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Abstract
In this thesis, we consider a supersymmetrized version of the Standard Model ex-
tended with a technicolor sector. We specialize in the regime of the model in which
the technicolor sector is fully responsible of the electroweak symmetry breaking
and the natural elementary Higgses of the supersymmetric model only transmit
the breaking to the Standard Model fermions, thereby giving them masses.

In particular, we consider the vacuum structure of the effective theory, find it
to be different to that of a mere technicolor model and study the contributions
of the new sector to the oblique electroweak parameters. Relative to the current
experimental limits, we find the model viable.
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Tiivistelmä
Hiukkasfysiikan standardimalli on tarkin tähän mennessä rakennettu fysikaalinen
teoria, eikä suoria ristiriitoja (jos ei huomioida massiivisia neutriinoja) kokeellisten
tulosten kanssa ole. Epäsuoria todisteita siitä, että standardimalli ei kuitenkaan
ole riittävä, on olemassa. Ensinnäkin standardimallista ei löydy pimeän aineen
kandidaattia eikä materian ja antimaterian välistä epäsymmetriaa voida selittää
standardimallin avulla. Toisaalta standardimallin Higgs-sektori on teoreettisesti
ongelmallinen.

Näistä ongelmista johtuen suurilla energioilla tarvitaan jokin perustavanlaatui-
sempi teoria selittämään hiukkasten vuorovaikutuksia. Viimeisten 50 vuoden ai-
kana monia ehdotuksia on esitetty, mutta kokeellisesti saavutettavan energiaskaa-
lan vasta lähestyessä standardimallin pätevyysalueen rajaa tietoa oikeanlaisesta
laajennuksesta ei ole.

Tämä pro gradu -tutkielma käsittelee kahden tunnetun laajennusehdotuksen, tek-
nivärin ja supersymmetrian, yhdistämistä siten, että standardimalliin ensin li-
sätään teknivärisektori, minkä jälkeen saatu kokonaisuus supersymmetrisoidaan.
Tässä tutkielmassa keskitytään erityisesti sellaiseen malliin, jossa skaala, jolla tek-
niväri dominoi on supersymmetristä skaalaa matalampi ja tästä syystä sähköhei-
kon symmetriarikon aiheuttaa täysin uusi teknivärisektori. Tämän symmetriarikon
välittämiseen standardimallin fermioneille sitä vastoin tarvitaan supersymmetriaa.

Tämän mallin pohjalta muodostetaan sähköheikon skaalan efektiivinen teoria ja
tutkitaan saadun teorian tyhjiörakennetta, joka osoittautuu erilaiseksi kuin pelkän
teknivärin tapauksessa. Lisäksi tarkastellaan erityisesti saadun mallin pätevyyttä
sähköheikon teorian tarkkuusmittausten valossa ja selvitetään, aiheuttavatko kos-
mologiset havainnot mallille lisärajoituksia.

Näiden tarkastelujen perusteella malli on hyvin sopusoinnussa nykyisten havain-
tojen kanssa.
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1 Introduction
The Standard Model of particle physics (SM) has proven to be the most accurate
physical theory thus far. Leaving non-zero neutrino masses out, no direct exper-
imental discrepancies have come up. Yet, the particle physicists, in more or less
unison, are ready to leave the non-sinking ship for something more profound. Why
is this?
First of all, there is no dark matter candidate nor can the matter-antimatter asym-
metry be explained within the realm of the SM. Moreover, there are some disturb-
ing theoretical aspects in the SM that make it clear that the SM cannot be the
final truth, even in the non-gravitational world.
This leads us to strive for a more profound theory, but in which direction to pro-
ceed? The first possibility is to take the top-down approach: to shake the whole
foundations and build up something brand new. Maybe the most appealing alter-
native would be the way of supersymmetry (SUSY). The Poincaré symmetry can
be extended to include a symmetry between fermions and bosons as well. This
would solve some of the faults of the SM description, but would bring some new
problems. Moreover, the minimal way to include the spectrum of the SM seems
rather narrowed by experiments.
Another possibility would be approaching the problem from bottom up: to accept
the SM as part of the solution, the entirety of which is still unclear. We would then
hope to extend the SM in a way that would fix the inconsistencies. After realis-
ing that the most severe problems are related to the Higgs sector of the SM, the
most obvious way would be to replace this sector with something else. Arguably,
the most straight-forward way would be considering a composite Higgs field in-
stead of an elementary one. This leads us to technicolor (TC). The appeal of TC
is that the similar mechanisms are already present in Nature, superconductivity
being the best-known example, and that due to the dynamical breaking of the elec-
troweak symmetry, no significant fine-tuning is needed. Technicolor, however, has
its difficulties as well. While perfectly capable of producing the needed electroweak
symmetry breaking pattern, the requirement of simultaneously producing masses
for SM fermions is more problematic. Indeed, the TC sector must be somehow
extended for this purpose.
How about, then, trying to combine these two and hoping to get the best of both of
them? That is, first extend the SM with a TC sector and then supersymmetrize the
whole thing. We would like the electroweak symmetry breaking to be entirely due
to the TC sector, and SUSY would then play the role of the extension responsible
of generating the fermion masses.
Assuming we now have the SM with the TC extension, we are left with a question:
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In which way to carry out the supersymmetrization? One particularly appealing
scenario arises if we include a TC sector with one left-handed doublet of techni-
quarks and their right-handed partners all transforming under the adjoint repre-
sentation of SU(N) of TC. If we then identify one of the right-handed techniquarks
with the fermionic partner of the technigluon, we obtain (after including the nec-
essary SUSY partners for all the fields) exactly the field content of an N = 4
superYang-Mills theory in TC sector. Studying this scenario is the goal of this
thesis.

The thesis is structured as follows. In section 2 we introduce the building blocks
of the model, the Standard Model, technicolor and supersymmetry. Section 3 con-
centrates on combining these into one model and finally in section 4 we study the
so-called strong regime of the model in more detail. A summary of the notations
and conventions used in this thesis can be found in Appendix A.

2 Preliminaries
2.1 The Standard Model
To recap, the Standard Model is a gauge theory of strong and electroweak inter-
actions described by the gauge group SU(3)C × SU(2)L × U(1)Y , with SU(3)C de-
scribing the strong and SU(2)L×U(1)Y the electroweak interaction. While SU(3)C
mediated by massless gluons is confining gauge theory, SU(2)L × U(1)Y is in the
Higgs phase; W±, Z0 mediating the weak interaction are massive. The sponta-
neous breaking of this symmetry is driven by introducing an additional complex
scalar field, the Higgs field, which acquires a non-zero vacuum expectation value
(VEV) [1, 2, 3].

The problems of the SM are mainly related to this Higgs sector. The difficul-
ties arise with the addition of a fundamental scalar field, the mass of which gets
quadratically divergent contributions within the renormalization. The success of
the SM is related to the fact that, even though it must be regarded as a low-energy
theory, it is only logarithmically dependent on the energy scale. Therefore, the SM
is a very good approximation at energies within reach. Now, the mass of the Higgs
particle is quadratically divergent and, thus, there is no natural way (i.e. without
high level of fine-tuning) of explaining why the Higgs particle should be light and
not having a mass of the order of the Planck scale (or some other high scale beyond
which the SM is not applicable any more, e.g. the scale of Grand Unified Theory,
or GUT for short). This is called the hierarchy problem.
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2.1.1 Electroweak constraints

While trying to augment the view beyond the SM, it is important to have some,
preferably model-independent, guidelines based on experiments to maintain some
correspondence with the observed world and the new model. The oblique elec-
troweak constraints are playing this guiding role for models we consider here.

If we consider beyond-SM (BSM) physics and in which way it ought to affect the
electroweak (EW) precision data, we are lead to oblique electroweak corrections.
That is, when considering processes with light fermions in the final state (processes
from which the precision data has been collected), the new physics in EW sector
should have the largest contribution in the self-energies of the weak gauge bosons.
The oblique corrections usually dominate even though there would be new states
coupling directly to SM fermions since usually only few particles couple to a specific
fermion flavour whereas all the charged particles couple to the vector bosons [4].

At the lowest order, these corrections depend on three input parameters which
then should be eliminated by three observables. The most obvious choice for these
observables is the fine structure constant, α, the Fermi coupling constant, GF, and
the mass of the Z boson, mZ , since these are the most accurately measured.

Now, if the mass scale of the new particles is (much) higher than the Z mass,
the vacuum polarisation amplitudes can be Taylor expanded and the effect of
new physics can be parameterized by the so-called STU parameters. Of these
parameters, U is rather unimportant and all the neutral current and low-energy
observables depend only on S and T [5]. These are defined as [6]

αS := 4s2
Wc

2
W

Πnew
ZZ (m2

Z)− Πnew
ZZ (0)

m2
Z

, (1)

αT := Πnew
WW (0)
m2
W

− Πnew
ZZ (0)
m2
Z

, (2)

where sW = sin θW, cW = cos θW and θW is the weak mixing angle, Πnew
ij are the

self-energies and the superscript new points out that the origin of the (S, T ) plane
correspond to SM with Higgs mass mref .

Alternatively, T can be represented by the so-called ρ parameter. Let us denote
the low-energy ratio of charged and neutral current interactions by ρ∗(0). At tree
level in the SM this ratio is given by [7],

ρ = m2
W

m2
Z cos θW

, (3)

and equals to one. This relation is satisfied to better than 1% by experiments [5].
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The deviation from unity is then parameterized by the T parameter [5]

αT = ρ∗(0)− 1. (4)

The experimental limit gives strong restrictions for the Higgs sector. If, however,
there is an unbroken, global SU(2) symmetry, the so-called custodial symmetry
in the Higgs sector, this condition is naturally valid up to electroweak radiative
corrections [8].

As an example of the oblique electroweak parameters, let us write down the oblique
corrections due to the SM Higgs. These read [5]

SH ≈
1

12π ln m2
H

m2
ref

(5)

TH ≈ −
3

16πcW2
ln m2

H

m2
ref
, (6)

where mH is the mass of the Higgs boson and mref the reference mass at which
the S and T parameters have been defined, i.e.

(SSM(mref), TSM(mref)) = (0, 0). (7)

The current experimental limits for reference mass mref = 117 GeV read [6]

S = 0.03± 0.09, and T = 0.07± 0.08. (8)

2.2 Technicolor
2.2.1 Prelude

Technicolor is a common name given to theories where the electroweak symmetry
breaking (EWSB) is due to the dynamics of a new gauge sector instead of an
elementary Higgs field. That is, one introduces a new gauge interaction coupled to
new massless fermions some of which, at least, are weakly coupled. Especially in
the early models, a new sector similar to Quantum Chromodynamics (QCD) was
suggested, and thereby the name technicolor. After that, a variety of models, with
more or less QCD-like dynamics, have been proposed, but the common factor is
that albeit asymptotically free at high energies, the new gauge interaction must
become confining at electroweak scale of around 250 GeV in order to produce the
fermion condensate that breaks spontaneously the global chiral symmetry (able to
contain the SU(2)L ×U(1)Y symmetry group of the SM) of the massless fermions
and, thus, triggers the EWSB.
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Whereas a fundamental Higgs is capable of producing masses for SM fermions via
Yukawa interactions as well, TC must be extended with new gauge interactions
(ETC interactions, for short) to generate fermion masses. As opposed to a funda-
mental Higgs, the dynamical breaking due TC is natural, and therefore avoids the
hierarchy problem.

The idea of TC, a spontaneous breaking of the electroweak symmetry driven by a
new gauge symmetry, was first proposed in 1979 by Weinberg [9] and Susskind [10],
although the idea of dynamical symmetry breaking itself was already widely known
that time.

Whereas much of the appeal of supersymmetry is due to aesthetics, technicolor
is highly motivated by the fact that the very mechanism is already present in
Nature. The best-known example of a similar phenomenon is superconductivity,
where the formation of Cooper pairs is analogous to the formation of the fermion
condensate in TC. Albeit maybe the best-known, this is not the only example.
Perhaps even more motivating is that dynamical symmetry breaking is already
present in the SM. Namely, the quark-antiquark condensate of QCD breaks the
electroweak symmetry with pions as Goldstone bosons. The EWSB due to QCD
is not, however, enough on its own to account for the whole EWSB in the SM
but would give the W bosons a mass of approximately 29 MeV and, Z a mass
of 33 MeV only (note, however, that the ratio MW/MZ would be correct) [11].
Therefore, when considering the whole EWSB in the SM, the QCD driven part is
usually negligible.

The stumbling stone of many TC models is the ETC sector which, if capable of
producing large enough masses for SM fermions, tends to bring about too large
flavour-changing neutral current (FCNC) effects to be compatible with experi-
mental constraints. For a cure, a walking technicolor was proposed in the early
1980’s [12, 13]. In walking TC, the coupling constant is QCD-like in both the
infrared (IR) and the ultraviolet (UV) but in between from TC to ETC scale it
evolves logarithmically, or walks. This makes the theory able to provide a large
anomalous dimension for the fermion mass operator (needed for producing large
enough SM fermion masses) and at the same time, reduces the FCNC contribu-
tions.

2.2.2 Fermions in higher representations

In order an SU(3) TC model, say, with fermions in the fundamental representation
of the TC gauge group to exhibit walking behaviour, one needs to include at least
around eight technifermions [14].

Adding fermions in higher representations to reduce the number of needed fermion
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Figure 1. Left panel: Coupling constant evolvement as a function of energy for a
QED-like (dashed line), a QCD-like (solid gray line) and a walking type (solid black
line) coupling. Right panel: The associated β functions as functions of the couplings.

flavours was first proposed by Eichten and Lane [15] in 1989. Sannino and Tuomi-
nen [16] reintroduced and systematized the idea in 2005 and formulated the so-
called Minimal Walking Technicolor (MWT) model.

Technicolor with fermions in the adjoint representation of SU(N) should be walking
(if not already conformal, as some recent lattice simulations imply) with only two
flavours of techniquarks. Thus, adding fermions into the higher representation can
highly reduce the amount of needed fermion flavours for walking behaviour.

2.2.3Coupling constant development and phase diagrams

Let us use the β functions of the SM interactions as a launch pad to the subject. For
Quantum Electrodynamics (QED) we know that the coupling runs to infinity in
the UV, i.e. the β function is positive whereas with QCD we know the development
to be exactly the opposite with a negative β function. Since the coupling of QCD
tends to zero at high energy, QCD is asymptotically free. Moreover, in the IR, the
coupling runs to infinity making QCD confining.

For a walking theory, the issue is a somewhat more complex. By walking we mean a
theory in which the coupling, instead of rapidly varying, i.e. running, evolves very
slowly from one scale to another, i.e. walks. Between these scales, the coupling lies
near a fixed-point value, α∗, for which β(α∗) = 0. Examples of QED-, QCD- and a
walking-type coupling constant developments with the associated β functions are
depicted in fig. 1.

Now, in order to produce a large enough anomalous dimension for the fermion
mass operator and simultaneously, to reduce the FCNC contributions, we would
like the TC coupling to walk between the scales ΛTC and ΛETC. This means that
the theory should be near conformal, i.e. α ' α∗, between these scales. This,
however, brings about a delicate interplay between the fixed-point value, α∗, and
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Figure 2. Phase diagram for theories with fermions in the (from top to bottom in
the plot): i) fundamental representation (grey), ii) two-index antisymmetric (blue),
iii) two-index symmetric (red), iv) adjoint representation (green) as a function of
the number of flavours and the number of colours. The shaded areas depict the corre-
sponding conformal windows. The upper solid curve represents N I

f (loss of asymptotic
freedom), the lower N II

f (loss of chiral symmetry breaking). The dashed curves show
N III

f (existence of a Banks-Zaks fixed point). The figure has been taken from [14].

the critical value of the coupling, αc, at which the chiral symmetry breaking (CSB)
occurs. Namely, if α∗ < αc, then, due to the renormalization group flow, the theory
reaches the fixed-point α∗, but does not evolve any further (since β(α∗) = 0) and,
thus, the chiral symmetry breaking cannot occur. On the other hand, if α∗ > αc,
chiral symmetry breaking is first achieved due to which the fermions condense,
their screening effect is lost and fixed-point cannot be attained.

Consider a gauge group SU(N) for a fixed N ≥ 2. Depending on the number of
fermion flavours, Nf , and, moreover, on the representation in which the fermions
lie, the theory exhibits different behaviours, i.e. there are different phases to be
identified. These different regions are usually depicted in the form of a phase
diagram in (N,Nf) plane. First of all, there is a number of fermion flavours, denoted
by N I

f above which the theory loses asymptotic freedom. This corresponds to a
QED with non-abelian gauge group and is called the free electric phase. Just
below this limit there should be an IR fixed point, the so-called Banks-Zaks fixed
point [17]. Thus, another interesting limit is the number of fermion flavours, N III

f ,
required for a Banks-Zaks fixed point to appear. For N III

f < Nf < N I
f there is,

therefore, an IR fixed point, α∗, in the theory. It depends on the critical value of the
coupling, αc, at which the CSB occurs, whether the theory with an IR fixed point
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is de facto conformal. Let us, thus, denote the number of fermions, above which the
theory is conformal, i.e. α∗ < αc, by N II

f . For N II
f < Nf < N I

f , the theory is, then,
conformal and this region is called the conformal window. The limits, N I

f , N
II
f , and

N I
f depend drastically on the representation in which the fermions lie. A thorough

study about the limits for different representations of SU(N) can be found in [14].
A phase diagram of SU(N) with fermions in different representations is depicted
in figure 2.

2.2.4Minimal Walking Technicolor

In MWT, one generation of techniquarks is added, a left-handed doublet and their
right-handed singlet partners transforming in the adjoint representation of the TC
gauge group SU(2)TC, i.e.

Qa
L =

(
Ua

L
Da

L

)
, Ua

R, Da
R, a = 1, 2, 3. (9)

Moreover, we must add another generation of leptons to cancel the topological
Witten anomaly [18]

LL =
(
NL
EL

)
, NR, ER. (10)

Gauge anomalies, in turn, cancel with the following hypercharge assignments

Y (QL) = y

2 , Y (UR, DR) =
(
y + 1

2 ,
y − 1

2

)
,

Y (LL) = −3y
2 , Y (NR, ER) =

(−3y + 1
2 ,

−3y − 1
2

)
,

(11)

where y is a real-valued parameter (we will consider gauge anomaly cancellations
in more detail for a general SU(N) TC group in section 3.1, but let us here just
take the above hypercharge assignment without further justification).

A thorough construction of a low-energy theory for MWT can be found in [19],
and we will follow that here with the exception that we will not fix any specific
values for N and Nf but carry on with the general case with adjoint fermions since
this does not make things any more difficult.

Before doing that, however, let us first study the chiral symmetry in more detail.

2.2.5 SU(N) technicolor with Nf adjoint techniquarks

Let us consider next a theory with Nf fermions in the adjoint representation of
TC gauge group SU(N). First thing to note is that the adjoint representation is
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real implying the relation

(T a)∗ = (T a)T = −T a (12)

for the generators of the gauge group, a = 1, . . . , N2−1. Moreover, the fundamental
representation of SU(2) is pseudoreal implying the condition

(σi)∗ = (σi)T = −σ2σiσ2 (13)

for the Pauli matrices, or in somewhat more useful form

(σµ)∗ = (σµ)T = σ2σ̄µσ2, (14)

where σ̄µ = (σ0,−~σ).

Let us start with massless fermions and write the left- and right-handed compo-
nents of them in the form of Nf component vectors qL and qR, respectively. The
Lagrangian then reads

Lchiral =(q†R q†L)
(

0 iσµ
iσ̄µ 0

)
Dµ

(
qL
qR

)
= q†L iσ̄µDµqL + q†R iσµDµqR,

(15)

where the sigma matrices should be understood as σµ ⊗ 1Nf×Nf and the covariant
derivative reads Dµ = ∂µ − igT aAaµ. The Lagrangian is then invariant under the
chiral group SU(Nf)L × SU(Nf)R. There is, however, even larger global symmetry
if the representation of the gauge group in which the fermions lie is either real or
pseudoreal. Let us consider below only adjoint fermions, i.e. a real representation.
For pseudoreal representation the computation is similar. Thus, to be able to utilise
the reality of the adjoint representation (12) and pseudoreality of the fundamental
representation of SU(2) (14), let us write q := qL and q̃ := −iσ2q∗R. With these new
fields, the Lagrangian reads

Lchiral =q iσ̄µDµq + q̃Tσ2 iσµDµσ
2q̃∗

= q iσ̄µDµq − q̃†σ2DT
µ i(σµ)Tσ2q̃

= q iσ̄µDµq + q̃†Dµ iσ̄µq̃,
(16)

where the minus sign on the second line is due to transposing the second term
and, hence, interchanging two Grassmannian variables. In addition, note that DT

µ

is a formal expression and is to be understood in the following manner:

qTDT
µ = (Dµq)T = ∂µq

T + qT(−ig(T a)TAaµ), (17)

9



which after an integration by parts (and dropping of the surface terms, as usual)
and the use of the reality of the adjoint representation yields

qTDµ = qT(−∂µ + igT aAaµ) (18)

implying a formal relation DT
µ = −Dµ. This relation along with the pseudoreality

condition for the sigma matrices (14) has brought us to the last line of eq. (16). If
we now assign the fields q and q̃ into one 2Nf component field

Q =
(
q
q̃

)
, (19)

we can write the chiral Lagrangian in the form

Lchiral = Q† iσ̄µDµQ, (20)

thereby making the global SU(2Nf) symmetry explicit.

Adding mass terms for the fermions breaks this global symmetry. To find out the
invariant subgroup, let us next consider Dirac mass terms of the form q†RqL + q†LqR.
Writing these in terms of q and q̃ yields

q†RqL + h.c. = − i
2
(
q̃Tσ2q + q̃Tσ2q

)
+ h.c.

= − i
2
(
q̃Tσ2q − qT(σ2)Tq̃

)
+ h.c.

= − i2
(
q̃Tσ2q + qTσ2q̃

)
+ h.c.

= − i
2Q

Tσ2
(

0 1
1 0

)
Q+ h.c. = − i

2Q
Tσ2EQ+ h.c.,

(21)

where on the second line we have again transposed the second term and on the
third line used the pseudoreality condition for the sigma matrices. On the last
line, we have written the terms with the help of the 2Nf component vector Q and
introduced an 2Nf × 2Nf matrix

E =
(

0 1
1 0

)
. (22)

A similar computation for a pseudoreal representation leads to

E =
(

0 −1
1 0

)
. (23)
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Now, since Q transforms under SU(2Nf) as

Q→ gQ, g ∈ SU(2Nf), (24)

the transformations that leave the mass terms invariant satisfy

gTEg = E. (25)

For a real representation, E is symmetric, and the above relation gives the invariant
subgroup SO(2Nf). For a pseudoreal representation the invariant subgroup is the
sympletic group Sp(2Nf). For a complex representation, the mass terms break the
global group to SU(Nf).

2.2.6 Low-energy theory for the Higgs sector

Recall that the SM fermion masses arise from the Yukawa interaction terms be-
tween the fermions and the Higgs field which after the EWSB are (in the unitary
gauge) of the form

− yf√
2

(v + h)(f †RfL + h.c), (26)

where yf is the Yukawa coupling for fermion f , v is the VEV of the Higgs field
and h the physical Higgs field.

Now, instead of the fundamental Higgs field, we would like to break the symmetry
by a techniquark condensate. The above breaking of SU(2Nf) to SO(2Nf) is driven
by the condensate

〈Qα
i Q

β
j εαβEij〉. (27)

In order to build a low-energy theory, let us define an effective variableM in which
the information of the composite Higgs, its pseudoscalar partner and the Goldstone
bosons arising from the spontaneous breaking of the symmetry along with their
scalar partners is encoded. This 2Nf × 2Nf matrix M ∼ QQT transforms as

M → gMgT, g ∈ SU(2Nf). (28)

and obtains a VEV

〈M〉 = v

2E. (29)
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We can now write down the general SU(2Nf) conserving potential for M (up to
dimension four operators) as

VM =− m2
M

2 Tr
[
M †M

]
+ λM

4 Tr
[
M †M

]2
+ λ′MTr

[
M †MM †M

]
− 2λ′′M

[
detM + detM †

]
.

(30)

For a positive m2
M , this potential triggers the chiral symmetry breaking.

Let us then consider the electroweak sector in more detail. First of all, as the global
symmetry SU(2Nf) breaks into SO(2Nf) via the introduction of mass terms for the
chiral fermions, the chiral symmetry SU(Nf)L × SU(Nf)R ×U(1)V breaks into the
vectorial subgroup SU(Nf)V. The vectorial subgroup, thus, lies within SO(2Nf)
whereas the generators of the axial group are broken. It is, therefore, beneficial to
identify the generators of SU(Nf)V, Sa, and those of SU(Nf)A, X i, and, with help
of these, to find out the generators of the chiral group SU(Nf)L×SU(Nf)R×U(1)V.
The choice of the generators in [19] readily generalises to the case of generalNf . The
derivation of explicit realisations of the generators can be found in Appendix B.

From this point on, for notational simplicity, let us only consider the case Nf = 2.
We can assemble the techniquarks into a four-component vector

Q =


UL
DL

−iσ2U∗R
−iσ2D∗R

 , (31)

allowing us to consider the global symmetry SU(4).

The left- and right-handed generators then read (see Appendix B)

La = Sa +Xa

√
2

=
(

1
2σ

a 0
0 0

)
, Ra = XaT − SaT

√
2

=
(

0 0
0 1

2σ
a

)
, (32)

and the generator for U(1)V reads

S4 = 1
2
√

2

(
1 0
0 −1

)
. (33)

Thus, to embed the electroweak gauge group into the global chiral symmetry group,
let us formally gauge the SU(2)L and the subgroup U(1)Y of SU(2)R × U(1)V
generated by

Y = −R3T +
√

2YVS
4, (34)
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where YV is the U(1)V charge, by introducing the covariant derivative for matrix
M

DµM = ∂µM − ig
[
GµM +MGT

µ

]
, (35)

where

gGµ = gW a
µL

a + g′BµY, (36)

and Y is given by eq. (34). Now, as SU(4) spontaneously breaks into SO(4) caus-
ing SU(2)L × SU(2)R to break into SU(2)V, the electroweak symmetry breaks,
consequently, into U(1)Q generated by

Q = L3 + Y =
√

2S3 +
√

2YVS
4. (37)

The further three unbroken generators of SUL× SU(2)R×U(1)V, which, together
with Q, generate the unbroken SU(2)V×U(1)V, act as a custodial isospin insuring
the ρ parameter to be equal to one at tree level.

The effective Lagrangian for the Higgs sector then, in its full glory, reads

LHiggs = 1
2Tr

[
DµMDµM †

]
+ VM + LETC, (38)

where VM is given by

VM =− m2
M

2 Tr
[
M †M

]
+ λM

4 Tr
[
M †M

]2
+ λ′MTr

[
M †MM †M

]
− 2λ′′M

[
detM + detM †

]
,

(39)

where LETC contains terms from ETC interactions.

2.3 Supersymmetry
2.3.1 Prelude

The birth of supersymmetry dates back to early 1970’s, and the history of the
discovery is intriguing already per se; a thorough historical review can be found
e.g. in [20]. The development took place on multiple fronts; the very first notion
of SUSY arose within the context of string theory in the turn of 60’s and 70’s
whereas the first proposal in the framework of four dimensional quantum field
theory emerged in the early 70’s. The rise of supersymmetric field theory was
interestingly bifurcate as well for SUSY was first proposed as an extension of
Poincaré symmetry by Golfand and Likhtman [21] in the Soviet Union in 1971
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but roused no extensive interest until 1973 when Wess and Zumino (independent
of Golfand and Likhtman) published their famous paper [22] in the ‘West’. From
that on, SUSY has been subject to considerable study in context of both the string
theory and the field theory as well as their interplay via dualities.

The interest in SUSY in the string theoretical environment is above all related
to the description of gravitation since SUSY seems to at least tame the diver-
gences related to quantum gravity and, moreover, makes the calculations more
manageable. [23]

Here, we are not particularly interested in string theory (except for AdS/CFT
correspondence, on which we will shortly comment later) but in supersymmetric
field theories, so let us concentrate on those from now on.

The extensive interest in SUSY during the past decades and still at present explains
itself with a few extremely appealing features that SUSY brings forth. Much of
the appeal is aesthetics. Supersymmetry gives a fundamental symmetry between
fermions and bosons, matter and forces, and this very symmetry provides a cure
for many of the disturbing theoretical problems in the SM. First of all, it provides
natural fundamental scalars and removes the hierarchy problem. While in the SM
the masses of fundamental scalars are quadratically divergent implying them to
be heavy (mass of the order of the Planck or the GUT scale), there is no natural
explanation for a light Higgs needed to complete the SM. The problem that the vast
hierarchy between the electroweak and the Planck/GUT scale brings about in the
SM is absent in a supersymmetric theory due to the equal amount of bosonic and
fermionic degrees of freedom, resulting in cancellation of the quadratic divergences.

These remarkable cancellations of the ultraviolet divergences make SUSY ex-
tremely attractive also outside the SM environment. Indeed, some supersymmetric
theories (N = 4 superYang-Mills as the best example) are the only known theo-
ries that are finite to all orders in perturbation theory. Moreover, SUSY provides
possible candidates for Grand Unified Theories.

After this list of virtues, we must, however, confront the one major draw back of
SUSY: To date it has evaded all experimental verification leaving the followers to
only hope for the best and fear for the worst. Moreover, aesthetics on one front
must be paid back on another. The (minimal) supersymmetrization of the Standard
Model comes with a huge amount of extra parameters, most of them associated
with the SUSY breaking mechanism. Indeed, if present in Nature, SUSY must
anyway be broken, since we do not see the equally massive SUSY partners of the
SM fermions. Whether there really is supersymmetry remains still a very much
open question. Hopefully, LHC will change this status quo in the near future.

The following presentation of supersymmetry is not in any way even trying to
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be an all-covering introduction to the subject; on the contrary. Some preliminary
exposure to supersymmetry is expected of the reader, and in the following only the
main aspects of the theory are presented without dwelling too much on technical
details, yet only listing of formulas is tried to be highly avoided.

The material presented here is adapted mainly from three sources: the classic by
Wess and Bagger [24], which we mainly follow with our notations and conventions
(note, however, that we have dropped the extra overall minus sign in the definition
of σ0), the nice summary of the basics in Srednicki’s quantum field theory book [25]
and fine pedagogical lecture notes on the subject by Christian Sämann [26]. An-
other pedagogical introductions, which have been very much helpful in the writing
process, can be found in [27] and [28], but with the latter the reader should be
careful with the slightly unorthodox conventions. For a more hands-on introduc-
tion, especially to the Minimal Supersymmetric Standard Model, the reader is
referred to [29]. Those who prefer 4-component spinors probably find the book by
Weinberg [30] extremely useful.

The discussion is structured as follows. After presenting the SUSY transformations
and the algebra, the theory is formulated in the so-called superspace formalism.
After the technical preliminaries, two examples of supersymmetric theories, namely
the Wess-Zumino model and the superYang-Mills theory (SYM), are considered.
We close the generic discussion of SUSY by presenting the Minimal Supersymmet-
ric Standard Model (MSSM). An excessive list of spinor identities extremely useful
with SUSY manipulations have been collected in Appendix C and the Grassman-
nian derivatives shortly discussed in Appendix D.

2.3.2 Supersymmetry algebra and its representations

Coleman and Mandula proved in 1967 [31] that under some rather general as-
sumptions the most general symmetry group of the S-matrix is (locally isomorphic
to) a direct product of the Poincaré group and an internal symmetry group (sym-
metries related to conserved quantum numbers like electric charge, for example).
There was no going around this restriction without loosening some of the assump-
tions of this theorem, and indeed there was a loophole to be found: the theorem
assumes that the symmetry algebra involves only commutators of the symmetry
generators. Allowing also anticommutators opened the door to SUSY.

An important further no-go theorem followed in 1975 when Haag, Łopuszański and
Sohnius proved that supersymmetry was the only possible additional symmetry
with this loosened set of assumptions [32]. Supersymmetry is, then, (to date, at
the very least) the only possible extension of the Poincaré symmetry.
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Let us start with the classical Poincaré algebra. The algebra reads

[Pµ, Pν ] = 0, (40)
[Mµν , Pρ] = ηνρPµ − ηµρPν , (41)

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ, (42)

where Pµ is the momentum operator generating the spacetime translations and
Mµν generate the Lorentz boosts and the spatial rotations.
By introducing anticommuting symmetry generators (supercharges) Qα and Q̄α̇,
we can then extend the above Poincaré algebra to the Poincaré superalgebra. See
e.g. the first chapter of [24] for a nice derivation of the superalgebra using Coleman-
Mandula theorem. The result (in addition to the classical Poincaré algebra) is

[QαA, P
µ] = 0, (43)

[Q̄α̇A, P
µ] = 0, (44)

[QαA,M
µν ] = 1

2(σµν) β
α QβA, (45)

[Q̄α̇A,Mµν ] = 1
2(σ̄µν)α̇β̇Q̄

β̇
A, (46)

{QαA, QβB} = ZABεαβ, (47)
{Q̄α̇A, Q̄β̇B} = ZAB ε̄α̇β̇, (48)
{QαA, Q̄α̇B} = 2δABσµαα̇Pµ, (49)

where the capital indices run from 1 to N , N = 1, 2 or 4, and the central charges
ZAB = −ZBA commute with QαA, Q̄α̇A, P

µ and Mµν . Notice, that the antisymme-
try of the central charges imply that ZAB = 0 for N = 1.
Before entering the realm of supersymmetric model building further, let us first
consider the particle content of supersymmetric theories. Now, P 2 is a Casimir
operator of a SUSY representation yielding equal mass to all particles belonging
to the same irreducible representation. We call these irreducible representations
supermultiplets. We should then distinguish two cases: the massless and massive
supermultiplets. Let us consider here only the massless case, see e.g. [24, pp. 12–16]
for the massive case. Moreover, consider here only theory without central charges,
i.e. ZAB = 0, yielding anticommutation relations

{QαA, QβB} = {Q̄α̇A, Q̄β̇,B} = 0. (50)

Notice first that in the massless case we can always boost into a reference frame,
where Pµ = (E, 0, 0, E), so that

σµPµ =
(

2E 0
0 0

)
, (51)
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and

{QαA, Q̄ ˙αB} =
(

4E 0
0 0

)
δAB. (52)

In particular, {Q2A, Q̄2̇B} = 0 for all A,B. Now,

0 = 〈Φ|{Q2A, Q̄2̇A}|Φ〉 = ||Q2AΦ〉||2 + ||Q̄2̇AΦ〉||2, (53)

for all states |Φ〉 yielding Q2A = 0 and Q̄2̇A = 0. Rescaling

aA = 1√
4E

Q1A and a†A = 1√
4E

Q̄1̇A, (54)

we obtain N creation and annihilation operators obeying indeed the algebra

{aA, a†B} = δAB, {aA, aB} = {a†A, a
†
B} = 0. (55)

These a†A and aA raise and lower the helicity of the state by 1
2 , respectively, see

e.g. [27]. Thus, aA annihilates the lowest helicity state, the so-called Clifford vac-
uum, denoted by |Ωλ0〉.

The supermultiplet is, then, of the form

|Ωλ0〉
a†A|Ωλ0〉 =|Ωλ0+ 1

2 ,A
〉

1√
2
a†Ba

†
A|Ωλ0〉 =|Ωλ0+1,AB〉

...
1√
N !
a†AN · · · a

†
A1|Ωλ0〉 =|Ωλ0+ 1

2N,A1···AN 〉.

(56)

The states with helicity λ = λ0 + 1
2n must be antisymmetric in A1, · · · , An and

are, thus,
(
N
n

)
times degenerate [24]. Consistent theories with particles of spin

larger than two are to date unknown and, moreover, since we are not interested
in gravity here (graviton being a spin-2 particle and its SUSY partner gravitino a
spin-3

2 particle), we restrict ourselves to particles of spin less than or equal to 1.
Hence, for N = 1 there are two possible supermultiplets: the chiral supermultiplet
with one helicity-0 and one helicity-1

2 field, and the vector supermultiplet with
one field of helicity 1

2 and one of helicity 1. Note, however, that to preserve CPT
invariance, we must add a CPT -conjugate multiplet if the multiplet itself is not a
CPT -selfconjugate. For chiral supermultiplet the CPT -conjugate consists of fields
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Table 1. Number of fields of given helicity in the possible supermultiplets for
N = 1, 2, 4.

−1 −1
2 0 1

2 1
N = 1

chiral multiplet 1 1
CPT -conjugate 1 1

vector multiplet 1 1
CPT -conjugate 1 1
N = 2

vector multiplet 1 2 1
CPT -conjugate 1 2 1

hypermultiplet 1 2 1
N = 4 1 4 6 4 1

of helicities 0 and −1
2 , one of each, and for vector supermultiplet −1

2 and −1
helicity fields, again one of each, of course.

The possible supermultiplets for cases N = 1, 2, 4 are gathered in table 1. The
case N = 3 is usually not considered separately since the N = 3 supermultiplet
together with its CPT -conjugate forms an N = 4 supermultiplet.

Let us concentrate on N = 1 SUSY for now. We will return to the N = 4 case
later.

2.3.3R-Symmetry

Invariance of the superalgebra under a global transformation of the supercharges
is called an R-symmetry. The N = 1 superalgebra is invariant under global U(1)
transformations of the supercharges whereas the extended supersymmetries are
invariant under global SU(N ) transformations mixing the supercharges. In partic-
ular, the N = 4 SUSY has a global SU(4) R-symmetry.

2.3.4 Superspace and supertranslations

Supersymmetry is most elegantly formulated with superfields in the superspace.
The great advantage of this approach is that the superfield formalism treats the
related bosonic and fermionic degrees of freedom at once and is, thus, manifestly
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supersymmetric. This is a welcome feature since checking whether a given theory
is supersymmetric, or not, tends to be rather tedious.
The idea, in order to accommodate both bosonic and fermionic degrees of freedom
into one and the same superfield, is to first upgrade the space with anticommuting
coordinates. The superfield is then not only a function of the spacetime coordinates,
xµ, but also of an anticommuting left-handed spinor coordinate, θ, and its right-
handed complex conjugate, θ̄. This is, however, rather loosely put, but we will not
go here deeper into the mathematical rigour of the very problem of introducing
anticommuting coordinates. An interested reader is encouraged to acquaint himself
with non-commutative geometry for deeper understanding. However, to see that
this is well motivated, notice the relativistic mechanics analogue: the superspace
is to Poincaré superalgebra what Minkowski space is to Poincaré algebra. Since
Lorentz transformations leave the origin of the Minkowski space invariant, the
Minkowski space (with origin fixed) can be identified with the space of right cosets
of the Poincaré group modulo the Lorentz group. Thus, there is a one-to-one
correspondence between the right cosets and spacetime translations, i.e. xµ ↔
e−ixµPµ , which allows us to treat the action of the Poincaré group on Minkowski
space as a left multiplication in the group (the minus sign in the exponential does
have a purpose that will become clear in a while).
Analogously, we would like to identify the superspace as the space of right cosets of
the Poincaré supergroup modulo Lorentz group. To avoid the (possible) problem
of getting from the superalgebra to the supergroup elements, we would like to
make some modifications so that we would be able to work with a traditional
Lie algebra, i.e. with only commutators. To this end, we introduce anticommuting
spinorial parameters θα and θ̄α̇. With these parameters, the supersymmetry algebra
can be written in terms of commutators only, namely

[θQ, θ̄Q̄] = 2 θσµθ̄ Pµ, (57)
[θQ, θQ] = [θ̄Q̄, θ̄Q̄] = 0, (58)
[P µ, θQ] = [P µ, θ̄Q̄] = 0. (59)

Now, a general group element can be written as an exponential
G(x, θ, θ̄, ω) = ei(−xµPµ+θQ+θ̄Q̄)e− i

2ω
µνMµν . (60)

Thus, there is a correspondence (xµ, θ, θ̄) ↔ ei(−xµPµ+θQ+θ̄Q̄) =: G(xµ, θ, θ̄), and
we can treat the action of the Poincaré supergroup on the superspace as a left
multiplication in the group.
We can use Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+... (61)
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to multiply the group elements, and the first three terms above are enough because
all the higher order commutators vanish. Thus,

G(εµ, 0, 0)G(xµ, θ, θ̄) = G(xµ + εµ, θ, θ̄), (62)
G(0, ξ, ξ̄)G(xµ, θ, θ̄) = G(xµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄). (63)

Linearizing the group elements (assume εµ and ξ, ξ̄ infinitesimal) we obtain

g(εµ, 0, 0) = 1− iεµPµ, (64)
g(0, ξ, ξ̄) = 1 + i(ξQ+ ξ̄Q̄) = 1 + (ξQ+ ξ̄Q̄), (65)

where we have defined differential operators Qα = −iQα and Q̄α̇ = −iQ̄α̇ (cf. mo-
mentum operator and spacetime derivative). These linearized group elements thus
induce the following translations in the coordinate space (see eqs. (62) and (63)):

g(εµ, 0, 0) : (xµ, θ, θ̄) 7→ (xµ + εµ, θ, θ̄), (66)
g(0, ξ, ξ̄) : (xµ, θ, θ̄) 7→ (xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄). (67)

By comparing eqs. (65) and (67), we obtain the differential operators

Qα = ∂α − i(σµ)αα̇θ̄α̇∂µ, (68)
Q̄α̇ = −∂̄α̇ + iθα(σµ)αα̇∂µ. (69)

Note, however, that eqs. (64) and (66) imply an unconventional sign for the mo-
mentum operator, i.e. Pµ = +i∂µ. This is a consequence of choosing the sign of the
xµPµ term to be minus in the group element (eq. (60)). This choice is important,
though, since with this choice the differential operators Qα and Q̄α̇ obey the SUSY
algebra

{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0, (70)
{Qα, Q̄β̇} = 2i(σµ)αα̇∂µ = 2(σµ)αα̇Pµ. (71)

Another possibility would have been starting with the opposite algebra, more on
this can be found in [28].

Had we, however, considered the right actions, we would have disentangled an
another set of differential operators, namely

Dα = ∂α + i(σµ)αα̇θ̄α̇∂µ, (72)
D̄α̇ = −∂̄α̇ − iθα(σµ)αα̇∂µ. (73)
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These obey the following anticommutation relations

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0, (74)
{Dα, D̄α̇} = −2i(σµ)αα̇∂µ = −2(σµ)αα̇Pµ, (75)
{Dα,Qβ} = {Dα, Q̄β̇} = {D̄α̇,Qβ} = {D̄α̇, Q̄β̇} = 0. (76)

We, thus, notice that if we would have begun with the right action, we could have
kept the normal sign convention in the momentum operator. The history, however,
chose another path, and we will cling on that. This does not mean that we would
not make any use of these differential operators. On the contrary, they turn out to
be very important and, therefore, are worthy of a special appellation. From now
on, we will call these the supercovariant derivatives for they anticommute with the
SUSY transformations.
Having defined the needed operators, we are ready to move on to superfields.

2.3.5Chiral and vector superfields

Let us start with the component field expansion of a general superfield. The spinor
θ is a two-component anticommuting object and, therefore, the highest possible
power of θ’s is two. In particular, a series expansion in θ always terminates after the
second order in θ. Hence, by expanding in powers of θ, we obtain the component
form of a general superfield (note that since θ is complex, θ and θ̄ are treated as
independent degrees of freedom)

Φ(x, θ, θ̄) =φ(x) + θψ + θ̄ψ̄′(x) + θσµθ̄ vµ(x)
+ θ2F (x) + θ̄2F ′(x) + θ̄2θξ(x) + θ2θ̄ξ̄′(x) + θ2θ̄2D(x).

(77)

In the end of the previous section, we found out that the supercovariant deriva-
tives anticommute with the generators of SUSY transformations. Thus, the special
class of superfields whose supercovariant derivatives vanish is preserved by SUSY
transformations. This leads to the definition of a chiral superfield.
A chiral superfield is defined to satisfy

D̄α̇Φ = 0, (78)

and similarly one defines an antichiral superfield to satisfy

DαΦ = 0. (79)

In order to find out the most general chiral superfield in terms of the component
fields, let us introduce another set of even (or bosonic) coordinates

yµ := xµ + iθσµθ̄. (80)
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The advantage of this change of coordinates is that

D̄α̇yµ = (−∂̄α̇ − iθα(σν)αα̇∂ν)(xµ + iθσµθ̄)
= iθα(σµ)αα̇ − iθα(σµ)αα̇ = 0,

(81)

where the plus sign of the first term on the last line is due to an extra minus
sign from the anticommutativity of the Grassmannian derivative. Moreover, after
noting that in addition

D̄α̇θα = 0, (82)

we can deduce that a superfield Φ which is a function only of y and θ (and not of
θ̄) is chiral. Luckily, this turns out to be a necessary condition of a chiral superfield
as well. To see this, change from (xµ, θ, θ̄) to (yµ, θ, θ̄) coordinates; we will refer to
these in the following by subscripts x and y, respectively. Chain rule gives us

(∂x)µ = (∂y)µ, (83)

(∂x)α = (∂y)α + ∂yµ

∂θα
∂

∂yµ
= (∂y)α + i(σµ)αα̇θ̄α̇(∂y)µ, (84)

(∂̄x)α̇ = (∂y)α̇ + ∂yµ

∂θ̄α̇
∂

∂yµ
= (∂̄y)α̇ − iθα(σµ)αα̇(∂y)µ. (85)

Hence, the differential operators in the y coordinates read (since everything is in
the y system, we drop the subscripts for simplicity)

Qα = ∂α, (86)
Q̄α̇ = −∂̄α̇ + 2iθα(σµ)αα̇∂µ, (87)
Dα = ∂α + 2i(σµ)αα̇θ̄α̇∂µ, (88)
D̄α̇ = −∂̄α̇. (89)

The chirality condition of Φ, then, becomes

∂̄α̇Φ(y, θ, θ̄) = 0, (90)

and further

Φ(y, θ, θ̄) = Φ(y, θ). (91)

Hence, by expanding in powers of theta, we obtain the most general chiral super-
field

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y) (92)
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whereas all the higher powers of θ vanish due to the anticommutativity. In the
above, the factor

√
2 is purely conventional. Returning to (x, θ, θ̄) coordinates

leads to a component expansion (after some use of Fierz and spinor identities)

Φ(x, θ, θ̄) =φ(x) +
√

2θψ(x) + θ2F (x)− i θσµθ̄ ∂µφ(x)

− i√
2
θ2 θ̄σ̄µ∂µψ(x) + 1

4θ
2θ̄2�φ(x).

(93)

The next question arising is the following: If we have a set of chiral superfields,
can we somehow combine them and produce a new chiral superfield? The answer
is, as anticipated, yes, and in fact any holomorphic function of chiral superfields is
a chiral superfield [27]. This function is called the superpotential and is denoted
by W (Φ) (note that, for simplicity, we denote the argument of the superpotential
by a generic superfield Φ regardless of the actual number of the superfields in
the argument). However, if we want to build a renormalizable theory, there is a
further very restrictive constraint: on dimensional grounds, it turns out that the
superpotential should be, at most, a cubic polynomial of chiral superfields (see
e.g. [28]).
Another kind of superfield we will still be needing is the so-called vector superfield
which will, not very surprisingly, give us the vector degrees of freedom. The defining
condition of a vector superfield is the hermiticity of the field, i.e. a superfield
V (x, θ, θ̄) is a vector superfield if it is hermitian,

[V (x, θ, θ̄)]† = V (x, θ, θ̄). (94)

The hermiticity, then, implies the following component form of a vector superfield

V (x, θ, θ̄) =C(x) + θχ+ θ̄χ̄+ θσµθ̄ vµ(x) + θ2G(x) + θ̄2G†(x)

+ θ̄2θη(x) + θ2θ̄ ¯η(x) + 1
2θ

2θ̄2E(x),
(95)

where C, vµ and E are real fields and the factor 1
2 in front of the last term is

conventional.
We now have all the ingredients ready for building proper supersymmetric field the-
ories. Let us illustrate further details of constructing supersymmetric Lagrangians
with two main examples.

2.3.6Wess-Zumino model

Let us start by noting how the different components of a chiral superfield transform
under an infinitesimal SUSY transformation δε,

δεΦ = (εQ+ ε̄Q̄) · Φ = (εQ+ ε̄Q̄)Φ, (96)
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where ε is an infinitesimal anticommuting parameter. For component fields, we
obtain

δεφ =
√

2εψ, (97)
δεψα = i

√
2(σµ)αα̇ε̄α̇∂µφ+

√
2εαF, (98)

δεF = i
√

2ε̄σ̄µ∂µψ. (99)

The last of these leads to an important observation: the θθ component of a chiral
superfield transforms into a total derivative, and, thus, the spatial integral over
the term is invariant under a SUSY transformation. This makes it a possible term
in the supersymmetric action. More generally, since the superpotential is a chiral
superfield, the θθ component of the superpotential, denote this by

W (Φ)|θθ , (100)

serves as a building block of a supersymmetric theory. One can get this component
by differentiating W (φ), a function one gets by replacing the superfields in the
superpotential by their scalar components (note that also here the argument φ
is generic and may contain multiple fields), with respect to the scalar fields (see
e.g. [29] for more detailed derivation),

W (Φ)|θθ = ∂W (φ)
∂φi

Fi −
1
2
∂2W (φ)
∂φi∂φj

ψiψj. (101)

Summation over repeated indices is assumed in the above. The superpotential
is not hermitian, though, and the hermitian conjugate of the above should be,
thereby, added in order the action to be hermitian.

Another combination of superfields one might be tempted to include in the action
is Φ†Φ. This, however, is not chiral but since it is manifestly hermitian, it is a
vector superfield. Applying the SUSY transformation to a vector superfield, we
find that the θ2θ̄2 component of the vector superfield transforms as

δεE = i
2εσ

µ∂µη̄ + i
2 ε̄σ̄

µ∂µη. (102)

That is, the θ2θ̄2 component transforms into a total derivative and is, thus, a
possible term in the supersymmetric Lagrangian.

The simplest supersymmetric model is the so-called Wess-Zumino model, which is
a theory of a single chiral superfield Φ. In order to start building a supersymmetric
Lagrangian consisting of terms involving only the field Φ, let us first look at the
mass dimensions of the component fields. The lowest component of the chiral
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superfield (a commonly used nomenclature to refer to the component lowest order
in θ; similarly the highest component) being a scalar field has mass dimension 1.
Now, the spinorial coordinates θ must have mass dimension −1

2 and, thus, the
highest component of a chiral superfield must have mass dimension two higher
than the lowest component, i.e. 3. Hence, while the Lagrangian must have mass
dimension 4, we are to look at terms at least quadratic in Φ.

Moreover, since renormalizability prevents terms higher-order than cubic, we are
lead to consider superpotential with quadratic and cubic terms.

Using the great virtue of foresight, let us fix the coefficients for the Wess-Zumino
superpotential as follows:

WWZ(Φ) = 1
2mΦ2 + 1

6gΦ3, (103)

with the parameters m and g real. Now, the full Lagrangian for the Wess-Zumino
model reads

LWZ = Φ†Φ
∣∣∣
θθθ̄θ̄

+ (WWZ(Φ)|θθ + h.c.). (104)

In terms of component fields, the first term becomes

Φ†Φ
∣∣∣
θθθ̄θ̄

=1
4φ
†�φ+ 1

4φ�φ
† − 1

2∂µφ
†∂µφ

+ i
2 ψ̄σ̄

µ∂µψ + i
2ψσ

µ∂µψ̄ + F †F,
(105)

which after some integrations by parts (and dropping of total derivatives) simplifies
to

Φ†Φ
∣∣∣
θθθ̄θ̄

= −∂µφ†∂µφ+ iψ̄σ̄µ∂µψ + F †F. (106)

We, thus, identify the first two terms as the kinetic terms of a complex scalar field
φ and a left-handed Weyl fermion ψ. Moreover, we have a term for a complex scalar
field F without derivatives. This field is called an auxiliary field, and it ensures
the off-shell closure of the SUSY algebra.

Moving on to the component field expansion of the superpotential, we find using
eq. (101) that

WWZ(Φ)|θθ = ∂W (φ)
∂φ

F − 1
2
∂2W (φ)
∂φ∂φ

ψψ

= mφF + 1
2gφ

2F − 1
2mψψ −

1
2gφψψ.

(107)
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Now, since the auxiliary field F appears quadratically and without derivatives,
we can perform the path integral over it. This amounts to solving the classical
equation of motion for F ,

0 = ∂L
∂F
− ∂µ ∂L

∂(∂µF ) = F † + ∂W (φ)
∂φ

. (108)

Substituting this to eq. (107), we obtain

WWZ(Φ)|θθ + h.c. = −2
∣∣∣∣∣∂W (φ)

∂φ

∣∣∣∣∣
2

− 1
2

[
∂2W (φ)
∂φ2 ψψ + h.c

]
. (109)

Hence, the full component expansion of the Wess-Zumino Lagrangian reads

LWZ =− ∂µφ†∂µφ+ iψ̄σ̄µ∂µψ −
∣∣∣∣∣∂W (φ)

∂φ

∣∣∣∣∣
2

− 1
2

[
∂2W (φ)
∂φ2 ψψ + h.c

]

=− ∂µφ†∂µφ+ iψ̄σ̄µ∂µψ −m2φ†φ+ 1
2gmφ(φ†φ2 + φ(φ†)2)

+ 1
4g

2φ2(φ†)2 − 1
2(mψψ + gφψψ + h.c).

(110)

Writing φ = 1
2(S + iP ), where S and P are real fields, and ξa = (ψα, ψ̄α̇), we

conclude that the WZ model describes three fields of equal mass m: a real scalar,
S, a real pseudoscalar, P and a Majorana fermion, ξ.

2.3.7N = 1 SuperYang-Mills theory

We begin by noting that the real part of a chiral superfield Λ is a special kind of
a vector superfield

Λ + Λ† =(φ+ φ†) + θψ + θ̄ψ̄ + θ2F + θ̄2F † − i θσµθ̄ ∂µ(φ− φ†)

− i
2θ

2 θ̄σ̄µ∂µχ−
i
2 θ̄

2 θσµ∂µχ̄+ 1
4θ

2θ̄2�(φ+ φ†),
(111)

where the vector component is a total derivative of a real scalar field. This implies
that the transformation

V 7→ V + (Λ + Λ†) (112)
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would generalize a U(1) gauge transformation for superfields. The above transfor-
mation has the following effect on the component fields:

C 7→ C + (φ+ φ†), (113)
χ 7→ χ+ ψ, (114)
G 7→ G+ F, (115)
vµ 7→ vµ − i∂µ(φ− φ†), (116)

ηα 7→ ηα −
i
2(σµ)αα̇∂µχ̄α̇, (117)

E 7→ E + 1
4�(φ+ φ†). (118)

From this result we conclude that the combinations

λα := ηα + i
2(σµ)αα̇∂µχ̄α̇, (119)

D := E + 1
4�C (120)

are gauge invariant. Moreover, since C, χ and G transform only by shifts, we can
choose a gauge in which they vanish. This gauge is called the Wess-Zumino gauge
(or WZ gauge for short) and in this gauge the vector superfield reads

V = θσµθ̄ vµ + θ̄2θλ+ θ2θ̄λ̄+ 1
2θ

2θ̄2D. (121)

The great advantage of the WZ gauge is that the powers of V are now extremely
simple, namely

V 2 = −1
2θ

2θ̄2vµvµ, (122)

and all higher powers vanish. This will become handy when calculating the expo-
nentials of vector superfields, which we will be having to do soon. In WZ gauge
the exponential eV reads simply

eV = 1 + θσµθ̄ vµ + θ̄2θλ+ θ2θ̄λ̄+ θ2θ̄2(D − 1
4v

µvµ). (123)

Next, define a spinorial superfield Wα,

Wα := −1
4D̄

2DαV. (124)

This superfield is both chiral and gauge invariant (see e.g. [24, p. 38]), so we can
work in the WZ gauge. Due to the chirality ofWα, we know that the θθ component
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of WαWα transforms into a total derivative under a SUSY transformation. It,
therefore, serves as a term in the supersymmetric Lagrangian. Writing in terms of
the component fields, we arrive (after some lines of manipulation) at

WαWα|θθ = 2iλσµ∂µλ̄+ 1
2f

µνfµν −
i
4ε

µνρσfµνfρσ +D2, (125)

where fµν = ∂µvν −∂νvµ. We, thus, obtain the kinetic term for a vector superfield,

LV,kin = 1
4W

αWα

∣∣∣∣
θθ

+ h.c.

= iλ̄σ̄µ∂λ+ 1
4f

µνfµν + 1
2D

2.

(126)

We are still short of gauge invariant interaction terms, so let us concentrate next
on those. Consider still a U(1) gauge symmetry with one chiral superfield Φ having
charge e under U(1). The gauge transformation, then, takes the form

Φ 7→ e−eΛΦ, and Φ† 7→ Φ†e−eΛ† .1 (127)

It turns out that it is not the transformation law of the vector superfield itself that
one wants to generalize to non-abelian case but transformation law of the exponen-
tial of it. Having this premonition in mind, let us write down the transformation
law of exponential of the vector superfield as

eeV 7→ eeΛ†eeV eeΛ, and e−eV 7→ e−eΛe−eV e−eΛ† . (128)

If we now consider the kinetic terms for chiral fields that we had before, i.e. terms
of the form Φ†Φ, we find that these are not gauge invariant, but transform as

Φ†Φ 7→ Φ†e−e(Λ+Λ†)Φ, (129)

so we conclude that terms of the form

Φ†eeV Φ (130)

are gauge invariant. We can, therefore, write down the gauge invariant gauge-
matter coupled Lagrangian:

Lmatter-coupled = Φ†eeV Φ
∣∣∣
θθθ̄θ̄

+
[ 1

4W
αWα

∣∣∣∣
θθ

+ h.c.
]
. (131)

1Note that even though Wess and Bagger change the form of the gauge transformation at
this point to V 7→ V + i(Λ − Λ†), we will stick to our previous convention V 7→ V + Λ + Λ†

following [26] here.
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This model does not, however, allow massive charged matter since the mass term in
the superpotential is not gauge invariant. In order to allow massive charged matter,
one needs to include two oppositely charged chiral superfields Φ± transforming
under the U(1) gauge group as

Φ± 7→ e±eΛΦ±. (132)

The supersymmetric Lagrangian becomes then (see e.g. [28])

Lmassive =
(
Φ†+eeV Φ+ + Φ†−eeV Φ−

)∣∣∣
θθθ̄θ̄

+
[(1

4W
αWα +mΦ+Φ−

)∣∣∣∣
θθ

+ h.c.
]
. (133)

The coupling to matter generalizes straight-forwardly to a non-abelian gauge the-
ory by writing

V := V aT a, (134)

where T a’s are the generators of the gauge group and a = 1, . . . , dG, where dG is
the dimension of the gauge group, is the adjoint index. To obtain the kinetic terms
of the previous form, we upgrade the definition of Wα a bit. First of all, notice
that in the abelian case we can write the definition of Wα (eq. (124)) in the form

Wα = −1
4D̄

2e−gVDαegV . (135)

Now, in the non-abelian case, in order to maintain the conventional couplings of
the component fields, we have to rescale V → 2gV and, in addition, to rescale the
spinorial field strengthWα by factor 1

2g , see e.g. [28]. Thus, the upgraded definition
reads

Wα = − 1
8g D̄

2e−2gVDαe2gV . (136)

It then follows that Wα transforms under the gauge group as

Wα 7→ e−2gΛWαe2gΛ (137)

Thus,

Tr[WαWα]|θθ (138)

is gauge invariant and we obtain the kinetic terms

LV,kin = 1
4Tr[WαWα]

∣∣∣∣
θθ

+ h.c. (139)
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Analogously, we obtain gauge-matter coupling terms

Lgauge−matter = Φ†e2gV Φ
∣∣∣
θθθ̄θ̄

, (140)

where matter superfield Φ is now on some representation of the gauge group.

Having then the kinetic and matter-coupling terms, the final issue is to find out the
gauge invariant superpotential. The result is that the most general renormalisable
superpotential is a cubic polynomial

W (Φ) = aiΦi + 1
2m

ijΦiΦj + 1
3g

ijkΦiΦjΦk, (141)

where the chiral superfields Φi are the components of Φ in some representation, if
and only if ai,mij, and gijk are symmetric, invariant tensors in the representation
of Φ [28].

As a final curiosity, we mention that the so-called Fayet-Iliopoulos term, which is
important when considering spontaneous supersymmetry breaking, and is of the
form

Tr[κV ]|θθθ̄θ̄ = Tr[κD], (142)

where κ is a constant element in the centre of the Lie algebra of the gauge group,
is also both supersymmetric and gauge-invariant.

2.3.8 Some remarks on N = 4 SYM

The N = 4 supermultiplet in 4 spacetime dimensions consists of a gauge field, 4
Weyl fermions and 6 scalars. These degrees of freedom can be implanted in one
vector and three chiral N = 1 superfields transforming in the adjoint representa-
tion of the gauge group. Then, the Lagrangian written in terms of these N = 1
superfields takes the form [33]

LN=4 SYM =Tr
[
Φ†e2gV Φ

∣∣∣
θθθ̄θ̄

+ 1
4 (WαWα|θθ + h.c.)

]
− g

3
√

2
(
εijkf

abcΦa
iΦb

jΦc
k

∣∣∣
θθ

+ h.c.
)
,

(143)

where i, j, k = 1, 2, 3 are the flavour indices, a, b, c = 1, . . . , N2 − 1 are the adjoint
gauge indices and fabc are the SU(N) structure constants.

The N = 4 SYM has a global SU(4)R symmetry although it is not explicitly
apparent when written in terms of N = 1 superfields. The gaugino and the three
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adjoint fermios transform as 4 of SU(4)R whereas the real adjoint scalars transform
as 6 of SU(4)R [33].

The N = 4 SYM is special in many ways. First of all, it is known to be pertur-
batively finite, i.e. the β function vanishes, to all orders, and this is believed to
hold also non-perturbatively. Secondly, it provides a link between field theory and
string theory via the so-called AdS/CFT correspondence [34, 35, 36]. Via this cor-
respondence, a supergravity theory in a d + 1 dimensional anti-de-Sitter space is
dual to d dimensional (super)conformal field theory. In this case, a type IIB string
theory in AdS5×S5 background (five dimensions compactified on a sphere) is dual
N = 4 SYM in four-dimensional Minkowski space.

2.3.9 Supersymmetry breaking

Before entering the finale of this section, i.e. introducing the MSSM, we must con-
front yet another obstacle. Namely, if there is supersymmetry in the Nature, it
must, at best, be somehow broken since we have not yet observed the supersym-
metric partners of the SM particles. Here, we will briefly address ourselves to the
main aspects of the problem.

Let us start with an observation that the Hamiltonian of a supersymmetric theory
can be written in the form (see e.g. [28])

H = 1
4(Q̄1̇Q1 +Q1Q̄1̇ + Q̄2̇Q2 +Q2Q̄2̇), (144)

which implies that

〈ψ|H|ψ〉 = 1
4(‖Q1|ψ〉‖2 + ‖Q̄1̇|ψ〉‖2 + ‖Q2|ψ〉‖2 + ‖Q̄2̇|ψ〉‖2). (145)

This relatively simple looking expression is crucial: The energy in a supersymmetric
theory is positive-semidefinite. This plays an essential role in the spontaneous
breaking of SUSY.

Choosing |ψ〉 to be the vacuum, we notice that the vacuum energy is zero if and
only if the vacuum of the theory is supersymmetric, i.e. it is annihilated by the
supercharges. This further implies that the SUSY is spontaneously broken if and
only if the vacuum energy is strictly positive.

With chiral superfields, the only source of spontaneous SUSY breaking comes with
non-zero vacuum expectation values (VEVs) of auxiliary fields and is known as F -
term (or O’Raifeartaigh) SUSY breaking. Similarly with vector superfields, only
the non-zero VEV of the auxiliary D field can act as a source of spontaneous SUSY
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breaking. This is known as the D-term SUSY breaking. However, due to gauge
invariance, the D-term SUSY breaking is a bit more complicated since a non-zero
VEV of D field breaks gauge invariance unless the (Lie algebra valued) D field
belongs to the centre of the gauge group. Now, since the centre of a semisimple Lie
group is discrete, the gauge invariance requires the gauge group to have abelian
factors. With a suitable gauge group, the D-term SUSY breaking can be brought
about by adding Fayet-Iliopoulos terms; see eq. (142). Further details of these both
types of SUSY breaking can be found e.g. in [28] and more thoroughly in [29].

With the MSSM, the required breaking pattern can be achieved by a Planck-scale-
mediated SUSY breaking, which at low energies manifests itself by so-called soft
terms.

The soft terms (couplings are of positive mass dimension) consist of gaugino mass
terms, scalar mass terms, three- and two-scalar couplings and scalar tadpole cou-
plings (see e.g. [29]). These can be explicitly written (with generic gauginos λa and
scalars φi) as

Lsoft = −
(1

2M
aλaλa + 1

6aijkφiφjφk + 1
2bijφiφj + tiφi + h.c.

)
−m2

ijφ
∗
iφj. (146)

2.3.10Minimal Supersymmetric Standard Model (MSSM)

We close our generic discussion of SUSY by introducing the MSSM, the minimal
extension of the SM in the realm of supersymmetry. In other words, we want to
build a supersymmetric model with gauge group SU(3)C × SU(2)L × U(1)Y that
contains the particle content of the SM. To this end, we need to introduce the
vector superfields V a

C , V
b

L and VY , a = 1, . . . , 8 and b = 1, 2, 3, to include the gauge
bosons (along with their fermionic partners, the gauginos). Moreover, to include
SM fermions and their bosonic partners, the sleptons and the squarks, we need the
five left-handed chiral superfields for each generation of leptons and quarks, namely
two SU(2)L doublets Φ`I and Φc

qI and three SU(2)L singlets ΦēI , Φc
ūI and Φc

d̄I
,

where c = 1, 2, 3 is the colour index and I = 1, 2, 3 denotes the matter generations.
In addition, to obtain the proper electroweak symmetry breaking pattern and to
generate fermion masses, we must introduce two Higgs doublet superfields, ΦHu

and ΦHd . The exact particle content and transformation properties under the gauge
group of all of these superfields are presented in table (2). Now, following the
treatment of the SYM in section 2.3.7 we immediately obtain the kinetic terms for
the gauge superfields from eq. (139),

LMSSM, kin = 1
4
∑
X

Tr [WXWX |θθ + h.c.] , (147)
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Table 2. Quantum numbers and particle content of the MSSM superfields. The rep-
resentation indices run as follows: a = 1, . . . , 8, b = 1, 2, 3 and c = 1, 2, 3. Moreover,
the matter generation is denoted by the capital index I = 1, 2, 3. To avoid excess no-
tational clutter, the index referring SU(2)L doublets has been omitted. Note that tilde
always refers to the spin-0 component and not on the SUSY partner of a SM field

Superfield SU(3)C SU(2)L U(1)Y spin 0 spin 1/2 spin 1 auxiliary
V a

C 8 1 0 λaC Ga
µ Da

C
V b

L 1 3 0 λbL W b
µ Db

L
VY 1 1 0 λY Bµ DY

Φ`I 1 2 −1
2

˜̀I `I F`I
ΦēI 1 1 1 ˜̄eI ēI := (eIR)† FēI
Φa
qI 3 2 1

6 q̃Ia qIa F a
qI

Φa
ūI 3 1 −2

3
˜̄uIa ūIa := (uIaR )† F a

ūI

Φa
d̄I

3 1 1
3

˜̄dIa d̄Ia := (dIaR )† Fd̄I

ΦHu 1 2 1
2 H̃u Hu FHu

ΦHd 1 2 −1
2 H̃d Hd FHd

where (WX)α = − 1
8gX D̄

2e−2gXVXDαe2gXVX , and X = C, L, Y .

Similarly, we obtain the gauge-matter coupling terms from eq. (140),

LMSSM, gauge−matter =
[
Φa †
qI i exp

[
2gCVC + 2gLVL + 2gY YqIVY

]
Φa
qI i

+ Φa †
ūI exp [2gCVC + 2gY YūIVY ] Φa

ūI

+ Φa †
d̄I

exp [2gCVC + 2gY Yd̄IVY ] Φa
d̄I

+ Φ†`I i exp [2gLVL + 2gY Y`IVY ] Φ`I i

+ Φ†ēI exp [2gY YēIVY ] ΦēI

+ Φ†Hui exp [2gLVL + 2gY YHuVY ] ΦHui

+Φ†Hdi
exp [2gLVL + 2gY YHdVY ] ΦHdi

]∣∣∣
θθθ̄θ̄

,

(148)

where, for completeness, we have also included the SU(2)L doublet index i = 1, 2.
The MSSM superpotential reads

WMSSM =− ye
IJ Φ`I · ΦHd ΦēJ − yd

IJ ΦqI · ΦHd Φd̄J

+ yu
IJ ΦqI · ΦHu ΦūJ + µΦHu · ΦHd ,

(149)

where ye, yd and yu are 3×3 matrices containing the Yukawa couplings and µ the
coupling between the Higgses and is called µ parameter. Note that the products,
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denoted by a dot, between two SU(2)L doublets stand for contractions with the
antisymmetric epsilon symbol, i.e. for arbitrary SU(2)L doublets Φ1 and Φ2 we
have Φ1 · Φ2 := εijΦ1iΦ2j. The signs have been chosen such that they produce
positive mass terms for the SM fermions, see e.g. [29]. From the superpotential,
we see that we indeed need two Higgs doublet superfields to generate the masses
for all of the SM fermions: Since the superpotential must be holomorphic function
of the superfields, a term of the form Φū Φ∗Hd

· Φq, for example, is not allowed. In
addition, we still need to break the supersymmetry explicitly with the so-called
soft SUSY breaking terms. From eq. (146) we then obtain

LMSSM, soft =− 1
2
(
MCλ

a
Cλ

a
C +MLλ

b
Lλ

b
L +MY λY λY + h.c.

)
−
(
−(au)IJ ˜̄uIaH̃u · q̃Ja + (ad)IJ ˜̄dIaH̃d · q̃Ja

+(a`)IJ ˜̄eIH̃d · ˜̀J − bH̃u · H̃d + h.c.
)

− (m2
q)IJ q̃Ia†q̃Ja − (m2

`)IJ ˜̀I† ˜̀J − (m2
ū)IJ ˜̄uIa† ˜̄uJa

− (m2
d̄)
IJ ˜̄dIa† ˜̄dJa −m2

uH̃
†
uH̃u −m2

dH̃
†
dH̃d,

(150)

where MC,ML and MY are the gluino, wino and bino masses, respectively. More-
over, au, ad and a` are complex 3 × 3 matrices in generation space containing
couplings of dimensions of mass, mq,m`,mū and md̄ are 3× 3 matrices (with pos-
sibly complex entries) in generation space with restriction they be hermitian in
order the Lagrangian to be real, and b,m2

u and m2
d are complex of dimension mass-

squared. Again, the dot products denote contractions with the two-index epsilon
symbol.

3 Supersymmetric Technicolor
3.1 Anomaly cancellation for general SU(N)
Before entering the actual topic of the this section, i.e. building a supersymmetric
technicolor model, we first need to look into a phenomenon that already the chiral
fermions per se bring about, namely the possible chiral gauge anomalies.

When considering loop corrections of a chiral theory with massless fermions, one
encounters a subtlety with severe consequences. Although the Lagrangian be chi-
rally invariant and the axial current at tree level conserved, loop corrections can
produce anomalous non-conservation of the axial current. These possibly anoma-
lous contributions can be evaluated by computing the so-called triangle diagrams
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with three external gauge bosons attached to a fermion loop. A detailed discussion
of chiral anomalies can be found in [37]. For these triangle diagrams, we obtain

μ, a ν, b

ρ, c

∝ Aabc = Tr[ta{tb, tc}], (151)

where ta, tb and tc are the group theoretical factors related to the gauge bosons
Aaµ, A

b
ν and Acρ, respectively.

Theories for which Aabc = 0 are said to be anomaly-free. Possible anomalous non-
zero contributions may arise if different chiral components couple differently in the
given theory as is the case with weak interaction, for example. Therefore, QCD (as
well as TC coupling the chiral partners democratically) on its own is anomaly free,
so triangle diagrams with three (techni)gluons give a zero contribution. Likewise,
SU(2)L itself is anomaly free, although it couples left- and right-handed fermions
differently. This is due to the fact that the fundamental representation of SU(2)
is pseudoreal implying an extra minus sign if one changes all the fermions in the
loop of a triangle diagram to their antiparticles (see eq. (13)). Thus, diagrams with
three SU(2)L bosons can be omitted as well. What remains, are the diagrams with
at least one U(1)Y boson. The hypercharge assignment of the SM along with equal
number of quark and lepton generations makes the SM as a whole anomaly-free.

Let us now figure out the anomaly free hypercharge assignment of an SU(N) TC
section with Nf techniquarks in the adjoint of the TC group. Consider only the case
where the techniquarks are assembled in left-handed SU(2)L doublets, Nf = 2NQ,
and right-handed singlets. To avoid the topological Witten anomaly, we need to

supplement the new sector with NL new lepton doublets, LLj =
(
NLj
ELj

)
, and

their right-handed partners, NRj, ERj, such that NQ + NL is even. For simplicity,
let us denote Y (Qa

Li) =: yi, Y (LLj) =: xj, where i = 1, . . . , NQ, j = 1, . . . , NL and
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U(1)Y

SU(N)TC SU(N)TC SU(2)LSU(2)L

U(1)Y U(1)Y

U(1)Y U(1)Y

Figure 3. The possible anomalous triangle diagrams for TC sector.

a = 1, . . . , N2 − 1 =: dA. Then, we have the following hypercharge assignments:

Y (Ua
Li) = Y (Da

Li) = yi, Y (Ua
Ri) = yi + 1

2 , Y (Da
Ri) = yi −

1
2 , (152)

Y (NLj) = Y (NLj) = xj, Y (NRj) = xj + 1
2 , Y (ERj) = xj −

1
2 . (153)

Next, consider all the possible triangle diagrams and demand Aabc = 0 for all the
diagrams. Note first that since the generators of SU(N), N ≥ 2, are traceless,
diagrams with only one SU(N) boson give zero. Thus, it suffices to consider only
diagrams with one or three U(1)Y bosons; the three remaining cases are depicted
in fig. 3.

The first case with two SU(N)TC bosons gives

Aabc ∝
∑

techniquarks
Tr
[
Yf{T b, T c}

]
∝

∑
techniquarks

Yfδ
bc

=
∑
i

[
−2dAyi + dA

(
yi + 1

2

)]
+ dA

(
yi −

1
2

)
δbc = 0.

(154)

The first diagram, thereby, does not bring any potential anomalous contributions
regardless of the hypercharge assignment.

The second case with two SU(2)L, in turn, gives

Aabc ∝
∑

left−handed
Tr
[
Yf

1
2{σ

b,
1
2σ

c}
]
∝

∑
left-handed

Yfδ
bc

=
∑
i

−2dAyi +
∑
j

−2xj.
(155)

Setting this equal to zero gives∑
j

xj = −
∑
i

yidA. (156)
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The final case with three U(1)Y bosons results in

∑
all new fermions

Y 3
f =

∑
i

[
−2dAy

3
i + dA

(
yi + 1

2

)3
+ dA

(
yi −

1
2

)3]

+
∑
j

[
−2x3

j +
(
xj + 1

2

)3
+
(
xj −

1
2

)3]

= 3
2dA

∑
i

yi + 3
2
∑
j

xj,

(157)

and when set to zero, this gives the previous condition. Thus, to build an anomaly-
free TC sector, the hypercharges of the new fermions must be chosen to fulfil
eq. (156).

Having done this, let us redo the calculations in a slightly more specific setting.
First, supplement SM with another generation of QCD quarks and then add an
SU(N) TC sector. To keep things simple, let us only consider the MWT sector
with one left-handed doublet of techniquarks and their right-handed partners, since
then the Witten anomaly is absent even without any extra leptons.

We have now one more triangle diagram to consider, namely the one with two
gluons and one U(1)Y boson. Since SM is anomaly free, we only need to consider
the fourth generation of QCD quarks. Let us denote the hypercharges by

Y (qaL4) = w, Y (uaR4) = w + 1
2 , Y (daR4) = w − 1

2 , (158)

where qaL4 = (uaL4 d
a
L4)T is the weak doublet. Moreover, denote the hypercharges of

the techniquarks by

Y (Qa
L)) = y, Y (Ua

R) = y + 1
2 , Y (Da

R) = y − 1
2 . (159)

Then, the diagram with two technigluons is a special case of eq. (154) and is, thus,
anomaly-free.

Similarly, the case with two gluons (remembering that SM with three generations
of quarks is anomaly free) is similar to eq. (154) (with dA replaced by 3, the
dimension of the fundamental representation 3) and is anomaly free.

The second case with two SU(2)L bosons gives

Aabc ∝
∑

left-handed
Yf = −2 · 3y − 2 · 3w. (160)
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Setting this to zero, we have

y = −w. (161)

The third case with three U(1)Y bosons gives

∑
all new fermions

Y 3
f =

[
−2 · 3y3 + 3

(
y + 1

2

)3
+ 3

(
y − 1

2

)3]

+
[
−2 · 3w3 + 3

(
w + 1

2

)3
+ 3

(
w − 1

2

)3]

= 9
2y + 9

2w,

(162)

resulting in the condition of eq. (161).

3.2 Minimal SuperConformal Technicolor (MSCT)
Let us start by extending the Standard Model with Minimal Walking Technicolor.
The fermion content of the new sector, then, consists of one weak doublet of
techniquarks with their right-handed partners transforming in the adjoint of the
TC gauge group SU(2)TC along with a new weak doublet of leptons with their right-
handed partners to avoid the Witten anomaly (see section 2.2.4). From eq. (156)
we deduce that the anomaly-free hypercharge assignment reads

Y (QL) = y

2 , Y (UR, DR) =
(
y + 1

2 ,
y − 1

2

)
,

Y (LL) = −3y
2 , Y (NR, ER) =

(−3y + 1
2 ,

−3y − 1
2

)
,

(163)

with a real-valued parameter y. Up to this point, nothing is new, but now we are
ready to make the key observation. If we identify D̄R techniquark as the super-
symmetric fermionic partner of the tehnigluon, the fermionic and gluonic content
(without the new leptons) of this new sector is exactly that of N = 4 super-
multiplet! Moreover, the chiral SU(4) symmetry can be identified with the SU(4)
R-symmetry of N = 4 SUSY.

Therefore, by adding the needed scalar fields (always distinguished by an extra tilde
from the fermionic partner), we obtain the following N = 1 superfields forming
the N = 4 superYang-Mills theory:(

ŨL, UL
)
∈ Φ1,

(
D̃L, DL

)
∈ Φ2,

( ˜̄UR, ŪR
)
∈ Φ3,

(
G, D̄R

)
∈ V, (164)

38



Table 3. Superfields of the supersummetrised MWT sector and their quantum num-
bers. The technicolor multiplets are denoted by superscripts a = 1, 2, 3 and the weak
doublets by subscripts i = 1, 2.

Superfield SU(2)TC SU(3)C SU(2)L U(1)Y
Φa
i 3 1 2 1

2
Φa

3 3 1 1 −1
V a 3 1 1 0
Λi 1 1 2 −3

2
N 1 1 1 1
E 1 1 1 2

where Φi, i = 1, 2, 3 are chiral superfields, and V is a vector superfield. The adjoint
indices of the TC gauge group have been omitted.

To fully supersymmetrize the entire MWT sector, we need four additional chiral
superfields(

ÑL, NL
)
∈ Λ1,

(
ẼL, EL

)
∈ Λ2,

( ˜̄NR, N̄R
)
∈ N,

( ˜̄ER, ĒR
)
∈ E. (165)

The identification of D̄R as the technigluino fixes the hypercharge assignment to
y = 1 since the technigluinos must be singlets under the SM gauge group and,
thus, have hypercharge 0. The superfields of the supersymmetrized MWT sector
with the associated quantum numbers have been collected in table 3.

We next couple this MWT sector to the MSSM (taken invariant under the TC
gauge group) including also the both Higgses of the MSSM. The superpotential of
this model consists then of two parts,

W = WMSSM +WTC, (166)

where WMSSM is the MSSM superpotential of eq. (149) and the gauge invariant,
renormalizable superpotential of the TC sector, WTC, which additionally is N = 4
invariant in the regime where TC coupling, gTC, is much larger than the other
couplings, reads

WTC =− gTC

3
√

2
εijkε

abcΦa
iΦb

jΦc
k + yUεij3Φa

iHujΦa
3 + yNεij3ΛiHujN

− yEεij3ΛiHdjE + yRΦa
3Φa

3E.
(167)

If N = 4 invariance is not required, the coupling in front of the first term would be
a general Yukawa coupling yTC, which, however, has been found to tend towards
gTC at low energies in [38], thereby justifying the above choice.
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Now, depending on the strength of the TC coupling, two basic regimes are to be
identified. First, if the coupling is sufficiently small, the new sector can be treated
within the perturbation theory. This model is denoted pMSCT and is further
investigated in [38]. The second regime is the one in which the supersymmetric
technicolor is strongly coupled and is denoted by sMSCT. In this thesis, we will
concentrate on the latter.
For completeness, yet another regime can be distinguished. This is the one in
which SUSY is not broken and the TC sector is strongly coupled at EW scale.
This regime must be analysed with so-called unparticle methods introduced by
Georgi in [39] and is beyond our scope here.
Before taking the step to the strong regime, let us first briefly discuss the gener-
alization of the TC section to gauge group SU(N)TC with one left-handed tech-
niquark doublet and their right-handed partners in the adjoint of the TC gauge
group.

3.3 General N
First note that the low-energy theory for the Higgs sector in the non-supersymmetric
case is independent of the number of technicolors, N , with one weak doublet of
techniquarks in the adjoint of the TC gauge group since the adjoint representation
is real; see section 2.2.6. Thus, all the above (within TC sector) generalises for
N = 3, 4, . . . since the theory is still walking with only one techniquark doublet.
The interesting feature is that it is the ‘lepton sector’2 that at electroweak scale
sees the actual TC gauge group. The only difference to the setting comes with the
new TC singlets. To avoid Witten anomaly, the number of weak doublets must be
even. Now, whereas for odd N the dimension of the adjoint representation, N2−1,
is even, for even N the dimension is odd. Thus, for odd N we must add an even
number (or zero, for that matter) of weak doublets and for even N an odd number
of weak doublets.
If we add NL lepton doublets, then after fixing the hypercharges of the techni-
quarks, i.e. identifying D̄R as the technigaugino, the hypercharges of the leptons
must fulfil (see eq. (156))∑

j

xj = −1
2dA. (168)

2Note that ‘lepton sector’ should not be taken literally here; here with ‘lepton sector’ we ac-
tually mean those beyond-Standard-Model (BSM) fields that are singlets under the technicolor
group but not under SU(2)L × U(1)Y , i.e. those that play a role in assigning the techniquarks
anomaly-free hypercharges. The lepton sector in this wider meaning here includes a fourth gen-
eration of QCD quarks, for example.
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where xj = Y (LLj) is the hypercharge of the jth lepton doublet and dA the dimen-
sion of the adjoint representation of the TC group.

As an interesting special case, if we consider MWT and add, not a lepton doublet,
but the fourth generation of QCD quarks, then fixing the hypercharges of the
techniquarks as above sets Y (qL4) = −1 (see eq. (161)).

4 Strong regime
4.1 General overview of the model
The general setting is that of sec. 3.2 with strongly coupled supersymmetric tech-
nicolor sector at the electroweak scale but with general N . We, therefore, assume
the electroweak symmetry breaking to be entirely due to the TC condensate and
the MSSM Higgses only transmit the EWSB to the fermion sector, thereby obviat-
ing an additional ETC sector. We assume the Higgses, as well as the squarks and
the technisquarks, to be heavy and, thus, decoupled from the low-energy theory.

4.2 The effective Lagrangian
Let us now construct the effective Lagrangian of the model at the electroweak
scale. We follow here the treatment discussed in [40].

The effective theory is described in terms of the composite field

M ∼ ηaηaT, (169)

where ηa = (Ua
L Da

L Ūa
R D̄a

R)T and a is the technicolor index, which from now
on will be omitted to avoid notational clutter. This multiplet transforms under
SU(4)R as

η → gη, (170)

where g ∈ SU(4)R. This composite field is the only spin-zero TC singlet field made
out of two techniquarks. It transforms as

M → gMgT (171)

under the global symmetry group SU(4)R. The effective Lagrangian can then be
divided into two parts: the one conserving the SU(4)R symmetry and the symmetry
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breaking part. The symmetry conserving part is the effective Lagrangian of pure
MWT sector and can be read off from sec. 2.2.6. To recap,

LSC = 1
2Tr

[
DM †DM

]
− VM , (172)

where DµM = ∂µM − ig
[
GµM +MGT

µ

]
, gGµ = gW a

µL
a + g′BµY , and

VM =− m2
M

2 Tr
[
M †M

]
+ λM

4 Tr
[
M †M

]2
+ λ′MTr

[
M †MM †M

]
− 2λ′′M

[
detM + detM †

]
.

(173)

Let us then include supersymmetry. Now, the Yukawa couplings in the superpo-
tential induce some symmetry breaking terms in the effective Lagrangian, and the
full Lagrangian can be written as

Leff = 1
2Tr

[
DM †DM

]
− VM − VSB. (174)

To tackle the symmetry breaking part, VSB, let us consider the Yukawa coupling
terms of the superpotential in more detail. They can be conveniently written in
the form

WYukawa = H̃u · Fu + H̃d · Fd + h.c., (175)

where

Fu =− qILuyIuūI − yUQLŪR − yJNLJLN̄J
R, (176)

Fd =qILdyIdd̄I + `IyIe ē
I + yJEL

J
LĒ

J
R, (177)

and the flavour indices I = 1, 2, 3 and J = 1, . . . , NL are to be summed over.
The Yukawa coupling matrices yu, yd, ye, yN and yE are diagonal and the Cabibbo-
Kobayashi-Maskawa matrix V has been built in to the definition of the vectors
qILu = (uL, V

IJdJL) and qILd = (V †IJuJL, dIL). Moreover, it should be noted, that
the contraction between the SU(2)L vectors by the antisymmetric ε tensor is again
denoted by the dot product.

Due to the soft SUSY breaking b term (see eq. (150)) the MSSM Higgses H̃u and
H̃d mix. They can be diagonalized by writing(

H̃u
H̃c

d

)(
1 −1
1 1

)(
H̃1
H̃2

)
, (178)
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where H̃c
d = εH̃∗d. It turns out to be convenient to write the masses of the Higgses

H̃1 and H̃2, denoted by m1 and m2, respectively, in terms of two new parameters
ms and θ as

1
2

(
1
m2

1
+ 1
m2

2

)
= c2

θ

m2
s

,
1
2

(
1
m2

1
− 1
m2

2

)
= cθsθ

m2
s

, (179)

where cθ := cos θ and sθ := sin θ. Now, taking H̃1 and H̃2 heavy, we can inte-
grate them out from the effective Lagrangian resulting in effective four-fermion
interactions. There are three types of four-fermion interaction terms arising: First,
the interactions of two SM fermions with two techniquarks. From these we then
obtain the mass terms for SM fermions as the techniquark condensate acquires
VEV. Second, there are four-technifermion interaction terms, which give masses
to pseudo-Goldstone bosons arising from the chiral symmetry breaking. Last, the
third category consists of the interaction terms of four SM fermions, four new
leptons or two SM fermions and two new leptons.

In terms of the new parameters ms and θ and these simply read

L4−fermion = c2
θ

m2
s

(F †uFu + F †dFd) + cθsθ
m2
s

(Fu · Fd + h.c.). (180)

To obtain the effect of these SU(4)R breaking terms on the effective Lagrangian at
EW scale, we use the so-called spurion technique. That is, we come up with spu-
rious fields, or spurions, and assign them fictional transformation properties that
make the symmetry breaking terms invariant under the largest possible global
symmetry. If we then include terms lowest order in these spurions to the effec-
tive Lagrangian, we obtain the correct effect of the explicit symmetry breaking
assuming the explicit breaking to be small.

Let us start with mass terms of SM fermions and the new leptons. After integrating
out the Higgses, the four-fermion interaction terms between two techniquarks and
two non-techniquarks can be written as

yUcθω

m2
s

(
QLiŪR

) [
cθq
∗I
Luiy

∗I
u ū
∗I
R + cθy

J∗
N L

J∗
Li N̄

J∗
R + sθεijq

I
Ldjy

I
dd̄

I
R

+sθεij`ILdjyIe ēIR + sθy
J
EεijL

J
LjĒ

J
R

] (181)

where ω is a dimensionless techniquark renormalization constant. Now, by intro-
ducing a spurion Z,

Zij = yUcθω

m2
s

[
δikcθ

(
q∗Luky

∗
uū
∗
R + y∗NL

∗
LkN̄

∗
R

)
+εiksθ

(
qLdkydd̄R + `LdkyeēR + yELLkĒR

)]
δ3j,

(182)
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where we have omitted the flavour indices to simplify the notation, we can write
the mass terms in the form

ηTZη. (183)

Note that only Z13, Z23 are non-zero. In order these terms to obey the full global
symmetry, the spurion Z ought to transform under SU(4)R as

Z → g∗Zg†. (184)

This implies that we should include term of the form Tr [MZ] into the effective
Lagrangian, since this is invariant under SU(4)R:

Tr [MZ]→ Tr
[
gMgTg∗Zg†

]
= Tr [MZ] . (185)

Another spurion, W , is related to the four-technifermion terms. These can be
written as

−|yU |
2c2
θω

2

m2
s

(
QLiŪR

) (
Q∗LiŪ

∗
R

)
= −Wijklη

α
i η

α
j η
∗β
k η
∗β
l , (186)

with

Wijkl = |yU |
2c2
θω

2

m2
s

(δik1 + δik2)δjl3, (187)

and α, β are spin indices. In order the above terms to be invariant under SU(4)R,
W must transform as

Wijkl → g∗img
∗
jngkoglpWmnop. (188)

This, in turn, implies that we should include a term of the form WijklMijM
∗
kl into

the effective Lagrangian, since

WijklMijM
∗
kl → (g∗img∗jngkoglpWmnop)(giqMqrgjr)(g∗ksM∗

stg
∗
lt)

= WmnopMqrM
∗
st(g†g)mq(g†g)nr(gTg∗)os(gTg∗)pt

= WijklMijM
∗
kl.

(189)

In addition to the superpotential Yukawa couplings, there is still another source
of SU(4)R symmetry breaking, namely the soft SUSY breaking mass term of the
gaugino D̄R. Introducing a spurion X, this term can be written as

1
2MDD̄RD̄R = ηTXη, (190)
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where X = diag(0, 0, 0, 1
2MD). This spurion, then, transforms as

X → g∗Xg†, (191)

and induces a term similar to the one related to the spurion Z (see eq. (185)) into
the effective Lagrangian.

Finally, note that in the N = 4 limit all the couplings of the TC sector can
be unified into one operator. Decoupling this term induces a four-techniquark
operator, which, however, is invariant under the full global group. Therefore, it can
be embedded into the symmetry conserving potential (eq. (173)) by redefinition of
the coefficients and, for simplicity, we exclude it from the analysis here. The full
analysis has been carried out in [40].

The full symmetry breaking potential then reads

VSB = c1Λ2
TCTr [MX] + c2Λ2

TCTr [MZ] + c3Λ4
TCWijklMijM

∗
kl + c.c. (192)

In the above, we have inserted powers of ΛTC, the TC scale, to make the constants
c1, c2 and c3 dimensionless.

Now, to get some estimates for the coefficients in the effective Lagrangian, we can
use naive dimensional analysis (NDA) [41, 42]. In terms of constant g := ΛTC/vw,
where vw = 246 GeV is the weak scale, we obtain the following estimates:

m2
M ∼ Λ2

TC, λM ∼ λ′M ∼ λ′′M ∼ g2, c1 ∼ c2 ∼
1
g
, c3 ∼

1
g2 . (193)

We assume this NDA parameter g to be of order 4π from which we expect ΛTC ∼ 3
TeV.

4.3 Vacuum
The vacuum structure is ignorant of the new lepton sector. Hence, we can find out
the vacuum for the model with general N and without fixing any particular lepton
sector.

Let us start by getting more insight into the effective variable,M . Using the result
of [19], we can write M in terms of mass eigenstates as

M =


iΠUU + Π̃UU

iΠUD+Π̃UD√
2

σ+iΘ+iΠ0+A0

2
iΠ++A+
√

2
iΠUD+Π̃UD√

2 iΠDD + Π̃DD
iΠ−+A−√

2
σ+iΘ−iΠ0−A0

2
σ+iΘ+iΠ0+A0

2
iΠ−+A−√

2 iΠŪŪ + Π̃ŪŪ
iΠŪD̄+Π̃ŪD̄√

2
iΠ++A+
√

2
σ+iΘ−iΠ0−A0

2
iΠŪD̄+Π̃ŪD̄√

2 iΠD̄D̄ + Π̃D̄D̄

 , (194)
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where σ is the ‘composite Higgs’ responsible for the EWSB and Θ its pseudoscalar
partner, ΠI , I = UU,DD, ŪŪ , D̄D̄, the six pseudoscalar Goldstone bosons re-
lated to technibaryons and Π̃I their scalar partners, and ΠJ , J = 0,+,−, the
pseudoscalar Goldstone bosons related to the technimesons and AJ their scalar
partners. More explicitly (see [19] for further details),

σ ∼ ŪU + D̄D, θ ∼ i(Ūγ5U + D̄γ5D),
A0 ∼ ŪU − D̄D, Π0 ∼ i(Ūγ5U − D̄γ5D),
A+ ∼ D̄U, Π+ ∼ iD̄γ5U,
A− ∼ ŪD, Π− ∼ iŪγ5D,

ΠUU ∼ UTCU, Π̃UU ∼ iUTCγ5U,

ΠDD ∼ DTCD, Π̃DD ∼ iDTCγ5D,

ΠUD ∼ UTCD, Π̃UD ∼ iUTCγ5D,

(195)

where U = (UL, UR) and D = (DL, DR) are the Dirac technifermions and C the
charge conjugation matrix, CT = C† = C−1 = −C.

Using these, we can now write down the most general candidate for CP-invariant,
electrically neutral vacuum by giving VEVs to electrically neutral real fields. Re-
member here that according to the hypercharge assignment of table 3, Q(U) = 1
and Q(D) = 0 and, therefore, the only electrically neutral combinations of these
techniquarks are σ,A0,ΠDD,ΠD̄D̄ and their pseudoscalar partners. Moreover, to
preserve the CP invariance, we only assign VEVs for real fields. With technimeson-
related scalars this is simple; by looking at the forms of eq. (195) we see that σ and
A0 are real whereas their pseudoscalar partners are imaginary. With technibaryon-
related Goldstone bosons we cannot say that e.g. ΠDD is real and its pseudoscalar
partner imaginary, or vice versa, and hence, we assign a VEV for the real parts of
the sums iΠDD + Π̃DD and iΠD̄D̄ + Π̃D̄D̄.

Thus, denoting

〈σ〉 =: v1, 〈Re
(
iΠDD + Π̃DD

)
〉 =: v2

〈A0〉 =: v3, 〈Re
(
iΠD̄D̄ + Π̃D̄D̄

)
〉 =: v4,

(196)

we can search for the most general CP-invariant, electrically neutral vacuum in
the form of

〈M〉 = 1
2


0 0 v1 + v3 0
0

√
2v2 0 v1 − v3

v1 + v3 0 0 0
0 v1 − v3 0

√
2v4

 . (197)
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We now obtain the actual vacuum structure by minimizing the potential with
respect to the scalar fields, i.e. we are to solve the minimum equations

∂V
∂φi

∣∣∣∣∣
φi=〈φi〉

= 0. (198)

The explicit minimum equations can be found in the Appendix E. Let us first
make a couple of important observations from the minimum equations:

(i) The mass terms for SM fermions (spurion Z) results a term constant in the
VEVs in the minimum equations for σ and A0. As a consequence, v3 = 0 (or
v1 = 0) gives no longer an extremum of the potential which in turn indicates
that the vacuum is substantially different from that of a pure TC model (cf.
eq. (29)).

(ii) Non-zero gaugino mass MD tilts the potential in the v4 direction implying
non-zero value for v4 at the minimum. However, the minimum equation for
v2 requires that for v2 = 0 also v4 = 0. Thus, a non-zero MD implies not
only non-zero v4 but also non-zero v2.

(iii) The minimum equations for A0 is obtained from the equation for σ with
replacement v1 ↔ v3. This implies that v1 = v3 gives a minimum.

We, thus, find a vacuum of the form

〈M〉 = 1√
2


0 0 v1 0
0
√

2v2 0 0
v1 0 0 0
0 0 0

√
2v4

 , (199)

where the square roots of two are conventional. There are then three Higgs-like
composite scalars acquiring VEVs v1, v2 and v4. From now on, we denote these by
h1, h2 and h3, respectively.

From the vacuum structure, we deduce the squared masses of the W± and Z
bosons:

m2
Z = 1

4(g2
L + g2

Y )(v2
1 + 4v2

2), m2
W = 1

4g
2
L(v2

1 + 2v2
2). (200)

We can then identify

(246 GeV)2 = vw = 1√
2GF

= v2
1 + 2v2

2. (201)

We chose to identify the VEV contribution from theW mass with the SM VEV, vw
since the Fermi coupling constant, GF, is experimentally determined by measuring
the muon decay, which is a W -exchange process.
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4.4 EW precision tests
While the vacuum structure is restricted by the ability of generating correct masses
for the SM fermions and weak gauge bosons, it is independent of the lepton sector.
The lepton sector, in turn, is mainly constrained by the S and T parameters (see
sec. 2.1.1). The full S parameter can be written as

S = SSM(mref)− SH(mref) + Snew = Snew − SH(mref), (202)

where SSM(mref) is the SM contribution at SM Higgs mass mref and is zero by
definition and Snew contains the contribution from the full BSM sector. However,
since we consider a TC model, we have replaced the SM Higgs sector by a TC
condensate and, to avoid double counting, we must also subtract the contribution
from the Higgs boson, SH(mref). A similar expression holds for T .

The one-loop contributions from a Higgs-like scalar read [5]

SH(mref) ≈
1

12π ln m2
H

m2
ref
, TH(mref) ≈ −

3
16πc2

W
ln m2

H

m2
ref
, (203)

where mH is the mass of the of the Higgs boson and mref the reference mass at
which the S and T parameters have been defined, i.e.

(SSM(mref), TSM(mref)) = (0, 0). (204)

The problem now is the following: If there is not one fundamental SM Higgs boson,
but three composite ones, h1, h2 and h3, what do we really mean by the Higgs ref-
erence mass, mref? First of all, the S parameter comes, by definition, from the ZZ
self-energies (see eq. (1)) and, therefore, at one loop the Higgs contribution is pro-
portional to its linear coupling to ZZ, denoted by gZZH . We should somehow take
this into account with the fact that the couplings related to these new composite
Higgses, gZZhi , i = 1, 2, 3, are different. Moreover, from the estimate (203) we see
that the Higgs contribution to S is, in addition, proportional to the logarithm of
the Higgs mass. Having these two points in mind, we define the geometrical mean
of the masses mhi , i = 1, 2, 3, weighted by the ratios g2

ZZhi
/g2

ZZH :

m2
Hg

:=
3∏
i=1

m2wi
hi
, wi =

g2
ZZhi

gZZH
. (205)

We then take this mHg to be the reference mass at the limit v2/v1 → 0, so that
the sum of the weights equals to one.
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The contribution from the TC sector can be approximated by the so-called naive
estimate, which takes into account the one-loop contribution from heavy techni-
quarks, which are mass-degenerate. These naive estimates read

Snaive = d(R)
6π , Tnaive = 0, (206)

where d(R) is the dimension of the representation of the techniquarks.

However, with the explicit soft SUSY breaking mass for the technigluino D̄R, the
assumption of mass-degeneracy is not particularly well justified. Moreover, since
the soft SUSY breaking mass term only involves the right-handed component of
the techniquark D, the D quark has, in addition to the Dirac type dynamical
mass, a Majorana-type mass. Note that this is allowed since D is neutral. This
also affects the S and T contributions.

One way of improving this estimate would be taking account the contributions
from all the composite states of the effective theory. This, however, is not very well
controlled and in addition we should also take into account the vector resonances,
which we have not included (see [19]). Another possibility would be improving the
naive estimate, i.e. estimating the contributions to the oblique parameters from
the underlying gauge theory.

Let us, therefore, take a closer look at the mass terms of the techniquarks. Taking
into account the soft SUSY breaking term −1

2MDD̄RD̄R the mass terms can be
written as (see e.g. [43])

LQ,mass = −mU ŪU −
1
2

[(
DL (DR)c

)( 0 mD

mD MD

)(
(DL)c
DR

)
+ h.c.

]
, (207)

where U = (UL UR)T, mU and mD the Dirac masses of U and D, respectively, and
the superscript c denotes the charge conjugate of the field.

Diagonalization of the D mass matrix results in two Majorana eigenstates, N1 and
N2, with real and positive masses, M1 and M2. In terms of mD and MD these read

M1 = MD

2


√√√√1 + 4m

2
D

M2
D

− 1
 , M2 = MD

2


√√√√1 + 4m

2
D

M2
D

+ 1
 , (208)

or the other way around,

m2
D = M1M2, MD = M2 −M1. (209)
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The chiral states, DL and DR can be written in terms of the Majorana eigenstates
as (

DL
(DR)c

)
=
(

i cosϕ sinϕ
−i sinϕ cosϕ

)(
PLN1
PLN2

)
, tan 2ϕ = 2mD

MD

. (210)

The contributions of the U techniquark with only Dirac mass and D techniquark
with both Dirac and Majorana masses, as discussed above, to the S and T param-
eters are given in [43] and read

SU,D =d(R)
6π

[
−Y

(
c2
ϕ ln M

2
1

m2
U

+ s2
ϕ ln M

2
2

m2
U

)
+ 3

2

−s2
ϕc

2
ϕ

(
8
3 + f1(M1,M2)− f2(M1,M2) ln M

2
1

M2
2

)]
,

(211)

TU,D = d(R)
16πs2

Wc
2
Wm

2
Z

[
c2
ϕ

(
M2

1 +m2
U −

2M2
1m

2
U

M2
1 −m2

U

ln M
2
1

m2
U

)

+s2
ϕ

(
M2

2 +m2
U −

2M2
2m

2
U

M2
2 −m2

U

ln M
2
2

m2
U

)
−s2

ϕc
2
ϕ

(
M2

1 +M2
2 − 4M1M2

+2M
3
1M2 −M2

1M
2
2 +M1M

3
2

M2
1 −M2

2
ln M

2
1

M2
2

)]
,

(212)

where d(R) is the dimension of the techniquark representation, Y (= 1
2) is the

hypercharge of the techniquark doublet, sϕ = sinϕ, cϕ = cosϕ and the functions
f1 and f2 are given by

f1(M1,M2) = 3M1M
3
2 + 3M3

1M2 − 4M2
1M

2
2

(M2
1 −M2

2 )2 , (213)

f2(M1,M2) = M6
1 − 3M4

1M
2
2 + 6M3

1M
3
2 − 3M2

1M
4
2 +M6

2
(M2

1 −M2
2 )3 . (214)

Let us then compare this improved analysis to the naive estimate. To this end, we
make the following estimates: v2 ∼ 10 GeV and c2

θ/m
2
s ∼ 1/m2

SUSY. We plot the
values of SU,D and TU,D as functions of MD within range MD ≤ 5 TeV and vary
mSUSY from 5 to 15 TeV. The plot is depicted in fig. 4. We have scaled SU,D with
factor 100 to fit the both SU,D and TU,D in the same plot. The curves from darker
to lighter correspond to mSUSY values from 5 TeV to 15 TeV, respectively. We have
chosen N = 2, since the number of technicolors only affects the overall factor and
does not change the form of the curves. We notice that the most significant change
to the naive estimate happens with the contribution to T . The requirement of a
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small T parameter constrains the massMD to be small. This, however, is a desired
result, since the minimum equations for the scalar potential of the effective theory
imply a rough estimate of MD ∼ vw [40]. We, thus, focus only on the reasonably
small values of |TU,D|. The values of SU,D and TU,D as a function ofMD,MD ≤ 400
GeV, are depicted in upper panel of fig. 5 for N = 2 and, for a comparison, for
N = 3 in the lower panel of fig. 5. We have included explicitly the naive estimate
Snaive and the curves from darker to lighter again represent the values 5 . . . 15 TeV
of mSUSY, respectively.
Moreover, the special vacuum alignment gives a tree level contribution to the T
parameter [40]

αTtree = −2v2
2

v2
w
, (215)

where α ≈ 1/137 is the fine structure constant and vw = 246 GeV the VEV of the
SM Higgs. The tree level contribution to S is zero.
On top of these contributions arising from the new strongly interacting sector,
there are contributions to S and T parameters from the new leptons. The one-
loop contributions from weak doublet of fermions, f = (f1, f2), with Dirac masses
M1 and M2, respectively, to the oblique parameters read [44]

Sf =Nc

6π

{
2(4Y + 3)x1 + 2(−4Y + 3)x2 − 2Y ln x1

x2

+
[(3

2 + 2Y
)
x1 + Y

]
G(x1) +

[(3
2 − 2Y

)
x1 − Y

]
G(x2)

}
,

(216)

Tf = Nc

8π s
2
Wc

2
WF (x1, x2), (217)

where xi = (Mi/mZ)2, i = 1, 2, Y is the hypercharge of f and Nc is the colour
factor, i.e. the dimension of the colour representation of the fermion f ; for leptons
Nc = 1. The functions F and G are defined as

F (x1, x2) = x1 + x2

2 − x1x2

x1 − x2
ln x1

x2
, (218)

G(x) = −4
√

4x− 1 arctan 1√
4x− 1

. (219)

At the limit M2
1,2 � m2

Z we obtain

Sf = Nc

6π

[
1− 2Y ln

(
M1

M2

)2
+ 1 + 8Y

20

(
mZ

M1

)2

+1− 8Y
20

(
mZ

M2

)2
+O

((
mZ

Mi

)4
)]

.

(220)
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tions of MD. The curves from darker to lighter represent the different values of mSUSY
from 5 TeV to 15 TeV, respectively.
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Figure 5. Upper left panel: The values of SU,D for N = 2 as a function of MD.
The curves from darker to lighter represent the different values of mSUSY from 5 TeV
to 15 TeV, respectively, and the constant line shows the naive estimate. Upper right
panel: The values of TU,D for N = 2 as a function of MD. The curves from darker
to lighter represent the different values of mSUSY from 5 TeV to 15 TeV, respectively.
Lower panels: Corresponding plots for N = 3.

52



If the mass splitting within the fermion doublet is small, we obtain the naive
estimate Nc/6π.

We are now ready to add the pieces together to obtain the full S and T parameters
for the model. To this end, we choose mref = 117 GeV. The current experimental
values for S and T (with U = 0) assuming a 117 GeV Higgs boson reference mass
are [6]

S = 0.03± 0.09, and T = 0.07± 0.08. (221)

Hence, we obtain estimates

S = SU,D + Sleptons

T = TU,D + Ttree + Tleptons.
(222)

Having these general expressions, let us then focus on particular choices of the
lepton sector.

4.4.1Technicolor group SU(N)TC with NL lepton doublets

Depending on whether N is even or odd, we must add an odd or even number of
lepton doublets, respectively, in order to avoid the Witten anomaly. After choosing
the number of the doublets, we must choose the hypercharges of the leptons such
that they fulfil eq. (168). Note here, however, that in the simplest case where
the lepton doublets are mass degenerate, i.e. mNi = mN and mEi = mE for all
i = 1, . . . , NL, we see from eqs. (216) and (217) that the particular hypercharge
assignment (i.e. whether we take three doublets of hypercharges -3/2, -1/2 and
1/2 or three doublets each of hypercharge -1/2, for example) is irrelevant when
considering the contributions to the S and T parameters; only the number of lepton
doublets matters.

The full S and T (of eq. (222)) for a model with N = 2,MD = 100 GeV and
mSUSY = 5 TeV and either one or three lepton doublets are depicted in the upper
left panel of figure 6 as a function of mN and mE varying in the range mZ ≤ mN ≤
mE ≤ 5mZ . We denote x1 = (mN/mZ)2 and x2 = (mE/mZ)2, x1 thus varying from
1 to 25 and x2 from x1 to 25. We have explicitly marked the x1 = 1 and x2 = 25
contours for NL = 1 case; for NL = 3 the behaviour is similar with x1 increasing to
the right and x2 decreasing downward. We have chosen mE ≤ mN since with that
choice the contribution to S is negative and can, therefore, be used to cancel the
positive SU,D. The ellipse in the figures shows the current experimental limit for
S and T at 95% C.L. For one lepton doublet we have also included the behaviour
when increasing MD to 200 GeV (red curve) or mSUSY to 10 TeV (purple curve).
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Figure 6. Upper left panel: The blue and green areas show the full S and T pa-
rameters for N = 2,MD = 100 GeV, mSUSY = 5 TeV and NL = 1, 3 as a function of
the lepton masses, m2

N = x1m
2
Z and m2

E = x2m
2
Z , 1 ≤ x1 ≤ x2 ≤ 25. In NL = 3 case

we assume mNi = mN and mEi = mE , i = 1, 2, 3. The ellipse corresponds to the 95%
C.L. region from experimental data. The dashed red and solid purple curves represents
the shifts of the NL = 1 region when, respectively, MD is increased to 200 GeV or
mSUSY is increased to 10 TeV. Lower left panel: Similar plot for N = 3,MD = 200
GeV, mSUSY = 5 Tev and NL = 2, 8. Again, mNi = mN and mEi = mE , i = 1, . . . , NL.
Right panels: The allowed parametric regions (points mapping inside the ellipse) cor-
responding to the left panels.
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The (x1, x2) regions allowed by experiments (i.e. mapped inside the ellipse) are
shown in the upper right panel of fig. 6.

Similar plots for N = 3 with MD = 200 GeV and mSUSY = 5 TeV, are depicted in
the lower panel of fig. 6. We conclude that even for higher N there exists a region
of the parameter space consistent with current limits. Moreover, due to the rapid
increment of TU,D with increasingMD, the total oblique parameters, even for large
number of leptons, remain reasonably small. Actually, for MD of about 200 GeV
or larger, the preferred lepton sector is that of a larger number of doublets with
(N2− 1) SM like doublets being a good candidate. Note that the results would be
somewhat opposite (the small number of lepton doublets preferred) if we would
have estimated the TC sector contributions only with the naive estimates due to
Tnaive = 0.

4.4.2 SU(2)TC with fourth generation of QCD quarks

According to eq. (161) the anomaly-free hypercharge assignment for the new dou-
blet of QCD quarks is Y (qL4) = −1. We get the contribution from this doublet
similarly from eqs. (216) and (217) now remembering to include the colour factor
Nc = 3. The current lower limit for the masses of these fourth generation quarks
lies around 300 GeV [45] and accordingly, we set 10 ≤ x1 ≤ x2 ≤ 50, where again
xi = (mi/mZ)2. The full S and T parameters of this model are shown in fig. 7 as
functions of the quark masses withMD = 200 GeV and mSUSY = 5 TeV. Again, we
conclude that from EW precision test point of view a fourth generation of QCD
quarks would be a viable option as well.

4.5 Problems with a charged lepton N?
As we have seen above, even for larger N there is a parameter region to be found
that is in agreement with the current experimental constraints. However, there is
a subtlety we have not yet discussed. Namely, some of the models above, e.g. the
sMCST, suggest a doubly charged lepton and its singly charged ‘neutrino’ partner.
The problem is that within the model, there is no channel for N decay (because
its doubly charged partner E is expected to be heavier) leading to a stable singly
charged lepton. This, in turn, is not preferred by results from cosmology.

However, the situation is not exactly that grim. If we include a Yukawa coupling
between, say, N, H̃1 and τ (which is perfectly acceptable if we allow the lepton
number violation), we obtain a decay channel for N .

This coupling, however, gives a possibly disfavoured contribution to the anomalous
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Figure 7. Left panel: The full S and T parameters for N = 2,MD = 200 GeV and
mSUSY = 5 TeV with fourth generation of QCD quarks as functions of quark masses,
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C.L. region from experimental data. Right panel: The allowed parametric region.

magnetic moment of τ . After a lengthy calculation, we obtain

aH1
τ = FH1

2 (0) = − y2

16π2

1∫
0

dz mτ (mN − zmτ )(1− z)2

z(z − 1)m2
τ + (1− z)m2

N + zm2
1
, (223)

where y is the Yukawa coupling, α the fine structure constant and mτ ,mN ,m1
the masses of τ,N and H̃1, respectively. The detailed calculation of the anomalous
magnetic moment can be found in in Appendix F.

The Yukawa coupling ought to be of order one so let us approximate y ≈ 1 and
m1 ≈ mSUSY to get a numerical estimate of the anomalous magnetic moment. A
plot of the obtained values as a function of mN with mSUSY = 5 . . . 15 TeV is given
in fig. 8.

The current experimental limits for the anomalous magnetic moment of τ are [46]

−0.052 ≤ aτ ≤ 0.013, (224)

at 95% C.L. so within the current accuracy, no further constraints arise from here.

Having seen that the Yukawa coupling term at issue is not excluded due to the
contribution to aτ , we can give an estimate for the resulting lifetime as well. As-
suming that the Higgs decays dominantly to bb̄ pair (now that the MSSM Higgses
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do not acquire a VEV there are no tree level vertices with one Higgs and two weak
bosons), we obtain for the decay width

Γ(N → bb̄τ) =
(m2

12)max∫
(m2

12)min

dm2
12

(m2
23)max∫

(m2
23)min

dm2
23

1
(2π)3

3y2y2
b

16m3
N(−m2

12 +m2
H)2×

[(
(mN +mτ )2 −m2

12

)
m2

12 − 4m2
b

(
m2
N +m2

τ −m2
12

)]
,

(225)

where y, yb are the H̃1Nτ and H̃1b̄b Yukawa couplings, respectively, mb the mass
of the bottom quark and

(m2
23)max

min = (E∗2 + E∗3)2 −
(√

E∗2
2 −m2

b ∓
√
E∗3

2 −m2
τ

)2
, (226)

(m2
12)min = 4m2

b , (m2
12)max = (mN −mτ )2, (227)

with

E∗2 = 1
2m12, E∗3 = 1

2m12
(m2

N −m2
12 −m2

τ ). (228)

A more detailed calculation of the lifetime can be found in Appendix G. To get
some numerical results, we approximate y = yb = 1 and mH = mSUSY. The
lifetime of N as a function of mN is depicted in fig. 9 with mSUSY = 5 . . . 15 TeV.
We conclude that the lifetime obtained for N is of the same order than that of
the neutral pion, τπ0 = (8.4± 0.4)× 10−17 s [6]. The lifetime is well short enough
not to interfere the Big Bang nucleosynthesis and is also from this point of view
in accordance with the cosmological observations.

5 Conclusions
In this thesis, we have discussed the union of supersymmetry and technicolor as
a candidate for the path beyond the Standard Model of particle physics with
emphasis in the strong regime of the model in which the energy scale of SUSY is
higher than that of TC. This way TC is solely responsible of the EWSB and the
Higgs fields of MSSM only transmit it to the fermion sector giving the fermions
their masses. Hence, there is no need for a separate ETC sector while SUSY is
playing this role.

We considered specific supersymmetrization scheme, in which the right-handed
partner of the D techniquark is identified with the fermionic partner of the tech-
nigluon. The resulting model is particularly interesting: the bosonic and fermionic
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content of the TC sector fits exactly in a N = 4 supermultiplet leading to a
possible connection with string theory via the AdS/CFT duality.

More precisely, we have considered the effective theory at the EW scale, studied
the vacuum structure and in particular the contributions of this BSM sector to
the oblique EW parameters.

Including SUSY introduces new symmetry breaking terms into the effective La-
grangian when compared to a pure TC leading to a novel vacuum structure. More-
over, the minimum equations imply a small soft SUSY-breaking mass,MD, for the
technigluino.

Moreover, we have used an improved estimate for the contributions from the TC
sector to the oblique parameters (in comparison to the famous naive estimate)
which takes into account the mass splitting between the techniquarks. Using this
estimate we find that even for higher number of technicolors, the model is not
excluded by current experimental limits if the soft SUSY-breaking mass of the
technigluino is small. Hence, the constraint from the oblique parameters for MD

matches the constraint already obtained from the vacuum considerations.

Finally, since a stable charged lepton appearing in some variants of the model
is disfavoured by cosmological observations, we have considered adding a lepton
number violating Yukawa coupling term between the charged stable lepton, SM τ
lepton and one of the MSSM Higgses to give a decay channel for the lepton. This,
a priori, could result in a disfavoured contribution to the anomalous magnetic
moment of τ but we have found this contribution negligible within the current
experimental accuracy.

All in all, this novel marriage of SUSY and TC gives viable and interesting models
for BSM physics.
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Appendix A Notations and conventions
Let us begin with fixing some notations and conventions, in which we will mainly
follow those of Wess and Bagger [24]. First of all, we will be working in a Minkowski
space with the mostly-plus metric

ηµν = diag(−1,+1,+1,+1) (229)

implying p2 = −m2 for an on-shell particle. For concreteness, we will also be
working in the chiral representation of the gamma matrices, i.e.

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (230)

where

σ0 = σ̄0 =
(

1 0
0 1

)
, (231)

and

σ1 = −σ̄1 =
(

0 1
1 0

)
, σ2 = −σ̄2 =

(
0 −i
i 0

)
,

σ3 = −σ̄3 =
(

1 0
0 −1

) (232)

are the Pauli matrices.
In this basis, one can write the four-component Dirac spinor in terms of two-
component Weyl spinors, and these turn out to be very handy both in the context of
SUSY and TC. Let us, therefore, concentrate on these objects a bit more carefully.
In order to lay a solid foundation, and not to sink in the endless swamp of different
conventions, let us take a short bypath on the representations of the Lorentz group.
The double cover of the proper orthochronous Lorentz group SO+(3, 1), i.e. the
spin group Spin(3, 1), is isomorphic to SL(2,C) and, thus, has a natural two-
dimensional complex representation, denoted by W, in which SL(2,C) acts by
matrix multiplication when the elements of SL(2,C) are identified with complex
2× 2 matrices. That is, if M ∈ SL(2,C) and w ∈W, then

(M · w)α = M β
α wβ. (233)

The placement of indices is not arbitrary and will be explained shortly. A spinor
wα transforming this way is a left-handed, or a (1

2 , 0) spinor. This implies that the
hermitian conjugate spinor (wα)† =: w̄α̇ transforms as

(M · w̄)α̇ = w̄β̇(M †)β̇α̇ = (M̄) β̇
α̇ w̄β̇. (234)
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The spinor w̄α̇ that transforms with the complex conjugate matrix, M̄ , is a right-
handed, or a (0, 1

2) spinor. This corresponds to the conjugate representation, W.
The same group multiplication rule can, however, be satisfied by other choices
of action as well. For example, the multiplication by the inverse transpose of M
satisfies the same group multiplication since ((MN)T )−1 = (MT )−1(NT )−1. Corre-
spondingly, multiplication by the inverse hermitian conjugate, (M †)−1, is a possible
action. We call these the dual (W∗) and the conjugate dual (W∗) representations,
respectively. These are not, however, inequivalent to the previous two but are in
fact isomorphic to (1

2 , 0) and (0, 1
2), respectively.

Following the usual convention, we will distinguish the conjugate representations
by using dotted indices and will adopt the following placement of indices:

wα ∈W, w̄α̇ ∈W, wα ∈W∗ and w̄α̇ ∈W∗.

In building Lorentz tensors out of these spinors, it is useful to regard wα as a
row-vector and w̄α̇ as a column vector.

In terms of Weyl spinors, a Dirac spinor then becomes

ΨD =
(
ξα
χ̄α̇

)
. (235)

We use two-index antisymmetric epsilon symbols to raise and lower spinor indices
in the following manner:

wα = εαβwβ, wα = εαβw
β, w̄α̇ = εα̇β̇w̄β̇, w̄α̇ = εα̇β̇w̄

β̇. (236)

We fix the components of the epsilon symbols as

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1. (237)

Moreover, we suppress descending contracted indices and ascending contracted
dotted indices, i.e. contractions

α
α and α̇

α̇

can be suppressed. In practice, this implies

ψχ := ψαχα = −ψαχα = χαψα = χψ, (238)
ψ̄χ̄ := ψ̄α̇χ̄

α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄
α̇ = χ̄ψ̄. (239)

Further conventions and an excessive list of spinor identities have been collected
in Appendix C. Grassmannian derivatives are, in addition, shortly discussed in
Appendix D.
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Finally, a couple of words on indices. We denote the spacetime indices running
from 0 to 3 with Greek letters, µ, ν, ρ, etc. and the spatial indices running from 1
to 3 with Roman letters, i, j, k, etc. The two-component spinor indices are denoted
by Greek letters from the beginning of the alphabet, α, β, γ, etc. Summation over
repeated indices of any kind is always assumed.

Appendix B The generators of SU(2Nf)
According to eq. (25), the generators of SO(2Nf) satisfy

SaTE + ESa = 0. (240)

After writing the generators in a block form

Sa =
(
Aa Ba

Ca Da

)
, (241)

the condition (240) reads(
CaT AaT

DaT BaT

)
+
(
Ca Da

Aa Ba

)
= 0, (242)

thereby implying

CaT = −Ca, BaT = −Ba and DaT = −Aa. (243)

The hermiticity of the generators further implies

Aa = Aa† and Ca = Ba†. (244)

The generators Sa take then the form

Sa =
(
Aa Ba

Ba† −AaT

)
, (245)

where Aa† = A and BaT = −B.

Denote the broken generators by X i, which, after imposing the hermiticity, can be
written as

X i =
(
Ai Ci

Ci† Di

)
. (246)
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Now, in order them to reside in the complement of SO(2Nf), set AiT = Di and
CiT = Ci. We have to, in addition, demand Di to be traceless to obtain traceless
generators. The broken generators then read

X i =
(
Di Ci

Ci† DiT

)
, (247)

where Di is hermitian and traceless and CiT = Ci. To check that this gives a com-
plete set of broken generators, let us count the free parameters of X i. A complex,
hermitian, traceless Nf×Nf matrix Di can be parameterized by Nf−1 real param-
eters whereas a complex symmetric matrix Ci has Nf(Nf +1) free real parameters,
therefore summing up to

2N2
f +Nf−1 = (4N2

f −1)− 2Nf(2Nf − 1)
2 = dim SU(2Nf)−dim SO(2Nf). (248)

Moreover, it is useful to identify Sa, and Xa, a = 1, . . . , Nf2 − 1, as the generators
of SU(Nf)V and SU(Nf)A, respectively, and SN

2
f as the generator of U(1)V. These

then read

Sa = 1√
2

(
τa 0
0 −τaT

)
, SN

2
f = 1

2
√
Nf

(
1 0
0 −1

)
,

Xa = 1√
2

(
τa 0
0 τaT

)
,

(249)

where τa, a = 1, . . . , N2
f − 1, are the generators of SU(Nf). The generators are

normalised such that

Tr[SaSb] = 1
2δ

ab, Tr[X iXj] = 1
2δ

ij. (250)

In term of these, we can then write the generators of SU(Nf)L and SU(Nf)R as

La = Sa +Xa

√
2

, Ra = XaT − SaT
√

2
, (251)

respectively.

Appendix C Two-component spinor identities
Let us collect the useful identities for manipulating spinors here. A good collection
of needed identities and two-component spinor techniques can be found in e.g. [47]
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(note especially the reference therein to an otherwise identical paper but with
different metric convention).
First of all, recall the basic relations and conventions

ηµν = diag(−1,+1,+1,+1), (252)
ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1, (253)
ε0123 = 1, (254)
ψα = εαβψβ, ψα = εαβψ

β, ψ̄α̇ = εα̇β̇ψ̄β̇, ψ̄α̇ = εα̇β̇ψ̄
β̇, (255)

ψχ = ψαχα = −ψαχα = χαψα = χψ, (256)
ψ̄χ̄ = ψ̄α̇χ̄

α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄
α̇ = χ̄ψ̄, (257)

(ψχ)† = (ψαχα) = χ̄α̇ψ̄
α̇ = χ̄ψ̄ = ψ̄χ̄, (258)

εαβεβγ = δαγ , εαβε
βγ = δ γ

α , εα̇β̇εβ̇γ̇ = δα̇γ̇ , εα̇β̇ε
β̇γ̇ = δ γ̇

α̇ , (259)
σµ = (σµ)αα̇ = (1, ~σ), σ̄µ = (σ̄µ)α̇α = εα̇β̇εαβ(σµ)ββ̇ = (1,−~σ), (260)

(σµν) β
α := 1

2(σµσ̄ν − σν σ̄µ) β
α

3 (261)

(σ̄µν)α̇β̇ := 1
2(σ̄µσν − σ̄νσµ)α̇β̇. (262)

Start with some σ matrix identities.
Tr[σµσ̄ν ] = Tr[σ̄µσν ] = −2ηµν , (263)

(σµ)αα̇(σ̄µ)β̇β = −2δ β
α δ β̇

α̇ , (264)
(σµ)αα̇(σµ)ββ̇ = −2εαβεα̇β̇, (265)
(σ̄µ)α̇α(σ̄µ)β̇β = −2εαβεα̇β̇, (266)
(σµσ̄ν + σν σ̄µ) β

α = −2ηµνδ β
α , (267)

(σ̄µσν + σ̄νσµ)α̇β̇ = −2ηµνδα̇β̇ . (268)
Alternatively, we can combine eqs. (261) and (267), and eqs. (262) and (268) to
obtain

(σµσ̄ν) β
α = −ηµνδ β

α + (σµν) β
α , (269)

(σ̄µσν)α̇β̇ = −ηµνδα̇β̇ + (σ̄µν)α̇β̇. (270)

3The reader is encouraged to pay extra attention in the definitions of σµν in the literature
since a variety of overall factors is to be encountered, including at least 1

2 ([28]), i2 ([48]), 1
4 ([24]),

and i
4 ([27, 25, 47]). We chose the factor 1

2 since for our purposes the motivation of defining σµν
is merely to cut down unnecessary notational burden and not a group theoretical as such. Thus,
a mere antisymmetrized product of the matrices serves as a natural choice.
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The σµν ’s obey the following useful trace identities:

Tr[σµν ] = Tr[σ̄µν ] = 0, (271)
Tr[σµνσρσ] = 2(ηµσηνρ − ηµρηνσ + iεµνρσ), (272)
Tr[σ̄µν σ̄ρσ] = 2(ηµσηνρ − ηµρηνσ − iεµνρσ). (273)

Let us then list some useful identities for manipulating spinors.

Start with the (anti)symmetry relations with respect to changing the order of
spinors

ψχ = χψ, ψ̄χ̄ = χ̄ψ̄, (274)
ψσµχ̄ = −χ̄σ̄µψ, (275)
ψσµσ̄νχ = χσν σ̄µψ, (276)
ψ̄σ̄µσνχ̄ = χ̄σ̄νσµψ̄. (277)

Consider then identities involving product of two spinors. These are proportional
to the epsilon symbols in the following manner

θαθβ = −1
2ε

αβθθ, (278)

θαθβ = +1
2εαβθθ, (279)

θ̄α̇θ̄β̇ = +1
2ε

α̇β̇ θ̄θ̄, (280)

θ̄α̇θ̄β̇ = −1
2εα̇β̇ θ̄θ̄. (281)

The validity of these can be easily checked by exhausting all the possible index
combinations.

The following Fierz rearrangement identities are also excessively useful:

φχψξ = −φψ χξ − φξ χψ, (282)
φ̄χ̄ ψ̄ξ̄ = −φ̄ψ̄ χ̄ξ̄ − φ̄ξ̄ χ̄ψ̄, (283)

φσµχ̄ ψ̄σ̄µξ = 2φξ χ̄ψ̄, (284)
φ̄σ̄µχ ψ̄σ̄µξ = −2φ̄ψ̄ χξ, (285)
φσµχ̄ ψσµξ̄ = −2φψ χ̄ξ̄, (286)

φσµνχψσµνξ = 8φξ χψ + 4φχψξ, (287)
φ̄σ̄µνχ̄ ψ̄σ̄µν ξ̄ = 8φ̄ξ̄ χ̄ψ̄ + 4φ̄χ̄ ψ̄ξ̄, (288)
φσµνχ ψ̄σ̄µν ξ̄ = 0. (289)
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The Fierz identities can also be used to compute more general relations for products
of spinors,

εαθβ = 1
2εθεαβ + 1

8εσ
µνθ(σµν)αβ (290)

ε̄α̇θ̄β̇ = 1
2 ε̄θ̄εα̇β̇ + 1

8 ε̄σ̄
µν θ̄(σ̄µν)α̇β̇, (291)

and further, to figure out the following identities:

θφ θψ = −1
2φψ θθ, (292)

θ̄φ̄ θ̄ψ̄ = −1
2 φ̄ψ̄ θ̄θ̄ (293)

θσµθ̄ θσνψ̄ = −1
2θ

2 θ̄ψ̄ηµν + 1
2θ

2 θ̄σ̄µνψ̄, (294)

θ̄σ̄µθ θ̄σ̄νψ = −1
2 θ̄

2 θψηµν + 1
2 θ̄

2 θσµνψ. (295)

Finally, let us consider hermitian conjugation. First of all, note that complex conju-
gation should always reverse the order of Grassmannian variables to be consistent
with hermitian conjugation. Using the hermiticity of Pauli matrices we obtain re-
lations for hermitian conjugation (for quantum operators) or complex conjugation
(for classical fields)

(ψσµχ̄)† = χσµψ̄, (296)
(ψ̄σ̄µχ)† = χ̄σ̄µψ, (297)

(ψσµσ̄νχ)† = χ̄σ̄νσµψ̄, (298)
(ψσµνχ)† = −χ̄σ̄µνψ̄. (299)

Notice that we have an extra minus sign in the last equation in comparison with [47]
due to the different convention of σµν .
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Appendix D Some remarks about Grassmannian
derivatives

Let us write down the basic definitions and identities of Grassmannian derivatives.
The defining relations are

∂αθ
β := ∂θβ

∂θα
= δ β

α , (300)

∂αθβ := ∂θβ
∂θα

= δαβ , (301)

∂̄α̇θ̄
β̇ := ∂θ̄β̇

∂θ̄α̇
= δ β̇

α̇ , (302)

∂̄α̇θ̄β̇ :=
∂θ̄β̇

∂θ̄α̇
= δα̇β̇ . (303)

From these it follows that
2 = ∂αθ

α = ∂αθα and (304)
2 = ∂̄α̇θ̄

α̇ = ∂̄α̇θ̄α̇, (305)
thus implying

∂α = −εαβ∂β and ∂̄α̇ = −εα̇β̇∂̄β̇. (306)
As an immediate consequence, one obtains

∂αθβ = −εαβ, (307)
∂αθβ = −εαβ, (308)
∂̄α̇θ̄β̇ = −εα̇β̇, (309)
∂̄α̇θ̄β̇ = −εα̇β̇. (310)

The Grassmannian derivatives anticommute with the Grassmannian variables,
leading to a modified version of the Leibniz rule

∂αθ
βθγ = δ β

α θγ − θβδ γ
α . (311)

Utilizing that we obtain
∂αθ

2 = ∂αθ
βθβ = δ β

α θβ − θβ(−εαβ) = 2θα and (312)

∂̄α̇θ̄
2 = ∂̄α̇θ̄β̇ θ̄

β̇ = −εα̇β̇ θ̄β̇ − θ̄β̇δ
β̇

α̇ = −2θ̄α̇, (313)
and further

∂2θ2 = ∂α∂αθ
βθβ = 2∂αθα = 4 and (314)

∂̄2θ̄2 = ∂̄α̇∂̄
α̇θ̄β̇ θ̄

β̇ = ∂̄α̇
(
θ̄α̇ − θ̄β̇

(
−εα̇β̇

))
= 4. (315)
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Appendix E The vacuum structure
The full potential of the effective Lagrangian reads

V = VM + VSB, (316)

where

VM =− m2
M

2 Tr
[
M †M

]
+ λM

4 Tr
[
M †M

]2
+ λ′MTr

[
M †MM †M

]
− 2λ′′M

[
detM + detM †

] (317)

and

VSB = c1Λ2Tr [MX] + c2Λ2Tr [MZ] + c3Λ4WijklMijM
∗
kl + c.c. (318)

Using

〈M〉 = 1
2


0 0 v1 + v3 0
0

√
2v2 0 v1 − v3

v1 + v3 0 0 0
0 v1 − v3 0

√
2v4

 , (319)

we obtain

〈VM〉 = 1
16
[
−4m2

M(2v2
1 + v2

2 + 2v2
3 + v2

4) + λM(2v2
1 + v2

2 + 2v2
3 + v2

4)2

+ λ′M
(
2v4

2 + 4v2
2(v1 − v3)2 + (v1 − v3)4 + (v1 + v3)4

+4v2(v1 − v3)2v4 + 4(v1 − v3)2v2
4 + 2v4

4

)
−4λ′′M(v1 + v3)2

(
(v1 − v3)2 − 2v2v4

)]
,

(320)

and

〈VSB〉 =
√

2c1Λ2MDv4 + c2Λ2Z13(v1 + v3) + 1
2c3Λ4W (v1 + v3)2, (321)

with Wijkl =: W (δik1 + δik2)δjl3.
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The minimum equations read

0 =∂〈V〉
∂v1

=(λM + λ′M − λ′′M)v3
1

+ 1
2
[
−2m2

M + 2c3Λ4W + (λM + 2λ′M)(v2
2 + v2

4)

+2(λ′M + λ′′M)v2v4 + 2(λM + 3λ′M + λ′′M)v2
3

]
v1

+
[
λ′′Mv2v4 − λ′M(v2

2 + v2v4 + v2
4) + c3Λ4W

]
v3 + c2Λ2Z13,

(322)

0 =∂〈V〉
∂v2

=1
4(λM + 4λ′M)v3

2

+ 1
4
[
−2m2

M + λM
(
2(v2

1 + v2
3) + v2

4

)
+ 4λ′M(v1 − v3)2

]
v2

+ 1
2
[
λ′M(v1 − v3)2v4 + λ′′M(v1 + v3)2v4

]
,

(323)

0 =∂〈V〉
∂v3

=(λM + λ′M − λ′′M)v3
3

+ 1
2
[
−2m2

M + 2c3Λ4W + (λM + 2λ′M)(v2
2 + v2

4)

+2(λ′M + λ′′M)v2v4 + 2(λM + 3λ′M + λ′′M)v2
1

]
v3

+
[
λ′′Mv2v4 − λ′M(v2

2 + v2v4 + v2
4) + c3Λ4W

]
v1 + c2Λ2Z13,

(324)

0 =∂〈V〉
∂v4

=(λM + 4λ′M)v3
4

+
[
−2m2

M + λM(2v2
1 + v2

2 + 2v2
3) + 4λ′M(v1 − v3)2

]
v4

+ 1
2
[
2
√

2c1Λ2MD + λ′Mv2(v1 − v3)2 + λ′′Mv2(v1 + v3)2
]
.

(325)

Appendix F Contribution to anomalous magnetic
moment of τ lepton

The invariant amplitude corresponding to the Feynman digram in fig. 10 reads

iM = ūs′(p′) iV µ
h, 1-loop(p′, p)us(p)ε∗λµ(q), (326)
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τ τH̃1

N N

p p′

p + k

k

p′ + k

γ q

Figure 10. The Feynman diagram giving the one-loop contribution to the anomalous
magnetic moment of τ lepton from the H̃1Nτ Yukawa coupling term.

where

iV µ

H̃1, 1-loop(p′, p)

= (−iy)2
∫ d4k

(2π)4
−i(/p′ + /k +mN)

(p′ + k)2 +m2
N − iε(ieγ

µ)
−i(/p+ /k +mN)

(p+ k)2 +m2
N − iε

−i
k2 +m2

H − iε

= y2e
∫ d4k

(2π)4

=:Nµ︷ ︸︸ ︷
(/p′ + /k +mN)γµ(/p+ /k +mN)(

(p′ + k)2 +m2
N − iε

)
︸ ︷︷ ︸

=:A

(
(p+ k)2 +m2

N − iε
)

︸ ︷︷ ︸
=:B

(
k2 +m2

H − iε
)

︸ ︷︷ ︸
=:C

,

(327)

ūs′(p′) and us(p) the spinors of the outgoing τ with momentum p′ and spin s′ and
the incoming τ with momentum p and spin s, respectively, ε∗λµ(q) is the polarisation
vector of the photon with momentum q and polarisation λ, e is the electron charge,
y the Yukawa coupling constant between H̃1, N and τ , mN and mH the masses of
N and H̃1, respectively and k the momentum of H̃1.

Using the Feynman parameterization, we obtain

1
ABC

=
1∫

0

dx dy dz δ(x+ y + z − 1) 2!
(xA+ yB + zC︸ ︷︷ ︸

=:D

)3 =:
∫

dF3
1
D3 , (328)
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where A, B and C are as is eq. (327) and

D =x(p′2 + k2 + 2p′ · k +m2
N) + y(p2 + k2 + 2p · k +m2

N)
+ 2(k2 +m2

H) + (x+ y + z)(−iε),
(329)

which after the change of variables l = k + xp′ + yp and the use of x+ y + z → 1
can be written as

D →l2 + x(1− x)p′2 + y(1− y)p2 − 2xy p′ · p+ (1− z)m2
N + zm2

H − iε
=: l2 + ∆− iε.

(330)

After the change of variables, the numerator of eq. (327) takes the form

Nµ :=/p′γµ/p+ /p
′γµ/k + /kγµ/p+ /kγµ/k +mN(/p′ + /k)γµ +mNγ

µ(/p+ /k) +m2
Nγ

µ

=/lγµ/l + x(x− 1)/p′γµ/p′ + y(y − 1)/pγµ/p+ (1 + xy − x− y)/p′γµ/p
+ xy /pγ

µ
/p
′ +mN(/p′γµ + 2xp′µ + γµ/p+ 2ypµ +mNγ

µ) + terms linear in l
=:/lγµ/l + Ñµ + terms linear in l

4→d dim−−−−−→
(

1− 2
d

)
l2γµ + Ñµ,

(331)

where on the last line we have changed from 4 to d dimensional case and used first
/lγµ/l = l2γµ − 2/l lµ and then used the identity (see e.g. [25, p. 379])∫

ddl lµlνf(l2) = 1
d
ηµν

∫
ddl l2f(l2). (332)

Moreover, we have dropped the terms linear in l since they integrate to zero. Thus,
by denoting ε = 4− d we obtain

iV µ
h, 1-loop(p′, p) 4→d−−→ ey2µ̃ε

∫
dF3

∫ i ddlE
(2π)d

(
1− 2

d

)
l2Eγ

µ + Ñµ

(l2E + ∆)3

i)= iey2
∫

dF3

[
(2− ε)

Γ( ε2)
4(4π) d2

∆− ε2γµ +
εΓ( ε2)

4(4π) d2
∆− ε2 Ñ

µ

∆

]
ii)= iey2

32π2

∫
dF3

[
1 + ε

2 ln
(

4πµ̃2

∆

)]

·
[(

1− ε

2

)(2
ε
− γE

)
γµ + ε

2

(2
ε
− γE

)
Ñµ

∆

]
+O(ε)

iii)= iey2

16π2

[(
1
ε
− 1

2 −
1
2

∫
dF3 ln ∆

µ2

)
γµ + 1

2

∫
dF3

Ñµ

∆

]
+O(ε),

(333)
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where, after the transition to d dimensions, an extra i emerges from the Wick
rotation to Euclidean space, i.e. ddl = i ddlE, where the subscript E denotes the
corresponding Wick-rotated Euclidean vector. Similarly, the subscript E in l2E de-
notes the Euclidean inner product but with our metric convention l2 = l2E, so
this does not result in any extra minus signs. In i) we have performed the d-
dimensional integral over l and in ii) we have expanded in powers of ε; γE is the
Euler-Mascheroni constant. Finally, in iii) we have dropped all terms at least linear
in ε.

Now, the total vertex function up to one-loop order can be written as

iV µ
1-loopp

′, p = iZ1eγ
µ + iV µ

SM, 1-loop(p′, p) + iV µ
h, 1-loop(p′, p), (334)

where iZ1eγ
µ is the original tree-level vertex and iV µ

SM, 1-loop(p′, p) denotes the SM
1-loop corrections.

Now, demanding V µ(p′, p) to be finite, we obtain the following expression for Z1:

Z1 = 1−KSM −
ey2

16π2 (1
ε

+ finite ) + higher order terms, (335)

where KSM contains the contribution cancelling the divergent terms in V µ
SM, 1-loop.

Next, impose on-shell renormalization conditions by demanding (see e.g. [25, p.
385])

ūs′(p′)V µ
h, 1-loop(p′, p)us(p)

∣∣∣p2=p′2=−mτ
q2=0

= eūs′(p′) γµ us(p)|p2=p′2=−mτ
q2=0

= 2epµδss′ ,
(336)

where the last equation follows from the fact that the on-shell conditions actually
imply not only that p2 = p′2 but also that pµ = p′µ. Due to the delta function on
the spins, we, thus, set s = s′ and drop the subscript s in the u and ū spinors in
what follows.

Using the freedom to choose the finite part of Z1 at will, we can write the total
vertex function as

V µ(p′, p) = eγµ + Ṽ µ
SM(p′, p)− ey2

32π2

∫
dF3

[(
ln ∆

∆0
+ κ

)
γµ − Ñµ

2∆

]
, (337)

where
∆0 = ∆|p2=p′2=−mτ

q2=0

= −x(1− x)m2
τ − y(1− y)m2

τ + 2xym2
τ + (1− z)m2

N + zm2
H

→ (z − 1)(m2
N − zm2

τ ) + zm2
H .

(338)
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Now, fix the constant κ in V µ(p′, p) by imposing equation (336). Assuming the SM
part to be already renormalised, we obtain

0 = − ey2

32π2 ū(p)
∫

dF3

[
κγµ − Ñµ

0
2∆0

]
u(p), (339)

with

Ñµ
0 = Ñµ

∣∣∣p2=p′2=−mτ
q2=0

. (340)

Using Dirac equation, i.e. /pu(p) = −mτu(p) and ū(p)/p = −mτ ū(p) and relations
ū(p)γµu(p) = 2pµ and ū(p)u(p) = 2mτ , we can simplify

ū(p)Ñµ
0 u(p)→ 2pµ(mN − zmτ )2. (341)

Equation (339), accordingly, simplifies to

2κpµ =
∫

dF3
pµ(mN − zmτ )2

(1− z)(m2
N − zm2

τ ) + zm2
H

, (342)

giving

κ =
∫

dF3
(mN − zmτ )2

2(1− z)(m2
N − zm2

τ ) + zm2
H

. (343)

We have now fixed the vertex function. The next step towards the contribution to
the anomalous magnetic moment of τ lepton is to to achieve the decomposition

ūs′(p′)V µ
h, 1-loop(p′, p)us(p) = eūs′(p′)

[
F h

1 (q2)γµ − i
mτ

F h
2 (q2)Sµνqν

]
us(p), (344)

where F h
1 (q2) and F 2

2 (q2) are the contributios to the so-called form factors from
the hNτ Yukawa coupling to one-loop order and

Sµν = i
4 [γµ, γν ] .

Therefore, let now p2 = p′2 = −m2
τ but q2 = (p′ − p)2 arbitrary and denote

ū′ := ūs′(p′) and u := us(p) in the following.

Now, using /pu = −mτu and ū′/p′ = −mτ ū
′ (and x+ y+ z−1→ 0) we can simplify

ū′Nµu→ū′
[
(z(2− z)m2

τ − 2mNmτ +m2
N + xyq2)γµ

+(mN − zmτ ) [(x− y)(p′µ − pµ) + (x+ y)(p′µ + pµ)]]u
(345)
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and

∆→ z(z − 1)m2
τ + (1− z)m2

N + zm2
H + xyq2. (346)

Now, since ∆ is symmetric under the exchange x↔ y, the (x−y) term in eq. (345)
integrates to zero and we have

ū′Nµu→ū′
[
(z(2− z)m2

τ − 2mNmτ +m2
N + xyq2)γµ

+(mN − zmτ )(x+ y)(p′µ + pµ)]u.
(347)

Then, using Gordon identity, ū′(p′µ + pµ)u = ū′(2mτγ
µ + 2iSµνqν)u, we get

Ñµ →
[
z(2− z)m2

τ − 2mNmτ +m2
N + xyq2 + 2mτ (mN − zmτ )(1− z)

]
γµ

+ 2i (mN − zmτ )(1− z)Sµνqν .
(348)

Thus, we obtain

F h
2 (q2) = − y2

32π2

∫
dF3

mτ (mN − zmτ )(1− z)
z(z − 1)m2

τ + (1− z)m2
N + zm2

H + xyq2 (349)

and further

F h
2 (0) =− y2

32π2

∫
dF3

mτ (mN − zmτ )(1− z)
z(z − 1)m2

τ + (1− z)m2
N + zm2

H

=− y2

16π2

1∫
0

dz mτ (mN − zmτ )(1− z)2

z(z − 1)m2
τ + (1− z)m2

N + zm2
H

.

(350)

Appendix G Lifetime of the N lepton
After the introduction of the H̃1Nτ Yukawa coupling, the N lepton is no longer
stable but can decay via the Higgs boson, H̃1. Taking the mass of N , mN , be-
tween 100 and 200 GeV, the dominant decay channels for the Higgs are the decay
into bottom–anti-bottom pair. The corresponding Feynman diagram is depicted
in fig. 11

Let us first compute the invariant amplitude for bb̄ channel. The invariant ampli-
tude of the decay reads

iM(N → bb̄τ) =ūs1(p3)(−iy)us(P ) −i
k2 +m2

H − iεūs3(p1) (−iyb) vs2(p2)

=iyyb
1

k2 +m2
H − iεūs1(p3)us(P ) ūs3(p1)vs2(p2),

(351)
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Figure 11. The Feynman diagram of N decay into bb̄ and τ

where us(p), ūs1(p3), vs2(p2) and ūs3(p1) are the spinors of an incoming N with
momentum P and spin s, an outgoing τ with momentum p3 and spin s1, an
incoming b̄ with momentum p2 and spin s2 and an outgoing b with momentum
p1 and spin s3, respectively, y the Yukawa coupling constant between h,N and τ ,
yb the Yukawa coupling between the b, b̄ and h, mH the mass of h and k = P − p3
the momentum of h.

Now, squaring, averaging over the incoming spin and summing over the outgoing
spins and colour yields

|M(N → bb̄τ)|2 = 1
2
∑
spins

∑
colors
|M(N → bb̄τ)|2

= 3y2y2
b

2
16

(k2 +m2
H)2

[
(P · p3)(p1 · p2) +m2

b P · p3 −mτmN(p1 · p2 −m2
b)
]
,

(352)

where mτ and mb are the masses of τ and b, respectively.

Consider then a general three-body decay, see fig.and denote the mass and the
momentum of the decaying particle by M and P , respectively, and the masses and
momenta of the decay products by mi and pi, i = 1, 2, 3, respectively. Moreover,
define m2

ij, i, j = 1, 2, 3 by setting

m2
ij = −(pi + pj)2. (353)

Then, the differential decay width of a three-body decay (if the decaying particle
is scalar or if its spin is averaged over) can be written as (see e.g. [6])

dΓ = 1
(2π)3

1
32M3 |M|

2dm2
12dm2

23. (354)
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To obtain the total decay width, we need the limits of integration. If the m2
23

integral is first performed, the limits read [6]

(m2
23)max

min = (E∗2 + E∗3)2 −
(√

E∗2
2 −m2

2 ∓
√
E∗3

2 −m2
3

)2
, and (355)

(m2
12)min = (m1 +m2)2, (m2

12)max = (M −m3)2, (356)

where

E∗2 = 1
2m12

(m2
12 −m2

1 +m2
2), E∗3 = 1

2m12
(M2 −m2

12 −m2
3). (357)

Let us then return to the N decay. After the change of variables to m2
12 and m2

23
the invariant amplitude reads

|M(N → bb̄τ)|2

= 3y2y2
b

2
16

(−m2
12 +m2

H)2

[1
4(m2

12 −m2
N −m2

τ )(2m2
b −m2

12)

+1
2m

2
b(m2

12 −m2
N −m2

τ ) + 1
2mτmNm

2
12

]
= 6y2y2

b

(−m2
12 +m2

H)2

[(
(mN +mτ )2 −m2

12

)
m2

12 − 4m2
b

(
m2
N +m2

τ −m2
12

)]
.

(358)

Further, the differential decay width takes the form

dΓ =dm2
12 dm2

23
1

(2π)3
3y2y2

b

16m3
N(−m2

12 +m2
H)2×

[(
(mN +mτ )2 −m2

12

)
m2

12 − 4m2
b

(
m2
N +m2

τ −m2
12

)]
,

(359)

and finally after carrying out the integrations, we obtain the lifetime

τ = 1
Γ . (360)
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