

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Applying Semiautomatic Generation of Conceptual Models to Decision Support
Systems Domain

Nurminen, Miika; Suominen, Panu; Äyrämö, Sami; Kärkkäinen, Tommi

Nurminen, M., Suominen, P., Äyrämö, S., & Kärkkäinen, T. (2009). Applying
Semiautomatic Generation of Conceptual Models to Decision Support Systems
Domain. In R. Breu (Ed.), Proceedings of the IASTED International Conference on
Software Engineering (SE 2009) (pp. 7). ACTA Press.
http://www.actapress.com/Abstract.aspx?paperId=34625

2009

APPLYING SEMIAUTOMATIC GENERATION OF CONCEPTUAL MODELS
TO DECISION SUPPORT SYSTEMS DOMAIN

Miika Nurminen, Panu Suominen, Sami Äyrämö, Tommi Kärkkäinen
Department of Mathematical Information Technology

University of Jyväskylä, Finland
minurmin@mit.jyu.fi, panu.suominen@iki.fi, {samiayr,tka}@mit.jyu.fi

ABSTRACT

This paper presents a decision support system speci-
fication in the form of business use cases and a stereotyped
conceptual model based on the specification. The use cases
are based on generic user requirements and address cogni-
tive biases. The specification can be used to set fixed and
common terms among the project participants.

Semiautomatic generation of the conceptual model is
demonstrated with mixed results. While there are some
shortcomings in the parsing and the result is dependent on
the phrasing conventions used in the use cases, the concep-
tual model highlights the most essential entities in the do-
main and provides a base for further development phases.

KEY WORDS

Use case, conceptual model, decision support system,
systems analysis, domain engineering.

1 Introduction

The task of decision making can be divided into three steps
[1]: (1) the identification and listing of all the alternatives
(intelligence); (2) the determination of all the consequences
resulting from each of the alternatives (design); and (3)
the comparison of the accuracy and efficiency of each of
these sets of consequences (choice). The division com-
bines the organizational (descriptive, what decisions could
and should be made) and technical (normative, how the de-
cision should be made) views on decision making. OODA
Loop [2] is another decision making model, meant for or-
ganizations that undergo continuous interaction with their
environment. The OODA loop consists of four overlapping
and interacting processes (observe, orient, decide, and act)
that are in continuous operation during the interaction.

Use cases are a popular method for requirements elic-
itation. To get a complete picture of the requirements,
they are considered with different stakeholders of the SuD
(System-Under-Development). A stakeholder is someone
with an interest in the future system, e.g. user, administra-
tor, maintainer, etc. Use cases focus on describing the use
of SuD as a part of workflows related to relevant stakehold-
ers. Use cases provide an important context for the distinct

functional requirements, how they are connected, the sit-
uations they are relevant in, and the related trigger condi-
tions. The level of detail of a use case varies and can be
adjusted on a per-project basis. Use cases do not describe
non-functional requirements of SuD (e.g. performance, se-
curity, user interfaces). Also, use cases are not well suited
for all software development, such as reactive systems [3].

This paper builds on a requirements specification of
a generic (hypothetical) decision support system (DSS)
[4] and elaborates the work reported in [5] and [6].
The requirements provide a checklist for the develop-
ment of any system supporting operative decision mak-
ing based on statistical decision theory (SDT). However,
since organization-wide decision making is more than just
an implementation of one decision support technique [1],
a DSS should be based on layered architecture, separating
task selection and actual decision making support. If possi-
ble, predictable deviations from rational decisions (cogni-
tive biases) [7] should be compensated by the system.

We have specified the DSS with business use case -
like descriptions [8] along with a conceptual model gener-
ated semiautomatically from the use cases. The specifica-
tion can be used to set fixed and common terms among the
DSS stakeholders. The specification can be used to ana-
lyze the possible structure and layers of the SuD related to
DSS reference models. Further, the stereotypes and con-
cepts discovered from use cases form a base for a domain-
specific ontology that can be applied for information inte-
gration and reasoning about decision support systems.

The contents of this paper are as follows: Section 2
provides an introduction to related research. DSS specifi-
cation is presented in Section 3. Section 4 evaluates the
specification and concludes the paper.

2 Preliminaries

This section provides a short introduction to related re-
search and desirable goals from system specification, infor-
mation systems, and human decision making perspectives.

2.1 On Decision Support Systems

Decisions are a way of addressing a problem, containing
a procedure or chain of reasoning as to how the problem

should be solved. If not, decision degenerates to merely
guessing. However, the level to which the procedure can
be automated varies. Categories of structured, semistruc-
tured, and unstructured problems can be defined [9]. For
structured problems there exists a known procedure (e.g.
standard processes, operations research) to find an adequate
solution. Semistructured problems have some parts that are
procedurally solvable and others that are not. Unstructured
problems have no effective method for solving them. For
example, planning for research is an unstructured problem
while locating a warehouse is a structured one.

To help solve these problems decision support sys-
tems can be employed. The DSS is designed to support the
user in making certain decisions. Usually this is achieved
through modeling a subset of the real environment and
analysing possible outcomes of decision candidates. Some-
times just simple calculations are enough. DSS covers a
broad range of applications from simple spreadsheets to so-
phisticated AI systems – all having in common the goal to
ease solving the problem they are designed to help with.

Turban [10] describes three essential subsystems of
DSS: data management, model management, and user in-
terface (UI). Hence, DSS is constructed from data, ways to
manipulate them, and an interface for the user to interact
with the system. Additionally there might be a knowledge
management system that enables classification and heuris-
tic evaluation of results, or automatic problem solving. The
model is compared with DSS specification in Section 3.2.

2.2 Digitalization and Impact on Information Systems

The amount, degree, and form of communication used in
organizations should be taken into account when designing
decision support systems. With the current trend of digi-
talization and the convergence of networks, the amount of
available information is higher than ever, generating new
problems and adding to the impact of existing ones, such as
information overload. The ease of information distribution
can impair organizational communication with irrelevant
information [11]. Thus, defining and gathering necessary
information is a crucial step in realizing decision support.

Despite the increased digitalization of documents, all
organizational information will never be available for auto-
mated processing. Based on analysis from three industrial
and academic organizations [11], it seems that digital doc-
uments account for 40%-55% of total organizational com-
munication, leaving out analog representations (e.g. paper)
and other communication (e.g. face-to-face, phone). Since
some of the analog documents are produced digitally (e.g.
printing documents), the actual amount of digital commu-
nication might be higher, but still a notable part of commu-
nication takes place outside the information systems.

Even if both digital documents and other communi-
cation forms are considered, tacit knowledge can not be di-
rectly accessed by a DSS, even though it may have a pivotal
role in decision making compared to official documenta-
tion. In principle, this can be alleviated by expressing tacit

knowledge explicitly to become part of the organizational
information resource, but in practice this can be difficult
and time-consuming. Therefore, one should note that any
information system can have direct access only to a fraction
of the total knowledge present in an organization.

2.3 Cognitive Biases and Decision Making

Arnott [7] claims that although influences of DSS on de-
cision performance are often disappointing, focusing on
decision-making and tailored support can lead to successful
systems. An analyst should have knowledge about human
decision processes. The decisions can vary from the most
rational choice. Predictable deviations from rationality are
called cognitive biases. Arnott classifies 37 biases into 6
categories presented here briefly.

Memory biases (hindsight, imaginability, recall,
search, similarity, testimony) are due to the fact that people
remember familiar events more easily than others. Such a
human judgment can yield an incorrect estimation of pos-
sibilities. Thus, DSS should provide accurate, impartial in-
formation from the past, avoiding overloading users’ short
term memory.

Confidence biases (completeness, control, confirma-
tion, desire, overconfidence, redundancy, selectivity, suc-
cess, test) arise from user’s overconfidence in one’s skills.
People tend to choose the first complete-appearing solution
disregarding alternatives, concentrating on confirming ev-
idence. DSS should show alternatives and present the un-
certainty of information. DSS should keep a record of the
decisions made, enabling users to evaluate their actions.

People tend not to adjust enough to a change of envi-
ronment. This ignorance of potentially significant new data
is categorized under adjustment biases (anchoring and ad-
justment, conservatism, reference, regression). DSS using
up-to-date models based on recent data facilitates adjust-
ment to the task at hand by the decision maker.

The way information is represented matters. Scale
differences between graphs, or overweighting of individ-
ual items can lead to wrong conclusions. Problems aris-
ing from presentation biases (framing, linear, mode, order,
scale) can be avoided by using consistent user interfaces.

Situation biases (attenuation, complexity, escalation,
habit, inconsistency, rule) include the human tendency to
follow a previous course of action, only because it was used
before. People also simplify the situation by discounting
the level of uncertainty. Appropriate structuring of the de-
cision tasks, as well as history databases are needed.

Statistical biases (base rate, chance, conjunction,
correlation, disjunction, sample, subset) result from mis-
interpretation of random variable -based data.

Compensating for the erroneous behavior of the user
should be considered when designing DSS, because these
biases might alter the decision significantly. System can
help the user overcome these shortcomings with carefully
considered user interface, representation of statistical data,
or just informing the user of common potential mistakes in

the current situation. If the problem can be structured, the
program can follow the actions of the user.

3 DSS Specification

In this section, a use case specification and an entity model
of a generic DSS is presented. The requirements in [4]
were the starting point, but use cases were generalized to
be independent of a computational method (e.g. SDT), or-
ganizational and technical context was clarified, and cogni-
tive biases [7] were accounted for. The use cases establish
a connection between descriptive and normative views on
decision making. Consistent writing style and terminology
was enforced by iterative writing and multiple reviews.

3.1 Roles

The following roles are applied in the use cases. Depending
on the organization and the position of a decision maker,
multiple roles could be performed by a single person.

System Expert is responsible for the DSS main-
tenance and configuration, data connections, software/
method extensions and updates. This role presumes ex-
tensive technical skills in information technology, software
engineering, and to some extent, in knowledge discovery,
data mining/analysis, and statistics. The tasks of the Sys-
tem Expert might be partly or fully outsourced.

Decision Configurator is responsible for the avail-
ability of necessary data sources. He/she analyzes the in-
formation sources/flows in the organization and responds
to the data requests from the Method Expert and/or the De-
cision Maker. The role presumes extensive skills in infor-
mation technology, data engineering, knowledge manage-
ment, and possibly to some extent, software engineering.

Method Expert (Analyst) is responsible for applying
the computational methods of DSS to the datasets. He/she
has expertise in selection, usage and configuration of the
methods, as well as deep understanding in optimization,
data mining/analysis, statistics, and related methods. The
Method Expert must be able to communicate about tech-
nical issues with the System Expert/Decision Configurator,
and the meaning of the representations with the Decision
Maker. The tasks of Method Expert might be outsourced.

Decision Maker is an experienced domain special-
ist who makes decisions and is usually responsible for the
outcomes. The Decision Maker is not expected to have de-
tailed technical understanding of decision support methods
or models, but based on domain experience he/she can eval-
uate the impact of different decision alternatives provided
by the Decision Configurator, or the DSS.

DSS Configuration Team combines the appropriate
level of management and experts representing the afore-
mentioned roles. The team maintains the DSS by analyz-
ing the need for supporting new decision tasks, decision
making principles, methods, models, and pre-configuring
decision templates that guide predefined decision tasks.

3.2 Information systems

DSS contains or interfaces with the following libraries,
databases, and other systems. The actual configuration and
location of the systems depend on the organization. For ex-
ample, a workflow system with executable process engine
might provide information about decision tasks to DSS.

Method Library (Knowledge Management Subsys-
tem [10]) contains implementations of the decision sup-
port techniques. New methods can be added by the Sys-
tem Expert. Utilization of the methods requires the tuning
of parameters (distribution parameters for state estimation
model, prototypes for clustering etc.) or retrieving them
from the Decision History Database, and the testing (valid-
ity, sensitivity etc.) of parameters.

Decision History Database contains data about pre-
vious decisions and analysis steps that are supported by the
system. This includes the relevant information about deci-
sion making cases (timestamp, problem description, con-
sequences etc.), data sources, operational tasks and method
selections, input parameters, and obtained models (alter-
natives). This enables repetition of the previous decision
cases with new data and parameters. The results of the ac-
tions are gathered. Non-direct consequences are reported to
the database by Decision Configurator or Decision Maker.
Direct outcomes are collected automatically if possible.

Decision Template Database (Model Management
Subsystem [10]) consists of predefined decision making
tasks that can be used to guide the decision support pro-
cess. Each template defines the method selections, ap-
propriate parameter settings, perhaps pre-adjusted models,
visual representations, and informative descriptions. The
templates are defined by the DSS configuration team.

Organizational Data Sources (Data Management
Subsystem1 [10]) are information systems that are used in
the day-to-day operation of the enterprise. These provide
the input data for the DSS. The System Expert is responsi-
ble for providing connections to data sources.

3.3 Conceptual Stereotypes

Informal definitions for concepts (glossary) is needed to
establish a joint language between stakeholders [12]. We
base the glossary on use cases thus providing both doc-
umentation about a concept and its context of use. At-
taching a stereotype to each concept creates a classifica-
tion of them, supporting the transfer from domain analy-
sis into system development. Stereotypes also clarify the
structuring of use cases, because joint concepts related to
system usage and its realization are tagged [8]. There is no
need to prolong the use case by repeating the user action
and system response in connection with the same concepts
[13]: for a shared information transfer (Actor creates X →
System stores X), the step should be described from user’s
perspective (Actor creates X, tag X as persistent data).

1If the data is gathered to a data warehouse to be used by DSS, this
would be equivalent to Turban’s Data Management Subsystem.

Use Case 1: Perform Organizational Configuration and Decision Making Processes
Id Description Concepts: Stereotype
1 DSS Configuration Team defines the set of organizational Decision Tasks to be supported by DSS

and maintained by Decision Template Database.
DSS Configuration Team: Role Decision Task: UserElement
DSS: System Decision Template Database: Database

2 DSS Configuration Team defines Necessary and Available Information for Decision Tasks. Necessary Information: Data
Available Information: ExternalData

3 DSS Configuration Team defines the set of available Decision Support Techniques to Method Li-
brary.

Decision Support Technique: DecisionModelElement
Method Library: System

4 Method Expert documents the Decision Support Techniques to Method Library. Method Expert: Role
5 DSS Configuration Team defines the content of Decision History Database. Meta-information and

comments can be stored along with a reference to the applied decision support model.
Decision History Database: Database

6 Decision Configurator Team models the Decision Templates (2), which are supported. Decision Template: DecisionModelElement
7 Decision Maker makes Decisions (3) supported by DSS. Decision Maker: Role Decision: Action
8 DSS Configuration Team maintains DSS (4) based on Configuration Change Requests. Configuration Change Request: Document

Use Case 2: Model the Decision Template
Id Description Concepts: Stereotype

1 DSS Configuration Team derives a generic Decision Task from the past decision support cases. DSS Configuration Team: Role Decision Task: UserElement
2 Decision Configurator checks the availability of relevant internal/external task-specific data. Decision Configurator: Role
3 Method Expert attaches the Decision Support Technique suitable for the Decision Task to the Deci-

sion Model and notifies about necessary but missing connections from DSS to Organizational Data
Sources. Method Expert might decide to load an existing model to be the base of the model.

Method Expert: Role Decision Support Technique:
DecisionModelElement Decision Model: UserElement
Organizational Data Source: Database DSS: System

4 System Expert creates the necessary but missing connections to Organizational Data Sources. System Expert: Role
5 Decision Configurator specifies Trigger Condition for recognizing the need for Decision Task. Trigger Condition: Action
6 Method Expert defines the suggestive Decision Model Parameters for model building and inputs

the parameters into the Method Library.
Decision Model Parameter: DecisionModelElement
Method Library: System

7 Decision Configurator describes Decision Objectives and Decision Alternatives. Decision Objective: DecisionModelElement
Decision Alternative: DecisionModelElement

8 Decision Configurator attaches a structural Decision Making Process (i.e. phases or stages) yield-
ing to a Decision Proposal for each Decision Task and stores it in the Decision Template Database.

Decision Making Process: Process Decision Proposal:
UserElement Decision Template Database: Database

9 System Expert runs test cases and reports the results to the Method Expert.
10 Decision Configurator documents the elements of the Decision Model and its relation to Decision

Support Technique in Concept Documentation and stores the Decision Model, its Concept Docu-
mentation, its testing and version history in the Decision Template Database.

Concept Documentation: Document

Steps 5-8 can occur many times in any order.

Use Case 3: Make Decision
Id Description Concepts: Stereotype
1 DSS detects a Trigger Condition for a need for decision and shows Decision Proposal to Decision

Maker.
DSS: System Trigger Condition: Action
Decision Proposal: UserElement Decision Maker: Role

2 Decision Maker selects Decision Alternative to be inspected. Decision Alternative: DecisionModelElement
3 DSS shows Decision Model information related to the Decision Alternative. Decision Model: UserElement
4 Decision Maker inspects and alters the Decision Scenario related to Decision Alternative. Decision

Maker can propose a Configuration Change Request.
Decision Scenario: UserElement
Configuration Change Request: Document

5 DSS generates and shows new Decision Alternative.
6 Decision Maker makes Decision, documents it, and stores the Session with its Decision Documen-

tation to Decision History Database. Decision Maker may accept a Decision Alternative, decide
not to make a Decision, or cancel the Decision Making Process.

Decision: Action Decision Making Process: Process
Decision Session: Data Decision Documentation: Document
Decision History Database: Database

7 DSS captures all relevant Consequences of the Decision made, if possible. Consequences can also
be documented manually.

Consequence: Document

Steps 2-5 can occur in any order and many times.

Use Case 4: Maintain DSS
Id Description Concepts: Stereotype
1 DSS Configuration Team receives Configuration Change Request related to the set of supported

Decision Tasks from Change Requester. DSS Configuration Team has regular meetings to assess
DSS and change requests.

DSS Configuration Team: Role Change Requester: Role
Configuration Change Request: Document
Decision Task: UserElement

2 DSS Configuration Team accepts or rejects the Configuration Change Request based on stored
Decisions in Decision History Database and available information on documented Consequences
of Decisions made.

Decision History Database: Database Decision: Action
Consequence:Document

3 Method Expert modifies the set of available Decision Support Techniques and stores the results to
Method Library.

Method Expert: Role Decision Support Technique:
DecisionModelElement Method Library: System

4 DSS Configuration Team modifies the set of organizational Decision Tasks.
5 DSS Configuration Team documents the changes in Decision Tasks, stores them and Change Doc-

umentation to Decision Template Database, and notifies the Change Requester and other users.
Change Documentation: Document
Decision Template Database: Database

Steps 3-5 are performed only if Configuration Change Request was accepted in Step 2.

The following table contains definitions of the stereo-
types. DecisionModelElement is specific to DSS domain;
other stereotypes are domain-independent.

Stereotype Description
Action Functionality needed by SuD
Data Persistent information used internally by SuD
Database Database to be managed by SuD
Document Document to be produced by SuD or a report that SuD

must generate to a user
ExternalAction An external action that SuD must take into account
ExternalData Relevant data stored by other systems available for SuD
ExternalRole Human or device that SuD must communicate with
Metadata Data about data
Process An ordering of work activities across time and place with

a beginning and an end with inputs and outputs [14]
Role Stakeholder representatives who share the same roles and

responsibilities with respect to the project [12]
Selection A particular choice related to a particular UserElement
System SuD or other information system related to use case
UserElement An element representing the interaction interface be-

tween a user role and SuD
DecisionModel-
Element

General entity related to the decision making model

3.4 Use cases

Figure 1 represents the basic structure of the DSS described
in detail in tables UC1-UC4. Numbers in parentheses de-
note links to another use case. UC1 presents the general
process of utilizing a DSS in an organization. The process
starts with the need for the decision, triggered automati-
cally by the system or manually by the user. New Deci-
sion Tasks are modeled in a decision template (UC2). After
the model exists the DSS can generate a decision proposal
that Decision Makers can use to make decisions (UC3).
The Decision Maker is able to change the data, and pos-
sibly the parameters in the model to evaluate the alterna-
tives. Finally, the Decision Maker can propose configura-
tion change requests that can be implemented by the Con-
figuration Team in the process of maintaining DSS (UC4).

As an example of applying the use cases, we demon-
strate prototype-based (e.g. k-means, k-spatmed) data clus-
tering (i.e. grouping of similar elements in a dataset) [15]
as a decision support technique. The specific problem ad-
dressed here is controlling manufacturing process in the
product line in process industries (see [6]). Different prod-
uct line states are represented as clusters, decisions are re-
flected as probabilistic transitions between the clusters.

In use case 2, estimating Parameters (step 6) means
the estimation of clusters and prototypes comprising the de-
cision model with chosen data. Uncertainty of the clusters
(state estimates) and consequent actions can be evaluated
using SDT-methods. Decision objectives/alternatives (step
7) means the attachment of different control parameters to
the current and desired state and consequent state alterna-
tives and their probabilities. Decision making process (step
8) can be sequential or parallel, relying on a single decision
maker or a group of experts. Proposed decision alternatives
are attached to each of the cluster prototypes.

In use case 3, Decision Alternatives (step 2) are based
on state change history of the cluster model that docu-
ments the influence of the different actions (process con-
trol adjustments) with respect to states (clusters). Decision
Model Information (step 3) can be a visualization of pro-
cess data and cluster evolution. For example, taking action
A when the process is in cluster (state) 1 leads to the state
change from cluster 1 to cluster 2 with 95% probability
and to cluster 3 with 5% probability. Decision Maker can
also explore the previous decisions and the resulting con-
sequences. When altering Decision scenario (step 4), the
Decision Maker could request a change on the number of
cluster prototypes, clustering principle (e.g., different dis-
tributional assumptions), or other specific parameters.

Figure 1. Basic workflow for a decision support system

3.5 Entity Model

Use cases describe the domain in one viewpoint. The in-
formation is mostly not properly organized for software de-
velopment. The development process can be facilitated by
extracting a domain model from the use cases. We encoded
the use cases in ProcML – an XML format that allows at-
taching metadata to use case steps [16]. Use cases were
analyzed by UCOT (Use Cases to Original enTities) soft-
ware [5], a prototype of a system which is designed to auto-
matically analyze use cases and create a conceptual model
based on the analysis. A grammatical parser2 and Abbott’s
heuristic [17] were used in the process.

An unmodified, automatically generated entity model
is not useful as such because of the limitations in heuristic
and parsing. After initial processing the conceptual model
was refined manually by merging and splitting duplicate
and ambiguous entities. Attribute and relation informa-
tion was also adjusted to reflect the application domain.
Nonessential entities were omitted for easier understand-
ability. Finally, stereotypes were added to some of the con-
cepts. The final model is illustrated in Figure 2 and shows
approximately how entities of the system act together.

2Available at http://nlp.stanford.edu/downloads/lex-parser.shtml

Although the use cases were mostly written us-
ing strict conventions (e.g. using subject-predicate-object
structure), it proved to be exceedingly difficult to stick with
simple structures. The use cases were iterated by four dif-
ferent authors and as the domain understanding increased,
the complexity of the sentences increased as well. A spe-
cific problem was the complex relationship between De-
cision Support Technique, Decision Model, and Decision
Task. They are referred to in many steps and often in an
ambiguous way (e.g. ”Method Expert attaches the Deci-
sion Support Technique suitable for the Decision Task to
Decision Model”) that is difficult to interpret automatically.

A limitation in UCOT data model is the lack of sup-
port for n-ary relations. Since the use cases contained some
3-ary relations (e.g. ”Decision Configurator stores Doc-
umentation to Decision Template Database”), we had to
divide them to elementary relations (”Decision Configura-
tor stores Documentation” and ”Documentation is stored to
Decision Template Database”). Singular vs. plural forms,
and the use of pronouns (”Decision Maker makes Deci-
sion and documents it”) yielded unnecessary entities that
had to be merged. Overall, the system was not effective in
processing long sentences and produced entities that con-
tained either multiple concepts (e.g. ”Decision Objectives
and Decision Alternatives”) or both a concept and a relation
(e.g. ”DSS based on configuration change requests”).

Even though it is relatively straightforward to ”clean
up” the model with UCOT after initial processing, mainte-
nance becomes an issue if the use cases are modified after
editing the entity model. Since the relations from the en-
tity model are not explicitly linked back to the use cases,
the entity model may have to be recreated from scratch af-
ter modifications. In future, some of the changes could be
applied to the entity model automatically by recording user
actions. ProcML data model could also be extended with
full entity linkage: as the use cases are processed, UCOT
would tag each word with related entities in XML.

Based on the entity model, it seems that the roles
”DSS Configuration Team”, ”Decision Configurator”, and
”Method Expert”, and databases ”Decision Template
Database” and ”Decision History Database” are highly
connected. Other key entities include ”DSS”, ”Documenta-
tion”, ”Decision Task”, ”Decision Support Technique”, and
”Decision Model”. Many entities starting with word ”Deci-
sion” are most likely more connected than they need to be.
Currently, the model is not as understandable as we had
hoped prior to use case specification. However, some hints
about the architecture can be discovered. For example, the
activities of ”Method Expert” and ”System Expert” related
to ”Decision Support Technique” and ”Organizational Data
Sources” are somewhat isolated from the rest of the system,
so they are candidate entities for separate components. On
the other hand, because of the high connectivity of ”Doc-
umentation”, it might make sense to construct a common
documentation system used by different subsystems.

The model presented is by no means complete or fi-
nal – it merely provides an alternate view to use cases that

should be updated when needed. Being generated from in-
formal descriptions, the model does not necessarily rep-
resent the exact entities and relations (cf. ER-diagram in
database design) in the system, but helps to find the most
essential (e.g. densely connected) entities that should be
concentrated on. Still, the model is a base for further de-
velopment phases and can be utilized in various ways, de-
pending on the development methodology. One could pro-
ceed with object-oriented analysis and design, separating
classes and objects from the entity model and extending it
with more detail. The entity model could also be gener-
alized to a domain (meta)model or ontology to represent
requirements that are common for a set of applications.

4 Conclusion

There are a multitude of approaches to support decision
making in organizations. We have tried to cover some rel-
evant aspects of decision support systems by suggesting a
new generic use case -based specification for a DSS. Use
cases were based on generic user requirements [4] and gen-
eralized to accommodate different decision support tech-
niques and cognitive biases. Although somewhat abstract
in nature, the use cases clarify especially the context (e.g.
roles and information systems) needed to establish a DSS.
The semiautomatically generated entity model points out
essential concepts from the problem domain and can be
used as a base for more detailed specifications.

Although the use cases were based on generic user
requirements, the explicit link between requirements and
use case steps was not preserved. While ProcML supports
linking requirements to use cases, as the meaning of par-
ticular steps was changed or as use cases were split or
joined, tracing the original requirements to use cases was
somewhat cumbersome without further software support.
A more serious shortcoming is the lack of linkage between
the entity model and use cases – the transformation is one-
way and manual corrections must be made to the entity
model. In future development, the generated conceptual
model should be synchronized with manually specified en-
tities and stereotypes marked in use cases.

Combining use cases to a stereotyped entity model
seems to be a promising approach for requirements elici-
tation and conceptual modeling regardless of the method-
ology (e.g. OOA/D, domain engineering) used in later de-
velopment phases. Stereotypes provide metadata that can
be used for code generation and to simplify the original
use case descriptions. Some of the stereotypes (e.g. Role,
System, Process) are domain-independent, but a general
method to derive domain-specific stereotypes (e.g. De-
cisionModelElement) is yet to be explicated. Ultimately
there could be transparent 2-way linking between require-
ments, use cases, and entities in a unified model residing in
a knowledge base. Depending on the modeling task, differ-
ent views of the model could be exported to achieve pro-
ductivity gains in systems development.

Change requester
<<role>>

Configuration change request

sends

Decision task

is related to

Decision

Decision history database
<<database>>

is stored to

Decision Need

Decision alternative

Decision configurator
<<role>>

describes

Decision making process

attaches

Decision model

storesdocuments

Decision objective

describes

Decision support technique

documents

Decision template

models

Documentation

stores

Task-specific data

checks availability of

Trigger condition

specifies

Decision maker
<<role>>

proposes

documents makes

inspects stores

Decision proposal

yields to

is attached to

1

1

1

1

are documented in Parameters

11

1

1
is shown to

is attached to

Method library
<<system>>

is stored to

Organizational data sources
<<database>>

requires

is resolved by

Decision template database
<<database>>

is stored to

1
1

abstracts

is maintained by

is stored to

Dss
<<system>>

is maintained based on

triggers

generates

1

1

shows

supports

1

1

1

1

Dss configuration team
<<role>>

notifies

receives

documentsmodifies

stores

maintains
Method expert

<<role>>

System expert
<<role>>

documents modifies

inputs

defines

notifies

1

1

connects to

Test cases

runs

Figure 2. Modified DSS entity model based on use cases

Acknowledgements

This work was supported by National Technology Agency
of Finland under project ProductionPro (Dnro 2832/31/06).

References

[1] H. A. Simon. Administrative Behavior (3rd edition).
The Free Press, 1976.

[2] J. Boyd. A Discourse on Winning and Losing. De-
fense and the National Interest.

[3] M. Jackson. Problem frames: analyzing and structur-
ing software development problems. Addison-Wesley,
2001.

[4] H. Jokinen, J. Grén, K. Hukki, K. Konkarikoski,
T. Kärkkäinen, U. Pulkkinen, R. Ritala, P. Suominen,
and J.-P. Ylén. Generic user requirements for opera-
tional decision support system. To be submitted.

[5] T. Kärkkäinen, M. Nurminen, P. Suominen, T. Pie-
niluoma, and I. Liukko. UCOT: Semiautomatic gen-
eration of conceptual models from use case descrip-
tions. In IASTED Int. Conf. on Software Engineering
(SE 2008), 171–177. ACTA Press, 2008.

[6] M. Nurminen, P. Suominen, S. Äyrämö, and
T. Kärkkäinen. Use cases for operational decision
support system. In T. Mätäsniemi, editor, Operational
decision making in process industry. VTT, 2008.

[7] D. Arnott. Cognitive biases and decision support sys-
tems development: a design science approach. Infor-
mation Systems Journal, 16(1):55–78, January 2006.

[8] A. Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2000.

[9] G. Gorry and M. Scott-Morton. A framework for
management information systems. Sloan Manage-
ment Review, 13(1):55–71, 1971.

[10] E. Turban, J. E. Aronson, and T.-P. Liang. Decision
Support Systems and Intelligent Systems (7th Edi-
tion). Prentice-Hall, 2004.

[11] T. Kilpeläinen. Genre and ontology based business
information architecture framework (GOBIAF). PhD
thesis, University of Jyväskylä, 2007.

[12] K. Bittner. Use Case Modeling. Addison-Wesley,
2002.

[13] R. Wirfs-Brock. Designing scenarios: Making the
case for a use case framework. The Smalltalk Report,
3(3), Nov-Dec 1993.

[14] T. H. Davenport. Process Innovation – Reengineer-
ing Work through Information Technology. Harvard
Business School Press, 1993.

[15] S. Äyrämö. Knowledge Mining Using Robust Clus-
tering. PhD thesis, University of Jyväskylä, 2006.

[16] M. Nurminen, A. Honkaranta, and T. Kärkkäinen.
ProcMiner: Advancing process analysis and manage-
ment. In IEEE 23rd Int. Conf. on Data Engineering
Workshop (TDMM), 760–769, 2007.

[17] R. J. Abbott. Program design by informal English
descriptions. Commun. ACM, 26(11):882–894, 1983.

