1% £

Jyvaskylan yliopiston julkaisuarkisto I
Jywiskyld University Digital Archive UNIVERSITY OF JYVASKYLA

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Karkkdinen, Tommi; Nurminen, Miika; Suominen, Panu; Pieniluoma, Tuomo; Liukko,

llari
Title: UCOT: Semiautomatic Generation of Conceptual Models from Use Case Descriptions
Year: 2008

Version:

Please cite the original version:

Karkkainen, T., Nurminen, M., Suominen, P., Pieniluoma, T., & Liukko, . (2008).
UCOT: Semiautomatic Generation of Conceptual Models from Use Case Descriptions.
In C. Pahl (Ed.), Proceedings of the IASTED International Conference on Software
Engineering (SE 2008) (pp. 171-177). ACTA Press.
http://www.actapress.com/Abstract.aspx?paperld=32502

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

UCOT: SEMIAUTOMATIC GENERATION OF CONCEPTUAL MODELS
FROM USE CASE DESCRIPTIONS

Tommi Kirkkédinen, Miika Nurminen, Panu Suominen, Tuomo Pieniluoma, Ilari Liukko
Department of Mathematical Information Technology
University of Jyvdskyld, Finland
{tka,minurmin } @mit.jyu.fi, panu.suominen @iki.fi, {tujupien,ilanliuk } @cc.jyu.fi

ABSTRACT

This paper describes a prototype of a system to auto-
matically analyze use cases and create a conceptual model
based on the analysis. Grammatical parser and Abbott’s
heuristic are used to process the use cases. User can modify
the conceptual model by refining entities and relations, as
well as roles for the entities. The model can be exported to
be further utilized with object oriented analysis or domain-
specific modeling. The system is evaluated based on the
analysis of use cases used to describe the system itself.

The quality of models depends essentially on the
quality and writing conventions of the use cases. If the
use cases are written using subject-predicate-object struc-
ture and usage of synonyms is minimized, then the system
can produce appropriate conceptual model of the use cases,
facilitating requirements analysis and domain engineering.

KEY WORDS

Use case, conceptual model, Abbott’s heuristic, natu-
ral language processing, domain engineering.

1 Introduction

The purpose of requirements analysis is to understand the
needs of a customer towards a new application in its do-
main, and document this understanding in a clear way for
the customer to approve and for developers to realize the
system. An important part of the analysis is conceptual
modeling [1], the development of domain models which
capture the shared knowledge driving collaboration among
stakeholders.

Use cases [2] provide a popular way to describe func-
tional requirements of a software system. Compared to the
classical "The System shall..." type of requirements lists or
user stories [3] use cases provide a process-like view of the
requirements. Following the terminology in [4], use cases
are utilized both in plan-driven methods [5] and agile meth-
ods [6]. Notice that the so-called derivation technique as
given in [7] determines (domain) classes through use cases
and conceptual models. Because use cases in their main
flow describe the interaction between users and the sys-
tem, as well as include possible relations to other use cases,

they provide both contextual and structural information for
problem solving communication. From our point of view,
it is precisely this dialogue that provides the starting point
for semiautomatic generation of a conceptual model.

We present here a prototype of a system which is de-
signed to automatically analyze use cases and create a con-
ceptual model based on the analysis. The idea of such an
automatic transformation is not new [8, 9, 10], but to best of
our knowledge, use cases have not been used as an input in
the earlier work. As in [9], the so-called Abbott’s heuris-
tic [11] is used as the central ingredient in the modeling
process. The basic idea of our approach is that no design-
level decisions (e.g. object-orientation [12]) are included
in the model. Instead, we try to represent the relations and
entities within the application domain as the use cases de-
scribe them. The system is not trying to guess whether a
term refers to class or its instance, rather all of them are
considered as just entities of the current problem domain.
Subsequently, the model can be used to proceed, for exam-
ple, with object oriented analysis [13].

Contents of the work are as follows: Section 2 con-
tains a short depiction of relevant related research. Section
3 describes the main functionality and design of the UCOT
(from Use Cases to Original enTities) system. Samples il-
lustrating the system behavior and its limitations are given
and analyzed in Sections 4 and 5. Finally, conclusions and
some directions to enlarge the system are provided.

2 Preliminaries

This section provides a short introduction of relevant fields
of related research. Basically our SuD (System-under-
Description) uses natural language processing/parsing
(Section 2.1) techniques to instrument the use case for the
subsequent analysis (Section 2.2) which creates the model
that can be further utilized with object oriented analysis and
as part of domain engineering efforts (Section 2.3).

2.1 Natural Language Parsing

Natural language parsing is a complicated task. Histori-
cally there have been two main approaches to address the
problem. Structural method uses different kinds of gram-
mars to produce a hierarchical parse tree [14]. The other

approach focuses on dependencies between the words and
parts of the phrases, providing a more meaning-oriented
approach [15].

Currently statistical parsers dominate the research
field [16]. Many of them build a context-free grammar
from annotated text. This text is called a corpus or, if
tagged in the form of a parse tree, treebank. While parsing
the parser tries to find the most preferable parse tree for the
given sentence using probabilistic and statistical methods.

In our system the implementation of the parser is hid-
den behind a modular architecture. The system is devel-
oped considering the output of structural parsers. Basically
we are interested in extracting information that the heuris-
tic needs. Mostly this means finding subject, object, and
predicate within the textual description of requirements.

2.2 Heuristic Rules for Model Generation

The oldest approach for identifying classes from natural
language phrases is the noun analysis, introduced by Ab-
bott in 1983 [11]. This approach is also known as Abbott’s
heuristic, where objects correspond to nouns and methods
to verbs. This approach was inspired by Booch’s object ori-
ented design method of analyzing data flow diagrams (see
[12]). Abbott’s approach can be viewed as a simple way of
underlining nouns as possible objects found in the analyzed
text. Several other approaches to identify classes from nat-
ural language exist today, such as Taxonomic Class Mod-
eling methodology [8]. What all these approaches have in
common is that they all require natural language processing
of the material that is being analyzed.

In our system the heuristic module applies some of the
heuristic rules presented by Abbott [11]. Not all of the rules
were implemented because they would need knowledge of
the language of the use cases, and this would have made
the changing of the language by just switching the parser
impossible. Only the simpler rules (nouns to entities, and
verbs to relations between entities) were implemented.

2.3 Domain-centric approaches

The goal of domain engineering is to create reusable do-
main components [17]. It is based on the idea of being able
to recreate similar software systems with less overlapping
components by identifying domains, discovering common-
alities, and bounding them together. This information is
represented in domain models and explicated with domain
analysis [18].

Domain models include and represent a set of require-
ments that are common for a set of applications - a prod-
uct line [19]. With our approach it could be possible to
(semi)automate the analysis of shared features, thus help-
ing the creation of a product line. More precisely, creating
a conceptual model can help locating recurring patterns of
domain entities, helping to find common attributes among
different systems or within a single system. These find-
ings can then be formalized using ontology engineering,

by modeling general-purpose, shared domain knowledge,
independent of a particular system or application [20].

Utilization of domain specific models and languages
(e.g. resulting from a metalevel analysis) can yield to auto-
matic generation of code from domain models [21]. How-
ever, doing model-based code generation means that the
model itself becomes part of the solution. Here we restrict
ourselves to the field of problem analysis, i.e. concentrate
on what is to be developed without committing on how to
do it. Especially, our models are on higher abstraction level
compared to OOA (even if domain entities can be consid-
ered as and transformed to objects), whose utilization fixes
the further development along object-oriented track [22].
Moreover, automatic OOA is not straightforward because
requirements specifications often produce only sparse in-
formation on domain objects [23].

To conclude, the strong coupling between the prob-
lem and its solution is characteristic for the domain-specific
and OOA approaches. In particular, with these approaches
the focus in the analysis phase easily shifts into the solution
(design) structures instead of the main purpose: to analyze
the main concepts in the domain, their unambiguous mean-
ing, and preliminary structural relations.

3 The System

UCOT system is structured according to the classical pipes
and filters architectural style [24]. The system was de-
signed to make it possible to add or replace components
(i.e. filters, modules) later. Because of the modular design
it is easy to switch to different natural language parser or
use new import or export data types by realizing the cor-
responding component (see Figure 2). Key component of
the system is core, whose responsibility is to control other
modules, loading them on startup, and direct the data flow.

Figure 1 shows how the use case is processed in the
system. The use case is first loaded (Inputadapter) and
then parsed in an internal data structure (ParserAdapter).
After this the conceptual model is formed from
parsed information by applying heuristic rules into it
(HeuristicModule). The achieved model can be modified
before saving or exporting it (outputadapter).

3.1 Loading and Parsing Use Cases

The system can read different kinds of input files using
different combinations of the input and parsing modules.
Here use case means a textual structure that has title and
sequence of steps which are considered one sentence long
each. Additionally use case steps can refer to some other
use case. After the structure is read from the file, parser
component takes care of the parsing the use case steps.
Two input formats were implemented in the system:
structured text file (see Section 4) and ProcML [25]. Struc-
tured text contains the use case information separated by
line feeds and tags written in square brackets. ProcML is

Load use case Parse use case Process conceptual model User modifies Program saves
from the parsed use case the conceptual model the conceptual model

Figure 1. Flow of processing the use case into conceptual model

Userlnterface «interface»
Ulinterface

| _«implementsy;.

«interface»
Controlinterface

«uses»
———————— >

UCOT core InputAdapter

— 1|

- Lusex_ ParserAdapter
— |

HeuristicModule

—1]

d(imp@mgnls.g OutputAdapter
— |

Figure 2. The architecture of the system

an XML-based language that describes business processes
and their interactions. The system is able to extract infor-
mation from process steps and use them as use case steps.

After the input file is read and use case steps are ex-
tracted the system parses the sentences using parser mod-
ule, producing the so-called parsed use case. In a parsed
use case steps have been annotated with the grammatical
information obtained from the parser.

subject object

| v

| User | | logs | | into | | system |

Figure 3. The phrase model used in the system

Figure 3 is an example of representation that is used
in the parsed use case. This structure is used to do the anal-
ysis to produce the conceptual model. The phrase model
contains words and their relations in the sentence. This
data structure is used to pass information from the parser
to HeuristicModule, independently from the language and
implementation of the used parser. In practice, Stanford
Parser! is used to parse use cases written in English. The
parser combines probabilistic context-free grammar and
probabilistic dependencies of word and tag pairs [26].

3.2 Conceptual Model Processing

The conceptual metamodel contains three kinds of relations
between domain entities: influence, inheritance, and at-
tribute (see Figure 4). The inheritance relation describes
plain inheritance but it can also be used to describe that
some entity is an instance of some other. The attribute re-
lation can be seen as an aggregation or a composition in
UML. The influence relation is used for other types of rela-

! Available at http://nlp.stanford.edu/downloads/lex-parser.shtml

tionships and it is further described with a name. The influ-
ence arrow is drawn to point at the entity which is the target
of action. An entity may also have a role (i.e. a stereotype)
which can be written under the name of the entity.

When use cases are loaded into the system, they are
added into the list of use cases. The user then selects which
use case is to be processed and added into the conceptual
model. If the use case is complex and contains many sub
use cases the model becomes easily scattered, making it
hard to analyze. Hence, it is also possible to add the use
cases into the model one by one. The system highlights the
entities that are derived from the lastly selected use case.
User is able to modify the conceptual model by adding or
removing relations, changing the cardinality of attributes,
and renaming influence relations and entities. User inter-
face of the system is illustrated in Figure 5.

Influence Inheritance Attribute

Entity A Parent Owner
method Zr n
1
Entity B Child Attribute

Figure 4. Relations used in the conceptual model

3.3 Model Export

The system is able to produce different kinds of output for-
mats depending on the needs of the user. The model view
is generated using visualization tool dot from Graphviz?
package, capable of drawing directed graphs. Hence, the
model can be exported as a plain image or as dot’s graph
description file. These can be used when the user is
more interested in visualization than further analysis of the

2 Available at http://www.graphviz.org/

File Program Help

® Entities
? @ Program
¢ @ processes
O usecase

Congeptual model

@ Conceptual model
o O selerts

dects edits

& files Main low H

7 [articla_usecass b
7 ® Waintiow 1. User selests the use sase. (Select use case)

o J
Selaclygeitas 2 Program processes the use case. (Process use case) 5
© Procsss use case

3. Program shows the conceptual model.
4. User edits conceptual model
5. Program stares the conceptual model

Wodified [47 ms

Figure 5. Screenshot from UCOT user interface

model. Adding new output formats is easy by realizing a
new outputadapter. Additionally, GXL3 output is imple-
mented, which enables importing the produced model to
another editor or analysis tool that supports the format.

4 Using the System

In this section, the usage of UCOT system is demonstrated
by analyzing the use cases that were used to specify the
system itself before its development. The use cases read as
follows in structured text format (a number in parenthesis
after a step provides a reference to another use case, de-
scribing the step in more detailed level):

[name] Main flow [id] 1

[steps]
User selects the use case. (2)
Program processes the use case. (3)

Program shows the conceptual model.

User edits the conceptual model.

Program stores the conceptual model.
[end]

[name] Select use case [id] 2
[steps]
User selects the source of the use cases.
Program presents the list of the use cases
contained in the source.

User selects use case from the list of use cases.

[end]

[name] Process use case [id] 3
[steps]
Program passes the use case to the parser.
Parser returns the parsed use case.
Program passes the parsed use case
to the heuristic.
Heuristic returns the conceptual model.
[end]

The descriptions are next used to illustrate the sys-
tem’s behavior. Each use case is first analyzed separately
and the results are compared to manually determined mod-
els. Finally, all the three use cases are processed at once and
the resulted model is edited to show the editing capabilities

3Graph eXchange Language, see http://www.gupro.de/GXL/

of the system. Notice that often there is no absolutely cor-
rect model and the correctness depends on what aspects are
considered important and how much they are emphasized.

4.1 Automatic model generation

Automatically produced conceptual model for the Main
flow use case represents the concepts quite well (Figure
6). However, when the steps are more complex the created
model can shift away from an ideal representation, as in
Select use case. Its conceptual model (Figure 7) should
contain some aggregations but the program does not create
these automatically. ”Source” should contain ”Use cases”
(Figure 9) instead of the plain influence relation as stated
in the second step. “List of use cases” is removed from
the edited picture because the aggregation relationship con-
tains roughly the same information.

User Program
\selects edits processes Bhows Htores
Usecase Conceptual model

Figure 6. The conceptual model of the Main flow use case

While many problems occur due to limitations in the
natural language parsing, there are some shortcomings in
the conceptual metamodel as well. There should be a way
of representing n-ary relations (i.e. relations made of three
or more participants). Figure 8 is hard to read because
of this. Basically the model is correct, but excessive use
of ’passes” is not desirable. “Passes” between “Program”
and "Parser” marks the target of the passing, but with “Use
case” it marks the object being passed. The created model
lacks information about the roles these entities are playing
while passing. Figure 10 shows a hand drawn idealized
representation of the model for Process use case. This
problem is present mainly due to the way program repre-
sents the parsed data and elaborated in Section 5.

4.2 Editing

Figure 11 shows a model that contains all the use cases
with no editing. Same problems can be seen as with single
use cases. The excessive use of “passes” is corrected by
removing them and adding new links “uses” between Pro-
gram”, "Parser”, and “Heuristic”. The “Heuristic” should
have some connection to “Parsed use case” so “evaluates”
relation is created. Same goes to “Parser” and “Use case”
so the “’parses” link is added between them. “Use case” is
also added as an attribute to the entities ”Source” which is
merged from the original entities “List of use cases”, and
”Source of use cases”. Finally, role information is added to
the concepts. Figure 12 shows the final conceptual model.

User Program

/selects lselects selects presents
Y

List of use cases Source of use cases Use case List of use cases contained in source

Figure 7. The conceptual model of the select use case

The quality of the representation can be evaluated
by comparing it to design decisions actually made. From
Figure 12 one can see that user interacts with the system
by editing the "Conceptual model” and by selecting “Use
case”. All the methods implemented in ControlInterface
(Figure 2) fall in to these two categories. Our choice for
modularization can be further backed up by the limited
links between “Heuristic” and other entities. Same goes
for ”Parser” entity. Because they have no excessive linkage
between other items they are good candidates for modules.

The data flow in the system is harder to see, but some
parts of it are visible (Figure 1). We can see that "Parser”
parses the "Use case”; however, this is likely to happen
after “User” has selected it. Likewise, ”Parsed use case”
can not be returned before Parser” has parsed "Use case”.
Thus, there are some implicit pointers for the order of
the operations, although such dynamic information is not
meant to be depicted in the static entity model.

5 Evaluation

It seems that UCOT system provides appropriate support
to speed up domain understanding by focusing the domain
analysis efforts on the most essential domain entities, their
relations, and roles as part of the problem to be solved.
More thorough evaluation of the system can be divided as
follows: natural language parsing, internal representations
and methods, and the quality of the produced model.

The biggest internal challenge with the system is the
representation of the parsed data (Figure 3). The initial de-
sign for the structural information assumed that mostly sub-
ject and object relations (i.e. syntactic information) would
be needed for the heuristic [11] which is true in the simple

Program
passes \a&& asses
Heuristic passes Parser Use case
returns /aurns
Conceptual model Parsed use case

Figure 8. Corrected model of the process use case

User

I

4

Program Source selects

1
presents |

Use case

Figure 9. Corrected model of the select use case

cases. Main problem is that a verb between subject and ob-
ject can mean a simple interaction (“User shutdowns sys-
tem”) or a more specific relation like aggregation ("User
owns secure id”). Additionally, other parts of the sen-
tence can be as important as the object. For example, in
sentence “User shutdowns the system with power switch”,
”Shutdowns” is predicate, “User” is subject, and ”System”
is object, and thus ”User” ”shutdowns” ”’System” relation-
ship is extracted. If the sentence is written differently, e.g.
”User uses power switch to shutdown the system” would
produce a different result despite the fact that the meaning
is approximately the same. Currently, the only place for
such meaning extraction is within the heuristic module, but
adding such functionality into this module would destroy
its language independence. Therefore, in future develop-
ment additional semantic annotations should be obtained
in the parsing phase to extract more specific entity roles.

The quality of output depends essentially on the qual-
ity of the work done in earlier phases necessary to pro-
duce it. For example, Li’s method for use case normal-
ization [10] improves the quality of the models. Use cases
should be written using simple sentences, preferably with
subject-predicate-object structure. Same verb should be
used to describe the same action and subject or object
should be referred with its full name. This is because
the program does not understand the text, but is bound to
handle synonyms as different words rather than combining
them to one entity. This problem could be minimized by
adding thesaurus check or metadata support and extract it
from the input source at the parsing phase.

asses
Program Parser
|
|
|

-Use case
pagses
,,,,,,,,,, Parsed use case
Heuristic

retyrns

Conceptual model

Figure 10. Idealized correction of the Process use case

retyrns

Program

\§

User

%{s

passes rocesses selects ects
\ y)
Heuristic shows | List of use cases contained in source stores passes Parser Use case edits List of use cases Source of use cases
returns eturns
Conceptual model / Parsed use case
Figure 11. The combined model
Analyst Program
<<user>> <<system>>
selects /SES uses
Source " Parser Heuristic
<<data>> selects edits presents <<module>> presents <<module>>
1
parses }al uates
*
N
Use case Conceptual model Parsed use case

Figure 12. Modified version of the combined model

The usability of even the most perfect model can be
diminished by using confusing graph layout to represent it.
For example, crossing of lines representing relations are to
be avoided [27], but here we are bound to dot. The user
has little means to alter the layout, but the problem can be
bypassed by exporting the model to a more sophisticated
graph editor. Moreover, increase of the amount of use cases
to describe system requirements also increases the need for
creating more abstract views of them, although the amount
of domain information in the overall model can exceed the
limits of human cognitive capacity [28]. However, such
challenge is evident for all models of practical size.

6 Conclusion and Future Work

We have developed and described a proof-of-concept pro-
totype for automatic analysis of use cases. According to
the general idea of pipes and filters [24], the effectiveness
of our system is determined by the individual filters. How-
ever, the quality of generated conceptual models depends
essentially on the writing conventions of the use cases.
Ambiguities can be avoided by following certain guidelines
[6, 10], such as writing use cases using subject-predicate-
object structure and minimizing usage of synonyms. Al-
though Abbott’s heuristic could be augmented, it allows to
produce the basic entity model, to be modified concerning
the unique entities and actual form of their relations. As
e.g. Figure 12 shows the model as static, but it could be pre-
sented in a more behavioral oriented (cf. sequence diagram

in UML [29]). To this end, also the semantics (i.e. types
of relations) of the entity model could be enlarged, but one
should keep in mind that all the relevant domain stakehold-
ers should understand all possibilities occurring in the con-
ceptual model (cf. association types in UML [29]).

The system can be enhanced with new types of in-
puts and outputs. As long as the inner model used in the
system contains enough information, different views of the
use cases can be exported. This would ease many nowa-
days manual domain engineering related efforts by using
the system to translate the use cases to a metamodel de-
scribing the domain components, or (provided that suffi-
cient metadata is available) even a domain ontology, a for-
mal specification of the concepts.

Even with the current shortcomings the system can
be useful for creating representations from the use cases,
although its comprehensive evaluation remains as a future
work. User gets a holistic view of all the use cases included
in the model. This helps keeping track of the linkages
between actors and data processing, addressing possible
shortcomings in the domain analysis and helps to assess the
quality of the use cases [30]. Overall, semiautomatically
generated conceptual models seem to provide appropriate
support to requirements analysis and domain engineering.

Acknowledgements

This work was supported by National Technology Agency
of Finland under project ProductionPro (Dnro 2832/31/06).

References

[1] I. Sommerville. Software Engineering (7th Edition).
Addison Wesley, 2004.

[2] L. Jacobson. Object-oriented software engineering.
ACM Press, 1992.

[3] M. Cohn. User Stories Applied For Agile Software
Development. Addison Wesley, 2004.

[4] B. Boehm and R. Turner. Balancing Agility and Dis-
cipline: A Guide for the Perplexed. Addison Wesley,
2003.

[5] IBM. Rational unified process: Best practices for
software development teams. Technical report, Ra-
tional Software White Paper, 2001.

[6] A.Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2000.

[7] B. Anda and D. I. K. Sjgberg. Investigating the role of
use cases in the construction of class diagrams. Em-
pirical Software Engineering, 10(3):285-309, 2005.

[8] L-Y. Song, K. Yano, J. Trujillo, and S. Lujdn-Mora.
A taxonomic class modeling methodology for object-
oriented analysis. In J. Krostige, T. Halpin, and
K. Siau, editors, Information Modeling Methods and
Methodologies. Idea Group Publishing, 2004.

[9] H. G. Pérez-Gonzalez, J. K. Kalita, A. S. N. Varela,
and R. S. Wiener. GOOAL: an educational object ori-
ented analysis laboratory. In Companion to the 20th
ACM SIGPLAN conference OOPSLA’05, 2005.

[10] L. Li. Translating use cases to sequence diagrams. In
ASE ’00: Proc. of the 15th IEEE int. conf. on Auto-
mated software engineering, 293-296, 2000.

[11] R. J. Abbott. Program design by informal English
descriptions. Commun. ACM, 26(11):882-894, 1983.

[12] G. Booch. Object-oriented analysis and design with
applications (2nd ed.). Benjamin-Cummings, 1994.

[13] B. Bruegge and A. H. Dutoit. Object-Oriented Soft-
ware Engineering: Using UML, Patterns and Java,
Second Edition. Prentice Hall, 2003.

[14] J. Carroll. Chapter 12. parsing. In R. Mitkov, editor,
The Oxford Handbook of Computational Linguistics,
233-248. Oxford University Press, 2003.

[15] 1. A. Bolshakov and A. Gelbukh. Computational
Linguistics: Models, Resources, Applications. TPN-
UNAM-FCE, 2004.

[16] C.D.Manning and H. Schiitze. Foundations of Statis-
tical Natural Language Processing. MIT Press, 1999.

[17] J. Foreman. Product line based software development
- significant results, future challenges. In Software
Technology Conference, 1996.

[18] R. Prieto-Diaz. Domain analysis for reusability. In
Proc. of the 11th annual int. computer software and
applications conf. (COMSPAC 87). IEEE, 1987.

[19] J. Greenfield, K. Short, S. Cook, and S. Kent. Soft-
ware Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, 2004.

[20] P. Spyns, R. Meersman, and M. Jarrar. Data mod-
elling versus ontology engineering. SIGMOD Rec.,
31(4):12-17, December 2002.

[21] J.-P. Tolvanen and S. Kelly. Defining domain-specific
modeling languages to automate product derivation:
Collected experiences. In Proc. of the 9th Int. Conf.
on Software Product Lines, SPLC 2005, 2005.

[22] D. W. Embley, R. B. Jackson, and S. N. Woodfield.
OO0 systems analysis: Is it or isn’t it? IEEE Software,
12(4):19-33, 1995.

[23] D. Svetinovic, D. M. Berry, and M. W. Godfrey.
Increasing quality of conceptual models: is object-
oriented analysis that simple? In ROA ’06: Proc. of
the 2006 int. workshop on Role of abstraction in soft-
ware engineering, 19-22. ACM Press, 2006.

[24] L. Bass, P. Clements, and R. Kazman. Software ar-
chitecture in practice. Addison Wesley, 2005.

[25] M. Nurminen, A. Honkaranta, and T. Kiarkkéinen.
ProcMiner: Advancing process analysis and manage-
ment. In IEEE 23rd Int. Conf. on Data Engineering
Workshop (TDMM), 760-769, 2007.

[26] D. Klein and C. D. Manning. Fast exact inference
with a factored model for natural language parsing. In

Advances in Neural Information Processing Systems
15 (NIPS 2002). MIT Press, December 2002.

[27] K. Wong and D. Sun. On evaluating the layout of
UML diagrams for program comprehension. Software
Quality Journal, 14(3):233-259, September 2006.

[28] G. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing in-
formation. Psychological Review, 63:81-97, 1956.

[29] OMG. Unified modeling language: Superstructure,
version 2.1.1. Technical Report 2007-02-03, 2007.

[30] K. T. Phalp, J. Vincent, and K. Cox. Assessing the
quality of use case descriptions. Software Quality
Control, 15(1):69-97, 2007.

