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Abstract

The out-of-plane dynamic response of a moving plate, travelling between two
rollers at a constant velocity, is studied, taking into account the mutual interaction
between the vibrating plate and the surrounding, axially flowing ideal fluid. Trans-
verse displacement of the plate (assumed cylindrical), is described by an integro-
differential equation that includes a local inertia term, Coriolis and centrifugal
forces, the aerodynamic reaction of the external medium, the vertical projection
of membrane tension, the bending resistance, and external perturbation forces. In
the two-dimensional model thus set up, the aerodynamic reaction is found ana-
lytically as a functional of the cylindrical displacement, using the techniques of
complex analysis. The resulting integro-differential problem is discretized in space
with the Fourier-Galerkin method, and integrated in time with the diagonaliza-
tion method. Examples are computed with physical parameters corresponding to
air and some paper materials. The effects of the surrounding fluid on the critical
velocity and first natural frequency are investigated, for stationary air, for an air
mass moving with the plate, and for some arbitrary axial fluid velocities. The ob-
tained results are applicable for both an ideal membrane and a plate with nonzero
bending rigidity.
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1 Introduction

An extensive amount of research has been conducted on travelling
flexible strings, membranes, beams and plates, which are the most common
models of axially moving continua. See e.g. Archibald and Emslie (1958),
Miranker (1960), Swope and Ames (1963), Mote (1968, 1972, 1975), Simpson
(1973), Ulsoy and Mote (1980, 1982), Chonan (1986), Wickert and Mote (1990),
Lin and Mote (1995), Shen et al. (1995), Wang (2003), Shin et al. (2005), Sygulski
(2007), and Kulachenko et al. (2007a,b).

These studies used a model described by second- and fourth-order
differential equations, and focused on various aspects of free vibrations and
forced vibrations. Stability considerations were reviewed in Mote (1972).
The effects of axial motion on the frequency spectrum and eigenfunctions
were investigated in Archibald and Emslie (1958) and Simpson (1973). It
was shown that the natural frequency of each mode decreases when trans-
port speed increases, and that the travelling string and beam both experi-
ence divergence instability at a sufficiently high speed. Response prediction
has been given for particular cases when excitation assumes special forms,
such as a constant transverse point force (Chonan, 1986) or harmonic sup-
port motion (Miranker, 1960). Arbitrary excitation and initial conditions
have been analysed with the help of modal analysis and a Green func-
tion method in Wickert and Mote (1990). As a result, the associated critical
speeds have been determined explicitly.

In most contexts, the standard approach to dynamic fluid-structure
interaction problems during the last decade has been numerical simula-
tion with the Navier-Stokes equations numerically coupled with an elas-
ticity model. The elasticity model may be nonlinear and allow large defor-
mations. For example, Stein et al. (2000, 2001) and Sathe et al. (2007) have
studied complex fluid-structure interaction in parachutes. In the context of
paper production however, both two- and three-dimensional approaches,
as also various different approaches to taking into account the effect of the
surrounding fluid, have been used. As we can see from Chang and Moretti
(1991) and Watanabe et al. (2002), potential flow analyses play an important
part in investigation of dynamic fluid-structure interaction in paper pro-
duction. Because the paper web is fragile, linear theory is sufficient to cover
the physically meaningful range of deformations up to the first instability.

The first attempt to take into account the interaction between a travel-
ling paper web and the external medium, using the finite element method,
was made in the series of papers by Niemi and Pramila (1986) and Pramila
(1986, 1987). It was found that air significantly reduces the eigenfrequen-
cies and critical velocities of the web when compared to the vacuum case.
In Chang and Moretti (1991), the web was modelled as a linear membrane,
while the surrounding air was treated using potential flow theory. A nonlin-



ear membrane element was used in Koivurova and Pramila (1997) to model
a narrow axially moving band surrounded by air. The influence of air was
accounted for with acoustic elements placed on one side of the band only.
In Kulachenko et al. (2007a), the influence of air was accounted for by utilis-
ing fluid-solid interaction analysis based on acoustic theory. Results in this
paper also show that air reduces the eigenfrequencies of the web.

In Watanabe et al. (2002), two different methods of analysis were de-
veloped in order to clarify the phenomenon of paper flutter. One of these
was a flutter simulation using a Navier-Stokes code, and the other method
was based on a potential flow analysis of an oscillating thin airfoil. In Wu and Kaneko
(2005), both linear and nonlinear analyses of sheet flutter caused by fluid-
structure interaction in a narrow passage were developed. The sheet was
considered as a combination of massless beam elements, springs, and dis-
crete mass particles, in which the mass of each particle and the spring coef-
ticients were calculated based on the beam model.

In a recent paper, Frondelius et al. (2006) contrasted the results of Pramila
(1986) with a model including the boundary layer. They reported that while
the eigenfrequency predictions agree with those from potential flow theory,
the divergence velocities are found to be significantly higher. Nevertheless,
from an academic research viewpoint, the potential flow problem remains
a standard reference case. It has been studied for axially moving materials
in stationary air (e.g., Pramila 1986), and for stationary structures in axial
flow (e.g., Eloy et al. 2007, Howell et al. 2011, Doaré et al. 2011).

It should be noted that the form of the present problem shares some
similarities with the problems of pipes conveying fluid, and stationary struc-
tures subjected to axial flow. These similarities between the two mentioned
areas have been discussed in the review by Paidoussis (2008). A functional
analytical solution for the reaction of the fluid has been found for a sta-
tionary plate in axial flow by Kornecki et al. (1976). See also Dugundji et al.
(1963), Guo and Paidoussis (2000), and Firouz-Abadi et al. (2010), and for a
summary comparing the different results, the book by Paidoussis (2004).

In the present paper, we extend into the dynamic case our earlier
study, Banichuk et al. (2010b), where the static instability of a travelling
plate, undergoing small cylindrical deformation (see, e.g., Timoshenko and Woinowsky-Krieger
1959) and subjected to axial flow of ideal fluid, was studied. In the present
study, we use an approach similar to Kornecki et al. (1976), deriving the
aerodynamic reaction analytically as a functional of the displacement, for
the case where both the plate and the fluid are allowed to move axially,
and flow occurs on both sides of the plate. We then proceed with a numer-
ical solution of the resulting integro-differential equation. Our numerical
approach is based on a Fourier-Galerkin discretization in space, and a di-
agonalization method (see, e.g., Kreyszig 1993) in time.



The Fourier—Galerkin method is a traditional spectral Galerkin method.
According to Canuto et al. (1988), the first serious application of spectral
methods to partial differential equations was made by Silberman (1954) for
meteorological modelling. For a stability analysis of the method and some
further references, see Tadmor (1987). Recently, the method has been ap-
plied, e.g., in computing the stationary solutions of two-dimensional gen-
eralised wave equations (Christou and Christov, 2007).

The Fourier—Galerkin method is well suited for problems with peri-
odic boundary conditions and simple geometry (Canuto et al., 1988). While
our problem is not periodic in the strict sense, the method is applicable be-
cause we have the same boundary conditions on both ends of the domain,
and thus w(—/¢) = w({).

Note that our solution for the aerodynamic problem does not require
these exact boundary conditions. Any choice of boundary conditions can
be used, as long as the displacement w and its derivatives inside the do-
main are small. For one example, the same aerodynamic solution is ap-
plicable also with the nonsymmetric boundary conditions introduced by
Garziera and Amabili (2000), where the case of tape winding onto a reel
was investigated.

Finally, it should be noted that in the particular context of paper pro-
duction, the present study ignores some potentially important effects. First
of all, the cylindrical deformation assumption is a reasonable approxima-
tion only for narrow strips, as was noted in our previous study, Banichuk et al.
(2010b). This is explained by the form of the problem: even for the static case
in a vacuum, it can be shown (for details, see our earlier study, Banichuk et al.
2010a) that for a pinned-free plate, the deformation becomes localised in the
vicinity of the free boundaries, and that the buckling shape is that of eigen-
functions of free vibrations of a stationary rectangular plate (given, e.g.,
in Gorman 1982). Secondly, the viscoelasticity, which introduces damping
into the system, is ignored. Thus, the real system is approximated with a
conservative one. This is not expected to change the critical velocity, but it
does modify the postdivergence behaviour (Ulsoy and Mote, 1982), and the
dynamic response. Note, however, that if the boundary conditions are not
symmetric, dissipation may have either a stabilizing or an instabilizing ef-
fect. See e.g. Paidoussis (1998), Sugiyama and Langthjem (2007), and Doaré
(2010).

2 Dynamic problem of a travelling plate submerged in ideal fluid

Consider a travelling paper web interacting with air (Figure 1). The
dynamics of the web is investigated with the help of the model of an elastic
plate, moving in the x direction with constant velocity Vj. The surrounding



Insert Figure 1 here

Figure 1. Travelling plate undergoing cylindrical deformation, supported at
x = —¢ and x = +/, and interacting with air. At infinity, the air moves along
the x axis with velocity vc..

medium is modelled as an ideal fluid. Thus the effects of viscosity, com-
pression, and fluid rotation are neglected. An orthogonal xyz coordinate
system is used, and all investigated behavioural values describing the pro-
cess of the plate vibrations are assumed to be functions independent of the
coordinate y.

In other words, we consider a plane problem of aero-elastic dynamic
interaction of the fluid and the plate. That is, the plate is described by
the flat panel model (Bisplinghoff and Ashley, 1962). Note that although
the flat panel model has a different physical interpretation than the beam
model, they share the mathematical formulation (with bending rigidity D
replacing the beam rigidity EI).

The function w = w(x, t), describing small transverse cylindrical dis-
placements of the plate, and the aerodynamic forces q¢(x, t) applied to the
plate, are related by the equation of transverse vibrations (see, e.g., Mote
1972, Chang and Moretti 1991, Kurki et al. 1995)

82w 82 5 *w otw

where m is the mass of the plate per unit area, V) the axial velocity, T the ap-
plied tension, and D the bending rigidity (Timoshenko and Woinowsky-Krieger,
1959) ;
Eh
b= 12(1 —v2)’ @)
where E is the Young’s modulus, h the thickness of the plate, and v the
Poisson ratio. Finally, the function ¢ = g(x,t) in (1) is a given external dis-

turbance.

The problem is considered with the simply supported (pinned) bound-
ary conditions

2 2
w (1) = ‘3;’( ) =0, w((t) = sz(m) 0, (3)

and the initial conditions

w(50) =8 (1), (0 =g (x), re[L1]. @

The functions g1 = g1(x), g2 = g2(x) are, respectively, the given initial dis-
placement and initial transverse velocity. In the case of an ideal membrane
(D = 0), the curvature boundary conditions are not needed.



We will consider the problem in the dimensionless coordinates

"=x/0, ¥ e[-1,1] (5)
"=t/1, t €[0,00) (6)

- R
Il

where £ is the half-length of the span (see Figure 1) and 7 is an arbitrary
timescale parameter. Additionally, let us define

w' (X, ) = w(x, t) (7)

and in the same manner for q¢(x, ) and g(x, t). In the following, the primes
will be omitted, and unless otherwise stated, all coordinates refer to the
dimensionless forms (5)—(6).

We consider nonstationary aerodynamic flow in two dimensions. As
our coordinate system, we choose the xz plane with Cartesian coordinates,
setting the x axis parallel to the flow of the fluid and the movement of the
plate.

The aerodynamic velocity potential ® (x,z, t) of airflow with respect
to the moving plate surface and total pressure P (x,z,t) have the forms

D (x,z,t) = XV + @ (x,2, 1) (8)
and
P(x,z,t) = po +p(x,2,t). )

Here v and pe are, respectively, the given velocity and pressure at
infinity, and ¢ and p are aerodynamic disturbances of the velocity potential
and pressure.

Total reaction force gy exerted by the fluid is equal to the difference of
pressure between the upper and lower faces of the plate,

qs (x,t) =P~ (x,t) — Pt(x,t)=p (x,t)—p" (x,t), —-1<x<1. (10)
The =+ superscript notation used here is defined as

fi (x,t) = lim f(x,z1t),

z—0+

where f is any function and the upper (lower) signs correspond to each
other.

Regarding ¢ and w and their first derivatives as small, the linearised
aerodynamic reaction can be represented as

d d
e (g +vw5) (9" () =9 (x1) . (D



In order to find out the final expression for 47, we need to solve the aerody-
namic disturbance potential ¢.

We specify the boundary condition that the fluid does not cross the
plate surface. Taking into account that for the components of the unit nor-
mal vector, ny ~ —dw/dx and n, ~ 1, we obtain approximate linear ex-
pressions for the normal components of the fluid and plate velocities:

¢ dU ow

Up = UeoMly + g”z ’ (a)n = g ’ (12)

where, in the first expression, we have omitted the second-order small term

ny(0@/0x) = —(d¢/0x)(dw/dx). Using (12), we have the following lin-
earised expression for this boundary condition:

0 ow ow
a_§20|Z:0, —1<x<1 = 5 + Uooa = ')’(x/ t) . (13)

The linearised aerodynamic problem can then be written as

92 02
Ap =g+ o =0 (9
S £
(B_Z) =v(xt), z=0,-1<x<1 (15)

where y(x, t) is defined in (13).

Note that the domain of the aerodynamic problem is infinite. It con-
sists of the whole xz plane with the exception of the cutatz = 0, —1 <
x < 1, which is our linearised representation of the space occupied by the
plate. Although we consider an axially moving plate, for the purposes of
our analysis the plate only exists on the interval —1 < x < 1. The solution
of this problem, together with equation (11), provides the final expression
for gy.

3 Solution of the aerodynamic problem

In this section, we will solve the aerodynamic problem (14)—(16) ana-
lytically on the plate surface, as a functional of the displacement w. We will
apply the techniques of complex analysis.

We introduce an auxiliary function

W(n,t) =Y (xzt)+ip(x,z1) (17)



of the complex variable 77 = x + iz, where i* = —1. The Cauchy-Riemann
equations and boundary conditions (15) imply that

oY

d
Sli-0 = 3r 0= 7 (x,1), (18)

and, consequently, we have

Y(x,t) = x(x,t)+C(t) (19)

x (a8 = / (@, (20)

where C (t) is a real constant of integration for each fixed ¢.

Thus, finding the potential reduces to the computation of the imag-
inary part of the analytic function (17), whose real part on [—1,1] is (19).
We use the results given by Sherman (1952) (see also Ashley and Landahl,
1985, chap. 5-3) and represent the solution of this problem as

R A S A e A (el ()
W“?’”‘z—m(m) L(ﬁ) gy e @

The real constant C (t) is determined with the help of the following

equation:
1 [T x@EH+C(H) .
s | e e =0 @)

which represents a regularity condition for the function W at the point # =
1. From condition (22), we have

ciy=L P x(gt)dg 23)

VARV =1

Using expression (23) and the formula

1 e+ 1\Y2 dg 141\ 1
sz_l(a—l) m—i(m) "2 -

we perform substitutions into expression (21) and elementary transforma-




tions and obtain

B 1 _1 1/2 1 €+1 1/2X(§,t)d€
W= ﬁ( +1) /_1(6—1) oy
C (1) p—1\""2
T[1_<ﬁ) @)
vwz—l/“ x(&hde . c)
2mi Ja@-n)V/E-1 2

From the representation (25), we can compute the quantity ¢

" = lim [Im W (x +iz)]

z—07F

_ pv<_M1—x / gtdg ) | (26)

V-2

Here, we took into account that the constant C (f) on the right-hand
side of (25) is real, and consequently must be omitted when the limit of the
imaginary part is computed in (26). Note also that the integration in (26) is
understood in the sense of Cauchy’s principal value (p.v.).

We have
¢t — ¢ =2¢" (27)

because the flow is antisymmetric with respect to the linearised plate sur-
face (see, e.g., Eloy et al. 2007 for a similar case). Alternatively, we can take
the corresponding limit of (25) aty = x —iz — x—i-0 (z— 07) and
obtain the same result.

By definition of the principal value, we have

1 [ /1-22\"? x (&) de
20" = p“"(‘%/_l(l—?) {—x )
o[-\ xende
- 15’%‘%[/_1 (iFz) &4 %)
1/2

! 1_x2 X(@,t)dg
+/x+s(1_§2) G—x ]

Integrating by parts, and substituting expression (20) for x (x), we




have

27 = lim [N (x — ¢ x) /x_sfy (¢, t)d¢

e—0 -1
x—+e
—N(x+s,x)/ v (¢, t)d¢
e T (29)
-/ N@wrena
1
~ . N(élx)’r(éft)dél,
where we use the notation
N (¢, x) = %ln'% ,
_[a-xa+]"?
= 0

We observe that all terms on the right-hand side of (29) are finite;
therefore the integration by parts is legitimate. As ¢ — 0, the sum of the
first two terms in (29) approaches zero. It can be shown that the last two
integrals converge.

Therefore, the required functional dependence is of the form
1
20" == [ NEx7EHE @1

With the help of (11), (13), (30) and (31), we arrive at the expression
for the aerodynamic reaction of the fluid. Writing out the dimensionless
coordinate scaling factors T and ¢ explicitly, we have:

) | N@OrEn

1 { ow ow
x) /_1N (&, x) (?E +’Uoo$) dé¢ .(32)

The expression (32) is valid, because N (¢, x) is a Green’s function of Laplace’s
equation, and thus, the improper integral (31) converges (see, e.g., Evans
1998).

_ o (191
AT TN
1

=— 12Jr—v
P\ T T

10



Alternatively, it can be shown directly that the L1 norm of N (¢, x) is
tinite, from which the convergence of (31) follows. We outline the argument
below; for details, see (Banichuk et al., 2008, Appendix B). Assume that x €
[—1,1] and t € [0, c0) are fixed. By Holder’s inequality, we have the estimate

1

IN(&x)de o max, 78, 1)l

/ 11N(§,x)'r(é,t)d6§ /

- 1
=m0 - [ N@Ewld.

The factor M(t) is clearly a nonnegative, finite number (for each fixed t),
so it does not affect the convergence. We can omit the absolute value in
the integral, because N (¢, x) > 0 over the whole domain. Furthermore, the
function N (§, x) is symmetric with respect to the lines { = x and § = —x.
Therefore it is sufficient to prove that the integral [*; N (¢, x) d¢ converges.

It can be shown that N (¢, x) < 1/+/|x — ¢| over the whole domain, and
by direct calculation, [*,(1/y/x —¢)d¢ = 2v/1 + x. The sandwich theorem
then establishes the convergence of the original integral.

As a final note for this section, let us construct an added-mass approx-
imation from the present model. Approximate

1 1
[ Newse dexp [ s@nre de, @)
~1 ~1

where f is any function, ¢ the Dirac delta distribution, and the constant

1 1 1 1
h= xggaﬁ)/_lzv@,x) a=; [/_1N(§,x) d@] dx. (34

Numerically we find that 4 = 7r/4. For simplicity, consider only the inertial
terms of (1) and the approximated gy, the latter obtained by inserting (33)
and the value of y into (32). In dimensionless coordinates, we have

ﬂaZer mV082w+mV()282w__ i £@+ Vo Pw | 0% W
292 TiT oxot |~ 2 ox2 . Pfi |72 on T oxot 0 ox2 |’

from which we obtain

Pw WV Pw V§ 51 0w
+2—— [m + m,ry) m—k VA [m—kmarv} 2 =0, (35

2 mtm] =5+ 25

where m, = lp f7'c/ 4 and r, = v/ V). This reduces to a classical one- or
three-term single-parameter added-mass model by choosing r, = 0 (i.e.
Vo =0)orry, =1 (Ve = V).

11



The prediction for the added mass m, thus derived agrees with eq.
(12a) of Pramila (1986), if we take & = 0.5 in Pramila’s eq. (12a). Note that
our ¢ denotes the span half-length and Pramila’s a denotes the full length.
According to Pramila (1986), Table II, the choice « = 0.5 corresponds to an
aspect ratio slightly larger than 1.0 (span slightly longer than wide).

Compare also eq. (13) of Pramila (1987), due to T. Y.-T. Wu, reported
to hold for long and narrow spans. Here the corresponding added mass
becomes bp¢7t/4, when the force per unit area is considered. This formu-
lation, instead of ¢, uses the plate width b as the length scale. Comparing
to our approximation in (35), £p;7t/4, the best agreement is obtained when
¢/b ~1,i.e.aspect ratio 2(/b ~ 2.

For the rest of this paper, we will use the original formulation (32)
without the added-mass approximation.

4 The semi-discrete form

In this section, we apply the Fourier—Galerkin method in order to ob-
tain a form suitable for numerical analysis. We represent the displacement
w as a Galerkin series,

w (x,1) = s}“jlfn (0%, (x) 36)

where s is an arbitrary scaling parameter with the dimension [s] = m. The
functions f, and ¥, are both dimensionless. Since the value of s is arbitrary,
we will use the particularly convenient choice s = /.

For the shape functions ¥, we choose the eigenmodes of free vibra-
tions of a membrane in vacuum,

¥, (x) = sin (nnle) , xe[-1,1]. 37)

This is a Fourier basis that splits the space component of the solution into
vibration modes along the x axis. By its construction, it automatically ac-
counts for the boundary conditions (3).

Let us define the quantity

Vop =vT/m, (38)

which is the critical divergence velocity of a membrane in vacuum (see, e.g.,

12



Chang and Moretti 1991). Additionally, define the dimensionless quantities

_ s
Y=Y mD, . (39)
b= mVe 2~ T’ (40)
A=Vo/Vop , (41)
06 = Uoo/VOD , (42)

v/t
= —. 43
Von (43)

These denote a fluid effect coefficient, dimensionless bending rigidity, di-
mensionless velocities for the plate and the fluid, and dynamic scale, re-
spectively. The quantities (39)—(42) are defined as in our earlier instability
study, Banichuk et al. (2010b); the quantity (43) is new to the dynamic case.

Finally, let us define the dimensionless external load (here spelling out
the primes for the sake of clarity)

) = (1) = R (1) @)

2
mVOD

and the space-discrete load vector, whose jth component is (spelling out the
primes)

1
= /_1 g (X, t)¥;(x") dx’ . (45)

We divide equation (1) by m and insert (38)—(45). Writing out the di-
mensionless coordinate scaling factors explicitly, we have

10%w _Vopo*w 1 , ?w D d*w
Low V2 _vy
292 T oot UZ( 0~ Vo) gzt

H (12 o )/N ) |55 @0 o @) dc

_ 8
. 0, (46)
which can be written more compactly in the form
Pliciw) — & =
L(w) + mIC(w) . =0, (47)

where the operators £ and K are defined by the obvious identifications.

The same caution as in the earlier instability study, Banichuk et al.
(2010b), applies here, too. We must be careful with the derivative in front
of the integral in the fluid term in (46), because the aerodynamic kernel
N (¢, x) is singular. We cannot directly take the derivative operator into the

13



integral, because the L1 norm of N /0x is not finite. A straightforward, but
somewhat lengthy, calculation finds that dN/dx has singularities of type
1/x*, where « > 1. The singularities are located at x = £1 with a = 3/2,
and at x = ¢ witha = 1.

However, as was shown, the integral in (31) is absolutely convergent,
and thus the function ¢ is bounded. We can choose from two approaches.
The first approach is to integrate first, and then differentiate the result by
any method. The second approach, more applicable here because we work
in the weak form and do not have a closed-form antiderivative, is to inte-
grate by parts against the test function as usual. This is legitimate despite
the singularity, because the integrand of the weak form is a product of two
bounded, integrable functions.

We now consider the system of equations corresponding to the dy-
namics of the web, expressed by the weak form of (46). Constructing the
weak form using the Galerkin series (36) gives us the following expressions
for the operators £ and K:

1 2
/ <£an‘lfn>‘¥dx—£2{ Sl B]ncii];”

-1
1
+ Z(VO2 - VOZD) ]nfn £3 ]nfn (48)

1 [ 00 2 d2 d
n=1 n=1

-1

+v§ocjnfn . (49)

Note that it was convenient to choose the scaling s = £ in (36), because this
allows us to extract the common factor ¢ from the fluid terms (49). This, in
turn, justifies the definition (39) for the fluid effect coefficient.

The matrices Ay, Bjn, Cju, Djn, 4ju, bjy and cj,, are defined by

14



Ajy = / ¥, (x)¥;(x) dx = 6, (50)

Bfn=/_1 di” (x)¥j(x) dx = { 1]2 <( 1)j+n1)0: j;: (51)
Cin = /_ 11 d;jz" (x)¥j(x) d ( )Zé]n (52)
D= [ L) ax = (]7”) 6 53)
= [ H@N @0 w0 dea 59
b]-n:%(ljn—lnj) and (55)
=] [ TN G dar, 56)

wherej,n =1,2,3,... and Ojn is the Kronecker delta. In equation (55),

,x) ¥ (x) dédx .

]”_

In equation (56), an integration by parts has been carried out. The boundary
term vanishes, because ¥;(+1) = 0 for all j.

If different boundary conditions are used, where w(£1) # 0, the
boundary term needs to be taken into account; see equations (36) and (46).
The closed-form solutions of (50)—(53) are specific to the basis (37). In all
other respects, the definitions (50)—-(56) always hold, regardless of the basis
or boundary conditions chosen.

The integrals in (54)-(56) have no closed-form solution, but some use-
ful properties may be obtained analytically, assuming the basis (37).If j + n
is odd, then a;,, = cj;, = 0 by considering the symmetries of each integrand.
The matrix bj, is antisymmetric, and if j + 1 is even, then b;;, = 0. The ma-
trices a;, and cj, are symmetric by the symmetry of N (g, x) with respect to
the line x = ¢ and the application of Fubini’s theorem. When j + 7 is even,
each integrand 4, and ¢j, is symmetric with respect to the lines x = ¢ and

x = —¢.

Inserting (48), (49) and (39)—(43) into the weak form of (47), dividing
the result by the quantity V3, applying (45) and rearranging the terms by
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the order of the time derivatives, we obtain the dimensionless weak form

& d? d
)y (“2 [Ajn +78u] —dtJ;” + 2 [ABjy + 76D —c{:
n=1

+ [()&2 — 1)C]'n + ’)’QZC]'n + ﬁD]n] fn) - G] =0, (57)
where definitions (39)-(43), (44)—(45), and (50)—(56) have been used. As for

the initial conditions, by inserting (36) into (4), using (50) and noting that
we chose s = ¢, we have

1 1
O =7 [ Hmads, =123 (58)
df; 1 1 '
d—J;](O) = Z/_lTj(x)SZ(x) dv, j=123.... (59)

Thus the original initial boundary value problem (1), (3)-(4) has been
transformed into a Cauchy problem for the system of ordinary differential
equations (57) with initial conditions (58)—(59).

The corresponding buckling problem that was investigated in our pre-
vious study, Banichuk et al. (2010b), can be obtained from (57) by setting
a=0(.e,T—o0)and G; = 0.

5 Time integration

Let us truncate the Galerkin series at a given value of n = ng. The
resulting finite equation corresponding to (57) is a linear, second-order, non-
homogeneous, vector-valued ordinary differential equation with constant
coefficients, of the general form

d?£(t)
d?

+ le + Mof(t) = G(t), (60)

M
2 dr

where the coefficient matrices are defined by the obvious identifications,
and G is a vector consisting of the components G; defined by (45).

System (60) can be reduced to a twice larger first-order one by stan-
dard techniques; let us define
f/
u= , (61)
f
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where the prime denotes the time derivative. Taking into account that M is
small enough to invert numerically, the expanded equation system becomes

£ ~M; My —M; M £ MG
R 0 R et P G
dt | ¢ I 0 f 0
which can be written as
u = Mu+g(t), (63)
where
—M;'M; —M; M M;1G(t
M= [ , My —M, o] gy = | M (t) (64)
I 0

Standard time integration techniques, such as the Fourth-order Runge-Kutta
method, are directly applicable to the system (63). In this study, a diagonal-
ization method (see, e.g., Kreyszig 1993) was used, taking advantage of the
small size of the equation system.

For convenience, let us briefly review the diagonalization method. To
diagonalize the system (63), we assume that M has a full eigenvector basis
(in practice, this holds). Define A, X, z, and h(t):

A=X"MX, u=Xz, Xh(t)=gt), (65)

where A is a diagonal matrix with the (complex) eigenvalues A; of M on the
diagonal, and X is a unitary matrix containing the eigenvectors of M in its
columns. Using the relations (65), equation (63) becomes

z =Az+h(t), (66)

The solution for the jth component of z is (Kreyszig 1993, p. 191)

2 (1) = {zjm) - "M () df} , (67)

=0

where f is a dummy variable for integration and j = 1,2,...,2-ng. The
initial value z(0) is evaluated by using (58)-(59) and (61), and solving the
linear system in (65) for z. Using (67), (65) and (61), the space-discrete solu-
tion f(t) and its time derivative f'(f) may be computed at any desired time
t without the need for timestepping.

Although the eigenvalues A; are in general complex, the solution u
stays real-valued for real-valued initial data. Because the equation system
is small, and M is constant in time, it is not expensive to compute A and X
using a standard numerical eigenvalue solver.
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We conclude this section with a note on the dynamic instability anal-
ysis of Bolotin (1963). The flutter problem for our space-discrete system is
as follows. In (60), let f(t) = Fe®!, where F is a constant vector. We wish to
find all s € C (and optionally, also nontrivial F € R") such that

[(Mzsz + Mys + Mo) F} e = L(s)Fet =0 (68)

To find s, we use the determinant method. It is easily seen that the zeroes
of det(L(s)) (as a function of s) are the eigenvalues of M, the 2 - ny x 2 - n
matrix defined by equation (64). Expand det(M — A;I) as a block determi-
nant, noting that the necessary blocks commute. Multiply (68) from the left
by M, . Compare the zero determinant conditions to find that s = Aj.

This gives us the eigenfrequency response of the system, e.g., for var-
ious values of V with the other parameters kept fixed. The critical velocity
at which si =10 forallj = 1,2,...,2 - ng, obtained by a numerical search
procedure, matches the critical velocity predicted by the static instability
analysis (Banichuk et al., 2010b).

6 Numerical results

In our computations, the Galerkin series was truncated at np = 56.
Physical parameters were chosen as typical for a paper web surrounded by
air: T = 500 N/m, m = 80 g/mz,pf = 1.25 kg/m3, and & = 10~* m. For the
elastic parameters, an isotropic approximation was used with v = 0.3 and
E = 10° N/m?. The mass per unit area of the web was m = 0.08 kg/m?. For
the span half-length, the value / = 1 m was used. The timescale parameter
was chosen as T = ¢/Vyp, which leads to « = 1 (equation (43)). Recall that
the cylindrical deformation assumption for travelling plates is acceptable if
the span is long and narrow (Banichuk et al., 2010b). The results should be
viewed with this in mind.

Except for a few trivial special cases, the load term needs to be inte-
grated numerically. This can be done to any desired precision using stan-
dard methods. Thus the choice of the points of time at which to compute
the solution does not affect the accuracy of the method. There is, as in all
numerical time integration methods, a source of cumulative error. Here it
stems from the numerical accuracy of the eigenvalue solver used to com-
pute the eigenvalues and eigenvectors used for diagonalization. As can be
seen from equation (67), the transformed solution z will drift away from the
exact one at a rate which depends on the amount of numerical error in the
eigenvalues. The error in the solution u then behaves as a linear combina-
tion of these errors, by the transformation (65). The error is independent of
the spacing of the points of time at which the solution is evaluated.
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The diagonalization method does not cause numerical dissipation of
energy, because the qualitative behaviour of the first-order system (66) is
captured by (67). However, numerical error in the eigenvalues may cause
small imaginary components to be introduced into the Galerkin coefficients
u, which are known a priori to be real. This can be avoided by inspecting
the imaginary part of the solution at each point of time for which it is com-
puted, and then either ignoring the imaginary part (if small) or stopping
computation. In our tests, to keep the computation consistent, we chose to
test for imaginary parts in the original solution vector, but discard them
only in visualization. The validity criterion used was Im(u;) < 10~ sepa-
rately for each component j = 1,2,...,2 - ng. In practice, this criterion was
never violated.

Two kinds of results were computed, direct temporal simulations and
lowest eigenfrequency behaviour. The velocities Vj and v, were varied
across the studied cases.

Some direct simulations are shown in Figure 2. Each simulation is pre-
sented as a figure consisting of three parts. The top half displays a space-
time plot of the displacement function w(x, t). The horizontal axis repre-
sents dimensionless time t and the vertical axis designates the position x
between the rollers at x = £1 (note the orientation, positive x up). The
shade of each point in the image indicates the height, measured from zero
displacement.

The bottom half of each figure is made up of two graphs. The graph
on the left shows the displacement of the plate as a function of x at a few
selected times t. The graph on the right shows the time behaviour of the
centre point of the plate w (0, t). The corresponding points in the lower two
graphs are marked with circles.

All computations were performed with a configuration where the ini-
tial position of the plate was given. For the cases in Figure 2, the initial
condition for position was

x+1)
2 7

w(x,0) =g1(x) =a-sin(m (69)

where the initial amplitude at the center point was a = 5- 10~3. The initial
transverse velocity was zero,

ow

= (x,0) =g (x) =0, (70)

and there were no external disturbances,

g(x,t)=0. (71)
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In the first row of Figure 2, we have as a fundamental test case a plate
in vacuum, travelling at various speeds and undergoing a steady, cylin-
drical vibration. In the space-time plot, the shapes are aligned at an angle
to the x axis. Due to the axial motion toward the positive x direction, the
positive-x half of the plate experiences each maximum (minimum) of the
vibration before the negative-x half does. Physically, as is well known, the
wave travelling to the direction of travel on an axially moving medium
moves at a higher velocity than the wave travelling in the opposite direc-
tion. Mathematically, the phenomenon can be seen as the velocity-dependent
phase shift in the eigenmodes of axially travelling strings and beams that
was discussed by Wickert and Mote (1990). As was noted in the problem
setup, the flat panel model shares the mathematical formulation with the
beam model, so we can expect the same phenomenon to occur.

Let us now move onto the focus of the present study, and consider
the effect of fluid-structure interaction. The rest of the rows in Figure 2 rep-
resent the dynamic response of the plate in stationary and in axially mov-
ing fluid. The qualitative behaviour in our Figure 2 is seen to be similar to
Figure 2 in Chang et al. (1991), where a free vibration cycle of a travelling
threadline from a direct simulation was plotted.

Figure 3 shows the behaviour of the nondimensional first natural fre-
quency against the nondimensional velocity of the plate, when submerged
in ideal fluid. Two cases are shown: stationary air (v = 0), and the whole
air mass moving with the web (v, = Vp). The figure was produced by nu-
merically solving the eigenvalues of M as explained above, and then pick-
ing the eigenvalue with the smallest imaginary part at each value of Vj.

The normalization used in Figure 3 for the frequency axis is the first
natural frequency of a stationary plate undergoing cylindrical deforma-
tion in vacuum, and the velocity is normalized by the critical velocity in
vacuum (both of these numerically computed, with g¢(x,t) = 0 and all
problem parameters the same). It can be seen that the presence of fluid
decreases the first natural frequency, as expected (see Pramila, 1986, and
Kulachenko et al., 2007b).

Three pairs of classical analytical results from two added-mass models
from a study by Pramila (1987) are included in Figure 3 for comparison,
plotted for our problem parameters. Each pair begins at a single point at
Vo = 0, and the different pairs correspond to different aspect ratios (AR,
span length per width). The added masses are constants, which are affected
by Bpy, the B value of Pramila (1986), Table II, which depends on the AR. For
the results shown here, this dependence was modelled in the form AR =
AR(Bpr) = c1/Bpr +c2/ ,B%r Performing a least-squares fit to the tabulated
data, the values ¢; = 0.1387 and ¢, = 0.5318 were obtained. Alternative
forms, with just the first term 1/ Bp,, and a three-term form including 1/83 _,
were also tested, and the two-term form given here was found to produce
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the most satisfactory fit.

The curve marked as eq. (16) corresponds to an added-mass model
modifying all three masses (local inertia, Coriolis and centrifugal), while
the one labelled as eq. (22) corresponds to a model modifying only the local
inertia mass. For the eq. (16) model, all three added masses are equal. Note
that Pramila used mass per unit length in his study (Pramila, 1987), whereas
we use mass per unit area. Because the frequency expressions contain only
ratios of the parameters, the width can be cancelled out and the results are
directly comparable, once the span length and time scaling are taken into
account.

Our model at vo, = 0 agrees closely with the eq. (22) one, as expected.
From the discretization (57) we see that in this case, only the matrix a;, has
an effect. This corresponds to a first approximation to a local inertia mass
increase. The magnitude of the decrease in eigenfrequency is similar to that
reported by Pramila (about 75% according to Pramila 1986). For a certain
aspect ratio (AR ~ 3.1989, Bp, = 0.43), the predictions coincide for the
problem parameters used.

In the case v = Vp, the models qualitatively agree. If we again use
Br: = 0.43 for Pramila’s model, we see that the prediction given by our
model for the critical velocity is approximately 60% higher than that from
the corresponding added-mass approach (Pramila’s eq. (16)). On the other
hand, if the value Bp, = 0.18 (corresponding to AR ~ 17.1850) is used, then
the predictions of critical velocity agree, but the eigenfrequency given by
the added-mass model is approximately 60% higher. Values of Bp, between
these two cases produce results that vary continuously from the first case
to the second. See Figure 3 for an example. It is seen that the primary differ-
ence between the present functional approach and the classical results being
compared, as far as the lowest eigenfrequency is concerned, is that the pre-
dictions change in the case where all three inertia terms are modified. The
aspect ratio never explicitly enters this model, so which prediction differs
more, depends on the aspect ratio.

This effect has a simple mathematical explanation. In Pramila’s eq.
(16), changing the added mass changes the scaling of both axes equally. For
each pair of added-mass curves in Figure 3, it is seen that the axis intersec-
tion points of the curve corresponding to Pramila’s eq. (16) are equal. The
present model does not make any such assumption, and thus the scalings,
which arise naturally by solving the integro-differential equation, may be
different.

Note that equal scaling is not an inherent limitation of the added-
mass approach, but is due to the specific form of Pramila’s eq. (16). See
Chang et al. (1991) for a discussion on how different (but still constant)
added masses in each term affect the eigenfrequency behaviour. For an ap-
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Vacuum, Vj = 0m/s Vacuum, V) = 30 m/s Vacuum, Vj = 60 m/s
Insert figure 2a here Insert figure 2b here Insert figure 2c here
Voo = 0m/s, Vy =0m/s Voo = 0m/s, V) =30m/s Voo = 0m/s, Vj =60m/s

Insert figure 2d here Insert figure 2e here Insert figure 2f here

Voo = +10m/s, Vy =0m/s v = +10m/s, Vo =30m/s ve = +10m/s, Vi = 60 m/s
Insert figure 2g here Insert figure 2h here Insert figure 2i here

Voo = —10m/s, Vy =0m/s v =—-10m/s, Vi =30m/s v = —-10m/s, Vj =60 m/s
Insert figure 2j here Insert figure 2k here Insert figure 21 here

Figure 2. Dynamic response of the plate with various fluid and plate velocities.
First row: vacuum case for comparison.

proach utilizing boundary layer theory to compute added masses as func-
tions of x, also resulting in different scalings for the axes, see Frondelius et al.
(2006).

In addition to the two classical cases presented in Figure 3, our model
opens the possibility for studying the problem with an arbitrary axial flow
velocity for the surrounding air. In Figure 4, eigenfrequency curves similar
to those in Figure 3 are shown for several different fluid velocities vo,. The
normalization procedure is the same as in Figure 3. Note that as is evident
from Figure 4, if v is nonzero and independent of Vj, the eigenfrequency
curves are no longer symmetric with respect to Vy = 0.

We conclude this section with a direct simulation of a special case. The
solutions shown in Figure 2 are periodic and stable. Figure 5 represents the
limiting case where a nontrivial static solution (divergence) exists. For this
case, the starting position of the plate was specified as the critical eigen-
mode of the corresponding static instability problem. The static problem
was solved as reported in Banichuk et al. (2010b), and the obtained numer-
ical Fourier-Galerkin coefficients and the critical velocity were used as in-
put data for the dynamic case. In this configuration, the initial transverse
velocity was zero as per equation (70), and there were no external distur-
bances, as per equation (71). The computed solution stays constant in time,
as expected.
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Insert Figure 3 here

Figure 3. Behaviour of the nondimensional first natural frequency as a function
of the nondimensional velocity of the plate. Normalized by the axis intersecting
values in vacuum. For the upper solid line, fluid velocity v, = 0. For the lower
solid line, v, = V), i.e. the air mass moves with the web. For comparison, the
vacuum case (dashed line) and three pairs of results corresponding to Pramila’s
added-mass formulas (dash-dot lines) from the study Pramila (1987) are shown.
Each pair begins at a single point at Vo = 0. The different pairs correspond to
different aspect ratios (AR, length per width). From top to bottom, AR ~ 17.1850
(Bp: = 0.18); AR =~ 5.1064 (Bp, = 0.3275); and AR = 3.1989 (Bp, = 0.43; in this
particular case, the upper curves coincide). The symbol Bp; refers to the § value of
Pramila (1986), Table II.

Insert Figure 4 here

Figure 4. Behaviour of the nondimensional first natural frequency as a function
of the nondimensional velocity of the plate. Normalized by the axis intersecting
values in vacuum. The vacuum case is partly shown for comparison (dash-dot
line). Solid lines indicate v, > 0, dashed lines v, < 0. From top to bottom, the
absolute values of the fluid velocities are 0 (corresponds to upper solid line of Fig.
3),10 (6 =~ 0.13), 15 (6 ~ 0.19), 20 (8 ~ 0.25), 25 (6 ~ 0.32), and 30 m/s (6 ~ 0.38).
Note the scaling of the vertical axis.

Insert Figure 5 here

Figure 5. Divergence instability, i.e., steady state solution. Vp = 70.5257 m/s.
Voo = —15m/s, tn = 1's, g1(x) set to critical eigenmode, g(x,t) =0, g2(x) = 0.

7 Conclusion

In this paper, an analytical functional representation was derived for
the aerodynamic reaction of axially moving ideal fluid on the surface of a
travelling vibrating plate, under the assumption of cylindrical deformation
(flat panel model). This assumption is reasonably valid for long, narrow
strips. The present study can be viewed as a generalization of earlier studies
that have allowed for either the movement of the surrounding fluid or the
plate (or beam) only, see e.g. Kornecki et al. (1976). It is also a generalization
of our previous study, Banichuk et al. (2010b), in which the static instability
behaviour of this system was investigated.

Using the obtained functional representation, dynamic vibration anal-
ysis was reduced to the solution of a fourth-order integro-differential equa-
tion. The problem was studied with simply supported (pinned) boundary
conditions. However, the solution from the performed fluid-structure in-
teraction analysis is applicable for any boundary conditions for the ends
of the moving plate. The Fourier-Galerkin method and a diagonalization
method were employed for the numerical solution of the obtained integro-
differential equation. The presented discretized solution can be fairly easily
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adapted to other Galerkin bases, or to cases with different boundary condi-
tions.

Both direct temporal simulations and an eigenfrequency analysis were
performed. In the direct simulations, the initial position of the plate was
specified. There were no external disturbances and the initial transverse
velocity of the plate was zero. The model also allows for nonzero initial
transverse velocity, and for specifying an external disturbance function.

The behaviour of the lowest eigenfrequency of the plate was investi-
gated at several different axial fluid velocities. The classical cases of station-
ary air and the air mass moving with the plate were included, as were also
examples of arbitrary axial fluid velocities made possible by the present
approach. It was observed that the presence of fluid, in all cases, signifi-
cantly reduces the first natural frequency when compared to the vacuum
case. This matches known results; see, e.g., Kulachenko et al. (2007b) and
Pramila (1986).

The results of the lowest eigenfrequency analysis were seen to quali-
tatively agree with the classical added-mass results of Pramila (1987). A sig-
nificant quantitative difference either in the critical velocity or in the lowest
eigenfrequency was observed in the case where the air mass is assumed to
move with the plate, depending on the aspect ratio of the plate used in the
added-mass model. It was seen that this effect is due to a difference in how
mass is handled in the added-mass model, when compared to the present
model.

Finally, at the divergence velocity and shape predicted by static anal-
ysis (Banichuk et al., 2010b), a direct dynamic simulation confirmed the
steady-state property of the solution.

The present research raises some questions, which require further stud-
ies to explore. The sensitivity of the physical model on small changes in its
parameters is an important question, for which a separate parametric study
is needed. Also a more complete modal analysis, not limited to the first
eigenfrequency but including higher frequencies and also the correspond-
ing modes, remains a direction for future research.

The investigation of ideal models provides a solid foundation for more
complex multiphysics problems. The model developed can, with certain
limitations, describe the dynamic behaviour of a moving paper web inter-
acting with axially moving air. Thus, we used for numerical computations
the parameter values corresponding to air and some paper materials.
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Figure captions

Figure 1:

Travelling plate undergoing cylindrical deformation, supported at x = —/
and x = +/, and interacting with air. At infinity, the air moves along the x
axis with velocity .

Figure 2:

Dynamic response of the plate with various fluid and plate velocities. First
row: vacuum case for comparison.

Figure 3:

Behaviour of the nondimensional first natural frequency as a function of the
nondimensional velocity of the plate. Normalized by the axis intersecting
values in vacuum. For the upper solid line, fluid velocity ve, = 0. For the
lower solid line, v, = V), i.e. the air mass moves with the web. For compar-
ison, the vacuum case (dashed line) and three pairs of results corresponding
to Pramila’s added-mass formulas (dash-dot lines) from the study Pramila
(1987) are shown. Each pair begins at a single point at Vj = 0. The different
pairs correspond to different aspect ratios (AR, length per width). From top
to bottom, AR ~ 17.1850 (Bp; = 0.18); AR ~ 5.1064 (Bp; = 0.3275); and
AR =~ 3.1989 (Bpr = 0.43; in this particular case, the upper curves coincide).
The symbol Bp; refers to the B value of Pramila (1986), Table II.

Figure 4:

Behaviour of the nondimensional first natural frequency as a function of
the nondimensional velocity of the plate. Normalized by the axis intersect-
ing values in vacuum. The vacuum case is partly shown for comparison
(dash-dot line). Solid lines indicate v, > 0, dashed lines v, < 0. From top
to bottom, the absolute values of the fluid velocities are 0 (corresponds to
upper solid line of Fig. 3), 10 (6 ~ 0.13), 15 (8 ~ 0.19), 20 (6 ~ 0.25), 25
(6 ~ 0.32), and 30 m/s (0 ~ 0.38). Note the scaling of the vertical axis.

Figure 5:

Divergence instability, i.e., steady state solution. Vy = 70.5257 m/s. v =
—15m/s, tg, = 1's, g1(x) set to critical eigenmode, g(x,t) =0, g2(x) = 0.
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