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Abstract

In this study, stability and dynamic behaviour of axially moving viscoelastic

panels are investigated with the help of the classical modal analysis. We

use the flat panel theory combined with the Kelvin–Voigt viscoelastic con-

stitutive model, and we include the material derivative in the viscoelastic

relations. Complex eigenvalues for the moving viscoelastic panel are studied

with respect to the panel velocity, and the corresponding eigenfunctions are

found using central finite differences. The governing equation for the

transverse displacement of the panel is of fifth order in space, and

thus five boundary conditions are set for the problem. The fifth

condition is derived and set at the in-flow end for clamped-clamped

and clamped-simply supported panels. The numerical results suggest

that the moving viscoelastic panel undergoes divergent instability for low

∗Corresponding author. Tel.: +358 40 805 3296. Fax: +358 14 260 2771
Email addresses: tytti.saksa@jyu.fi (Tytti Saksa), banichuk@ipmnet.ru

(Nikolay Banichuk), juha.jeronen@jyu.fi (Juha Jeronen), matti.kurki@jamk.fi
(Matti Kurki), tero.tuovinen@jyu.fi (Tero Tuovinen)

Preprint submitted to International Journal of Solids and Structures June 29, 2012



values of viscosity. They also show that the critical panel velocity increases

when viscosity is increased and that the viscoelastic panel does not expe-

rience instability with a sufficiently high viscosity coefficient. For the cases

with low viscosity, the modes and velocities corresponding to divergent insta-

bility are found numerically. We also report that the value of bending rigidity

(bending stiffness) affects the distance between the divergence velocity and

the flutter velocity: the higher the bending rigidity, the larger the distance.

Keywords: Moving, Viscoelastic, Beam, Eigenvalues, Dynamic, Stability

1. Introduction

Stability of axially moving materials has been studied widely (e.g. Wickert

and Mote, 1988) since such models have various applications in industry,

e.g., paper webs, band saws, magnetic tapes and pipes containing flowing

fluids. Recently, many scientists have taken an interest in viscoelastic moving

materials, since industrial materials usually have viscoelastic characteristics

(see e.g. Fung et al., 1997).

The first studies on vibrations of travelling elastic strings, beams, and

bands include Sack (1954), Archibald and Emslie (1958), Miranker (1960),

Swope and Ames (1963), Mote (1968), Mote (1972), Mote (1975), Simp-

son (1973), Ulsoy and Mote (1980), Chonan (1986), and Wickert and Mote

(1990). These studies focused on free and forced vibrations including the

nature of wave propagation in moving media and the effects of axial motion

on the eigenfrequencies and eigenmodes. We also mention Ulsoy and Mote

(1982), Lin and Mote (1995), Lin and Mote (1996), and Lin (1997), who have

studied stability of travelling rectangular membranes and plates.
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Archibald and Emslie (1958) and Simpson (1973) investigated the effects

of axial motion on the frequency spectrum and eigenfunctions. It was shown

that the natural frequency of each mode decreases as the transport speed in-

creases, and that the travelling string and beam both experience divergence

instability at a sufficiently high speed. Wickert and Mote (1990) studied sta-

bility of axially moving strings and beams using modal analysis and Green’s

function method. The expressions for the critical transport velocities were

found analytically. However, Wang et al. (2005a) showed analytically that

no static instability occurs for the transverse motion of a string at the critical

velocity. Recently, Kong and Parker (2004) have found, by a perturbation

analysis, closed-form expressions for the approximate frequency spectrum of

axially moving beams with a small flexural stiffness.

Ulsoy and Mote (1982) and Lin (1997) studied the stability and vibra-

tion characteristics of axially moving plates. Ulsoy and Mote (1982) studied

natural frequencies and stability of the moving plate using the Ritz method

(and simplified boundary conditions at the free edges), and comparison with

experimental data showed a good agreement with the analytical results. Lin

(1997) showed by numerical analysis that the critical velocities predicted by

the static analysis and the dynamic analysis coincide, and that the plate

experiences divergence instability at the critical velocity. Kim et al. (2003)

used modal spectral element formulation to analyse the eigenfrequencies with

respect to the axial velocity of a moving plate. Luo and Hamidzadeh (2004)

examined buckling of an axially moving plate using non-linear equations and

the perturbation approach.

The first study on transverse vibration of travelling viscoelastic material
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was carried out by Fung et al. (1997) using a string model. Extending their

work, they studied the material damping effect in their later research (Fung

et al., 1998).

There are several studies on travelling viscoelastic materials concerning

strings and beams. Chen and Zhao (2005) represented a modified finite differ-

ence method to simplify a non-linear model of an axially moving viscoelastic

string. They studied the free transverse vibrations of elastic and viscoelastic

strings numerically.

Chen et al. (2004), Yang and Chen (2005), Chen and Yang (2005), and

Chen and Yang (2006), all investigated stability of axially moving viscoelas-

tic beams in parametric transverse resonance. Yang and Chen (2005) studied

the dynamic stability of axially moving viscoelastic beams in parametric res-

onance with time-pulsating speed. They found that the viscoelastic damping

decreases the size of the instability region. Chen and Yang (2006) studied

free vibrations of viscoelastic beams travelling between simple supports with

torsion strings. They studied the viscoelastic effect by perturbing the similar

elastic problem and using the method of multiple scales, and examined also

the eigenfrequencies of the system illustrating the real parts of the eigenfre-

quencies.

Oh et al. (2004) and Lee and Oh (2005) have studied critical speeds,

eigenvalues, and natural modes of axially moving viscoelastic beams using the

spectral element model. They analysed dynamic behaviour of axially moving

viscoelastic beams using modal analysis, performed a detailed eigenfrequency

analysis, and reported that viscoelasticity did not affect the critical moving

speed. They observed that, for an elastic beam above the divergence speed,
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the first and the second mode couple representing a coupled-mode flutter

instability but for a viscoelastic beam no such coupled-mode flutter occurs:

the first mode is unstable while the second mode remains stable.

Marynowski and Kapitaniak (2002) compared the Kelvin–Voigt

and the Bürgers models in modelling of moving viscoelastic webs.

The web was modelled as an axially moving (non-linear) beam

with internal damping. For the linearised Kelvin–Voigt model, it

was found that the beam exhibits divergent instability at some

critical speed. In the case of non-linear Bürgers model, the critical

speed decreased when the internal damping was increased, and the

beam was found to experience the first instability in the form of

flutter. Recently, they investigated non-linear vibrations of axially

moving beams with time-dependent tension using the Zener model

for internal damping (Marynowski and Kapitaniak, 2007). The

critical transport speeds of the non-linear, parametrically excited

viscoelastic beam with the Zener model were compared with the

ones of the Bürgers and the Kelvin–Voigt models. The critical

speeds predicted by the Zener and Bürgers models coincided. The

Kelvin–Voigt model predicted a greater critical speed than the

other two models.

Hou and Zu (2002) investigated non-linear free oscillations of moving

viscoelastic strings at subcritical velocities. They studied numerically the

frequencies and amplitudes with respect to the string velocity comparing

three different models for viscoelasticity: the standard linear solid model,

the Kelvin–Voigt model, and the Maxwell model. Zhang et al. (2007) inves-
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tigated transverse non-linear vibrations of axially accelerating viscoelastic

strings applying a complex-mode Galerkin approach. Zhang (2008) studied

bifurcation for axially moving non-linear viscoelastic strings.

A few studies on transverse vibrations of axially moving viscoelastic plates

have also been done. Hatami et al. (2008) studied free vibrations of axially

moving viscoelastic plates using a finite strip method. They used the stan-

dard viscoelastic solid model. They found that, as for an elastic plate, also

for a viscoelastic plate the vibration frequency decreases as axial velocity is

increased and becomes zero at a critical velocity for the first frequency.

Zhou and Wang (2007) studied transverse vibration characteristics of ax-

ially moving viscoelastic rectangular plates. They assumed the plate to

be elastic in dilatation but viscoelastic in distortion, where the

viscoelasticity was described by the Kelvin-Voigt law. Zhou and

Wang derived the dynamic equation for transverse displacements using the

thin plate theory and the constitutive equations of the viscoelastic material

in the Laplace domain. The curves of the moving speed and dimensionless

complex frequencies of the axially moving viscoelastic plate were plotted.

Two different combinations were used as boundary conditions: all four edges

simply supported and two opposite edges simply supported but the remain-

ing edges clamped. It was found that when the dimensionless delay time was

very small (viscosity was small), the dynamic characteristics and stability of

the axially moving viscoelastic plate were nearly the same as for an axially

moving elastic plate. It was also reported that the increase of delay time did

not alter the critical divergent moving speed in the first mode and that the

plate did not exhibit a coupled-mode flutter. (Similar behaviour for vis-
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coelastic beams was reported by Lee and Oh, 2005). Zhou and Wang (2008)

continued their studies on transverse vibration characteristics of moving vis-

coelastic plates taking into account a parabolically varying plate thickness.

Zhou and Wang (2009) also studied dynamic stability of axially acceler-

ating viscoelastic plates using the Floquet theory to find stability regions.

They used harmonic vibrations in speed and studied their effect on stability.

Yang et al. (2012) recently studied vibrations, bifurcation and chaos of axi-

ally moving viscoelastic plates using finite differences and a non-linear model

for transverse displacements. They concentrated on bifurcations and chaos

but also studied the dynamic characteristics of a linearised elastic model with

the help of eigenfrequency analysis.

In all the discussed studies above, a partial time derivative has been

used instead of a material derivative in the viscoelastic constitutive rela-

tions. Mockensturm and Guo (2005) suggested that the material derivative

should be used. They studied non-linear vibrations and dynamic response

of axially moving viscoelastic strings, and found significant discrepancy in

the frequencies at which non-trivial limit cycles exist, comparing the models

with the partial time derivative and the material time derivative. In Chen

et al. (2008), Ding and Chen (2008), Chen and Wang (2009), and Chen and

Ding (2010), the material derivative was also used in the viscoelastic consti-

tutive relations. Ding and Chen (2008) studied stability of axially acceler-

ating viscoelastic beams using the method of multiple scales and parametric

resonance. Chen and Wang (2009) studied the stability of axially acceler-

ating viscoelastic beams using the asymptotic perturbation analysis. In a

recent research by Chen and Ding (2010), the steady-state response of trans-
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verse vibrations for axially moving viscoelastic beams was studied. Kurki

and Lehtinen (2009) suggested, independently, that the material derivative

in the constitutive relations should be used in their study concerning the

in-plane displacement field of a travelling viscoelastic plate.

Recently, some studies using the material derivative in the vis-

coelastic constitutive relations for moving viscoelastic two-dimen-

sional plates have been done. Marynowski (2010) studied free vi-

brations and stability of Levy-type viscoelastic plates. Marynowski

compared a three-parameter Zener model and a two-parameter

Kelvin–Voigt model for the viscoelasticity. It was found that the

critical transport velocity predicted by the Zener model was higher

than the one predicted by the Kelvin–Voigt model, which in turn

was slightly higher than the critical velocity of an elastic plate.

Tang and Chen (2012) studied stability in parametric resonance of

moving viscoelastic plates with time-dependent travelling speed.

First studies on damping in the context of moving materials in-

clude Mahalingam (1957) and Ulsoy and Mote (1982). Mahalingam

(1957) studied transverse vibrations of power transmission chains

modelled as an axially moving string. Mahalingam considered peri-

odic displacements and a damping force proportional to the trans-

verse velocity of the form c[(·),t + V0(·),x], where c is the damping

coefficient and V0 is the constant velocity of the chain. As a nu-

merical example, Mahalingam considered a simple roller chain and

verified the results by experiments. Comparing the experiments

and the numerical results, it was found that damping coefficient
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of the above mentioned form gave a fairly good approximation.

Mahalingam found that the resonant amplitudes of the fundamen-

tal frequency (eigenfrequency) decreased when the speed was in-

creased. This was also verified by experiments. When damping

of the form c(·),t was considered, it was found that the resonant

amplitudes increased with an increased velocity. Ulsoy and Mote

(1982) found similar results in their studies on vibrations of band

saw blades. They also studied the damping of two-dimensional

plate model and found that the real parts of the eigenvalues of

the damped plate were negative when the plate velocity was be-

low the critical value. This was the case for both forms c(·),t and

c[(·),t + V0(·),x] of damping.

In Jeronen (2011), eigenvalues for a damped string were analysed. In

the research, a second-order string model with damping terms of the form

a1w,t + a2w,x were investigated. The behaviour of the string was found to be

stable when constants a1 and a2 were independent of the travelling speed.

When the second constant was chosen to be a2 = V0a1 (V0 is the string

velocity), where the damping coefficients were assumed to be generated by the

material derivative, it was found that the damping introduced an instability

not existing in the non-damped system.

Models for pipes conveying fluid often share similarities with

the models for axially moving materials. In Drozdov (1997), a

pipe filled with a moving fluid is studied modelling the pipe as a

viscoelastic beam driven by the forces caused by the fluid. Drozdov

investigated stability of the system under a periodic flow. It was
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found that for some parameter values, an increase in viscoelasticity

resulted in a decrease in the critical fluid velocity while for other

choices of parameters, an increase in viscoelasticity resulted in an

increase in the critical velocity.

Recently, Wang et al. (2005b) derived a sixth order model for a

curved viscoelastic pipe conveying fluid based on Hamilton’s prin-

ciple. Viscoelasticity of the pipe was modelled with the help of the

Kelvin–Voigt model. As boundary conditions, they used clamped

conditions for a curved pipe at both ends, which set the displace-

ment, the first space derivative of the displacement and the second

space derivative of the displacement to be zero. The stability of

the viscoelastic curved pipe was studied by analysing the dimen-

sionless complex frequency with respect to the fluid velocity. They

found that when the dimensionless delay time was increased, the

first, second and third mode do not couple. The viscoelastic pipe

was found to undergo divergent instability in the first and second

order modes and, for greater values of fluid velocity, single-mode

flutter took place in the first order mode.

Using the material derivative in the viscoelastic constitutive relations for

a beam model leads to a partial differential equation that is fifth-order with

respect to the space coordinate. In Ding and Chen (2008), Chen and Wang

(2009), and Chen and Ding (2010), the fifth-order dynamic equation was

attained but four boundary conditions (in space) were used. We will use

five boundary conditions (in space). For boundary value problems of higher

order differential equations, see e.g. Agarwal (1986).
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Although many studies on the viscoelastic moving beam model have been

conducted, to our knowledge, the dynamic stability analysis with the eigen-

frequencies has not been done before for this model. In this paper, we use

the dynamic (modal) analysis to study the stability of an axially moving vis-

coelastic Kelvin-Voigt beam where the material derivative in the viscoelastic

relations is used. Marynowski and Kapitaniak (2002) and Lee and

Oh (2005) studied the same phenomenon but they did not use the material

derivative in the viscoelastic constitutive relations. In this study, we use the

material derivative but we also compare our results with the results obtained

by the model with the partial time derivative.

The effects of the panel speed and the degree of viscosity on the stable

regions are studied in numerical examples. The eigenfunctions correspond-

ing to the critical speeds are found. Two different combinations of boundary

conditions are used, and comparison with both elastic models and viscoelas-

tic models with only a partial time derivative in viscoelastic relations are

provided.

We use the term panel (e.g. Bisplinghoff and Ashley, 1962; Banichuk

et al., 2010, 2011) here since we consider two-dimensional webs applying

the Kirchhoff plate theory but reducing it to one dimension with the following

assumption: for the moving web, we assume that the transverse displacement

does not vary in the direction that is perpendicular to the moving direction

of the web. Mathematically, the equations describing the out-of-plane dis-

placement of the panel and the equations of the out-out-plane displacement

of the beam coincide up to some terminological issues. This is to say that

this research covers the case of axially moving beams after renaming some
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physical constants. We will use the terminology of the plate (panel) theory

throughout the paper.

2. An axially moving viscoelastic panel

Consider an axially moving thin panel or plate made of viscoelastic ma-

terial in a Cartesian coordinate system. See Fig. 1. The panel is assumed

y

z

x

V0

Figure 1: A travelling panel between two fixed supports. The panel is assumed to

undergo cylindrical deformation.

to undergo cylindrical transverse deformation, that is, the trans-

verse displacement does not vary in the y direction (Timoshenko
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and Woinowsky-Krieger, 1959; Bisplinghoff and Ashley, 1962). The

panel is supported at x = 0 and x = `, and the length of the unsupported

open draw is `. The travelling velocity of the panel is assumed to be constant

and denoted by V0. The transverse displacement is denoted by the

function w = w(x, t).

The viscoelasticity of the material is described with the rheologi-

cal Kelvin–Voigt model consisting of an elastic spring and a viscous

damper connected in parallel. The spring element is described by

the parameters E (the Young’s modulus) and ν (the elastic Poisson

ratio), and the damper by η (the viscous damping coefficient) and

µ (the Poisson ratio for viscosity). See Fig. 2.

Figure 2: The rheological Kelvin–Voigt model.

The stress-strain relations under assumption of plane stress are

(see e.g. Sobotka, 1984; Tang and Chen, 2012)

σx =
E

1− ν2
(εx + νεy) +

η

1− µ2
[(εx,t + V0εx,x) + µ(εy,t + V0εy,x)] ,

σy =
E

1− ν2
(νεx + εy) +

η

1− µ2
[µ(εx,t + V0εx,x) + (εy,t + V0εy,x)] , (1)

τxy =
E

2(1 + ν)
γxy +

η

2(1 + µ)
(γxy,t + V0γxy,x) ,

13



for the normal stresses σx and σy, the shear stress τxy, the normal

strains εx and εy and the shear strain γxy. Denoting σ = σx and

ε = εx and assuming small cylindrical deformations (εy = −zw,yy),

the relations (1) are reduced to

σ =
E

1− ν2
εx +

η

1− µ2
(εx,t + V0εx,x) . (2)

For the bending moment M = Mx, we obtain

M = − [Dw,xxxx + Υ (w,xxt + V0w,xxx)] , (3)

where we have used the notations

D =
Eh3

12(1− ν2)
, Υ =

ηh3

12(1− µ2)
. (4)

Note that we obtain the bending moment for a viscoelastic beam

with the changes D ↔ EI and Υ ↔ ηI in Eq. (3).

We define the parameter λ as a creep time constant (Marynowski,

2008)

λ =
η

E
. (5)

The unit of λ is the second. With the help of (5) and assuming

that µ = ν, we may write

Υ = λD .

Proceeding in a similar way to Ding and Chen (2008) but us-

ing the stress-strain relation in (2), we finally obtain the dynamic

14



equilibrium

w,tt+2V0w,xt+
λD

m
w,xxxxt+(V 2

0 −
T0

m
)w,xx+

D

m
w,xxxx+V0

λD

m
w,xxxxx = 0 . (6)

In Eq. (6), m is mass per unit area, and T0 is a constant tension at the

panel ends. With the change D ↔ EI (and λEI = ηI) in Eq. (6), one

obtains the dynamic equation for an axially moving viscoelastic

beam.

Derivation of dynamic equation for moving viscoelastic beam is

provided also by Ghayesh (2011). Derivation of dynamic equation

for axially moving viscoelastic plates via Hamilton’s principle is

given in (Tang and Chen, 2012, Eq. (7)). Their equation is reduced

into Eq. (6) when we assume that the displacement w does not

vary in the y direction and that the axial velocity of the plate is

constant.

Since Eq. (6) is of fifth order in space, we need five boundary

conditions. We first assume that both the ends are clamped and,

therefore, we have w(0, t) = w(`, t) = 0 and w,x(0, t) = w,x(`, t) = 0.

These boundary conditions can be derived, e.g., by setting clamped

boundary conditions for the panel in the reference frame moving

with the panel and performing appropriate change of variable. For

details, see e.g. Chen and Ding (2010). Since the panel is moving

in the positive x direction, we seek the fifth condition at the in-flow

end x = 0 indicating that we have more information there than at

the out-flow end.

For the bending moment M in Eq. (3), we write the following
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continuity condition (Flügge, 1975)

lim
δ→0

∫ +δ

−δ
M dx = 0 ,

where M is as described in Eq. (3). Denoting the displacement of

the panel in the domain x < 0 by w−, we obtain in the limit δ → 0:

−Dw,x + Υ (w,xt + V0w,xx) +Dw−,x − Υ (w−,xt + V0w
−
,xx) = 0 (7)

at x = 0. Since w,x(0, t) = 0 and thus w,xt(0, t) = 0, by continuity

of the panel (Flügge, 1975) also w−,x(0, t) = 0 and thus w−,xt(0, t) = 0.

Substituting these into (7), we obtain

w,xx(0, t) = w−,xx(0, t) .

That is, the second derivative of the panel deflections before and

after the support must coincide. We set w−,xx = 0 and obtain the

fifth condition

w,xx(0, t) = 0 . (8)

In the cases of an elastic panel (Υ = 0) or a viscoelastic panel where

partial time derivative is used instead of the material derivative

in the constitutive relations, Eq. (7) does not produce additional

conditions, which is a desired consequence.

We study the problem using the following boundary conditions:

• A clamped boundary condition at the out-flow end and three conditions

at the in-flow end:

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(`, t) = w,x(`, t) = 0 . (9)
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We call (9) C+-C conditions. If we remove the condition w,xx(0, t) = 0,

we obtain clamped–clamped (C-C) boundary conditions.

• A simply supported condition at the out-flow end and three conditions

at the in-flow end:

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(`, t) = w,xx(`, t) = 0 . (10)

We call (10) C+-S conditions. If we remove the condition w,xx(0, t) = 0,

we obtain clamped–simply supported (C-S) conditions. Note that the

condition w,xx(`, t) = 0 corresponds to the zero moment for an

elastic panel but is considered as a mechanical condition or

approximative for the viscoelastic panel.

We use three boundary conditions at the in-flow end and two conditions at

the out-flow end indicating that we have more information at the in-flow end.

The three conditions at x = 0 (in (9) and (10)) are called C+ conditions, since

clamping is a stronger condition than being simply supported.

We transform the dynamic equation (6) into a dimensionless form. We

introduce the transformations

x′ =
x

`
, t′ =

t

τ
, w′(x′, t′) =

w(x, t)

h
. (11)

Inserting (11) into (6), omitting the primes and multiplying by m`2/(T0h),

we obtain

m`2

τ 2T0

w,tt + 2V0
m`

τT0

w,xt +
λD

τ`2T0

w,xxxxt

+

(
V 2

0

T0/m
− 1

)
w,xx +

D

`2T0

w,xxxx + V0
λD

`3T0

w,xxxxx = 0 . (12)
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We choose

τ = `

√
m

T0

as a characteristic time, and introduce the dimensionless problem parameters

c =
V0√
T0/m

, α =
D

`2T0

, γα =
λD

`3
√
mT0

, (13)

where

γ =
λ

τ
=
η

E

√
T0

`
√
m

(14)

is the dimensionless delay time. Zhou and Wang (2007) also defined

the dimensionless delay time in a similar manner but considered a

two-dimensional viscoelastic plate model with a different choice of

the characteristic time.

Inserting (13) into (12), we finally have

w,tt + 2cw,xt + γαw,xxxxt + (c2 − 1)w,xx + αw,xxxx + γαcw,xxxxx = 0 , (15)

with the boundary conditions

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 ,

w(1, t) = 0 , and

w,x(1, t) = 0 , or

w,xx(1, t) = 0 .

(16)

We represent the solution of the dynamic problem, Eqs. (15)–(16), in the

form (the standard time harmonic trial function)

w(x, t) = W (x)est , (17)

where

s = iω , (18)
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and ω is the characteristic (dimensionless) frequency of small transverse

vibrations. Considering the system behaviour, s characterizes it in the fol-

lowing manner:

• If the imaginary part of s is non-zero

– and the real part of s is zero, the panel vibrates harmonically with

a small amplitude.

– and the real part of s is positive, the amplitude of transverse

vibrations grows exponentially (flutter).

– and the real part of s is negative, the transverse vibrations are

damped exponentially.

• If the imaginary part of s is zero

– and the real part of s is zero, the panel has a critical point.

– and the real part of s is positive, the panel displacement grows

exponentially (divergence, buckling).

– and the real part of s is negative, the panel displacement decreases

exponentially.

The sign of the real part of s characterizes the stability of the panel: if

Re s > 0, the behaviour is unstable, and otherwise it is stable.

Insert (17) into (15), and obtain

s2W +s(2cW,x+γαW,xxxx)+(c2−1)W,xx+αW,xxxx+γαcW,xxxxx = 0 . (19)

19



The boundary conditions for W are

W (0) = W,x(0) = W,xx(0) = 0 ,

W (1) = 0 , and

W,x(1) = 0 , or

W,xx(1) = 0 .

(20)

We study the stability of the travelling viscoelastic panel by solving Eqs.

(19)–(20) with respect to the transport velocity.

Note that if we neglect the fifth-order derivative in (19) and formulate

the buckling problem by setting s = 0 and neglecting the boundary condition

w,xx(0) = 0, we obtain the buckling problem for an elastic panel (beam), with

the boundary conditions C-C or C-S depending on the boundary condition

at the out-flow end.

For an axially moving elastic panel, the critical velocity corre-

sponding to the divergent instability, can be found analytically. For

a clamped-clamped elastic panel, the dimensionless critical velocity

is expressed as

ccr =
√

1 + 4απ2 . (21)

Eq. (21) was derived for elastic beams, e.g., in Wickert and Mote

(1990). The corresponding critical mode is then

W (x) = A sin(πx) ,

where A is arbitrary constant.

Similarly, one may obtain for a clamped-simply supported elas-

tic panel:

ccr =
√

1 + αk2
1 , (22)
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where k1 is the smallest positive solution of

tan k = k . (23)

The critical mode for a clamped-simply supported elastic panel is

W (x) = A [k1 cos(k1x)− sin(k1x) + k1x− k1] ,

where A is arbitrary constant.

3. Numerical solution

Let us outline the finite difference discretization approach. It is to find

w = (w1, . . . , wn) satisfying the discretised form of (19)–(20). We use central

differences of second-order asymptotic accuracy

wj,x =
wj+1 − wj−1

2∆x
, wj,xx =

wj+1 − 2wj + wj−1

(∆x)2
,

wj,xxxx =
wj+2 − 4wj+1 + 6wj − 4wj−1 + wj−2

(∆x)4
,

wj,xxxxx =
wj+3 − 4wj+2 + 5wj+1 − 5wj−1 + 4wj−2 − wj−3

2(∆x)5
. (24)

The interval [0, `] is divided to n + 1 subintervals equal in length. The

end points of the subintervals are labelled as 0 = x0, x1, x2, . . . , xn, xn+1 = `.

We use two virtual points (w−2 and w−1) at the in-flow end and one virtual

(wn+2) point at the out-flow end. From the boundary conditions (20), we get

at the in-flow end:

w−2 = −w2 (from w,xx(0) = 0),

w−1 = w1 (from w,x(0) = 0),

w0 = 0 ,
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and at the out-flow end:

wn+1 = 0 ,

wn+2 =

wn , (C) ,

−wn , (S) .

In Eqs. (24), ∆x = 1/(n + 1). We use the following backward difference

scheme (of second-order asymptotic accuracy) to calculate the fifth-order

derivative at the out-flow end (j = n):

wj,xxxxx =
3wj+2 − 16wj+1 + 35wj − 40wj−1 + 25wj−2 − 8wj−3 + wj−4

2(∆x)5
.

We denote the derivative matrices by K1,K2,K4,K5 built up with the

help of (24) with the following correspondence:

K1 : W,x , K2 : W,xx , K4 : W,xxxx , K5 : W,xxxxx .

Inserting the matrices K1,K2,K4,K5 into (19), we obtain the matrix equa-

tion

s2w + s [2cK1 + γαK4] w +
[
(c2 − 1)K2 + αK4 + γαcK5

]
w = 0 . (25)

Note that in the case α = 0 or c = 0, we obtain a fourth-order equation

needing only four boundary conditions. This has been taken into account:

the virtual point w−2 is needed only by the matrix K5. When K5 is re-

moved from the matrix equation (25), the boundary condition w,xx(0) = 0

is simultaneously removed from the discretised problem. (It was numerically

confirmed that when we decrease the value of α, the solution of (25) with

the boundary conditions C+-C approaches the solution of the correspond-

ing elastic problem with the boundary conditions C-C (similarly the C+-S
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solution approaches the elastic C-S solution). This was the case even if we

selected w−2 = w2 from w,x(0) = 0, and w−1 = −w1 from w,xx(0) = 0.)

The matrix equation (25), which is a quadratic eigenvalue problem with

respect to s, can be rewritten as −M1 −M0

I 0

 sw

w

 = s

 sw

w

 , (26)

where

M0 = (c2 − 1)K2 + αK4 + γαcK5 ,

M1 = 2cK1 + γαK4 . (27)

The matrix equation (26) is now an eigenvalue problem of the standard form

Ay = sy (28)

with

A =

 −M1 −M0

I 0

 , y =

 sw

w

 .

4. Numerical results

Problem (19)–(20) was solved using finite differences. In the discretiza-

tions, we fixed the problem parameters typical of a paper material shown

in Table 1 (paper material constants have been measured for example by

Yokoyama and Nakai, 2007). The creep time constant λ was given sev-

eral different values to examine the effect of viscosity. In the finite

difference method, we chose the number of computation points to be n = 200.

Using the physical parameters in Table 1, the dimensionless

parameter α in Eq. (13) gets the value α = 1.8315 · 10−7. Creep time
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Table 1: Physical parameters used in the numerical examples.

T0 m ` h E ν

500 N/m 0.08 kg/m2 1 m 10−4 m 109 N/m2 0.3

⇒
D = Eh3/(12 · (1− ν2))

9.1575 · 10−5 Nm

constant λ was given the values λ = 5·10−5 s, 5·10−4 s, and 5·10−3 s, the

dimensionless delay time γ getting the values γ = 3.953 · 10−3 , 3.953 ·

10−2 , and 0.3953 , respectively.

In Figs. 3–6, three lowest eigenvalue pairs s, Eq. (18), are plotted with

respect to the dimensionless panel velocity. In the numerical studies, it was

found that for the parameter values in Table 1, the panel behaviour is sta-

ble with harmonic vibrations when the panel velocity is between 0 and 1

regardless of the value of the dimensionless delay time γ (or the creep

time constant λ), and the panel may experience divergence instability at

a critical dimensionless velocity ccr slightly above the value 1, depending on

the value of γ. The eigenvalues between 0 and 1 behaved similarly in all of

the studied cases and the behaviour is shown in Figs. 4–5 in the upper left

corner of each sub-figure.

To analyse the behaviour close to the possible critical point more closely,

the velocity range 1 . . . 1.00003 was studied (Figs. 3–6). As found previously

for elastic beams (Wickert and Mote, 1990), at velocities greater than the

divergence speed ccr, a flutter instability region may appear. In this study,

it was found that when the value of the parameter α was increased, the
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value of the critical velocity increased and the distance between the possible

divergence speed and the possible flutter speed increased.

In Fig. 3, the eigenvalue spectra for moving elastic panels are shown with

boundary conditions C-C and boundary conditions C-S. In Figs. 4–6, the

eigenvalues spectra are shown for three different values of the dimension-

less delay time γ = 3.953 · 10−3 , 3.953 · 10−2 , and 0.3953 .

Let us compare Figs. 3 and 4. It can be seen that for a panel with

small viscosity (γ = 3.953 · 10−3), the results are close to that of elastic

panels. The values of critical divergence velocities ccr seem to coincide. The

stable region after the divergence instability region seen in the behaviour

of elastic panels in Fig. 3 seems to disappear when the viscoelasticity is

introduced to the model (Fig. 4). In the case of elastic panels for both types

of boundary conditions, the first and second mode couple, representing a

coupled-mode flutter. At greater values of velocity and in the case with C-C

boundary conditions, the second and the third mode couple, and with C-S

boundary conditions, the first and the third mode couple. All these couplings

are removed when the viscoelasticity is introduced.

In Fig. 4, in the upper right corner of both sub-figures, the eigenmodes

corresponding to the critical velocities ccr (solid line) and the eigenmodes of

corresponding elastic problems (dashed line) are shown. The solutions are

very close to each other for elastic problems and viscoelastic problems with

a small viscosity. The eigenmodes were found by solving Problem (19)–(20)

with s = 0, and the critical velocities given by this static analysis and the

dynamic analysis were found to be the same.

In Fig. 5, the eigenvalue spectra and critical eigenmodes are shown for a
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(a) (b)

Figure 3: The first three eigenvalue pairs for moving elastic panels (γ = 0) plotted against

the dimensionless velocity c. Solid lines present real parts of eigenvalues (Re s) and dashed

lines present imaginary parts (Im s). The points representing critical velocities ccr are

labelled. (a) Boundary conditions C-C. (b) Boundary conditions C-S.

dimensionless delay time γ ten times greater than in the case analysed

above. The changes in the spectra are radical. The values of critical velocities

are greater than for the corresponding elastic panels. Also the shapes of the

corresponding critical eigenmodes are changed. More changes in the spectra

can be reported: in the case of C+-C boundary conditions, the divergence

instability region is slightly wider γ = 3.953 · 10−2 than for γ = 3.953 ·

10−3. However, the unstable region after the divergence instability region

has now become stable, or more precisely, the panel vibrates with a damped

amplitude. The second mode is stable for all values of velocity. In the case of

C+-S boundary conditions (Fig 5b), the unstable region still exists after the

divergence instability and the second mode is unstable (with divergence-type

instability) for some range of velocities greater than ccr.
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(a) (b)

Figure 4: The first three eigenvalue pairs for moving viscoelastic panels with respect to

the dimensionless velocity c. Dimensionless delay time γ = 3.953 · 10−3 (λ =

5 ·10−5 s, almost elastic). Solid lines represent real parts of eigenvalues (Re s) and dashed

lines represent imaginary parts (Im s). The points representing critical velocities ccr are

labelled. In each sub-figure, the behaviour of the eigenvalues s between c = 0 and c = 1 is

shown up left. The eigenmode corresponding to the (dimensionless) critical velocity ccr is

shown up right. (a) Boundary conditions C+-C. (b) Boundary conditions C+-S.
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(a) (b)

Figure 5: The first three eigenvalue pairs for moving viscoelastic panels with respect to the

dimensionless velocity c. Dimensionless delay time γ = 3.953 · 10−2 (λ = 5 · 10−4 s).

Solid lines represent real parts of eigenvalues (Re s) and dashed lines represent imaginary

parts (Im s). The points representing critical velocities ccr are labelled. In each sub-

figure, the behaviour of the eigenvalues s between c = 0 and c = 1 is shown up left. The

eigenmode corresponding to the (dimensionless) critical velocity ccr is shown up right. (a)

Boundary conditions C+-C. (b) Boundary conditions C+-S.
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(a) (b)

Figure 6: The first three eigenvalue pairs for moving viscoelastic panels with respect to

the dimensionless velocity c. Dimensionless delay time γ = 0.3953 (λ = 5 · 10−3 s).

Solid lines represent real parts of eigenvalues (Re s) and dashed lines represent imaginary

parts (Im s). (a) Boundary conditions C+-C. (b) Boundary conditions C+-S.

When the dimensionless delay time γ is further increased, the real

part of also the lowest eigenvalue stays negative, and no critical point or loss

of instability can be detected. This can be seen in Fig. 6. Since no real part

of the eigenvalues crosses the x axis, Problem (19)–(20) with s = 0 has no

solution in such cases. This suggests that high viscosity makes the model

stable at any velocity.

The limit values for the dimensionless delay time γ were found nu-

merically using the bisection method. For C+-C boundary conditions, after

γ ≈ 0.1022 (λ ≈ 1.29 · 10−3 s), the real part of the first eigenvalue does

not become positive, and also the other (higher) eigenvalues are behaving

similarly. For C+-S boundary conditions, the value after which the real part

of s remains non-positive is γ ≈ 0.2183 (λ ≈ 2.76 · 10−3 s).
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The results of critical velocities for different values of dimensionless

delay time and the corresponding the creep time constant are col-

lected in Table 2 including the limit cases. One may notice that the critical

velocities of viscoelastic panels approach the critical velocities of elastic pan-

els as the dimensionless delay time γ approaches zero. The critical

velocities for the elastic panels were calculated analytically with

the help of Eq. (21) (see also Wickert and Mote, 1990) and Eqs.

(22)–(23). The limit value of the dimensionless delay time γ needed for

stabilization is higher for the C+-S boundary conditions than for the C+-C

conditions suggesting that the latter case is more stable than the previous

one. The analytically calculated critical velocities for elastic panels

coincided with the numerically calculated critical velocities from

the dynamic analysis.

Table 2: The results for critical velocities.

ccr (V0)cr (m/s)

γ λ (s) C(+)-C C(+)-S C(+)-C C(+)-S

0 0 1.0000036 1.0000018 79.0572 79.0571

3.953 · 10−3 5 · 10−5 1.0000036 1.0000019 79.0572 79.0571

3.953 · 10−2 5 · 10−4 1.0000043 1.0000022 79.0573 79.0571

0.1022 1.29 · 10−3 1.0000087 – 79.0576 –

0.2183 2.76 · 10−3 – 1.0000099 – 79.0577

As mentioned above, different values for the parameter α were examined.

Qualitatively, the behaviour of eigenvalue spectra was the same independent

of the choice of parameter values in Table 1: for viscosities high enough, all
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the modes were stable for all the values of velocities. We also studied the

behaviour of the eigenvalue spectra with the parameter choices cor-

reponding to a beam made of steel. The parameters were chosen

similarly to Lee and Oh (2005). Also with this choice of parame-

ters, it was found that when the dimensionless delay time was high

enough, the viscoelastic beam was stable for all values of velocities.

Since several studies exist of the model where the partial time derivative

was used instead of the material derivative in the viscoelastic relations, we

compared the eigenvalue spectra of these two different models using boundary

conditions C(+)-C and dimensionless delay time γ = 3.953·10−2. See Fig.

7. Also greater values for the dimensionless delay time were examined

but it was seen that the magnitude of the dimensionless delay time did

not affect (qualitatively) the eigenvalue spectrum in the case of the model

with the partial time derivative. The eigenvalue spectrum of this model is

very close to the one of the elastic C-C panel (see Fig. 3(a)) but the real

parts of s are slightly negative before the critical velocity.

The behaviours predicted by the two different models are totally differ-

ent. The model where the partial time derivative was used predicts

smaller value for the critical velocity than the model with the mate-

rial derivative. The behaviours at supercritical speeds between the

two models differ from each other in many ways. Firstly after the

divergent instability, there is a second stable region by the model

with η(·),t but the panel is damped by the model with η[(·),t+V0(·),x].

Secondly after this, the panel undergoes couple-mode flutter by the

model with η(·),t but is stable with damping vibrations by the model
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Figure 7: Comparison of two different models. Solid lines show the spectra of the model

with the material derivative in viscoelastic relations. Dashed lines represent the model

with the partial time derivative in the viscoelastic relations. Real parts of eigenvalues are

plotted in the bold line, imaginary parts in the light line. Boundary conditions C(+)-C.

Dimensionless delay time γ = 3.953 · 10−2 (λ = 5 · 10−4 s).

with η[(·),t + V0(·),x].

In Fig. 8, the dynamic behaviour of the viscoelastic panel at sub-critical

and super-critical velocities is illustrated. The space discretization was done

via finite differences as reported in Sec. 3 and the time discretization was

done via the fourth-order Runge–Kutta method. The initial displacement

(w(x, 0)) was the critical eigenmode with γ = 3.953 · 10−2 (shown in Fig.

5(a)), and w,t(x, 0) = 0 initially. Two different values for the dimensionless

delay time studied, γ = 3.953 · 10−2 (λ = 5 · 10−4 s) and γ = 0.3953

(λ = 5 · 10−3 s), and boundary conditions C+-C were used. With the help

of Figs. 5 and 6, appropriate sub-critical and super-critical velocities were

chosen, c = 0.99 (sub-critical) and c = 1.000005 (super-critical). Fig. 8
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Figure 8: The dynamic behaviour of the displacement maxima for the first 10 seconds.

Boundary conditions C+-C.

presents the time behaviour of the displacement maxima for the first 10

seconds.

The results resemble the behaviour predicted by the dynamic analysis.

For γ = 0.3953 at a sub-critical velocity, the panel vibrates with a damped

amplitude, and at a super-critical velocity, the panel displacement decreases

exponentially. For γ = 3.953 · 10−2 at a super-critical velocity, the displace-

ment grows exponentially and thus the panel is unstable. At the sub-critical

velocity, the panel vibrations are damped but slower than for the panel with

γ = 0.3953.
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The dynamic solver was verified with the solutions of the static divergence

problems (for viscosities low enough). The critical eigenmode was taken as

an initial displacement which stayed constant in time as expected.

5. Discussion

Ulsoy and Mote found already in 1982 that, for a damping force

proportional to β1w,t + β2cw,x (β1 6= 0), an axially moving plate un-

dergoes damping vibrations, i.e. the real parts of the eigenvalues

are negative, when the plate velocity is smaller than the critical ve-

locity. This is characteristics also for viscoelastic beams and plates

and has been reported by several researchers, including Oh et al.

(2004), Lee and Oh (2005), Hatami et al. (2008) and Zhou and

Wang (2007, 2008).

As known for both elastic and viscoelastic moving beams and

plates, the natural frequencies (or imaginary parts of the eigenval-

ues) tend to decrease with the growth of the transport speed. This

characteristics was found in this research, and has been reported

in the studies mentioned above but also in Marynowski and Kapi-

taniak (2002), Chen and Yang (2006), and Tang and Chen (2012)

for viscoelastic materials.

Hatami et al. (2008) studied the effect of the relaxation time on

the complex natural frequencies of the axially moving viscoelastic

plates. They found out that, for velocities lower than the critical

velocity, the real part of the complex frequency increases and the

imaginary part of it increases linearly when the relaxation time
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is increased. In our results, similar characteristics can be seen.

For velocities lower than the critical velocity when the creep time

constant is increased, the absolute value of the real parts of the

eigenvalues (corresponding to the imaginary part of the complex

frequency) are clearly increasing and the imaginary parts of the

eigenvalues (corresponding to the real part of the complex fre-

quency) seem to increase slightly.

In the studies by Oh et al. (2004) and Lee and Oh (2005) for

axially moving viscoelastic beams, it was found that the critical

speed of the elastic beam and the viscoelastic beam coincide. The

similar conclusion was reported for viscoelastic plates by Hatami

et al. (2008) and Zhou and Wang (2007). Recently, Marynowski

(2010) reported that for a Levy-type viscoelastic plate, the criti-

cal transport speed for Kelvin–Voigt was slightly greater than for

an elastic plate. Marynowski also reported that an increase in the

relaxation time caused the critical transport speed to increase. Re-

sembling the results obtained by Marynowski for Levy-type plates,

in our study, it was found that the critical velocity for a viscoelas-

tic one-dimensional thin panel or beam, is greater than the critical

velocity for the corresponding elastic model. We also found that

when the creep time constant (or dimensionless delay time) was

increased, the critical panel velocity increased.

In the eigenvalue spectra of moving viscoelastic beams or plates,

the effect that the system does not experience couple-mode flutter

typical of elastic materials, is well-known, and has been reported,
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e.g., by Lee and Oh (2005) and Zhou and Wang (2007). Similar

behaviour has been found in the studies on stability of viscoelastic

pipes conveying fluid (Wang et al., 2005b). Our results coincide

with the previously reported findings.

For a moving Kelvin-Voigt beam, Marynowski and Kapitaniak

(2002) found the system to undergo divergent instability at some

critical velocity. At supercritical transport speeds and with small

internal damping, the beam was found to experience divergent and

flutter instabilities, and between these two areas, there was a sec-

ond stability area. The second stable region was found to disappear

when the internal damping was increased.

Lee and Oh (2005) and Zhou and Wang (2007) also reported

that viscoelasticity may remove the second stability region, which

may appear in the case of an elastic beam or plate, and instead

of stable behaviour the first order mode undergoes single-mode

flutter. For small values of viscosity, the similar phenomenon was

found in the results obtained in this study. However, for greater

values of viscosity, this unstable region became stable with damping

vibrations.

When the creep time constant (dimensionless delay time) is in-

creased, the results in Sec. 4 show that the third mode becomes

stable, and with further increase of the creep time constant, the

second mode becomes stable, and finally also the first mode be-

comes stable for all values of velocities. The phenomenon that the

higher modes become stable when the viscosity is increased can
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be seen also in the results by Lee and Oh (2005), Zhou and Wang

(2007, 2008), and Wang et al. (2005b).

As a new result, it was found that when the creep time constant

(and the dimensionless form of it) was big enough, the first three

modes remained stable for all values of velocities. The stability at all

values of velocity cannot be guaranteed by numerical tests but the stability of

the first three (or as many as wanted) natural modes at the expected critical

velocity can be reported. To our knowledge, this effect introduced by

viscoelasticity has not been reported previously for axially moving

viscoelastic materials.

In this case of a moving viscoelastic panel (beam), it was found that

the viscosity (damping) removed the instability existing in the elastic (non-

damped) system contrary to the case of a moving damped string (Jeronen,

2011).

6. Conclusions

In this paper, the eigenvalues (related to eigenfrequencies) of viscoelastic

axially moving panels (beams) were studied. The studied dynamic equa-

tion for the viscoelastic panel was fifth order in space, and thus

five boundary conditions were needed. Clamped conditions at the

panel ends produced four boundary conditions, and the fifth con-

dition at the in-flow end was derived with the help of continuity

of the panel. The problem was examined also using the (elastic)

simply supported condition at the out-flow end. A dynamic equation

describing the transverse vibrations was examined with the help of classical
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modal analysis. The material derivative was used instead of the partial time

derivative in the viscoelastic relations of the Kelvin–Voigt model. The eigen-

values were calculated with respect to the axial panel velocity, and the effect

of the viscosity on the spectrum was studied.

The results were compared to other studies, in which dynamic stability of

axially moving viscoelastic materials was studied. In our case, the material

derivative was used in the viscoelastic relation instead of the partial time

derivative, which was used in the other studies. Our results partly coincided

with the previous results, but also many new aspects were found.

• In the cases where the viscosity was small, the results of models where

the partial time derivative or the material derivative in the viscoelastic

relations coincided qualitatively. Firstly, the critical divergence veloc-

ities were the same as for corresponding elastic models. Secondly, the

coupled-mode flutters at higher velocities than the divergence speed

typical of elastic models were removed when viscoelasticity was intro-

duced to the models.

• For greater values of viscosity, several new results, not reported before

for viscoelastic moving materials, were found. As viscosity was in-

creased, the value of the critical (divergence) velocity increased. While

increasing viscosity, the third mode became stable for all values of ve-

locities and, with further increase, also the second mode became stable

for all values of velocities.

• For high enough values of viscosity, all the natural modes remained

stable for all values of velocities. The limiting value of viscosity high
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enough for this behaviour was found numerically. It was noticed that,

consequently, the static problem (buckling problem) has no solution if

viscosity is high enough.

• The eigenvalue spectra and the critical eigenmodes were seen to ap-

proach the ones of the corresponding elastic problems as viscosity ap-

proached zero.

Viscosity is known for its damping characteristics and therefore these results

for the investigated model are seen as realistic.

This research can be considered important for the discussion about which

model should be used for moving viscoelastic materials. The obtained results

highlight the differences between the predictions given by the model where

the partial time derivative was used and the model where the material deriva-

tive was used in the viscoelastic relations.
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Flügge, W., 1975. Viscoelasticity. Springer-Verlag, New York. 2nd edition.

Fung, R.F., Huang, J.S., Chen, Y.C., 1997. The transient amplitude of

the viscoelastic travelling string: An integral constitutive law. Journal of

Sound and Vibration 201, 153 – 167. DOI: 10.1006/jsvi.1996.0776.

41



Fung, R.F., Huang, J.S., Chen, Y.C., Yao, C.M., 1998. Nonlinear dynamic

analysis of the viscoelastic string with a harmonically varying transport

speed. Computers & Structures 66, 777 – 784. DOI: 10.1016/S0045-

7949(98)00001-7.

Ghayesh, M.H., 2011. Nonlinear forced dynamics of an axially moving vis-

coelastic beam with an internal resonance. International Journal of Me-

chanical Sciences 53, 1022–1037.

Hatami, S., Ronagh, H.R., Azhari, M., 2008. Exact free vibration analysis

of axially moving viscoelastic plates. Computers & Structures 86, 1738 –

1746. DOI: 10.1016/j.compstruc.2008.02.002.

Hou, Z., Zu, J.W., 2002. Non-linear free oscillations of moving viscoelastic

belts. Mechanism and Machine Theory 37, 925 – 940. DOI: 10.1016/S0094-

114X(02)00031-9.

Jeronen, J., 2011. On the mechanical stability and out-of-plane dynamics

of a travelling panel submerged in axially flowing ideal fluid: a study into

paper production in mathematical terms. Ph.D. thesis. Department of

Mathematical Information Technology, University of Jyväskylä. Jyväskylä
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