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Abstract
This thesis presents the results for experiments in which elasto-plastic defor-
mation properties of purified bentonite clay were investigated in constrained
one-dimensional and hydrostatic compressions. The one-dimensional com-
pression experiments were carried out by compressing uncompacted puri-
fied bentonite between two sintered surfaces inside a closed chamber. The
hydrostatic compression experiments were carried out by enveloping a com-
pacted bentonite sample with a thin shell of rubber and compressing the
sample in pressurized water.

The main objective was to test and improve experimental methods for
measuring the deformation properties of bentonite clay. The second objec-
tive was to produce data that can be used to validate deformation models
for purified bentonite clay. It was assumed that the bentonite follows the
isotropic linear elasticity theory for small deformations when the deforma-
tions are elastic.

The yield limit in hydrostatic compression was so high that it was not
possible to cause significant plastic deformation using pressures between 0
and 10 MPa, that the current device is designed for. For this reason it was
not possible to determine the yield limit in hydrostatic compression.

The one-dimensional compression experiments succeeded well. Based
on the results, the shear modulus G as a function of the Poisson ratio ν,
water content η and dry density ρ0 (see equations (2.13) and (2.10) for the
definitions) was calculated. The results agreed well with an equation of
functional form

G(ρ0,η,ν) =
1− 2ν

2(1− ν)

[
(a+ bη)

(
ρ0

c− ρ0

)
+ d

]
.

The yield limit pyield in one-dimensional constrained compression agreed
with an equation of functional form

pyield(ρ0,η) = a1 + a2ρ0 + a3η + a4ρ
2
0 + a5ρ0η + a6η

2.

Based on results from both compression experiments, it was estimated that
for bentonite clay with dry density ρ0 ≥ 1.47 g cm−3 and water content
η ∈ [0.07, 0.25] the Poisson ratio was

0.42 ≤ ν ≤ 0.50.

See section 4.5 for all numerical results and Chapter 5 for discussion about
the development of the experimental methods.
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Tiivistelmä
Tässä pro gradu -tutkielmassa esitetään kokeellisia tuloksia puristuskokeis-
ta, joissa tutkittiin puhdistetun bentoniittisaven elasto-plastisia muodon-
muutosominaisuuksia. Puristuskokeita oli kahdenlaisia. Yksiulotteisissa pu-
ristuskokeissa aiemmin puristamatonta bentoniittia puristettiin suljetussa
kammiossa kasaan kahden teräksisen sintteripinnan välissä. Hydrostaatti-
sissa puristuskokeissa aiemmin kokoonpuristettuja ohuella kumikerroksel-
la päällystettyjä bentoniittinappeja puristettiin kasaan paineistetun veden
avulla.

Työn ensisijainen tarkoitus oli kokeilla ja kehittää kokeellisia menetelmiä
bentoniittisaven muodonmuutosten tutkimista varten. Toissijainen tavoite
oli tuottaa mitattua tietoa puhdistetun bentoniitin laskennallisten muodon-
muutosmallien varmentamiseksi. Työssä oletettiin, että bentoniitin elasti-
set muodonmuutokset noudattivat isotrooppista pienten muodonmuutosten
elastisuusteoriaa.

Bentoniittinäytteiden myötöraja hydrostaattisessa puristuksessa oli niin
korkea, että näytteitä ei saatu merkittävästi myötämään paineen arvoilla
0–10 MPa. Laitetta ei ole suunniteltu kestämään tätä suurempaa painetta.
Tästä syystä kokeissa ei onnistuttu määrittämään puhdistetun bentoniitin
myötörajaa hydrostaattisessa puristuksessa.

Yksiulotteiset puristuskokeet onnistuivat hyvin. Siitä saatujen tulosten
perusteella laskettiin bentoniitin liukukerroin G Poisson-suhteen ν, kuivati-
heyden ρ0 ja kosteuden η funktiona (suureiden määritelmät löytyvät yhtä-
löistä (2.13) ja (2.10)). Tulokset ovat sopusoinnussa yhtälön kanssa, jonka
muoto on

G(ρ0,η,ν) =
1− 2ν

2(1− ν)

[
(a+ bη)

(
ρ0

c− ρ0

)
+ d

]
.

Myötöraja pyield yksiulotteisessa puristuksessa noudatti likimain yhtälöä,
joka on muotoa

pyield(ρ0,η) = a1 + a2ρ0 + a3η + a4ρ
2
0 + a5ρ0η + a6η

2.

Molempien kokeiden perusteella arvioitiin, että Poisson-suhde bentoniitille,
jonka tiheys on ρ0 ≥ 1.47 g cm−3 ja jonka kosteus on välillä η ∈ [0.07, 0.25],
oli

0.42 ≤ ν ≤ 0.50.

Kaikki numeeriset tulokset on koottu osioon 4.5 ja yhteenveto kokeellisten
menetelmien kehityksen tämänhetkisestä tilanteesta on luvussa 5.
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1 Introduction
Bentonite is a common name for certain types of clay minerals. For most
types of bentonite, the main mineral ingredient is montmorillonite, which
belongs to the smectite mineral group. Because of its unique rheological
properties, there are plans to use bentonite clay as a barrier material in
final deposition of spent nuclear waste. [1]

Because the timescales involved in nuclear waste deposition are very
long, direct experiments in this time scale are not feasible. Instead, safety
and performance analysis of different deposition solutions must be based
on computer simulations and different experimental studies. Experiments
carried out in laboratory conditions can provide crucial information for
testing and refining the computational models used in safety assessment of
different solutions.

The main objective of this thesis was to test and improve experimen-
tal methods for investigation of the stress-strain behavior of bentonite clay.
The secondary objective was to provide data for validation of different com-
putational models of deformation for purified bentonite clay, particularly for
the related x-ray tomography studies at the University of Jyväskylä.

In the experiments purified bentonite clay was compressed in cyclic hy-
drostatic and constrained one-dimensional compressions. It was assumed
that the bentonite obeys the isotropic linear elasticity theory when the de-
formations are elastic. The measured quantities were the elastic bulk mod-
ulus K, the elastic p-wave modulus M and the yield limit in both types of
compression. Based on these results, estimates for the Poisson ratio ν and
shear modulus G of the purified bentonite were found.

Chapter 2 explains briefly the theoretical basis of the experimental work
and introduces some definitions used in later chapters. Chapter 3 describes
the experimental methods used. Chapter 4 details the observations and
data analysis, and summarizes the results. Finally, Chapter 5 summarizes
and discusses the current status in the development of the experimental
methods used in this thesis.
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2 Theory of deformation of clay

2.1 Elasticity and plasticity
Deformation theory aims to describe the behavior of condensed matter when
the matter is loaded either mechanically or thermally. When external forces
are applied to a body, the shape or size of the body may change. The goal
is to relate these changes to the applied forces.

Any state of the body can be taken as the reference state, against which
all changes are measured. Similarly, the external conditions (e.g. applied
forces) when the body is at its reference configuration are called the ref-
erence conditions. When the conditions change (e.g. the magnitude of
loading forces increases), the body may undergo a deformation. If the body
returns to the reference state when the external conditions are brought back
to reference conditions, the deformation is called elastic deformation. [2]

If the change of conditions results in a lasting deformation which remains
after the return to reference conditions, the remaining deformation is called
plastic deformation. In many cases, the deformation of a physical body
consists of both an elastic part and a plastic part. [2]

The physical foundation of plasticity of clay can be understood by ex-
amining the structure of claylike materials. Clay are granular materials and
have varying amounts of space between individual grains. These spaces or
pores are typically filled with water or air or some mixture of both. [3]

Compression of clay affects the positioning between grains, typically
reducing the total volume of the pores and thus causing irreversible plas-
tic deformations. Deformations of individual grains can also take place,
especially at high pressures or when the grains have been softened by mois-
ture. Bentonite contains significant amounts of absorbed water under many
circumstances. The amount of water absorbed by bentonite significantly in-
fluences the deformation properties of the bentonite.

2.2 Strain and stress
The deformation of a body and the forces applied to it are described by
tensor quantities called strain E and stress σ. The body is modeled as a
continuous bulk of matter occupying a region R ⊂ R3 in its reference state.
When the body is deformed, every point of the material ~r0 is moved to
another point ~r as described by the displacement vector

~u(~r0) = ~r − ~r0.
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However, the displacement vector does not adequately describe the de-
formation of the body, since it does not express the displacement of the
points relative to each other. The proper measure of deformation is the
strain tensor E. The components of this 2nd rank tensor in a cartesian
coordinate system (x1,x2,x3) are

Eij(~r0) =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

+
3∑

k=1

∂uk
∂xi

∂uk
∂xj

)
. (2.1)

Strain E describes the deformation of an infinitesimal neighborhood of ~ri. [2]
If all of the partial derivatives in (2.1) are sufficiently small, the last

term can be omitted and the strain tensor E can be approximated with the
infinitesimal strain tensor ε:

Eij(~r0) ≈ εij(~r0) =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
. (2.2)

Such deformations can be referred to as either small or infinitesimal de-
formations. Note that here both strain tensors are presented as functions
of the reference state points ~r0. This approach is called the Lagrangian
approach. For the other, the so called Eulerian approach, see for example
[2]. The Lagrangian and the Eulerian approaches give identical results for
small deformations. [2]

The forces acting on the body can be divided into body forces (e.g.
gravity) acting on all points of the body and surface forces that act on the
surface of the body. Often, the only significant body force is gravity. In
the deformations discussed in this thesis, the effect of gravity is very small
compared to the effect of the surface forces, so the effect of body forces is
neglegted.

The surface forces are described by the stress tensor

σ =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (2.3)

The stress tensor is symmetric and expresses the magnitude of various types
of contact forces per unit of surface area. The forces can be thought as act-
ing on the surfaces of an infinitesimal rectangular volume with side lengths
dx1, dx2 and dx3. The stress element σij describes the magnitude per area
of the force component Fj on surface perpendicular to coordinate axis xi.
The diagonal elements σii (no sum) represent forces that try to compress
or stretch the volume in direction of xi, while the off-diagonal elements
represent shearing forces. [2][4]
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Like any other symmetric 2nd rank tensor, the stress tensor can be di-
agonalized in all points. This diagonalizing corresponds to a rotation of the
original coordinate axes to a new set of axes (x∗1,x

∗
2,x

∗
3). In this coordinate

system the representation of the stress tensor is a diagonal matrix

σ∗ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (2.4)

The stresses σi are called the principal stresses at that point. The new set
of coordinate axes (x∗1,x

∗
2,x

∗
3) is called the principal axes of stresses. [2][5]

2.3 Isotropic linear elasticity
The most simple model of elastic behavior is called isotropic linear elasticity.
This model assumes that

• strains are sufficiently small for equation (2.2) to be valid

• material is homogenous and isotropic

• temperature is approximately constant

• all stresses are linear functions of strains, i.e. there is a 4th rank
tensor C so that σij =

∑3
k,l=1Cijklεkl.

These assumptions combined with the symmetry of the stress tensor lead
to equation

σij = λδij

3∑
k=1

εkk + 2µεij, (2.5)

where material dependent parameters λ and µ are called the Lamé coeffi-
cients. [2]

It is difficult to directly determine the Lamé coefficients experimentally.
However, if the material is easy enough to compress, it is straightforward to
calculate them from directly measurable quantities such as the bulk modulus
K and the p-wave modulus M . For nearly incompressible materials the
changes in the volume and shape of the body may be too small to be
measured accurately.

The bulk modulus can be measured by compressing the body hydro-
statically (σ = diag(−p, − p, − p), where p is the pressure) and using the
equation

K = −V dp

dV
, (2.6)
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where V is the volume of the body. [4]
Similarly, the p-wave modulus can be measured in a one-dimensional

constrained compression test as

M = −hdp1
dh

, (2.7)

where h is the height of the body in the direction of compression and p1 is
the loading pressure applied to the body. [4]

In the linear isotropic elasticity theory the changes in volume and height
are infinitesimal. For this reason, the volume and height are effectively
constant. The changes measured in this work are finite, however. To use
the theory of linear isotropic elasticity the values of height and volume in
equations (2.6) and (2.7) were assumed to be constant during the elastic
deformations. To avoid any confusion, these constant values are called the
elastic reference volume and height, respectively.

These moduli are related to the Lamé coefficients by following equa-
tions: [4]

λ =
1

2
(3K −M)

µ =
3

4
(M −K).

Thus the elastic deformation parameters for an isotropic body at constant
temperature for small deformations can be acquired by measuring the bulk
modulus and p-wave modulus of the body.

Other parametrisations and their relations to the measured moduli can
also be used to express the results. The Poisson ratio ν can be calculated
from M and K with equation [4]

ν =
3K −M
M + 3K

. (2.8)

The Poisson ratio is between 0 and 1/2 for most materials.1 [4] The shear
modulus G can be written in terms of M and ν as

G =
1− 2ν

2(1− ν)
M. (2.9)

2.4 Yielding and yield surface
Most deformations remain elastic as long as the applied stresses are suf-
ficiently small. If the stresses grow sufficiently large, at least a part of

1For some rather exotic materials, the Poisson ration can be negative, but it is always
between −1 and 1/2. [4]
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Figure 2.1: Example of a yield surface in the stress eigenspace. The depicted
surface was obtained from preliminary experimental data by assuming the
the yielding is described by modified von Mises yield criteria.

the accompanying deformation is plastic deformation. This phenomenon is
called yielding, and the limiting stress at which plastic deformations begin
to take place is called yield point or yield limit.

Equation (2.4) shows that after the principal axes of stresses at a certain
point are determined, the principal stresses can unambiguously describe the
stress state at that point. It’s therefore useful to describe the stress state
as a point in a three dimensional (σ1, σ2, σ3) -stress eigenspace.

The limiting stress states where plastic deformations begin to take place
are described by a contour surface of the yield function f(σ1, σ2, σ3). This
contour surface in the stress eigenspace is called the yield surface. For an
example of a yield surface, see figure 2.1. There are many different yield
functions based on different assumptions and yield criteria. Some yield
functions describe the behavior of some materials better than others, but
no single function can be considered universally better than others. [6]
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The experiments detailed in this thesis give information on the location
of two points of the yield surface of the bentonite. These points are the yield
point in hydrostatic compression and the yield point in one-dimensional
constrained compression. In the first case all principal stresses are equal
and in the second their relative magnitudes depend on the Poisson ratio of
the material. The Poisson ratio in turn can be calculated from the measured
bulk modulus and p-wave modulus. The determination of the location of
these two points in the stress space provides a starting point for modeling
the entire yield surface of the bentonite. [4]

2.5 Typical loading curves of clay
In this thesis, compression pressure will mean either the hydrostatic pres-
sure p when discussing hydrostatic compression or the loading pressure p1
in one-dimensional compression. When clay is compressed cyclically so that
the compression pressure increases on every new compression, the resulting
loading-unloading curve resembles the curve in figure 2.2. The shape of the
curve is similar both in one-dimensional and hydrostatic compressions. The
maximum pressure that has been previously applied to the clay sample is
called consolidation pressure. [3]

The yield limit of a clay sample is approximately equal to the consoli-
dation pressure. If the sample is loaded with compression pressure greater
than consolidation pressure, plastic deformations take place. When the
sample is unloaded, the volume or height of the sample does not return
to its previous value (see the loops in figure 2.2). The new consolidation
pressure is now the yield limit of the sample. When the sample is loaded
again, the deformation remains elastic as long as the pressure does not ex-
ceed the new yield limit, but if it is exceeded, further plastic deformation
takes place. The curve that describes the behavior of the sample during the
plastic deformations is called the virgin curve. [3]

While the strain-stress curve is not exactly linear in the elastic region, it
is convenient and often sufficient to model it as such. This means using lin-
ear elasticity theories. In this thesis the elastic deformations were assumed
to obey the linear isotropic homogenous elastic model described in section
2.3. [3]
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Figure 2.2: Qualitative graph showing the cyclic loading-unloading curve of
a clay or claylike material in one-dimensional or hydrostatic compression.
The vertical axis is the loading pressure and the horizontal axis is either
the relative change in sample height (one-dimensional compression) or the
relative change in sample volume (hydrostatic compression). The figure is
adapted from [3].

2.6 Water content of bentonite clay
The amount of moisture greatly affects the stress-strain behavior of ben-
tonite. Bentonite stored in room temperature and humidity also contains
significant amounts of water. A quantity called water content was used to
measure the humidity of the bentonite. Water content η is defined as the
ratio of water mass and dry mass of the bentonite

η =
mwater

mdry mass
. (2.10)

With this definition, the masses of water and dry material in a bentonite
sample with total mass mbentonite and water content η can be calculated
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from equations

mdry mass =
mbentonite

η + 1
(2.11)

mwater =
η

η + 1
mbentonite. (2.12)

Dry density ρ0 is defined as the ratio between dry mass and sample volume

ρ0 =
mdry mass

V
. (2.13)

Dry density is used to compare the behavior of samples with different water
content. Combining the definitions (2.10) and (2.13) the relation between
dry and actual densities of bentonite becomes

ρ0 =
ρ

1 + η
, (2.14)

where ρ is the density of the bentonite.
In terms of directly measurable quantities, the initial dry density of a

sample in hydrostatic measurements described in this thesis is

ρ0 =
m

(1 + η)πhr2
, (2.15)

where m, h and r is the mass, height and bottom radius of the sample,
respectively. A similar equation

ρ0 =
m

(1 + η)πhR2
, (2.16)

where R = 4.5 cm is the radius of the bottom of the compression chamber
of the one-dimensional compression device, was used to calculate the dry
density of samples in one-dimensional compression.
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3 Experimental Methods

3.1 Controlling the water content of the
samples

To determine the chemical composition of the purified bentonite, a chem-
ical analysis was performed by Mia Tiljander at the Geological Survey of
Finland. The analysis showed that the material was 90 ± 5 mass percent
montmorillonite and 5± 5 mass percent quartz.

The water content of bentonite was measured by drying the bentonite
in an oven as follows: First, the vessel to be used for drying the bentonite
was kept in the oven at 105 ◦C until the mass of the vessel did not change
anymore. Second, about 10 g of bentonite was weighted and laid in the
vessel as flatly as possible. Finally, the bentonite was kept in the oven
at 105 ◦C until its mass remained constant for at least half an hour. The
difference between the final and initial masses was then used to calculate
the water content. The drying vessel was so flat that the bentonite formed
only a very thin layer on the bottom of it. The water content of bentonite
stored in the laboratory was measured to be

η0 = 0.0755± 0.0017. (3.1)

The value expressed in equation (3.1) was obtained as a weighted average
from three separate measurements which agreed with each other within
error limits.

The water content of bentonite was increased by mixing bentonite and
water in a blender (see figure 3.1). The blender had a hole in its cover
through which water could be added. For the remainder of this work,
the bentonite that was moistened at the same time are said to form a
patch of bentonite. By measuring the masses of the room-stored bentonite
and added water, it was possible to determine the water content of each
bentonite patch. Since some of the material unavoidably stuck in the walls
and other parts of the blender, some mass loss was inevitable. Another
source for lost mass is the evaporation of water. The blender heats up
during the mixing, which may cause significant evaporation.

Because the amount of clay that remained in the blender was relatively
small, a relatively small error occurs if it is assumed that all of the mass lost
during mixing was water. The water content after mixing was estimated
with this assumption by combining equations (2.10), (2.11) and (2.12) to

10



Figure 3.1: The primary equipment used in adding and mixing water with
the clay.

equation

η =
η0mbentonite + (η0 + 1)(mwater added −mloss)

mbentonite
, (3.2)

wherembentonite is the mass of the bentonite including the initial water mass,
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mwater added is the mass of water added andmloss is the total mass lost during
the mixing.

Since equation (3.2) provides only an estimate for the water content,
the water content of each patch of bentonite was measured twice after the
water distribution process. These water content measurements for each
patch were made just before making the first sample and just after all
compression experiments had been completed. See section 4.1 for details
and error analysis.

After mechanical mixing the distribution of water in the bentonite was
uneven. To distribute the water evenly and to prevent evaporation, the
bentonite was sealed into a plastic bag and left there for at least a week
before making samples. During this week the bentonite was frequently
stirred without opening the bag in order to speed up the water distribution
process. Any visible large clumps were also smashed into smaller fragments
when found.

The blender was so large that it was possible to moisten several hundred
grams of bentonite at once. Hence it was possible to make several samples
for both types of experiments from the same patch of moistened clay. There
should not be significant differences in the water content of samples made
from the same patch.

3.2 One-dimensional constrained compression
In the one-dimensional compression experiments previously uncompacted
bentonite was compacted in cyclic constrained compression. The approxi-
mate turning point pressures used were 2 MPa, 4 MPa, 7 MPa, 9 MPa and
10 MPa The experimental set-up is depicted in figures 3.2 and 3.3. Ben-
tonite was compressed by changing the volume of a compression chamber
with a hydraulic pump. The bottom and top surfaces of the compression
chamber were made of sintered steel surfaces, which allowed air to exit the
chamber. Three Sangamo position sensors placed symmetrically around the
chamber were used to measure the height of the sample. The average of
the position sensor values was taken to be the actual height of the sample.
The loading pressure was measured indirectly by measuring pressure in the
hydraulic chamber with a Keller Leo 3 max. 300 bar pressure sensor.

The signals of the position and pressure sensors were transferred to a
computer via a National Instruments DAQPad-6052E data acquisition card.
The measurements were controlled with a LabView virtual instrument. The
virtual instrument also compensated for the stretching of the compression
device (see section 4.2) and calculated the density of the sample from mea-
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sured height and bentonite mass. Further analysis of the data was done
with Matlab scripts.

Figure 3.2: A schematic showing the experimental set-up and data acqui-
sition in one-dimensional compression experiments. The letters denote the
following components: A is the hydraulic pump, B is the hydraulic cylin-
der, C is the compression chamber, D is the pressure sensor, E denotes the
position sensors, F is a connection box, G is the data acquisition card, H
is a needle valve and PC is the computer.
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Figure 3.3: The compression device for the one-dimensional constrained
compression experiments. The letters refer to the same components as
depicted in figure 3.2.
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Figure 3.4: A photo showing an uncoated (left) and a rubber-coated sample
(right).

3.3 Hydrostatic compression

Sample preparation

In the hydrostatic compression experiments the bentonite clay was com-
pressed in pressurized water. Since adding moisture to bentonite clay
greatly affects its deformation properties, the samples needed to be isolated
from the water. This was accomplished by compacting clay into cylindrical
samples and enveloping them with a thin coating of rubber. The details of
sample preparation are described in [7].

Figure 3.4 shows a photo of an uncoated and a coated sample. The sam-
ple preparation method produced compacted clay cylinders with following
approximate characteristics:

height h ≈ 30 mm,

diameter d ≈ 30 mm

volume V ≈ 21.2 cm3

dry density ρ0 ≈ 1.48 g cm−3.

15



Figure 3.5: A diagram of the horizontal and vertical cross-sections of an
ideal bentonite sample. In reality the clay may not lie perfectly straight
inside the rubber. This is not a problem as long as the clay is isolated from
the surrounding water during the experiments. The thickness of the rubber
coating is not to scale.

The actual properties of each individual clay cylinder were measured with
a scale and a caliper. The clay cylinder is enveloped with a rubber coating
that is on average 1.5 mm thick. (See figure 3.5.) Small amounts of air
bubbles got stuck within the rubber, but their effect was assumed negligible.

All hydrostatic samples with a given moisture were made from same
patch of bentonite, so their moisture contents were likely identical. The dry
densities of different samples varied from sample to sample because each
sample was made individually. The samples were considered sufficiently
identical if their dry densities were in the range

ρ0 ∈ [1.46 g cm−3, 1.50 g cm−3]. (3.3)
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Experimental set-up

Figure 3.7 shows a diagram for the experimental set-up and data acquisition
in hydrostatic compression experiments. Figure 3.6 is a photo of the main
device. When filling the device with ion-exchanged water, the water flows
in through valve I and out through valve K. The prepared samples were
placed in the sample chamber G and immersed in water. The outer valves
I and K were closed. Then the sample was compressed with the hydraulic
pump while measuring the pressure and the motion of the double acting
cylinder piston. The latter was used to measure the change of volume of
the sample.

Before starting the measurements it was necessary to remove all air from
the 2nd chamber of the double acting cylinder. This was done by disassem-
bling the cylinder and the reassembling it underwater. The measurements
were prepared as follows: First the sample chamber was open and partially
filled with water. Water was allowed to flow in and the valve J was opened
and closed repeatedly to remove all air from inside it. Next, the sample was
immersed in the sample chamber. Then the sample chamber was closed and
water was made to flow through the system to remove all air from it. The

Figure 3.6: The compression device for the hydrostatic compression exper-
iments. The numbers denote the same components as in figure 3.7.
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upper valve was also opened and closed repeatedly to remove air bubbles.
Finally the valves I and K were closed. Before each measurement the piston
was moved to same position from the same direction to prevent changes in
the position of the o-ring seal inside the double acting cylinder.

The measurements were cyclic compressions starting from ambient pres-
sure with approximate turning point pressures 1.5 MPa, 2.5 MPa, 5 MPa,
7 MPa 9 MPa and 10 MPa. The pressure was measured with a Keller PA-
25Y/200bar/80087.55 pressure sensor and the position with a position sen-
sor. The data acquisition card was National Instruments cDaQ-9172. The
measurements were controlled with a LabView virtual instrument. After
the measurements the effect of the deformation of the device (see section
4.3) was subtracted from the measured changes in volume. Further analysis
of the data was done with Matlab scripts.
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Figure 3.7: A schematic showing the compression device and data acquisi-
tion in hydrostatic compression experiments. The letters denote the follow-
ing components: A is the hydraulic pump, B is the single action hydraulic
cylinder, C is the first chamber of the double action hydraulic cylinder
connected to ambient pressure, D is the 2nd chamber of the double action
hydraulic cylinder, E is a rod connecting the cylinders and the position
sensor, F is the position sensor, G is the sample chamber, H is the pressure
sensor, I, J and K are needle valves, L is a connection box, M is the data
acquisition card and PC is the computer.

19



4 Results and Data Analysis

4.1 Error estimates for the initial sample
properties

As described in section 3.1, the estimated water content of each patch was
calculated from the amount of water added while assuming that all lost mass
was due to lost water. Before and after the compression measurements, the
water content of each patch of bentonite was measured. These measure-
ments showed that the water content of the bentonite stayed approximately
constant during the measurements. The measured water content was higher
than the estimated value by approximately 0–0.004 depending on the patch.

Since the possibility of slightly uneven water distribution cannot be
ruled out, it was assumed that for all patches with added water, the water
content of the patch was 0.002 larger than the estimated value with error
dη = ±0.002. In total five patches of bentonite were made. Their water
contents are listed in table 4.1.

After making a sample for the hydrostatic tests, the height and diameter
of each sample were measured with a caliper. The uncertainty for both
measurements was estimated to be ±0.1 mm, leading to uncertainties dh =
0.01 mm and dr = 0.05 mm for the height and bottom radius, respectively.
The uncertainty in the mass of the sample was dm = 0.01 g.

These uncertainties were combined using the general formula of er-
ror propagation. The obtained error estimate for the volume was dV =
0.16 cm3. The dry density of a sample was calculated from equation (2.15).
The application of general formula of error propagation gave the uncertainty
dρ0 = 0.011 g cm−3.

Table 4.1: The water content of the patches of bentonite clay. For all
patches, the uncertainty is dη = ±0.002.

Patch number 1 2 3 4 5

Water content η 0.076 0.124 0.166 0.208 0.244
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Figure 4.1: The calibration measurement points and the corresponding
function fit for the one-dimensional compression device. The calibration
function is given in equation (4.1).

4.2 One-dimensional constrained compression

Deformation of the compression device and error
estimation

In addition to the bentonite sample, the compression device also undergoes
elastic deformation during the experiments. To correct for the deformation
of the device, a calibration was made by pressing the sintering surfaces of
the device against each other while measuring the position sensor readings
as a function of pressure.

The calibration was made by compressing the device from zero to 10 MPa
and then returning the pressure back to zero. The calibration was then
made by fitting a function by trial and error to the loading part of the
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(p,∆h)-curve. (See figure 4.1.) The calibration function thus obtained was

∆h(p) = a1 exp (−p/a2) + a3 + a4p (4.1)

where

a1 = 0.066 mm

a2 = 1.32 MPa

a3 = −0.057 mm

a4 = −0.0051 mm MPa−1.

The calibrated sample height values in the bentonite measurements were
acquired by subtracting function (4.1) from the measured sample height
values. Only the loading part of the loading-unloading curve was used in
the determination of the calibration function. This was done to ensure that
the calibration would not change the qualitative behavior of the bentonite
e.g. by removing some of the actual deformation of the bentonite.

Because the pressure applied to the sample was measured indirectly
from the hydraulic pressure (see figure 3.2 on page 13), the choice of the
zero level of sample pressure has some ambiguity. The factors that affect
the hydraulic pressure include at least friction, the weight of the upper part
of the device when it is resting on the hydraulic cylinder, sample pressure
and the force exerted by a mechanical spring inside the hydraulic cylinder.
Based on observations on the hydraulic pressure, it was estimated that the
pressure caused by other factors than sample pressure was 3.0 bar±0.5 bar.
To ensure that the sintered steel surfaces were properly in contact at the
start of the measurement, it was assumed that the sample pressure was
zero when the hydraulic pressure was 4.1 bar. This means that the zero
sample pressure in the calibration roughly corresponds to actual pressure
of 70 kPa± 30 kPa.

A priori it is not certain that the results obtained in this kind of cal-
ibration correspond to the deformation of the device when there is some
material between the sintering surfaces. For example if the sintering sur-
faces are not perfectly parallel, additional compression may occur at the
beginning of the compression because the force is not divided equally on
the surfaces. For this reason the calibration was checked by compressing
different number of discs of copy paper between the sintering surfaces. The
measurement was repeated for one to five discs. Then the change in posi-
tion ∆h was plotted as a function of the number of discs N at five constant
pressures. The relationship between N and ∆h was approximately linear,
so the device compression at any pressure could be determined by extrap-
olating to N = 0. The device deformations were measured this way for
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pressures 1 MPa, 2 MPa, 3 MPa, 4 MPa and 5 MPa and they agreed very
well with the calibration equation (4.1).

Since the objective of the work presented in this thesis is to provide
parameters for a simplified numerical model of bentonite deformations, the
importance of error estimation of variables is somewhat diminished. Nev-
ertheless it is necessary to provide some crude estimates for the accuracy
of the measurements.

The accuracies of the position and pressure sensors were dh = ±4 µm
and dp = ±0.03 MPa, respectively. From figure 4.1 we see that the cali-
bration error is much greater than the error caused by sensor inaccuracies.
From figure 4.1 it can be estimated that if the pressure values are assumed
to have no error, the corresponding position values have maximum error
of ±0.02 mm. However, the choice of the zero level of the pressure and
other experimental uncertainties may increase the error range. It was esti-
mated that if the error in pressure values is omitted, the maximum error in
the position values should not exceed ±0.05 mm. It was assumed that the
measurement error remained constant in all measurements.

Data analysis

Figure 4.2 shows the measured and calibrated loading curve of a bentonite
sample in cyclic one-dimensional compression. The behavior is qualitatively
identical with the expected behavior shown in figure 2.2. The approach was
to model the virgin curve with some appropriate non-linear function and
elastic loops with straight lines corresponding to the linear elasticity theory.
The resulting model is depicted in figure 4.3.

The elastic reference sample height at different stages was read from the
x-intercepts of the elastic fits, and the yield limits corresponding to this
reference height was read from the intersection points of the elastic lines
and the virgin curve. By calculating the elastic reference dry densities from
the reference height using equation (2.16), it was possible to calculate the
p-wave modulus and the yield limit as a function of the dry density at the
constant water content of the sample.

The function that was fitted to the measured values of height h and
pressure p on the virgin curve were of the form

p(h) = a1 exp

(
−h
a2

)
+ a3 + a4h, (4.2)

where ai are the parameters of the fit.
The determination of the equations of the straight lines in figure 4.3

is somewhat ambiguous because the observed behavior of the bentonite is
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Figure 4.2: The data points for a bentonite sample in one-dimensional
constrained compression. The water content and mass of the sample were
η = 0.076 ± 0.002 and m = 32.88 g ± 0.02 g, respectively. The lower loops
describe elastic deformations and the virgin (shadow) curve describes plastic
deformations (see figure 2.2).

not linear. In addition, the accuracy of the device calibration is weakest at
low pressures as can been seen from the steep fall in calibration curve in
figure 4.1 at low pressures. For these reasons the equations of the lines were
determined by selecting two points from the re-loading part of each loop in
a systematic manner and assuming that the line goes through these points.

The lower points for all but the rightmost loop were chosen from the
re-loading part so that the pressure was approximately 1000 kPa. For the
rightmost loop the low point was chosen at approximate pressure 500 kPa.
The upper points for each loop were chosen from the approximate intersec-
tion points of the unloading and re-loading parts of the loop.

Table 4.2 shows the calculated values of the p-wave modulus and yield
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Figure 4.3: The data points, fit of the virgin curve and fits of the elastic
regions for the sample in figure 4.2.

limit as a function of the elastic reference dry density obtained from each
re-loading section.

The p-wave modulus

By repeating the analysis described in subsection 4.2 for all one-dimensional
compression experiments, values for the p-wave modulus at various values
of water content η and dry density ρ0 were obtained. All data points are
listed in table A.1 in the appendices.

A non-linear least squares function fit was calculated to provide inter-
polation estimates for the p-wave modulus for other than measured values
of η and ρ0. The fit thus obtained was

M(ρ0,η) = (a+ bη)

(
ρ0

c− ρ0

)
+ d, (4.3)
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Table 4.2: The elastic reference heights, slopes of the lines, elastic reference
dry densities, p-wave moduli and yield limits obtained from the linear fits for
the elastic parts in figure 4.3. The reference dry densities and p-wave moduli
were calculated from the reference height values with equations (2.16) and
(2.7), respectively.

Loop number 1 2 3 4 5

href (mm) 4.35 3.79 3.55 3.38 3.29
dp/dh (MPa mm−1) −22.5 −41.9 −58.7 −76.6 −91.2
ρ0,ref (g cm−3) 1.117 1.283 1.367 1.438 1.478
M (MPa) 97.7 159 208 258 300
pyield (MPa) 2.20 5.23 7.23 9.13 10.2

where

a = 86.4 MPa

b = −97.3 MPa

c = 1.88 g cm−3

d = −12.3 MPa,

The range used in the interpolation is approximately the trapezoid in (ρ0,η)
-space defined by

η ∈ [0.07, 0.25]

ρ0 ∈ [1.1 g cm−3, (1.0 + 1.4η) g cm−3].

The data points and the fit (4.3) are shown in figure 4.4.

The yield limit

By repeating the analysis described in subsection 4.2 for all one-dimensional
compression experiments, values for the yield limit at different values of
water content η and dry density ρ0 were obtained. All data points are
listed in table A.2.

A least squares 2nd order polynomial

pyield(ρ0,η) = a1 + a2ρ0 + a3η + a4ρ
2
0 + a5ρ0η + a6η

2, (4.4)
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Figure 4.4: The data points and fit (4.3) for the dry density, water content
and p-wave modulus according to the one-dimensional measurements.

was fitted to the data points. The values obtained for the coefficients ai
were

a1 = 4.15 MPa

a2 = −25.7 MPa cm3 g−1

a3 = 84.8 MPa

a4 = 20.3 MPa cm6 g−2

a5 = −54.8 MPa cm3 g−1

a6 = −91.4 MPa.

The same data range was used in the interpolation of equation (4.4) as with
equation (4.3). A graph showing the data points and equation (4.4) is in
figure 4.5.
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Figure 4.5: The data points and equation (4.4) for the dry density, wa-
ter content and yield limit according to the one-dimensional compression
measurements.
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4.3 Hydrostatic compression

Deformation of the compression device and error
estimation

Like the one-dimensional compression device, the hydrostatic compression
device also experienced deformations during the experiments. As with the
one-dimensional experiments, an attempt was made to calibrate the hydro-
static device by pressurizing the water inside the device and measuring the
accompanying changes in volume. To take into account the deformation of
the rubber cover, a rubber coated steel cylinder with size and shape iden-
tical with the clay samples was placed in the compression chamber during
the calibration measurements.

This attempt was only partly successful. The volume changes due to
the device deformation were roughly repeatable, but the accuracy of the
calibration was so weak that it significantly affected the accuracy of the
hydrostatic measurements. In addition, from time to time some of the re-
sults of individual calibration measurements differed considerably from the
rest. Approximately one measurement in four suffered from this anoma-
lous behavior. Because of these complications, the calibration was based on
three calibration measurements that agreed approximately with each other
as shown in figure 4.6.

The calibration fit for the hydrostatic measurements was obtained by
measuring the position sensor reading ∆l as a function of pressure and
multiplying it with the compressing area of the double action hydraulic
cylinder A. The obtained equation was

∆V (p) = A∆l(p)

= A

(
a1 exp

(
−p
a2

)
− a3 − a4p

)
, (4.5)

where

A = 6.45 cm2

a1 = 0.47 cm

a2 = 0.834 MPa

a3 = −0.55 cm

a4 = 0.13 cm MPa−1.

Figure 4.6 shows that the maximum repeatability uncertainty in the po-
sition measurement results was about 0.1 mm, if the error in pressure values
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Figure 4.6: The calibration of the hydrostatic device based on three distinct
measurements. Each measurements consisted of pressurizing the water to
approximately 10 MPa and lowering the pressure back to ambient pressure.
The fitted function is in equation (4.5).

is omitted. This corresponds roughly to volume uncertainty of 0.07 cm3.
This is very large compared to the accuracies of the position and pressure
sensors, so the errors related sensor accuracies can be omitted. However,
the repeatability uncertainty is also very large compared to the measured
changes in sample volume (see subsection 4.3), which greatly affects the
repeatability of the measurements.

It is currently unclear why the repeatability of the measurements was so
poor. A possible explanation was discovered after the measurements were
completed and the device was disassembled. Figure 4.7 shows the axis and
the piston of the double action hydraulic cylinder together with the piston
seal. The large gap between the seal and the edge of its mounting groove
means that the insulator can move back and forth as the water is being
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Figure 4.7: A photo showing the axis of the double action hydraulic cylinder
after the measurements had been completed. A relatively large gap can
be seen between the seals and the edge their mounting groove. This gap
allowed the seals to move back and forth during the measurements, possibly
causing the poor repeatability.

pressurized and depressurized, possibly resulting in significant changes in
the position sensor readings and poor repeatability.

The water inside the hydraulic cylinders contains dissolved air. It is also
possible that some of it forms temporary air bubbles when the cylinder is
depressurized, causing the poor repeatability.
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Figure 4.8: The results of a typical hydrostatic compression experiment.
This sample has mass m = 37.80 g ± 0.02 g and water content η = 0.208±
0.002.

Data analysis

The original objectives of the analysis of the hydrostatic experiments were
analogous to the objectives of the analysis of the one-dimensional experi-
ments (see subsection 4.2). The only difference would have been replacing
the height of the sample with the volume, and replacing the p-wave mod-
ulus with the bulk modulus. The weak repeatability of the measurements
and the unexpectedly small compressibility of the bentonite samples caused
large relative error in the hydrostatic measurements, as explained in the
next paragraphs.

Figure 4.8 shows a typical example of the results of a hydrostatic mea-
surement. The sample was compressed cyclically with unloading at ap-
proximately 1.5 MPa, 2.5 MPa, 5 MPa, 7 MPa, 9 MPa and 10 MPa. Several
characteristics should be noted at this point:
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Figure 4.9: Figure 4.8 with different scale on the V -axis. The relative
changes in sample volume are very small.

• The plastic deformations are either very small or non-existent, because
the sample returns almost to its original volume after compression, as
seen in figure 4.9.

• Significant hysteresis, since the unloading and re-loading parts of each
elastic loop are significantly apart from each other.

• There is a very steep increase in measured volume as the pressure
approaches ambient pressure.

Because no good explanation was found for the steep increase in volume at
low pressures, this change was omitted, and all fits were made to the data
at higher pressures. As with the one-dimensional experiments, the linear
fits were made to the reloading parts of figure 4.8. The first elastic loop
(unloading at 1.5 MPa) was not included due to insufficient number of data
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Figure 4.10: The fits for the virgin curve and linear elastic model for the
sample in figure 4.8.

points. The virgin curve was modeled as a 2nd order polynomial of volume.
The fits obtained this way are shown in figure 4.10. The non-linear part of
the re-loading part of each elastic loop has been omitted in the linear fits.

The bulk moduli for the sample in figure 4.8 are in figure 4.11 and
table 4.3. According to these measurements, the bulk modulus of bentonite
would decrease as its density increases. These results are not sensible and
are probably in error. All other measurements were qualitatively similar
to the one described here, so there must have been some factors that have
greatly distorted the results. See Chapter 5 for further analysis.
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Figure 4.11: The bulk moduli as a function of dry density for the sample
in figure 4.8. The bulk modulus error bars are maximum errors calculated
from the statistical errors in the parameters of the linear fits in figure 4.10
using maximum-minimum principle. The density error bars were calculated
from the accuracy of the position sensor.

The yield limit and the bulk modulus

The observed plastic changes in the volume of all samples in hydrostatic
measurements were so small that we cannot be certain that the samples have
yielded at all during the measurements. For this reason it is not possible
to estimate the hydrostatic yield limit based on these experiments.

As described in subsection 4.8, the results for the bulk moduli were
probably in error because the bulk modulus seemed to decrease as density
increased. The changes in density were also so small that they fit very well
within the error limits of each other, so there is no convincing evidence that
the density of the sample actually changed at all. Because of this, it was
impossible to draw any meaningful relation between the dry density and
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Table 4.3: The elastic reference volumes, slopes of the lines, elastic reference
dry densities and bulk moduli obtained from the linear fits for the elastic
parts in figure 4.10. The reference dry densities and bulk moduli were
calculated from the elastic reference volumes with equations (2.16) and
(2.6), respectively.

Loop number 1 2 3 4 5

Vref (cm3) 21.4 21.3 21.3 21.2 21.2
dp/dV (MPa cm−3) −26.4 −20.4 −18.5 −17.9 −17.5
ρ0,ref (g cm−3) 1.465 1.466 1.469 1.474 1.478
K (MPa) 557 435 395 381 370

the bulk modulus. All results for the bulk modulus are in table B.1 in the
appendices.

Despite these setbacks, it was possible to calculate estimates for the
Poisson ratio and shear modulus from the measured bulk moduli. As seen
in figure 4.11, the values of K at the three largest dry density values are
quite close to each other. Thus a rough estimate for the bulk modulus at one
dry density value can be obtained by taking the average of the last three
values for K and assuming that this is the bulk modulus at dry density
value determined by the average of the dry density values. For example for
the sample in figure 4.11 and table 4.3 the dry density estimate was

ρ0 =
ρ0,1 + ρ0,2 + ρ0,3

3

=
1.4690 + 1.4736 + 1.4778

3
(g cm−3)

≈ 1.487 g cm−3,

Similarly, the estimate for the bulk modulus was

K =
K1 +K2 +K3

3

=
395.02 + 380.94 + 369.58

3
(MPa)

≈ 382 MPa.

This way it was possible to obtain estimates for the bulk modulus at several
dry density and water content values.

All results calculated this way are listed in table 4.4. Table 4.4 also
shows the corresponding values for the p-wave modulus calculated with
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equation (4.3), as well as the values for the Poisson ratio ν calculated using
equation (2.8). Since the Poisson ratio calculated from the hydrostatic and
one-dimensional measurements exceeds 1/2 for many samples, it is clear
that either the hydrostatic or one-dimensional results are in error. Given
the consistency of the one-dimensional measurements and the problems
encountered in the hydrostatic measurements, it is very probable that the
error is due to defects in the hydrostatic measurements.
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Table 4.4: The calculated averages for the dry densities and bulk moduli
for all hydrostatic samples. The table also shows the corresponding values
for M obtained from equation (4.3) and the values for the Poisson ration
ν calculated from the values of M and K. The fact that for many samples
the Poisson ratio exceeds 1/2 means that something is very probably wrong
with the hydrostatic measurements.

η ρ0 (g cm−3) K (MPa) M (MPa) ν

0.076 1.482 232 284 0.42
0.076 1.497 261 298 0.45
0.076 1.482 239 284 0.43
0.124 1.470 293 256 0.55
0.124 1.474 265 270 0.49
0.124 1.481 282 265 0.52
0.166 1.478 299 247 0.57
0.166 1.485 313 237 0.60
0.166 1.499 335 265 0.58
0.166 1.470 257 241 0.52
0.206 1.474 382 230 0.67
0.206 1.477 384 230 0.67
0.206 1.499 378 250 0.64
0.244 1.498 373 235 0.65
0.244 1.514 404 253 0.65
0.244 1.500 366 233 0.65

4.4 Poisson ratio and shear modulus
The fit (4.3) and the results obtained for the bulk modulus can be used
to calculate values for the Poisson ratio of the purified bentonite using
equation (2.8). The obtained values were roughly between 0.42 and 0.66 (see
table 4.4). As a Poisson ratio at or above 0.5 is not physically meaningful,
this lends additional support to the claim that either the one-dimensional
or hydrostatic measurements were flawed. Because the one-dimensional
compression results were systematic, repeatable and physically sound, it is
likely that the error is in the hydrostatic measurements.

Based on the experimental results, it can be estimated that for purified
bentonite clay with dry density ρ0 ≥ 1.47 g cm−3 and water content η ∈
[0.07, 0.25] the Poisson ratio ν is

0.42 ≤ ν ≤ 0.50.
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The Poisson ratio and the p-wave modulus can be used to calculate the
shear modulus G of the purified bentonite by using equation (2.9). The
resulting fit is

G(ρ0,η,ν) =
1− 2ν

2(1− ν)
M(ρ0,η)

=
1− 2ν

2(1− ν)

[
(a+ bη)

(
ρ0

c− ρ0

)
+ d

]
,

where

a = 86.4 MPa

b = −97.3 MPa

c = 1.88 g cm−3

d = −12.3 MPa.

The range used in the interpolation is approximately the trapezoid in (ρ0,η)
-space defined by

η ∈ [0.07, 0.25]

ρ0 ∈ [1.1 g cm−3, (1.0 + 1.4η) g cm−3].
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4.5 Summary
This section summarizes the results for the deformation parameters of pu-
rified bentonite clay that were determined in this thesis. For purified
bentonite clay with dry density ρ0 ≥ 1.47 g cm−3 and water content η ∈
[0.07, 0.25] the Poisson ratio ν is

0.42 ≤ ν ≤ 0.50.

The fits for the p-wave modulus M and shear modulus G as a function of
dry density ρ0 and water content η are

M(ρ0,η) = (a+ bη)

(
ρ0

c− ρ0

)
+ d

and
G(ρ0,η) =

1− 2ν

2(1− ν)

[
(a+ bη)

(
ρ0

c− ρ0

)
+ d

]
where the parameters are

a = 86.4 MPa

b = −97.3 MPa

c = 1.88 g cm−3

d = −12.3 MPa.

The functional fit for the yield limit in one-dimensional constrained com-
pression pyield is

pyield(ρ0,η) = a1 + a2ρ0 + a3η + a4ρ
2
0 + a5ρ0η + a6η

2,

where

a1 = 4.15 MPa

a2 = −25.7 MPa cm3 g−1

a3 = 84.8 MPa

a4 = 20.3 MPa cm6 g−2

a5 = −54.8 MPa cm3 g−1

a6 = −91.4 MPa.

In all three cases the data range used in the interpolation is approximately
the trapezoid in (ρ0,η) -space defined by

η ∈ [0.07, 0.25]

ρ0 ∈ [1.1 g cm−3, (1.0 + 1.4η) g cm−3].
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5 Conclusion
The main objective of this thesis was to test and improve experimental
methods for measuring the deformation properties of bentonite clay. The
secondary objective was to investigate the deformation properties and pa-
rameters of purified bentonite clay. This data can be used to validate dif-
ferent deformation models.

The experimental method used in the one-dimensional constrained com-
pression experiments works well within the pressure range 0–10MPa. In the
future, this method can be used to measure elasto-plastic deformation prop-
erties of different bentonite samples. The only weakness is that increasing
the maximum pressure from the present 10 MPa may not be possible with
the current device, should such large pressures be necessary.

The hydrostatic compression experiments were not very successful due
to the unexpectedly high hydrostatic yield limit of the purified bentonite
with dry density ρ0 ≈ 1.48 g cm−3. Because of the high yield limit, it
was not possible to cause significant plastic deformations in hydrostatic
compression. Another factor was the unexpectedly low repeatability of the
hydrostatic measurements as discussed in section 4.3. The principle used
in the measurements has previously been shown to work for unpurified
bentonite. [7]

The structure of the mounting groove of the piston seal of one of the
hydraulic cylinders was probably one of the reasons for the low accuracy.
This structural property should be relatively easy to fix in the future. It
is therefore possible that with some improvements the present compression
device can be used to investigate the deformation properties of bentonite
of this type and density in hydrostatic compression. It is probable that the
hydrostatic compression device can be used to measure the properties of
purified bentonite also, but at lower dry density values than are presented
in this thesis, because the changes in sample volume would likely be larger
for less dense bentonite. It should also be possible to use the present device
to measure the hydrostatic deformation parameters of unpurified bentonite,
because previous work has shown that unpurified MX-80 bentonite has
a much lower hydrostatic yield limit than the purified bentonite studied
here. [7]

Functional fits for several deformation parameters of purified bentonite
clay were calculated from the measured data. These results are summarized
in section 4.5 on page 40. The summary includes

• functional fits for the p-wave modulus and one-dimensional constrained
compression yield limit as a function of bentonite density and water
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content

• an estimate for the Poisson ratio

• a functional fit for the shear modulus based on the p-wave modulus
fit and Poisson ratio estimate.
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Appendices
A Measured values for p-wave modulus and yield limit in one-dimensional

experiments

B Measured values for bulk modulus
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A Measured values for p-wave modulus and
yield limit in one-dimensional experiments
Tables A.1 and A.2 show all data points of the p-wave modulus and yield
limit, respectively, in the one-dimensional constrained compression mea-
surements.

Table A.1: All measurement points of the dry density ρ0, water content η
and p-wave modulus M in one-dimensional compression experiments.

ρ0 (g cm−3) η M (MPa) ρ0 (g cm−3) η M (MPa)

1.106 0.076 98.4 1.486 0.166 246
1.278 0.076 163 1.523 0.166 258
1.360 0.076 198 1.143 0.208 76.6
1.436 0.076 239 1.377 0.208 160
1.476 0.076 283 1.488 0.208 212
1.117 0.076 97.7 1.576 0.208 331
1.283 0.076 159 1.613 0.208 343
1.367 0.076 208 1.063 0.208 69.3
1.438 0.076 258 1.165 0.208 85.3
1.478 0.076 300 1.353 0.208 155
1.098 0.124 77.1 1.447 0.208 202
1.304 0.124 165 1.531 0.208 286
1.392 0.124 213 1.557 0.208 260
1.474 0.124 259 1.205 0.244 108
1.513 0.124 312 1.457 0.244 213
1.096 0.124 91.9 1.540 0.244 297
1.290 0.124 158 1.604 0.244 378
1.386 0.124 219 1.626 0.244 481
1.462 0.124 261 1.183 0.244 93.2
1.501 0.124 282 1.379 0.244 174
1.115 0.166 110 1.446 0.244 243
1.312 0.166 161 1.491 0.244 240
1.404 0.166 201 1.515 0.244 267
1.486 0.166 232 1.195 0.244 86.2
1.523 0.166 257 1.446 0.244 167
1.098 0.166 72.0 1.543 0.244 254
1.311 0.166 162 1.602 0.244 311
1.407 0.166 197 1.630 0.244 395
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Table A.2: All measurement points of the dry density ρ0, water content η
and yield limit pyield in one-dimensional compression experiments.

ρ0 (g cm−3) η pyield (MPa) ρ0 (g cm−3) η pyield (MPa)

1.106 0.076 1.88 1.311 0.166 5.10
1.278 0.076 4.94 1.407 0.166 7.21
1.360 0.076 7.03 1.486 0.166 9.21
1.436 0.076 9.28 1.523 0.166 10.3
1.476 0.076 10.3 1.143 0.208 1.16
1.117 0.076 2.21 1.377 0.208 4.44
1.283 0.076 5.23 1.488 0.208 6.88
1.367 0.076 7.23 1.576 0.208 8.76
1.438 0.076 9.13 1.613 0.208 9.92
1.478 0.076 10.2 1.063 0.208 1.50
1.098 0.124 1.98 1.165 0.208 2.45
1.304 0.124 5.17 1.353 0.208 5.21
1.392 0.124 7.11 1.447 0.208 7.23
1.474 0.124 9.15 1.531 0.208 9.28
1.513 0.124 10.1 1.557 0.208 10.3
1.096 0.124 2.05 1.205 0.244 1.97
1.290 0.124 5.14 1.457 0.244 5.16
1.386 0.124 7.10 1.540 0.244 7.05
1.462 0.124 9.04 1.604 0.244 8.99
1.501 0.124 10.0 1.626 0.244 9.61
1.115 0.166 2.09 1.195 0.244 2.01
1.312 0.166 5.10 1.446 0.244 5.10
1.404 0.166 7.03 1.543 0.244 7.34
1.486 0.166 9.14 1.602 0.244 9.27
1.523 0.166 10.2 1.630 0.244 9.96
1.098 0.166 2.02

46



B Measured values for bulk modulus
Table B.1 shows all results for the bulk modulus at different dry density
and water content values. The results are likely in error, because the bulk
modulus seems to decrease as density increases, which makes no sense in
terms of physics. For further information, see section 4.3.
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Table B.1: All measurement points of the dry density ρ0, water content η
and bulk modulus K in hydrostatic compression experiments.

ρ0 (g cm−3) η K (MPa) ρ0 (g cm−3) η K (MPa)

1.470 0.076 308 1.493 0.166 393
1.471 0.076 253 1.495 0.166 352
1.475 0.076 234 1.498 0.166 326
1.482 0.076 230 1.503 0.166 326
1.489 0.076 233 1.457 0.166 282
1.492 0.076 274 1.460 0.166 253
1.497 0.076 258 1.469 0.166 253
1.497 0.076 264 1.478 0.166 264
1.502 0.076 263 1.465 0.208 557
1.471 0.076 253 1.466 0.208 435
1.475 0.076 238 1.469 0.208 395
1.482 0.076 237 1.474 0.208 381
1.489 0.076 241 1.478 0.208 370
1.464 0.124 489 1.472 0.208 454
1.463 0.124 335 1.473 0.208 395
1.465 0.124 300 1.478 0.208 386
1.470 0.124 291 1.481 0.208 371
1.475 0.124 287 1.481 0.208 412
1.463 0.124 297 1.492 0.208 397
1.466 0.124 267 1.195 0.208 375
1.474 0.124 262 1.503 0.208 367
1.481 0.124 266 1.487 0.244 768
1.470 0.124 310 1.488 0.244 437
1.473 0.124 282 1.491 0.244 379
1.481 0.124 278 1.498 0.244 358
1.488 0.124 290 1.506 0.244 384
1.472 0.166 639 1.503 0.244 450
1.471 0.166 348 1.507 0.244 395
1.473 0.166 310 1.514 0.244 395
1.477 0.166 292 1.521 0.244 421
1.483 0.166 297 1.482 0.244 415
1.478 0.166 373 1.487 0.244 358
1.480 0.166 323 1.496 0.244 353
1.484 0.166 305 1.506 0.244 387
1.490 0.166 311
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