Nikolai Koudelia

Acceptance Test-Driven Development

Master’s Thesis

in Information Technology
(Software engineering)
December 6, 2011

&

~—~

H

UNIVERSITY OF JYVASKYLA
DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOLOGY

Jyvaskyla

Author: Nikolai Koudelia

Contact information: nikolai.koudelia@gmail.com

Title: Acceptance Test-Driven Development

Tyon nimi: Hyvéaksymistestivetoinen kehitys

Project: Master’s Thesis in Information Technology (Software engineering)

Page count: 102

Abstract: Acceptance Test-Driven Development (ATDD) is meant to bring customers,
engineers, testers and software developers together and help them understand each
other. ATDD is not an automatic testing technique but rather a precise requirement
management and software development convention, which helps to avoid misun-
derstandings between stakeholders and leads to production of program code sat-
isfying only the real requirements making it more simple and clear. Conclusions
about benefits and common problems emerging during adoption of ATDD are based
on results of a software project which took place while this work was being written.
They also concur very well with other case studies. A large framework of accep-
tance tests was built during the project. The framework turned out to be a good
basement for production of high-quality program code, its maintenance and control
of software complexity. Unfortunately, utilization of ATDD as a communication tool
between software developers and other stakeholders failed completely.
Suomenkielinen tiivistelma: Hyvédksymistestivetoisen kehityksen (engl. ATDD)
tarkoituksena on tuoda ohjelmistojen tilaajat, suunnittelijat, testaajat ja ohjelmoi-
jat lahelle toisiaan ja antaa heille paremmat edellytykset toistensa ymmartdmiseen.
ATDD ei ole automaattitestaustekniikka vaan pikemmin tdsmaéllinen, osapuolten
valille syntyvéat vadrinkadsitykset ennaltaehkédiseva vaatimusmaarittely- ja kehitys-
kdytanto, joka johdattaa vain todelliset tarpeet tyydyttdvén ja sitd kautta selkedm-
méan ohjelmakoodin tuottamiseen. Tydssd esitetyt padtelmat ATDD:n hyodyistd ja
sen kddyttoonotossa ilmenevistd ongelmista perustuvat tdimén tyon ohessa suorite-
tun ohjelmistokehitysprojektin tuloksiin ja samalla yhtyvat hyvin paljon muualla
tehtyihin tapaustutkimuksiin. Testivetoisesti kehitetyn projektin tuloksena syntyi
laaja hyviaksymistestikehys, joka antoi hyvit puitteet laadukkaan ohjelmistokoodin
tuottamiseen, ylldpitoon ja monimutkaisuuden hallintaan. ATDD:n hyodyntami-
nen viestintdvélineend ohjelmistokehittdjien ja muiden osakkaiden valilld epdonnis-
tui puolestaan taysin.

Keywords: ATDD TDD BDD AAT Acceptance Test-Driven Development FitNesse
Fit

Avainsanat: testivetoinen hyvaksymistestivetoinen

Contents

1

2

Introduction

Background

21 Waterfallmodel L o
22 V-Model
2.3 Common issues of plan-driven development

Why software fails
3.1 Particularreasons L
3.2 Why Big Software Projects Fail: The 12 Key Questions

Agile software development
41 AgileManifesto L L o
42 Scrum

Introduction to ATDD

51 ATDDprocess
5.2 Shared communication medium
53 Up-to-date documentation
5.4 Automatic testing and maintenance
55 Summaryof ATDDgoals.
56 ATDDwitfalls

Test-Driven Development

6.1 TDDisnotabouttesting!
6.2 TDDwork-flow
6.3 Thegoalof TDD
64 TDDwpitfalls
6.5 Acceptance testing opposed to unit testing L.

Unit testing with NUnit
7.1 Requirementelicitation
72 Exampleunittest o o o

10

13
13
15

20
20
22

25
25
26
27
28
30
30

33
33
34
35
35
37

8 Behaviour-Driven Development
8.1 The motivation behind BDD . .
8.2 Behaviour over implementation

8.3 Complex behaviour doesn’tcomealone

9 Acceptance testing with FitNesse
91 ATDDvsGUItesting
9.2 Syntax of FitNesse tests
9.3 Specification scenario
9.4 A real example of FitNesse test
9.5 FitNessetables.
9.6 The Big Problem

10 The Missing Link

10.1 Existing tools are just not goodenough

10.2 Sketching a better solution . . .

11 Available literature and case studies

11.1 Common knowledge about AAT

11.2 Customers don’t write tests . .
11.3 Other commonissues

11.4 Benefits for development process and adoptioncosts

11.5 Test-driven requirement elicitation

12 Summary

References

ii

72
72
73

79
80
81
83
84
86

88

93

1 Introduction

Software testing is obviously one of the most important components of the whole
process of software development. Without proper testing none of the application’s
stakeholders can be sure whether it works as expected or doesn’t. Nevertheless, a
situation when deadlines are approaching but the project is still in the middle of
construction phase is very common. In such cases the construction phase usually
continues for as long as possible, sacrificing the testing phase at the same time. As a
result, customers get their software untested and full of bugs.

This work discusses an alternative technique the main purpose of which is to
split testing across all the life cycle of software, starting from elicitation of require-
ments and continuing throughout construction and maintenance phases. Such a
thorough transformation of the convenient post-constructional testing activity turns
it into something else but testing. Such a technique stops from being a testing ac-
tivity and becomes test-driven development. Test-driven development doesn’t fully
remove the need of applying post-constructional testing but greatly simplifies such
testing by moving the most laborious parts of it away from human testers to be auto-
matically executed by computer as often as needed. Properly conducted test-driven
development makes a “"bug” become the exception, not the rule.

Chapter 2 discusses different types of software complexity and lays the ground
for clear understanding of the needs behind development techniques discussed in
this work. It also implies the obstacles on the way of adoption of these techniques.
Finally, the chapter introduces two plan-driven development models — Waterfall
and V-models — and discusses the most common drawbacks of these techniques.

Chapter 3 reviews the most common reasons for failures of large-scale devel-
opment projects and discusses the suggestions how to overcome these issues. The
chapter serves as a preface for introduction of Agile software development.

Chapter 4 introduces Agile software development and Agile Manifesto which
offer an alternative way of developing software. The most popular agile develop-
ment model, Scrum, get also introduced in the chapter. It also draws a distinction
between true software development models like Waterfall, V-Model and Scrum and
development practices which are the main subject of this work — ATDD and TDD.

Chapters 5 and 6 introduce ATDD and TDD, respectively. They explain the dif-
ferent goals of these techniques, their pitfalls and development processes. The latter

chapter explains in detail two essential ideas causing a lot of confusion to people
who are not familiar with fundamental objectives behind them.

The first idea is about test-driven development not being a testing technique;
automatic tests only become “tests” after having implemented all the functionality
being test-driven. Before that there is nothing to actually test and those artifacts
rather serve as executable specifications but not tests.

The second idea is about the fundamental difference between TDD and ATDD:
the former is solely practiced by programmers to keep program code clean and to
help them discover optimal solutions for code-centric problems. The latter in turn is
meant to be practiced by both programmers and domain experts in order to establish
shared understanding about the problem being solved. Additionally, there are some
other factors driving the techniques apart which are explained in the ending part of
Chapter 6.

The problem with these two fundamental concepts is harder than it appears to
be because the actual development process is the same for both techniques and they
still have many thing in common. Consequently, it’s hard to tell in the beginning,
which kinds of features should be test-driven with which one of the techniques,
how much functionality should be implemented in one go and whether applying
a technique is rational in the first place. Comprehending the concepts discussed
above helps to answer these questions which are even partially irrelevant.

Chapters 7 and 9 represent real-life examples of unit (TDD) and acceptance tests
(ATDD) and try to further clarify the difference between the techniques. Chapter 8
serves as a link between these two chapters and introduces Behaviour-Driven De-
velopment (BDD), a technique which was born because of the abstract nature of unit
tests. BDD was introduced in 2006 by Dan North who wanted to shift the balance
from code-centric TDD toward behaviour-oriented BDD. However, BDD doesn’t
suite all kinds of software — it emphasizes simplicity of test representation and ab-
stracts (hides inside program code) irrelevant test data away making it inaccessible
for domain experts. Such a technique doesn’t work for data-rich applications like
financial software normally having too much significant data which can’t be hidden.

Chapter 9 proceeds with an example of tabular acceptance test implemented
with an ATDD tool FitNesse. Including high amounts of test data has its price
though: the tests become much more complex and harder to follow, exactly what
BDD was trying to avoid. Because hiding the data is not an acceptable solution, it
has to be managed. FitNesse has a powerful mechanism for test management. It
makes it easy to organize the tests into a hierarchical order, to search inside test data
and to refactor tests (mainly rename them). The problem arises when editing large

amounts of test data with the built-in text editor which is not suitable for editing
tabular data.

Chapter 10 further reviews the problems the author of this text stumbled upon
during the project. In order to make the problem more vivid and clear, the author
describes an imaginary ATDD tool having the most important features he thinks a
proper ATDD tool should have.

Chapter 11 contains a review of three articles written by Berge Haugset and Geir
K. Hanssen. The articles describe case studies conducted by the authors as well as a
literature review and results of case studies performed by other researchers.

The chapter starts by mentioning about poor availability of high-quality aca-
demic research material concerning ATDD which is also confirmed by Haugset and
Hanssen. Next, the main outcomes of the studies are discussed. There are two of
them: first, the case studies confirm, that FitNesse can be successfully used in soft-
ware development; it makes development much more secure and easier to refactor
which, in turn, leads to better quality. The second main outcome is about customers
not being generally interested in writing executable acceptance tests.

The chapter proceeds with reviewing the articles by presenting the description
of AAT (Automated Acceptance Testing) principles and deepening into the most
common issues and benefits of AAT adoption.

Although the articles were discovered by the author of this work at the final
stage of this work’s writing, the conclusions made throughout this work agree very
well with the results from case studies discussed in the articles.

The last chapter summarizes each chapter of this work in a similar way with this
chapter, but in a slightly more accurate way. It also includes the author’s personal
sentiments about this work and the software project taken place while writing this
thesis.

2 Background

Frederick Brooks wrote his famous essay “No Silver Bullet: Essence and Accidents
of Software Engineering” [1] in 1986. The basic idea of the essay is about complexity
being an essential part of software and thereby building software will never be an
easy task:

"The essence of a software entity is a construct of interlocking con-
cepts: data sets, relationships among data items, algorithms, and invoca-
tions of functions. This essence is abstract in that such a conceptual con-
struct is the same under many different representations. It is nonetheless
highly precise and richly detailed.

I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of repre-
senting it and testing the fidelity of the representation. We still make
syntax errors, to be sure; but they are fuzz compared with the conceptual
errors in most systems. If this is true, building software will always be
hard.

There is inherently no silver bullet.”

Brooks divides software complexity into two subcategories: essential and acci-
dental complexity.

Accidental complexity involves issues which can be avoided by using appropri-
ate tools or development processes. Deployment of high-level languages, which
reduce accidental complexity, is probably the biggest breakthrough in software in-
dustry. It’s hardly possible and obviously not rational to implement an average
GUI application which utilizes database completely in assembly language. High-
level languages let developers concentrate on the actual problem instead of manip-
ulating processor registers. Another ubiquitous concept attempting to make pro-
gram code more human-friendly is object-oriented languages. As well as high-level
languages, object-oriented programming is meant to facilitate the task of express-
ing business domain problems as machine code by reducing accidental complexity.
Leaping ahead, accidental complexity is going to become the major problem during
this work, too.

While accidental complexity can be eliminated by proper tools, essential com-
plexity is inevitable. Brooks does not provide a clear definition of what essential
complexity actually is, but the article describes it as a natural property of software
in general and as an inevitable consequence of complex software requirements. The
complexity of software cannot be eliminated without sacrificing requirements which
is normally not acceptable. Brooks puts it as follows:

"The complexity of software is an essential property, not an acciden-
tal one. Hence, descriptions of a software entity that abstract away its
complexity often abstract away its essence.”

The citation above means there is no easy way (i.e. silver bullet) to make com-
puter implement a solution for any given problem automatically and that complex-
ity is going to remain an imperative property of software in general. Brooks men-
tions automatic and graphical programming as only suitable for specific tasks, not
general ones. Things appear to have remained the same after over twenty years
since his writing.

Not being able to automate software engineering, however, doesn’t mean es-
sential complexity can’t be made easier to manage. The purpose of this work is
to introduce Acceptance Test-Driven Development (ATDD), a test-driven software
development technique the basic meaning of which is to help managing essential
complexity. ATDD provides some alternative ways of solving the ancient challenges
of software engineering — communication, documentation and confirmation of the
system meeting its requirements. Nevertheless, the importance of these activities
has been recognized long before the concept of ATDD has been introduced, at least
over forty years ago, in the beginning of Waterfall model’s era. ATDD and other re-
lated techniques are going to be examined throughout this work but first, Waterfall
model (and why it doesn’t work too well) will be discussed.

2.1 Waterfall model

Dr. Winston W. Royce, who was a director at Lockheed Software Technology Center
in Austin, Texas, was among the first computer scientists to describe a technique
similar to what now is known as Waterfall model in his article "Managing The De-
velopment Of Large Software Systems” in 1970 [2]. Although Royce was among the
pioneers of plan-driven development, he managed to foresee the major problems
and at the same time, as Royce puts it, the necessary preconditions of a successful
plan-driven software development process.

5

Royce starts his article cited above by pointing out the two absolutely necessary
steps of a software development project regardless of size and complexity of a soft-
ware — the analysis and coding. Next, Royce introduces the other steps (Figure 2.1)
he considers essential in order to succeed in software development with respect to
time and budget limits.

SYSTEM
REQUIREMENTS

)\

SOFTWARE
REQUIREMENTS

-~

ANALYSIS

~

PROGRAM
DESIGN

CODING

=

TESTING

"\

OPERATIONS

Figure 2.1: Waterfall model

Leaping ahead, the model described by Royce in not a genuine "waterfall” model,
because the final version of the model allows movement in both directions, down
and up. In fact, Royce never even called the model by that famous name in the ar-
ticle. Nevertheless, the author is going to follow the common malpractice and use
the term “waterfall” just to avoid calling it “the model”.

Waterfall model includes two major steps additionally to general analysis and
coding — the software requirements and testing. There are also system requirements,
program design and operations steps (Figure 2.1) but these are less important in re-
spect of the whole process and may be combined into more generic entities as in
Figure 2.2.

A one-way waterfall model would be a perfect process if it was possible to design
a perfect solution and then perfectly implement it. The phase of testing wouldn’t be
necessary at all as a perfect implementation would guarantee satisfaction of all re-
quirements. A common scenario however involves the testing phase which reveals

6

‘Implementationb

Verification

Figure 2.2: Waterfall model

flaws in some of the earlier phases which have to be re-done as illustrated in Figure
2.3.

SYSTEM
REQUIREMENTS|

SOFTWARE
REQUIREMENTS

~
Ml NN

PROGRAM
DESIGN

CODING

"\

TESTING

OPERATIONS

Figure 2.3: Iterative waterfall model

The problem with such approach is that the testing phase may be postponed
until the project deadline if the progress gets stuck iterating at implementation and
design phases. Now not only there is less time available for testing, there also won’t
be enough time to fix all the bugs found during the testing phase.

According to The Standish Group’s report “"CHAOS summary 2009” [6], only
32% of all software projects success, 44% are challenged (i.e. late, over budget,
and/or with less than the required features and functions) and 24% are failed mean-
ing they are cancelled prior to completion or delivered and never used.

2.2 V-Model

The previous section described Waterfall model where each subsequent step is only
connected to a previous one. This section is going to briefly discuss another plan-
driven software development technique which may be considered an extension of
the Waterfall model — the V-model. This section also tries to describe in which way
test-driven techniques being covered in this text relate to V-model.

V-model differs from Waterfall model mainly in two ways. First, it divides the

8

testing phase into smaller particles: unit testing, system verification and system val-
idation [4]. Second, V-model connects pre-construction phases like requirement
elicitation and design to the corresponding post-construction testing phases. Figure
2.4 shows an illustration of V-model from the system engineering guide issued by
the U.S. department of transportation (Systems Engineering for Intelligent Trans-
portation Systems) [4][p.11].

: Feasibility Study Operations Changes i
Rggmd (\ I Concept =3 i (Retirement /
Architecture(s) : . Replacement
} Exploration Maintenance Upgrades
Lifecyle Processes Concept of __ System Validation Plan_ _
;\ System Verification Plan
‘2% System)\ (SystemAcceptance) o (S
Recpnremms\ Subsystem 3
% . Verification Plan
3, Fiigh-Level \(Sytsystem Acceptance) Subsystem
2 Design Verification
% #\Unﬁ | Device
2 Detailed '\ TestPlan UnitiDevice
Software / Hardware Document/Approval
Development
Field Installation
Implementation
Time Line Development Processes

Figure 2.4: V-Model

According to V-model, each pre-construction phase involves a detailed planning
of a corresponding testing phase. For example, the “"Detailed Design” not only in-
cludes the low-level design of program code units but also the planning of how each
code unit is going to be tested. Each phase on the right wing of the "Vee” is hence
connected and planned with respect to a corresponding phase on the left wing.

The different testing phases described in the ITS guide are meant to test software
systems at different levels. The first post-construction testing phase is Unit/Device
Testing. Its goal is to assure that each separate software module was built accord-
ing to specifications produced during the Detailed Design and doesn’t contain any
“bugs”, i.e. accidental implementation errors.

The two following testing phases (Subsystem Verification and System Verifica-
tion & Deployment) test for distinct modules to work in assemblies and for the
whole system’s conformity to its requirements.

The last testing phase — System Validation — is meant to ensure the system

actually satisfies business needs. ITS guide [4][p.60] provides a good explanation
of how verification and validation differ from each other:

In systems engineering, we draw a distinction between verification and
validation. Verification confirms that a product meets its specified re-
quirements. Validation confirms that the product fulfills its intended use.
In other words, verification ensures that you ”built the product right”,
whereas validation ensures that you “built the right product”.

Both Waterfall and V-model are complete software development models cover-
ing the "big picture”. They guide through the general concepts of software devel-
opment and cover the main activities to be done during a project, all the way from
requirements to maintenance.

Test-driven techniques discussed throughout this work operate on a lower level
instead. They provide tools to be applied in certain development phases of a bigger
scale. In case of V-model, ATDD operates on the three upper levels shown in Fig-
ure 2.4: Concept of Operations and System Validation, System Requirements and
System Verification & Deployment, High-Level Design and Subsystem Verification.

TDD (Test-Driven Development), in turn, covers the bottom levels: Detailed De-
sign, Unit/Device Testing and Implementation.

The following section is going to briefly introduce the two main subjects of this
work: insufficient testing and lack of up-to-date documentation. These are the
most common problems of plan-driven development and, respectively, the high-
level goals of all test-driven techniques.

2.3 Common issues of plan-driven development
Returning to software documentation, Royce states [2][p.332] right from the start:

“The first rule of managing software development is ruthless enforce-
ment of documentation requirements.”

He further adds that when a software documentation gets into bad shape, the
tirst thing he advices to do is replacing the project management and stopping all
activities not related to documentation. Royce lists the main reasons for the impor-
tance of documentation: first, documentation provides the communication medium
for team members. It also serves as a progress indicator providing some real evi-
dence of what features have been implemented instead of ”90-percent ready” promises

10

month after month. Second, in the beginning of a software project, the documen-
tation is the specification and is the design. If the documentation is bad, then the
design is bad; the three words — documentation, specification and design — all
mean the same thing. Finally, documentation is an invaluable foundation for test-
ing.

Figure 2.5 presents the variety of documents suggested by Royce in his article
[2][p.333]. There are six main types of documents some of which need to be written
several times during project lifetime.

SYSTEM
REQUIREMENTS

N

SOFTWARE
REQUIREMENTS

oocumenT No. 1 |f / PRELIMINARY
SOFTWARE PROGRAM

REQUIREMENTS DESIGN

DOCUMENT NO, 2 /
PRELIMINARY

DESIGN
{SPEC)

ANALYSIS

DOCUMENT NO. |
FINAL
DESIGN
(AS BUILT)
DOCUMENT NO. 5
TEST PLAN
CODING (SPEC)
TEST RESULTS
DOCUMENT NO. 4
FINAL
DESIGN
(SPEC)
L e
L]
. DOCUMENT NO. 4 \
FINAL
DESIGN
[SPEC)

OPERATIONS

DOCUMENT NO. 6 /
OPERATING

INSTRUCTIONS

PROGRAM

—— DESIGN
DOCUMENT NO. 3
INTERFACE \
DESIGN ‘,_'/
|

ISPEC)

TESTING

Figure 2.5: Documentation documents

Royce highlights the importance of up-to-date documentation for a reason. De-
spite of all the benefits of a good documentation, it’s very easy to give up on. The
problem is that maintaining such a rainbow of documents demands strict discipline
which is probably not the way most programmers would like to do their job. Ad-
ditionally, it's not even possible to continuously track ever-changing program code

11

and reflect all those changes to static documentation. Static documentation is ”in-
visible” with respect to changing program code. Changes to code don’t affect speci-
fications or any other documents directly, but instead, a human interaction is always
needed to evaluate the changes and inspect the documentation for inconsistencies.
As aresult of humans’ inability and unwillingness to manually maintain the confor-
mity between program code and its documentation, change by change, documenta-
tion becomes even harder to synchronize with program code and more likely to be
archived (i.e. abandoned).

Another big issue with plan-driven development is it’s practically impossible to
stick to original plan. The model doesn’t take into account the fact that complex
designs are too complex to be fully designed before implementation. Consequently,
the implementation phase reveals problems which were not payed enough attention
in the design phase requiring to re-evaluate the design. As a result both design and
implementation take more time than it was initially planned. The worst part is
that the deadline doesn’t normally get adjusted according to reality but remains the
same. Hence, the last phase of the Waterfall model — testing — gets sacrificed by
giving up the time originally dedicated to it to the earlier phases. In other words,
customers get their software untested and full of bugs.

These two problems — lack of testing and up-to-date documentation — are the
main improvement targets of ATDD, a technique which is going to be evaluated
in detail throughout this work, but first, the motivation to switch away from plan-
driven development models should be better explained. The following chapter re-
flects the most common reasons behind failures of large-scale software projects.

12

3 Why software fails

This chapter is going to discuss the most common reasons behind software failures.
It slightly overlaps with the previous chapter while describing the traditional wa-
terfall development process. The goal is to continue from general description of
Waterfall model to particular failure reasons. This chapter also serves as a basement
for reflections about possible improvement measures and the last section is a preface
for those measures, namely agile software development.

3.1 Particular reasons

The process of software development consists of the following main activities: re-
quirement engineering, design, implementation, testing and maintenance. Tradi-
tionally these tasks are executed in that order [5]. Probably the most widespread
software development model, the waterfall model, applies the tasks stated above in
that particular sequence too. Waterfall model is iterative, i.e. development cycles
validate each other so that conflicting phases may be executed in reverse order. For
example, a failing test forces the process to return to the “implementation” phase
which in turn may require a review of the “design” phase. This kind of process
seems natural and logically should lead to satisfactory results. The real world is not
that simple though. Requirements are not always clear, testing does not always re-
veal all the problems or lack thereof and iterating is not any more possible at some
stage of a project.

Despite of passed decades of evolution of software development, low quality is
still an issue [6]. New languages, better compilers and object-oriented program-
ming have improved software development tools but it doesn’t seem to be enough.
Bug tracking systems are still a common thing because big projects tend to have
thousands of defects and tracking them is impossible without proper tools.

The name of this chapter is borrowed from the article written by Robert N.
Charette [7]. The article presents several dozens cases of failed software projects
costing astronomical money figures. The huge degree of “chaos” plaguing the IT
industry brought up by Charette’s article is also confirmed by the Standish Group’s
CHAOS reports. The 1995 CHAOS report [3] presents a number of $81 billions of
dollars lost by US companies due to 31.1% of all projects being cancelled and 52.7%

13

costing almost twice as much as it was originally estimated. In 2002 the percentage
of cancelled projects dropped to 15% but gradually increased during the following
years: 18% in 2004, 19% in 2006 and 24% in 2008 [6]. Only a third of all projects on
average was reported to be successful during the last decade and the remaining two
thirds being either cancelled or finished with significant overrun in budget and/or
time.

So, why software projects tend to fail? Charette provides the following reasons
for failures of software projects:

e Unrealistic or unarticulated project goals

e Inaccurate estimates of needed resources

e Badly defined system requirements

e Poor reporting of the project’s status

e Unmanaged risks

e Poor communication among customers, developers, and users
e Use of immature technology

e Inability to handle the project’s complexity
e Sloppy development practices

e Poor project management

e Stakeholder politics

e Commercial pressure

Some of the reasons listed above are self-explanatory while some of them are
further explained in the article and supported by numerous real-life examples [7].
While each of the statements listed above seems reasonable, they look like obvious
answers to the question “What might cause failures of software projects”. The ar-
ticle cites several case studies which identify failure reasons by surveys, in other
words by asking people why the projects they worked on failed. The people behind
projects’ failures are probably not a very reliable source of information as they’d
likely try to blame someone else but themselves. For instance, the list doesn’t in-
clude such fundamental failure reasons as lack of skill, motivation and commitment.
Even ”Inability to handle the project’s complexity” looks like an accusation against
management of letting the project become too complex.

14

3.2 Why Big Software Projects Fail: The 12 Key Questions

Watts S. Humphrey, who was often called the “Father of software quality” (men-
tioned in the Wikipedia article about Watts Humphrey [8]), had a different approach
to the subject in his article “"Why Big Software Projects Fail: The 12 Key Questions”
[9]. The article consists of a series of questions considering common software de-
velopment challenges and reflections on measures required to overcome those chal-
lenges.

The article [9] starts by pointing out how high the average failure level of soft-
ware projects is. Humphrey further cites The Standish Group’s data indicating that
the level of success drops quickly as the project size grows — half of the smallest
projects succeed while all the largest projects fail (Figure 3.1).

_ il
10.0 + (M
g .
S 60-100L__
2]
[=]
- 3.0-6.0
L=
N ' I
N 15-30
E _
£ 075-15 || |
= || | | |
<0.75 |L 1
i i e i i .
0 10 20 30 40 50 60
Percent Success - %

Figure 3.1: Success rate by project size

Short summaries of each key question from the article [9] follow next. All the
ideas in the following review are taken from the article and will not be explicitly
cited.

Question 1: Are All Large Software Projects Unmanageable?

Humphrey answers that question by referencing two large successful projects:
Command Center Processing and Display System Replacement (CCPDS-R) project
and the operating system (OS)/360 project. The former had about 100 developers
involved and the latter had about 3000 software professionals.

15

Both project share many common principles; both were thoroughly planned
and adopted evolutionary development strategy with multiple releases and phased
specifications. Humphrey notes that big projects must be build in small, iterative
steps. This agrees with the sixth law of CHAOS: "Law Of The Edible Elephant —
the only way to eat an elephant is one bite at a time” [6]. This is also one of the
twelve principles of Agile Manifesto [10] — "Working software is delivered fre-
quently (weeks rather than months)” and is the basic idea behind ATDD.

Question 2: Why Are Large Software Projects Hard to Manage?

Humphrey reviews the history of mankind with respect to management form
of big projects. Most of them have been led by authorities, especially construction
and manufacturing projects. There have been exceptions like cathedrals which were
built mostly by volunteer artisans who managed themselves under the guidance of a
master builder. Humphrey compares such projects to open-source software projects
which are developed by volunteer programmers too. The vast majority of in-house
projects are however still autocratic.

Although autocratic and hierarchical management style proved to be effective
for management of physical work like building and factory production, it doesn’t
work that well for management of large-scale software projects.

Question 3: Why Is Autocratic Management Ineffective for Software?

The major problem with authoritative management system concerns manage-
ment visibility. An army officer or a manager of a factory can instantly see what the
subordinates are doing, what is the progress state and whether some individuals a
being unproductive. Software is different in a way that none of these things reveal
by merely watching.

With software the progress may be estimated only by asking developers or by
careful examination of what they have produced.

Question 4: Why Is Management Visibility a Problem for Software?

In order to manage any kind of large-scale projects, the management must know
what is the current phase of the project, how rapidly the work is being done and
what is the quality of the products being produced. Modern software projects often
lack these crucial pieces of information.

Without such knowledge small problems add up over time without being no-
ticed. When they are finally noticed it’s already too late to start fixing each of them
and the project is in serious trouble.

Question 5: Why Can’t Managers Just Ask the Developers?

A logical conclusion is to ask developers of software what is the progress of their
work. The problem however is that with current software practices developers don’t

16

know where they stand any more than the managers do.

By “current software practices” Humphrey means that programmers do not have
personal plans, they do not measure their work and they do not track their progress.
He further states that unless individual developers plan and track their work, that
work will be unpredictable and as a consequence their projects will be uncontrol-
lable and unmanageable.

Question 6: Why Do Planned Projects Fail?

The common problem with planned projects is that planning precision it too low.
Projects only have major milestones such as specifications complete, code complete
and the like. With such broad goals it’s very hard to do precise estimations of com-
pletion dates and the three main development phases (design, implementation and
testing) overlap and in practice they all co-exist throughout whole project regardless
of the plans.

Humphrey provides a case example of a large project he was asked to review. He
was told that the code implementation phase has already been finished on schedule.
Nevertheless, Humphrey found out that very little code had actually been released
to test and the developers did not know how much code they had written and what
remained to be done. The project took then ten more month before all the coding
was actually completed.

The case confirmed that without objective data developers have no way to know
precisely where they stand. Being afraid to bear bad news they rather tell the most
optimistic story they can which is usually far from reality.

Question 7: Why Not Just Insist on Detailed Plans?

It’s obviously reasonable to have a good detailed plan, but as Humphrey states,
”"Whose plans are they?” With hardware, construction and other processes produc-
ing physical products the detailed plans are composed prior the production phase.
With high-technology work, particularly with software, this approach has become
progressively less effective. The principal reason is that the managers don’t know
enough about the work to make detailed plans and the plans are hence very gen-
eralized. The current system is therefore the modern equivalent of the cathedral-
building system where the developers act like artisans.

Question 8: Why Not Tell the Developers to Plan Their Work?

If the developers know best how to make their own plans, then they should
obviously do so. There are however some problems with such planning.

First, most developers do not want to make plans; they would rather write pro-
grams. They see planning as a management responsibility. Second, most developers
don’t know how to make plans. Finally, making accurate, complete and detailed

17

plans means that the developers must be empowered to define their own processes,
methods, and schedules.

Letting developers make their own plans would transfer a lot of responsibilities
to them. The managers would not be willing to allow it unless they had evidence
that the developers can produce acceptable results.

Question 9: How Can We Get Developers to Make Good Plans?

Humphrey brings out two essential questions: "How can we get the software
developers and their teams to properly make and faithfully follow detailed plans,
and how can we convince management to trust the developers to plan, track and
manage their own work?”

The three things to be done to get the developers make and follow their personal
plans are: the developers must be provided with the skills to make accurate plans,
they should be convinced to make these plans and support and guide them while
they do it.

Question 10: How Can Management Trust Developers to Make Plans?

The biggest risk of all is: How can the developers be trusted to produce and
follow their own plans which should meet the management’s goals?

This is the main problem of autocratic management methods: trust. If program-
mers are trusted to manage themselves, they will do extraordinary work. However,
trust cannot be blind. The management must ensure that programmers know how
to manage their own work and monitor they do it properly.

Humphrey boils the trust question down: “If you do not trust your people, you
will not get their whole-hearted effort and you will not capitalize on the enormous
creative potential of cohesive and motivated teamwork.”

Question 11: What Are the Risks of Changing?

There are two risks associated with changing a software development process.
First, it costs time and money to train staff to adopt the new process. Second, the
new process may turn out to be ineffective. There is no time for pilots during large
projects so the development practices must be chosen in the beginning and used
throughout the project. The efficiency analysis may be done only after the project is
finished.

Although there are always some risks associated with any change, there is a cost
for doing nothing too. Since most large software projects fail anyway, the biggest
risk in not changing.

Question 12: What Has Been the Experience So Far?

Humphrey answers the last question by introducing the Team Software Process
(TSP) which is a software development process following concepts described in the

18

twelve questions presented in this chapter [11]. TSP was initially developed by
Humphrey and later by the Software Engineering Institute (SEI).

Humphrey writes: “With the TSP, if you properly train and support your devel-
opment people and if you follow the SEI's TSP introduction strategy, your teams
will be motivated to do the job properly.” He further mentions that TSP has proved
to be effective for teams of up to about 100 members some of which included mul-
tiple hardware, systems and and software professionals. TSP also has worked for
distributed teams from multiple geographic locations and organizations.

The first eleven questions in Watts Humphrey’s article [9] serve as a preface
to the last “question” which is an introduction to the TSP, his own development
process. Nonetheless, in the preface part Humphrey addresses and analyzes the
common issues of large software projects leaning on all his experience and results
of case studies.

To sum up, the main issues of large software projects presented in the Humphrey’s
article include bad management visibility and inability of software designers to pro-
vide and follow precise work estimates. These two problems are consequences of
different factors such as the autocratic management system, the nature of software
which is essentially complex, lack of trust and commitment and others. However,
the most essential failure factor according to Humphrey is the inability to follow a
precisely planned development process.

Humphrey seems to be somewhat in conflict with the Agile Manifesto and ag-
ile software development which are going to be introduced next. Agile techniques
emphasize human interactions over processes and responding to change over fol-
lowing a plan. Even though Agile Manifesto tells to prefer human interactions over
process, that doesn’t mean there is no processes to follow in agile development. In
fact, test-first agile techniques do follow strict yet simple test-code-review (or red/-
green/refactor) process.

19

4 Agile software development

This chapter proceeds with reflections about common reasons for project failures by
introducing agile software development and discussing in which (different) ways
things are suggested to be done in order to succeed in software development.

4.1 Agile Manifesto

The term ”Agile software development” was introduced in 2001 by the authors
(Kent Beck, Ward Cunningham, Robert C. Martin and others) of the Agile Mani-
festo [10]. The manifesto follows:

“We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

¢ Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.”

There are many agile software development techniques existing. Probably the
best known agile techniques are Extreme Programming [12] and Scrum ([13], [14]).
Different agile techniques differ from each other by their goals and ways of achiev-
ing them. All of them however share the values represented in Agile Manifesto.

One of the basic ideas behind all agile techniques is that in most cases a complex
design cannot be fully implemented in distinct phases suggested by Waterfall model
and other plan-driven techniques. Agile techniques take into account the imperfect
human nature and anticipate right from the beginning such a common things as in-
complete requirements, buggy code and invalid testing. Instead of applying these
activities as big separate chunks of software development process, agile techniques
combine all of them — requirement elicitation, design, implementation and testing

— in small pieces gradually building up the software. Agile techniques split testing

20

across all the development process instead of only applying it as a final verifica-
tion activity. As the name suggests, ATDD is a test-driven practice meaning that
each development cycle starts with implementation of an acceptance test and not
of a feature itself [15][p.10] (Figure 4.1). Although test-driven (or test-first) devel-
opment is the most common way of programming in agile methodology, the tests
don’t necessary have to always precede the construction — the essential concept is
combining both programming and testing into a uniform process.

Requirement —»(Acceptance tests Feedback Implementation

—

Figure 4.1: ATDD cycle

Including testing in development process not only aims at reducing the amount
of testing to be done at the end, it also helps to gather and maintain software docu-
mentation.

The leading question is, are those “tests” actually tests any more?

The question is much trickier than it appears to be. The word “test” has a very
precise, unambiguous meaning. However, depending on timing, these so-called
tests get also utilized as specifications, not tests. According to Dan North [23], the
"father” of Behaviour Driven Development (BDD), they shouldn’t be called tests at
all but rather “executable specifications”.

Dan North introduced BDD in his article “Introducing BDD” in 2006 [23]. Both
practices, ATDD and BDD are about the same thing: driving software development
with executable specifications. North felt that the word “test” caused too much mis-
understanding for people learning the practice as the word “test” strongly associates
with the traditional post-constructional software testing. Hence North decided to re-
move the word "“test” and to use “behaviour” and ”specifications” instead, because
by the time acceptance/unit tests get written there is actually nothing to test yet.
This distinction is important understand in order to realize which “tests” should
serve which kinds of artifacts and when to write or to skip writing tests. This prob-
lem is one of the most important topics of this work and will be further discussed
throughout later chapters.

21

Nevertheless, this text got its name (Acceptance Test-Drive Development) in ad-
vance and it also took many essential ideas from Lasse Koskela’s book “Test Driven,
Practical TDD and Acceptance TDD for Java Developers” [15]. It may therefore
be appropriate to stick to ATDD as the top-level term but to use ”specifications”
instead of “tests” whenever such a swap makes sense.

Another core part of the concept of agile development is persistent involvement
of domain experts in the process of software development. This means that do-
main experts don’t disappear after they have done their job specifying the system,
which commonly happens with waterfall projects. In agile development require-
ment providers are supposed to be available during all the time a software remains
under construction. Moreover, they play the key role because every single increment
involves requirement engineering including elicitation, validation and verification
of whether the software meets its requirements (i.e. testing) after an increment has
been implemented. As one can notice, agile development is all about communica-
tion — the incremental nature of agile development process ties team members to-
gether allowing each stakeholder group (meaning here domain experts, developers,
testers and such) to affect the development process early enough when a correction
cost is yet low.

4.2 Scrum

Scrum ([13], [14]) is probably the most wide-spread agile framework for project
management. Scrum is not a development model or process, it doesn’t tell exactly
what and how to do in any given situation. Instead, scrum gives a team the power
to choose the best possible way of working.

Scrum doesn’t equate to total anarchy though. There is a handful of rules which
form a skeleton providing necessary guidelines for keeping and improving team’s
productivity.

Scrum divides all the work to be done into small, concrete chunks which are
meant to be fully completed during certain periods of time — sprints. The team de-
cides how much work to promise to finish in a sprint and how long the sprint should
be (usually 1-4 weeks). The goal is to choose only so much work in the beginning of
a sprint that all of it gets ready by the end of the sprint.

The work is being pulled from product backlog (the main artifact of Scrum) onto
sprint backlog. Product backlog is a list of all available items (or features, stories —
anything the customer wants to call them) to be implemented by the team. Sprint
backlog contains only those items selected for the current sprint. The main attributes

22

of each item are priority and relative complexity levels. The most important items
are processed first. The complexity levels are determined by the team while the
priority is set by the product owner.

Scrum has three roles: Product Owner, Team and Scrum Master.

Product owner is the domain expert who is responsible for providing the needed
information about the product (software being developed) and for selecting which
features are the most important and should be implemented first.

Team is a small, cross-functional, self-organizing group of people who work to-
gether to reach a common goal of finishing all the items on the sprint backlog. The
term “scrum” comes from rugby and, just like in rugby, the team “tries to go the
distance as a unit, passing the ball back and forth” [16].

Scrum Master supports the team by ensuring that external factors don’t disturb
the team and that the rules of Scrum don’t get violated.

According to Google trends, Scrum is clearly the most popular agile software
development method which suggests it can be extremely productive. However, like
any method, Scrum can be misapplied. James Shore wrote in his blog article "The
Decline and Fall of Agile” [17] about failures with Scrum which are very common.
Many teams adopt the main process described above at least to some extent, but
that’s not enough. They leave out the detailed planning phase of Waterfall model
but don’t replace it with anything to assure design evolution. They leave out con-
ventional product documentation but don’t replace it with high-bandwidth com-
munication and automatic acceptance testing. They simply plan and re-plan one
failed sprint after another. Shore compares the phenomena to unhealthy eating:

"These pseudo-Agile teams are having dessert every night and skipping
their vegetables. By leaving out all the other stuff — the stuff that’s re-
ally Agile — they're setting themselves up for rotten teeth, an over-sized
waistline and ultimate failure. They feel good now, but it won't last.”

Shore stresses the importance of true Agility which involves such core attributes
as agile engineering practices, high-bandwidth communication and a strong cus-
tomer voice. This work concentrates on two techniques implied by Shore — TDD
and ATDD [15][p.324] — to boost communication and to secure design evolution
and code quality.

The software development techniques described in this work are not actually
full-blooded agile development models. A true development model (like V-model,
Waterfall or XP) covers development process at a high abstraction level: it defines

23

the management practices of a project, member roles and their responsibilities, doc-
umentation items and other rules and conventions. It may be considered team’s
constitution.

The main techniques discussed in this text (TDD, BDD, ATDD) are in turn the
actual tools in hands of agile teams” members. They get utilized at the point when
some program code is going to be produced or modified or the system under test is
going to be validated for meeting its requirements. Although these techniques are
not agile development models, they are designed to be practiced in conformity with
the values declared in the agile manifesto.

The following chapter is going to introduce ATDD, the main subject of this work.

24

5 Introduction to ATDD

This chapter is going to introduce ATDD and to discuss the goals behind it. The
chapter is mostly based on Lasse Koskela’s book “Test Driven, Practical TDD and
Acceptance TDD for Java Developers” [15].

Acceptance Test-Driven Development is a software development technique which
combines requirement specification with automatic executable tests of these require-
ments. There are several acceptance testing frameworks available. They subdivide
onto following types: table-based, text-based and scripting language-based frame-
works. Table-based frameworks are the most popular though and this work con-
centrates on a table-based automated testing tool FitNesse [18] which is going to be
thoroughly reviewed in Chapter 9.

ATDD has three main objectives. First, it provides a shared communication
medium to enhance exchange of information between all stakeholders, i.e. testers,
developers and domain experts (people who provide software requirements). ATDD
not only tries to make information flow easier between these groups but also within
the groups. Second, ATDD provides instruments for storing functional software
documentation which remains up-to-date throughout whole development phase.
Finally, ATDD implies the system under construction constantly meets its require-
ments through automatic testing and remains in a good shape through constant
refactoring.

This chapter is going to further describe the goals of ATDD, but first, the ATDD
process should be uncovered.

5.1 ATDD process

ATDD is a test-driven technique, so a test needs to be implemented first. The term
“test” can be very misleading though, especially when there nothing to test yet. It
may also seem too abstract in the beginning and hence it may be beneficial (but not
necessary) to first write a short description about the new test — a user story.

A user story, in context of ATDD, is a brief description of what exactly the up-
coming acceptance test is going to test. The purpose of a user story is to catch the
essential meaning of an acceptance test and to limit it from doing too much. User
stories are meant to be easily and unambiguously understandable by domain ex-

25

perts and hence they are written in natural human language using domain termi-
nology. User stories should be written by domain experts to get the most benefit
out of the technique, but they still make tests easier to understand even if they were
written by programmers.

Having a foundation for an acceptance test in form of a user story, the acceptance
test itself is implemented. Acceptance tests normally set the system under test into
a desired state, perform some actions on it and compare the results returned by the
system to the expected ones. An acceptance test fails if the actual system outputs
differ from the expected outputs and passes otherwise.

Running the test gives feedback about what work has to be done next. If the
test fails, it should obviously be made pass. When it eventually passes, the inner
design of the software under construction should be reviewed and improved. The
test takes care about the feature under construction not getting broken — each mod-
ification should be followed by re-execution of the test. All other tests, which may
be potentially affected by the changes, should be re-executed as well. When the pro-
grammer becomes satisfied with the design, the feature may be considered ready
and another user story may be picked for processing. This makes the work flow
cyclic and incremental.

The following sections are going to further uncover exactly which benefits ATDD
brings into software development and what kinds of issues it addresses. ATDD
is going to be compared to TDD quite often all along this work. People who are
not familiar with ATDD and automated acceptance testing but who know some-
thing about TDD and unit testing usually have some strong preconceptions toward
ATDD. This work tries to reveal the essential and unique properties of both tech-
niques.

5.2 Shared communication medium

The motivation behind objectives presented in the beginning of this chapter con-
cerns the human nature. Human beings are unable to communicate unambiguously
and thus misunderstandings are especially common when trying to explain com-
plex software logic.

In the beginning of a feature development its requirements are usually more or
less abstract. Domain experts can provide some approximate sketch-ups but soft-
ware developers need very concrete specifications in order to implement a program.

ATDD tries to eliminate ambiguity by presenting software requirements as ex-
amples of user actions being applied to the software. These examples describe how

26

exactly the system’s states get changed from one state to another, i.e. which input
values are required to initiate the state transition and which output values are going
to validate the outcome. This approach relies on the basic idea that requirements
expressed as concrete and objective examples with defined input and output values
leave much less room for misunderstandings compared to abstract and subjective
stories written in natural human language.

Acceptance tests help to lower the bar of handling tasks normally requiring cer-
tain competence and domain knowledge to all other team members but the few
experts. Good tests don’t require too much domain knowledge from developers
and thus they are of great value for newcomers who need to learn the system. Nor-
mally a developer needs to know a system well in order to be able to maintain
it. With help of acceptance tests it is possible to attach debugger to the software
and to walk through the most complex execution paths learning the internals of the
system. Such embedded documentation helps to detect and overcome issues with
incomplete software requirements where parts of information are missing because
they are considered obvious by domain experts but which can make requirements
meaningless for developers.

5.3 Up-to-date documentation

Another common plague of software industry besides ambiguous specifications is
the lack of up-to-date documentation. A big problem with software documentation
is that it requires significant effort and discipline to keep in sync with the program
code base. Program code gets constantly changed throughout development process
but programmers are very unwilling to spend their time updating documentation.
They’d rather write programs ([19][p.8] and [9][8th question]).

ATDD forces its practitioners to keep documentation up-to-date. This doesn’t
apply to all kinds of documentation (e.g. user manuals), but at least to the exe-
cutable specification framework produced along the way of test-driving the appli-
cation development.

Acceptance tests don’t get out of date while they are in use. As long as de-
velopment process obeys the rules of ATDD, meaning that no other code is being
written than the code to make a failing test pass, the tests remain up to date. The
keyword in “executable specifications” is executable. While traditional static docu-
mentation must be manually updated, executable specifications, by definition, get
broken when they diverge from the system under test, i.e. when the system doesn’t
meet its requirements any more. They need to be manually updated too, but unlike

27

static documentation, executable specifications provide instant feedback about the
system’s state letting developers the possibility to fix the problem right after it has
emerged and while it’s still in their minds. If a new feature breaks some other ac-
ceptance tests than the feature’s own tests, then either the feature itself or the broken
tests need to be adjusted. In both cases the tests and the system evolve together to
suite the new state of software.

Executable specifications have much better chance of not being abandoned and
remaining up-to-date because writing them, unlike writing static non-executable
documentation, is rewarding and even exciting, at least according to personal expe-
rience of the author of this text. Partially it’s because running executable specifica-
tions lets instantly see what a program actually does whereas inspecting the source
code only reveals what the program is supposed to do. A set of tests showing all
green after a working day gives the wonderful feeling of control and self-confidence
and provides some concrete evidence of one’s job well done.

Executable specifications also provide much more documentation value for soft-
ware developers than traditional paper documents. A programmer can actually
start building the system relying on executable specifications because unlike infor-
mal documentation describing a system in ambiguous sentences, acceptance tests
describe the system by examples with concrete input and output values.

Acceptance tests also help to elicit the concrete data values which are usually
not explicitly stated by abstract user stories. The test interface created as a result of
such elicitation improves overall testability and promotes loose coupling of software
modules.

5.4 Automatic testing and maintenance

Executable specification framework can serve as functional documentation and knowl-
edge storage which can be extremely helpful especially for less experienced software
developers. It also improves their lives by making easier to set up the system into
desired state during bug fixing activities.

Complex systems have a lot of interconnected modules many of which need to
be set up before using even one of them. Without automatic test this means a lot
of manual work. Executable specifications handle the dirty work automatically and
let programmers concentrate on the essential — locating and fixing bugs. Addi-
tionally, a lot of knowledge must be available in order to run manual tests. In case
of ATDD this knowledge is stored in executable specifications instead of domain
experts’ heads. This gives the word “automatic” two meanings: first, the tests get

28

executed by a computer program and not by a human making them much more
time-effective. Second, there is no more need to ask domain experts for every little
detail a developer doesn’t know because most of domain logic is included in the
automatic tests.

ATDD heavily relies upon automatic testing. The framework of automatic ac-
ceptance tests makes sure the system is never broken in many places at once. It lets
software testers concentrate on their true job — trying to actually break the software
— instead of spending their time desperately typing the same test values over and
over again and hoping not to bump into one more bug which would mean one more
exhausting series of test rounds.

The safety network consisting of automatic acceptance tests makes possible to
refactor program code.

Martin Fowler [20] defines refactoring as follows:

"Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. It is a disciplined way to clean up code that minimizes
the chances of introducing bugs. In essence when you refactor you are
improving the design of the code after it has been written.”

Refactoring is like an investment making software maintenance easier. It doesn’t
affect the current functionality which is only a reflection of the current state of the
software. The current state is however very likely to be just that — only a short
moment in the life time of a software. As time goes by the software is anticipated to
evolve and that’s where refactoring plays a crucial role of ensuring the evolution is
possible without pushing the software closer to chaos change by change.

Safe refactoring, however, is virtually impossible without proper testing. In
Martin Fowler’s (and others’) book “Refactoring: Improving the Design of Exist-
ing Code” [20], he states the following:

“If you want to refactor, the essential precondition is having solid
tests.”

Refactoring is also an essential part of the TDD process. Unfortunately, TDD is
very hard to apply to legacy software which has not been developed according to
TDD principles from the beginning and doesn’t have a testable internal structure.
That’s where ATDD comes to help — executable acceptance tests access the outer
interface of a software and thus can be applied even to legacy code. The following
chapter is going to further clarify the differences between TDD and ATDD.

29

5.5 Summary of ATDD goals

To sum up, the main goals of acceptance test-driven development may be divided
into three groups. First, acceptance tests serve as software requirements which au-
tomatically test software for meeting the requirements (or in other words executable
specifications). Second, acceptance tests indirectly enhance source code quality by
providing developers a security net giving the courage to modify source code lack-
ing unit tests. Third, acceptance tests ensure there are no misunderstandings be-
tween requirement providers and developers. The following list represents the main
goals of ATDD in a finer division.

e Acceptance tests serve as software requirements.

e Acceptance tests are implemented as executable specifications verifying that
the system under test behaves as expected and satisfies the requirements.

e Acceptance tests serve as an unambiguous communication medium between
software developers and domain experts who providing the requirements.

e Acceptance tests provide stakeholders a possibility to evaluate the software
throughout all the development phase but not only when it is considered
ready.

e Acceptance tests help to estimate the true progress status of a project and in-
dicate when the software is ready.

e Acceptance tests make refactoring much easier by signalling when something
gets broken during the refactoring process.

e Acceptance tests help developers unfamiliar with a software to explore it by
providing executable use cases.

e Acceptance test-driven development leads to building software with good
testability characteristics such as good API and loosely coupled modules.

5.6 ATDD pitfalls

ATDD promises many great things. There is one big precondition though. The
development of software should indeed be driven by acceptance tests. Development
of acceptance tests should not diverge from development of source code. The task is
however easier said than done. Most projects involve rush phases when problems

30

need to be solved immediately and the urge to skip testing is very high. Doing so is
dangerous concerning the ATDD process because writing source code not covered
by acceptance tests affects not only the missing but the existing tests too.

According to the author’s own experience, deviating from the ATDD process by
writing untested code gives psychological permission to skip the whole testing for
a while. Sure I'll write the tests later, one might think. However, after even a short
period of programming without corresponding acceptance tests, many existing tests
turn out to be broken without being noticed. This happens because software mod-
ules (especially concerning legacy systems) usually depend on each other and mak-
ing change to one place may have unexpectedly broad consequences all over the
system.

Now except the skipped tests for some new feature, also the existing broken
tests need to be rewritten or fixed. Explaining the management why a considerable
amount of time must be spent producing no program code at all might be hard
especially when the budget is already tight.

Another big challenge with acceptance tests is organizing them. Even a small
software has normally a lot of requirements which, in case of ATDD, mean a lot
of acceptance tests. Test-driven development suggests a great effort needs to be
taken to keep program source code clean and maintainable. The same applies to
acceptance tests — as development goes by, the evolving acceptance tests need to
be taken care of by removing duplication and restructuring separate tests to form a
meaningful entity. Without paying additional attention to the shape of acceptance
tests they will become a mess and will be eventually abandoned.

As it was noticed by the author of this text, organization of tests becomes much
easier over time as certain development patterns evolve and the test framework
becomes more comprehensive. The test written in the end of the project followed
certain standards, they looked much cleaner (compared to those written in the be-
ginning) while covering more functionality. A lot of different solutions had to be
tried out before discovering the optimal one. Such a development of experience
required quite a lot of time meaning that adoption of ATDD can turn out to be an
expensive investment if there was no prior experience about it.

Finally, it’s almost impossible to adopt ATDD without support and recognition
from other team members. There is simply too much work to do keeping the grow-
ing acceptance test base under control solely by the effort of a few enthusiast pro-
grammers. In a software project conducted at the same time with the work on this
thesis the author tried without success to invite domain experts to join working with
executable specification. The possible reasons for unwillingness to adopt ATDD will

31

be reviewed later in Chapter 9.

The current chapter introduced the big goal of ATDD which is making software
specifications automatically executable in order to automate the most part of un-
necessary work normally done by programmers, testers and domain experts and let
them concentrate on their real jobs.

ATDD has a close relative which has already been mentioned earlier — TDD.
Although they sound almost the same, they have absolutely different goals which
often causes a lot of confusion to learners and novice practitioners of the techniques.
The following chapter is going to introduce TDD and discuss its essential purpose
in order to further clarify the difference with respect to ATDD.

Note: there is some more criticism of ATDD supported by numerous case studies
in Chapter 11.

32

6 Test-Driven Development

Kent Beck describes TDD in only a few sentences [21, p. vii]:
”In Test-Driven Development, you:

e Write new code only if you first have a failing automated test.

e Eliminate duplication.”

The two clauses together form, as Beck puts it, the TDD mantra —red /green/refac-
tor. The description is short however these rules have broad consequences which
will be discussed later in this chapter, but first, the most essential idea behind all
test-driven techniques should be uncovered.

6.1 TDD is not about testing!

One of the most important things to realize about all test-driven techniques (TDD,
ATDD and BDD) is that these are not testing techniques, regardless of the naming (a
good article about the subject can be found from Esko Luontola’s blog [22]). Test-
driven techniques imply creation of executable specifications prior to writing the
actual program code which doesn’t make them testing techniques.

Such shift in thinking helps to understand the irrelevance of common questions
like “which features on the list should be tested and which shouldn’t” and “what
kind of features in general should be tested with TDD and by whom”. The answers
become evident: TDD should be used by programmers as a technique for discover-
ing the optimal solution for problems which are not obvious to solve.

At the time of creation of tests there is simply nothing to test yet. These "“tests”
actually become tests only after domain functionality has been fully implemented.
Only then they start to take care of the integrity of a system. Before that, the only
purpose of “tests” is to, first, help project members to unveil the true essence of the
problem being solved, second, establish a shared understanding about the problem
between domain experts and programmers and third, to help programmers in dis-
covering how exactly code units under construction “would like” to be structured.

Realizing the real nature of test-driven techniques also helps to figure out how
they relate to other development techniques. TDD, as well as ATDD and BDD which

33

will be presented later, have not been designed to be a part of any kind of sequential
process structure like “first we plan, then we do some TDD and finally we start
the integration testing”. TDD is an independent process and not a component of
some bigger picture like in case of requirement elicitation or testing inside V-model.
Although the true development models like XP or V-model can and should employ
TDD, it cannot be compared to different types of testing because TDD is not a testing
activity.

TDD is not a testing technique but rather a programming style involving writing
“assertions” about what the program is doing additionally to program code itself.
As Dan North has pointed out in his article “Introducing BDD” [23], the word “test”
is quite an unsuccessful term combined with “driven” because it takes the reader’s
attention away from the essential “driven” part and fills it with “testing” which is
normally conceived as a separate activity of validating program’s behaviour taking
place after a program or its part has been implemented.

Although “specification” would be a better alternative for “test”, both TDD and
ATDD include the word in their names, so it just has to be used throughout this
work.

The next section covers the TDD work-flow.

6.2 TDD work-flow

The work-flow according to TDD consists of three parts — writing a test, writing
program code and refactoring.

Red and green are the colors used by most testing tools to indicate test failures
and passes respectively. The three words —red, green and refactor — describe thereby
the TDD process.

First, the test is written and run. The software is supposed to fail the test because
the functionality being tested is not yet implemented by then. The first failing test
ensures there is a need to make some modifications to the software. If the first test
passes, then there is either something wrong with the test or the functionality is
already implemented and the software doesn’t need any more modifications.

Once having a failing test, the desired functionality is implemented by making
the test pass. That means no other changes should be done than the changes abso-
lutely required to pass the test. The constraint “only ever write code to fix a failing
test” is needed to avoid over-engineering by making code more complex than nec-
essary. If some new functionality needs to be implemented, than it should first be
backed up by a test. More to say, the code written to pass the test doesn’t need to be

34

nice. The only purpose on the green stage is to make a test pass as quick as possible.
Making code clean deserves its own separate process phase.

Finally, when program behaviour is being controlled by a group of passing tests,
the program code is ready to be cleaned up. All the “smells” like duplication, hard-
coded variables, large methods and classes and other things making code "dirty”
and unmaintainable are removed and the code structure is re-organized, or briefly
— refactored.

6.3 The goal of TDD

The overall goal of TDD is to build up the software in small cycles gradually adding
functionality without breaking the existing code with each new increment. This is
actually one of the main principles of agile software development — as it was men-
tioned earlier, agile software should evolve by small steps until it may be considered
ready.

Assuming that tests are small enough, the process of writing only such code
which is meant to pass some test leads to incremental nature of development and
good decoupling. Apart from that, the test-first approach makes produced code
testable by definition. As Koskela puts it [15, p. 17], “"Because we're writing the
test first, we have no choice but to make the code testable.” Good testability ensures
even a complex design is easy to refactor making code clean which in turn makes
extending the code and addition of new features easier. Moreover, good testabil-
ity means that units under test have effective and functional interfaces making the
overall system design better.

TDD started to gain popularity along with Extreme Programming (an agile tech-
nique) in the early 2000’s. Since then it became one of the best known software
development practices and the abbreviation TDD is associated namely with unit
test-driven development. The more concrete goal of TDD is thus producing “Clean
code that works” [21, ix]. Clean code not only looks nice and feels good to work
with, but it is also relatively easy (and cheap) to maintain and extend. Finally, it
works. The last argument is however controversial.

6.4 TDD pitfalls

Probably the biggest problem of unit testing and TDD relates to its test-first nature.
The idea about writing tests when there is yet nothing to test is simply too irrational,

35

especially for novice programmers. Programmers who don’t understand what TDD
actually is about often have quite a strong attitude against TDD — they want to be
programmers, not testers. A study conducted at the University of Kansas [25] has
proved that mature developers are much more willing to accept TDD than novice
programmers. They know from personal experience how ugly and complex pro-
gram code can get and that special tools are required to keep it clean.

A tool developed at the University of Jyvaskyld, ComTest [26], aims at making
unit tests more easy to begin with. Its goal is to lower the threshold of adopting
TDD by shifting test code from a separate location closer to program code. ComTest
lets programmers to embed testing code directly into program comments so that the
burden of switching between unit tests and the program is minimal. ComTest makes
unit tests easier to write and maintain by improving readability and making them
considerably shorter. This brings unit tests closer to being specifications. ComTest
proved to be an effective utility in teaching software programming to university
students who don’t yet have the experience of drowning in code flood and thus
don’t have strong enough motivation to start learning TDD. ComTest supports Java,
C++and C#. An example of ComTest usage is going to be presented later in Chapter
7.

Unfortunately, even successful adoption of TDD doesn’t guarantee project suc-
cess because working code is not the same thing as working software. A program
code is considered working if it passes the tests which again, speaking of TDD, are
unit tests. Roy Osherove defines [27] unit tests as follows:

” A unit test is a piece of a code (usually a method) that invokes another
piece of code and checks the correctness of some assumptions afterward.
If the assumptions turn out to be wrong, the unit test has failed. A “unit”
is a method or function.”

The source code-related nature of unit test-based TDD makes it incapable of aid-
ing the communication between developers and domain experts. If a developer
misunderstood the software requirements or the requirements were otherwise in-
valid, then there is no way to prevent the flaw by means of TDD. All the tests would
still happily signal green and the code would still “work”.

Two other major issues concerning TDD are multi-threaded code and legacy
code. While multi-threaded code is relatively rare, the latter is an obstacle on the
legacy software’s way to agile development.

In terms of TDD any code not covered by automated tests is legacy code. Adopt-
ing TDD in a legacy software is hard because even new code cannot usually be easily

36

tested by automated tests. When a new feature is being added to a legacy system,
the new code has to use the existing components, that is to depend on them. Test-
ing the new code with automated tests would thereby mean initializing and using
legacy code objects which is often tricky without automated tests testing legacy code
directly. Legacy code doesn’t have the needed interfaces and hence it’s not testable
because it wasn't originally meant to be used by outsider-code such as unit tests.

External resources such as databases, network services and file systems add even
more uncertainty to a successful adoption of unit test-based TDD especially when
these are combined with legacy code. TDD is quite a mature concept and some kinds
of solutions (such as mocks [24]) have certainly been found to overcome most of the
problems. Still, adopting TDD in a large legacy project heavily based on a database
and network services with lots of bad, unmaintainable and interdependent code
would probably bring much less value if any comparing to costs.

The problems mentioned above are easier to solve with another kind of testing
— the Acceptance Testing. While Test-Driven Development aims at producing clean
working code relying on unit tests, Acceptance Test-Driven Development ensures
the software does what it is supposed to do with help of acceptance tests. Following
ATDD, software is tested on a higher level than with TDD. ATDD doesn’t test each
code unit directly but rather through some outer interface making ATDD suitable
for testing legacy software too. The following chapter describes the technique in
greater detail.

6.5 Acceptance testing opposed to unit testing

TDD seems to have exactly the same work-flow as ATDD which can be very con-
fusing in the beginning, especially because nearly all the books and articles about
ATDD urge to apply both techniques at the same time. Wouldn't it be a waste of
ca