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ABSTRACT 
 
Kauranen, Hannele 
The role of the circadian clock in adaptation in seasonally changing 
environment in Drosophila montana 
Jyväskylä: University of Jyväskylä, 2012, 47 p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 253) 
ISBN 978-951-39-4932-7 (nid.) 
ISBN 978-951-39-4933-4 (PDF) 
Yhteenveto: Sirkadisen kellon rooli vaihteleviin ympäristöolosuhteisiin 
sopeutumisessa Drosophila montana -lajilla 
Diss. 
 
Adaptation to daily and seasonal changes in environmental conditions is crucially 
important for the survival and reproduction of all organisms, especially the ones 
living in the northern latitudes. One of the key factors in enhancing adaptation to 
this kind of environment is the evolution of two time-measuring systems; the 
circadian clock regulating daily variation and the photoperiodic timer regulating 
seasonal activities. In my thesis I have studied the role of the circadian clock in 
adaptation in northern environment and tried to find out whether and how it is 
connected with the photoperiodic timer in northern Drosophila montana species. My 
studies showed that D. montana possesses good entraining rhythms, displays only 
the evening activity peak and maintains its free-running rhythm better in constant 
light than in constant darkness differing in all these aspects e.g. from the more 
southern species  D. melanogaster. I also found that the species differences in fly 
locomotor activity rhythms can be explained by the differences at the neuronal 
level. The function of the photoperiodic timer in D. montana seems to be based on 
either a non-circadian oscillatory hourglass timer or a rapidly damping circadian 
oscillator. The fact that the flies of this species shift both their evening activity peak 
and the expression level peaks of two circadian clock genes, period and timeless, in 
concert with the day length suggests that D. montana uses only one circadian 
oscillator to measure the day length. The lack of the morning activity peak in 
entrained conditions, the degradation of free-running activity rhythm in constant 
darkness and the lack of the expression of two studied neurotransmitter and 
photoreceptor proteins in specific brain neurons in D. montana suggest that the 
circadian clock has evolved in a different direction than that of D. melanogaster. The 
circadian clock of D. montana shows many features important for adaptation to 
northern environment and has undoubtedly been one of the key factors enabling 
this species to distribute to the North. 

Keywords: Circadian clock; clock neurons; gene expression; eclosion rhythm; 
locomotor activity rhythm; seasonality. 
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1 INTRODUCTION 

1.1 Importance of measuring time 

From the beginning of life, all living organisms on Earth have been exposed to 
rhythmic fluctuations in environmental factors, such as day length, temperature 
and humidity, caused by the rotation of Earth around its axis and around the 
Sun. The only exceptions are the organisms living in the ocean basin or in 
underground caves. To be able to forecast daily and seasonal changes in their 
environment and to adjust their life cycle accordingly, the organisms have 
evolved different kinds of time-measuring mechanisms. These biological clocks 
help the individuals e.g. to coordinate their metabolic processes, to be active at 
the right time of day and/or to adjust physiological changes so that they occur at 
the right time of day or year (Saunders 2002).  

One of the best studied biological clocks is the circadian clock, which has 
evolved as a response to the rotation of the Earth around its axis. As its’ name 
reveals (in Latin, circa = about, dies = a day), this time keeping mechanism 
measures time in the cycles of approximate length of 24 h (Saunders 2002). Fossil 
evidence suggests that the circadian rhythms have existed already several 
hundred million years ago e.g. in corals and nautiloids (see Sharma 2003). 
Nowadays circadian clocks are found in a wide range of organisms from the 
cyanobacteria Synechococcus (Kondo & Ishiura 1999, Iwasaki & Kondo 2004), to 
plants (Johnson 2001), insects (Williams & Sehgal 2001) and mammals, including 
humans (Reppert & Weaver 2001). Regulation of daily changes in metabolism 
increases the intrinsic fitness value of organisms (Green et al. 2008), while 
synchronized changes in behavior and physiology increase their extrinsic 
adaptive value (Sharma 2003). Circadian control of daily changes in the above-
mentioned traits is usually based on changes in photoperiod and/or 
temperature, but the circadian clock may function even in constant conditions. 
For example, some cave-dwelling millipedes have been shown to have functional 
circadian oscillators even though they live in constant environments (Koilraj et 
al. 2000).  
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Seasonal changes induced by the rotation of the Earth around the Sun are 
often even more drastic than daily variation. Adaptation of organisms to 
seasonally varying environment has been enhanced by the evolution of the 
photoperiod timer. This time measurement system is based on changes in day 
length, which is the most reliable environmental cue for detecting the seasonal 
changes (Tauber et al. 1986). The photoperiodic timer enables organisms to 
predict the forthcoming cold season early enough to prepare for it and it also 
regulates seasonal changes in various kinds of processes linked with 
development, survival and progeny production. Adaptation to drastic seasonal 
changes in environmental conditions is of crucial importance especially for 
species living in the northern environments.  

1.2 Circadian clock 

1.2.1 Evolution of the circadian clock 

Daily light/dark cycles are thought to be the main force enhancing the evolution 
of circadian clocks (Hastings et al. 1991). These clocks may increase the adaptive 
value of organisms e.g. by gating their light-sensitive metabolic processes to 
occur during the dark period to avoid the harmful effects of light/UV radiation 
(see Sharma 2003). Also the high level of free oxygen in the atmosphere during 
early eukaryote evolution might have favoured the development of circadian 
rhythmicity in metabolic activities to minimize the deleterious effects of diurnal 
photo-oxidative exposures (Paietta 1982). Later on also rhythmic activities, such 
as prey-predator interactions (Fenn & Macdonald 1995) and the avoidance of 
competition (Gutman & Dayan 2005, Levy et al. 2007), are thought to have fine-
tuned the circadian rhythms of different species (Sharma 2003). Circadian 
rhythmicity is likely to play an important role also in progeny production. For 
example, in Drosophila melanogaster, the reproductive success of flies with 
nonfunctional circadian clocks has been found to be markedly decreased 
compared to flies with functional circadian clocks (Beaver et al. 2002). 

Circadian clock controls rhythmic changes in numerous traits in organisms. 
For example, in cyanobacteria this clock has been found to control cell division 
and in the fungus Neurospora crassa the production of asexual spores (Loros & 
Dunlap 2001). In plants the circadian system is known to synchronize e.g. leaf 
movements (Yakir et al. 2007). For example, in Mimosa pudica the persistence of 
circadian leaf opening and closing rhythms under constant conditions was 
discovered as early as 1729 (de Mairan 1729). In insects behavioral traits that are 
known to be under circadian regulation include locomotor activity (Klarsfeld et 
al. 2003), the timing of eclosion (Konopka & Benzer 1971), egg-laying rhythms 
(Howlader & Sharma 2006) and courtship behavior (Fujii et al. 2007). In humans, 
the circadian clock has been found to control e.g. the sleep-wake cycles, the 
maintenance of body temperature and the release of endocrine hormones (Haus 
2007, Lack & Wright 2007, Refinetti 2010).  
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All circadian rhythms maintained by the circadian clock have some 
common basic characteristics. First, the circadian rhythms possess an ability to be 
entrained by environmental cues, Zeitgebers (time giver; in German, zeit = time, 
geber = giver), such as light and temperature. In diurnally changing 
environmental conditions the entrained period ( ) corresponds to the length of an 
extrinsic day, which is 24 h (entrained rhythms) (Dubruille & Emery 2008). 
Second, under constant conditions the circadian clock is able to maintain the 
circadian rhythms for a long time with a free-running period ( ), which is close to 
24 h (free-running rhythms) (Dubruille & Emery 2008). The third well-known 
character of the circadian rhythms is that they are temperature-compensated, 
which means that the circadian clock is able to maintain a free-running period ( ) 
of the rhythm close to 24 h under a wide range of temperatures (Pittendrigh, 
1960). 

Changes in day length are extreme at high latitudes where the day length 
can vary from constant light in summer to constant darkness during winter. 
Some studies have suggested that these kinds of constant conditions may have 
favored weaker circadian regulation of different traits. For example, in the 
Svalbard ptarmigan, Lagopus mutus hyperboreus, the daily oscillating melatonin 
levels attenuate during the summer and winter (Reierth et al. 1999). Also, 2 
reindeer subspecies, the northern Rangifer tarandus platyrhynchus and the 
southern R. t. tarandus, have been found to show interesting changes in their 
locomotor activity rhythms during the year. The northern R. t. platyrhynchus 
shows circadian activity rhythm only during the autumn and spring (van Oort et 
al. 2005), whereas the southern R. t. tarandus shows strong circadian activity 
rhythms for longer periods throughout the year (van Oort et al. 2007). However, 
even though the circadian regulation of some traits may be reduced at high 
latitudes, the clock can still control other circadian processes of the same species 
(Yerushalmi & Green 2009).  

1.2.2 Genetic and neuronal background of the circadian clock 

In Drosophila flies, as well as in many other organisms, circadian clock consists of 
three basic elements: the input pathways, the pacemaker/oscillator and the 
output pathways. Environmental signals, such as daily changes in light or 
temperature, are transmitted to the pacemaker through the input pathways to 
entrain it. The pacemaker itself generates molecular oscillations with a period ( ) 
approximately 24 h and controls several output pathways maintaining 
rhythmicity e.g. at metabolic, physiological and/or behavioural level.   

Genetic studies on D. melanogaster rhythms have shown that the pacemaker 
is constructed of molecular transcriptional-translational feedback loops. These 
feedback loops, which involve a number of genes, lead to self-sustained circadian 
oscillations (Williams & Sehgal 2001). This kind of molecular feedback loop 
mechanism has been found in the circadian clocks of several organisms ranging 
from bacteria to Neurospora (Loros & Dunlap 2001, Lakin-Thomas et al. 2011), 
plants (Alabadi et al. 2001) and mammals, including humans (King & Takahashi 
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2000, Okamura et al. 2002). Interestingly, many circadian clock genes show 
striking homology between the species (Young & Kay 2001, Stanewsky 2003).  

In D. melanogaster, the main pacemaker consists of numerous genes, 
including Clock (Clk), cycle (cyc), period (per) and timeless (tim) (Peschel & Helfrich-
Förster 2011). To create the oscillating pacemaker, Clk and cyc activate the 
transcription of other circadian genes, including period (per) and timeless (tim). 
Due to this activation, the transcription levels of per and tim start to increase, 
reaching their peak expression at the end on the day or during the early night 
(Hardin et al. 1990, Sehgal et al. 1995). Increased mRNA production of these 
genes leads to oscillations of PER and TIM proteins, which lag behind the RNA 
oscillations by about 6 h (reviewed in Hardin 2004, Nitabach & Taghert 2008). 
Subsequent light-induced degradation of TIM during the next morning, 
mediated by an intracellular photoreceptor cryptochrome (Konopka et al. 1989, 
Stanewsky et al. 1998, Emery et al. 2000a), leads to a degradation of PER and 
permits CLK-CYC mediated transcriptional activation to start again (see 
Nitabach & Taghert 2008). 

The location of the pacemaker running the circadian rhythms varies 
between the species. For example, in the sea slug Aplysia the pacemaker has been 
found to locate in the eye (Block et al. 1993), while in mammals the circadian 
pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus 
(see Harrington 1992). Some species have also been found to have peripheral 
oscillators, which can be under the control of the central pacemaker or be directly 
entrained by environmental cues (Hege et al. 1997, Giebultowicz 2001, Myers et 
al. 2003). In plants, almost all cells have their own autonomous circadian system 
(Thain et al. 2002), whereas mammals have peripheral oscillators that are located 
in many tissues, such as the liver, but they are coordinated by the central 
pacemaker (Yamazaki et al. 2000).  

In D. melanogaster, the neural network behind the circadian pacemaker is 
located in the central neuronal system consisting of ~150 lateral (LN) and dorsal 
(DN) neurons, which express particular circadian clock genes (reviewed in 
(Taghert & Shafer 2006, Nitabach & Taghert 2008). LNs and DNs can further be 
divided into several subgroups: the small ventrolateral neurons (s-LNvs), the 
large ventrolateral neurons (l-LNvs), the dorsolateral neurons (LNds) and three 
groups of dorsal neurons (DN1s, DN2s and DN3s) (reviewed in Helfrich-Förster 
2003), as well as lateral-posterior neurons (LPNs) (Taghert & Shafer 2006). D. 
melanogaster have also peripheral oscillators, which can be directly entrained by 
environmental signals. In this species, light-sensitive autonomous peripheral 
oscillators have been found to be located e.g. in the head (other than central 
pacemaker), thorax, gut, excretory system and testes (Giebultowicz 2001, Beaver 
et al. 2002, Glossop & Hardin 2002, Myers et al. 2003). 

1.2.3 Locomotor activity 

The locomotor activity rhythm is the best studied circadian rhythm in D. 
melanogaster. The flies of this species are crepuscular showing 2 activity peaks in 
laboratory conditions, the morning (M) and evening (E) peak (Hamblencoyle et 
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al. 1992, Rieger et al. 2003). When D. melanogaster flies are released into constant 
darkness, they show only the evening activity peak and free-run with a period of 
~ 24 h (Helfrich-Förster 2000, Allada & Chung 2010). In constant light these flies 
lose their rhythmicity at light intensities over 10 lux (Aschoff 1979, Konopka et al. 
1989, Helfrich-Förster et al. 2001), but show free-running rhythms at low light 
intensities (~ 0.03 lx) (Bachleitner et al. 2007).  Contrary to D. melanogaster, some 
Drosophila species living at higher latitudes, such as D. suboccidentalis, D. 
subquinaria and D. virilis, have been found to show only an evening activity peak 
(Simunovic & Jaenike 2006, Bahn et al. 2009). 

In D. melanogaster, 4 out of 5 s-LNvs and all l-LNvs express neuropeptide 
Pigment-dispersing factor (Pdf) (see Yoshii et al. 2009), but the 5th s-LNv does not 
express Pdf (Kaneko et al. 1997, Rieger et al. 2006). PDF-positive s-LNvs are 
necessary for the morning activity of D. melanogaster flies under LD conditions, 
which forms a neuronal basis for the morning (M) oscillator, while the 5th PDF-
negative s-LNv and LNds control the evening activity of the flies and are defined 
as the evening (E) oscillator under LD conditions (Grima et al. 2004, Stoleru et al. 
2004, Rieger et al. 2006, Nitabach & Taghert 2008). s-LNvs are also the most 
important clock neurons for the maintenance of persistent locomotor activity 
rhythms in constant darkness (Renn et al. 1999). 

Pittendrigh and Daan suggested already in 1976 that the morning (M) and 
evening (E) activity peaks are controlled by separate circadian oscillators and 
that by adjusting the phase-relationship between them the circadian clock 
enables organisms to synchronize their behaviour with seasonal changes in day 
length (Allada & Chung 2010). The phase-relationship between (M) and (E) -
oscillators has indeed been found to change according to the season in several 
species, including D. melanogaster (Aschoff 1966, Majercak et al. 1999). In D. 
melanogaster the interval between the morning (M) activity and the evening 
activity (E) peaks is longer under long day conditions than under short day 
conditions, which helps the flies to keep track of the changing seasons (Rieger et 
al. 2003, Beer et al. 2010, Rieger et al. 2012). Based on the current view, the 
neurons of the M-oscillators maintain circadian rhythm under constant darkness 
and during the short winter days (Picot et al. 2007, Stoleru et al. 2007), whereas 
those of the E-oscillator control the rhythm in constant light and under long 
summer days (Stoleru et al. 2004, Picot et al. 2007, Stoleru et al. 2007). 

Studies on the rhythmicity of organisms in natural or semi-natural 
conditions can give a more reliable picture of their rhythmicity than do studies 
performed in laboratory conditions with regularly changing LD and / or 
temperature cycles (Boulos & Macchi 2005, Rieger et al. 2007, Vanin et al. 2012). 
For example, simulated twilight increases the ability of these flies to adapt their 
locomotor activity rhythms to long photoperiods (Rieger et al. 2012). 

1.2.4 Eclosion rhythm 

Eclosion is the developmental stage, when insects emerge from their pupal case. 
The role of the circadian clock in regulating the timing of eclosion is to gate it to 
occur at a particular time of day, usually in the morning when the relative 
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humidity is high (Pittendrigh 1954, Qiu & Hardin 1996). The first circadian clock 
gene, period, was found in D. melanogaster by Konopka and Benzer (1971), when 
these researchers were studying eclosion rhythm of the wild-type and mutant 
flies of this species.  

 The eclosion rhythm of D. melanogaster flies is regulated by a peripheral 
clock in the prothoracic glands (Myers et al. 2003). These glands are known to 
assess the growth and the size of developing pupae and determine when the 
pupae are ready to eclose (Allada & Chung 2010). Evidence for a partly 
independent control of the locomotion and eclosion rhythms comes from the 
differences between these rhythms detected in various Drosophila species, 
including D. pseudoobscura (Engelmann & Mack 1978), D. rajasekari (Joshi 2001) 
and D. melanogaster (Myers et al. 2003). Further evidence comes from the findings 
that ebony (Newby & Jackson 1991) and timblind (Wulbeck et al. 2005) mutations 
change the locomotor activity rhythm, but not the eclosion rhythm, of 
D.melanogaster flies. The function of the peripheral clock in D. melanogaster may, 
however, still be partly regulated by the central circadian clock neurons as 
ablation of PDF-expressing lateral neurons (LNvs) and a null mutation of Pdf 
have been found to disrupt the PG clock and change the eclosion rhythm of the 
flies (Myers et al. 2003). Also, some mutations in the circadian clock genes (e.g. 
period, timeless and doubletime) have been found to have the same kind of effects 
on both locomotor activity and eclosion rhythms of the flies (Sehgal et al. 1994, 
Sehgal et al. 1996, Rothenfluh et al. 2000). 

1.3 Photoperiodic timer  

Photoperiodic timer enables the organisms to measure seasonal changes in day 
length and forecast the forthcoming changes in environmental conditions on the 
basis of this information. As the photoperiod is the most reliable cue for the 
changing seasons, many organisms living in the north control their physiology 
and behavior on the basis of this cue. 

Photoperiodic timer consists of light receptors, the photoperiodic counter 
and the photoperiodic clock. Light receptors differ between species, but e.g. D. 
melanogaster flies sense light with 3 different photoreceptive organs, the  ocelli, 
the compound eyes and the Hofbauer-Buchner eyelets (HB-eyelets) containing 
different rhodopsins (Peschel & Helfrich-Förster 2011). Photoperiodic counter 
counts and accumulates information on LD cycles and delivers this information 
to the photoperiodic clock, which interprets the information and evokes specific 
behavioral or physiological changes when the day length goes below (or the 
night above) the critical day/night length.  

In insects many traits are controlled by the photoperiod timer. Good 
examples are the dormancy (quiescence/diapause) e.g. in Drosophila auraria 
(Pittendrigh & Takamura 1987) and linden bug Pyrrhocoris apterus (Hodek 1968, 
Hodkova 1977), seasonal changes in the morphological forms of silk moth 
Bombyx mori (Tsurumaki et al. 1999), the growth of cutworm Agrostis occulta 
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larvae (Danilevskii 1965) and the migration of the monarch butterfly Danaus 
plexippus (Brower 1977). One of the best studied dormancies in insects is adult 
reproductive diapause, during which the females postpone their sexual 
maturation and reproduction until a more favourable season (Saunders 2002). 
Photoperiodically regulated diapause responses have been found to occur in 
more than 500 insect species (Nishizuka et al. 1998).   

1.4 Connection between the circadian clock and photoperiodic 
timer  

1.4.1 Models describing the possible connection 

In 1936 Bünning proposed that the photoperiodic timer requires cooperation 
with the circadian clock, but the role of this clock in the photoperiodic control of 
seasonal rhythms is still under intense debate. In theory, the length of the 
photoperiod could be measured without the involvement of the circadian clock, 
but studies on several species have suggested that the circadian clock takes part 
in this process (Imaizumi & Kay 2006, reviewed in Foster & Kreizman 2009). 
Although the genetic regulation of circadian clock is well-described in D. 
melanogaster (reviewed in Peschel & Helfrich-Förster 2011), the genetic and 
physiological mechanisms underlying the photoperiodic timer are poorly 
understood, which is partly due to the fact that the above-mentioned species 
does not show robust photoperiodic responses.  

Many theoretical models have been developed for the function of 
photoperiodic timer with or without the involvement of the circadian clock in 
photoperiodic time measurement. In an hour-glass model, the photoperiodic 
timer has been suggested to be based on a non-circadian mechanism and to be 
driven only by external LD cycles, so that it needs to be reset every day (Lees 
1973). The hour-glass model has been suggested to explain e.g. the induction of 
adult reproductive diapause in the spider mite Tetranychus urticae (Veerman & 
Vaz Nunes 1987) and larval diapause in the rice stem borer Chilo suppressalis 
(Chen et al. 2011). 

Bünning (1936) suggested a model, in which the photoperiod time 
measurement is based on the oscillation of organisms’ circadian clock. In this 
model, the photoperiodic timer is assumed to consist of 1 or more circadian 
oscillators, which are entrainable by light and which restart time measurement 
spontaneously during prolonged dark phases. Thus, the light signals perceived 
by the organisms should entrain the circadian oscillator and evoke (or do not 
evoke) photoperiodic responses, when the light period coincides with the 
organisms’ photosensitive phase (Bünning 1936). Bünning presented also a 
damped circadian oscillator model, where both hourglass–like and oscillatory 
photoperiodic timers are thought to be based on the circadian system of the 
organisms and to differ from each other only in their propensity to dampen 
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(Bünning 1969, Lewis & Saunders 1987, Saunders & Lewis 1987a, Saunders & 
Lewis 1987b). 

 Bünning’s original hypothesis was further developed in external 
(Pittendrigh & Minis 1964, Pittendrigh 1966) and internal (Pittendrigh 1972) 
coincidence models. The external coincidence model is based on a single 
circadian oscillator in which phase is set by the LD cycle in such a way that a 
particular light-sensitive phase ( i) is restricted to a short period during the latter 
half of the subjective night. Here, a short-day/long-night response is thought to 
be evoked when i regularly coincides with darkness during the long autumn 
nights (see Vaz Nunes & Saunders 1999). In the internal coincidence model, on 
the other hand, the photoperiodic time measurement has been suggested to be 
based on changes in phase relationship between the morning (M) and evening 
(E) oscillators so that an increase in the day length leads to an increase in the 
phase angle difference between the oscillators triggering a long-day response, 
and vice versa (Pittendrigh 1972).  

Finally, Pittendrigh (1972) presented a third model of how the circadian 
clock could be involved in the photoperiodic timer: a circadian resonance model. 
This model was further developed by Vaz Nunes and Veerman (1982) and 
named an hourglass timer-oscillator counter model. In this model the night 
length is suggested to be measured through a non-circadian hourglass timer, but 
the photoperiodic counter mechanism still requires the involvement of the 
circadian clock (Vaz Nunes & Veerman 1982). 

Even though researchers have found evidence for all above-mentioned 
models while studying the function of photoperiodic timer in different species 
(Saunders 1990, Claret & Arpagaus 1994, Tauber & Kyriacou 2001), the final 
conclusion on whether the circadian clock is or is not necessary for the function 
of the photoperiodic timer is still unresolved.  

1.4.2 Candidate genes for the circadian clock and photoperiodic timer 

Information on the molecular basis of the circadian clock of D. melanogaster offers 
a good possibility to find out whether any of the circadian clock core genes (e.g. 
clock, cycle, timeless and period) play a role in the photoperiodic timer. timeless 
(tim) is one of the key genes that could play an important role in both time 
measuring systems through its sensitivity to night length. Indeed, mRNA and 
protein levels of tim have been found to decrease under long-day conditions 
compared to short day conditions e.g. in Sarcophaga crassipalpis and D. 
melanogaster flies (Goto & Denlinger 2002, Shafer et al. 2004). period is a second 
clock gene that has been suggested to play a role in seasonal adaptation 
(Saunders et al. 2004). Mutations in this gene have been found to disrupt e.g. the 
females’ ability to discriminate between long and short days in D. melanogaster 
(Saunders et al. 1989). As Emerson et al. (2009) have noticed, mutations or allelic 
variants in clock genes do not need to modify the effects of the entire circadian 
clock on photoperiodism, but they can also have direct effects on diapause. 
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1.5 Aims of the thesis 

The main aim of my thesis was to trace the role of the circadian clock in 
adaptation to northern environment and to find out whether and how its 
function is connected with the photoperiodic timer. To address these questions, I 
studied how the circadian clock regulates daily and seasonal rhythms in the 
locomotor activity and eclosion of northern D. montana flies and traced the 
genetic and neuronal background of the circadian clock in this species.  

 In the first paper I studied the function of the circadian clock of D. 
montana at phenotypic (locomotor activity) and neuronal level to find out 
whether the clock shows features that could be adaptive to seasonally varying 
conditions at high latitudes. Both the entrained and free-running locomotor 
activity rhythms of the female flies were monitored in different LD cycles and 
temperatures to see whether and how these rhythms differ from those of a more 
southern species, D. melanogaster. In addition, I studied the neuronal background 
of the circadian clock of D. montana by tracing the expression of PDF 
neuropeptide and CRY protein in its neural cells of the brains to find out whether 
the two species show differences also at the neuronal level.   

The connection between the circadian clock and the photoperiodic timer in 
D. montana was studied in more detail by using the Nanda-Hamner protocol as 
described in paper II. The purpose of this study was to find out whether the 
induction of the photoperiodic reproductive diapause of D. montana females 
requires the involvement of the circadian oscillator or not. In this experiment the 
flies were kept in 13 chambers in LD cycles with the same duration of the light 
period (12 h) followed by unique dark periods ranging from 12 to 60 h, so that 
the total LD cycle in different chambers varied between 24 and 72h. The general 
assumption of this experiment is that if the circadian clock takes part in the 
photoperiodic response, then the underlying sensitivity to light should cycle 
between light insensitivity and light sensitivity during the long dark periods. In 
our experiment this means that only the females that were maintained in LD 
cycles of 24, 48 or 72 h were expected to give a photoperiodic response (enter 
diapause). 

 In paper III I traced daily and seasonal rhythms in the locomotor activity 
of the flies and in the expression level of 2 key circadian clock genes, per and tim, 
when flies were reared in seminatural conditions during summer and autumn 
where females are expected to develop ovaries or enter reproductive diapause, 
respectively. The main purpose of this study was to see how seasonal changes in 
light and temperature conditions affect the locomotor activity patterns of the 
females and also to find out whether the expression level of per and tim show 
daily and/or seasonal rhythms. I also studied whether the reproductive stage of 
the females has an effect on their locomotor activity and/or on the daily changes 
in the expression level of the above mentioned genes.  

Finally, I studied the effects of different constant condition treatments 
(constant darkness and constant high and low light intensity) on the flies’ free-
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running locomotor activity rhythm (IV) to see whether flies are more active and 
retain their locomotor activity better in constant high and/or low light intensity 
than in constant darkness and whether their rhythms differ under these 
conditions. I also measured the free-running eclosion rhythm of D. montana 
larvae in constant darkness to find out whether the eclosion and the locomotor 
activity rhythms of D. montana are under different neuronal control in different 
circadian oscillators (IV). 



 

 

2 MATERIALS AND METHODS 

2.1 Study species and populations 

Drosophila montana belongs to the Drosophila virilis species group. It is originated 
in Asia from where it has spread on different continents at high latitudes 
(Throckmorton 1982). D. montana has diverged from D. virilis approximately 10 
million years ago (Spicer & Bell 2002), and the divergence time between D. virilis 
(genus Drosophila) and D. melanogaster groups (genus Sophophora) is about 63 
million years (Tamura et al. 2004).  

In my thesis work I have used the females of D. montana isofemale strains  
and a mass-bred population originating from Oulanka (66 °N, 29 °E) (I, III, IV) 
and isofemale strains collected from Pelkosenniemi (67 °N, 27 °E) and from Lahti 
(60 °N, 25 °E) (II). Isofemale strains were established from the progenies of wild-
caught females inseminated in the wild and the mass-bred population was 
created by combining F3 progenies of 20 isofemale strains. Isofemale strains were 
maintained in bottles containing malt medium (Lakovaara 1969) and the mass-
bred population was reared in a wooden population cage attached to six malt 
bottles. Both isofemale strains and the mass-bred population have been 
maintained since their establishment (2008 or 2009) in the laboratory in constant 
light of ~ 300 lux at 19 °C and with relative humidity of 60 %. 

In Finland, D. montana flies are exposed to very long days or continuous 
light during their mating season in the early summer, and thus maintaining them 
in continuous light in our “fly room” enabled the flies to produce about 7-8 
generations per year. When the day length starts to shorten in late summer, 
practically all females of this species enter adult reproductive diapause (Lumme 
1978, Tyukmaeva 2011) and they spend the long and dark winter under constant 
darkness, probably under snow cover. 
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2.2 Phenotypic measurements 

2.2.1 The locomotor activity experiments (I, III, IV) 

I studied the entrained locomotor activity rhythms of D. montana females under 
different photoperiods either in constant or fluctuating temperature. In addition, 
I traced their free-running locomotor activity rhythms in constant light or 
darkness and constant temperature (see Table I for the experimental conditions). 

Females were collected within 1 day after eclosion for the locomotor activity 
experiments (I, IV). Only in studies concerning the females’ entrained locomotor 
activity rhythms in seminatural conditions (III) the age of the females differ 
between the study groups:  non-diapausing females and diapausing females. The 
locomotor activity rhythms of the females were measured by placing the females 
in glass tubes connected with either Trikinetics Drosophila Activity Monitors (I, 
III) or Trikinetics Drosophila High Resolution Activity Monitors (IV) (Waltham, 
MA, USA).  

2.2.2 The eclosion rhythm experiments (IV) 

Free-running eclosion rhythms of fly pupae in study IV were monitored in 
constant darkness at 19 °C using recording equipment based on the “falling ball” 
principle (Lankinen & Lumme 1982). Sexually mature females and males of the 
parental generation were allowed to mate and lay eggs in malt bottles for one 
week and, once most of their progeny had pupated, the pupae were rinsed from 
the walls of the bottles with water (at 19 °C), washed and dried on absorbing 
paper. The pupae were placed individually into the holes in an acryl plate (80 x 
100 mm), whose opening was closed with a stainless steel ball. The plates were 
then placed in an eclosion rhythm monitor and maintained in constant darkness 
at 19 °C for 21 days. 

2.2.3 Reproductive diapause (I, II, III, IV) 

In the Nanda-Hamner experiment (II), the females were collected within 1 day 
after their emergence, sexed and transferred into vials containing yeast-sucrose-
agar media (Rosato & Kyriacou, 2006) with some dry yeast on the top. Female 
vials were transferred into an air-conditioned room with automatically 
controlled temperature (16 °C) and divided into 13 wooden experimental 
chambers with specific LD cycles. All chambers had a light period of 12 h 
followed by unique dark periods ranging from 12 h to 60 h. In addition, we 
transferred females of same strains into constant darkness in the same room. All 
females were kept in a given LD cycle or constant darkness for 21 days.  

After all the locomotor experiments (I, III, IV) and the Nanda-Hamner 
experiment (II) either whole females (I, II) or their abdomens (III, IV) were stored 
until their reproductive stage was determined on the basis of the size and 
developmental stage of their ovaries (Tyukmaeva et al. 2011). 
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2.3 Neurogenetic and genetic methods  

2.3.1 Immunohistochemistry (I) 

I performed immunohistochemistry experiments with 1 D. montana isofemale 
line using antibodies designed against PDF and CRY (I). Prior to PDF and CRY 
staining, female flies were kept in constant darkness (DD) at 20 °C for 72 h. At 
Zeitgeber time (ZT) 0, the females were fixed in 4 % paraformaldehyde in a 
phosphate buffer (PB, pH 7.4) with 0.5 % Triton-X in darkness for 4 h at room 
temperature and rinsed 3 times for 15 min in PB, after which their brains were 
dissected in the same buffer. Brains were collected in PB with 0.5 % Triton X and 
subsequently blocked in 5 % normal goat serum (NGS) in PB with 0.5 % Triton X 
overnight at 4 °C before treating them with primary and secondary antibodies. 
Brains were then incubated in PDF or CRY antibody solution for 48 h at 4 °C and 
rinsed 5 times for 10 min in PB with 0.5 % Triton X-100. The primary rabbit anti-
CRY was diluted by 1:1000 and the primary mouse anti-PDF by 1:2500 in PB 
containing 5 % NGS and 0.5 % Triton X-100.  

The secondary fluorescence-conjugated antibody PDF and CRY stainings 
were performed for 2 different groups of brains. As secondary antibodies in these 
stainings, we used Alexa Fluor 546 (goat anti-mouse; Invitrogen) for PDF and 
Alexa Fluor 488 (goat anti-rabbit; Invitrogen) for CRY. The secondary antibodies 
were diluted 1:200 in PB containing 5 % NGS and 0.5 % Triton X-100. After 
washes the brains were mounted on Vectashield mounting medium (Vector 
Laboratories, Burlingame, CA). More detailed information on the protocol is 
given in paper I. The fluorescence signals of the whole brains were detected 
using a confocal microscope (Olympus FV1000). We examined at least 10 brains 
for PDF and CRY immunostaining. Images were processed using the program 
ImageJ. 

2.3.2 Gene expression (III) 

When studying both daily and seasonal variation in the expression levels of 
timeless and period genes (III), fresh samples of females for RNA extractions were 
collected from the experimental photoperiod every 6 h over the 24 h period after 
performing the locomotor activity experiments. The samples for non-diapausing 
females were collected at photoperiods 24LL, 16:8 LD and 14:10 LD and the ones 
for diapausing females at photoperiods 16:8 LD and 14:10 LD. In each of these 
photoperiods the first RNA sample was collected immediately before the lights-
on transition (ZT 0) and the 2nd, 3rd and 4th samples 6, 12 and 18 h after lights-on 
transition (ZT 6, ZT 12 and ZT 18). The females of all samples were flash-frozen 
in liquid nitrogen and stored at – 84 °C. 
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2.3.3 RNA extraction and cDNA synthesis (III) 

Prior to RNA extractions the flies were put in pre-cooled (2 h in –84°C) 
RNAlaterICE solution and kept overnight or for at least 16 h in –20 °C, after 
which their heads were cut off using a scalpel and then used individually for 
RNA extractions.  

Total RNA was extracted with the ZR RNA Microprep kit with DNase 
treatment according to the manufacturer’s protocol. After extraction, the purity 
and concentration of each sample was measured with a NanoDrop 
spectrophotometer and the integrity of RNA in some samples was checked with 
an Agilent 2100 Bioanalyzer.  

Before cDNA synthesis, RNA samples were diluted to equal concentrations 
(10-15 ng/ l) and 2 l of total RNA of each sample was used as template for 
cDNA synthesis using iScript Reverse Transcription Supermix (Bio-Rad 
Laboratories) following the manufacturer’s protocol. 20 l of the reaction mixture 
included in addition to RNA, 4 l of 5 x iScript reaction mixture, 1 l of reverse 
transcriptase enzyme and dH2O. The PCR cycling conditions were: 5 min at 25 
°C, 30 min at 42 °C and 5 min at 85 °C for cDNA reactions. 

2.3.4 Quantitative real time PCR (qPCR) (III) 

Primers for timeless and period genes and candidate control genes for quantative 
real time PCR (qPCR) were designed using NetPrimer and Geneious programs 
(III). Candidates for the control genes were chosen on the basis of their stability 
in our earlier studies (Kankare et al. 2010, Kankare et al. unpublished, Salminen 
et al. unpublished). Amplification efficiency values of all the primer pairs were 
checked using 2-fold serial dilutions of pooled cDNA (from all the treatments) 
with 3 technical replicates and 7-9 dilution points.  

Expression patterns of experimental and control genes were traced with 
qPCR using 6 biological replicates and 3 technical replicates from all the 
treatments. qPCR reactions were run using the following mixture: 10 l 2x Power 
SYBR Green PCR Master Mix (Bio-Rad Laboratories), 0.3 l of each gene-specific 
primer and 1 l of cDNA solution; the total volume of reaction was 20 l. qPCR 
reactions were run with a Bio-Rad CFX96 instrument with the following cycling 
conditions: initiation at 95 °C for 3 min, denaturation at 95 °C for 10 seconds, 
annealing at 55 °C for 10 seconds and extension at 72 °C for 30 seconds. 
Denaturation, annealing and extension phases of the PCR were repeated 40 times 
and they were followed by a melting curve analysis to check the purity of the 
qPCR reaction. 
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2.4  Statistical analysis 

2.4.1 Analysis of fly locomotor activity (I, III, IV) 

The raw locomotor activity data of the flies were displayed as double-plotted 
actograms (48-h plots) for experimental days under different entraining 
conditions (LD cycles and temperatures) (I, III, IV) and constant conditions (I, 
IV). The primary analysis of these actograms was done with the program 
ActogramJ (Schmid et al., 2011). The rhythmicity and the length of the period ( ) 
of the flies were traced by analyzing the actograms using the Lomb-Scargle 
periodogram method; when the periodogram analysis detected significant 
periodicity in fly’s activity rhythm across consecutive days, the fly was 
determined to be rhythmic. The power of the Lomb-Scargle periodogram 
analysis was defined as the amplitude of the peak only for the rhythmic flies 
from the Lomb Scargle periodogram with significance level p < 0. 05.  

The mean activity level of the females was calculated under different 
entraining (I, III, IV) and constant conditions (I, IV) over experimental days in 
five-minute bins. Prior to performing these tests, normality assumptions of the 
distributions of fly activity levels were tested with the Kolmogorov-Smirnov and 
Shapiro-Wilk tests and homogeneity of variance with Levene’s test. If the data 
did not fulfill the criteria of normal distribution and/or homogeneity of 
variances, non-parametric tests were used. All the analyses were done with 
PASW Statistics 18.0 (SPSS Inc.). 

The effects of temperature and photoperiod on the mean activity levels of 
the flies in entraining conditions (I) were analyzed with 2-way analysis of 
variance (ANOVA) with temperature and photoperiod as fixed factors. In cases, 
whenthe data were not normally distributed and/or the variances were not 
equal, we used Kruskal-Wallis and Mann-Whitney U –tests. Pairwise 
comparisons between the mean activity levels of the flies in constant light or 
darkness were performed with Mann-Whitney U –tests (I).  

When tracing the factors (strain, temperature, entraining photoperiod, 
and/or constant condition) affecting fly rhythmicity (I), the data were analyzed 
with hierarchical logit models. For this analysis the locomotor activity data were 
made binary, with a value of 1 for each rhythmic fly and a value of 2 for each 
arrhythmic fly. The goodness of fit of the final model including all significant 
variables and their interaction terms was tested by using the likelihood-ratio 2-
test. 

2.4.2 Analysis of pupal eclosion data (IV) 

Pupal eclosion rhythms were traced by plotting the number of eclosions per 1 h 
bin for each strain. The free-running period ( ) of fly eclosion rhythms was 
estimated by periodogram analysis using the Lomb-Scargle periodogram 
method. The data for the first 12 circadian hours after the pupae had been 
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transferred to the eclosion monitors in constant darkness were excluded from the 
periodogram analysis to avoid possible effects of the transfer.    

2.4.3 Analysis of qPCR data (III) 

The relative gene expression values of tim and per were calculated using a 
relative expression method ( (Ct)) with real efficiency values (see study III for 
more details of the analysis). Statistical significance of the expression changes in 
these genes between the studied time points within the LD cycles, as well as 
between the non-diapausing and diapausing females in short photoperiods, were 
calculated with REST 2009 program using randomization with 10 000 iterations 
and bootstrapping methods. 

 



 

 

3 RESULTS AND DISCUSSION  

3.1 Function of the circadian clock at phenotypic level: regulation 
of the locomotor activity and eclosion rhythms in Drosophila 
montana 

I have studied the role of the circadian clock in adaptation to environmental 
conditions prevailing at high latitudes by tracing the locomotor activity and 
eclosion rhythms of the flies of a northern D. montana population. The flies of this 
species appeared to possess good entrained locomotor activity rhythm in all LD 
cycles used in studies I, III and IV. Interestingly, these flies displayed only an 
evening activity peak in all studied photoperiods and temperatures, both in 
fluctuating (III) and constant (I, IV) temperature. Even though most insect 
species studied so far, including D. melanogaster, have been found to show 
bimodal locomotor activity with clear morning and evening peaks (e.g. 
Hamblencoyle et al. 1992), unimodal activity is not exceptional. This kind of 
activity has been detected e.g. in the Japanese honeybee Apis cerana japonic 
(Fuchikawa & Shimizu 2007) and in 2 Drosophila species, D. subquinaria 
(Simunovic & Jaenike 2006) and D. virilis (Bahn et al. 2009). 

One of the main characters of circadian clock rhythms is their self-
sustainability, which means that the circadian rhythms keep cycling (free-run) 
even in the absence of environmental cues. However, the conditions in which 
free-running rhythms can be seen vary between the species. For example, D. 
melanogaster flies have been shown to retain their rhythmicity in constant 
darkness (Helfrich-Förster 2000, Dubruille & Emery 2008), but become rapidly 
arrhythmic in constant light (Konopka et al. 1989, Stanewsky et al. 1998), whereas 
D. virilis flies lose their rhythmicity in constant darkness (Bahn et al. 2009). D. 
montana flies were found to lose their locomotor activity rhythm when released 
into constant darkness after entrainment (like D. virilis), but not when released 
into constant high and low light intensities (I, IV). In addition, the flies were 
more active in constant high and low intensity light than in constant darkness 
(IV).  
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Differences between the daily locomotor activity rhythms and activity 
levels of D. montana and D. melanogaster flies in constant light and darkness 
might be explained by species differences at the neuronal level. The difference in 
the activity rhythms is likely to be due to the fact that D. montana flies lack the 
expression of PDF in s-LNv neurons, which have been shown to be necessary for 
the morning activity of D. melanogaster (more about this in chapter 1.2). 
Furthermore, in D. melanogaster the M oscillator has been shown to periodically 
rouse the fly in constant darkness, but not in constant light, whereas the E 
oscillator can do the same in constant light but not in constant darkness (Picot et 
al. 2007). The ability of D. montana flies to retain their locomotor activity rhythm 
in constant light is likely to be adaptive as these flies are exposed to long (even 
continuous) days during their mating season in early summer in the northern 
latitudes. On the other hand, also the loss of rhythmicity in constant darkness can 
be an evolutionary adaptation, as these flies are exposed to constant darkness 
during the long and dark winters, which they generally spend under a snow 
cover.  

Contrary to showing weak locomotor activity rhythm in darkness, D. 
montana flies possessed persistent free-running eclosion rhythms in this 
condition (IV), which suggests that the locomotor activity and eclosion rhythms 
are at least partly under different neuronal control in this species. This kind of 
discrepancy has earlier been detected also in D. montana’s sister species D. 
littoralis (Lankinen, 1985). The presence of two or more circadian oscillators, 
which control independently or cooperatively the locomotor activity and 
eclosion rhythms, has been postulated also for D. pseudoobscura (Engelmann & 
Mack 1978), D. rajasekari (Joshi 2001) and D. melanogaster (Myers et al. 2003). In 
the last-mentioned species, the peripheral oscillator acting in the prothoracic 
gland controlling the eclosion rhythm has been found to be under the control of a 
central clock (Myers et al. 2003).  

3.2 The neuronal background of the circadian clock of D. montana 

In addition to differences in their locomotor activity rhythms, D. montana flies 
were found to differ from D. melanogaster also in the number and location of 
specific circadian clock neurons regulating these rhythms. In D. montana the 
expression of PDF neuropeptide, which is essential for synchronizing the 
oscillations of the circadian clock neurons and in transferring the circadian 
signals from the pacemaker to downstream neurons, was totally lacking (or 
showed very low expression) in small ventrolateral neurons (s-LNvs) in the fly 
brains (I). Based on recent studies, the same seems to be true also in the other 
studied species of the D. virilis group; in D. virilis, D. littoralis and D. ezoana (Bahn 
et al. 2009, Hermann et al. 2012). Thus, the situation of all these species resembles 
that of D. melanogaster Pdf01 -mutants, which do not express PDF in their s-LNv 
neurons and also lack the morning activity peak (Renn et al. 1999). Furthermore, 
ablation of PDF positive s-LNv neurons in D. melanogaster has been found to 
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result in arrhythmic behavior in constant darkness and the loss of the morning 
activity peak in laboratory conditions (Shafer & Taghert 2009).  

In D. melanogaster, the circadian photoreceptor gene cryptochrome (cry) plays 
an important role in entraining the flies to LD cycles and contributes also to the 
adjustment of the evening activity peak (Stanewsky et al. 1998, Emery et al. 
2000b) D. montana differed from D. melanogaster in that this protein was not 
expressed in its large ventrolateral neurons (l-LNvs) (I), again resembling the 
situation in D. virilis, D. littoralis and D. ezoana (Bahn et al. 2009, Hermann et al. 
2012). In D. melanogaster, the expression of CRY in different neuron groups, 
including l-LNvs, has been suggested to be responsible for the arrhythmicity of 
the flies in LL (Emery et al. 2000a, Benito et al. 2008, Yoshii et al. 2008). This is 
supported by the finding that cryb and cry0 mutants of this species retain their 
rhythmicity in LL (Emery et al. 2000a, Dolezelova et al. 2007) due to the reduced 
action of CRY in their dorsal neurons (Dubruille et al. 2009, Zhang et al. 2010a, 
Zhang et al. 2010b) and possibly also in l-LNvs (Emery et al. 2000b, Shang et al. 
2008, Fogle et al. 2011).  

Neurogenetic differences detected in this study (I) between D. montana and 
D. melanogaster are not likely to be due to a lack of immunoreactivity of D. 
melanogaster antibodies used in D. montana. The comparisons of the amino acid 
sequences for PDF antibody region between D. melanogaster, D. virilis and D. 
montana showed this region to be identical between these 3 species and also the 
CRY antibody region showed high sequence similarities between the species (I). 
The differences found in the expression of PDF in s-LNvs in D. montana 
compared to D. melanogaster could explain, at least partly, the lack of the morning 
activity and the attenuated function of the circadian clock in this species in 
constant darkness. In addition, the absence of CRY expression in l-LNvs in D. 
montana may enable the flies to retain their rhythmicity in continuous light 
during northern summers. 

3.3 The role of the circadian clock in controlling seasonal rhythms 
and its possible connection with the photoperiodic timer 

The role of the circadian clock in controlling seasonal changes in insect behavior 
and development, alone or together with a photoperiodic timer, is still unclear 
(Schiesari et al. 2011) and many theoretical models and experimental designs 
have been developed to find answers to this question (Bünning 1936, Pittendrigh 
& Minis 1964, Pittendrigh 1972, Lees 1973). To find out whether the circadian 
clock is involved in the function of the photoperiodic timer in D. montana I traced 
photoperiodic responses of the females of this species (diapause/reproduction) 
under different LDs using the classical Nanda-Hamner protocol (II). If D. 
montana females used circadian clock in photoperiodic time measurement, their 
diapause response would be predicted to rise and fall with a period ~24 h during 
the prolonged nights. On the other hand, if they showed non-rhythmic diapause 
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response during those prolonged nights, their photoperiodic time measurement 
could be expected to be based on an hourglass-like mechanism or a damped 
oscillator. The study revealed no cycling in the females’ diapause response, thus 
favoring the latter option. The fact that D. montana females did not show a ‘short 
day response’ and enter diapause in prolonged nights could be due to the fact 
that their light-sensitivity did not show rhythmic fluctuation in darkness 
(circadian clock is not involved or it is rapidly damped). Another possibility 
would be that the females had problems in the counter mechanism of the 
photoperiodic timer (they did not succeed in collecting information on the 
required number of LD cycles for diapause induction). The finding on low 
diapause incidence of these flies is intriguing, as usually insects that have given 
negative results in the Nanda-Hamner protocol have shown short and not long 
day response (e.g. high diapause incidence) during the prolonged nights.  

Pittendrigh and Daan (1976) proposed for the maintenance of seasonal 
changes in behavior a general model, in which the morning (M) and evening (E) 
activity peaks are assumed to be induced by the morning and evening oscillators. 
Seasonal changes in the phase relationship between these peaks enable the 
organisms to anticipate environmental changes and to synchronize their 
behavior accordingly (Allada & Chung 2010). As D. montana flies do not show a 
morning peak in their locomotor activity, they cannot measure changes in day 
length by comparing the distance between morning and evening peaks (I, III, IV). 
The same is true for some other species with unimodal activity, such as the house 
fly Musca domestica (Helfrich et al. 1985), Japanese honeybee Apis cerana japonica 
(Fuchikawa & Shimizu 2007) and D. virilis (Bahn et al. 2009). However, Potdar 
and Sheeba (2012) have recently demonstrated that in D. melanogaster l-LNvs may 
set the phase of the evening peak in a wide variety of photoperiods, ranging 
from extreme short days (4:20 LD) up to extreme long days (20:4 LD). Thus the 
evening activity peak and its’ phase-shifting during a day in different day 
lengths might enable D. montana and other species showing unimodal activity to 
detect seasonal changes in day length. The measurement of the day length in 
these species could follow the external coincidence hypothesis proposed by 
Bünning in 1936, where only one circadian oscillator (in this case the evening 
oscillator) is thought to be responsible for measuring the length of the day. 

Seasonal changes in photoperiod and temperature are known to modify the 
daily activity patterns of organisms. In D. montana the position of the single 
activity peak (evening peak) phase-shifted earlier in respect to the lights-off 
transition along with an increase in day length (I). Simultaneous changes in 
photoperiod and temperature in seminatural conditions advanced the females’ 
evening activity peak even more than photoperiodic changes alone (III). In 
addition, the activity level of the females decreased towards the autumn; 
diapausing females being less active than the non-diapausing females in the 
shortest photoperiod (III). Photoperiod and temperature are known to affect the 
phase-shift of the flies’ activity peaks also in D. melanogaster, in which the 
evening activity of the flies is delayed under long day conditions relative to the 
prior sunrise and the flies become progressively more nocturnal (Chen et al. 
2006). In colder temperatures, D. melanogaster flies phase-shift their evening 
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activity to an earlier time of day (Majercak et al. 1999). Temperature cycles have 
been found to entrain the circadian clock of the flies of this species also without 
any changes in the photoperiod (Wheeler et al. 1993). The same seems to be true 
also in D. montana, as I have found a 3 °C difference in the temperature to 
increase the flies’ free-running rhythmicity in constant darkness (Kauranen, 
unpublished). Futhermore, Vanin et al. (2012) have shown that in natural 
conditions D. melanogaster flies show a third activity peak, the afternoon peak. 
We did not detect this kind of ‘extra’ peak in D. montana in seminatural 
conditions. An advancement of the evening activity peak and a decrease in the 
activity level of D. montana flies towards the autumn, as well as the lower activity 
of diapausing females compared to the non-diapausing females in late summer, 
are expected to  be adaptive features in northern latitudes.  

3.4 Daily and seasonal changes in the expression level of timeless 
and period genes 

The expression of the circadian clock genes has been found to show both daily 
and seasonal changes in several insect species (Majercak et al. 1999, Warman et 
al. 2000, Goto & Denlinger 2002). For example, in Sargophaga crassipalpis, the 
expression level of tim, but not that of per, has been found to dampen under long 
day conditions, and the expression levels of both genes has been shown to be 
sensitive to cold temperature (Goto & Denlinger 2002). In addition, the 
expression peaks of both of these genes have been shown to phase-shift in 
concert with the onset of scotophase in this species (Kostal et al. 2009). However, 
the species seem to vary in this, since in other species, such as Protophormia 
terraenovae (Muguruma et al. 2010), neither of these genes show expression 
differences under short- and long-day conditions.  

In D. montana, the expression levels of per and tim cycled in all photoperiods 
showing a mutual phase relationship with each other (III). The peak expression of 
both of these genes phase-shifted towards the light-on transition as the day length 
and temperature decreased (III). The peak expression of per and tim have been 
found to phase-shift to an earlier time of day in shorter photoperiods also in the 
silkmoth Bombyx mori (Iwai et al. 2006). In D. melanogaster the phases of tim and per 
are advanced at lower temperatures and in per this phase advance has been found to 
be caused by its differential splicing (Majercak et al. 1999). Co-occurrence of the 
evening activity peak and the highest levels of tim and per expression varied in D. 
montana between the photoperiods / temperatures in seminatural conditions (III). In 
the shortest photoperiod the expression peaks of these genes phase-shifted to an 
earlier time of day so that they occurred earlier than the evening activity peak of the 
females, both in diapausing and non-diapausing females. The cyclic expression of 
these genes suggests the action of the circadian component in these oscillations. In 
addition, phase-shifting of the peak expression of per and tim indicate the plasticity 
of the circadian clock in D. montana, which is an important character for the species 
living in northern hemisphere.  



 

4 CONCLUSIONS 

An ability to predict forthcoming changes in environmental conditions is crucial 
for the survival and reproduction of organisms living in a seasonally changing 
environment, as their fitness depends largely on their capability to utilize 
available energy resources and to synchronize their metabolic, developmental 
and behavioural processes along with the changing seasons. One of the key 
factors in enhancing adaptation to this kind of environment is the evolution of 
two time-measuring systems: the circadian clock regulating daily variation and 
the photoperiodic timer regulating seasonal activities. The genetic background of 
the circadian clock is well-known, but the genetic and physiological mechanisms 
behind the photoperiodic timer and the role of the circadian clock in this timer 
are still unclear. In my thesis I have studied the role of the circadian clock in 
adaptation to seasonally varying environment in a northern Drosophila species, D. 
montana, by tracing the locomotor activity and eclosion rhythms of the flies of 
this species, as well as by studying the function of their circadian clock at the 
genetic and neuronal level. In addition, I have tried to find out whether and how 
the circadian clock plays a role in the function of the photoperiodic timer 
regulating the diapause behaviour of this species. 

My studies show that the circadian clock of D. montana possesses features 
that are adaptative in seasonally varying northern environments. First, I found 
that D. montana flies show good entrained activity rhythms and display only a 
single, evening activity peak in different photoperiods (I, III, IV). Second, the flies 
of this species were found to maintain their free-running locomotor activity 
rhythm better in constant light (both high and low light intensity) than in 
constant darkness (I, IV). D. montana flies differ in both above-mentioned 
characters from the more southern species D. melanogaster, which is one of the 
most important model species used in studies of the circadian clock. Study I 
showed that explanations for the species differences in fly locomotor activity 
rhythms can be found at the neuronal level. In this study D. montana was found 
to differ from D. melanogaster in the number and location of specific circadian 
neurons expressing the neuropeptide PDF and the photoreceptor CRY protein, 
both of which play an important role in regulating circadian rhythms e.g. in the 
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locomotor activity (I). Study IV also showed that contrary to the situation with 
the locomotor activity rhythms, D. montana flies show persistent free-running 
eclosion rhythm in constant darkness (IV). This difference is likely explained by a 
difference in their control: the locomotor activity of the flies is directly under the 
control of central circadian clock whereas the eclosion rhythm is regulated by the 
circadian oscillators in peripheral ganglia, which might function more 
independently in this species than e.g. in D. melanogaster. To study the possible 
role of the circadian clock in the function of photoperiodic timer, I traced the 
females’ photoperiodic diapause responses under different LDs using a classical 
Nanda-Hamner protocol (II). The study revealed no circadian rhythmicity in 
females’ diapause response, which suggests that the function of the 
photoperiodic timer in D. montana is based on either an non-oscillatory hourglass 
timer or a rapidly damping circadian oscillator. D. montana flies can use only one 
circadian oscillator (evening oscillator) to measure the length of day, as they do 
not show a morning activity peak (I), hence their time measurement could be 
described using the external coincidence model proposed by Bünning in 1936. 
Indeed, I found in study IV that D. montana females shift their evening activity 
towards an earlier time of the day in seasonally changing environmental 
conditions and also decrease their activity towards the autumn, with diapausing 
females being less active than non-diapausing females (III). In this study also the 
expression peaks of two circadian clock genes per and tim, were found to phase-
shift in concert with a decrease in the day length, so that  in the shortest 
photoperiod the highest expression peak of these genes occurred earlier than did 
the females’ evening activity peak.  

Circadian rhythms of D. montana are not exceptional among insect species 
and recent studies on some other species of the D. virilis species group have 
detected the same kinds of phenomena (Bahn et al. 2009, Hermann et al. 2012). 
Differences in the function of the circadian clock between the species of D. virilis 
group (genus Drosophila) and D. melanogaster (genus Sophophora) suggest that the 
circadian clock has evolved in different directions in the different evolutionary 
lineages. The lack of the morning activity peak in entrained rhythms, the 
degradation of free-running activity rhythm in constant darkness and the 
findings on the expression of PDF and CRY in the brain neurons of D. montana 
flies strongly suggest that the morning oscillator of this species does not function 
in the same way as it does in D. melanogaster and that the evening oscillator plays 
a more important role in the circadian clock of D. montana. This kind of circadian 
clock may have been one of the key factors enabling D. montana flies to distribute 
to high latitudes and altitudes, where it is beneficial to be rhythmic during the 
long summer days and non-rhythmic and less active during the short winter 
days.  

Altogether, the studies included in my thesis expand the knowledge on the 
function of the circadian clock as well as on its role in seasonal adaptation. 
However, further studies at the behavioural, genetic and neuronal levels are 
needed to find out whether and how the circadian clock is involved in the 
function of the photoperiodic timer. For example, studies on the expression of the 
circadian clock genes at the protein level in the brains of D. montana flies could 
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give more detailed information on their direct or indirect role in photoperiodism, 
especially if the studies would be performed on females at different 
developmental stages (non-diapausing/diapausing) and in different 
environmental conditions. In addition, the use of other kinds of techniques, such 
as gene silencing, would help to trace the importance of the circadian clock genes 
in evoking photoperiodic responses in D. montana. In efforts to understand the 
function and interaction between the two clock mechanisms, selection of suitable 
model species with clear free-running and entrained rhythms controlled by the 
circadian clock, and robust photoperiodic responses determined by the 
photoperiodic timer, will be the key factor. Clearly, D. montana offers a good 
object for these studies. 
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

 
Sopeutuminen ympäristöoloissa tapahtuviin vuorokauden ja vuoden aikaisiin 
muutoksiin on tärkeää erityisesti pohjoisessa eläville eliölajeille. Tällaisissa 
oloissa yksilöiden on kyettävä mittaamaan aikaa ja ennakoimaan tulevat 
ympäristön muutokset, jotta ne voivat muuttaa niin aineenvaihduntaansa, 
fysiologiaansa kuin käyttäytymistäänkin vallitseviin ympäristöoloihin sopiviksi. 
Tässä ”ennustamisessa” ovat keskeisessä roolissa vuorokausirytmejä ylläpitävä 
sirkadinen kello ja vuodenaikaisrytmejä säätelevä valojaksoinen kello.  

 Maapallon pyöriminen oman akselinsa ympäri 24 tunnin sykleissä on 
johtanut eliöiden sirkadisen kellon evoluutioon. Tämä aikaa mittaava biologinen 
kellomekanismi ylläpitää eliöiden noin 24 tunnin pituista sisäistä vuorokautta ja 
lisää eliöiden sekä sisäistä että ulkoista kelpoisuutta säätelemällä esimerkiksi 
syanobakteereilla solun jakautumista, kasveilla lehtien liikkeitä, Drosophila-
kärpäsillä liikeaktiivisuutta ja kuoriutumisrytmiä sekä ihmisillä uni-valverytmiä 
ja ruumiinlämpötilaa. Sirkadisen kellon ylläpitämille rytmisille ominaisuuksille 
on tyypillistä se, että ne tahdistuvat ympäristön antamien signaalien, kuten valo- 
tai lämpötilamuutosten mukaan. Lisäksi ko. ominaisuuksien rytmisyys säilyy 
vaikka eliöt laitetaan vakaaseen ympäristöön. Maapallon pyörimisliike auringon 
ympäri vuoden kuluessa on vastaavasti johtanut valojaksoisen kellon 
evoluutioon. Valojaksoisen kellon tiedetään mittaavan lähinnä päivän pituudessa 
tapahtuvia muutoksia, joiden avulla se auttaa eliöitä luotettavasti ennakoimaan 
ympäristön tulevat vuodenaikojen vaihtelut ja mahdollistaa siten niiden 
sopeutumisen tällaisiin muuttuviin olosuhteisiin. Valojaksoisen kellon tiedetään 
säätelevän mm. Drosophila-naaraiden lisääntymislepokauteen eli diapaussiin 
siirtymistä ja monarkkiperhosten vuodenaikaisvaellusta. Sirkadisen kellon 
geneettisestä ja neurologisesta taustasta tiedetään jo paljon, mutta valojaksoisen 
kellon taustalla vaikuttavat geenit sekä neurologiset kytkennät ovat vielä 
suurelta osin tuntemattomia. Lisäksi on vielä epäselvää nojautuuko valojaksoisen 
kellon toiminta sirkadiseen kelloon, vai perustuvatko kyseiset biologiset kellot 
täysin eri mekanismeihin. 

Väitöskirjatutkimukseni tavoitteena oli selvittää kuinka sirkadisen kellon 
evoluutio on voinut edesauttaa Drosophila montana -lajin kärpästen sopeutumista 
pohjoiseen ympäristöön. Lisäksi tutkin, onko sirkadisen kellon toiminta 
mahdollisesti yhteydessä valojaksoiseen kelloon ja jos on, niin miten. D. montana 
-laji on levittäytynyt ympäri pohjoista pallonpuoliskoa sopeutuen erilaisiin 
oloihin ja lisäksi sille on kehittynyt talvehtimisstrategiaksi valojakson säätelemä 
lisääntymislepokausi, joten se tarjoaa mielenkiintoisen tutkimuskohteen. 
Vastatakseni väitöskirjatutkimukseni kysymyksiin tutkin kuinka sirkadinen kello 
säätelee D. montana -naaraiden vuorokausi- ja vuodenaikaisrytmejä sekä 
liikeaktiivisuudessa että kuoriutumisen ajoittumisessa, ja kuinka tämä kello 
toimii geneettisellä ja neurologisella tasolla. Lisäksi pyrin selvittämään sirkadisen 
kellon osuutta valojaksoisen kellon toiminnassa tutkimalla D. montana -naarailla 
esiintyvää valojaksoista lisääntymislepokautta eri koeoloissa. 
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Tutkimukseni osoittavat, että D. montana -lajin sirkadinen kello omaa 
ominaisuuksia, jotka ovat tärkeitä ko. lajin sopeutumiselle pohjoiseen 
elinympäristöön. D. montana -naaraiden liikeaktiivisuus tahdistuu hyvin 
erilaisiin ympäristöoloihin kuten valojaksoihin ja lämpötiloihin, naaraiden 
aktiivisuustason saavuttaessa huippunsa alkuillan aikana. Vakaissa oloissa D. 
montana ylläpitää liikeaktiivisuusrytminsä paremmin jatkuvassa valossa kuin 
jatkuvassa pimeydessä. Täten D. montana -kärpäsen liikeaktiivisuusrytmi 
poikkeaa eteläisemmästä, sirkadisen kelloon liittyvän tutkimuksen yhtenä 
mallilajina pidetystä D. melanogaster -lajista, jolla liikeaktiivisuuden on havaittu 
jakautuvan sekä aamu- että ilta-aktiivisuushuippuun. Viimeksi mainitun lajin 
kärpäset myös säilyttävät liikeaktiivisuusrytminsä jatkuvassa pimeydessä, mutta 
menettävät sen jatkuvassa valossa. Tutkimuksessani havaitsin D. montana- ja D. 
melanogaster -kärpästen välillä myös neuronitason eroja, jotka voivat selittää 
liikeaktiivisuudessa havaittuja eroavaisuuksia ko. lajien välillä. D. montana 
poikkesi sekä Pigment-dispersing factor- ja cryptochrome -geenejä ekspressoivien 
neuronien lukumäärän että niiden sijainnin suhteen D. melanogaster -lajista. 
Vaikka D. montana -kärpäset menettävät liikeaktiivisuusrytminsä jatkuvassa 
pimeydessä, tutkimukseni osoittaa, että ne säilyttävät silti kuoriutumisrytminsä 
ko. oloissa, mikä voi johtua siitä, että nämä rytmit toimivat osittain eri 
säätelymekanismien alla. 

Väitöskirjatyöhöni sisältyi myös Nanda-Hamner -koe, jossa tutkin 
sirkadisen kellon yhteyttä lisääntymislepokauden laukeamiseen D. montana -
naarailla 13 eri valojaksossa, joissa valoisan ajan määrä oli vakio ja pimeän ajan 
pituus vaihteleva. Mikäli sirkadinen kello olisi yhteydessä valojaksoisen kellon 
toimintaan, naaraiden valosensitiivisyyden ja samalla myös niiden herkkyyden 
siirtyä lisääntymislepokauteen tulisi vaihdella noin 24 tunnin sykleissä. Tämän 
kokeen tulokset eivät antaneet selkeää vastausta sirkadisen kellon osallisuudesta 
valojaksoisen kellon toimintaan D. montana -naarailla. Kokeen tulokset kuitenkin 
osoittivat valojaksoisen kellon toimivan D. montana -lajilla joko itsenäisesti ilman 
sirkadisen kellon osallisuutta tai pohjautuvan sellaiseen sirkadisen kellon 
ylläpitämään oskillaattoriin, joka menettää rytmisyytensä vakaissa oloissa. 
Tutkimukseni mukaan päivän pituuden mittaus perustuu D. montana -lajilla 
lähinnä ilta-aktiivisuushuipun ajoittumiseen: päivänpituuden lyhentyessä D. 
montana -kärpästen ilta-aktiivisuushuippu siirtyi aikaisemmaksi ja niiden 
liikeaktiivisuus väheni. Myös kahden sirkadiseen kelloon liittyvien period- ja 
timeless-geenien ekspressiohuiput siirtyivät vastaavasti aikaisempaan 
ajankohtaan.  

D. montana-lajin lisäksi myös kolmen muun saman D. virilis -ryhmän lajin 
sirkadisen kellon toiminnan on havaittu poikkeavan niille kaukaista sukua 
olevan D. melanogaster -lajin kellon toiminnasta. Löydetyt erot sirkadisen kellon 
toiminnassa eri lajiryhmien välillä kuvastavat todennäköisesti eri suuntaan 
edennyttä sirkadisten kellojen evoluutiota lajien sopeutuessa erilaisiin 
elinympäristöihin. D. montana -lajin sirkadinen kello omaa selkeästi piirteitä, 
jotka mahdollistavat ko. lajin sopeutumisen pohjoisiin elinympäristöihin. Tämän 
lajin kärpästen liikeaktiivisuusrytmin säilyminen jatkuvassa valossa kuvastaa ko. 
lajin sopeutumista pohjoisiin kesiin, jolloin pohjoisessa elävät lajit altistuvat 
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jatkuvalle valolle. Myös rytmisyyden katoaminen jatkuvan pimeyden aikana ja 
liikeaktiivisuuden väheneminen lyhyissä päivänpituuksissa ovat sopeutumia 
pohjoisiin talvioloihin, joissa ylimääräinen aktiivisuus tai sen rytmisyys 
kuluttaisi vain yksilöiden resursseja ja heikentäisi niiden talvesta selviytymistä. 

Väitöskirjatutkimukseni tuo lisää tietoa sirkadisen kellon roolista eliöiden 
sopeutumisessa pohjoisiin oloihin niin fenotyyppisellä, geneettisellä kuin 
neurologisellakin tasolla. Lisäksi tutkimukseni valottaa evoluutiota, jota on 
tapahtunut eri lajien välillä niiden sopeutuessa erilaisiin elinympäristöihin. 
Tekemäni tutkimukset antavat hyvän pohjan jatkotutkimuksille, joissa erilaisten 
molekyyligeneettisten menetelmien, kuten proteiinitason tutkimuksien avulla 
voidaan tutkia tarkemmin sirkadisen kellon osuutta sekä eliöiden 
sopeutumisessa erilaisiin elinympäristöihin että erityisesti valojaksoisen kellon 
toiminnassa.  
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TABLE 1  The experimental conditions and treatments used in the studies I, III & IV. Study strains as well as mass-bred population refer to the 
type of the strains vs. mass-bred population used in the experiments. Entraining photoperiod refers to the photoperiod used for the 
entrainment of the flies at the beginning of each experiment. Entraining temperature refers to the temperature in each experiment. 
Lashes used refer to the particular day vs. night temperatures if the temperature has been cycling during the experiment. Constant 
condition treatment refers to the constant condition where the flies in each experiment have been released after entrainment. LD = 
light: dark cycle, DD = constant darkness, LL = constant light, HLL = constant high light intensity, LLL = constant low light 
intensity.  

 
        

  I III IV 
Study lines/ mass-bred population 

Isofemale lines, Oulanka Mass-bred population, Oulanka Isofemale lines, Oulanka  

Entraining photoperiod 22:2 LD, 20:4 LD, 16:8 LD 24:0 LD, 22:2 LD, 18:6 LD, 16:8 LD, 14:10 LD 20:4 LD 

Entraining temperature  20 °C, 16 °C 19 °C, 19 °C/13 °C, 17 °C/13 °C,  16 °C/12 °C, 14 °C/11 °C  20 °C 

Constant condition treatment DD, LL 
 

DD, HLL, LLL 
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