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Tiivistelmä

Tässä Pro gradu -tutkielmassa esitellään hila-Boltzmann-menetelmän peruso-
minaisuudet. Tämän lisäksi hila-Boltzmann menetelmän kanssa yhdessä käy-
tetty partikkelimalli esitellään ja yhdistettyä mallia käytetään musteen ete-
nemisen tutkimiseen paperinäytteissä. Simulointigeometrioiden hankkimiseen
käytettiin kahta eri menetelmää, konfokaalimikroskopiaa ja röntgentomografi-
aa. Simulaatioparametrien ja paperin ominaisuuksien vaikutusta musteen ete-
nemiseen tutkittiin. Kummallakin kuvanhankintamenetelmällä saatiin lupaavia
tuloksia, mutta jotta simuloinnit ja kokeelliset tulokset saataisiin yhteneväi-
semmiksi, tulisi nämä kuvausmenetelmät yhdistää. Näin pystyttäisiin saamaan
kuvia, joissa näkyy koko paperinäytteen paksuus yhdessä mustejakauman kans-
sa. Konfokaalimikroskooppikuvista saatuihin geometrioihin tehdyissä simulaa-
tioissa varioitiin simulaatioparametrejä ja huomattiin että diffuusiokerroin oli
ainut parametri, joka aiheutti huomattavan muutoksen mustejakaumissa. Tä-
mä tukee intuitiivisesti odotettavaa tulosta; muste pyrkii liikkumaan suurien
virtauskanavien suuntaisesti, ellei diffuusio ole riittävän voimakas erottaakseen
huomattavan osan mustepartikkeleista virtauksesta. Eri määrän pohja- ja pin-
taliimaa sisältäviä näytteitä tutkittiin ja tulokset olivat osittain epäjohdonmu-
kaisia. Toisessa simulointisarjassa mittaustulokset olivat yhteneviä kokeellisten
tulosten kanssa kun taas toisessa eivät. Mahdollisia selityksiä tähän ovat muun
muassa paperin heterogeenisyyden vaikutus tuloksiin, erot paperin ominaisuuk-
sissa makroskooppisesti eri kohdissa paperia ja kemialliset ilmiöt joita ei otettu
huomioon mallissa. Voimme kuitenkin päätellä, että simulaatiomenetelmät joita
käytettiin kuvaavat pääpiirteittäin musteen tarttumista paperiin. Tämä päätel-
mä perustuu osaltaan siihen, että kokeellisesti havaittu jakaantuminen kahteen
erilliseen komponenttiin mustepigmenttien jakaumassa näkyi myös simulaatio-
tuloksissa.
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Abstract

In this thesis the basic properties of the lattice- Boltzmann method (LBM) are
introduced. Also, a particle model used in combination with LBM is presented,
and the combined model is then applied to ink propagation in samples of pa-
per. Simulation geometries were acquired with two different methods, namely
confocal microscopy and X-ray tomography. The effect of simulation paramet-
ers and paper properties on ink propagation was considered. Promising results
were acquired with both image acquiring techniques, but for a better consist-
ency between simulations and experiments the methods should be combined
so as to get images that include the full thickness of the sample together with
the ink distribution. Adjustment of simulation parameters in confocal micro-
scopy geometries showed that diffusion coefficient was the main parameter that
explained the form of the ink distribution curves. This suggests an intuitively
expected result: ink tends to move with the major flow channels unless diffusion
is strong enough to separate enough of ink particles from the flow. Simulations
done in samples of varying sizing gave incoherent results. One simulation series
was in agreement with experimental results, while another was not. Possible
explanations to this dilemma includes effects of paper heterogeneity on the res-
ults, differencies in paper properties in macroscopically different parts of the
paper, and chemical effects not taken into consideration in the model. We can
conclude however that simulations with the methods applied here qualitatively
capture the main features of the settling in paper. In part this conclusion is
based in the fact that the experimentally observed division into two separate
components in the distribution of attached ink pigments was also realised in the
simulations.
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1 Introduction

The exponential increase in the computing capacity has opened new doors to
scientists in the last few decades. This has had an impact in particular on
computational fluid dynamics. Computational methods have grown to be an
equal contributer to the scientific development amongst the more traditional
methods, namely experiments and theory.

The benefits of using computational methods in addition to the traditional ones
are significant. First of all analytical solutions to fluid dynamics equations are
sometimes hard or even impossible to find, and their numerical treatment is thus
necessary. Experiments could also be done to gain knowledge in such a situ-
ation, but many times computational methods are more effective as there is no
need to build expensive measurement set-ups, and adjustments in the conditions
are far easier to do in a simulation set-up than in a physical system. Secondly,
computational methods have some benefits over the experimental ones when
it comes to analysis of the results. It is not possible to build an experimental
set-up, where the relevant fluid-dynamical variables can be determined every-
where in the measurement domain, and measurement instruments often disturb
the flow they monitor. Computational methods easily provide such information
without disturbing the flow.

Traditionally methods in computational fluid dynamics simulate the Navier-
Stokes equation, and a vast majority of commercial and non-commercial soft-
ware are based on solving this equation. However new methods are arising
that challenge the more traditional ones. One of them is the lattice-Boltzmann
method in which a statistical approach on fluid-dynamical problems is taken.
The method is very versatile and it can be used to simulate a number of different
behaviours, including unsteady flows, phase separation, evaporation, condens-
ation, cavitation, boyancy, flow in porous media and liquid-particle suspensions.

This thesis introduces the basic concepts of the lattice-Boltzmann method com-
bined with a particle model used to simulate fluid-particle suspensions. Whole
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books are written about the lattice-Boltzmann method so we stress here that
the introduction is very compact and contains only main parts without any
subtleties. More information on the subject can be found e.g. in Refs [1] and
[2].

The model presented is used in the simulation part of this thesis to study the
behaviour of ink particles propagating in paper. It is very beneficial to get a
better understanding of the processes of ink propagation because it possibly
has a strong effect on print quality. Thus far these processes are not fully
understood, and the lattice-Boltzmann method can provide information that
can not be extracted from experimental or analytical results.
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2 Different approaches to fluid mechanics

Fluid mechanical problems can be approached at different levels of abstraction.
At the most fundamental level, that of particles, the fluid is described by motion
of individual particles and their mutual interactions. This kind of approach
describes the flow in a very detailed manner. At the continuum level such details
are omitted and the continuum assumption is made. The fluid is described
no longer by motion of individual particles but rather with macroscopic state
variables, such as pressure and density, which describe the fluid as a continuous
material. Between the two aforementioned levels is an intermediate level in
which a compromise between the two is pursued. The particle, continuum
and intermediate levels correspond to microscopic, macroscopic and mesoscopic
physical scales, respectively. The different levels of abstraction are illustrated
in Fig. 1.

Figure 1: Different levels of abstraction of a physical system. Examples of governing
equations are also shown.

Different approaches use different premises and by using these premises they
arrive at different mathematical descriptions of the system, which have their
strengths and weaknesses. Some standard mathematical models are reviewed
in the following sections.

2.1 The macroscopic approach

Let us start our analysis of different mathematical descriptions of fluid from
the viewpoint of continuum mechanics, where the dynamics of the system is
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typically described with balance or conservation equations for the relevant hy-
drodynamic variables. For example, the general form of the conservation of
mass can be expressed in the form

∂ρ

∂t
+∇· (ρu) = 0, (1)

where ρ and u = (u,v,w) are the local density and velocity of the fluid, respect-
ively. In what follows, we derive an equation for the conservation of momentum;
Eq. (1) can be derived in a similar manner. By applying the Reynolds transport
theorem to the linear momentum ps, an equation can be found for the rate of
change of the momentum of a infinitesimal volume element [3],

dps
dt

=
∑

F = d

dt

(∫
V
ρudV

)
+
∫
S

uρ(u ·n)dA. (2)

Here ∑F is the total force applied to the volume element. The first integral on
the right hand side of the equation is over the volume element and the second
over the area enclosing this volume; n is an outward unit normal vector of the
surface. The second integral can be modified to one over the volume using the
Gauss’ theorem [4]:

∫
S

uρ(u ·n)dA=
∫
V

[u∇·ρu + (ρu ·∇)u] dV. (3)

The first term on the right hand side of Eq. (2) can also be modified using the
Leibniz rule [5]:

d

dt

(∫
V
ρudV

)
=
∫
V

[
ρ
∂u
∂t

+ u
∂ρ

∂t

]
dV. (4)

Substitution of Eqs (3) and (4) into Eq. (2) gives

∑
F =

∫
V

[
ρ
∂u
∂t

+ u
∂ρ

∂t
+ u∇·ρu + (ρu ·∇)u

]
dV. (5)
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Rearranging the terms in Eq. (5), we can express it in the form

∑
F =

∫
V

[
u
(
∂ρ

∂t
+∇·ρu

)
+ρ

(
∂u
∂t

+ u ·∇u
)]

dV. (6)

The total force applied to the volume element can be divided into body forces
and surface forces:

∑
F = Fb+ Fs. (7)

The body forces are due to external fields and act evenly on the entire mass
within the volume. The only body force that is now taken into account is
gravity, and its contribution takes the form

Fbody =
∫
V
ρg dV, (8)

where g is the acceleration of gravity. The force caused by the internal stresses
of the fluid to the surface element dA is

dFsurface = ~σ ·n dA, (9)

where ~σ is an appropriate stress tensor for the fluid. The total force applied to
the surface of volume V is hence

Fsurface =
∫
S
~σ ·n dA=

∫
V
∇·~σ dV. (10)

Above we have again applied the Gauss’ theorem in transforming a surface
integral into a volume integral. By combining Eqs (6)-(10), we get a volume
integral equation for the conservation of linear momentum

∫
V
ρg dV +

∫
V
∇·~σ dV =

∫
V

[
u
(
∂ρ

∂t
+∇·ρu

)
+ρ

(
∂u
∂t

+ u ·∇u
)]

dV.
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⇔
∫
V

[
ρg +∇·~σ−u

(
∂ρ

∂t
+∇·ρu

)
−ρ

(
∂u
∂t

+ u ·∇u
)]

dV = 0. (11)

The third term on the left hand side of the equation vanishes due to the equation
of continuity Eq. (1), and the last term is the total acceleration of the fluid, i.e.
du/dt [3]. Since the integral is over an arbitrary volume element, the integrand
itself must be zero and we arrive at

ρg +∇·~σ = ρ
du
dt
. (12)

The stress tensor can be divided into viscous stresses ~τ and hydrostatic pressure
−p~I acting on the surfaces of the volume element, giving us the final form of
the conservation equation for the linear momentum:

ρg−∇p+∇·~τ = ρ
du
dt
. (13)

In order to derive the standard Navier-Stokes equations, three more assumptions
have to be made. First of all, the fluid must be considered as incompressible,
which is a fair assumption for many practical fluid flows. Secondly, one must
assume that the fluid has a linear relation between applied shear stress and
resulting strain rate, i.e. the fluid is assumed to be Newtonian. The third
assumption required is isotropy of the fluid, which means that the properties of
the fluid do not depend on the direction. Finally, by using these assumptions,
one arrives at the expression

ρg−∇p+µ∇2u = ρ

[
∂u
∂t

+ u ·∇u
]
. (14)

Eq. (14) is the Navier-Stokes equation which is a second-order nonlinear par-
tial differential equation. Only a small number of analytical solutions for it
are known. However numerical solutions can be obtained for a wide variety of
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complex two- and three-dimensional flows.

The key assumption made when deriving the Navier-Stokes equation was the
continuity of the fluid. Knudsen number is the ratio of the mean free path lm
of fluid particles to a charasteristic length scale L of the macroscopic system.
That is, a low Knudsen number implies that the continuum assumption is valid.
On the other hand, when dealing with very small length scales or under certain
conditions, e.g. rarefied gas flows (high Knudsen number), the continuum as-
sumption is invalid and hence the Navier-Stokes description compromised. One
thus has to look for an alternative approach which does not suffer from the
same limitations. One possibility is to construct a more general hydrodynamic
equation such as e.g. the Burnett equation so as to cover a wider range of fluid
flow situations [6, 7]. Alternatively, one can use an approach which does not
assume that the fluid is continuous. Obviously with this latter choice we are
moving towards a more detailed, microscopic description.

2.2 From microscopic to mesoscopic

In a small enough scale the fluid cannot be treated as a continuum and a more
detailed description is necessary. Let us start our treatment of the topic by
presenting the equation of motion and initial conditions for each molecule in an
N molecule system. They can be expressed in the form

mi
d2xi
dt2

= Fi, ui(t= 0) = ui0, xi(t= 0) = xi0, (15)

where mi is the mass of molecule i, ui = dxi/dt is its velocity and Fi is the
force acting on molecule i due to intermolecular interactions. Any macroscopic
system under normal conditions contains a number of molecules of the order of
Avogadro’s number (∼ 6× 1023). A daunting computational challenge, to say
the least. Even if this amount of data could be stored for a computer simula-
tion, the problem of instability would remain. Even a tiny uncertainty in the
initial conditions of the system could blow up exponentially in time, thereby
destroing the predictive capability of the model.
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In summary, molecular dynamics can provide a very detailed description, but
is limited to rather small systems. An alternative description, a compromise
between details and system size, can be derived using statistical mechanics.
Instead of presenting the state of N molecules by equations (15), a phase space
is defined with 6N mutually orthogonal axes, and each of them is associated
with a position or momentum component of a molecule. Next a large number
M of distinct systems is defined, which macroscopically are equivalent to the
actual system considered. The microscopic states of the replicates can however
differ greatly. This collection of replicates is referred to as the Gibbs ensemble
[8]. Each replicate is presented by a point in the phase space qk, k = 1, . . . ,M .
If a large enough value for the number of these replicates is assumed, one can
describe their distribution in the phase space by a continuous density function.
A normalisation can be done so that this density becomes a probability density
denoted by FN = FN (r1,p1, . . . ,rN ,pN , t) = FN (q1, . . . ,qN , t) with qi = piri.
The evolution equation for this propability density is derived for example in
Ref. [9], but here only the result is shown:

∂FN
∂t

+
N∑
i=1

ci ·
∂FN
∂ri

+
N∑
i=1

Fi ·
∂FN
∂pi

= 0, (16)

where Fi is the force acting on the molecule i. Equation (16) describes the
conservation of the propability density and is called the Liouville’s theorem.
Equation (16) is in no way easier to solve than the original microscopic descrip-
tion Eq. (15). The amount of degrees of freedom is the same. The merit of the
new equation comes from the fact that Liouville’s theorem is a stepping stone
for a procedure where details of the description can be systematically reduced.
The N particle distribution function can simply be integrated over unwanted
coordinates to arrive at a so called R particle reduced distribution function

FR(q1, ...,qR, t) =
∫
FN (q1, ...,qN , t)dqR+1 · · ·dqN . (17)

So as to find equations for the time development of these distribution functions,
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one starts from the Liouville’s theorem Eq. (16) and integrates each term over
the coordinates qR+1, . . . ,qN . If a two particle potential

Fi =−
N∑

j=16=i

∂φij
∂qi

(18)

is used, it is possible to find the time development of the reduced R particle
distribution function such that

∂FR
∂t

+
R∑
i=1

pi
m
· ∂FR
∂qi
−

R∑
i,j=1

∂φij
∂qi
· ∂FR
∂pi

= (N −R)
∫
drR+1

R∑
i=1

∂φiR+1
∂qi

· ∂FR+1
∂pi

. (19)

Equation (19) is called the BBGKY hierarchy of equations named after Bogoli-
ubov, Born, Green, Kirkwood and Yvon, who independently derived this equa-
tion [10]. A more rigorous derivation of this equation is given in Refs [1] and
[11]. By writing down the equation for the first reduced distribution function,

∂F1
∂t

+ p1
m
· ∂F1
∂q1

= (N −1)
∫
dr2φ

′
12 ·

∂F2
∂p1

, (20)

one can immediately see that a completely new problem arises. Equation (19) is
not closed: every distribution function FR depends on the distribution function
FR+1. Usually the first reduced distribution function is of greatest interest,
and therefore the next goal is to remove the F2 dependence so that Eq. (20)
becomes self-contained in F1.

2.3 The Boltzmann equation

It was Ludwig Eduard Boltzmann who first published a closed equation for F1

in 1872 [12]. He did not derive his famous equation by using Liouville’s theorem
nor the BBGKY hierarchy as a starting point. Boltzmann used instead a more
intuitive approach. The Boltzmann equation can be derived also rigorously
from the Liouville’s theorem and BBGKY hierarchy, as is done for example in
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Refs [1] and [11]. Here merely the underlying assumptions and the result of the
derivation are presented. The assumptions are [13]:

1. The gas is assumed dilute enough so that all effects involving more than
two particles can be neglected.

2. Collisions are assumed to be localised in both space and time, i.e. the
duration of a collision is very small compared to the typical time scale of
the system.

3. Collisions are assumed to be elastic: total mass, momentum and kinetic
energy are conserved.

4. Collisions are also assumed to be microreversible. In a purely determin-
istic way this means that microscopic dynamics are time reversible. In a
probabilistic way this means that the probability that the velocities (u′,v′)
are changed into (u,v) in a collision process is the same as the probability
that (u,v) are changed into (u′,v′).

5. The last required assumption is that of Boltzmann chaos: the velocities
of two particles which are about to collide are uncorrelated.

Using these assumptions Boltzmann was able to derive his by now famous equa-
tion

∂f

∂t
+ c · ∂f

∂r
+ a · ∂f

∂c
= 1
m

∫
B(VR, θ)(f fR−f fR) dεdθdcR. (21)

Note that Eq. (21) does not give the time development of F1, but instead the
development of mass density f(r1,c1, t) = m ·N ·F1(r1,c1, t). Here a is the ac-
celeration due to force F = ma and standard abbreviations have been used:
f = f(r,c, t), fR = f(r,cR, t) and fR = f(r,cR, t); c and cR are particle velocit-
ies which become c and cR in a collision that fulfills the assumptions described
above. Furthermore, uR = c−cR is the relative velocity of two particles, VR is
the corresponding speed and parameters (s,ε,θ) are coordinates in a spherical
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coordinate system. The nonnegative function B(VR, θ) is the Boltzmann colli-
sion kernel orchestrating binary collisions, and its explicit form depends on the
two-particle interaction potential. The left hand side of the Boltzmann equa-
tion is referred to as the linear transport operator, and the right hand side as
the nonlinear collision operator, here denoted by C(F ). The collision operator
presented here is rigorously valid only for repulsive potentials.

Certainly a long way has been travelled from the definition of phase space to
the Boltzmann equation, and there is good reason for all these efforts. Using
the mass density distribution function f , one is able to relate a mesoscopic
description to a macroscopic one. Let us recall the two basic equations of
macroscopic theory, namely the conservation of mass and momentum:

∂ρ

∂t
+∇· (ρu) = 0, (22)

−∇p+∇·~τ = ρ
du
dt
. (23)

The external force term has been omitted in Eq. (23). Because f is a mass dens-
ity distribution function, the macroscopic fluid mass density can be obtained
by integrating this function over its velocity argument:

ρ(r, t) =
∫
f(r,c, t) dc. (24)

Similarly one finds for the momentum density that

ρ(r, t)u(r, t) =
∫

cf(r,c, t) dc. (25)

Let us now present the Boltzmann equation Eq. (21) without the acceleration
term, and denote the right hand side by C(f). Integrating this equation over
the velocity argument c, we find that

∫ ∂f

∂t
dc +

∫
c · ∂f
∂r
dc =

∫
C(f)dc. (26)
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Now the derivative in the first term on the left hand side of the equation can be
taken out from the integral, and according to Eq. (24) this term gives the time
derivative of the mass density. Also, the integrand in the second term on the
left hand side can be expressed in the form ∇· (cf) because c does not depend
on r. Thus, after some rearranging, we find that

∂ρ

∂t
+
∫
∇· (cf)dc =

∫
C(f)dc. (27)

The divergence can be taken out of the integral on the left hand side, and using
Eq. (25) we find further that

∂ρ

∂t
+∇· (ρu) =

∫
C(f)dc. (28)

We can also multiply the Boltzmann equation by c and integrate it then over
the velocity argument. By a similar derivation as above and using the result

∫
ccf dc = ρuu−σij , (29)

we finally obtain

−∇p+∇·~τ = ρ
du
dt

+
∫

cC(f) dc. (30)

In order to find the results Eqs (22) and (23), the right hand sides of Eqs (28) and
(30) must vanish, and indeed this is true. Functions 1 and c are eigenfunctions
of the integral operator

∫
C(f)dc having eigenvalue zero [1]. This property has

a simple physical interpretation: mass and momentum are conserved in the
collisions. This is of course obvious because these assumptions had been used
already in the derivation of the Boltzmann equation. Hence
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∂ρ

∂t
+∇· (ρu) = 0, (31)

−∇p+∇·~τ = ρ
du
dt
,

which are the macroscopic conservation equations for mass and momentum. By
a similar approach it is also possible to derive the macroscopic equation for the
conservation of energy and the ideal gas law [14]. This derivation shows that
the mesoscopic model constructed is compatible with a macroscopic description.
There are however major advantages in the mesoscopic model. First of all Eqs
(31) contain 10 unknowns (three velocity components, density and 6 compon-
ents of the symmetric tensor ~τ ) and only 4 equations, i.e. the hydrodynamic
description is not self-contained. By including the energy equation one more
equation is gained but at the same time 3 more unknowns are introduced (heat
flux components). To apply these equations one has to make assumptions that
reduce the number of unknowns. These assumptions are always approxima-
tions and take us farther away from a realistic description of flow phenomena.
If the mesoscopic model presented above is used, these assumptions are not
needed. One can simply solve the Boltzmann equation and extract the inform-
ation needed from the mass distribution function f . Secondly, the mesoscopic
model used is applicable to infinitely high Knudsen number flows unlike e.g.
the Navier-Stokes equation. One must note however that even this mesoscopic
model fails if the interaction radius of molecules is not much smaller than the
mean free path of the molecules, i.e. rµ � lm. This restriction arises from
the fact that it has been a priori assumed in the derivation of the Boltzmann
equation that collisions are completed in a very limited domain both in space
and time. As it was in the case of the Navier-Stokes equation, it is possible
also in the case of the Boltzmann equation to construct a model which is valid
in a wider group of fluid flow situations. These models are called general-
ised Boltzmann equations [15, 16]. Furthermore, numerical treatment of the
Boltzmann equation is challenging due to its mathematical complexity.
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3 The lattice-Boltzmann method

Historically the lattice-Boltzmann method (LBM) was developed from a sim-
ilar method called the Lattice Gas Automaton (LGA). The most prominent
difference between the two methods is that LGA is based on boolean variables
and LBM instead on floating-point variables. In fact, the lattice-Boltzmann
equation was first used as an analytical tool for computation of averages for the
boolean variables in LGA. In this thesis LGA is not presented nor is the histor-
ical route to LBM. Instead an alternative route is shown, where the Boltzmann
equation introduced in the preceeding section is discretised, and from this the
lattice-Boltzmann equation is derived. A suitable discrete collision operator is
also defined in order to arrive at an applicable computational model.

3.1 Derivation of the lattice-Boltzmann equation

In order to make the lattice-Boltzmann model amenable to computational treat-
ment, a continuum partial differential equation (PDE) must be discretised.
There are three main discretisation approaches that can be identified, namely
the finite difference method (FDM), finite volume method (FVM) and finite
element method (FEM), of which only the FDM is presented here [17].

The starting point of FDM is a differential form of the equation of interest.
Typically these equations are conservation equations of some kind, but the
method itself is applicable to any differential equation with suitable initial con-
ditions. The computational domain is covered by a grid. At each grid point,
the differential equation is approximated by replacing the partial derivatives by
approximations in terms of the nodal values of the functions. This is done by
using e.g. a truncated Taylor series in the following way. Let us define a func-
tion y of variables x and (time) t. The Taylor series of function y with respect
to variable x can be written in the form

y(x0±∆x) = y(x0)±y′(x0)∆x+y′′(x0)∆x2/2!±y′′′(x0)∆x3/3! + . . . , (32)
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For simplicity variable t is not shown. If we neglect the terms higher than first
order in ∆x, we find for the forward and backward differences

y′(x0) = y(x0 + ∆x)−y(x0)
∆x (33)

y′(x0) = −y(x0−∆x)−y(x0)
∆x . (34)

These expressions are referred to as first order because in leading order the
error term is O(∆x). By summing up the forward and backward difference
expressions above we find that

y′(x0) = y(x0 + ∆x)−y(x0−∆x)
2∆x (35)

is second order accurate since in leading order the error term is O(∆x2). Equa-
tion (35) is called the central difference. One can also sum up the second order
forward and backward forms of the truncated Taylor series so as to find a second
differential for function y,

y′′(x0) =−y(x0 + ∆x)−2y(x0) +y(x0−∆x)
∆x2 . (36)

The rate of change of function y with time t can also be determined with a
similar way, and the result is

∂y

∂t
= y(x0, t+ ∆t)−y(x0, t)

∆t . (37)

Now if the flow relationship is known then the conditions at one time step in
the future can be calculated from their known values at nodes at the current
time step. If this kind of direct calculation is possible, the method is referred
to as explicit, otherwise it is implicit.

The first step in the path towards the lattice-Boltzmann equation (LBE) is
discretisation of the Boltzmann equation Eq. (21). The most usual way to do
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this is to allow particles of the system to have only certain velocities that form
a velocity set Ψq = {c0,c1, . . . ,cq−1}. Here the amount of possible velocities is
denoted by q. Using this restriction the discrete Boltzmann equation can be
expressed in the form

∂fi
∂t

+ ci ·
∂fi
∂r

+ a · ∂fi
∂ci

= Ci(~f), i= 0,1, . . . , q−1, (38)

where fi = f(r,ci, t) and ~f = (f0,f1, . . . ,fq−1). The continuous binary collision
operator C(f) is replaced by a discrete counterpart Ci(~f). Although discretisa-
tion is necessary for acquiring an equation amenable to numerical treatment,
there are also significant benefits in this form of the Boltzmann equation. The
mass density distribution function f in the original Boltzmann equation depends
on seven independent variables while its discrete counterpart fi is a function of
only 4 independent variables. Furthermore, the collision operator in the original
equation involves integrals while in the discrete version it is an operator that
involves summations.

Let us now consider for simplicity the discrete Boltzmann equation without the
external acceleration term,

∂fi
∂t

+ ci ·
∂fi
∂r

= Ci(~f), i= 0,1, . . . , q−1. (39)

We can use the finite difference method introduced above to discretise the re-
maining derivative terms. The first term on the left hand side is the time de-
rivative of the discretised mass density distribution funtion, and its first order
forward difference is given by

∂fi
∂t

= fi(r, t+ ∆t)−fi(r, t)
∆t . (40)

Let us now rearrange Eq. (39) in a way that only the time derivative is on the
left hand side of the equation,
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fi(r, t+ ∆t)−fi(r, t)
∆t =−ci ·

∂fi(r, t)
∂r

+Ci(r, t), i= 0,1, . . . , q−1. (41)

The right-hand side is now subjected to an upwind treatment, i.e. the two terms
on the right hand side are both evaluated at location (r−∆tci):

fi(r, t+ ∆t)−fi(r, t)
∆t =−ci ·

∂fi(r−∆tci, t)
∂r

+Ci(r−∆tci, t). (42)

By applying the result for the first order forward difference from above, we find
that

ci ·
∂fi(r−∆tci, t)

∂r
= fi(r, t)−fi(r−∆tci, t)

∆t . (43)

By substituting this result in Eq. (42) we arrive at the expression

fi(r, t+ ∆t)−fi(r, t)
∆t = fi(r−∆tci, t)−fi(r, t)

∆t +Ci(r−∆tci, t). (44)

Next we multiply this equation by ∆t, formally replace r by r + ∆tci and re-
arrange terms:

fi(r + ∆tci, t+ ∆t) = fi(r, t) + Ωi(r, t). (45)

In the above equation the term ∆tCi has been identified with the collision
operator Ωi, and the resulting expression is known as the lattice-Boltzmann
equation. Discretised counterparts of Eqs (24) and (25) can now be expressed
in the form

ρ(r, t) =
∑
i

fi(r, t), (46)

ρ(r, t)u(r, t) =
∑
i

cfi(r, t), (47)
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and the model is made amenable to numerical treatment when we specify a
particular collision operator. A wide variety of collision operators and lattice-
Boltzmann stencils can be chosen so as to arrive at specific lattice-Boltzmann
models.

3.2 Lattice-Boltzmann models

The collision operator in Eq. (45) can be modelled with many different methods.
The most usual approach is to model the collision operator by relaxing the
distribution function f towards its equilibrium value. The simplest and very
widely used relaxation model is the single relaxation time lattice BGK model
(LBGK), which expresses the evolution equation in the form [18]

fi(r + ∆tci, t+ ∆t) = fi(r, t)−ω
(
fi(r, t)−feqi (r, t)

)
. (48)

The name of the model comes from the fact that the relaxation rate of the system
is controlled by a single parameter ω. It can also be shown that parameter ω
has direct connection to the kinematic viscosity of the fluid,

ν = 1
6

( 2
ω
−1

)
. (49)

From a physical perspective it can now be seen that parameter ω must sat-
isfy the condition 0< ω < 2, otherwise the viscosity attains nonpositive values.
The discrete equilibrium function can be obtained from the Maxwell-Boltzmann
distribution [19]

feq = ρ

(
m

2πkbT

)3/2
exp

(
−m(c−u)2

2kbT

)
, (50)

where c is the particle velocity and u is the macroscopic fluid flow velocity.
When the velocity space is discretised and Taylor expansion is used, one finds
for the discrete equilibrium function [20]
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feqi = ρ(r, t)wi
(

1 + ci ·u
c2s

+ (ci ·u)2

c4s
− u2

2c4s

)
, (51)

where subscript i refers to the discrete velocity ci, wi are lattice dependent
weight factors and cs is the speed of sound of the lattice. The construction
of a specific model is still far from finished. The discrete velocities, which are
closely related to the spatial grid chosen, must be specified. The velocity sets
are constructed in a n-dimensional regular lattice with m velocities (denoted by
DnQm). For example, the D3Q19 model is constructed on a three dimensional
cubic lattice and has 19 discrete velocities (see Fig. 2). Other commonly used
models are D1Q3, D2Q9, and D3Q15 [21] and models with signicantly higher
number of velocities (D1Q5, D2Q25 and D3Q125) have also been constructed
[22].

Figure 2: Nodal points and velocity vectors used in the D3Q19 model. There are
18 velocities of nonzero magnitude and one rest velocity of zero magnitude. Three
different speeds are included in this model, namely 0, cr and

√
2cr. The reference

speed cr is connected to the lattice spacing and discrete time step through ∆r = ∆tcr.

After choosing the spatial grid and velocities, one must define the weight factors
wi in order to obtain an applicable numerical model. The factors related to equal
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speeds are the same and therefore there are three different factors in the D3Q19
model. The wi’s are determined so as to achieve isotropy of the fourth-order
tensor of velocities and Galilean invariance [18]. With these restrictions one
finds w0 = 1/3 for the rest velocity, w1 = 1/18 for the nearest neighbours and
w2 = 1/36 for the second nearest neighbours in the D3Q19 model.

The model presented above is the one used in the simulation part of this thesis.
It is however worth mentioning that other models than LBGK do exist. In two-
relaxation-time (TRT) models any pair of populations with opposite velocities
(ci,ci′) can be decomposed into its symmetric (even) and anti-symmetric (odd)
components [23]:

fi = f+
i +f−i , f+

i = 1
2(fi+fi′), f−i = 1

2(fi−fi′), ci =−ci′ . (52)

Odd moments of the symmetric function and even moments of the antisymmet-
ric function vanish, and, with the above definitions, the LB equation can be
expressed in the form

fi(r + ∆tci, t+ ∆t) = fi(r, t)−ωef+,neq
i (r, t)−ωof−,neqi (r, t)

= fi(r, t)−
1
2(ωe+ωo)fneqi (r, t)− 1

2(ωe−ωo)fneqi′ (r, t), (53)

where ωe and ωo are relaxation parameters and fneqi = fi− feqi . Although the
TRT model is a little bit more difficult to implement and computationally more
expensive than the BGK model, parameter ωo provides an additional degree
of freedom. Usually it is adjusted so as to minimise the nonphysical viscosity-
dependent slip-velocity that appears in LBM [24]. Parameter ωe controls the
viscosity in the same way as in the BGK model. Even more relaxation para-
meters can be used in the so called multi-relaxation-time (MRT) models. These
models provide more degrees of freedom in terms of an increasing number of
simulation parameters. Obviously computational requirements also increase.
Introduction of MRT models is omitted here, but details can be found for ex-
ample in Refs [25], [26] and [27].
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Above, some lattice-Boltzmann models were introduced. These models express
the time development of the discretised distribution functions fi; and hydro-
dynamic variables are moments of fi, see Eqs (46) and (47). An essential
question is what macroscopic equations these simplified and discretised models
approximate. By using the Chapman-Enskog analysis, it can be shown that the
LBGK model conforms to the equation of conservation of mass and the Navier-
Stokes equation. The analysis is somewhat laborious and is beyond the scope
of this thesis, but details can be found e.g. from Ref. [20]. To summarize, Fig.
3 shows a schematic description of the main steps that lead to LB models.
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Figure 3: Paths leading to the LBGK model. Red arrows present the path followed
in this thesis and black arrows present alternative routes. Some of the essential
equations are also shown.
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3.3 Boundary conditions and simulation geometries

Boundary conditions must be specified at domain boundaries and fluid-solid
interfaces. To state whether the node is solid or fluid, only one data structure
has to be added to the model. This structure indicates the state of each node:
e.g., 0 for fluid and 1 for solid. After this division into fluid and solid nodes has
been done, we need to implement the update rules which define the way the
distribution functions behave when a boundary between the two is encountered.
Probably the most widely used update rule is the halfway bounce-back bound-
ary condition which models the no-slip condition inherent in real life fluid flows.
The idea is to simply reflect the distribution functions which would otherwise
end up inside the solid nodes in the streaming step. The condition is presented
in detail in Fig. 4

Figure 4: Halfway bounce-back boundary condition in a two dimensional lattice.
Blue arrows represent the components of mass density distribution function that are
reflected and the red ones are not affected by the boundary condition. The lengths
of the arrows indicate the relative magnitude of the components.

The name "halfway" comes from the effective location of the reflection. The
solid boundary lies halfway between the adjacent fluid and solid nodes, and
reflection takes place during one time step. The halfway bounce-back is used in
the simulations of this thesis, but a wide variety of other fluid-solid boundary
conditions exist, for example halfway bounce-forward, fullway bounce-back and
fullway bounce-forward to name a few. The halfway bounce-forward is sim-
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ilar to the method presented above, but it differs in the way the distribution
functions are reflected. The reflection happens only in the direction normal to
the boundary, not parallel to it, thus allowing the fluid to "slip". The fullway
bounce-back and fullway bounce-forward are similar, but in these models the
boundary lies exactly in the location of the solid node, and reflection takes place
during two consecutive time steps. A more detailed description of fluid-solid
boundary conditions can be found in Ref. [2].

In addition to the boundary conditions between fluid and solid, conditions for
grid boundaries must also be implemented. One option is to use periodic bound-
ary conditions. The idea is to translate the components of the mass density
distribution function, which cross the grid boundaries, to the other side of the
grid. Fig. 5 illustrates this condition.

Figure 5: Presentation of periodic boundary conditions in a two dimensional lattice.
On the left periodicity is applied in one coordinate direction and on the right in two
directions. The thick black lines denote the boundaries of the lattice, and the periodic
boundary condition is applied over these boundaries.

Another boundary condition used also in our simulations is the constant ve-
locity boundary condition. The idea of this boundary method is to prescribe
velocity and density at the boundary, and calculate from these values the un-
known components of the distribution function. Obviously the components
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which came from inside the computational domain are known. For example, if
we consider Fig. 2 and suppose that the boundary lies in the zy-plane and the
positive x-direction is directed towards the computational domain, the unknown
components of the distribution function after streaming are f14, f15, f16, f17

and f18. To assign values to these unknown components we assume bounce-back
of the non-equilibrium part which can be stated as

f14 = feq14 +fneq4 = feq14 +f4−feq4 (54)

f15 = feq15 +fneq3 = feq15 +f3−feq3 (55)

f16 = feq16 +fneq2 = feq16 +f2−feq2 (56)

f17 = feq17 +fneq1 = feq17 +f1−feq1 (57)

f18 = feq18 +fneq0 = feq18 +f0−feq0 . (58)

Now, using the equilibrium distribution function Eq. (51), one can solve the
unknown components via a straightforward calculation. In the calculations the
appropriate weight factors and speed of sound for the lattice are used. For
D3Q19 these are w0 = 1/3, w1 = 1/18, w2 = 1/36 and c2s = c2r/3. For example
the calculation of component 14 starting from Eq. (54) preceeds such that

f14 = fneq4 +feq14 = f4−feq4 +feq14

= f4−
ρ

36

(
1 + uycr−uxcr

c2r/3
+ (uycr−uxcr)2

c4r/9
−

(u2
x+u2

y)
2c2r/3

)

+ ρ

36

(
1 + uxcr−uycr

c2r/3
+ (uxcr−uycr)2

c4r/9
−

(u2
x+u2

y)
2c2r/3

)

= f4 + ρ

12
uxcr−uycr

c2r
+ ρ

12
uxcr−uycr

c2r

= f4 +ρ
ux−uy

6cr
. (59)

As is evident, most of the terms vanish and we are left with a simple expres-
sion for f14. Similar calculations can be done also for Eqs (55)-(58), which
give a group of expressions for all the initially unknown components. These
expressions are
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f14 = f4 +ρ
ux−uy

6cr
, f15 = f3 +ρ

ux−uz
6cr

, f16 = f2 + 2ρ ux6cr
f17 = f1 +ρ

ux+uz
6cr

, f18 = f0 +ρ
ux+uy

6cr
. (60)

Now we should check that these expressions enforce the correct hydrodynamic
variables, for example density ρ and momentum densities ρux, ρuy and ρuz.
Density can be calculated using Eq. (46) together with the calculated values
for initially unknown components Eq. (60),

18∑
i=0

fi =
13∑
i=0

fi+f4 +ρ
ux−uy

6cr
+f3 +ρ

ux−uz
6cr

+f2 + 2ρux
6cr

+f1 +ρ
ux+uz

6cr
+f0 +ρ

ux+uy
6cr

= 2
4∑
i=0

fi+
13∑
i=5

fi+ 6ρ ux6cr
+ρ

uy−uy
6cr

+ρ
uz−uz

6cr

= 2
4∑
i=0

fi+
13∑
i=5

fi+ρ
ux
cr

= 2
4∑
i=0

fi+
13∑
i=5

fi+
18∑
i=14

fi−
4∑
i=0

fi

=
18∑
i=0

fi = ρ (61)

Thus, the correct density is attained. Similarly one can calculate the first order
moments i.e. momentum densities in different coordinate directions, and find
that

∑
i

cixfi = ρux, (62)

∑
i

ciyfi = cr

(
f11 +f12 +f13−f5−f6−f7 +ρ

uy
3cr

)
6= ρuy, (63)

∑
i

cizfi = cr

(
f7 +f10 +f13−f5−f8−f11 +ρ

uz
3cr

)
6= ρuz. (64)
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It is evident that the only direction in which the prescribed components of dis-
tribution function enforce the correct momentum density is the direction normal
to the boundary. Therefore more elaborate conditions for the unknown com-
ponents must be assigned to correct for this discrepancy. Indeed, boundary
schemes which enforce zeroth and first order and even higher order moments
can be constructed. Actually, the scheme used in our simulations uses a bound-
ary scheme which enforces seven hydrodynamic moments (density, momentum
density in every coordinate direction and three second order moments related
to the viscous stresses). These higher order schemes are not presented here, but
more information can be found in Ref. [20].

In our simulations, the complex flow domains, or geometries, are represented
by digital images acquired with two different methods, namely confocal micro-
scopy and x-ray tomography. Confocal microscopy allows us to see the actual
geometry of the paper and also the attached ink particles. This gives us the
possibility to compare results of simulations with the actual locations of ink
particle attachment. The sensitivity of confocal microscopy decreases however
with increasing distance from paper surface, and this should be taken into ac-
count when analysing the results. X-ray tomography does not suffer from this
limitation, but with this method the ink distribution cannot be seen. Neverthe-
less, when images of the sample geometry were acquired, they were in greyscale
form, and were then binarised so as to provide the simulation geometries. In
Fig. 6 an original confogal microscopy image and its binarised form are shown.

For binarizing an image, different algorithms can be used. A simple approach
is to choose a threshold value which is used to determine which voxels are black
and which white. Choosing of this threshold value can be based on various
methods. In the present work the threshold value was chosen manually based
on visual inspection, and the binarised image was processed further with the
despeckle algorithm.
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Figure 6: A confogal microscopy image of a sample of paper and its binary form.

4 Simulating fluid-particle suspensions

The LBGK model introduced in the previous section with suitable boundary
and initial conditions is readily amenable to numerical computation, but is not
sufficient for the goals of this thesis. The model must be connected to another
model that describes the dynamical behaviour of ink particles moving in a flow
field. This section describes the particle model and the velocity-verlet algorithm
used to discretise the model. Also, some restrictions of the model are discussed.

4.1 Mathematical model for particle dynamics

In order to simulate the movement of ink particles in a flow field, the LBGK
model introduced in the previous section must be extended so as to incorporate
particle dynamics. In practice this is done by using a form of the Basset-
Bousinnesq-Oseen equation [28]

ma =mCf (u−v) +CdR + Fpp, (65)
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which is basically Newton’s second law of motion for a particle. Here m, a and
v are particle’s mass, acceleration and velocity, respectively. The three terms on
the right hand side of Eq. (65) are, in the order from left to right, the convective
force, the random diffusion force and force between adjacent particles. Coef-
ficients Cf and Cd are simulation parameters used to control the magnitudes
of convective and diffusive forces, and R is a three component random term
with components having zero mean and unit variance. The particle description
is connected explicitly with the LBGK model through the convective term, in
which fluid velocity u is interpolated from its values at adjacent lattice points
given by the LBGK simulation to the center of the particle. Even though the
diffusive term appears to have no connection with the fluid flow, it is connected
on physical grounds, i.e. via Brownian motion. So the total force applied to the
particle by the fluid consists of convective and diffusive forces. In accordance
with the Newton’s third law, a force applied by the particle to the fluid is equal
in magnitude, but opposite in direction to the force excerted by the fluid to
the particle. This force is then distributed over the neighbouring lattice nodes
representing the fluid. The particle-particle force Fpp in Eq. (65) is calculated
over particles which lie in the neighbouring lattice cells, and the force between
two particles can be expressed in the form

Fji
pp =−Cppd−4(rj− ri)/dcent. (66)

Here Cpp is a simulation parameter, d is the distance between the surfaces of
particles i and j, ri the location of particle i and dcent is the distance between
the centres of particles i and j.

4.2 Velocity Verlet algorithm

The simple model describing particle dynamics Eq. (65) can be discretised using
the velocity Verlet algorithm which consists of three equations for updating
particle’s position, velocity and applied force:
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r(t+ ∆t) = r(t) + v(t)∆t+ (1/2)F(t)∆t2/m (67)

F(t+ ∆t) = Fnew. (68)

v(t+ ∆t) = v(t) + (1/2)(F(t) + Fnew)∆t/m. (69)

If one knows particle’s position, velocity and force applied to it at time t, the
above equations can be used successively to find their values at a future time
t+ ∆t. The term Fnew can be calculated from Eq. (65). In principle these
equations can now be used with Eqs (65) and (66) to simulate particle’s tra-
jectory in time and space. In practical simulations however the situation is not
so simple. Particles can come close to each other or walls of the simulation
geometry and in many of these situations the dynamics must be constricted for
computational and physical reasons. The constriction rules implemented in our
model are presented in the next section.

4.3 Wall attachment and particle restrictions

As a particle moves in the simulation geometry it can encounter three kinds
of obstacles, namely solid nodes, boundaries of the computational domain and
other particles. Obviously the considered particle is affected by these encoun-
ters so that its movement is altered. Sometimes its movement is nonphysical
in nature or produces conditions problematic for the computational implement-
ation. In these situations the dynamics are restricted, mostly in a heuristic
manner.

Let us first consider the case where the particle comes close to a solid node. If
the particle’s position after the update step, Eq. (67), lies inside a solid node,
the displacement is halved and another attempt is made. Ten successive halving
attemps are made and if the update still brings the particle inside the solid node,
the update is rejected. In this way the unphysical effect of particles appearing
inside the solid is avoided. When the particle comes in close approximity to
the wall, attachment can also occur. The probability for this process depends
on the number of solid walls around the particle, the distance d to these walls
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and the wall attachment coefficient λa which is given as a simulation parameter.
The function giving this probability can be expressed in the form

p= wi · exp
(
−d
λa

)
, (70)

where wi is a weight factor which depends on the distance of the particle cell
from the solid cell. Three different values are used: w1 = 16/61 for cells with
common faces, w2 = 4/61 for cells with common edges and w3 = 1/61 for cells
with common vertices (see Fig. 7). The probability function Eq. (70) is summed
over all solid cells around the cell containing the particle so as to find the total
probability for attachment. If this value is higher than a random reference
probability, attachment will take place and the particle will be stopped at its
current position. A certain amount of particles can be attached to the same
cell, but when a threshold number is exceeded, the cell is turned into solid, i.e.
it is sedimented.

Figure 7: Illustration of cells affecting the attachment probability. The attaching
particle is in the transparent cell and red, green and blue cells correspond to weight
factors w1 = 16/61, w2 = 4/61 and w3 = 1/61, respectively.

The simulation geometry is finite, and sometimes particles cross the domain
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boundaries. If the boundary which is crossed is in the main flow direction, such
particles are removed from the simulation. This happens often in the beginning
of the simulation, when particles are initialized too close to the boundaries and
diffusion drives them across. In this case we do not actually contrict the dynam-
ics of the particles, we simply allow them to wonder away from the simulation
geometry.

Particle-particle collisions and motion of particles are restricted in many ways.
Particles affect each other through Eq. (66), but in order to keep the forces
finite, the particle-particle force assumes a certain value at small distances.
Even with this restriction, the total force applied by all surrounding particles can
grow above a predefined maximum value which then replaces the actual force.
Besides particle-particle forces, also fluid-particle forces are constricted. When
direct calculation of the force applied by the fluid to the particle as given by the
first two terms in Eq. (65) gives a value above a certain limit, the actual value
is replaced by the predefined maximum fluid-particle force. In a similar way,
particle’s speed and displacement are restricted to be within the corresponding
maximum values so as to avoid, for example, instances where particles jump
over one or several nodes. These events could be tricky without restrictions
because then particles could unphysically jump over solid nodes or, in parallel
systems, cause problems in the border regions between two processes. Every
time one of these restrictions occur, the dynamics are not properly executed.
Thus, simulations should be optimised so as to produce as few restrictions as
possible.

5 Simulations

In this study the method introduced above was used to simulate movement of
ink particles and their attachment to paper. Two different imaging techniques
were used to acquire the geometry of the simulations, namely confocal micro-
scopy and X-ray tomography. With confocal microscope also the ink could be
observed, and its distribution could then be compared to that found by simu-
lations. With X-ray tomography the ink could not be seen, but more realistic
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simulation geometries could be acquired.

As the simulation advanced, particles were attached to the simulation geometry
according to the rules described in the previous section. After the simulation,
the locations of attached particles could be read from a text file. For visualisa-
tion reasons and to make use of the small particle number compared to that in
an experimental situation, the attached particles were visualised according to
the colouring scheme presented in Fig. 8.

Figure 8: Colouring scheme for particles. In (a) a particle is attached to a location
where all neighbours are initially uncoloured and in (b) a particle is attached close to
another particle. In (b) only one layer is shown for clarity.

Each attached particle affects the voxel to which it is attached, and also its 26
neighbouring voxels. The voxel where particle is attached gets the brightest
colour, the first nearest neighbour voxels get the second brightest colour and so
on. With this colouring method simulations produce a more natural overall col-
oring of the ink pigments coloured regions by allowing intermediate brightness
levels between black and white.
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5.1 Simulations in confocal microscopy images

A series of simulations with different simulation parameters were done for a
paper sample with no surface or bulk sizing to reduce any chemical effects of
ink attachment. A result from a single simulation is shown in Fig. 9 with a
corresponding experimental result. These images display similarities as well as
differencies. It is evident from both images that ink tends to move along with
the fluid flow, thereby large amounts of ink can be found near the largest flow
channels. Differencies on the other hand can be observed in the distribution of
ink as a function of distance from paper surface. There can be many reasons
for this discrepancy. First of all, the actual paper structure contained a lot of
fine matter which disappears when the image is binarised. Ink propagation is
however affected by this fine matter. Secondly, and probably most importantly,
the confogal microscopy image shows only a fraction of the full thickness of the
paper, and therefore the simulation is in fact done only for a thin surface layer
in contrast with the experimental result that is for the whole paper thickness.
A thin simulation geometry introduces flow channels which are not really there
in the actual sample, and therefore particles flow more easily through and are
not attached in the paper. This effect is probably the reason why the attached
ink looks quite different in the simulated and experimental results of Fig. 9.

It is evident from cross sections taken at varying distance from paper surface
(Fig. 10) that the simulated and experimental results differ more in the deeper
layers of paper, which supports the hypothesis that a thin simulation geometry
is partly responsible for the observed discrepancies between simulations and ex-
periments.

A quantitative comparison between simulated and experimental results was
done by determining the ink density as a function of distance from paper sur-
face. We found that the density profile in both cases follows a double exponential
form,

f(x) = A1 ∗ e−x/t1 +A2 ∗ e−x/t2 , (71)
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Figure 9: On the left, bottom view of a surface layer of a paper sample with ink as
recorded by confocal microscopy. On the right, the corresponding simulation result.

as demonstrated in Fig 11.

We concluded that these two terms are related to two different processes that
take place in paper. The exponential term with a smaller decay parameter
t1 accounts for surface layer effects while the other term with parameter t2 is
related to particles convected deeper in the paper structure. Parameters of the
fit were used to compare the results with those of the simulations. Because in
the simulations the particle intensity was much lower than in the experimentas,
comparison was done with a normalised form of Eq. (71),

f(x) = 1
A1 ∗ t1 +A2 ∗ t2

∗ (A1 ∗ e−x/t1 +A2 ∗ e−x/t2). (72)

In all the simulations the surface layer effect was relatively stronger than in the
experiments as is evident from Figs 12-15 and the fitting parameters in Table
1. The probable reasons for this were given already above.
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Figure 10: Cross sections of a paper sample at varying distance from paper sur-
face. On the left, images of experimental results are shown and on the right are the
corresponding simulation results. Distance from paper surface increases from top to
bottom.
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Figure 11: An ink density profile determined from a confogal microscopy image. A
double exponential function was used for fitting the data, and the fitting parameters
are also shown.

Results found for different parameters were compared and only one of the four
parameters tested had a significant effect, the diffusion coefficient. Even adjust-
ment of this parameter did not produce a good agreement with the experimental
results. For a very high diffusion coefficient, particles did not follow the fluid
flow and were mostly left at the surface. Decreasing of the diffusion coefficient
produced results closer to the experimental ones, but when that parameter was
decreased too much, diffusion became so weak that particles in the flow chan-
nels did not come close enough to the solid walls, and the second term in the
exponential decay was too low. This behaviour was probably caused by the
thin simulation geometry. Fitting parameters are shown only for the simula-
tions where diffusion coefficient was changed only.

In almost all the simulations, a small hump can be seen in the ink distribution
curve, which is not visible in the experimental result. It is known that confocal
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Table 1: Comparison of fitting parameters for experimental and simulated results
for varying diffusion coefficient.

Diffusion parameter A1 A2 t1 t2 A1/A2

experiment 92.33075 48.53924 1.65710 12.37939 1.90219
0.008 81.63084 4.72173 1.90124 11.45980 17.28883
0.002 54.28106 9.90614 1.84410 11.43124 5.47954
0.0005 9.23625 2.45031 2.10995 12.24985 3.76942
0.0003 5.84310 1.55242 2.39962 13.33133 3.76387
0.0001 2.45893 0.62803 3.52730 13.65364 3.91531

Figure 12: Results of simulations for varying diffusion coefficient together with the
experimental result.

microscopy gives a weaker signal for increasing distances from paper surface.
This of course generates discrepancy between simulations and experiments. The
actual form of resolution decrease is not known, but using a linear correction
the hump is also visible in the experimental result as shown in Fig. 16. In this
case the correction makes the simulated and experimental results further apart
however because this correction decreases the relative stregth of attachment in
the surface layer. This is not relevant however, because the results should be
different due to the thin surface layer in the simulation.
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Figure 13: Results of simulations for varying attachment coefficient together with
the experimental result.

Figure 14: Results of simulations for varying inlet flow velocity together with the
experimental result.
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Figure 15: Results of simulations for varying particle radius together with the
experimental result.

Figure 16: Results of simulations for varying diffusion coefficient together with the
experimental result with and without linear correction.
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5.2 Simulations in X-ray tomography images

As mentioned in the previous section, restrictions in the confocal microscopy
imaging causes some discrepancy between simulated and experimental results
caused by weakening of the signal as a function of distance from paper surface.
With X-ray tomography this is not a problem. The whole sample can be im-
aged, and from that image a discretised simulation geometry can be formed.
Unfortunately with this method the ink cannot be detected and compared with
simulated results.

Two different simulation series were done in tomographic images. In the first
series, a similar analysis as before was done: results for varying diffusion coef-
ficient in the same (DL0591) sample were compared. It is evident from Fig.
17 and Table 2 that, by adjusting the diffusion coefficient, we can alter the
A1/A2 ratio from surface dominance to convection dominance. This could not
be achieved in simulation geometries produced by confogal microscopy. The
reason for this lies probably in the fact that an X-ray tomographic image shows
the whole thickness of paper and the simulation was done in a more realistic
geometry.

Table 2: Comparison of fitting parameters of simulation results for varying diffusion
coefficient in the DL0591 sample

Diffusion coefficient A1 A2 t1 t2 A1/A2

0.004 31.0687 11.598 2.60143 15.156 2.678798
0.002 24.7018 18.2638 2.39178 27.6563 1.352501
0.0005 6.30858 11.4909 1.51977 133.035 0.549007

In the second simulation series, four different samples were studied with identical
simulation parameters. The results of these simulations are shown in Fig. 18
and Table 3. The samples differed in the number of substances added to the
paper. The first sample, DL0591, contained only the basic paper with no ad-
ditives. Other samples were surface sized with water, starch and starch + salt
in the order DL0946,DL0947 and DL0948.
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Figure 17: Results of simulations with different diffusion coefficient

Table 3: Comparison of fitting parameters with different samples. The A1/A2
ratios are compared between simulations and experimental results.

Sample A1 A2 t1 t2 A1/A2 sim A1/A2 exp

DL0591 31.0687 11.598 2.60143 15.156 2.678798 1.85922
DL0946 46.2487 10.8572 2.489 11.7293 4.259726 2.60306
DL0947 32.8266 4.48593 4.42992 21,2568 7,31768 3.78114
DL0948 29.4908 3.54001 3,6815 41.4423 8.330711 5.25461

Simulation results were also compared with experimental results based on con-
focal microscopy of these samples. As expected, the results are not identical
because of many reasons. First of all, the simulation parameters were not chosen
to produce the experimental flow situation. This kind of match for such a com-
plex situation with a large number of parameters is hard or even impossible to
find. Secondly, the experimental results were determined from confocal micro-
scopy images which are not very relialable as mentioned above. What can be
said however is that simulations and experiments both show the same tendency
between the ratio A1/A2 and the amount of surface sizing used in the samples.
The higher amount of surface sizing, the higher is the ratio A1/A2, i.e. a relat-
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Figure 18: Results of simulations with different samples.

ively higher amount of ink has been attached in the surface.

The effect of sizing on the A1/A2 ratio was also studied by using another sample
series in which the amount of surface and bulk sizing was altered. The four
different cases were: (1) no surface or bulk sizing, (2) only surface sizing, (3)
only bulk sizing and (4) surface and bulk sizing. The results were studied in
the same way as for previous samples. Table 4 shows the fitting parameters for
simulated and experimental results.

Table 4: Comparison of fitting parameters for different samples. The A1/A2 ratios
are also given for simulated and experimental results. The numbers in the sample
column relate to sample information as given above.

Sample A1 A2 t1 t2 A1/A2 sim A1/A2 exp

(1)1.0 63.31510 4.73711 1.08862 37.79190 13.36577 2.352951
(2)1.2 31.87110 3.45941 0.48619 59.46070 9.21287 5.274623
(3)5.0 28.36520 4.17250 0.50088 32.69140 6.79813 2.03805
(4)5.2 27.48740 2.72289 0.60255 41.65180 10.09494 5.325669

Because of discrepancies between the measured and simulated results, a more
extensive simulation series was performed in order to find out if heterogeneity
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of paper was partly responsible for the observed differencies. Four different
simulations from different parts of the paper were performed for each sample,
and the ink particle densities were determined as averages over the individual
results. Figure 19 illustrates the choice of simulation geometries for the one and
multiple simulation series. The results of the latter simulations are shown in
Table 5

Figure 19: A cross section of a paper sample showing the choice of simulation
geometries for the single and multiple simulation series.

Averaged results from many simulations did not agree any better with the ex-
perimental results, but the spread of the A1/A2 ratios decreased. Due to time
constraints of the project, more extensive simulation series were not performed.
Simulation series of an even larger amount of simulations per sample could have
been used to see the values towards which the A1/A2 ratios eventually saturate.
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Table 5: Comparison of fitting parameters determined as average values of four
different simulations for each sample. The A1/A2 ratios are shown for averaged
results and for results of a single simulation in each sample. The numbers in the
sample column relate to sample information as given above.

Sample A1 A2 t1 t2 A1/A2 Ave A1/A2

(1)1.0 35.96200 4.04949 0.77923 50.29560 8.88062 13.36577
(2)1.2 28.62170 3.66994 0.49827 61.03550 7.79896 9.21287
(3)5.0 27.75170 3.19246 0.54670 63.80970 8.69289 6.79813
(4)5.2 27.24870 2.56581 0.59626 75.63520 10.61992 10.09494

6 Conclusions

In this study numerous simulations were performed to study ink particle propaga-
tion in several paper samples. Simulation results based on confocal microscopy
images as the simulation geometry show qualitative similarity to experimental
results, and they suggest that ink distribution in the sample is mainly con-
trolled by the diffusion parameter of particle motion. This again tells us that
the flow field strongly controls where the particles will go, unless their diffusion
is strong enough to separate them from the main flow channels. Quantitatively
the results differed however because of differencies in the actual paper struc-
ture and the geometry used in the simulations. Firstly, the image gained by
the confocal microscopy technique shows only a small fraction of the thickness
of the paper sample. Secondly, binarisation of the confocal microscopy image
loses some information. The fine matter present in the real sample disappears
in binarisation, which probably has a strong effect on ink particle propagation.
The binarised geometry is however a fundamental part of the lattice-Boltzmann
method, and the fine matter can only be modeled by introducing different kinds
of discrete meshes between paper fibres. The threshold value of the binarisation
could also be adjusted so that a larger part of fine matter is contained in the
binary image, but then also disturbances in the image can be interpreted as
solid.

To be able to produce similar behaviour as seen in the experimental results,
another imaging technique was used. In X-ray tomography the whole thick-
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ness of the paper sample could be included, and thus one source of discrepancy
between simulations and experiments could be eliminated. Unfortunately the
ink could not be seen with this technique, and comparison between simulations
and experiments could not be made. It was observed however that with the
full thickness of paper included the simulation parameters, mainly diffusion of
the particles, could be adjusted so as to produce strong attachment to surface
or alternatively to deeper down in the paper sample. For better comparison
between the simulations and experiments, a more sophisticated image acquir-
ing technique should be constructed. One possibility is to carefully mark the
location where the image should be taken and then acquire the image by using
both confocal microscopy and X-ray tomography. This way the whole thickness
and also the attached ink could be observed. Another possibility would be to
use ink that shows up in the X-ray tomography image. Such an ink is certainly
possible to manufacture, but was not available in the present study.

X-ray tomography images were also used to simulate paper samples for vary-
ing surface and bulk sizing. For these samples experimental results based on
confocal microscopy were also available. The first simulation series of varying
surface sizing gave promising results. Both simulations and experiments showed
a similar tendency, a high amount of surface sizing increased the amount of
particles left near the surface. The second simulation series where different
amounts of surface and bulk sizing were used, did not give as good results.
A statistical simulation series where multiple simulations were done for each
sample was conducted to decrease the effect of paper heterogeneity on the res-
ults. The results did not change considerably, which can occur due to many
reasons. Firstly, the amount of simulations can still be too small. The physical
area of the sample in each simulation was only (200 µm)2. In this length scale
the heterogeneity of paper is very visible as the individual paper fibres are about
10 µm wide. More statistics may thus be needed for reliable results. Secondly,
even though there would be enough statistics in a certain area of paper, and the
results would be relialible, we would not know that these results represent the
paper as a whole. Simulations in entirely different parts of the paper are thus
necessary. Thirdly, the chemical phenomenon related to particle attachment
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is modelled with one attachment coefficient throughout the entire paper thick-
ness. This may not be the right approach, surface sizing for example effectively
changes surface attachment without affecting the deeper parts of the paper. In
the confocal microscopy simulations it was observed that the attachment coef-
ficient did not play a vital part in the results, so this is probably not the first
issue that should be considered.

In summary, the lattice-Boltzmann method shows great potential for analysis
of ink settling in paper, but much more work has to be done before it can be
reliably used to predict the print quality. Future work involves development of
image acquiring techniques and ways to deal with the inherent heterogeneity of
the paper.
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