Svetlana Matculevich

Guaranteed error bounds for linear algebra problems

and a class of Picard—Lindelof iteration methods

Master’s Thesis
in Information Technology
February 13, 2012

University of Jyvaskyla
Department of Mathematical Information Technology

Jyvaskyla

Author: Svetlana Matculevich

Contact information: svmatsul@student.jyu.fi

Title: Luotettavat virherajat lineaarisille yhtaloryhmille ja tietyn tyypin Picard-Lindelof
-iteraatiomenetelmille

Tyo6n nimi: Guaranteed error bounds for linear algebra problems and a class of
Picard—Lindel6f iteration methods

Project: Master’s Thesis in Information Technology

Supervisors: Pekka Neittaanmaéki, Sergey Repin

Page count: K2

Abstract: This study focuses on iteration methods based on the Banach fixed point
theorem and a posteriori error estimates of Ostrowski. Their application for systems of
linear simultaneous equations, bounded linear operators, as well as integral and differ-
ential equations is considered. The study presents a new version of the Picard—Lindel6f
method for ordinary differential equations (ODEs) supplied with guaranteed and ex-
plicitly computable upper bounds of the approximation error. The estimates derived in
the thesis take into account interpolation and integration errors and, therefore, provide
objective information on the accuracy of computed approximations.

Suomenkielinen tiivistelma: Téssé tutkimuksessa tarkastellaan Banachin kiintopis-
telauseeseen perustuvia iteraatiomenetelmié ja Ostrowskin a posteriori virhe-estimaatteja.
Tutkimuksessa késitelldan virhe-estimaattien sovelluksia lineaarisen yhtéloryhmén, lin-
eaaristen operaattoreiden seké integraali- ja differentiaaliyhtéloiden tapauksissa. Tutkimuk-
sessa luodaan eksplisiittisesti laskettavat virherajat Picard-Lindelof -iteraatiomenetelméan
differentiaaliyhtéloiden ratkaisemiseksi. Virherajat huomioivat seké interpolaatiovirheen
ettd numeerisesta integroinnista johtuvat virheen ja tarjoavat luotettavaa tietoa iter-
aation tuottaman approksimaation tarkkuudesta.

Keywords: Error estimates, iterative method, reliability, the Picard—Lindel6f method,
guaranteed bounds

Avainsanat: Virhe-estimaatit, iteraatiomenetelmé, luotettavuus, Picard-Lindelof -

menetelma, luotettavat rajat

Copyright (©) 2012 Svetlana Matculevich

All rights reserved.

Preface

Reliable error control of the evolutionary models is one of the most challenging and
unexplored areas in applied mathematics. The Picard-Lindel6f method suggests one
possible way of such an analysis. The goal of this thesis is to combine the Picard-
Lindel6f method with Ostrowski’s a posteriori estimates and derive a fully reliable
guaranteed numerical solution for a class of ordinary differential equations. This idea
has been realized and tested in numerical examples that confirm the theoretical results.

The obtained results exposed in the thesis were presented in two international con-
ferences Reliable Methods of Mathematical Modeling on July 6 — 8, 2011, in Lausanne,
EPFL, Switzerland (RMMM 2011), and the 4th Workshop on Advanced Numerical
Methods for Partial Differential Equation Analysis on August 22 — 24, 2011 in The
Euler International Mathematical Institute, St. Petersburg, Russia.

I would like to thank Professor Sergey Repin for the supervision and support in
my scientific work. I also want to thank the dean of the department Professor Pekka
Neittaanméki for guidance and genuine interest in my thesis topic. Finally, I would
like to thank my colleagues Olli Mali, Immanuel Anjam, and Marjaana Nokka from
my research group for interesting work and fruitful discussions.

Lastly, I would like to thank the University of Jyvéskyld for the support.

Mathematical notations

-

-l
{zi}iy
{4

A X =Y
(X.d)

R®

- 2
.3
X
3

>~
i 4
5
N

~—

AT D

cp!
@l

L?-norm

L?-norm in space X

infinite sequence

finite sequence

mapping from space X to space Y

space with metric d

n-dimensional Euclidean space

set of matrices of size m X n

minimal value of eigenvalues of matrix A
maximal value of eigenvalues of matrix A
domain in R" space

scalar multiplication

derivative with respect to variable ¢
module, absolute value

projection operator

set of piecewise linear affine functions

derivative with respect to variable ¢

i

Glossary
estimate:

reliability:

iterative methods:

a posteriori:
a priori:
FDM:
majorant:
minorant:
ODE:

PDE:
A>0:

A< B:

a calculated approximation of a result which is usable
even if input data is incomplete or uncertain

the ability of a mathematical object to perform and
maintain its functions for every problem statement with
any conditions

a mathematical procedure that generates a sequence of
improving approximate solutions for a class of problems
afterwards

previously

a finite difference method

an error upper bound in agreed norm

an error lower bound in agreed norm

an ordinary differential equation

a partial differential equation

(Az,z) > 0 Vo € X, x # 0,wherex € H (finite-
dimensional vector space)

(Az,z) < (Bz,x)

1ii

Definition. Function f is continuous at the point ty if the following holds: for¥ e > 0,
however small, there exists some 6 > 0, such that for |t — to] < ¢ the value of f(t)
satisfies inequality | f(ty) — f(t)| < e.

Definition. Function f is Lipschitz continuous if there exists a real constant K > 0

such that, for any x1 and xo in X, the following holds:

[f (1) = fz2)llx < Kllz1 — 22| x- (1)

Constant K is called a Lipschitz constant for the function f.

Definition. Bounded operator T : X — Y s called contractive if its operator norm

requires inequality ||T|| < 1.

Definition. A piecewise linear function is a piecewise-defined function whose pieces

are linear.

Theorem (The Picard-Lindelof theorem [B]). Consider the initial value problem

' (t) = p(u(t),t),u(t) = ug, t=[to—¢e,to+ €], (2)

where ¢ is Lipschitz continuous in u and continuous in t. Then, for e > 0, there exists

a unique solution u(t) of (@) within a time interval [ty — €, to + €].

Theorem (The Banach theorem). Let (X, d) be a non-empty complete metric space.
Let T : X — X be a q - contraction mapping on X, q < 1, such that ||[Tx — Ty|x <
qllz — yllx for V z,y € X. Then, the T admits unique fized point zo € X, i.e.

Tre =2x5.

v

Contents

Prefacd i
Mathematical notations ii
iii
I_Infroducfion 1
2_Irror bounds for iferation methods 2
.1 General 1teration algorithm| 2
R.1.1 Contractive operatory. 3
p.1.2 Error control by an a priori estimatd 3
E.l.o FKError control by a posterior: estimated 4
E.1.4 Advanced forms ol a posteriori error boundd 6

b lteration methods for bounded linear operators
b.l Iteration methods generated by bounded linear operatord 8
B.I.T Stationarvy method 9
bl?2 The Richardson method .. 11
b.l.o 1he Chebyshev method 12
B4 Exampled e 14
0 The Picard—Lindelol ferabionmethod 23
AT The Picard—Tandelaf method ... 24
E.Z72 " Application of the Ostrowski estimated 25
E.4 Estimafes of inferpolafion and infegrafion errord 26
E.4.T Inferpolationerrod 26
E.42.2 Integration error estimatd 30
U4, Guaranteed error bounds tor the Picard—lindelot method . . . 33
E6 APL algorithm and numerical exampled 34

Appendices

A O]

A.1l lasting 1.

A2 lasting 2.

A.o lListing 3.

IA.4 lasting 4.

IA.0 lasting o.

IA.6 lLasting ©.

Ib_heferenced

41
Example 3.9 41
Example 3.9 41
Example 3.7 45
Example 3.9 48
Example 3.I0 59
Example 4.7 62

73

vi

1 Introduction

[teration methods are widely used in numerical analysis. Convergence and a priori
estimates, which follow from the Banach fixed point theorem, are well-studied.
This thesis is focused on guaranteed a posteriori error estimates for iteration schemes

that arise in

(a) numerical linear algebra, and

(b) integration methods for ODEs based on the Picard-Lindeldf iteration method.

The guaranteed reliability of numerical solutions is also a very important question.
If the error of a numerical solution can be reliably estimated, then it is possible to
detect areas where errors are excessively high and modify (adapt) the grid (mesh) in
order to minimize them.

In Chapter B, the general iteration lgorithms is discussed. By analyzing the main
results of the contractivity theory, we arrive at the a priori and a posteriori error
estimate.

In Chapter B, we continue discussion on the application of the obtained error bounds
to the simplest linear algebra problems, such as iteration methods for systems of linear
equations and the bounded linear operator theory. We combine the classified iteration
schemes with Ostrowski’s a posteriori error bounds and obtain the reliable iteration
algorithms for solving linear algebra problems.

In Chapter B, the main idea of the Picard-Lindel6f method is presented. It is
justified with conditions which not only provide the convergence of the method but
also allow the application of a posteriori error estimates. We discuss the application
of the Ostrowski estimate to the problem formulated in this Chapter. However, these
estimates cannot be directly used. In practical computations based on the Picard—
Lindelof method, we must take interpolation and integration errors into account. This
analysis is done in Section B2 of Chapter B. It leads to error bounds, which include
interpolation and integration errors, which are derived in Section BE. The structure
of the algorithm is exposed in Section B3, where the results of the numerical tests are

presented.

2 Error bounds for iteration methods

Iteration methods are widely used in numerical analysis. They were developed because
of specific features of linear systems of equations. Since systems of equations are
mathematical tools used to describe essential parts of mathematical problems, it is
important to develop reliable iteration methods to solve them. Therefore, in the current
chapter the methods to control the accuracy of a sequence of approximate the solutions

constructed by the iteration process are discussed.

2.1 General iteration algorithm

The general form to present the majority of mathematical problems is the following:

ro =Trs +y9, (2.1)

where 7 : X — X is a certain bounded operator, X is a Banach space, and g € X. The
function x satisfying (E0I) is called the fixed point of the operator 7. Numerically
() is approximated by

ri=Tx;1+g, wherei=1,... (2.2)

The iteration process (E3) is formalized in Algorithm .

Algorithm 1 General iteration algorithm.

Input: zp € X {initial approximation}, e {required accuracy of approximation}
i =1 {initial iteration step}
vi=Txi—1+g {1° element of sequence}
while ||z; —z;—1|| >¢ do
1=1+1
zi=Tzi1+g
end while

Output: z; {fixed point approximation}

2.1.1 Contractive operators

Reliable iteration algorithms can be constructed if the operator 7 possesses additional
properties. We assume that 7 : S — S, where S is a closed nonempty set in X, and

T is g-contractive, i.e.

1Tz —Tyllx <qllz—ylx,Vr,ye X, 0<qg<]l, (2.3)

where z and y are independent from each other. According to the Banach theorem
[B], from the properties listed above follows that the sequence {z;}°; converges to a

unique fixed point z. By using (E33), we can obtain

[z = 2illx = | T2 = Triallx < glles —ziallx <o < @llan —zollx. (24)

The Banach theorem also provides the inequality

| Zizm — Tl x <[Zigm — Tigm—1l|x + - + |Tig1 — 23l x <

)

i/, m— m— q
<@ " L+ D)l — wol|x < 1 |21 — zollx, (2.5)

where m > 1.

2.1.2 Error control by an a priori estimate

A reliable algorithm must include a stopping criterion based on the true values of the

error, which is

€, . — ||Il — $®’|X. (26)

Taking (E3) into account, we have

ei = ||Tzio1 — Tao|lx < geimr < ¢'eo. (2.7)
From (EZ4) we can conclude that the error tends to zero with the parameter q. However,
the estimate (222) has only theoretical (asymptotical) meaning because ey is unknown.
To get a computable bound, in (E33) we fix ¢, tend m € N to infinity, and obtain a new

inequality

%

w1 — ol|x = M?. (2.8)

e; < q
1

Now Algorithm @ can be represented with the error upper bounds included.

Algorithm 2 General iteration algorithm with a priori error upper bound

Input: zp € X {initial approximation}, e {required accuracy of approximation}
i =1 {initial iteration step}
zi=Txzi—1+g {1° element of sequence}
M? = li_qui — z;—1||x {upper bound for error e; }
while M? >¢ do
1=14+1
ri=Tri1+yg
M} = qM]
end while
Output: z; {fixed point approximation}

MY {upper bound of approximation error}

2.1.3 Error control by a posteriori estimates

We can obtain another upper bound for the error (E). We take the inequality (23),

set ¢ = 1 and obtain

q
|Z14m — 21| x <] |x1 — zol|x, where m € IN. (2.9)

Assuming that x1,,, — xo as m — 400, we get

q
—q
As soon as any element can be considered as the initial one, we take x;_; as the 0-th

|lze — 21]|x < 1 |21 — @ol| x- (2.10)

term of the sequence and imply the relation (210)

e < < a s = il (2.11)

A lower error bound follows from the triangle inequality

[z = i llx < llz: = 2ollx + [#in — zollx < (1 +)|z — zo|lx- (2.12)

We obtain

€ =
1+g¢

After analyzing (Z13) and () we conclude that two-sided bounds of the derivation

between x; and zo can be computed by using three neighboring elements x; 1, x;,
and z;41. The error estimates () and (Z23) have been derived by Ostrowski [I3].

[= i llx (2.13)

4

Henceforth, we call respectful upper and lower bounds "error majorant" and "error
minorant" and denote them M;” and M.

Let T be a g-contractive operator. Then, the following estimate holds:

q
€; S 1 sz — xz?lHX = MEB
—dq
1
> ol = @il = M,

With the estimates (E14) Algorithm [0 is changed the following way.

Algorithm 3 General iteration algorithm with a posteriori error control based on

Input: zp € X {initial approximation}, ¢ {required accuracy of approximation}

i=1 {initial iteration step}
v =Twi—1+g {1 element of sequence}
MP = 15 llwi —@icallx - {upper bound for error 1}
while M >¢ do
1=1+1
i =Txi—1+yg
M = 1|z — zialx
MP = g llwi — ziallx
end while
Output: z; {fixed point approximation}

@ @ . .
M;” and M, {upper and lower bound of approximation error}

In some cases it is easier to prove that a sequence of approximate solutions is
obtained by a contractive mapping if we consider the operator

~

T=1"= (2.15)

TT.. T
——
n times

instead of T". The proposition ZZI1 shows that we arrive at similar results.
Proposition 2.1.1. Let T : S — S be a continuous mapping such that T, defined by
(Z13) is a q-contractive mapping, q € (0,1). Then,

r=Tx and & =Ti (2.16)

have the same fized point, which is unique, i.e. x = &, and can be found by the iteration

procedure.

2.1.4 Advanced forms of a posteriori error bounds

The ratio of the upper and lower error bounds (E14) exceeds %Z' If g is close to 1,

the efficiency of the estimates deteriorates. However, there are advanced forms of error
bounds that can be derived by using additional terms of the sequence {z;}¥,. For

example,

|lzi — zollx < |2 — zigal|x + |21 — 2olx <

< @i = ziallx + [2; — i llx, (2.17)

q
l—q
which leads to the upper bound

1

—q Iz = zigallx == M (i, miga). (2.18)

s — o llx < -
Since

1
l—q
then MiEB’l(xi, z;41) is sharper than M. The same idea can be applied to subsequences

|zi — i]| x < |zic1 — @il xs (2.19)

q
1.4
of {z;}I¥,, so we obtain various upper bounds for ||z; — 2| x:

s — 2i||x = M (2, 20), 1=1,..., L. (2.20)

1
|z — zollx < 7
l1—gq

By using three sequential elements x;, z;,1, and z;,2, we deduce another estimate

|z — 2ollx < |25 — Zigallx + [|Tir1 — Zigollx + |42 — 26||x <

< lws — wigal|x + (|21 — Tigeollx + |Tire — Tipa|lx <

q
1—g¢q

|ziv2 = @igallx o= M7 (@3, 2041, 2ig2). (2:21)

< Nps —
=~ ||wz xz—i—l”X + 1 —q

Error minorants can be improved by similar arguments. We have
lzi = zivallx < lloi = 2ollx + llwi — vollx < 1+)]l — 2ollx. (2.22)
Therefore,
1 ol
[2; — zollx = qu”xi — it x o= M7 (i, wi). (2.23)

6

The ratio of advanced upper and lower bounds in (E220) and (E=23) is %Zi. If ¢ is close
to 1, they provide much better estimates than (E14).

3 Iteration methods for bounded linear operators

The general form of error estimates can be rewritten for problems with a bounded

linear operator.

3.1 Iteration methods generated by bounded linear operators

Consider a bounded linear operator £ : X — X, where X is a Banach space, and given

b € X. The iteration process is defined by the following relation:

X = £$j_1 + b. (31)
Let ¢, be a fixed point of (B and

12l =q < 1. (3.2)

By using the Banach theorem, it is easy to show that x; — x5 as j — oo. Indeed, let

ZT; = x; — xo. Then,

Tj=Lrj1+b—ao=L(rj1—20)=LTj1. (3:3)

Since Oy = L0y, we note that Ox is a unique fixed point of £. Therefore,

~ o ¢
|2; — zollx = [|17; — 0xlx < |71 — Tollx = TqHR(xo)Hx =M) (3.4)

1—g¢q 1

and

(3.5)

q
|7; — zollx < 1TqHR(ﬂUj—l)HX = M7,

where R(z) = Lz + b — z. The lower bound of the error can be found analogously:

1
|z; — zollx = |01 — 25l x = 1—+C]||R(%‘)||X =M. (3.6)

1+4¢
The estimates (B3) and (BM) are analogous to the error bounds (E3R), (1) and (E13)
obtained in the previous chapter. They are used for problems approximated by finite
differences which are reduced to the system of the linear equations with a specific

matrix (this application is discussed in Example B).

8

Since the obtained results are applicable to problems approximated by systems of
linear simultaneous equations, we consider different types of iteration schemes including
guaranteed error bounds resulting from (E3) and (2710).

Consider the operator £ in the set X = R", which is defined by a non-degenerate

matrix A € M,,«,, decomposed as

A=L+D+R, (3.7)

where L, R, and D are certain left, right triangular and diagonal matrixes, respec-
tively. So the system of equations Ax = f can be rewritten by L, D, and R matrices

combination, for example, the Jacobi scheme

2" = DL + R)2* + D7, (3.8)

the Gauss—Seidel scheme

"' = (L+ D) 'R + (L+ D) 'f (3.9)

or a generalized form of (B), which is called the SOR scheme

(D +wl) 2T Ay = f, (3.10)
w

where 0 < w < 2.

The listed methods are called one-step iteration methods. Otherwise, if 2**1 de-
pends on more than one previous step, i.e. z*™ = F(z* 2871 ..}, then a method is
considered a multi-step iteration method. In general, a canonical form of a one-step
iteration method is presented by

k41

X — l‘k
Bﬂkfr——ﬁﬁhk:szlwwn (3.11)
k+1

We discuss the applicability of the estimates (B) and (B3) to several iteration schemes.

3.1.1 Stationary method
Consider stationary methods (By11 = B and 7341 = 7)
BUAL T | Ay = f, (3.12)
T

Let the deviation between an approximate solution from {xj}r—; . and the exact so-

lution be denoted as Ty = xx — xo,k = 1,.... Then from (BIZ), the relation

Tk — Tk

follows. It can be rewritten as

Tp=I—7B'A)Ty_,. (3.14)

The iteration process converges if and only if transformation matrix S = I — 7B~ !A
satisfies the conditions of Theorem BT

Theorem 3.1.1. The iteration scheme (BIB) converges for any initial element if and
only if all eigenvalues of S = I — 1B~ A belong to the interval (—1,1).

Now we can formulate a priori and a posteriori estimates. First, recall the following
result.

Theorem 3.1.2. Let A and B be symmetric matrices, positive definite matrices such
that

,uman S A S ,umaxB7 Hmins Kmaz > O (315)
Then,

lzx = zollap < ¢"llwo — zollas, (3.16)
where ¢ = 175, K = Bmin gnd 7 = m with norm ||z||p := \/(Dz,z), x € H.

Consider x;_; as the starting element, then

e (3.17)

By applying (E4) to (BI2), we obtain a posteriori and a priori bounds

1ZkllaB = llzx — 2ollas < qllTp-1 — 20|

| ZkllaB < T q||fk — Tp—1llaB = T quk — Tp_1]|aB (3.18)

and

k

|z — zollaB < |21 — 2ol a,B- (3.19)

=124
In general, the reliable canonical one-step stationary iteration scheme with guaranteed

bounds can be represented by Algorithm @. ©

! Algorithm B is applied below in Example B3 of the corresponding section.

10

Algorithm 4 General stationary iteration algorithm to solve system Az = f in-

cluding guaranteed error bounds.

Input: 2y € X {initial approximation}, ¢ {required accuracy for approximation}, N {sys-
tem size}, A {system matrix}, f {system right part}, B {constructed symmetric matrix},
Amin(B7LA) {estimate for minimal eigenvalues of B~1A), A\ (B~ 1A) {estimate for max-

imal eigenvalues of B~ A}

= 2
- Amaz(BilA)"l‘Anﬂn(BilA)
_ Amin(BT1A)

K= Nax(B1A)
_ 1—k

q= 1+k

L=1I-7B"'A {matrix of contractive operator}
b=71B71f {shift vector}
k=1 {initial iteration step}
xp = Lxi_1+b {15 element of sequence}
MP = %_q”xk —xp-1lla,p {a posteriori estimate for ||Z1]/ 4,5}
while MP > ¢ do
kE=k+1
xp = Lxp_1 +b {new element of the sequence}
M = %Hxl — x0||a,B {a priori estimate for ||Zx|l 4,5}
MP = 15 lzk — 2k-1]la,B {a posteriori estimate for ||Zy[|a,5}
end while
Output: =z {approximate solution}

MY, M,? {a priori and a posteriori error bounds}

3.1.2 The Richardson method

Counsider the Richardson iteration scheme

TR 7 4 Ay = f. (3.20)
Tk+1

For (B220) Theorem BT implies the following corollary.

Corollary 3.1.3. [f A= AT >0 and 7 = - (A)i/\maz(A), the following inequality

|ze — zolla < ¢"|lwo — 26]|a, (3.21)

_ 1-k A
holds, where ¢ = 175, Kk = {2=.

A’rncl,av:

Analogously, we apply the Ostrowski upper estimate with ¢ = L‘r—z to obtain the a

posteriori estimate

11

4q

lzk = zolla < 7 llzw — @-alla. (3.22)

The test of (B222) is illustrated in the Example B8.

3.1.3 The Chebyshev method

We proceed to the schemes with variable step:

a2 P (3.23)
Tk+1

In this method 7 is selected in order to minimize the error z, = z; — 2.

Theorem 3.1.4. Let A be a symmetric positive definite matrix with eigenvalues in
[Amins Amaz] and k = i‘:—az Let n be a defined number of sub-iterations. Among iteration

schemes (@Z3) the minimal error on the n-th step is attained with the step

To

h=—"—k=1,...,n, 3.24
Sl s (3.24)

where

2k —)7 1—k 2
t, — A = d = —-"-—. 3.25
k= COS on » PO 11 r ana To A+ A ()
In this case,

|20 — 2ol < gullzo — zol, (3.26)

where

201 1-—

_ 2 Vr (3.27)

"= Tr e T iR

Remark 3.2. In the Chebyshev method we construct the next element with the help

of a generated set of n parameters 73, where k =1, ..., n:

L,=—-1A) I —Tp1)...(I —A)(I — 1 A). (3.28)
Corollary 3.2.1. In a particular case, if n = 2, so that we have xq, x1, and xo. Then,

q2 q2

1Z2]| <

|Z2 — Zo|| < ||z — 0] (3.29)

— @2 1—q

12

Algorithm 5 Chebyshev iteration algorithm to solve system Ax = f including

guaranteed error bounds.

Input: zp € X {initial approximation}, ¢ {required accuracy for approximation}, N
{system size}, A {system matrix}, f {system right part}, Apin(A) {estimate for minimal
eigenvalue of A}, A\paz(A) {estimate for maximal eigen value of A}, n {accessorial set size,

subcycle size}

™ = 2

0= Amaz(A)‘i’Amzn(A)
— Amin(A)

B = Nnas(A)
_ 1-k

PO = T¥k
1R

PL =15k

2 7
q(n) =

21 = chebyshev_subcycle(xg,n, A, f, 70, p0)

i =2 {initial iteration step}
MP = 155 llwi — zi-1]|a {a posteriori estimate}
while MY > ¢ do
x; = chebyshev_subcycle (zi_1,n,70,p0) {new element of the sequence}
MY = 1q—_iq|]x1 — xp||a {a priori estimate}
MP = 151w — zi-1]la {a posteriori estimate}
1=1+1
end while
Output: z; {approximate solution}

MY, /\/l,i9 {a priori and a posteriori error bounds}

Algorithm 6 Chebyshev subcycle algorithm to construct new element of the se-

quence.

Input: zo {input vector}, n {size of accessorial parameters set}, A {system matrix}, f
{system right part}, 79, po

L, =1 {unitary matrix}

b, =0 {zero vector}

for k=1:ndo
(2k—1)7

lj = cos ~—~

Tk = T
L,=(I—-1A)L,
bp = (I — 1 A)by + 11 f
end for
= L,xo+ by
Output: z {output vector}

13

We describe the Chebyshev iteration scheme in Algorithm H. The subprocedure
chebyshev_cycle () is described in Algorithm B. 2

Remark 3.3. For any A > 0, we can obtain the following error estimate

1

[— [< IAZ = f|| := M, (3.30)

mwn
which is the special case of the general estimate that is discussed in Example BT0.
There is another well known estimate for the relative error based on the condition

number of A:

[z —]
1]

< ond(A)H = M, (3.31)

where r = AT — f.

From |0] we can have the estimates based basically on the system residual
I” Ir|?

= MUPPET, (3.32)
ATl

lower ,__ ||T

o [lATY

where the constant is given as

< flz - zf) < C(A)

C(A) = sup [ATy[l[[A"y].

llyll=1

3.4 Examples

Example 3.5. In this example, we discuss the general stationary iteration method
(B) with guaranteed upper bounds described by Algorithm A. We consider the
concrete system Axr = f. The matrices A and B are constructed by the MATLAB
program listed in Listing BT

In numerical tests, size of systems is taken as N = 10, 100, 1000 and € = 1078,

In Figure B, we compare an a priori error estimate (B19) and an a posteriori
estimate (BIR) for N = 10, 100, 1000. It is easy to observe that for all N the difference

between a priori and a posteriori estimates is significant.

Example 3.6. We test the Richardson scheme (B20) the same system. In this case,
N = 10,100, 1000 and condition numbers are cond(A) = 10,100, 1000, respectively,
e=10"".

The upper error bounds are shown in Figure B2, As in Example B3, the a posteriori

bounds are sharper than the a priori bounds.

2The application of Algorithm B is discussed in Example B72.

14

T, —lall o — e
RN oMy . oMy
s s --Mpl) - M;
-10f S e -10} L
> *\ > \\\~
S . kS S
-15 -15 N
~20 N
-20t N \“\
N -5
_25,
20 40 60 80 100 120 500 1000 1500 2000
k k
(a) N =10 (b) N = 100
0r o — |lex]l
\\\ ““M2
_g| Vi
10t L
= el
Q ~
~ _15,
~20
_25,
0.5 1 15 2 25
b x 10°
(c) N = 1000

Figure 3.1: The a priori estimate M

%on — x1]|a,B, the a posteriori estimate

MP = T llzk — @k-1lla,p, and the true error [lex|| = [lzx — 2o lla,p, where k=1,

Example 3.7. In the third example we consider the same problem Az = f. Systems
with sizes N = 10*, k = 2,3 are tested. The set of accessorial parameters for each
system (the size of the Chebyshev subcycle) is set by the formula n = 2k + 1, where
k = 2,3, respectively. The condition number for all matrices is equal to 10.

In Figures B3 and B4 it is easy to see that both estimates reproduce errors quite

realistically.

However, comparison of the efficiency indexes shows that a posteriori

upper bounds are more accurate than a priori estimates.

15

,,,,,, ; OF 7. ;
R — e N — e
\s\ """""""""""" ! Mﬁ; ‘\\ """"""""""" e M]GC:
5N oM AN M,
-10/ 2 o
= So > S
< S 2 s
il -15/
-20¢ ~20
5 10 15 20 25 30 35 20 40 60 80
k k
(a) N = 10 (b) N = 100
OF — s
W Y
_g| ,,,,,,,,,,,,,,,,,,, - My
-10f
> RS
3
-15
20}
_257 I I I I I
20 40 60 80 100
k
(¢) N = 1000
Figure 3.2: The a priori estimate MY = f]Tquﬂo — 1|4, the a posteriori estimate
MP = T llzk — @14, and the true error [lex|| = [z — 2o 4.

Example 3.8. In this example, the application of iteration schemes for a system of
linear equations, which arise in finite-difference approximations of the problems, is
discussed. We consider the following Dirichlet problem:

0%u

Oy?

J*u

o2 - b(l‘7y)

—a(z,y) +e(,y)u= fz,y) in Q= [zo,2x] X [yo, yn]

(3.33)
u=¢(x,y)onT

We approximate (BZ33) by a second-order scheme with the so-called "cross" pattern:

16

\\ — ||€z'(!| 280 e [Z_O\
-8} \;,1 IIIIIII Mi, i sl _--I'[,Eb i
\2: - - -M? . o
\ 9
—100 N 1 24}]
-12} 1 2 2: |
-14f . I |
-6} 1T 18}]
18/ 1 16}]
—20¢ S VI]
227 i 1.2k e
_24' | | | | | | | | | | 1 | | | | | | | | I I
23456 7'8 910111213 23456 7_8 910111213
7 VA

Figure 3.3: The a priori estimate M?, the a posteriori estimate M the error ||e;|

and efficiency indexes for both estimates, n = 100.

IO, e
ledl]| | [10
=10+ \/g/ ““““ M? B 2.6+ - - _IIGB N
\;,/\2 L -M? i
_12 [\/*\,2 i 24k 7
‘\ 2.2¢ 1
-14} N 1
N
9 2t J
$-16 \ 3 b
S [] I5)
~ ~
1.8t 1
—18] | 16} .
20 1 1.4} J
-22t 1 1.2 T TTmmemeeoo
1 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 2 3 4 6 7 8
7)

Figure 3.4: The a priori estimate MY, the a posteriori estimate M, the error ||e|

and efficiency indexes for both estimates, n = 1000.

17

Vic1j — 2Vij + Vi1 Vij—1 — 2Vij + Vi

— CLZ‘J hx2 — bi,j hy2 + Ci,jvi,j = fi,j' (334)
We rewrite (B334) for the internal nodes of the grid:
Ci’jvi_Lj + em-vi,j_l + bi’jvm' + di,jvi,jﬂ + ai,jvi-I-l,j = gi,j' (335)

After proper renumbering (see the example in Figure B3 related to a simple 5 x 5

mesh), we obtain a system of linear equations with a block the tridiagonal matrix .

123 456789
I Ix x X

v v vs 2 lx x x X

@ o @
3 X X X

. e Ve 4|x X X X

o — 0 0 5 X X X X X
5 X X X X

Vi Vg Vo

P NP N Y 7 X X X
8 X X X X
9| X X X|

(a) (b)

Figure 3.5: An example of renumbering on the mesh [M x N|, M =5 N = 5.
We construct a test problem

2 62

(%
—(a:2+y+1)——(x+y+2)a—y2+

97 (z+y+4u= f(z,y)

Q=102,33 x 05472 (330

u=¢(x,y)on T

with

f==2*+y+ 1) —4y) —2(x +y+2)(2* — 30)+
+ (v +y+4)(a? = 32)(y* — 4y),

18

and with the exact solution u(z,y) = (2? — 3z)(y* — 4y). We use a regular mesh
[M x N],M = 18, N = 20 and solve the corresponding problem (associated with the
matrix of size n = 288 and the condition number cond(A) = 131.7). The required
accuracy is € = 10719,

By using the SOR method (with B = %D+L), we obtain the transformation matrix
S, where the parameter ¢ = 0.97712.

In Figure B@ the error estimates (B4), (83), and (BM) are illustrated.

ol vmmm*ﬂ*ﬂ*ﬂ*ﬂ*g*ﬂ*ﬂ*ﬂ;mﬂ- ‘

1‘0 2‘0 .3‘0 4‘0 5‘0
(3
Figure 3.6: The error ||e;|| and the estimates M, MP M? obtained by the SOR
method, n = 288.

Example 3.9. We test the estimates discussed in Remark B=3 on the problem consid-
ered in Example BR. All the discussed estimates are illustrated in Figure B72.

In the graphic the lower and upper bounds (B=332) are denoted by a 'dashed line/cir-
cled marker’ and a ’dashed line/squared marker’, respectively. The a priori majorant
Me¢nd is marked by a ’dashed line/star marker’. We see that the most accurate es-
timate is M™" denoted by the ’dot-dashed line/circled marker”: it lies closer to the

error ('line’) compared to the other bounds.

Example 3.10. In this example, we discuss the case with A = Q*AQ), where () and A
are an upper triangle matrix and a diagonal matrix, respectively. Let || x ||:= (Az, x)

and || z ||:= (A~'x,z). The error is measured in terms of the following norm:

I Qz [l:= (AQz, Qx) = (Q"AQz, x). (3.37)

Then, the general estimate for the error is

19

; ;
cond
—*— MI
Mupper H
n

3

10 20 30 40 50 60 70
i

Figure 3.7: The estimates Mwer M M} and M obtained to control the
error ||e;|| during solving of the system using the SOR method, n = 288.

1

| Qz—2) <l y — AQZ ||« +— QY — fII, (3.38)

where flux y = AQZ + 1. We square the inequality (B338) and consider the right part
of it.

)\mln

1

(1y—AQi [l +s—IlQ"y—)" <

Amzn

(1+8)(A ' (y — AQZ),y — AQT) +

(1+ %)(Q*y CLQy—). (339)

min

After substituting y to (B339), we obtain

(1+ %)(Q*n L QUAQE— £.Q7+ QUAQE — f) =

(1+B)(An,m) +

(1+8) (A", m) +

)\min

1+ %)((Q*n, Qn) + 2r.Qn) + (1), (3.40)

where r := Q*AQ* — f. Consider (B20) as a function of n and

)\min

g(n,B) = (1+ B)(A'n,n) +

(1+ %)((Q*n, Q)+ 2r Q)+ (n), (3.41)

)\min

which we need to minimize with respect to and . It is easy to see that

20

gn(,B) = (14 B)A'n+ (1 + %))\ —(2QQ™n +2Qr +2r) = 0. (3.42)
From (BZ2), it follows that
1 1
n= v (A1 + Y QQ*s) ' Qr. (3.43)

To get a better accuracy, we optimize ¢(n, §) with respect to § to find the best values

/6 - — k1= (A_177777)7

by = (Q, Q%) + 201, Q") + (ro1). (3.44)

Therefore, the general form of the estimate for the approximate solution Z has the form

| Qe — &) fl< Mo := it {(1+B)(A™"n.m)+

1
+

(1+ %)((Q*U, Q') +2(r,Q™n) + (r,1)) }, where 3> 0. (3.45)

)\min
In practice we often deal with problems that are are approximated by the following

system

A= Q"AQ, (3.46)

where Q € M, xn, A € M,,5m and m < n.

The analysis of (B23) shows that obtaining an optimal 7, QQ* is not time-consuming.
Matrix that needs to be inverted belongs to M,,«.,, where m is considerably small.

In the example below we construct two different matrixes A; and Ay with n = 50
from unitary matrices ()1 and @ (by using a similar function to the one in Listing

We compare the behavior of (B2H) with y; = 2,Q; + n;, ¢ = 1,2 in two different
cases. One case is when 7; = 0 with the parameter § — oo, another one is when 7 # 0
and M9°"(n, 5) is optimized according to n and 3. We solve systems with matrices
A;, i = 1,2, the conditional numbers cond(A;) = 50 and the right part of the system
f = 1 by the Jacobi iteration method and obtain the following Figures B8 and BJ.
In the graphics for two different systems we show the efficiency index of the general
estimate (optimized with respect to n and) and the worse efficiency index of (B230).
In both cases we have got better efficiency indeces for a general estimate with flux
y; = 2;Q; +n;, where n; #0,1=1,2.

21

I g (0,8) L Mo witons

I Mgen(n,8)

-------- Iy,

gen without 1

20 40 60 80 100

Figure 3.8: Efficiency indeces for general error estimates with and without optimization

(A1 = Q1AGQ).

It 1.8) L Myen witons

10t ‘ ‘ ‘ \:L’
of Intynn) AN

8 i

""""" Iy gen without 1
Tr 1
6 |
5

~ 5 1
4t 1

3]

2 ““““““ B /

1 ~—]

20 40 _ 60 80 100
1

Figure 3.9: Efficiency indeces for general error estimates with and without optimization

(A2 = Q5AQ).

22

4 The Picard—Lindelof iteration method

In this chapter, we discuss a new version of the Picard-Lindel6f method for solving the

Cauchy problem

du

o= (u(t), t), u(ty) = uo, (4.1)

where the solution u(t) (which may be a scalar or vector function) must be found in
the interval [to, tx].

The existence and uniqueness of the solutions follow from the Picard—Lindelof the-
orem and the Picard’s existence theorem or from the Cauchy-Lipschitz theorem (see
[2, pp. 1-15], [B]).

The problem (E) can be numerically solved by various well-known methods (e.g.,
the methods of Runge-Kutta and Adams). Typically, the methods are furnished by
a priori asymptotic estimates which show theoretical properties of the iteration algo-
rithm. However, this estimates may have mainly a qualitative meaning and do not
provide all necessary information about the error bounds. This is the goal of a posteri-
ori error estimation methods. We deduce such type of estimates and suggest a version
of the Picard—Lindel6f method as a tool for constructing a fully reliable approximation
of (E2D).

The Picard-Lindellof iteration is one of the efficient known numerical methods for
ODEs. It can also be used not only for ODEs but also for ¢-dependent algebraic and
functional equations (see, e.g. || and [[2]). It was shown that the speed of convergence
is quite independent of the step sizes. Numerical methods based on Picard-Lindelof
iterations for dynamical processes (the so-called waveform relaxation in the context of
electrical networks) are discussed in [@].

The approach discussed in this paper is based on two-sided a posteriori estimates
derived by Ostrowski [I3| (see also systematic exposition presented in the books [d,
[Ta]). The algorithm includes natural adaptation of the integration step and provides
guaranteed bounds for the accuracy on the time interval [tg, tx].

In Section B, we present the main idea of the Picard—Lindel6f method and obtain
the conditions, which not only provide convergence of the method but also allow to
apply a posteriori error estimates. However, these estimates cannot be directly used.
In practice computations based on the Picard—Lindelof method we must take into

account interpolation and integration errors. This analysis is done in Section B. It

23

leads to the error bounds, derived in Section B, which include the interpolation and
integration errors. The structure of the algorithm is exposed in Section B8, where

results of numerical tests are presented.

4.1 The Picard—Lindelof method

Assume that the function ¢(£(t), t) (which is allowed to be a vector-valued function)

in (E) is continuous with respect to both variables in terms of continuous norm

lulloty, by = _max Ju()] (4.2)

tE[tk, tk+ﬂ

and satisfies the Lipschitz condition in the form

lo(ua, ta) = @(ur, t)llcw,) < Lillue — uil|logn,) + Lalta — ti],
V(ui, t1), (ug, t2) € Q, (4.3)

where Lq, Lo are Lipschitz constants, and

Q={E g th<t<tn) (44)

U is the set of possible values of « which comes from an a priori analysis of the problem
(it is clear that ug € U).

In the Picard-Lindel6f method, we represent the differential equation in the integral

form

t

u(t) = /gp(u(s), s)ds + ug. (4.5)
to
Now, the exact solution is a fixed point of (EH), which can be found by the iteration
method

t

u;(t) = /gp(ujl(s), s)ds + ug. (4.6)
to
We write the form u; = Tw;_1 + up, where 7 : X — X is the integral operator.
It is easy to show that the operator

t

Tu:= /(p(u(7'>,7')d7' + up (4.7)

tr

24

is g-contractive on I = [tx, tr+1], where [is a subinterval of the mesh
K—1

Fr = U [tr, tss1] defined on the interval [ty, tx], with respect to the norm |lulc(s,),
k=0

if condition

q .= L1<tk+1 — tk) <1 (48)

is provided.

Therefore, if the interval [tx.1,tx] is small enough, then the solution can be found
by the iteration procedure. In the next sections, we call this method the Adaptive
Picard-Lindel6f (APL) method.

4.2 Application of the Ostrowski estimates

For the considered problem, the Ostrowski estimate reads as follows:

Theorem 4.2.1 (|I3|). Assume, that ([F-3) is satisfied on Iy, := [tg, tx+1]. Then, the

following estimate holds:

M@. 1

j = 1 + q ||U,J — Uj_1||c(1k) = A]\fj69 (49)

q
1 = wgllom) < llu=ujlleq < 7= .

Remark 4.3. It is possible to derive more accurate error bounds for ||u — u;||c(r,) by

using additional elements of the sequence {u;}32, that have indeces greater than j:

1
e = willowy < M7= 1= 7%~ tillou. (4.10)

By the mathematical induction method it can be proved that the optimal form of the
majorant and minorant based on P correspondent elements of the sequence are as

follows:

7P.
M7= s L = upleu |

p=1..p L1+ (4.11)
1 .
SP . _
My = ot { 1—qr ey = uﬁp”C([k)}'

However, estimates () cannot directly used because numerical approximations
include the interpolation and integration errors, which must be taken into account by
fully reliable schemes.

Let us discuss this issue within the paradigm of a the first step of APL:

25

t

i (1) = / oluo(r), T)dr, t € [to, 1], (4.12)

where ug is the initial approximation defined as a piecewise affine function on the mesh
Sp—1

Qs, = U [zss 2541 on the interval [to, t].
s=0

If ¢ < 1 and u; is computed exactly, then

[|ur (t) — u(t)HC([to»tl]) < 1—gq

However, in general, u; is approximated by a piecewise affine continuous function

|lui(t) — uo(t)|lc o, ta))- (4.13)

uy(t) = mu; € CPY[zs, 2511]), $=0,...,5 — 1, (4.14)

where 7 is the projection operator 7t : C' — CP!([ty, t1]) satisfying the relation

mu(zs) = u(zs). Thus, on the right-hand side of (EI3) we can estimate as follows:

1 (t) = wo () llcito, ta) < N1 () = w0 ()l ito, 12y + 18 () = wr () llero)y, (4.15)

Here ||t1(t) — wi(t)||c(ito, 1) = l|€1lle(to, 1)) 18 an interpolation error. In general, this

term is unknown, but we can estimate it by using an interpolation error estimate.
Numerical integration generates other errors which must be taken into account.

Indeed, the values u(zs),s = 0, ..., Sk can not be found exactly. Hence, at every node

2z, instead of 4y (z5) we have u;(zs). Now, (E3) implies

lui(t) — uo(t)llc(o,) < NUr(t) — uo(t) oo, u))+
+ [(t) — a1 ()| eeo, 0y + 11 (E) — wr(t) oo, 0y, (4-16)

where ||t (t) — @1(t)| oo, 1) = I€1]lc((to, 11)) 18 the integration error.

4.4 Estimates of interpolation and integration errors

4.4.1 Interpolation error

We study the difference between u; and #;, where u; is the linear interpolant of wu;

defined at points {z,}5%,:

26

w1 (28) = i1 (2) = / (1), 1)t (4.17)

For all z € [z, zs11],
w1 (z) = up(zs) + U1(Zs+1)A: w(z) (2 — 2). (4.18)
Then,
e=1u(z) —ui(z) =
: T oluo(t), t)at ;
= | [ottt it + e =] = [et -
_ Z;Zs / o(uo(t), t)dt — / o(ug(t), t)dt. (4.19)

Taking into account that ug is affinely interpolated, consider the last integral in right-
hand side of (19)

[otunte), 0t = [ot o+ 0, (4.20)
Define

t—zs U=z

A=

= 4.21
As Zs+1 — Zs’ ()

where z;, and z,;; are nodes of the mesh defined in Section EZ. Substitute
t=2zs+ (zs—H - zs))\ to @(uo(t%t)

U, s+1 — Up, s
A=), 1)

= QO(UO, st (UO, s+1 — Uo, s>/\7 Zs + /\(Zs-i-l - Zs)) -
= QO()\UQ s+1 + (1 —)\>U0,))\Zerl + (1 —)\)ZS). (422)

QO(UO, s +

Let

27

~ Ps+1 — Ps
whym:=¢y+—%§——@—zg, (4.23)

where Ps = 90<UO, S Zs) and Ps+1 = (p(u(), s+1, Zs+1)‘ USing (EZD), we rewrite (m)

6[57 s+1] = Ps + ((ps—i-l - 905))\ =)‘(;Ds-i-l + (1 -)\)905 (424)
Therethrough, we can derive the following estimate with help of (E224) and (E=33):
Up, s+1 — U, s -
Bt Ty, 1) = Gl <
S ‘SO(AUO, s+1 + (1 -)\)UO, ER))\Zs—i-l + (]- -)\)zs) - >\908+1 + (1 -)\)Sps| S
< (1= X)Ly, oMt 51 + (1= Mo, 5 — g o+

(o, s +

+ L2,5|Azs+1 + (]- - A)Zs - Zs| i|“f‘

(4.25)
+ A [Ll, s’)\uO, s+1 + (]- - /\)UO, s — U, 5+1|+
+ Lo, o[Azgst + (1= \)zg — 2e41] } <
S 2>\(1 - /\) [Ll, s|U0, s+1 — Uo, s| + L2, s‘Zs—l—l - Zs| }
s —t)(t — s
SQ(Z +1)(Z)[L173|U0,s+1_u0,5|+L2’SAS]
AZ
We decompose (E=20)
[stutt), vyt =
~ Up, s+1 — Up, s -
:/w“m®ﬁ+/Www+——K——ﬁ—%y0—%ﬁﬂﬁ.@%)

Let us denote the first integral in the right hand side of (E228) by 7,(z). Then,

z

i(z) = / (s + %:% —z))di = (z = 2o + TR e — 2] (420)

Zs

The second integral in the right hand side of (E28) is estimated with the help of (E=23):

28

z

U, s+1 — Uo, s -
[t + B ¢ — 2, £) = Gt <

Zs

z

2 Ll7 s|u0, s+1 — Uo, s| + L2, SAS
< — Az - /(t — 25) (2541 — t)dt =

Zs

z

2 Ll, s|u0, s+1 — Uo, s| + LQ7 sAs

_ = - /(t—zs)(szrAs—t)dt:
2 _Ll,s‘uo, s+1 — uO,s’ + L2,3As] 9 AS Z— Zg

= A e

s

[Ll, s|u07 s+1 — Uo, s| + L2, sAs]
— (z — 25)% (225 + 30, — 22).

3A2
Since
max (2 — 2,)%(22, + 3A, — 22) = A?,
z € |zs, Zs+41]
we find that

Up, s4+1 — Uo, s ~
[it s+ B —),)= Gy ot <

< [Ll, s|u0, s+1 — Uo, s| + LZ, SAS]Ag _

(4.28)

(4.29)

(4.30)

- 3A2
[Ll, s‘uo, s+1 — uO, s’ + L2, sAs] As
= 3 ,
We represent the interpolation error (A19) by using (E=27),
Zs+1 z
~ Z = Zs
()~ w2 = T [elun(e). Dt~ [oluolt), Byt =
Z — Zg -~ ~
= A Zs(Zs+1> - ZS(Z) + 61('2:) + 52(2)7 (431)

where

29

Zs+1

Up,s+1 — Uo, s ~
—(t— s7t - S,8 dt?
(= 2,) = Bl

- (4.32)

Uo,s — Uy, s ~
€2 = / ‘SO(U'O:S + M(t—z&), t) - go[s,s-l—lﬂdt‘

€] = / ‘go(uo,sjL

A,

Zs

Thus, we estimate the interpolation error as follows:

€= Hﬂl(z) - U1(2)||C([zs,zs+1}) <

i (zen) —hs(2) |+ max |ey(2) + 2(2)]. (4.33)

s ZE[ZS, ZS+1]

< max

26[237 Zs+1}

For the first term in the right hand side of (E233) we have (see (E=22))

max ‘z — ngs(zs+1) —iy(2)|dt < [@se1 = sl max |(z — 2) (201 — 2)| <
2€[zs, Zs41] s 2AS 2€[zs, Zs41]
‘305-‘1-1 - 905| A2 1
<Pt Tl B L) LA, (434
TN glPsr = @l (4.34)

For the second term, we have (see (E230))

AsL s|Uo. s —us+L sAs
max Jey(2) + eg(z)] < 220 [lnolo sn — o o] + Lo oA |

2€[zs, Zs41] 3

(4.35)

Hence, the overall estimate of the interpolation error has the form

1u1(2) — w1 (2) ||z, zea)) <

s - ¥s 2
S %As + §AS [Ll, S|U0, s+1 — Uo, s’ + LQ’ s AS] (436)

4.4.2 Integration error estimate

Assume that f(t) is the Lipschitz function with constant L. Obtain the guaranteed

bounds for the integration errors of the quadrature formula

b
/ f(x)de = M(b —a) (4.37)

Define four lines from Figure BT

30

(1) y = L(x — a) + f(a);
(2) y = L(b— =)+ f(b);
(3) y = L{a—)+ f(a);

(4) y = L(z = b) + f(b).

ftb)

9 _a

&)

"

c X | X D
0 a Xz Xy b X

Figure 4.1: Tllustration of the Lipschitz function f(z) bounded by lines y = Lz + b.

Point z; is obtained by the intersection of the lines (3) and (4):

_a+b fla)— f(b)
2 * 2L '

(4.38)

X1

Analogously, zo = (1) N (2):

_a+b f(b)— f(a)
Ty= (4.39)

Then,

SamBpc = Samx,c + SvMBDX,

(22 — a)

— [2/(a) + L(z - a)] — 20) + L — 23] (b _2952) (4.40)

Sanepc = Sanx,c + SnBpx, =
4.41
= [2/(a) + L(a = 21)] (:c12—a) + [250) + L —) (b—2x1) (4.41)

31

g SaMBDC — SANBDC
est — 9

- %(f(a)(xg —) + F(b) (21 —)+
L
tilE- @@ @ =
= @ —m)(fla) ~ F(B)+
+ % [(.Tg —a)? + (z — b)? + (1 — a)® + (21 — b)Q]
From (E=38) and (E339), we deduce the following relations:
)@
2 1= i)
a+b fb)—=fla) b—a [f(b)—f(a)
S R Y ST
_a=b f(b) - f(a)
na 0 SO0
_a=b fla) = f(b)
b= oL
Then,
_ o) = fa)]? o (fla) = f(b)?
A N (4.44)
L , 1 2
= L= — 1)~ Fla)
We recall that a = 24, b = 2,41 and Ay = 2,1 — 2,. Hence,
Sest == %Ai - i[(pyrl - 905]27 (445)

where Ly = Ly 4 ls + Lo, s (here, [5 is slope of the piecewise function on every interval
(25, Zs41), s =0,..., S — 1).
Thus, the integration error can be estimated

L 1

[T1(t) = a1 (t) e (e, zen)) < fﬁi — 4—Ls[sos+1 AR (4.46)

32

4.4.3 Guaranteed error bounds for the Picard—Lindelof method

Thus, on every subinterval [z, zs.1] the interpolation error can be estimated with help

Sp—1
of (E238). Then, for whole interval [to, ¢;] := |J [#s, zst1] the interpolation error
s=0

estimate is the following:

11 (t) — wr(t)|l o, 0)) <

< Z 303+1_905A8+2

] 3 [Ll, s|u0, s+1 — Uo, s| + L2, SAS]As (447)

Analogously, for the integration error:

_ ~ L 1
) =@l < Y FAI-grlen—wl (448)
= 1

Then, the inequality (EI3) implies the estimate:

[[ur (8) = wo(®) loqeo,)y < [[un () = wo(®)loqeo, n)+

Ps+1 — Ps 2
+ Z (+TAS+ gAs [L1,5|U0, s+1 — o, 5| + Lo, sA })_F
1

s=0,...,5k—
LS 2 1 2
+ E <7As 2L [Qos-i—l 905] > (449)

After j steps of the iterations we obtain

41 () = wi(8) | exito,) < M7 (1)) =
Haj+1(t) - a](t) HC([tm t1]) + Eznterp + EzlntegT’ (450)

where
EL _ Sp(aj, s+15 Zerl) - @(zL\L s ZS) A
interp * 7 Z 3 s+
5=0,...,S—1
2 A o~
+ ALl o =T+ T AT) (451)
and

33

Ly 1 - I 2
Eilntegr = Z (?Ai - E [90<uj7 s+1> Zerl) - @(uj} D Zs)})) (452)
s=0,...,5,—1 s

where for j = 0 the function u; is taken as piecewise affine interpolation of v, and for
j > 1 it is taken from the previous iteration step.
The quantity M;B’l is fully computable, and it shows the overall error associated

with the step number j on the first interval.

Remark 4.5. Estimate of the overall error related to the interval [ty, tx| includes all
errors computed on the intervals. In other words the error associated with [tg, 5 1]
is appended to the error on [tx_1, tx] (which formally follows from the fact that the

initial condition on [t;_1, tx] includes the errors on the previous intervals).

Thus, we have shown that for the problem (E) with the Lipschitz function ¢ fully
guaranteed and computable bounds can be indeed derived, i.e. for every finite time
interval [to, tx| and for every a priori required accuracy € an approximate solution of
the problem can be found by using the APL method discussed above.

4.6 APL algorithm and numerical examples

Let € be a required accuracy of the approximate solution. Then, practical computation
can be performed by Algorithm [@.

In general, the algorithm should start with the generation of a suitable mesh (i.e.,
select time intervals). Here, we do not discuss this question in detail, but only note
that the Mesh Guaranteed Procedure must adapt the mesh to the nature of ¢(u(t),t),
which requires information about U (see (E3)). In practise, such an information can
be obtained by solving the problem (ET) numerically with the help of some heuristic

(e.g., Runge-Kutta) method on a coarse mesh.
K-1
The APL algorithm is a cycle over all the intervals of the mesh Fx = |J [tx, tgt1]-
k=0
On each subinterval, the algorithm is realized as a subcycle (whose index is j). In the

subcycle, we apply the PL method and try to find an approximation that meets the
accuracy requirements imposed (i.e., the accuracy must be higher than £*). Initial data
are taken from the previous step (for the first step, the initial condition is defined by
Up).

After computing an approximation on [ty, try1] we use our majorant and find

a guaranteed upper bound (which includes the interpolation and integration errors).

34

Algorithm 7 Algorithm of APL method

Input: ¢ {required accuracy on the interval}, ug {input initial boundary condition}

K-1
Fr = U [tk, tk+1] { constructed by Mesh Generation Procedure}
k=0
ek = £ {obtain accuracy of the approximate solution on interval [tx, tri1
K y +
Sp—1
Qg, = U [z, #s+1] {initial mesh for each subinterval}

s=0
for k=1 to K do

j=0
do
ifk=1
a = ug
else
a= v (ty_1)
endif
v;-“ = Integration Procedure(yp, v}[l, Sk) +a
calculate Efnterp and Efntegr by using (E231) and (E53)
ME* = [[0F = 0¥ lloto .y, ul) + Elery + Elutegr
o = gon2
if Ezknterp + Ezkntegr > &k
Sk = 2 Sk, {refine the mesh Qg, }
endif
j=Jj+1
while e > ¢*
vk = vf {the approximate solution on the interval [ty_1,]}
Pk = 6? {error bound achieved for the interval [t;_1, tx]}

end for
Output: {v*}X | {the approximate solution}

{e®k}E | Lerror bounds estimates on sub intervals}

Iterations are continued unless the required accuracy £* has been achieved. After that

we save the results and proceed to the next interval.

Note that in Algorithm 1, we do not discuss in detail the process of integration on

an interval, which is performed on a local mesh with a certain amount of subintervals

(whose size is A,). In principle, it may happen that the desired level of accuracy, €,
is not achieved with the A, selected. This fact will be easily detected because the

interpolation and integration errors will dominate and do not allow the overall error

to decrease below &F

corresponding interval must be repeated.

35

. In this case, A, must be reduced, and computations on the

Example 4.7. Consider the problem

fl_?; =4ut sin(8¢), te€0,3/2],
K (4.53)

with the exact solution u = eis Sn(B)—3t cos(8t)

In Figure B2, we depict the error (bold dots), the error bounds computed by the
Ostrowski estimates (dotted line) and by the advanced form of the estimate (dashed
line). In order to make the results more transparent, we depict the approximate solution
together with the zone which contains the exact solution (see Figures BE3a and EZa).

The form of this (shaded) zone is determined by the a posteriori estimates.

76 :
NP
0.02/l- M=
0.04r
0.02r
"
0 0.2 0.4 ; 0.6 0.8 1

Figure 4.2: The error and yhe error majorants.

Thus, the APL method computes two-sided guaranteed bounds containing the ex-
act solution. It may happen that the desired level of accuracy has been exceeded at
some moment ¢’ < tx and further Picard—Lindelof iterations are unable to reduce the
error. This situation may arise if the amount of internal points used for numerical
integration on each interval is too small. In this case, we must enlarge the number of
internal nodes (which will reduce the integration and interpolation errors) and repeat
the computations. Numerical results illustrated in Figures B=3d and B4 show that the
advanced majorant provides much sharper bounds of the deviation.

Values of the components of the estimate (first term, estimate of ||€|| and estimate
of ||€]| from (E30)) are presented in Table B0 We see that in this example the values
of Sy were selected properly, so that the interpolation and integration error estimates

are insignificant with respect to the first term.

36

o
o
3]
N

115 12 125
(b)
Figure 4.3: (a) The exact and the approximate solutions with guaranteed bounds of

the deviation computed by Ostrowski estimate. (b) Zoomed interval of the exact and

the approximate solutions with bounds of the deviation computed by the majorant.

f—
18| N
16
14

T\
0.8 \

06

0.4

115 1.2 105
(b)
(a)

Figure 4.4: (a) The exact and the approximate solutions with the guaranteed bounds
of the deviation computed by the advanced form of estimate. (b) Zoomed interval of
the exact and the approximate solutions with bounds of the deviation computed by

the majorant.

Example 4.8. The APL method works with stiff problems as well. Consider the

classical stiff equation

37

Table 4.1: Components of the general estimate.

estimate of ||e;|| | estimate of ||€;|| | estimate of ||€;]|

2.2658e-002 8.6160e-008 9.5725e-008
4.6095e-002 1.8847e-007 5.8148e-007
5.4949e-002 2.5299e-007 5.9301e-007
7.4818e-002 2.5768e-007 2.3618e-006
9.5993e-002 3.0190e-007 2.3699e-006
1.0302e-001 3.4216e-007 2.3807e-006
1.5427e-001 4.8963e-007 2.4320e-006
1.5647e-001 6.1877e-007 2.4999e-006
2.3495e-001 9.4891e-007 2.6183e-006
2.7145e-001 9.8935e-007 2.6328e-006
3.0533e-001 9.9923e-007 2.6373e-006
3.2838e-001 1.0158e-006 2.6404e-006
4.4629e-001 1.0182¢-006 2.6517e-006

du_ 50 cos(t) — 50u, t=[0,1],

dt (4.54)

u(0) =ug =1
with the exact solution u = e + 2309 cos(t) + 207 sin(t).

Analogously to the previous example, in Figure E5d the general error (lines with
dots on the top) estimated by the Ostrowski estimate (dotted line) and the advanced
form of estimate (dashed line) are illustrated. Another way to depict obtained results

is shown in Figure E50.

38

716\/[?‘.13
0.02[--M"
0.04}
0.02} :

~“"“:\-mmrmuH\HHHHHH\HHH\HHHH\HHHHHH‘HHH‘HHHHHLHHHHHHH‘ 0.4 i

0 0.2 0.4 . 0.6 0.8 1 0 0.5 1

(a) (b)

Figure 4.5: (a) The error and the error majorants. (b) The exact and the approximate
solutions with the guaranteed deviation bound.

Example 4.9. The APL method can be also applied to stiff systems of ODEs. As an
example, we consider the system

(4w — 998u; + 1998us,

2 — —999u; — 1999us,

uy(to) = L, ua(ty) =1,
[te0, 51079

with the exact solutions u; = 4e™" — 3719 and uy = —2e~* + 37109 In Figures
054, I6H, B7d and B7H, we present the same type of information (behavior of the
solution and guaranteed bounds) as in the previous examples.

We note that for stiff equations getting an approximate solution with the guaranteed
and sharp error bounds requires much larger expenditures than in relatively simple
Examples B4 and BR. This results is not surprising, because (as it is quite natural
to expect) for such type of problems, fully reliable computations will be much more

expensive.

39

Uy

Uz
1
Uy
—U
4t of T
37 _17 N
ol ol TS EsErssaooo
1 i i
0 1 2 3 4 0 1 2 3 4
x10° x10°
(a) (b)

Figure 4.6: The exact solutions and the approximate solutions of the system, and the
guaranteed error bounds computed by Ostrowski method.

U1 s
——
Mo e
0.1 M®
005F i 0.05¢
R e S W S NN T S A
o 1 2 3 4 5 o 1 2 3 4 5
t X 10‘3 t X 10_3
(a) (b)

Figure 4.7: The error and error majorants for solutions u;, us of the system.

40

A Listing

A.1 Listing 1. Example B3

In the current listing we illustrate the MATLAB function that constructs symmetric

matrices based only on the input size of the required matrices.

Listing A.1: A function to construct two symmetric matrices A and B.

function [A, B] = construct_symmetric_matrix_A_B(n)

CONTRUCT_SYMMETRIC_A_B
This function constructs two symmetric matrices A and B with size [n x n]

0 0 o0 d° oo oo e oo

SYNTAX: [A, B] = construct_symmetric_A(n)
IN: n size of symmetric matrices
OUT: A, B constructed matrices

o

construct diagonal matrix with element from 1 to 50 on diagonal

D = diag(linspace(l, 50, n));

% construct matrix with size [n, n] filled with random number less that n
C = rand(n);

[Q1, ~] = qr(C);

[02, ~] = qr(C);

A = Ql’ = D = Q1;

% get maximal eigen value of matrix A
mu = max(eig(A));

B =mu » Q2’ * D x Q2;

end

A.2 Listing 2. Example 3.6

Describe the MATLAB code that was implemented to test the Richardson iteration
scheme in Example B3.

The main function richardson_guaranteed_iteration_scheme_test () contains
construction of the problem including a system matrix, a system right part and a

system size initialization. Here, we also define an accuracy level. In addition, the

41

function includes technical procedures to open a file for outputting the obtained results.

Listing A.2: The main function for defining the problem and submitting the iteration

process.

function richardson_guaranteed_iteration_scheme_test ()

o

5 RICHARDSON_GUARANTEED_ITERATION_SCHEME_TEST

This function generates symmetric matrices A of different size to solve

o

% system Axx = f with Richardson guaranteed iteration scheme
$ SYNTAX: richardson_guaranteed_iteration_scheme_test ()

% INPUT: -

% OUTPUT: -

o

% clean console window before submitting the function
clc;

warning off all;

% set the format of output data

format long e;

% init the example number

example_number = 5;

% open tex-file to output results
filename = strcat (’../out/numerical-results—-example-’, num2str (example_number), ’.tex’);

texfile_id = fopen(filename, ’'wt’);

% set the required accuracy
eps = 1le-10;

% cycle for testing systems of different size
for i =1 : 3

% set the initial data
n = 10"1i; % system size
x_0 = zeros(n, 1); % initial guess
f = ones(n, 1); % system right part
A = construct_symmetric_matrix(n); % system matrix

o

% get true error, a priori and a posteriori estimate

[x, error, m_apriori, m_Ostr] = reliable_richardson_iteration_method(n, A, £, x_0, eps);

% output true error and estimates to graphics and opened tex-file
output_result_estimates_graphics (error, m_apriori, m_Ostr, n, example_number, texfile_id

)i

output_result_estimates_to_texfile (texfile_id, error, m_apriori, m_Ostr);

end

% close all opened documents

fclose('all’);

end

42

In order to test different problems, we insert a cycle over the system size n. We
illustrate in the graphics by the function
output_result_estimates_graphics and output to the file by
output_result_estimates_to_texfile the results obtained after submission of the
function reliable_richardson_iteration_method .

In the function reliable_richardson_iteration_method we solve a system of
equations by the Richardson scheme including guaranteed a priori and a posteriori

error bounds.

Listing A.3: The main function for defining the problem and submitting the iteration

process.

function [x, error, m_apriori, m_ostr] = reliable_richardson_iteration_method(n, A, f, x_0

RELIABLE_RICHARDSON_ITERATION_METHOD
This function solves the system Axx = f with Richardson iteration scheme

and control the reliability of the approximate solution by Ostrowski a

d° o0 o0 d° oo

posteriori and a priori estimates.

SYNTAX: [x, error, m_apriori, m_ostr] =
reliable_richardson_iteration_method(n, A, £, x_0, eps)

INPUT: n size of system
matrix of system
f right part of system
eps accuracy level between x_k and x_{k-1}, where k =1,

., stoping criterion

0 0 o 0 O o0 A0 o o0 o0 d° o

OUTPUT: X solution of the problem
error truth error
m_apriori a priori error estimate
m_ostr a posteriori error estimate

check if the input data has the minimum amount argument to solve the

o o

problem
if nargin < 3
ERROR (" Too few arguments’);
end
% check if the rest of data is defined

if nargin < 5 || isempty(eps) ==
eps = le-5;

end

if nargin < 4 || isempty(x_0) == 1
x_0 = ones(n, 1);

end

% check if matrix of the system is squared
if size(A,1) ~= size (A, 2)
ERROR (’Matrix A should be square.’);
elseif size(A,1) ~= size(f,1)
ERROR ('Mismatch between dimensions of A and f’);

end

43

% init a priori, a posteriori estimates and true error storages
m_apriori = [];

m_ostr = [];

error = [];

% init unitary matrix

I = eye(n);

% set required paramaters
eigen_values = eig(A);
lambda_min = min(eigen_values) ;

lambda_max = max (eigen_values) ;

tau = 2/ (lambda_min + lambda_max) ;
kappa = lambda_min / lambda_max;
a = (1 - kappa) / (1 + kappa);

o

construct contractive operator and shift vector
=1 - tau x A;

o B

= tau » f;

o

define exact solution for construction of model error
x_exact = A™(-1) * f;

% calculate first element of sequence of approximate solutions
x 1 =L * x_0 + £;

x_prev = x_1;

% 1init data before cycle

difference = 1;

k = 2;

while difference > eps

% construct the next approximation from sequence

x = L % x_prev + b;

% calculate error, a priori estimate and Ostrowski estimate on the current step

error (k) = matrix_norm(x - x_exact, A);
m_apriori (k) = (g*k/(1-9)) * matrix_norm(x_1 - x_0, A);
m_ostr (k) = (g / (1 - g)) * matrix_norm(x - x_prev, A);

% calculate relative error between previous and current step
difference = norm(x - x_prev) / norm(x);
% go to the next step
X_prev = x;
k =k + 1;
end
end

44

In the beginning of the function reliable_richardson_iteration_method(n, A,
f, x_0, eps) we check the correctness of the input data. Then, we initialize param-
eters which are used in the iteration process. We obtain the spectrum of A by the
MATLAB function eig(a), which returns a vector containing the eigenvalues of an
input square matrix. The minimal and maximal eigenvectors are used in obtaining pa-
rameters 7, k and ¢q. Then, we need to construct the contractive operator L and shift
the vector b before the iteration process submission. For a priori majorant construction,
we need to know z; in advance.

On every iteration: we calculate a new approximation (B) with L and b defined
before the cycle, construct a model error of this approximation and upper bounds to

control it. We take the Ostrowski upper bound as a stopping criterion.

A.3 Listing 3. Example B7

For the third example, the main function is similar to (E=2), where we define a problem
statement and submit the reliable Chebyshev iteration process. Consider only the

Chebyshev iteration scheme implementation (Listing B=).

Listing A.4: A guaranteed Chebyshev iteration scheme function.

function [x, error, m_apriori, m_ostr] = reliable_chebyshev_iteration_method (N, A, £, x_0,

eps, n)

RELIABLE_CHEBYSHEV_ITERATION_METHOD
This function solves the system Axx = f with chebyshev iteration scheme

and control the reliability of the approximate solution by Ostrowski a

d° o0 o0 d° oo

posteriori and a priori estimates.

SYNTAX: [x, error, m_apriori, m_ostr] =

reliable_chebyshev_iteration_method (N, A, f, x_0, eps, n)

A o0 o0 oo o0 o0 od° o

INPUT: N size of system
matrix of system
f right part of system
eps accuracy level between x_k and x_{k-1}, where k =1,
n subcycle size, auxillary set size

% check if the input data has the minimum amount argument to solve the problem
if nargin < 3
ERROR (' Too few arguments’);
end
% check if the rest of data is defined

if nargin < 6 || isempty(n) == 1
n = 100;

end

if nargin < 5 || isempty(eps) == 1
eps = le-5;

end

45

1
—

if nargin < 4 || isempty(x_0) =
x_0 = ones (N, 1);
end
% check if matrix of the system is squared
if size(A,1) ~= size(A,2)
ERROR ("Matrix A should be square.’);
elseif size(A,1) ~= size(f,1)
ERROR (' Mismatch between dimensions of A and f’);
end
% init a priori, a posteriori estimates and error storages
error = [];
m_apriori = [];
m_ostr = [];

o

% set required parameters

eigen_values = eig(A);

lambda_min = min(eigen_values) ;

lambda_max = max (eigen_values);

tau_0 = 2/ (lambda_min + lambda_max) ;

kappa = lambda_min / lambda_max;

rho_0 = (1 - kappa) / (1 + kappa);

rho_1 = (1 - sqgrt(kappa)) / (1 + sqgrt (kappa));
gn = (2 » rho_1"n) / (1 + rho_1"(2*n));

o

% define exact solution for construction of true error

x_exact= A \ f;

% construct the first element of the sequence
x_1 = chebyshev_subcycle(x_0, n, A, £, tau_0, rho_0);
x_prev = x_1;

m_Ostr = gn / (1 - g.n) % norm(x_1 - x_0);

% init cycle counter

i=2;

while m_Ostr > eps

o

construct the next approximation from sequence
x = chebyshev_subcycle (x_prev, n, A, £, tau_0, rho_0);

% calculate error, a priori estimate and Ostrowski estimate on the current step

error (1) = norm(x - x_exact);
m_apriori(i) = gn™i / (1 - g.n) *» norm(x_1 - x_0);
m_ostr(i) = gn / (1 - g_n) * norm(x — x_prev);

o

% define cycle stopping criterion

m_Ostr = m_ostr(i);

X_prev = x;
i=1+ 1;

end

end

46

Firstly, we check correctness of the input data. Secondly, we initialize storages for
true error and their estimates. Then, it is necessary to define parameters 79, K, po, p1,
q(n) used in (B223) before the cycle is submitted. We also construct x; for calculation
of the a priori estimate and finally submit the iteration process.

New approximations are obtained by the Chebyshev subcycle which is encapsulated

to a single function in Listing BA™.

Listing A.5: Chebyshev subcycle.

function x = chebyshev_subcycle(x_0, n, A, f, tau_0, rho_0)

% CHEBYSHEV_SUBCYCLE
% This function returns the new constructed term of the iteration sequence

using a generated set of Chebyshev parameters

% SYNTAX: x = chebyshev_subcycle (x_0, n)

% INPUT: x_0 input vector

% n size of chebyshev parameter set
% OUTPUT: X output vector

% get length of the vector
N = length(x_0);

% set initial value to the constractive operator L_n and shift vector b_n
n = eye(N);
n

= zeros (N, 1);

% init unitary matrix

I = eye(N);

% init storages for auxillary parameters

-

= zeros(l, n);

tau = zeros(l, n);

for k =1 : n
% generate a set of parameters for output x calculation
t(k) = cos((2xk — 1)*pi/(2+%n));
tau(k) = tau_0 / (1 + rho_0 * t(k));

% construct the constractive operator L_n and shift vector b_n
L n= (I - tau(k) = A) = L_n;
b_n = (I - tau(k) = A) » b_n + tau(k) x f;

end

% construct new output vector

x =L n * x_0 + b_n;

end

This function is presented by an n-size cycle, where we generate auxiliary parame-

ters for construction of a transformation operator and shift vector.

47

A.4 Listing 4. Example

Next, we discuss the code implemented to provide an approximation of a given problem
by the finite-difference method and to solve the obtained system of equations by the
reliable SOR iteration method.

Listing A.6: Main function of problem statement and submitting the solver.

function reliable_iteration_methods_for_fdm test ()

GUARANTEED_ITERATION_METHODS_FOR_FDM_TEST
This function defines the Dirichlet problem, solve it by the finite difference method
(with a reliable iteration scheme) and compares the obtained true error with a priori

o0 o0 o° oo

and a posteriori estimates

SYNTAX: reliable_iteration_methods_for_ fdm test ()
INPUT: -
OUTPUT: -

oo oo oo

% clean console window before submitting the function
clc;

format short;

% init the example number

example_number = 2;

% open file to output the results
filename = strcat(’../out/numerical-results—-example—', num2str (example_number), '.tex’);

texfile_id = fopen(filename, ’'wt’);

o

problem statement

u = @(x, y) (x"2 — 3x%x) x (y"2 — 4xy);
a=@(x, y) x"2 +y+ 1;
b==0(x, v) x+y+ 2;
c=0(x, v) x +y + 4;
f=0(x, yv) — (x*2 + vy + 1) » 2 x (y*2 - 4xy)
- (x +y + 2) * 2 % (X"2 — 3%x)
+ (x +y + 4) * (XM2 = 3%x) x (y"2 — 4xy);

o

set domain boundary

x0 = 0.2;
xM = 3.3;
y0o = 0.5;
yN = 4.2;

o

set mesh size [M x N]J
= 18;
= 20;

zZ =

o

set the accuracy level

eps = le-5;

% get parameters of the grid defined on [x0, xM] x [y0, yN] domain with size M x N
[x, y, xh, yh] = get_mesh_parameters (x0, xM, y0, yN, M, N);

48

o

% get renumbered sets of the coefficients

[A, B, C, D, E, G] = construct_coefficients(f, a, b, ¢, x, y, xh, vh);
% get the projection of the exact solution to the mesh [x x V]
U = make_function_mesh(u, x, vy);

% define the accuracy level for the Jacobi iteration method

eps_iter = le-6;

% get solution and parameter rho by the Jacobi iteration method

[V, rhoJ] = jacobi_iteration_scheme(U, A, B, C, D, E, G, M, N, eps_iter);
% define optimal parameter omega related from rhoJ

omega_opt = 2/(1 + sqrt(l - rhod"2));

fprintf (‘Reliable SOR method\n\n’);
format short;

% define the Dirichlet boundary condition

u0(l : M, 1) =0U(1 : M, 1);
ul (1 M, N) = U(1l : M, N);
u0(l, 1 : N) = U(1l, 1 : N);
ud(M, 1 : N) = UM, 1 : N);

% construct a new system matrix and right part with renumbering unknown variable nodes

[Matrix, RightPart] = construct_system_from_problem_ statement (u0, a, b, ¢, £, x, y, xh, vh
N, M)

% construct a contractive operator and shift vector for the SOR iteration process

[L, 1, g] = get_contractive_operator_and_shift_based_on_SOR(Matrix, RightPart, M, N,
omega_opt) ;

% define accuracy level for the reliable SOR iteration method

eps_iter = 1le-10;

[V, error, M_minus, M_plus, MO_plus, M_upper, M_lower, M_lambda_min, M_cond] =
reliable_sor_iteration_scheme (u0, U, eps_iter, L, 1, g, M, N, Matrix, RightPart);
% output result estimates to the graphics, console or tex-file
output_result_estimates_graphics (error, M_plus, MO_plus, M_minus,
M_upper, M_lower, M_lambda_min, M_cond,
(M - 2)%x(N - 2), example_number, texfile_id);
output_result_estimates_to_console (error, M_plus, MO_plus, M_minus,
M_lambda_min, M_cond, M_upper, M_lower);
output_result_estimates_to_texfile(texfile_id, error, M_plus, MO_plus, M_minus,
M_lambda_min, M_cond, M_upper,
M_lower);

end

In the main function we define the problem statement (B=33), which contains the
definition of a(z,y), b(z,y), c¢(z,y) and f(z,y). Here, we set the domain boundary
A, B, C, D and mesh sizes M, N. Finally, we init the accuracy of the approximate

solution ¢ that we want to obtain.

49

The next step is problem approximation. First, we construct the mesh with size
[N x M] (see Listing [A7).

Listing A.7: Function to generate the required mesh.

function [x, y, xh, yh] = get_mesh_parameters(aA, B, C, D, M, N)

o

o

GET_MESH_PERAMETERS
This function constructs mesh [x x y] with steps xh, yh from input

boundaries of the domain [A, B] x [C D] with size M x N

o0 oo oe

% SYNTAX: [x, vy, xh, yh] = get_mesh_parameters(A, B, C, D, M, N)
% INPUT: A lower bound of the interval on Ox-axis
% B upper bound of the interval on Ox-axis
% C lower bound of the interval on Oy-axis
% D upper bound of the interval on Oy-axis
% OUTPUT:
% xh step on the Ox-axis for interval [A, B]
yh step on the Oy-axis for interval [C, D]

oo o

[
[

set of node on the interval [A, B] with step xh
B]

o

set of node on the interval [A, with step xh

o

define the mesh horizontal and vertical steps
xh = (B - A) / (M-1);
vh = (D - C) / (N-1);

% define horizontal and vertical node sets
x = linspace (A, B, M);
y = linspace(C, D, N);

Now, we need to renumber the internal nodes in the order from top to down, from right
to left as it was explained in Example BR (Figure BH). The renumbering procedure is
shown in Listing B78.

Listing A.8: Function to renumber the internal nodes of the set.

function [A, B, C, D, E, G] = construct_coefficients(f, a, b, ¢, x, y, xh, vyh)

o

o

CONSTRUCT_COEFFICIENTS
This function constructs vectors with coefficients taken from the problem

oo oo

statement
% SYNTAX: [A, B, C, D, E, G] = construct_coefficients(f, a, b, ¢, x, vy, xh, yh)
% INPUT: f right-part function
% a, b, c function coefficients from problem statement
% X horizontal part of mesh [x x V]
% % vertical part of mesh [x x V]
% xh step on the Ox-axis of the mesh [x x y]
% vh step on the Oy-axis of the mesh [x x y]
% OUTPUT: A, B, C, D, E, G data vectors with coefficients

o

get size of the mesh
= length (x);
= length(y);

zZ =

20

o

define storages for coefficients

zeros (M * N,

zeros (M * N,

zeros (M *

’

zeros (M * N,

zeros (M * ,

QMO QWP

Z =z =z =z

zeros (M *

’

o

define counter variable

= 1;

o~

M
1
contruct coefficient based on the fd scheme
vy (3))/xh"2;

“b(x (1), v(3))/yh"2;

for i

N

1
for j

3
]

"cross’

vertical -a(x (i),

horizontal

A (k)

vertical;

C (k)
D (k)
E (k)

vertical;
horizontal;

horizontal;

B (k)
G (k)
k

-2 % (horizontal + wvertical)
f(x(1), v(3));
1;

+ oc(x (i), v(3));

k +
end

end

end

We project the solution u(x,y) to the mesh [z X y], which is obtained by the function

from Listing A9, in order to compare this solution with the obtained approximations.

Listing A.9: Function that constructs projection of the exact function to the mesh.

function U make_function_mesh (u, x, vy)

MAKE_FUNCTION_MESH

This function projects input exact function to the mesh [x x y].

0 0 o0 d° oo o0 e oo

SYNTAX: U = make_function_mesh(u, x, y)
INPUT: u exact function

X x—direction component of the mesh

y y—-direction component of the mesh
OUTPUT: §) function u projected to mesh [x x y]

o

get size of the mesh
length(x);
length(y);

zZ =

o

define storage for projection function

U = zeros (M, N);
for i =1 M
for j =1 N
U(i, J) = u(x(i), y(3));

o1

end
end

end

Then, we submit the Jacobi iteration scheme to obtain wy,, which minimizes the SOR

scheme iteration steps. The Jacobi method is presented in Listing BATO.

Listing A.10: Jacobi iteration scheme function.

function [V, rho] = jacobi_iteration_scheme (U, A, B, C, D, E, G, M, N, eps)

oo o

JACOBI_ITERATION_SCHEME
This function solves the system Axx = f rewritten in the data blocks A,

o

o

B, C, D, E, G with the Jacobi iteration scheme

o

SYNTAX : [V, rho] = jacobi_iteration_scheme(U, A, B, C, D, E, G, M, N, eps_iter)

oo oo

INPUT: projection of the exact solution to the mesh

o

U

A, B, C, D, E, G data block with matrix components
M mesh Ox-axis dimension
N

oo o

mesh Oy-axis dimension

o
0]
'O
[0}

accuracy level between x_k and x_{k-1}, where k =1,

., stopping criterion

oo oo

OUTPUT:

o

v solution of the problem

o

rho iteration process spectral radius

o

define storages for solutions

Vprev ones (M, N) ;

\ = zeros (M,N);

o

% define accuracy criterion
diffence = 1;
step =1;

% define storages for error
diffs = [1;

while diffence > eps
% calculate values inside area
for i = 2 : M-1
for j =2 : N-1

k= (1 -1) » N + j;
V(i, j) = (G(k) — (C(k) = Vprev(i - 1, 3J) +
D(k) * Vprev(i, j + 1) +
E(k) * Vprev(i, j - 1) +
A(k) * Vprev(i + 1, 3))) / B(k);
end
end

% calculate boundary conditions

V(1 : M, 1) = U1 : M, 1);
v(l : M, N) = U(1 : M, N);
v(i, 1 N) = U(1, 1 N) ;
v, 1 N) = UM, 1 : N);

52

[

% calculate difference
diffs =

diffence =

[diffs norm(V - Vprev)]; % #0k<AGROW>

diffs(end) / norm(V);

% go to the next step
Vprev = V;

step = step + 1;
end

% calculate spectral radius

rho = diffs(end) / diffs(end - 1);

end

To apply the iteration scheme, we need to reconstruct the block matrix and the right

part of the FDM approximation (the procedure is presented in Listing BETT).

Listing A.11: Function to construct block matrix and right part from FDM problem

approximation.

function [A, F] = construct_system_from_problem_statement (u0, a, b, ¢, £, x, y, xh, yh, N,
M)

% CONSTRUCT_SYSTEM_FROM_PROBLEM_STATEMENT

% This function constructs system that follows from the problem approximation

% by the finite difference method

% SYNTAX: [A, F] = construct_system_from_problem_statement (u0, a, b, ¢, £, x, y, xh, vyh,
N, M)

% INPUT: u0 function on boundary (Dirichlet boundary condition)

% a, b, c function coefficients from problem statement

% f right-part function

% X horizontal part of mesh [x x y]

% y vertical part of mesh [x x VY]

% xh step on the Ox—-axis of the mesh [x x VY]

% vh step on the Oy-axis of the mesh [x x VY]

% N Ox-axis size of the mesh

% M Oy-axis size of the mesh

% OUTPUT: A block matrix constructed from problem approximation

% F right part constructed from problem approximation

o

define storages for data

A = zeros ((N-2)x (M-2));
F = zeros((N-2)*(M-2), 1);
G = zeros ((N-2)x(M-2), 1);
% define counter
k=1
% define shift for renumbered problem
N_ =N - 2;
for 1 = 2 M-1
for j = 2 N-1

% define repeated components

23

end
end

end

vertical = -a(x (i), y(3))/xh"2;
horizontal = -b(x(i), y(3j))/yh"2;
central -2 x (horizontal + vertical)

g = f£(x(1), v(3));

A(k, k) central;

if i == 2 & J == 2
A(k, k+1) = horizontal;
A(k, k+N_) = vertical;

F(k) = g - horizontal=*u0 (i,
elseif i > 2 && i < M-1 && j ==
A(k, k-N_) = vertical;

A(k, k+1) = horizontal;

A(k, k+N_) = vertical;

F(k) = g - horizontal»u0 (i,
elseif 1 == M-1 && J == 2

A(k, k-N_) = vertical;

A(k, k+1) = horizontal;

F(k) = g - horizontal»u0 (i,
elseif i == M-1 && J > 2 && 3 <

A(k, k-1) = horizontal;

A(k, k+1) = horizontal;

A(k, k-N_) = vertical;

F(k) = g - verticalxu0 (i+1,
elseif 1 == M-1 && J == N-1

A(k, k-1) = horizontal;

A(k, k-N_) = vertical;

F(k) = g - horizontal»u0 (i,
elseif i > 2 && i < M-1 && J ==
A(k, k=1) = horizontal;
A(k, k+N_) = vertical;

A(k, k-N_) = vertical;

F(k) = g - horizontal=uO (i,
elseif 1 == 2 && Jj == N-1

A(k, k-1) = horizontal;

A(k, k+N_) = vertical;

F(k) = g - horizontal*u0 (i,
elseif 1 == 2 && J > 2 && j < N-
A(k, k-1) = horizontal;
A(k, k+1) = horizontal;
A(k, k+N_) = vertical;

F(k) = g - verticalxu0(i-1,
else
A(k, k-1) = horizontal;
A(k, k+1) = horizontal;
A(k, k+N_) = vertical;
A(k, k-N_) = vertical;
F(k) = g;
end
G(k) = g;
k =k + 1;

+ c(x(1), y(3));

o

% left-up corner node

j-1) 3)i

% left boundary nodes

- vertical*u0(i-1,

J-1);
% left-down node

j-1) - verticalwuO(i+1, J);
N-1 % down boundary nodes
3)i

[

% right-down node

j+1) - verticalsuO (i+l, 7J);
N-1 % right boundary nodes
j+1)

% right-up node

j+1) - verticalxuO(i-1, 3J);
1 % up boundary nodes
J) i

% internal nodes

o4

We also encapsulated construction of the contractive operator and shift vector to the

separate function (Listing AT2).

Listing A.12: Function to construct contractive operator and shift vector for iteration

process.

function [L, b, g] = get_contractive_operator_and_shift_based_on_SOR(A, f, M, N, omega)

GET_CONTRACTIVE_OPERATOR_AND_SHIFT_BASED_ON_SOR

This function constructs the contractive operator and the shift-vector based on the SOR

oo oo oe

iteration scheme

$ SYNTAX: [L, b, g] = get_contractive_operator_and_shift_based_on_SOR(A, f, M, N, omega)
% INPUT: A system matrix

% f system right part

% M size of x - direction of mesh

% N size of y - direction of mesh

% omega parameter in interval (0, 2)

% OUTPUT: L matrix of contractive operator

% b shift vector

% a contractivity parameter of operator L

o

define size of contractive operator
n=(M-=-2)x(N - 2);

o

init unit matrix

—

= eye(n);

o

get diagonal component of matrix A

|w)

= diag(diag(a));

o

get lower triangular part of matrix A without diagonal
A = tril (A, -1);

define matrix according to SOR scheme

=

o

w

= D/omega + LA;

o

construct contractive operator for iteration process

L =1I-B\ A;

% construct shift vector for iteration process
b =B\ f;

% calculate contractivity parameter

g = norm(L);

end

The reliable iteration process itself is included in the function
reliable_sor_iteration_scheme from Listing BA—T3. This obtained results are saved
as graphics and tex-file and presented in the command window
(output_result_estimates_graphics, output_result_estimates_to_console

and output_result_estimates_to_texfile funCtiOIlS) .

25

Listing A.13: Function to renumber internal nodes of the set.

function [V, error, M_minus, M_plus, MO_plus, M_upper, M_lower, M_lambda_min, M_cond]

o0 oo o°

oo

0 o0 A0 0 0 A0 A0 0 O A d° 0 A A O O A o O A d° o o0 oo o

o

3
S

reliable_sor_iteration_scheme (u0, U, eps, L, b, g, M, N, A, f)

RELIABLE_SOR_ITERATION_METHOD
This function solves the system Axx = f with SOR iteration scheme
and controls the reliability of the approximate solution by Ostrowski a

posteriori, a priori and some estimates based on the residual.

SYNTAX: [V, error, M_minus, M_plus, MO_plus, i_upper, i_lower, i_Rep, i_cond]

reliable_sor_iteration_method(u0, U, eps_iter, L, b, g, M, N, A, f)

INPUT: u0 initial guess in iteration process
§) projection of the exact solution to the mesh
f right part of system
eps accuracy level between x_k and x_{k-1}, where k =1,

., stoping criterion

L contractive operator matrix
b shift vector
q contractivity parameter
M size of x - direction of mesh
N size of y - direction of mesh
A system matrix
f system right part
OUTPUT:
v solution of the problem
error true error
M_minus a posteriori lower error estimate
M _plus a posteriori upper error estimate
MO_plus a priori error estimate
M_upper upper error bound based on residual
M_lower lower error bound based on residual
M_lambda_min upper error bound based on residual and mininum eigenvalue
M_cond upper error bound based on condition number of

system matrix

init solutions storages

Vprev = zeros (M, N);

v

3
S

M_
N_

3
S

= zeros (M, N);
defined auxiliary sizes of the problem after renumbering
=M - 2;
=N - 2;

init error and estimates storages

error = [1;

M_plus = [
MO_plus = [
M_minus = [
M_upper = [
M_lower = [

M _cond = [];
M_lambda_min = [];

3
S

x0

get solutions in 1D
= convert_solution_from_2D_to_1D(V(2:M-1, 2:N-1), N_, M_);

X_prev = convert_solution_from 2D_to_1D (Vprev(2:M-1, 2:N-1), N_, M_);

26

x_exact = convert_solution_from 2D _to_1D(U(2:M-1, 2:N-1), N_, M);

% define the error upper bound as accuracy criterion
Maj = (q/(1 - gq)) * norm(R(x0, L, b));

% init iterator

while Maj > eps

% construct next step of the approximation sequence
x = L % x_prev + b;

o

get solution in 2D
V = convert_solution_from_1D_to_2D(x, u0, N, M);

Vprev = convert_solution_from_1D_to_2D (x_prev, u0, N, M);

% construct true error

error (1) = norm(x - xX_exact);

% get error estimates based on contractivity

[M_minus (i), M_plus(i), MO_plus(i)] =
get_contractivity_estimates (x, x_prev, x0, i, L, b, 9);

% get error estimate based on residual of the problem

[M_upper (i), M_lower (i), M_lambda_min(i), M_cond(i)] =
get_estimates_based_on_residual (x, x_exact, A, f);

% set the accuracy criterion

Maj = M_plus(i);

X_prev = x;
i=1+ 1;

end

end

Finally, we present functions, which construct estimates included in Listings B4
and A3

Listing A.14: Function to construct estimates based on the contractive properties of

iteration operator.

function [M_minus, M_plus, MO_plus] = get_contractivity_estimates(x, x_prev, x_0, i, L, b,
q)

o

o

GET_CONTRACTIVITY_ ESTIMATES
This function constructs error estimates based on the contractive properties of L from

o

input data

% SYNTAX: [M_minus, M_plus, MO_plus] = get_contractivity_estimates(x, x_prev, x_0, i, L,
b, q)

% INPUT: X current input approximation

% X_prev previous input approximation

% x_0 initial input approximation

o
-

step number

o

contractive operator

o
o B

shift vector

57

o

q contractive parameter

% OUTPUT: M_minus a posteriori lower bound
% M_plus a posteriori upper bound
% MO_plus a priori upper bound

% construct error estimates

M_plus = (g /(1-9)) * norm(R(x_prev, L, b));
MO_plus = (g”i/(l-g)) * norm(R(x_0, L, b));

M minus = (1 /(l+g)) * norm(R(x, L, b));

end

Listing A.15: Function to construct estimates based on the residual.

function [M_upper, M_lower, M_lambda_min, M _cond] = get_estimates_based_on_residual (x,

x_exact, A, f)

o

GET_ESTIMATES_BASED_ON_RESIDUAL

This function constructs estimates based on the residual of system Axx = b and

o

properties of matrix A

o

% SYNTAX: [M_upper, M_lower, M_lambda_min, M_cond] =

% get_estimates_based_on_residual (x, x_exact, A, b)

% INPUT: X approximate solution of the system

% x_exact exact solution of the system

% A system matrix

% f system right-part

% OUTPUT: M_upper error upper bound based on residual

% M_lower error lower bound based on residual

% M_lambda_min error upper bound based on residual and

o

lambda_min

o

M_cond error lower bound based on conditional number

of system matrix

o

o

define parameter
= 2;
=p /(p - 1);

Q T

o

define the residual of the problem
r = Axx - f;

% define minimal eigenvalue of matrix

lambda_min = min(eig(A));

o

construct auxiliary term and constant

_p = norm(r, p)"2 / norm(A’'xr, q);

Qo

_p = norm(A’, q) * norm(A"~(-1), p);

o

construct error estimates

M_upper = C_p * a_p;

M_lower = a_p;

M_lambda_min = 1/lambda_min % norm(r, p);

M_cond = cond (A, p) * norm(x_exact, p) * norm(r, p) / norm(f, p);

end

o8

A.5 Listing 5. Example 310

Consider the code that was implemented to test the general form of the upper bound
(B23) in Example BT0. In the main function, we define matrices @) by loading them

from the text file (generated and saved in advance).

Listing A.16: Function to test general estimate.

function general_estimate_test ()

o

GENERAL_ESTIMATE_LAMBDA_ MIN_COMPARISON_TEST
This function tests behavior of the general estimate and compares it to

o o

the well known estimate M_lambda_min.

o

SYNTAX: general_estimate_test ()
INPUT: -
OUTPUT: -

o oo

o

% clear the console screen

clc;

warning off all;

% define format of console output data
format long e;

% define example number
example_number = 9;

% define matrix number

matrix_number = 9;

% open file to output results
filename = strcat (’../out/numerical-results—-example-’, num2str (example_number), ’.tex’);
texfile_id = fopen(filename, ’'wt’);

% set the required accuracy
eps = le-10;

o

size of the system and unknown vector
n = 50;

o

> construct matrix A = Q' * D * Q;
Q = load_matrix (matrix_number) ;
Lambda = diag(linspace(l, n, n));
% construct the right part

f = ones(n, 1);

% construct error and general form of estimate during solution search by iteration Jacobi
method

[i_m _gen_with_eta, i_m_gen_without_eta] =
jacobi_method_with_general_and_lambda_min_estimate(n, Q, Lambda, £, eps);

% output obtained results to the graphics
output_result_effectivity_indexes_graphics(i_m_gen_with_eta, i_m_gen_without_eta,
n, example_number, matrix_number, texfile_id);

end

29

The estimate (BZ3) is tested on the sequence of approximate solutions generated
by the Jacobi iteration scheme. The function
jacobi_method_with_general_and_lambda_min_estimate has the same structure as
the iteration function discussed before. We discuss the function which we use to con-

struct the general estimate (see Listing AT1).

Listing A.17: Function to construct general estimate.

function e = get_m_gen_with_eta(x, Q, Lambda, y, f, lambda, eta)

GET_M_GEN_WITH_ETA
This funcition contruct general form of estimate with optimized shift
in flux y = Lambda * Q » x + eta and optimized parameter beta.

SYNTAX: e = get_m_gen_with_eta(x, Q, Lambda, y, f, lambda, eta)
INPUT: X approximate solution
Q upper diagonal unitary matrix

Lambda diagonal matrix

0 o0 A0 o 0 0 A0 O 0 A d° o0 O d° o o°

y flux vector
f system right part
lambda minimal eigenvalue
eta optimized shift vector in flux y
OUTPUT: e general form of error estimate
compute residual of system Q' * Lambda x* Q * x = f, where x is

o o

approximate solution
residual = r(Q, Lambda, x, f);

% compute optimal parameter beta

Cl = (Lambda” (-1) * eta)’ =* eta;

C2 = ((Q » Q" x eta)’ x eta + 2 * eta’ x (Q * residual) + residual’xresidual)/lambda”2;
beta = sqrt (C2/Cl);

o

= residual + Q' * eta;
(1 + beta)* ((Lambda” (-1) * eta)’ * eta) + (1 + 1l/beta)/lambda”2 % (v’ * Vv);

(IS
|

end

We calculate the optimal 5 according to the formula (BZ4) before the estimate

construction w. To get the optimal 7, we use the function from Listing [A7TR.

60

Listing A.18: Function to construct optimal 7.

function eta = get_optimal_eta (Lambda, Q, beta, lambda, x, f)
% GET_OPTIMAL_ETA

% This function constructs optimized eta for general estimate.

o
g

$ SYNTAX: eta = get_eta(Lambda, Q, beta, lambda, x, f)
% INPUT: Lambda diagonal matrix

% Q upper diagonal unitary matrix

% beta positive parameter

% lambda minimal eigenvalue

% b4 approximate solution

% f system right part

% OUTPUT: eta optimized vector

eps = 10" (-5);
n = length (x);
% get eta with cycle coordinate search procedure

eta = cycle_coordinate_search (@ (eta)f_eta(eta, x, Q, Lambda, f, beta, lambda), ones(n, 1),

eps) ;

end

It is implemented using the cycle coordinate search algorithm (Listing A1) with
golden 1D search included.

Listing A.19: Cycle coordinate search function.

function x = cycle_coordinate_search(f, x_0, eps)

%

% CYCLE_COORDINATE_SEARCH

% This function takes input function, initial vector and accuracy level eps
% and returns optimal argument for function f found with cycle coordinate

% search

3
S

% SYNTAX: x = cycle_coordinate_search(f, x_0, eps)
% INPUT: f function to minimize

% x_0 initial point

% eps accuracy level

% OUTPUT: X optimization point

o

set the dimension of the problem according to the input vector x_0
n = length(x_0);

o

construct set of basic functions

e = eye(n);

o

init valiables before cycle

b

= x_0;

X

_prev = zeros(n, 1);
k = 1;
lambda_min

_5;
5;

lambda_max

61

while norm(x - x_prev) > eps

% remember x before cycle of coordinate descent
X_prev = x;
% cycle of coordinate descent
for i =1 : n
% get optimal parameter lambda with golden section search algorithm
lambda = golden_section_search (@ (lambda) (f(x + e(:, 1) % lambda)), lambda_min,
lambda_max, 107 (-10));
% transform vector in one-coordinate direction
x = x + lambda * e(:, 1i);
end
k =%k + 1;
end
end

A.6 Listing 6. Example &7

Consider implementation of the reliable Picard-Lindeltf method applied to the problem
(E13) in Example B2, Again, the main function contains the problem definition (see
Listing BA—20).

Listing A.20: Function to test reliable Picard-Lindel6f method.

function picardLindelofMethodForEquationsTest ()

o

o

picardLindelofMethodForEquationsTest
This function defines test problem, data required to solve it with interation

oo oo

Picard-Lindelof method and submits the solver

o

SYNTAX: picardLindelofMethodForEquationsTest ()
INPUT: -
OUTPUT: -

oo o

o

tic;

clc;
warning off all;
format long e;

% define symbolic variables
syms Phi u t

o

% open tex—-file for results of calculation
file_name = strcat(’../out/numerical-results-for-example-13.tex’);
texfile_id = fopen(file_name, 'wt’);

example_number = 13;

% define problem statement: right part of problem, time interval and initial condition

62

symPhi = ux4xt*sin(8«t);

timeInterval = [0, 3/2];

u 0 = 1;

o

% get 2nd derivative of right part and exact solution of problem

[symd2Phidudt, symUExact] = problemAnalisys (symPhi, timelInterval, u_0);

o

set the required accuracy
E = 10" (-1);

o

set the required constant
g = 0.5;

o

output problem statement to console and tex-file

outputProblemStatementToConsole (example_number, symPhi, timeInterval, u_0, symUExact)

outputProblemStatementToTexFile (texfile_id, example_number, symPhi, timeInterval, u_0,

symUExact) ;
% submit Picard-Lindelof iteration method
picardLindelofSolver (texfile_id, example_number,
u_0O,
symd2Phidudt,
timeInterval (1),

E, a);

timelInterval (2),

% close all opened files

fclose('all’);

toc;

end

Here, the function picardLindelofSolver is responsible for solving the problem.

Listing A.21: Function to solve ODE with guaranteed accuracy.

function picardLindelofSolver (file_id, example_number, u_0, symd2Phidudt, t_0O, t_N, E, q)

o
% picardLindelofSolver

% This function solves the problem with guaranteed Picard-Lindelof
% iteration method

3
S

% INPUT: file_id open tex-file id

% example_number example number used to save the results

% u_0 Dirichlet boundary coundition

% symd2Phidudt symbolic function, 2nd derivative of the right part of problem
% with respect to variables ’"u’ and ’'t’

% t_0 upper border of problem time interval

% t_N lower border of problem time interval

% E required accuracy level

% a required contractivity constant

% OUTPUT: -

o

% define symbolic variables

syms u tau t

63

Solution = struct (’f’, 0);

% get time—-grid based on right part function properties and

o

% required properties for solution

dPhyduMonotonyPoints = [

.253594729763804,
.392699081698724,
.614147554929360,
.785398163397448,
.997333214051655,
.178097245096172,
.38569230081213];
dPhydtMonotonyPoints = [.
.134609248288975,
.253594729763804,
.455449645928175,
.614147554929360,
.822291716590292,
.997333214051655,
.20369504291218,
.38569230081213];

P P O O O O O O O K O O O O o O

[N, t, ~] = dichotomyMethod (g, t_0, t_N, dPhyduMonotonyPoints);

k = 2;
eps_k E / N;
m = 70;
70000;

iter_num = 30;

o

size of mesh on interval [t_i, t_{i+1}], i = 0,

m_int size of auxiliary mesh on interval [z_7, z_{j+1}1],

o° oo

overstated value of the possible iterations number

, N-1
j =0,

outputDichotomyResultsToConsole (N, eps_k);
outputFragmentationDetails (m, m_int);
outputDichotomyResultsToTexFile (file_id, N, eps_Kk);
globalUExact = [];

globalTime = [1;

globalUCurr = [globalUExact uExact (t_0)];
globalTime = [globalTime t_01];

errorArray = zeros(l, N + 1);
intErrorArray = zeros(l, N + 1);
majorantArray = zeros(l, N + 1);
optMajorantArray = zeros(l, N + 1);

fprintf (‘\n3. Iterative cycle:\n’);
while t(k-1) < t_N
fprintf (' \nInterval #%i’, k-1);
if k == 11
fprintf ("Ops!’);

end

o

% initial data for function and time grid creation

64

a = t(k-1);
b = t(k);
s = 1;

[

% construct mesh for integration and interpolation

t_tau = linspace(a, b, m);
t_int_tau = linspace(a, b, (m - 1) % (m_int - 1) + 1);
u_curr_tau = zeros(l, m);

o

% projection of the exact solution on the mesh

if k == 2

u_start = @(t) (uStart(t));
else

u_start = inline(sym(u_0));
end

u_prev_tau(l, :) =

u_start (t_tau);

u_prev_int_tau(l, :) = u_start(t_int_tau);

phi_prev_int_tau = Phi(u_prev_int_tau, t_int_tau);

% projection of the exact solution on the mesh

_exact_tau = uExact (t_tau);

$profile on

L1l = getLipschitzConstantLl (symd2Phidudt, t_int_tau, dPhyduMonotonyPoints);

[

% initialization of data

er = max (abs (u_prev_tau - u_exact_tau));
Error = zeros (1, iter_num);

Majorant = zeros(l, iter_num);

Est_e_interp = zeros(l, iter_num);

Est_e_integr = zeros(l, iter_num);

D = zeros(l, iter_num);

solution = struct (‘u’, 0);

right_part = struct(’phi’, 0);

while er > eps_k

[L2, 1] = getLipschitzConstantL2 (u_prev_int_tau, t_int_tau, dPhydtMonotonyPoints);
L = L1 + getMultiplicationResult (L2, 1);
% 1. calculate new function by numerical integration

[u_curr_tau, Est_e_integr(s)] = numericallntegral (t_tau, t_int_tau,

phi_prev_int_tau, u_0, m_int, L);

s 2.

o

calculate middle points with help of interpolation with

% spline using

u_curr_int_tau

% 3.

$phi_curr_tau

calculate

phi_curr_int_tau =

function values that have been obtained on previous step

= getPiecewiselLinearInterp(t_tau, t_int_tau, u_curr_tau,
next step right part function values
= phi_inline (t_tau, u_curr_tau);

Phi (u_curr_int_tau, t_int_tau);

65

m_int);

o

% 4. computation of error and majorant
[D, Error, Majorant, Est_e_interp, Est_e_integr, er] =
calculateErrorMajorant (D, Error, Majorant, Est_e_interp, Est_e_integr,
s, u_prev_tau, u_curr_tau, phi_prev_int_tau, t_int_tau,
L, g, u_exact_tau);

% output error and majorant to console
fprintf (' \ter = %1.4e\n\teps_k = %1.4e\n’, Error(s), eps_k);

outputErrorMajorantToConsole (Error, Majorant, s);
u_prev_tau = u_curr_tau;
u_prev_int_tau = u_curr_int_tau;

phi_prev_int_tau = phi_curr_int_tau;

solution(s) .u = u_curr_tau;

right_part (s) .phi = phi_curr_int_tau;

end

error_size = s - 1;

% calculate additional solution for sequence %$of the approximate solutions

% to find opimized upper bound for the error of approximate solution on the previous
step

[L2, 1] = getLipschitzConstantL2 (u_prev_int_tau, t_int_tau, dPhydtMonotonyPoints);

L = L1 + getMultiplicationResult (L2, 1);

[u_add_tau, Est_e_integr(s)] = numericallntegral (t_tau, t_int_tau, phi_prev_int_tau,
u_0, m_int, L);

solution(s) .u = u_add_tau;

% calculate optimized majorant
[optMajorant] = getOptimizedMajorant (error_size, t_int_tau, solution, right_part, L, g
, Est_e_integr, s);

errorArray (k) = Error (error_size);
intErrorArray (k) = intErrorArray (k-1) + Error (error_size);
majorantArray (k) = majorantArray (k-1) + Majorant (error_size);
optMajorantArray (k) = optMajorantArray(k-1) + optMajorant (error_size);
one = ones(l, length(t_tau));

if k ==

globalTime = t_tau;

globalUCurr = u_curr_tau;

globalUExact = u_exact_tau;
globalError = one * Error (error_size);
globalMajorant = one % Majorant (error_size);
globalOptMajorant = one * optMajorant (error_size);
globalInterpEst(k - 1) = (g / (1 - g)) *» Est_e_interp(error_size);
globalIntegrEst(k - 1) = (g / (1 - qg)) *» Est_e_integr (error_size);
globalOstrEst (k — 1) = (g / (1 - g)) * D(error_size);

else

66

additionError = getAddition (globalError (length(globalError)), globalError (length (
globalError)) + Error (error_size), length(t_tau));

additionMajorant = getAddition(globalMajorant (length(globalMajorant)),
globalMajorant (length (globalMajorant)) + Majorant (error_size), length(t_tau));

additionOptMajorant = getAddition (globalOptMajorant (length (globalOptMajorant)),
globalOptMajorant (length (globalOptMajorant)) + optMajorant (error_size), length

(t_tau));
globalTime = [globalTime(l: length(globalTime) - 1) t_taul;
globalUCurr = [globalUCurr(l: length(globalUCurr) - 1) u_curr_taul;
globalUExact = [globalUExact (1: length(globalUExact) - 1) u_exact_taul;
globalError = [globalError(l: length(globalError) - 1) additionError];
globalMajorant = [globalMajorant (1: length(globalMajorant) - 1)
additionMajorant];
globalOptMajorant = [globalOptMajorant (1: length(globalOptMajorant) - 1)
additionOptMajorant];

globallInterpEst (k — 1)
error_size);

globalIntegrEst (k - 1) = globallntegrEst(k - 2) + (g / (1 - qg)) = Est_e_integr(
error_size);

globalOstrEst (k - 1) = globalOstrEst(k - 2) + (g / (1 - gq)) * D(error_size);

globalInterpEst(k - 2) + (g / (1 - qg)) » Est_e_interp(

end

% output in tex-file table with error and different estimates
outputIterativeErrorOptMajMajToTexFile (file_id, error_size, Error, optMajorant,

Majorant)

Solution(k-1).f = u_curr_tau;

u_0 = u_curr_tau(length(u_curr_tau));

end

outputPartitionsOfErrors(t, globallInterpEst, globallIntegrEst, globalOstrEst,
example_number) ;
fprintf (‘\n 4. Result presentation\n’);

o

% output in tex-file table with global error, global majorant and

% optimazed form of global majorant

outputGlobalErrorOptMajMajToTexFile (file_id, errorArray, optMajorantArray, majorantArray);

plotSolutionWithErrorBars (Solution, t, m, errorArray, example_number, file_id);

plotErrorDiagramForArticle(t, intErrorArray, optMajorantArray, majorantArray,
example_number, file_id);

plotExactSolutionWithIntegralErrorMajorantForArticle (Solution, m, t, intErrorArray,
optMajorantArray, majorantArray, example_number, file_id);

plotResultForArticle (globalTime, globalUCurr, globalUExact, globalError, globalOptMajorant

, globalMajorant, example_number, file_id);

end

We first define sets of the zeros of the function %‘5 and %‘f, which are used in numerical

norm calculation (this information should be provided with the problem). Then, we

67

submit the function dichotomyMethod to the obtained time-mesh, which will be used
in the iteration process. We apply the integration operator on every time interval of
the mesh obtained by dichotomyMethod.

Listing A.22: Function to obtain time-mesh for applying the Picard-Lindel6f method.

function [N, t, arrayL] = dichotomyMethod(qg, t_0, t_N, monotonyPoints)

dichotomyMethod

This function generates adaptive time mesh according to dichotomy method

SYNTAX: [N, t, arrayL] = dichotomyMethod(qg, t_0, t_N, monotonyPoints)
INPUT: q required contractivity level constant

t_0 lower bound of time interval

t_N upper bound of time interval

monotonyPoints monotony intervals on fucntion dPhidu

0 o0 A0 0 0 o0 o o o0 o0 oo oo

OUTPUT: N number of time interval
t adaptive time mesh
arrayL Lipschitz constants on every time mesh interval

o

% define structure linkedList
1istObj = linkedList ([t_0 t_NJ);
index = 1;

arrayL = [];

o

% continue iteration process till reaching the last node of time mesh

while listObj.getItem(index) ~= t_N
a = listObj.getItem (index) ;
b = listObj.getItem(index + 1);

L = numericNorm (@ (t) (absdPhidu(t)), a, b, monotonyPoints);
kappa = L * (b - a);
if kappa > g

c = (a +Db) / 2;
listObj.addAfter (c, index);
else
arrayL(index) = L;
index = index + 1;
end
end
t = listObj.getList();
N = length(t) - 1;
end

The algorithm is already formalized in Algorithm [@. We decrease the time interval
until the moment it satisfies the g-contractivity condition (E8) for the operator (E2).
Next, we submit the cycle over every subinterval of the obtained time-mesh. Esti-
mation of the Lipschitz constants L; and L is the most time consuming procedure. On
every step of this cycle, we consider the time interval [t;, t;11] as an independent unit. In
order to interpolate and integrate on the i-th interval, we define the refined time mesh

t. and t" respectfully. After preparing vectors for approximation v and ¢ we submit

68

the Picard-Lindelof cycle. It contains the procedure of the numerical integration func-
tion ¢ and construction of the function u on the mesh ¢, (function numericalIntegral,
see Listing B23) and interpolation of the function u to the refined mesh ¢ (function

getPiecewiseLinearInterp, see Listing BA24).

Listing A.23: Function to integrate ¢ and obtain function v on the mesh ¢,.

function [u_tau, est] = numericalIntegral (t_tau, t_int_tau, phi_int_tau, u_0, m_int, L)

o

o

numericalIntegral
This function calculates numerical integral using trapezoid quadrature

oo oo

and constructs estimate of integration error

o

% SYNTAX: [u_tau, est] = numericallntegral (t_tau, t_int_tau, phi_int_tau, u_0, m_int, L)
$ INPUT: t_tau time mesh

% t_int_tau refined time mesh for integration

% phi_int_tau projection of function Phi on refined time mesh

% u_0 Dirichlet boundary condition

% m_int number of integation points

% L Lipschitz constant

% OUTPUT: u_tau approximate function on time mesh t_tau

% est integration error estimate

m = length(t_tau);

o

set storage for new approximate solution
_tau = zeros(l, m);

o

% define step of integration refined mesh

h_int = t_int_tau(2) - t_int_tau(l);
% initialize start wvalue

u_tau(l) = u_0;

est = 0;

fori=1:m-1

% remember start and end indexes
i_start = (i - 1)*(m_int - 1) + 1;

i_end = ix (m_int - 1) + 1;

% define set of function values
f = phi_int_tau(i_start : i_end);

% define time-mesh

o

= t_int_tau(i_start : i_end);
% get Lipschitz constant

lipschitzConstant = L(i_start : i_end-1);

% calculate next value of the approximate solution
u_tau(i + 1) = trapezoidQuadrature(f, h_int) + u_0;
% calculate integration error

est = est + getTrapezoidQuadratureEstimate (f, t, lipschitzConstant);

% 1init next step initial value
u_0 = u_tau(i + 1);
end

end

69

function int = trapezoidQuadrature(f, h)

n = length(f);

int = hx(£(1) + £(n) + sum(£f(2 : n - 1)));
end

function est = getTrapezoidQuadratureEstimate(f, t, L)
est = 0;
for i = 1 : length(t) - 1
est = est + abs(L(i)*x(t(i + 1) - t(i))"2 - (£(1 + 1) - £(i))"2/L(1))/4
end
end

function Int = threeByEightInt (x, V)

h = x(4) - x(1);
if length(y) == 4

Int = (h/8) » (y(1) + 3x(y(2) + y(3)) + y(4));
else

firstSum = 0;

i
secondSum = 0;

i=2;

while i <= length(y) - 2
firstSum = firstSum + y (i) + y(i + 1);
i=1+3;

end

i = 4;

while i <= length(y) - 3

secondSum = secondSum + y(i);
i =1+ 3
end
Int = (h/8)%(y(l) + y(length(y)) + 3+«firstSum + 2xsecondSum);
end

end

Listing A.24: Function to obtain u interpolated to the refined mesh "

function u_int_tau = getPiecewiselLinearInterp(t_tau, t_int_tau, u_tau, m_int)

% getPiecewiseLinearInterp

% SYNTAX: u_int_tau = getPiecewiselinearInterp(c, t_int_tau, u_tau, m_int)
% INPUT: t_tau time mesh

% t_int_tau refined time mesh

% u_tau approximate solution projected on the mesh t_tau

% m_int number of points on every interval [t_tau(i)

% t_tau(i+l)], i = 0, N-1

% OUTPUT: u_int_tau

o

% define storage for interpolated solution
u_int_tau = zeros(l, length(t_int_tau));

% init solution in the first node of the mesh
u_int_tau(l) = u_tau(l);

o

% submit the cycle to interpolate u_tau on every time interval [t_tau(i),

% t_tau(i+l)], i =1, ..., n
for i = 1 : length(t_tau) -1

70

% This function interpolates input approximate function by piecewise linear functions

k = (u_tau(i + 1) - u_tau(i))/(t_tau(i + 1) - t_tau(i));
b = (u_tau(i) * t_tau(i + 1) - u_tau(i + 1) x t_tau(i))/(t_tau(i + 1) - t_tau(i));
% extend function u_tau on the interval [t_tau(i), t_tau(i+l)], i = 1,
% ., n by linear function y_1i = x 1 « k + b
for j = 2 m_int
index = (i - 1) » (m_int - 1) + j;
u_int_tau(index) = t_int_tau(index) * k + Db;
end
end
end

Finally, we can obtain the error bounds after construction of a new approximation.

This is provided by the function calculateErrorMajorant from Listing BA=24.

Listing A.25: Function to obtain error bounds.

function [D, Error, Majorant, Est_e_interp, Est_e_integr, e] =

calculateErrorMajorant (D, Error, Majorant, Est_e_interp,

Ll

Est_e_integr,

dr

Sy

u_prev_tau, u_curr_tau, phi_prev_int_tau, t_int_tau, u_exact_tau)

o

calculateErrorMajorant

o

This function constructs error bounds for obtained approximation

o

o

SYNTAX:

oo oe

o

INPUT:

A 0 d0 A0 0 0 A o0 0 o° A0 d° o

o

OUTPUT:

0 A0 o o0 o0 d° d° o0 oo

o

Error(s)

[D, Error, Majorant, Est_e_interp, Est_e_integr, e] =
calculateErrorMajorant (D, Error, Majorant, Est_e_interp, Est_e_integr,
s, u_prev_tau, u_curr_tau, phi_prev_int_tau, t_int_tau, L, g, u_exact_tau)
D array of differences between the exact solution
and approximations
Error array of true errors for approximations
Majorant array of majorant for Error array

Est_e_interp
Est_e_integr
s

u_prev_tau
u_curr_tau
phi_prev_int_tau
t_int_tau

L

q
u_exact_tau
D

Error

Majorant

Est_e_interp

Est_e_integr

% get the maximal absolute value of difference,

max (abs (u_curr_tau

interpolation error bound

integration error bound

current iteration

approximate solution on the previous step

approximate solution on the current step

function phi projected on refined time-mesh

refined time-mesh

Lipschitz constant of function Phi

contractivity parameter

exact solution projected on time-mesh

updated for the current iteration differences between
the exact solution and approximations

updated for the current iteration array of true errors
for approximations

updated for the current iteration array of majorant
for Error array
updated for the
error bound
updated for the

current iteration interpolation
current iteration integration
error bound

current iteration

continous norm for error

- u_exact_tau));

71

o

% get partition of the error estimate

D(s) = max(abs(u_prev_tau - u_curr_tau));

% get interpolation error estimate

Est_e_interp(s) = getInterpolationErrorEstimate (t_int_tau, phi_prev_int_tau, L);
% get the general error estimate

Majorant(s) = (g / (1 - q)) * (D(s) + Est_e_integr(s) + Est_e_interp(s));

e = Error(s);

end

We use the procedure getoptimizedMajorant to obtain the advanced form of the
majorant (see Listing A=28).

Listing A.26: Function to obtain advanced error bounds.

function optMajorant = getOptimizedMajorant (error_size, t_int_tau, solution, right_part, L

, d, Est_e_integr, s)

o

o

getOptimizedMajorant

This function calculates the optimized error estimate based on additional

oo oo

terms of the sequence

o

% SYNTAX: optMajorant = getOptimizedMajorant (error_size, t_int_tau, solution, right_part
, L, g, Est_e_integr, s)

% INPUT: error_size size of error

% t_int_tau refined time mesh

% solution approximate solution storage

% right_part right part solution storage

% L Lipschitz constant of function Phi

% q contractivity constant

% Est_e_integr integration error estimate

% s current step

% OUTPUT: optMajorant optimized error majorant

% define storage for estimate

optMajorant = zeros(l, error_size);

for 1 = 1 : error_size
% get partition of error estimate, interpolation error estimate

e_int_est = getInterpolationErrorEstimate (t_int_tau, right_part(l).phi, L);

% get optimal error estimate

optMajorant (1) = (1/(1 - g"(error_size + 1 - 1)))*(max(abs(solution(l).u - solution/
error_size + 1).u)) + e_int_est + Est_e_integr(s));

end

end

At the end of every iteration we save the obtained results to the global storages.

This results will be written to the result graphics and files.

72

B References

[1]

2]

3]

4]

5]

6]

7]

18]

19]

G. Auchmuty. A posteriori error estimates for linear equations. Numer. Math.,
61(1992), p. 1 - 6.

E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1972.

K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equa-
tions, Cambridge, Univesity press, 1996.

T. Eirola, A. M. Krasnosel’skii, M. A. Krasnosel’skii, N. A. Kuznetsov, O. Nevan-
linna, Incomplete corrections in nonlinear problems, Elsevie, Nonlinear Analysis,
Vol. 25, Num. 7, 1995, p. 717 — 728.

E. Lindelof, Sur l’application de la méthode des approximations successives aux
équations différentielles ordinaires du premier ordre. Comptes rendus hebdo-
madaires des séances de I’Académie des sciences, Vol. 114, 1894, p. 454 — 457.

A. N. Kolmogorov, A. N. Fomin, Elements of the theory of functions and functional
analysis, Vol. 1, Metric and Normed Spaces. Publishing house "Nauka", Moscow,
1976.

P. Neittaanmaki, S. Repin, Reliable methods for computer simulation. Error control

and a posteriori estimates, Elsevier, New York, 2004.

O. Nevanlinna, A note on Picard—Lindeldf iteration, Numerical Methods for Or-
dinary Differential Equations, Lecture Notes in Mathematics, Vol. 138, 1989,
Springer, Berlin.

O. Nevanlinna, Power bounded prolongations and Picard—Lindeldf iteration, Nu-
merische Mathematik, 1990, Vol. 58, Num. 1, p. 479 — 501.

[10] O. Nevanlinna, Linear acceleration of Picard-Lindeldf iteration, Numerische Math-

ematik, 2005, Vol. 57, Num. 1, p. 147 — 156.

[11] O. Nevanlinna, Remarks on Picard-Lindeldf iteration Part I, BIT Numerical

Mathematics, 1989, Vol. 29, Num. 2, p. 328 — 346.

73

[12] O. Nevanlinna, Remarks on Picard-Lindelof iteration Part I, BIT Numerical
Mathematics, 1989, Vol. 29, Num. 3, p. 535 — 562.

[13] A. Ostrowski, Les estimations des erreurs a posteriori dans les procédés itératifs,
C.R. Acad. Sci, Paris Sér. A - B, 275(1972). p. A275-A278.

[14] S. Repin, A Posteriori error estimates for partial differential equations, Walter de
Gruyter, Berlin, NewYork, 2008.

[15] A. Samarski, A. Gulin. Numerical methods. Moscow 'Nauka’, 1989.

74

