/2) = 2 − 1/3 = 5/3 > 3/2 = (1/2 + 1) =

2

∑
i=1

z̃1/2
i − idealZm

i ,

which means that the vector z̃1/2 does not belong to epi( fa, Δ∗
k−1). Thus, epi( fa, Δ∗

k−1)
is not convex, and fa is not relatively convex. However, if we assume the function
fs to be concave, then the situation is different, as we show next.

Theorem 55. If the hypograph

hyp( fs, Δ∗
k−1) := {(z, α) ∈ Δ∗

k−1 × R : α ≤ fs(z)}

is convex, then fa(Δ∗
k−1) is relatively concave.
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Proof. Let z′, z′′ ∈ hyp( fa, Δ∗
k−1) and 0 < λ < 1. In other words, we have vectors

z̃′, z̃′′ ∈ Δ∗
k−1 and scalars 0 < α′ ≤ fs(z̃′) and 0 < α′′ ≤ fs(z̃′′) so that z′ =

idealZm + α′z̃′ and z′′ = idealZm + α′′z̃′′. Now,

λz′ + (1 − λ)z′′ = λ(idealZm + α′z̃′) + (1 − λ)(idealZm + α′′z̃′′)

= idealZm + α′λz̃′ + α′′(1 − λ)z̃′′.

Let

t =
λα′

λα′ + (1 − λ)α′′
(0 < t < 1).

Because z̃′, z̃′′ ∈ Δ∗
k−1, then

k

∑
i=1

z̃′i = 1 =
k

∑
i=1

z̃′′i

and, thus, the vector

z̃λ := f p
Zm

(idealZm + α′λz̃′ + α′′(1 − λ)z̃′′) =
λα′z̃′ + (1 − λ)α′′z̃′′

λα′ + (1 − λ)α′′

=
λα′z̃′

λα′ + (1 − λ)α′′
+

(1 − λ)α′′z̃′′

λα′ + (1 − λ)α′′
= tz̃′ + (1 − t)z̃′′

is a convex combination of vectors z̃′ and z̃′′. Because we have assumed fs to be
concave on Δ∗

k−1, then tα′ + (1 − t)α′′ ≤ fs(z̃λ).
Next, we show that λα′ + (1 − λ)α′′ ≤ tα′ + (1 − t)α′′.

0 ≥ −(α′ − α′′)2

⇔
0 ≥ (λ2 − λ)α′2 + (λ2 − λ)α′′2 − 2(λ2 − λ)α′α′′

= (λ2 − λ)α′2 + ((1 − λ)2 − (1 − λ))α′′2 + 2(λ − λ2)α′α′′

⇔
λα′2 + (1 − λ)α′′2 ≥ λ2α′2 + λα′(1 − λ)α′′ + (1 − λ)α′′λα′ + (1 − λ)2α′′2

= (λα′ + (1 − λ)α′′)(λα′ + (1 − λ)α′′)

⇔

λα′ + (1 − λ)α′′ ≤ λα′2 + (1 − λ)α′′2

λα′ + (1 − λ)α′′
=

λα′2

λα′ + (1 − λ)α′′
+

(1 − λ)α′′2

λα′ + (1 − λ)α′′

= tα′ + (1 − t)α′′.

Therefore λα′ + (1 − λ)α′′ ≤ fs(z̃λ) (note that idealZm + (λα′ + (1 − λ)α′′)z̃λ =
λz′+(1−λ)z′′). Thus, the relative hypograph hyp( fa, Δ∗

k−1) is convex and fa(Δ∗
k−1)

is relatively concave.

In practice, Theorem 55 means that if the function fs is concave on Δ∗
k−1,

then fa(Δ∗
k−1) is relatively concave. However, the converse of Theorem 55 does

not necessarily hold. This can be seen in the following example:
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Let idealZm = 0 and hyp( fa, Δ∗
k−1) be the convex hull of vectors (0, 0)T,

(0, 2)T, (1, 0)T. Clearly, the set hyp( fa, Δ∗
k−1) is convex. Let

z′ := ((0, 1)T, 2), z′′ := ((1, 0)T, 1),

z1/2 :=
1
2

z′ + (1 − 1
2
)z′′ = ((1/2, 1/2)T, 3/2),

z̃′ := (0, 2)T = 0 + 2(0, 1)T (= idealZm + fs((0, 1)T)(0, 1)T),

z̃′′ := (1, 0)T = 0 + 1(1, 0)T (= idealZm + fs((1, 0)T)(1, 0)T).

Now, the vector (2/3, 2/3)T = 1/3z̃′ + (1 − 1/3)z̃′′ is a convex combination of
the vectors z̃′ and z̃′′. Note that

(2/3, 2/3)T = 0 + 4/3(1/2, 1/2)T (= idealZm + fs((1/2, 1/2)T)(1/2, 1/2)T).

However, fs((1/2, 1/2)T) = 4/3 < 3/2, which means that the pair (z1/2, 3/2)
does not belong to hyp( fs, Δ∗

k−1). Thus, hyp( fs, Δ∗
k−1) is not convex.

Let us next summarize the cases of convexity and concavity as follows:
If the function fs is

– convex on Δ∗
k−1, then the set fa(Δ∗

k−1) is not necessarily relatively convex,
– concave on Δ∗

k−1, then the set fa(Δ∗
k−1) is relatively concave.

However, if the set fa(Δ∗
k−1) is

– relatively convex, then the function fs is convex on Δ∗
k−1,

– relatively concave, then the function fs is not necessarily concave on Δ∗
k−1.

To use more familiar sets, we first prove the following connection to the Edgeworth-
Pareto hull of fa(Δ∗

k−1), that is, the set fa(Δ∗
k−1) + Rk

+.

Theorem 56. The set fa(Δ∗
k−1) is relatively convex if and only if the set fa(Δ∗

k−1) +

Rk
+ is convex.

Proof.

“⇒” Let z′, z′′ ∈ fa(Δ∗
k−1) + Rk

+ and 0 < λ < 1. In other words, we have
vectors z̃′, z̃′′ ∈ fa(Δ∗

k−1) and z̄′, z̄′′ ∈ Rk
+ so that z′ = z̃′ + z̄′ and z′′ =

z̃′′ + z̄′′. Therefore,

λz′ + (1 − λ)z′′ = λ(z̃′ + z̄′) + (1 − λ)(z̃′′ + z̄′′)

= λz̃′ + (1 − λ)z̃′′ + λz̄′ + (1 − λ)z̄′′.

Because Rk
+ is convex, then λ(z̄′) + (1 − λ)z̄′′ naturally belongs to Rn

+. In
addition, because fa(Δ∗

k−1) is relatively convex, then we have ẑλ ∈ Δ∗
k−1 and

sλ ≥ fs(ẑλ) so that

idealZm + sλẑλ = λz̃′ + (1 − λ)z̃′′.
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Let
zd := idealZm + sλẑλ − fa(ẑ

λ) = (sλ − fs(ẑ
λ))ẑλ (∈ Rn

+).

Now,

fa(ẑ
λ) + zd + λz̄′ + (1 − λ)z̄′′︸ ︷︷ ︸

∈Rk
+

= idealZm + sλẑλ + λz̄′ + (1 − λ)z̄′′

= λz̃′ + (1 − λ)z̃′′ + λz̄′ + (1 − λ)z̄′′

= λz′ + (1 − λ)z′′.

In other words, λz′+(1−λ)z′′ belongs to fa(Δ∗
k−1)+Rn

+ and, thus, fa(Δ∗
k−1)+

Rk
+ is convex.

“⇐” Let z′, z′′ ∈ epi( fa, Δ∗
k−1) and 0 < λ < 1. In other words, we have

vectors z̃′, z̃′′ ∈ Δ∗
k−1 and α′ ≥ fs(z̃′), α′′ ≥ fs(z̃′′) so that z′ = idealZm + α′z̃′

and z′′ = idealZm + α′′z̃′′.
Let

z̃λ := f p
Zm

(λz′ + (1 − λ)z′′).

Clearly z̃λ is a convex combination of vectors z̃′ and z̃′′ and it belongs to
Δ∗

k−1 because fa(Δ∗
k−1) + Rk

+ is convex.
Let αλ > 0 be selected so that λz′ + (1 − λ)z′′ = idealZm + αλz̃λ.

Now, because fa(Δ∗
k−1) + Rk

+ is convex, then vectors z′, z′′ and λz′ + (1 −
λ)z′′ belong to fa(Δ∗

k−1) + Rk
+. Therefore, fs(z̃λ) ≤ αλ, which means that

λz′ + (1 − λ)z′′ belongs to epi( fa, Δ∗
k−1). Thus epi( fa, Δ∗

k−1) is convex and
fa(Δ∗

k−1) is relatively convex.

Now, we immediately obtain the following result.

Theorem 57. If the Edgeworth-Pareto hull of fa(Δ∗
k−1) (i.e. fa(Δ∗

k−1) +Rk
+) is con-

vex, then the function fs is convex on Δ∗
k−1.

Proof. This follows directly from Theorems 54 and 56.

Correspondingly, we have a similar result for concavity.

Theorem 58. The set fa(Δ∗
k−1) is relatively concave if and only if the set fa(Δ∗

k−1)+

Rk
− is convex.

Proof. The proof is similar to that of Theorem 56.

To conclude this subsection, relative convexity or concavity of the set fa(Δ∗
k−1)

characterizes the shape of the set of approximated Pareto optimal objective vec-
tors. Perhaps the most interesting finding is that the convexity of the function fs
does not guarantee that the set fa(Δ∗

k−1) is relatively convex, i.e. the Edgeworth-
Pareto hull of the nondominated vectors in the approximation is convex. How-
ever, the results obtained in this subsection and the theorems can be useful for
the analyst, who can use them as follows:
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For example, if the MOO problem is convex, then the Edgeworth-Pareto
hull of the Pareto front is convex. The analyst can now use Theorem 57 to in-
vestigate the approximation, that is, to study how the function fs behaves on the
nondominated vectors in the simplex. If it turns out that the function fs is not
convex on that particular set, then the analyst immediately recognizes that the
function fs in the function fa is not necessarily a proper one. Had the approxima-
tion been a proper one, then the function fs would be a convex function on Δ∗

k−1
by Theorem 58. On the other hand, if it turns out that the function fs is concave,
then such a function cannot be used for a convex MOO problem because the set
fa(Δ∗

k−1) is relatively concave. However, the analyst must be aware that for a
nonconvex MOO problem the Pareto front can be relatively convex, according to
the terminology defined in this chapter for the approximation. Then, in investi-
gating the shape of the approximated Pareto front of a nonconvex MOO problem,
the analyst must be careful in drawing right conclusions.

6.4.2 On Connected Sets Δ∗
k−1 and fa(Δ∗

k−1)

Relative convexity of a set fa(Δ∗
k−1) means that a set Δ∗

k−1 is convex. In other
words, the set Δ∗

k−1 is connected. In this subsection, we briefly investigate the
connectedness of the sets Δ∗

k−1 and fa(Δ∗
k−1).

From the theoretical point of view, the connectedness can be interesting in
describing the shape of the approximated Pareto front. One might think that the
connectedness can be used in validating the approximation. This is possible but
can be very challenging at the same time.

Let us first demonstrate that the relative convexity of the set fa(Δ∗
k−1) does

not necessarily mean that the set fa(Δ∗
k−1) is connected.

Example 59. Let idealZm = 0 and

fs(z) =

{
2, z = (1, 0) or z = (0, 1),
1, otherwise.

Then Δ∗
1 = Δ1 (connected) and fa(Δ∗

1) is relatively convex, but it is not connected,
see Figure 66.

In other words, the analyst cannot necessarily conclude whether or not the
Pareto front is connected in validating the approximation. Note that for a convex
MOO problem the Pareto front can be the set fa(Δ1) in Example 59 (a convex func-
tion on [0, 1] is not necessarily continuous). This introduces challenges in using
the connectedness of the set fa(Δk−1) in validating the approximation in relation
to the topological properties of the MOO problem because even the convexity of
the MOO problem does not necessarily mean that the Pareto front is connected.
However, for a continuous convex MOO problem, the Pareto front is connected
trivially.

Example 59 is in several ways interesting. First of all, the set fa(Δ∗
k−1) is rela-

tively convex, but it is not connected. Secondly, let us assume that the Pareto front
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FIGURE 66 Convexity of set Δ∗
k−1 does

not mean that set fa(Δ∗
k−1) is

connected even if function
fs is convex.

FIGURE 67 A convex function fs can
be justified for a nonconvex
MOO problem.

of a MOO problem is fa(Δ1). Then one may wonder whether there exist holes in
the Pareto front. Note that neither normal vectors nor the condition fu(z) < fs(z)
characterize holes, because they are defined on Δ◦

k−1. In other words, it can be
stated that the Pareto front contains holes, but methods proposed in this thesis
do not characterize them. However, from a practical point of view, Example 59 is
a pathological example because in practice a Pareto optimal objective vector can
be found arbitrarily close to the vector (0, 1)T. The decision maker might now
select a Pareto optimal objective vector close to the vector (0, 1)T instead of the
vector (0, 2)T, as we are minimizing the values of objective functions.

Example 59 demonstrates that it cannot be said for sure whether the set
fa(Δ∗

k−1) is connected, when the set Δ∗
k−1 is connected. In other words and in

general, if fa(Δ∗
k−1) is connected, then it is connected. However, if fs is contin-

uous, then the set fa(Δ∗
k−1) is connected if and only if Δ∗

k−1 is connected. For
simplicity, we only prove the case where Δ∗

k−1 ⊂ Δ◦
k−1.

Theorem 60. Let the function fs be continuous and Δ∗
k−1 ⊂ Δ◦

k−1. Then fa(Δ∗
k−1)

is connected if and only if Δ∗
k−1 is connected.

Proof.

“⇒” Because the function f p
Zm

limited to fa(Δk−1) is the inverse function of
fs and it is continuous, then the claim is clear.

“⇐” Trivially.

This completes our brief investigation of the connectedness of sets Δ∗
k−1 and

fa(Δ∗
k−1). Next, we show how the analyst can use the convexity, concavity and

connectedness in selecting or validating the approximation.
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6.4.3 Convexity, Concavity and Connectedness from the Practical Point of

View

It is obvious that topological features such as convexity and connectedness de-
scribe in a theoretical way the shape of the approximation, and the analyst can
use the theoretical result discussed in this section in validating the approxima-
tion. In other words, the analyst can check whether or not the approximation is
justified for the MOO problem the decision maker is investigating by studying
topological properties of the problem and the approximation.

In these kinds of investigations, the analyst must be careful, and we can il-
lustrate this as follows: Let us assume that the MOO problem is nonconvex. The
analyst may think that for nonconvex MOO problems there is no reason to use a
convex function fs. Note that the convexity of the function fs does not mean that
it should not be used for a nonconvex MOO problem. This can be seen as follows:
Let the function fs be defined on Δ1 so that fs(z) = 100|z1 − 0.5| + 1 (a convex
function). In Figure 67, we have depicted the set fa(Δ1) (black curves represent-
ing dominated vectors and gray curves representing nondominated vectors). As
it can be seen, the convex function fs has generated a Pareto front approximation
that is suitable for a nonconvex MOO problem. Thus, a convex function fs can be
used to approximate the Pareto front of a nonconvex MOO problem. Another in-
teresting feature in this case is that the convexity of the function fs does not guar-
antee that the set Δ∗

k−1 is convex. In other words, the set Δ∗
k−1 is not connected.

As demonstrated in the previous subsection, connectedness can be challenging in
validating the approximation. However, if the analyst can identify the set Δ∗

k−1 as
connected and the function fs as continuous, then he or she can conclude that the
set of nondominated vectors in the approximation is connected i.e. the set does
not consist of at least two separated sets by Theorem 60. This information can be
useful if the analyst is investigating whether or not an approximated hole in the
Pareto front separates the front into several separated sets.

The above examples demonstrate that the analyst must be aware about the
topological properties such as convexity of the set S or convexity of the function fs
and about how these can be used in selecting the approximation or investigating
some other topological properties related to the sets that indicate what kind of
set the Pareto front may be. Such studies can occasional be challenging for the
analyst, but simple rules can be created to help in this matter. For example, if a
concave function fs is used for a convex MOO problem, then the approximation
may not be a sufficiently good one. This is guaranteed by Theorem 55 and by
the fact that the Edgeworth-Pareto hull of a convex MOO problem is convex.
Alternatively, for a valid approximation created for a continuous convex MOO
problem, the set Δ∗

k−1 should be connected.
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6.5 Summary of Chapter 6

Let us now summarize the main topics of this chapter. Briefly, we have discussed
the concept of approximated holes in the Pareto front. Holes characterize re-
gions in the objective space, where (approximated) Pareto optimal objective vec-
tors could exist, but they do not exist because of the nonconvexity of the MOO
problem. In this way, the decision maker can be informed in step (4) of HBE
about the region under investigation. The decision maker can now use time for
other regions in the objective space, where (approximated) Pareto optimal objec-
tive vectors may exist.

Topological properties were also studied briefly in this chapter. We showed,
for example, that for a convex function fs, the Edgeworth-Pareto hull of an ap-
proximated Pareto front is not necessarily convex. With the help of the topologi-
cal information, the analyst can investigate whether or not the approximation is
valid for the MOO problem from a topological point of view.

Let us next summarize the theorems studied in this chapter.
Theorem

50 In Definition 47, hole vectors were defined. However, the definition does
not provide a clue about how to characterize hole vectors computationally.
On the other hand, it introduces a theoretical way to do the characterization
by using the results of Chapters 4 and 5. In other words, if the function fs
is continuously differentiable and a vector z ∈ rel int CH Δ∗

k−1 is dominated
(characterized by the normal vector or the condition fu(z) < fs(z)) and all
vectors in a relative open neighborhood of z are dominated, then the vector
fa(z) is a hole vector. This was proved in this theorem.

54 In defining hole vectors, convexity of the set CH Δ∗
k−1 was considered. One

may wonder whether the convexity of the function fs means anything re-
lated to the approximated Pareto optimal objective vectors. It turns out in
Theorem 54 that if the set fa(Δ∗

k−1) is relatively convex, then the function fs
is convex on Δ∗

k−1. However, the converse does not hold generally.
55 In this theorem, we studied concavity instead of convexity because that one

was done in Theorem 54. It turned out that, if the function fs is concave
on Δ∗

k−1, then fa(Δ∗
k−1) is relatively concave. However, the converse is not

generally true.
56 In the literature, an Edgeworth-Pareto hull is a commonly used concept

[112, 113], and in Theorem 56 we connected this to Definition 53. We showed
that it does not matter whether we use the Edgeworth-Pareto hull or Def-
inition 53. However, Definition 53 combines the convexity of the epigraph
and hypograph of the function fs to the relative convexity and concavity of
the set fa(Δ∗

k−1).
58 This theorem is similar to Theorem 56, but it is based on relative concavity.
60 Finally, we briefly investigated connectedness of the sets Δ∗

k−1 and fa(Δk−1)
∗.
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We proved that if the function fs is continuous, then Δ∗
k−1 is connected if and

only if the set fa(Δk−1)
∗ is connected.

Next, we summarize the results related to the approximation method AM.

AMf14 It is obvious that the hole vectors introduced in this chapter are listed
here. They can be used in characterizing regions in the objective space
where (approximated) Pareto optimal objective vectors may exist but do
not. This is essential information for the decision maker in the creation of
an overall understanding of available (approximated) Pareto optimal objec-
tive vectors because he or she can save time for other regions. This means
that the hole vectors are related to the goal G9 set on page 20.

However, the characterization can only be done in the relative interior
of the simplex and not on the relative boundary of it. Technically, the char-
acterization of hole vectors is based on results created in Chapters 4 and 5.
From the practical and computational implementation point of view, linear
optimization problems must be solved, but they do not introduce significant
computational costs to the HBE method.

AMf15 The relative convexity or concavity of the set fa(Δ∗
k−1) and the con-

vexity or concavity of the function fs on Δ∗
k−1 can be essential or interesting

from a theoretical point of view. They characterize the shape of the set of the
approximated Pareto optimal objective vectors. This means that the analyst
can use these features in selecting the approximation to the MOO problem,
as discussed in Subsection 6.4.3. In other words, we have considered the
validation of the approximation, i.e. the goal G6, in this chapter.

In this chapter, we have considered how some of the dominated vectors in the
approximation can be interpreted in the solution process of the MOO problem. It
turned out that they do characterize approximated holes in the Pareto front, and
this can help the decision maker in the creation of an overall understanding of
available (approximated) Pareto optimal objective vectors. However, this is one
of the characterizations for a specific topic in helping and supporting the decision
maker in the solution process. Next, we summarize all the methods proposed in
this thesis, i.e. how they can be used in the solution process and how they may
help the decision maker in learning about the MOO problem.



7 INTERACTIVE HYPERBOX EXPLORATION

In this thesis, an approximation for a Pareto front of a computationally expen-
sive multiobjective optimization problem has been proposed in Chapter 2. Then,
in Chapter 3, we proposed an interactive method called Interactive HyperBox
Exploration, which uses the approximation. In that chapter, we also proposed
several methods to be used during the solution process of the MOO problem in
order to help and support the decision maker in finding a compromise solution
to the MOO problem. Chapters 4 and 5 were mainly focused on the validation
methods created for the approximation. In addition, we proposed several meth-
ods for the HBE method employed by in the IHBE method for analyzing the
vectors in the approximated Pareto front. Finally, in Chapter 6, we discussed the
way dominated vectors in the approximation can be interpreted in the solution
process. For the interpretations, we proposed a couple of methods to be used in
connection with the HBE method. Overall, we have proposed several methods
for different purposes for the IHBE and HBE methods. Thus, it is reasonable to
summarize what information the IHBE and HBE methods provide for the deci-
sion maker in the solution process of the MOO problem at hand.

To describe the background of the IHBE and HBE methods briefly, we de-
veloped the IHBE method for supporting and helping the decision maker in the
learning phase of the solution process. For learning about the problem at hand,
we proposed a process which we described as the creation of an overall under-
standing of available (approximated) Pareto optimal objective vectors. The goal
for the process is to help the decision maker to aim at the psychological con-
vergence in the solution process. For this purpose, the IHBE and HBE methods
allow the decision maker to freely search the objective space and (approximated)
Pareto optimal objective vectors within the space. In order to find approximated
Pareto optimal objective vectors that the decision maker is interested in, the HBE
method answers the following question formulated in a query:

I am interested in these kinds of (approximated) Pareto optimal objective vectors.
Do those vectors exist?

To answer the question, the HBE method generates sample vectors on the approx-
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imation so that they correspond to the decision maker’s preferences, which are
asked in the form of aspiration and reservation levels. Then these sample vectors
are used for answering the question (the answers are summarized later in this
chapter). In this way, the decision maker can learn about the problem and about
what kinds of (approximated) Pareto optimal objective vectors exist in relation to
his or her preferences. Based on these facts learned, the decision maker may be
confident about a compromise solution finally selected to the MOO problem.

Next, we summarize the steps of the IHBE method, and then we focus on
the information that the HBE method provides for the decision maker. In the
IHBE method, there are seven steps, and the first three steps consist of generating
the approximation. The approximation is based on a surrogate function and, in
order to find a proper surrogate function to be used in the approximation, we
have proposed validation methods for the analyst. Basically, the approximation
is based on pre-calculated Pareto optimal objective vectors to the MOO problem.
The validation methods proposed in Chapters 4 and 5 provide information for
the analyst about whether the approximation is valid or not in relation to the
pre-calculated Pareto optimal objective vectors. The validity is based on the pre-
calculated Pareto optimal objective vectors and on whether or not some vectors
in the approximation dominate them.

In the fourth step of IHBE, the decision maker starts to use the approxi-
mation in the solution process. In other words, the decision maker communi-
cates with the HBE method in order to learn about what kinds of (approximated)
Pareto optimal objective vectors are available. Then, in the last three steps of
IHBE, the decision maker can update the approximation by asking the method
to calculate new true Pareto optimal objective vectors to the MOO problem. In
addition, the decision maker can decide either to continue with the HBE method
in searching them or stop the IHBE method.

The answer provided by the HBE method to the decision maker concerning
specific (approximated) Pareto optimal objective vectors is based on sample vec-
tors in the approximation, which correspond to the decision maker’s preferences.
With the help of the sample vectors, the HBE method can also provide additional
information about the Pareto front. The decision maker can select the information
he or she wants to see in the answer. In the simplest case, the HBE method sim-
ply answer “Yes, they exist!” or “No, they do not exist!”. The answer naturally
depends on whether or not the sample vectors in the approximation satisfy the
decision maker’s preferences.

When the answer to the question is “Yes, they exist!”, the HBE method nat-
urally present the sample vectors satisfying the aspiration and reservation levels.
Next, we summarize what kind of information the HBE method can provide for
the sample vectors also.

Because the HBE method is created for learning, then the decision maker
can select what kind of additional information is wanted to find the sample vec-
tors that satisfy the preferences. The decision maker could also point out the
sample vectors for which some more information is needed. In this way, the HBE
method adapts to the decision maker’s capability to handle information, that is,
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it does not present too much information by default to the decision maker. In
other words, the HBE method allows the decision maker to control cognitive load.
However, it is the decision maker’s responsibility to tell the HBE method what
information to present. The information can consist, for example, of the clos-
est true Pareto optimal objective vectors to the sample vectors, of approximated
trade-off rates at the sample vectors, or of certainty numbers for the sample vec-
tors. These all are considered in this thesis. In this way, the decision maker may
learn where the so-far known true Pareto optimal objective vectors are in rela-
tion to the sample vectors. In addition, the decision maker may learn what kinds
of approximated Pareto optimal objective vectors may be found around a small
neighborhood of the sample vectors.

Next, we discuss a case where the decision maker cannot have approxi-
mated Pareto optimal objective vectors satisfying the preferences, i.e. the answer
to the question is “No, they do not exist!”. We divide the related discussion into
two paragraphs. In the first one, we consider a case where the decision maker
has started the solution process. In the second one, we discuss how to continue
in such a case, that is, how the HBE method supports or helps the decision maker
to continue, i.e. to redefine new levels.

When the answer to the question is negative, the HBE method provides (if
possible) an explanation concerning why such approximated Pareto optimal ob-
jective vectors do not exist. In our opinion, it is very important to explain that for
the decision maker at the beginning of the solution process. The decision maker
can then adjust his or her probably unrealistic preferences and concentrate on
the matching ones. To make an explanation possible, the HBE method investi-
gates the aspiration and reservation levels given by the decision maker. These
can be, for example, optimistic or pessimistic. On the other hand, the hyperbox
defined by the levels can be in an approximated hole in the Pareto front. In or-
der to identify such situations, we have developed specific methods for each of
the cases for the HBE method, and the investigations are based on the sample
vectors. The explanation based on the sample vectors can be, for example: “The
(approximated) Pareto optimal objective vectors you are interested in do not ex-
ist, because your preferences are optimistic.”, “... pessimistic.”, or “... , because
the Pareto front contains an approximated hole in the region you are interested
in.” Through these explanations, we believe that the decision maker can learn
about his or her preferences in relation what kind of (approximated) Pareto opti-
mal objective vectors exist. This can be essential at the beginning of the solution
process.

It is obvious that informing the decision maker about optimistic or pes-
simistic levels is not necessarily enough to get to know about the approximated
Pareto front, especially when the answer to the query is negative. Therefore, the
HBE method presents, if the decision maker so wants, the sample vectors, which
somehow correspond to the aspiration and reservation levels. In this way, the
HBE method helps the decision maker to find the (approximated) Pareto front
in some sense related to the preferences. In addition, the decision maker may
learn how to set new levels by the sample vectors presented. In other words, the
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decision maker may set new levels, i.e. to make a new query, so that the sam-
ple vectors satisfy the new levels. Then, the decision maker can obtain and learn
detailed information around the old sample vectors by the new sample vectors
in the new query. Note that the new ones may represent in more details some
certain region in the approximated Pareto front represented earlier partially by
the old sample vectors. In addition, the HBE method can present to the decision
maker all the numerical information mentioned earlier for the sample vectors.

As pointed out earlier, the HBE method aims at explaining why the decision
maker cannot have Pareto optimal objective vectors satisfying the preferences.
However, the named and discussed hyperboxes in this thesis do not cover all
possible hyperboxes defined by the aspiration and reservation levels. It is pos-
sible that the decision maker might not have preferred Pareto optimal objective
vectors and the levels, staying neither optimistic nor pessimistic. In such a case,
the HBE method does not state why the decision maker cannot have such (ap-
proximated) Pareto optimal objective vectors because this information cannot al-
ways be derived from the sample vectors. However, the HBE method can present
the sample vectors corresponding to the preferences and analyze them, i.e. show
which ones are, for example, dominated, nondominated or hole vectors by the
methods proposed in this thesis. If the decision maker is interested in numeri-
cal information mentioned earlier for the sample vectors, then these can also be
presented by the method.

As stated earlier, the HBE method provides information for the decision
maker in the learning phase of the solution process. The information, naturally,
depends on the time the decision maker has used for the solution process. At the
beginning of the process, the information might consists only of few items, but af-
ter having learned about the approximated Pareto front, the decision maker may
work with more detailed information, which is generated for the approximated
Pareto optimal objective vectors presented in the answer for the question in the
query. There are still some future challenges in developing a graphical user in-
terface dedicated for the purpose for the IHBE method. However, we are highly
motivated to continue developing the IHBE method, not least because the IHBE
method is based on methods, which were introduced in the MCDM literature
and have been developed for the communications between a human decision
maker and a computer software. These methods have received positive feedback
from the users, i.e. the real life decision makers. The approximation created in
this thesis has allowed us to use the methods also for computationally expensive
nonconvex MOO problems. The calculations can now be as fast as they are for
computationally inexpensive MOO problems.

We have now summarized the IHBE and the HBE methods. In Figure 68, we
have listed the methods discussed in this chapter, and we have organized them
into the steps of the IHBE method, where they are used. Where it comes to the
research objectives set on page 20, we can say that most of the goals have been
clearly reached. For example, it does not matter whether or not the MOO problem
consist of more than two objective functions, the objective functions being non-
convex and computationally expensive, only a finite number of Pareto optimal
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objective vectors are used for generating the approximation and generating the
vectors on the approximation that somehow satisfy the decision maker’s prefer-
ences can be done computationally efficiently, meaning that the goals G1-G4 and
G7 are clear. In addition, the goal G8 has been reached because there exists a way
for the decision maker to specify his or her preferences for the IHBE method.
However, the goals G5 and G6 have been only partially reached: depending on
the surrogate function used in the function fa, the function may contain some pa-
rameters to be optimized that may take some time, and the validations based on
normal vectors and the functions fl, fu and fs may not identify all the dominated
vectors in the approximation. However, the actual generation of the approxi-
mation and its validations can be performed computationally efficiently, but the
above details clarify why these goals are not fully reached. The goal G9 is a bit
tricky to reach because the IHBE and HBE methods provide information for the
decision maker, but we do not know yet how significant and essential it is for the
decision maker in the solution process. Therefore, we say that the goal has been
partially reached in this thesis and is open for future studies.
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Interactive Hyperbox Exploration 

 

• Investigate dominated vectors for validations by Methods 36, 37 and 43. 
• Investigate  topological properties discussed in Section 6.4. 

Initialization (generating the approximation), steps 1-3 

• Generating the sample vectors on the approximated Pareto front for the 
answer by Method 16. 
• Investigate nondominated and dominated sample vectors by using  

Theorems 28, 29, 30, 40 and 42. 
• Investigate hole vectors by Method 51. 

• Additional information for the answer: 
• Closest true Pareto optimal objective vectors and corresponding decision 

variable values discussed in Subsection 3.3.4. 
• Approximated trade-off rates for the sample vectors by Method 38. 
• Certainty numbers for the sample vectors by Method 46. 
• Calculating error estimations by using function (17). 

• For the explanation: 
• Investigate optimistic/pessimistic hyperboxes by Methods 21 and 24. 
• Investigate an approximated hole in the Pareto front by Method 52. 
• Investigate whether the sample vectors dominate each other as 

discussed at the end of Subsection 3.3.3. 

HBE (generating vectors on the approximation), step 4 

• Certainty numbers for the interesting approximated Pareto optimal 
objective vectors by Method 46. 

• Calculate error estimations by using function (17). 

Updating (the approximation), steps 5-7 

FIGURE 68 Methods and theorems discussed and developed in this thesis that can be
used in the steps of IHBE.



8 CONCLUSIONS AND FURTHER STUDIES

In this thesis, a method called Interactive HyperBox Exploration (IHBE) has been
proposed for computationally expensive nonconvex multiobjective optimization
problems. The method was summarized in the previous chapter. Three aspects
were considered during the construction of the IHBE method: theoretical, com-
putational, and the decision maker’s point of views.

To clarify the theoretical aspect, an approximation was created to approxi-
mate the Pareto front of the MOO problem. Then it was proved mathematically
that the approximation is suitable for computationally expensive convex/noncon-
vex MOO problems through a surrogate function used in the approximation. In
addition, the approximation can be validated before the decision maker starts any
interaction with it. The validations were based on simple formulas which were
proved mathematically. For example, characterization of nondominated or dom-
inated vectors by normal vectors is based on mathematical theories. In addition,
the concept of holes in the Pareto front is rather mathematical. However, in this
thesis, computational counterparts are presented for the theoretical ones, and this
leads to the next aspect.

The computational aspect is as important feature in the IHBE method as the
mathematical theories introduced in this thesis. As said, mathematical theories
and theorems are used for different purposes in the approximation. However,
from the practical point of view, all the theories and theorems should have a com-
putational counterpart if they are considered to be used in the solution process of
a MOO problem. As showed in this thesis, computational methods based on the
theories and theorems were found, but some of the methods are rather simple
and requires improvements in future studies. On the other hand, the most im-
portant feature of the methods is their computational efficiency. This means that
during the solution process of a MOO problem, the decision maker does not have
to wait in order to obtain, for example, vectors in the approximation related to his
or her preferences. In other words, computational efficiency has been considered
in this thesis, even though the problem can be computationally expensive.

In this thesis, the most important aspect is the communication between the
IHBE method considered as a computer software and a human decision maker.
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This aspect has been taken into account here and discussed, in detail, from a hu-
man decision maker’s point of view. This thesis does not develop new commu-
nication methods, instead well-known MCDM methods/techniques and empiri-
cally proved and studied methods such as aspiration and reservation levels were
used for the communication. For this reason, the IHBE method should suit for
most decision makers. In addition, the HBE method allows the decision maker to
decide what information should be presented in different phases of the solution
process. More formally, the information provided by the IHBE method is focused
to the learning phase in the solution process. This allows the decision maker
to learn about his or her preferences in relation to what kinds of approximated
Pareto optimal objective vectors are available. In this way, the IHBE method has
been aimed at supporting and helping the decision maker to find a compromise
solution based on the available (approximated) Pareto optimal objective vectors.

The approximation used in the IHBE method is rather simple, but innova-
tive. As pointed out in this thesis, the simplicity of the approximation is remark-
able, for example, in calculating approximated trade-off rates through the normal
vectors or constructing bounds for nondominated vectors in the approximation.
In addition, the computational efficiency is another reason that makes these prop-
erties essential and significant. For example, to calculate normal vectors, typically
KKT-coefficients that are solutions of a system of nonlinear equations are calcu-
lated in the literature. There is no need with the help of the approximation to cal-
culate the KKT-coefficients. This means that the approximation has opened new
doors for methods originally developed only for computationally inexpensive
problems and can now be used in computationally expensive MOO problems.

There is a large potential use for the IHBE method and the approximation in
various MOO problems because it does not matter whether the problem is convex
(expensive) or not. This is why the generality of the method and the approxima-
tion have been the targets of this thesis. However, this thesis does not present any
real-life examples in which the IHBE method has been used leaving it for future
studies. This thesis does not consider a graphical interface for the IHBE method.
This is why the thesis does not contain any usability analysis or opinions from
real-life decision makers about the method or how it may help one in searching
for a compromise solution to a MOO problem under investigation. However, a
preliminary software exists (not discussed in this thesis) to prove that the approx-
imation can be constructed in practice and used in the solution process. Thus, a
natural future sequel related to this thesis is the software and its completion for
testing. In addition, the current simple methods for investigating, for example,
whether or not a hyperbox is optimistic or pessimistic must be improved in future
studies in order to make the methods more accurate.



YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa, suomenkieliseltä nimeltään “Menetelmä laskennallisesti vaa-
tiville monitavoiteoptimointitehtäville”, esitetään interaktiivinen menetelmä IHBE
(Interactive HyperBox Exploration). Käytännön tarve menetelmälle tulee koros-
tumaan lähitulevaisuudessa, koska laskennallisesti raskaat simulaattorit yleis-
tyvät teollisuudessa yhä monimutkaisempien kokonaisuuksien matemaattisessa
mallinnuksessa. Käytännössä tämä monimutkaisuus ilmenee kasvavana laskenta-
aikana, jonka vuoksi tehtävää kutsutaan laskennalliseksi vaativaksi/raskaaksi.
Tyypillisesti simulaattorit eivät sisällä optimointiin ja parhaan kompromissirat-
kaisun valintaan eri tavoitteiden välillä liittyviä työkaluja. Kun jokin sopiva moni-
tavoiteoptimointimenetelmä on valittu tuottamaan kompromissiratkaisuja simu-
laattorin rinnalle, on IHBE-menetelmä suora jatke näille. Se tarjoaa joustavan
tavan tarkastella simulaattorin ja monitavoiteoptimointimenetelmän tuottamia
tuloksia. Tällöin päätöksentekijä (tehtäväalan asiantuntija) voi löytää parhaan
kompromissiratkaisun tehtävän laskennallisesta vaativuudesta huolimatta.

IHBE-menetelmän kehittämisessä on erityistä huomiota kiinnitetty kolmeen
tutkimuskohteeseen: menetelmän teoreettiseen soveltuvuuteen epäkonvekseille
jatkuville monitavoiteoptimointitehtäville, menetelmän laskennalliseen tehokkuu-
teen sekä päätöksentekijän ja menetelmän vuorovaikutukseen. Monimutkaiset
matemaattiset mallit simulaattoreiden osana muodostavat tyypillisesti monita-
voiteoptimoinnissa laskennallisesti vaativia epäkonvekseja jatkuvia tehtäviä. Käy-
tännössä tämä tarkoittaa, että yhdenkin ratkaisun tuottaminen saattaa kestää mi-
nuuteista tunteihin mikä saattaa muodostua ongelmaksi päätöksentekijälle, koska
hän voi turhautua odottamiseen. IHBE-menetelmässä tämä ongelma ratkaistiin
kehittämällä erityinen approksimaatio, joka matemaattisesti osoitettiin lasken-
nallisesti tehokkaaksi ja soveltuvaksi kyseisille tehtäville. Approksimaatiota käyt-
täen tarvittavat laskenta-ajat IHBE-menetelmässä jäävät sekunteihin, jolloin pää-
töksentekijän ei enää tarvitse odottaa häntä kiinnostavien approksimoitujen rat-
kaisujen tuottamista.

Päätöksentekijän ja IHBE-menetelmän vuorovaikutus on oleellisessa ase-
massa parhaan kompromissiratkaisun valintaprosessissa. IHBE-menetelmän on
kyettävä ymmärtämään minkälaista ratkaisua päätöksentekijä on etsimässä. Toi-
saalta, IHBE-menetelmän antamat tulokset saattavat vaikuttaa parhaan kompro-
missiratkaisun valintaan. Hyvän vuorovaikutuksen saamiseksi ja mahdollistami-
seksi, IHBE-menetelmä koostuu kirjallisuudessa empiirisesti hyviksi todetuista
menetelmistä. Pienillä muutoksilla menetelmät saatiin yhteensopiviksi aiemmin
mainitun approksimaation kanssa. Muunnoksissa kuitenkin huomioitiin ettei
menetelmien perusluonne muutu ja ettei menetelmien tarvitsemat laskenta-ajat
kasva kohtuuttomasti.

Työssä kehitetty approksimaatio on yksinkertainen, jonka vuoksi sitä voi-
daan helposti soveltaa haastaviin monitavoiteoptimointitehtäviin, mikä tekee siitä
käytännössä arvokkaan. Approksimaation avulla on mahdollista tuoda päätök-
senteon tukemiseen oleellisia havainnollistuksia kuten esimerkiksi vaihtosuhteet,



158

mikä on aiemmin ollut haasteellista ellei jopa mahdotonta laskennallisesti vaa-
tivien tehtävien kohdalla. Tämän lisäksi yksinkertaisuus on avannut uusia inno-
vatiivisia tarkastelutapoja tehtävän kompromissiratkaisujen tulkintoihin, minkä
vuoksi jatkotutkimus on perusteltua syvällisempien ominaisuuksien esiin tuomi-
seen niin käytännössä kuin teoriassa.
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APPENDIX 1 DERIVATION OF NORMAL VECTORS

In Section 4.1, we introduced formula (21) for calculating normal vectors on the
approximated Pareto front. In this appendix, we derive formula (21) and we
follow the procedure presented in [175, Problem 5-13 on page 121].

In order to calculate normal vectors explicitly on fa(Δk−1), we first have to
construct a function g : idealZm + int Rk

+ → R so that the preimage of 0 ∈ R is
fa(Δk−1) (= M, the notation used in [175]). Here, we define a function g so that

g(z) = fs( f p
Zm

(z))−
k

∑
i=1

zi − idealZm
i . (38)

Next, we show that g{−1}(0) = fa(Δk−1).

Theorem 61. Let z ∈ idealZm + int Rk
+. Then g(z) = 0 if and only if z ∈ fa(Δk−1).

Proof. Let zs = f p
Zm

(z).

“⇒” Because g(z) = 0, then

fs(z
s) =

k

∑
i=1

zi − idealZm
i .

It is clear that zs ∈ Δk−1. Now,

fa(z
s) = idealZm + fs(z

s)zs = idealZm +

(
k

∑
i=1

zi − idealZm
i

)
z − idealZm

∑k
j=1 zj − idealZm

j

= idealZm + z − idealZm = z.

In other words, z ∈ fa(Δk−1).
“⇐” Because z ∈ fa(Δk−1), then

z = idealZm + fs(z
s)zs = idealZm + fs(z

s)
z − idealZm

∑k
j=1 zj − idealZm

j

.

On the other hand,

z = idealZm + z − idealZm = idealZm +

(
k

∑
i=1

zi − idealZm
i

)
z − idealZm

∑k
j=1 zj − idealZm

j

.

In other words,
k

∑
i=1

zi − idealZm
i = fs(z

s).

Thus g(z) = 0.
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Now, according to [175, Problem 5-13 on page 121], the normal vector fa(z)⊥ is
the gradient vector of g at z̃ = fa(z):

fa(z)
⊥ = ∇g( fa(z)) = ∇g(z̃)

=
[

∂ fs
∂z̃1

( f p
Zm

(z̃)) · · · ∂ fs
∂z̃k

( f p
Zm

(z̃))
]
⎡
⎢⎢⎢⎣

∂ f
p1
Zm

∂z̃1
(z̃) · · · ∂ f

p1
Zm

∂z̃k
(z̃)

... . . . ...
∂ f

pk
Zm

∂z̃1
(z̃) · · · ∂ f

pk
Zm

∂z̃k
(z̃)

⎤
⎥⎥⎥⎦− 1T,

(39)

where

( f p1
Zm

(z̃), . . . , f pk
Zm

(z̃))T := f p
Zm

(z̃),

∂ f pi
Zm

∂z̃j
(z̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑k
l=1
l �=i

z̃l−idealZm
l

(∑k
l=1 z̃l−idealZm

l )
2 , i = j

− z̃i−idealZm
i

(∑k
l=1 z̃l−idealZm

l )
2 , i �= j

.

As shown in Theorem 61, ∑k
i=1 z̃i − idealZm

i = fs( f p
Zm

(z̃)) and z̃i = idealZm
i +

fs( f p
Zm

(z̃)) f pi
Zm

(z̃) for all i = 1, . . . , k. Then partial derivatives of functions f pi
Zm

in (39) can now be rewritten as follows

∂ f pi
Zm

∂z̃j
(z̃) =

⎧⎪⎨
⎪⎩

1− f
pi
Zm (z̃)

fs( f p
Zm (z̃))

, i = j

− f
pi
Zm (z̃)

fs( f p
Zm (z̃))

, i �= j
.

Thus,

fa(z)
⊥ =

[
∂ fs
∂z̃1

(z) · · · ∂ fs
∂zk

(z)
] ⎡⎢⎣g1

1(z) · · · g1
k(z)

... . . . ...
gk

1(z) · · · gk
k(z)

⎤
⎥⎦− 1T,

where

gi
j(z) =

⎧⎨
⎩

1−zi
fs(z)

, i = j

− zi
fs(z)

, i �= j
.

In other words, we have derived formula (21).



APPENDIX 2 LOCAL VS. GLOBAL NONDOMINANCE

To show that for a locally nondominated vector z, the set {z̃ ∈ fa(Δ◦
k−1) : ‖z −

z̃‖ < r}, where r is a radius for local nondominance, can contain dominated
vectors, we present the following sketch.

Let idealZm = 0 for simplicity. To get started, we construct two sequences
of vectors. Let fs′(z) = (z1 − 0.5)4 + 1, fa′(z) = idealZm + fs′(z)z and

z̄1 = (0.25, 0.75)T,

ẑ1 =
fa′

(
z̄1)+ ( fa′

(
z̄1)

1 , z̄1
2)

T

2
,

z̄n = (ẑn−1
1 , 1 − ẑn−1

1 )T, n = 2, 3, . . . ,

ẑn =
fa′ (z̄

n) + ( fa′ (z̄
n)1 , z̄n

2)
T

2
, n = 2, 3, . . . .

Geometrically, every z̄n has been selected from a closed line [(1, 0)T, (0, 1)T], and
the vector ẑn is the mean vector of vectors fa′(z̄

n) and ( fa′(z̄
n)1, z̄n

2)
T. It is clear

that the vector z̄n dominates ẑn for each n = 1, 2, . . .. This can be seen in Figure 69.

FIGURE 69 Sequences (z̄n) and (ẑn) in
the objective space R2.

FIGURE 70 A sine or cosine function fit-
ted to the sequences (z̄n)

and (ẑn).

Limits
lim

n→∞
ẑn = (0.5, 0.5)T = lim

n→∞
z̄n (40)

exist because the function g : [0.25, 0.5] → [0.25, 0.5], g(t) = ((t − 0.5)4 + 1)t is
shrinking, that is, |g(t1)− g(t2)| < |t1 − t2| for all t1, t2 ∈ [0.25, 0.5], see [38, page
178]. Then the function g has a unique fixed point [172], that is, there is only one
t′ ∈ [0.25, 0.5] so that g(t′) = t′. In this case, t′ = 0.5.

Now, the function fs is constructed so that z̄n, ẑn ∈ fa(Δ◦
1) for all n = 1, 2, . . .

and the normal vector ((0.5, 0.5)T)⊥ ∈ R2
+ ∪ R2

−. Let the function fs be a sine or
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a cosine function so that the lower peaks of the function fa hit z̄n and the upper
peaks ẑn, when z1 < 0.5. This can be done by defining separate scalings for each
interval defined by z̄n and f p

Zm
(ẑn) on Δ1. The rough idea of this is presented in

Figure 70, where fa is depicted as a gray dashed curve. We set fs(z) = 1 when
z1 ≥ 0.5.

It can be proved (it is not difficult, but very technical) that fa is differentiable
(but not continuously) and a normal vector at (0.5, 0.5)T is (−1,−1)T ∈ R2

+ ∪R2
−.

However, for every n = 1, 2, . . ., we have a pair of vectors in

B((0.5, 0.5)T, r(0.5,0.5)T/n) ∩ fa(Δ◦
1)

so that one dominates the other.



APPENDIX 3 DERIVATION OF FUNCTIONS fl AND fu

The explicit forms of functions fl and fu in Definition 39 are rather simple, but
one may wonder how they have been found. Geometrically, the function fl has
been constructed as follows.

Let z ∈ Δ◦
k−1 and zi ∈ Zm. It is obvious that fa(z) dominates the vector

zi ∈ Zm if for all j = 1, . . . , k we have

idealZm
j + fs(z)zj < zi

j ⇔ fs(z) <
zi

j − idealZm
j

zj
,

see Figure 71. Then by choosing

si
z = min

j=1,...,k

zi
j − idealZm

j

zj
,

we have idealZm
j + si

zzj ≤ zi
j for all j = 1, . . . , k. If we select sz to be the maximum

of scalar values si
z, i = 1, . . . , m, then there is at least one vector z′ ∈ Zm so that

idealZm
j + szzj ≤ z′j for all j = 1, . . . , k.

Now, by setting

fl(z) := sz = max
i=1,...,m

min
j=1,...,k

zi
j − idealZm

j

zj
,

we have derived the function fl.

FIGURE 71 Derivation of function fl . FIGURE 72 Taking the maximum in the
formulation of function fl is
essential.

Derivation of the function fu is similar to the derivation of the function fl.
However, there are several aspects to be considered. First of all, taking the max-
imum in the function fl is essential. Otherwise, it would be possible that the
vector fa(z) dominates some of the vectors from Zm even though fl(z) < fs(z).
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This would be against Theorem 40, claim (4). We are illustrating this in Figure 72,
where idealZm = 0 and s3

z has not been considered in calculating scalar value
fl(z). As it can be seen, we have fl(z) < fs(z), but the vector fa(z) dominates the
vector z3 ∈ Z5.

In a case, where the MOO problem consists of two objective functions only,
the set {z′ ∈ R3 : z′ = idealZm + fu(z)z, z ∈ Δ◦

2} is always bounded as seen
in Figure 48. However, in higher-dimensional objective spaces, this may not al-
ways happen. Let us demonstrate this as follows. Let Z3 = {(0.5, 0.5, 0)T =:
z1, (0.5, 0, 0.5)T =: z2, (0, 0.5, 0.5)T =: z3}. In Figure 73, vectors z1, z2 and z3 are
depicted as black dots on a gray simplex. The set {z′ ∈ R3 : z′ = idealZm +
fu(z)z, z ∈ Δ◦

2} is illustrated by grayscaled planes. Now, each of the planes con-
tinues to the infinity and, therefore, the set is not bounded because none of the
vectors in Z3 dominates the vector (ẑ, 0.25, 0.25)T, ẑ > 0.5. In other words, the
number ẑ can be arbitrary large and still the vector (ẑ, 0.25, 0.25)T is not domi-
nated by z1, z2 and z3. Note that the vector (ẑ, 0.25, 0.25)T can be expressed by
the function fa.

FIGURE 73 Unbounded upper bounds for function fs.

The set {z′ ∈ Rk : z′ = idealZm + fl(z)z, z ∈ Δ◦
k−1} is always bounded, no matter

how large k is. The boundedness is guaranteed by Δ◦
k−1 and by the formulation of

the function fl. Note that the set can be a singleton. This can happen, for example
if Z2 = {(0, 0, 1)T, (0, 1, 0)T}.
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