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Abstract

This thesis is an overview of the AdS/CFT correspondence. My main objective has
been to understand the chain of ideas that leads from ordinary quantum field theory
and general relativity to the formulation of the conjecture that certain string theories
are equivalent to lower-dimensional gauge theories. The applications of the corre-
spondence to the building of models are of secondary importance in this work.

We will first give an overview of supersymmetry in Chapter 1. After a brief his-
torical motivation, we introduce the algebra of supersymmetry transformations. We
study the representations of the algebra, both from a more abstract point of view,
and through an example of a supersymmetric field theory. We then introduce the
superspace formalism, and show how supersymmetry transformations are interpreted
as coordinate transformations in superspace, and that integration of functions defined
on superspace produces Lagrangians which define supersymmetric field theories. We
discuss the construction of supersymmetric gauge theories, including a supersym-
metrized version of QCD, using the superspace formalism. Finally, we look briefly
into the spontaneous breaking of supersymmetry, and into the quantization of super-
symmetric field theories.

In Chapter 2, we promote the global supersymmetry transformations into local ones,
which leads us to supergravity theories. After an overview of the vielbein formulation
of general relativity, the use of which is necessary for introducing spinors into a theory
of gravity, we argue by use of an example that making the supersymmetry transfor-
mations local automatically introduces gravity into the theory. We move on to give
a rather detailed discussion of the so-called simple supergravity in four-dimensional
spacetime. We then look into how the algebra of supersymmetry transformations is
properly generalized into higher-dimensional spacetimes. We conclude the chapter
with a description of the ten- and eleven-dimensional supergravity theories and their
symmetries.

With the ideas introduced in Chapters 1 and 2, we are ready to describe the ingredi-
ents of the AdS/CFT duality in Chapter 3. We give a brief overview of string theory,
including a description of D-branes. We note that string theories reduce to supergrav-
ity theories in the low-energy limit. We discuss the so-called large N limit of gauge
theories, and argue that the properties of the large N expansion suggest a connection
between gauge theories and string theories. We construct the p-brane solutions of
ten-dimensional supergravity, and explain how they are related to the D-branes of
string theory. After an overview of conformally invariant field theories, we are ready
to introduce Maldacena’s conjecture on the AdS/CFT duality. We examine a system
of open strings and D-branes from two different points of view, leading to the con-
clusion that a four-dimensional supersymmetric gauge theory likely is equivalent to
a string theory defined on a five-dimensional spacetime. We briefly discuss various
aspects of the duality, after which we conclude the thesis by a brief introduction into
how the duality could be used to construct models for QCD.



Tiivistelmä

Tämä tutkielma on johdatus AdS/CFT-dualiteettiin. Pääasiallinen tavoitteeni on ol-
lut ymmärtää se ajatusten ketju, joka alkaa tavallisesta kvanttikenttäteoriasta ja ylei-
sestä suhteellisuusteoriasta ja päätyy konjektuuriin, jonka mukaan tietyt säieteoriat
ovat ekvivalentteja alempiulotteisten mittateorioiden kanssa. Dualiteetin sovellukset
mallien rakentamisessa jäävät tässä työssä vähälle huomiolle.

Kappale 1 sisältää katsauksen supersymmetriaan. Lyhyen historiallisen johdatuksen
jälkeen esittelemme supersymmetriamuunnosten algebran. Tämän algebran esityk-
siä tutkimme sekä abstraktein menetelmin että tarkastelemalla esimerkkiä supersym-
metrisestä kenttäteoriasta. Tämän jälkeen esittelemme superavaruusformalismin, ja
näytämme miten supersymmetriamuunnokset tulkitaan superavaruuden koordinaatti-
muunnoksina, ja että superavaruudessa määriteltyjen funktioiden integroiminen tuot-
taa supersymmetrisiä teorioita määritteleviä Lagrangen funktioita. Näytämme miten
superavaruusformalismia käytetään supersymmetristen mittateorioiden, mm. super-
symmetrisoidun QCD:n, rakentamiseen. Lopuksi tarkastelemme lyhyesti supersym-
metrian spontaania rikkoutumista ja supersymmetristen kenttäteorioiden kvantisoin-
tia.

Kappaleessa 2 korotamme globaalit supersymmetriamuunnokset lokaaleiksi, päätyen
tätä kautta supergravitaatioteorioihin. Esittelemme aluksi yleisen suhteellisuusteo-
rian monijalkamuotoilun (vielbein formulation), jonka käyttäminen on välttämätöntä
spinorien tuomiseksi gravitaatioteoriaan. Sen jälkeen perustelemme esimerkin avul-
la miksi supersymmetrian korottaminen lokaaliksi tuo automaattisesti gravitaation
osaksi teoriaa. Käsittelemme melko perusteellisesti niin sanotun yksinkertaisen neliu-
lotteisen supergravitaation. Tutkimme myös, miten supersymmetria-algebra kuuluu
yleistää korkeampiulotteisiin avaruusaikoihin. Kappaleen lopuksi kuvailemme 10- ja
11- ulotteisia supergravitaatioteorioita ja niiden symmetrioita.

Kappaleiden 1 ja 2 sisältämien tietojen avulla olemme valmiit esittelemään loput
AdS/ CFT-dualiteetin rakenneosat kappaleessa 3. Annamme aluksi lyhyen johdatuk-
sen säieteoriaan ja D-braaneihin. Toteamme, että matalan energian rajalla säieteoriat
palautuvat supergravitaatioteorioiksi. Tutkimme niin sanottua suuren N :n rajaa mit-
tateorioissa, ja perustelemme miksi suuren N :n kehitelmän muoto viittaa mittateo-
rioiden ja säieteorioiden välillä olevaan yhteyteen. Tarkastelemme kymmenulotteisen
supergravitaation p-braaniratkaisuja ja selitämme, miten ne liittyvät säieteorian D-
braaneihin. Annamme katsauksen konformi-invariantteihin kenttäteorioihin, jonka jäl-
keen olemme valmiit esittelemään Maldacenan konjektuurin AdS/CFT-dualiteetista.
Tarkastelemme avoimien säikeiden ja D-braanien muodostamaa systeemiä kahdella eri
tavalla, päätellen tätä kautta että eräs neliulotteinen supersymmetrinen mittateoria
on todennäköisesti ekvivalentti tietyn viisiulotteisessa avaruudessa määritellyn säie-
teorian kanssa. Esittelemme lyhyesti dualiteetin eri puolia, jonka jälkeen lopetamme
tutkielman tarkastelemalla lyhyesti, miten dualiteettia voidaan käyttää QCD:ta ku-
vaavien mallien rakentamiseen.
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Introduction

In 1998, Maldacena put forward a conjecture [59] that a string theory defined
on a particular kind of anti de Sitter space is equivalent to a supersymmetric
gauge theory which, in some sense, is defined on the boundary of the anti de
Sitter space. This conjectured equivalence, or duality, goes by the name of
AdS/CFT correspondence. Since then, other examples have been developed of
presumed dualities between string theories and gauge theories, and the term
AdS/CFT correspondence may refer more generally to any of these dualities.
The AdS/CFT correspondence has been called one of the most significant re-
sults that string theory has produced [60]. It has even inspired a comparison
with the work of the philosophers of ancient Greece [61].

The correspondence intriguingly brings together many ideas developed in the-
oretical physics during the last forty years. The equivalence between string
theories and gauge theories is motivated by considering a system of branes and
open strings, from the point of view of D-branes in superstring theory, and from
the point of view of p-branes in classical supergravity. The string theory–gauge
theory duality is a materialization of ’t Hooft’s old idea that gauge theories
are related to string theories in the so-called large N limit. The correspon-
dence also seems closely related to the holographic principle, as it provides a
concrete realization of the claim that in a gravity theory, the degrees of free-
dom inside a given region should be associated with the boundary of the region.

Besides being theoretically attractive, the AdS/CFT correspondence also has
potential to be practically very useful. As soon as a precise correspondence is
established between the relevant quantities, such as the fields and the opera-
tors, of the two theories, one could hope that calculations which have previously
been intractable in one theory could be carried out by going to the dual theory,
where the calculation might be considerably simpler. This seems particularly
relevant for QCD, where calculations are extremely difficult to perform in the
limit of strong coupling. As the strong coupling limit in the gauge theory side
of the duality generally corresponds to the weak coupling limit in the string
theory side, there is a hope that progress could be made in QCD by making
use of the duality. However, as of now the string theory dual to QCD is not
known, which severely limits the efficiency of the duality approach to QCD.
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It has been my goal in this work to thoroughly explore the ideas which form
the basis of the AdS/CFT correspondence. The applications of the correspon-
dence are mostly outside of the scope of this work. We begin with an outline of
supersymmetry in Chapter 1. Subsequently, in Chapter 2 we describe the main
features of supergravity theories. I chose to give a rather thorough treatment
of four-dimensional supergravity, which is arguably the most tractable of the
supergravity theories, and many features of the higher-dimensional theories
can be understood by analogy with the four-dimensional theory.

Chapters 1 and 2 contain a lot of material which will be only minimally rele-
vant to the rest of the work. The justification for including this material comes
in part from my desire to write as self-contained a work as possible, and to un-
derstand why supersymmetry and supergravity have been so widely judged to
be worthy of extremely serious research, even in the face of a complete absence
of support from experiments during the nearly forty years that supersymmetry
has been in existence.

While Chapters 1 and 2 form a more or less coherent whole, where things
logically follow one another in a reasonable sequence, the same is perhaps not
true of Chapter 3, in which many ideas will be introduced which may seem
unrelated to each other and to the ideas of the preceding chapters. These
ideas will, however, find their purpose towards the end of the chapter as the
building blocks of the AdS/CFT correspondence. Furthermore, Chapter 3 will
contain many statements which are justified only incompletely, or not at all, in
contrast to Chapters 1 and 2, where the majority of the statements are given
a reasonably detailed justification. In part, this is a reflection of my extremely
incomplete understanding of these matters, though it is certainly necessary to
disregard many details in order to reduce the vast subject of AdS/CFT duality
to a single chapter.

A complete description of our conventions and notations will be given in Ap-
pendix 1. We use the metric ηµν = (−1,+1, . . . ,+1). In four spacetime dimen-
sions – that is, from the beginning of the work up to section 2.5 – we treat
spinors using the two-component Weyl notation. This greatly simplfies things,
compared to the formalism of four-component Dirac spinors, when explicit
calculations need to be performed. Perhaps an even more convincing argu-
ment for using the two-component notation is that it is the formalism which is
used by Nature, as indicated by the completely different weak interactions of
left-handed and right-handed particles. Appendices 2 and 3 describe certain
group-theoretical ideas relevant to the main part of the work.

A few words about our references: I learned supersymmetry from the books
[1] and [2], and the reviews [3, 4, 5, 6, 7]. All of what appears in Chapter 1
originates in some way from one or more of these references. Only whenever
a particular passage is clearly influenced by certain references, has it been in-
dicated by an explicit reference in the text. The references which I used in

2



writing Chapters 2 and 3 are adequately described within the text. The dis-
cussion of simple supergravity given in sections 2.1 through 2.5 closely follows
the references [20] and [21], which use the two-component notation for spinors.
The references [22, 23, 24, 25] have also contributed to my understanding of
supergravity. For the AdS/CFT duality, good general references are given by
[56, 69, 72, 75, 77].

I have generally tried to make references to relevant original papers whenever I
have been aware of their existence. I did this for two reasons: On one hand, to
acknowledge the work of the people who have discovered the ideas which form
the contents of this work; and on the other hand, because I think one should
read the original papers in one’s field as much as possible, since what they
sometimes lack in pedagogical clarity is more than sufficiently compensated by
their distinctive point of view and the unconventional insights that they often
contain.

While I have made a reasonable effort to find errors and remove them, it
is very likely that some sign errors, wrong numerical factors, inconsistencies,
and misleading or incorrect statements still remain. I will not present any
scientifically significant original findings in this thesis, and so maybe it is best
regarded as a documentation of my attempts to make sense out of certain
exciting areas of theoretical physics. The value of this work perhaps lies e.g.
in its potential to act as a guide for students who may wish to embark on a
journey towards understanding these things in the future.
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Chapter 1

Supersymmetry

1.1 The supersymmetry algebra

In the 1960’s, physicists were becoming increasingly aware of the importance
of internal symmetries in quantum field theories. There were many attempts
to find a symmetry which would combine an internal symmetry group with
the Poincaré group of spacetime symmetries in some nontrivial way. This led
to a series of theorems on what kind of symmetries are possible in a quan-
tum field theory, the most powerful of which was the theorem of Coleman and
Mandula in 1967 [8]. On very general assumptions, among which were that the
S-matrix is based on a relativistic four-dimensional quantum field theory [9],
the scattering amplitudes 〈ψout|S|ψin〉 are analytic and nontrivial functions of
the Mandelstam variables s and t, and that all particles have a positive en-
ergy, with only a finite number of particles having a mass less than m0 for
any m0, they proved that the only possible Lie algebra of the symmetries of
the S-matrix is a direct product of the Poincaré algebra and the algebra of
an internal symmetry group. That is, the algebra contains the momentum
operators Pµ, the Lorentz rotation generators Mµν , and a finite number of
internal symmetry generators Tr, which commute with Pµ and Mµν . In the
case where all the particles are massless, the symmetry group is improved to
the direct product of the conformal group with an internal symmetry group,
but the conclusion still stands that it is not possible to nontrivially intertwine
a spacetime symmetry with an internal symmetry.

An important point is that the theorem is concerned with the symmetries of
the S-matrix, and it is possible for the theory itself to have more (or less)
symmetry than the S-matrix. A notable class of such symmetries is given by
spontaneously broken symmetries, which are not symmetries of the S-matrix
despite being symmetries of the action. Therefore, the Coleman–Mandula the-
orem does not apply to them.

Sohnius [10] points out that Witten has given an elegant explanation of the
meaning of the Coleman-Mandula theorem: invariance under spacetime trans-
lations and rotations already places the maximum number of constraints on
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the scattering amplitudes, in the sense that an additional spacetime symmetry
would further constrain the amplitudes so that scattering could occur only at
discrete scattering angles. Then the assumption that the amplitudes are ana-
lytic functions of the scattering angle allows no scattering at all [11].

In 1971, Golfand and Likhtman showed that it is possible to find a symmetry
group which nontrivially mixes internal symmetries with Poincaré symmetries,
provided that one of the assumptions in the Coleman–Mandula theorem is re-
laxed [12]. The essential idea is to consider, instead of a Lie algebra, a more
general algebraic structure – usually called by mathematicians a graded alge-
bra, and by physicists a superalgebra – which contains both commuting and
anticommuting generators. The commuting generators C and the anticom-
muting generators A are required to satisfy certain rules, which are expressed
schematically as

[C,C] = C, [C,A] = A, {A,A} = C. (1.1)

The most general set of symmetries, under the new assumption of anticom-
muting generators, was found by Haag, Lopuszanski and Sohnius in 1975 [13].
It consists of the operators Pµ, Mµν , Tr, Q i

α , where Tr are the generators of
internal symmetries, and Q i

α are anticommuting. The index i enumerates the
different anticommuting operators and goes from 1 to some number N . The
index α enumerates the components of Q i

α , which is a Weyl spinor. (Nat-
urally the algebra contains also the conjugate spinors Q̄α̇i.) The commuting
operators Pµ, Mµν , Tr must still obey the Coleman–Mandula theorem.

We will only briefly outline the Haag–Lopuszanski–Sohnius calculation here.
Its details are discussed for example in [1] and [2]. The calculation is based on
the observation that the identities

[[C1, C2], C3] + [[C3, C1], C2] + [[C2, C3], C1] = 0,

[[C1, C2], A3] + [[A3, C1], C2] + [[C2, A3], C1] = 0,

{[C1, A2], A3}+ {[A3, C1], A2}+ [{A2, A3}, C1] = 0,

[{A1, A2}, A3] + [{A3, A1}, A2] + [{A2, A3}, A1] = 0,

(1.2)

where Ci are commuting and Ai are anticommuting, place very strong con-
straints on the possible form of the algebra satisfied by the generators.

In particular, it follows from these identities that Q i
α is a Weyl spinor. Us-

ing the second identity with (C1, C2, A3) = (Mµν ,Mρσ, Q
i

α ), together with
[Q i

α ,Mµν ] = i(bµν) β
α Q i

β , which follows from Eq. (1.1) because Q is the only
anticommuting generator, one can show that Q i

α carries a representation of
the Lorentz group [2]. If this is the (m,n) representation, then the anticommu-
tator {Q, Q̄} will contain the (m+n,m+n) representation. The only available
operator that belongs to such a representation is Pµ, which is in the (1

2 ,
1
2) rep-

resentation. Therefore the most general possibility is that all the Q-operators
belongs to the (1

2 , 0) or the (0, 1
2) representation [10].
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The form of the supersymmetry algebra can be found by repeatedly applying
the identities (1.2) to derive conditions on the commutators and anticommu-
tators between the operators Pµ, Mµν , Tr, Q i

α . The algebra of the Poincaré
group and the internal symmetry group remains naturally unchanged. The
algebra satisfied by the new generators Q i

α , which are called the supercharges,
turns out to be

{Q i
α , Q̄β̇j} = 2δij(σµ)αβ̇P

µ,

{Q i
α , Q

j
β } = εαβZ

ij , {Q̄α̇i, Q̄β̇j} = ε̄α̇β̇Z̄ij ,

[Pµ, Q
i

α ] = 0, [Pµ, Q̄α̇j ] = 0,

[Mµν , Q
i

α ] = i(σµν) β
α Q i

β , [Mµν , Q̄α̇j ] = i(σ̄µν) β̇
α̇ Q̄β̇i

[Q i
α , Tr] = (Sr)

i
jQ

j
α , [Q̄α̇i, T

r] = −(S∗r) j
i Q̄α̇j .

(1.3)

The objects Zij are called central charges. They are antisymmetric in the
indices i, j, and they commute with every element of the algebra, including
themselves. The central charges can be nonzero only if there is more than one
supercharge. If there are central charges, they must be of the form

Zij = (ar)ijTr. (1.4)

The matrices (Sr)
i
j form a representation of the internal symmetry group.

The matrix (ar)ij is an intertwiner of the representation Sr with the complex
conjugate representation −S∗r . Central charges can only exist if the algebra of
the internal symmetry group allows such an intertwiner [1].

The form of the supersymmetry algebra remains unchanged under unitary
transformations of the supercharges among themselves – that is,

Q i
α → U ijQ

j
α , Q̄α̇i → Q̄α̇j(U

−1)j i, Zij → U ikU
j
lZkl.

These transformations go by the name of R-symmetry. In the case of a single
supercharge, the R-symmetry group is U(1). Through a suitable rescaling, the
commutators of the supercharges with the generator R of this group can be
taken as

[R,Qα] = −Qα, [R, Q̄α̇] = Q̄α̇. (1.5)

1.2 Representations of the supersymmetry algebra

We saw in the previous section that the supercharges Q i
α belong to the spin-1

2
representation of the Lorentz group. Acting on a state of spin j, a supercharge
therefore gives a linear combination of states of j± 1

2 . Thus, supersymmetry is
a symmetry which relates particles of integer spin and particles of half-integer
spin – in other words, it relates bosons and fermions.

We will first prove two general properties of the representations of the su-
persymmetry algebra. In any finite-dimensional linear representation of the
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algebra, there are equally many bosonic and fermionic degrees of freedom. To
prove this, consider the operator (−1)NF , which gives +1 on bosonic states
and −1 on fermionic states. Therefore

(−1)NFQα = −Qα(−1)NF . (1.6)

Now, consider Tr
[
(−1)NF {Q i

α , Q̄β̇j}
]
, where the trace is taken over the states

belonging to the representation. We have

Tr
[
(−1)NF {Q i

α , Q̄β̇j}
]

= Tr
[
(−1)NF (Q i

α Q̄β̇j + Q̄β̇jQ
i

α )
]

= Tr
[
−Q i

α (−1)NF Q̄β̇j +Q i
α (−1)NF Q̄β̇j

]
= 0.

On the other hand, we know from the supersymmetry algebra what {Q i
α , Q̄β̇j}

is, and so we find

0 = Tr
[
(−1)NF {Q i

α , Q̄β̇j}
]

= 2δij(σµ)αβ̇Tr
[
(−1)NFPµ

]
.

On taking i = j and choosing any nonzero momentum Pµ, this implies

Tr (−1)NF = 0, (1.7)

showing that there are equally many bosonic and fermionic degrees of free-
dom in the representation. An exception to this rule is given by the so-called
non-linear realizations (see e.g. [1]). In this case, the supercharges do not act
as linear operators, and so the above argument does not apply, since a trace
operation cannot be defined.

Another general feature of the representations of the supersymmetry algebra is
that all the particles in an irreducible representation have the same mass. This
follows immediately because Pµ commutes with Q i

α , and so P 2 is a Casimir
operator of the algebra. Obviously not all the particles in Nature have the
same mass. Therefore one needs to find a way to break supersymmetry while
not losing all the attractive features of the theory, before one can attempt to
use supersymmetry to give a reasonable description of Nature.

As an aside, an interesting alternative way to discover the above features of
supersymmetry is to consider a general field theory, and require that the theory
is free of ultraviolet divergences, which is one of the nice properties of super-
symmetric field theories. The vacuum energy of a particle of spin j and mass
mj is given by

1

2
(−1)2j(2j + 1)

∫
d3k

√
k2 +m2

j

=
1

2
(−1)2j(2j + 1)

∫
d3k
√
k2

1 +
1

2

m2
j

k2
− 1

8

(
m2
j

k2

)2

+ . . .

 .
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The theory does not have the quartic, quadratic and logarithmic divergences
provided that ∑

j

(−1)2j(2j + 1) = 0

and ∑
j

(−1)2j(2j + 1)m2
j = 0,

∑
j

(−1)2j(2j + 1)m4
j = 0.

The first condition requires that there are equally many bosonic and fermionic
degrees of freedom in the theory. If the first condition is satisfied, then the
other conditions are also satisfied, provided that all the particles have the same
mass. According to West [2], this was observed a long time ago by Pauli.

We will now construct the representations of the supersymmetry algebra, and
so we will find the particle content of supersymmetric field theories. For the
moment, we assume that the central charges vanish. The case where they
do not vanish will be discussed briefly in the end. We first consider repre-
sentations corresponding to massless particles. We go to the frame where
Pµ = (−E, 0, 0, E). Then the supersymmetry algebra is

{Q i
α , Q̄β̇j} =

(
0 0
0 4E

)
αβ̇

δij ,

{Q i
α , Q

j
β } = 0, {Q̄α̇i, Q̄β̇j} = 0.

(1.8)

We see that Q i
1 and Q̄1̇i anticommute with all the Q’s and Q̄’s, so they must be

equal to zero. We are left with N supercharges, and we rescale them according
to

ai =
1

2
√
E
Q i

2 , (ai)† =
1

2
√
E
Q̄ i

2̇
, (1.9)

and use Eq. (1.8) to show that they obey the algebra of N fermionic creation
and annihilation operators,

{ai, (aj)†} = δij ,

{ai, aj} = 0, {(ai)†, (aj)†} = 0.
(1.10)

Now we would like to show that (ai)† raises the helicity of a state by 1
2 , while

ai lowers it by 1
2 . With our choice of coordinate system, the helicity operator

is just J3 = M12. Using the relevant commutators from Eq. (1.3) we indeed
find

[J3, a
i] = −1

2a
i, [J3, (a

i)†] = +1
2(ai)

†. (1.11)

The representations of this algebra are constructed as follows. We choose a
state of lowest helicity |Ωλ−〉, having helicity λ−, which is annihilated by all
the ai. Then we construct all the states by applying the creation operators on
the state of lowest helicity:

|λ− + 1
2n; i1 . . . in〉 =

1√
n!

(ai1)† . . . (ain)†|Ωλ−〉. (1.12)
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The states which are constructed using n creation operators have helicity λ−+
1
2n, and they are antisymmetric in the indices i1 . . . in. There are

(
N
n

)
such

states. Because there are N different creation operators, the state of highest
helicity has helicity λ+ = λ− + 1

2N , and so the total number of states is

N∑
n=0

(
N

n

)
= 2N .

Moreover, there are equally many bosonic and fermionic degrees of freedom,
since the binomial coefficients satisfy the identity

N/2∑
n=0

(
N

2n

)
=

N/2∑
n=0

(
N

2n+ 1

)
.

If we require a CPT-invariant theory, we will usually have twice as many states,
because CPT reverses the helicity, and so we need to also take the multiplet
with opposite helicities. The multiplets with (N,λ−) = (2,−1

2), (4,−1) and
(8,−2) are CPT-complete by themselves. The theory with N = 8 has parti-
cles of all spins between 0 and 2. It is called the maximally extended theory
of supergravity. It is, in some sense, the largest possible supersymmetric field
theory, because in a theory with N > 8, there would be particles having spin
greater than 2, and it is believed to be impossible to construct a consistent
quantum field theory involving interacting particles of spin 5/2 or greater.

For N = 1, each multiplet consists of only the two states |Ωλ−〉 and a†|Ωλ−〉.
We will denote this multiplet by (λ−, λ−+ 1

2). Then we can have the following
multiplets:

• The chiral multiplet, which consists of (0, 1
2) and its CPT conjugate

(−1
2 , 0). This corresponds to a complex scalar field and a Weyl fermion.

• The vector multiplet, consisting of (1
2 , 1) and (−1,−1

2), which corre-
sponds to a Weyl fermion and a massless vector boson.

• The gravitino multiplet consists of (1, 3
2) and (−3

2 ,−1), corresponding to
a massless vector boson and a spin-3/2 gravitino.

• The supergravity multiplet, which contains (3
2 , 2) and (−2,−3

2), that is,
the graviton and the gravitino.

Consider then representations corresponding to massive particles. Now P 2 =
−M2, and we may go into the rest frame where Pµ = (−M, 0, 0, 0). The
supersymmetry algebra becomes

{Q i
α , Q̄β̇j} = 2Mδαβ̇δ

i
j ,

{Q i
α , Q

j
β } = 0, {Q̄α̇i,Q̄β̇j} = 0.

(1.13)

We again define the scaled supercharges

a i
α =

1√
2M

Q i
α , (a i

α )† =
1√
2M

Q̄α̇i, (1.14)
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and find
{a i

α , (a
j
β )†} = δαβδ

ij ,

{a i
α , a

j
β } = 0, {(a i

α )†, (a j
β )†} = 0. (1.15)

To construct the representations of this algebra, we start from a vacuum state
|Ω〉, which is annihilated by all of the a i

α , and which satisfies P 2|Ω〉 = −M2|Ω〉.
We then apply the creation operators (a i

α )† to the vacuum, so finding the states

|α1 i1 . . . αnin〉 =
1√
n!

(a i1
α1

)† . . . (a in
αn

)†|Ω〉. (1.16)

We have 2N different creation operators, so n cannot be larger than 2N . For
a given n, we can construct

(
2N
n

)
different states. Therefore the total number

of states in the representation is 22N .

In general, we may take the vacuum to be a spin-s state |Ωs〉, so it is a 2s+ 1-
dimensional SU(2) multiplet. We can again use the commutators from Eq.
(1.3) to show that

[J3, (a
i

1 )†] = −1
2(a i

1 )†, [J3, (a
i

2 )†] = +1
2(a i

2 )†. (1.17)

If the vacuum has spin s, the multiplet will then consist of states with spins
j − 1

2 , j, j + 1
2 . For N = 1, these are given by

|Ωs〉, (aα)†|Ωs〉,
1√
2

(a1)†(a2)†|Ωs〉. (1.18)

The vacuum state and the state with two creation operators have the same
Bose–Fermi parity, which is different from that of the states with one creation
operator. Since the vacuum has 2s+1 components, there are 2(2s+1) bosonic
states as well as 2(2s+1) fermionic states, so the balance between bosonic and
fermionic states is satisfied.

For example, if N = 1 and s = 0, there will be two states with spin 0 and
two states with spin 1/2, one of them having J3 = 1

2 and the other having
J3 = −1

2 . The spin-0 state 1√
2
a†1a
†
2|Ω〉 is a pseudoscalar, because parity inter-

changes a†1 and a†2. Therefore this representation contains a real scalar field,
a real pseudoscalar field (or, equivalently, a complex scalar field), and a Weyl
fermion.

As a final example, consider N = 2 and s = 0. We have four different creation
operators, and there will be a total of 16 states. They are

• One spin-0 state |Ω〉,

• Four spin-1/2 states (a i
α )†|Ω〉,

• Six states (a i1
α1

)†(a i2
α2

)†|Ω〉, which come out to be three spin-0 states
and three spin-1 states [5],

11



• Four spin-1/2 states (a i1
α1

)†(a i2
α2

)†(a i3
α3

)†|Ω〉,

• One spin-0 state (a 1
1 )†(a 2

1 )†(a 1
2 )†(a 2

2 )†|Ω〉.

So, in total there are five spin-0 states, eight spin-1/2 states and three spin-1
states. These are the degrees of freedom of five real scalar fields, four Weyl
spinors and one massive vector boson.

We will then consider the case with nonvanishing central charges. We will
shortly see that in the case of massless representations the central charges
must vanish, so we take Pµ = (−M, 0, 0, 0). The supersymmetry algebra then
reads

{Q i
α , Q̄β̇j} = 2Mδαβ̇δ

i
j ,

{Q i
α , Q

j
β } = εαβZ

ij , {Q̄α̇i, Q̄β̇j} = ε̄α̇β̇Z̄ij .
(1.19)

Through a suitable unitary transformation on the supercharges, the central
charges can be put in the form

Zij =


0 z1

−z1 0
0 z2

−z2 0
. . .

 (1.20)

where the elements outside of the diagonal are all zero, and all the zi are posi-
tive. Without any real loss of generality, we may assume that N is even. Then
i takes values from 1 to N/2. The case of N odd can be treated analogously,
since there will merely be an extra zero on the diagonal of the matrix Zij .

We now define the operators

aiα =
1√
2

(
Q2i−1
α + εαβ

(
Q2i
β

)†)
,

biα =
1√
2

(
Q2i−1
α − εαβ

(
Q2i
β

)†)
, (1.21)

which obey the algebra

{aiα, (a
j
β)†} = (2M − zi)δijδαβ,

{biα, (b
j
β)†} = (2M + zi)δ

ijδαβ,
(1.22)

where there is no sum over i, and all the anticommutators between an a op-
erator and a b operator vanish. The operator {aiα, (a

j
β)†} is positive definite,

and so the condition
zi ≤ 2M (1.23)

must be satisfied for all i. In particular, in the massless case all the central
charges vanish. If there are k of the zi’s which obey the equality in (1.23),
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then the corresponding operators must be equal to zero. There will then re-
main 2(N − k) creation and annihilation operators, giving rise to a so-called
short multiplet, which contains 22(N−k)(2s + 1) states, assuming the vacuum
has spin s.

For the rest of this chapter, we will only consider theories with N = 1, post-
poning the discussion of the case N > 1 to later chapters.

1.3 An example: the Wess-Zumino model

In this section, we will illustrate a different, perhaps less abstract method for
constructing a representation of the supersymmetry algebra. We will consrtuct
a supersymmetric field theory which contains at least a scalar field φ. In order
to ensure that the fields in the theory transform correctly under supersymme-
try transformations, we will introduce more fields into the theory, until we have
enough fields so that they form a complete multiplet, whose fields transform
among themselves under supersymmetry [1].

We define the supersymmetry transformation of any field ϕ as

δεϕ = −
(
εQ+ ε̄Q̄

)
ϕ.

The parameter ε of supersymmetry transformations is a Majorana spinor,
which appears in the above equation in the equivalent form of two Weyl spinors.
We now consider supersymmetry transformations on the scalar field φ. The
supersymmetry algebra requires that the commutator of two such supersym-
metry transformations is given by(

δεδξ − δξδε
)
φ =

[
εQ, ξ̄Q̄

]
φ−

[
ξQ, ε̄Q̄

]
φ

= −2i
(
εσµξ̄ − ξσµε̄

)
∂µφ. (1.24)

From the algebra {Q, Q̄} ∼ P , the supercharge Q has mass dimension 1
2 .

Therefore, Q may transform a field of dimension d into a field of dimension
d + 1

2 and into derivatives of fields of lower dimension. We define a fermion
field ψ to be the field into which the scalar field gets transformed,

δεφ = εψ, δεφ̄ = ε̄ψ̄. (1.25)

To satisfy Eq. (1.24), we must take

δεψα = 2i(σµ)αα̇ε̄
α̇∂µφ+ 2εαF,

δεψ̄α̇ = −2iεα(σµ)αα̇∂µφ̄+ 2ε̄α̇F̄ .
(1.26)

Here we introduced a third field F . We may do so because the terms involving
F cancel in the commutator (1.24). Now we must choose the transformation
of F so that the commutator (δεδξ − δξδε)ψ obeys the supersymmetry algebra.
We have(

δεδξ − δξδε
)
ψα =− 2i

(
εσµξ̄ − ξσµε̄

)
∂µψα

− i(σµσ̄ν) β
α ∂νψβ

(
εσµξ̄ − ξσµε̄

)
+ 2
(
ξαδεF − εαδξF

)
.
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The terms in the second line cancel if we take

δεF = iε̄σ̄µ∂µψ, δεF̄ = iεσµ∂µψ̄. (1.27)

Using Eqs. (1.26) and (1.27) we can now show that(
δεδξ − δξδε

)
F = −2i

(
εσµξ̄ − ξσµε̄

)
∂µF. (1.28)

So we have found a multiplet (φ, ψ, F ) on which the supersymmetry algebra
closes. At this point there is no need to introduce any more fields. Note that in
a supersymmetry transformation F transforms by a total derivative. This will
always be the case for the field with highest mass dimension in any multiplet.

The field F has mass dimension 2. The Lagrangian for this theory cannot have
a kinetic term for F , because F 2 already has mass dimension 4. Therefore F
will be an auxiliary field – it has an algebraic equation of motion, which can
be used to eliminate F from the Lagrangian. Using the transformation laws
for the different fields, we can show that the Lagrangian

L = L0 + Lm (1.29)

with

L0 = −∂µφ̄∂µφ+
i

2
∂µψ̄σ̄

µψ + F̄F,

Lm = m
(
φF + φ̄F̄

)
− m

4

(
ψψ + ψ̄ψ̄

)
,

(1.30)

transforms into a total derivative under a supersymmetry transformation. Note
the unconventional normalization of the fermion terms. One can also take the
standard normalization, provided that Eq. (1.26) is replaced by δεφ =

√
2εψ,

and the transformation laws of ψ and F are adjusted accordingly.

The Lagrangian gives rise to the following equations of motion:

�φ+mF̄ = 0,

iσ̄µ∂µψ +mψ̄ = 0, (1.31)
F +mφ̄ = 0.

Using the last equation, we can eliminate F from the Lagrangian, which then
becomes

L = −∂µφ̄∂µφ−m2φ̄φ+
i

2
∂µψ̄σ̄

µψ − m

4

(
ψψ + ψ̄ψ̄

)
. (1.32)

The theory defined by (1.29) or (1.32) is known as the Wess–Zumino model.
It was constructed by Wess and Zumino in 1974 [14]. It is possible to include
interaction terms in the Lagrangian, but we will not do so yet.

Under a supersymmetry transformation, the Lagrangian (1.32) transforms into
a total derivative only if the equation of motion of the fermion is satisfied. We
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say that supersymmetry is only realized on-shell, and the fields (φ, ψ) give an
on-shell representation of supersymmetry. To obtain (1.32), we set F = −mφ̄,
and for this to be consistent under a supersymmetry transformation, we must
require δεF = −mδεφ̄. From Eqs. (1.26) and (1.27) we see that this is equiva-
lent to requiring that iσ̄µ∂µψ = −mψ̄, which is exactly the fermion equation
of motion.

In the on-shell formulation of the Wess–Zumino model, the supersymmetry
transformation of the fermion is given by

δεψα = 2i(σµ)αα̇ε̄
α̇∂µφ− 2mφ̄εα (1.33)

The commutator of two supersymmetry transformations on the fermion will
then read(

δεδξ − δξδε
)
ψα =− 2i

(
εσµξ̄ − ξσµε̄

)
∂µψα

−
(
εσµξ̄ − ξσµε̄

)
(σµ)αα̇

(
iσ̄ν∂νψ +mψ̄

)α̇
.

The supersymmetry transformations therefore close on the fields (φ, ψ) only
if the fermion equation of motion is satisfied. In many supersymmetric field
theories, in particular when N > 1, one has to be satisfied with having to use
the equations of motion to close the supersymmetry transformations, because
the appropriate set of auxiliary fields for the theory may not be known.

1.4 Superspace and superfields

The Wess–Zumino model is arguably the simplest example of a supersymmetric
field theory. Even so, supersymmetry is not at all manifest in the Lagrangian
(1.29), and it is not a trivial calculation to show that the Lagrangian does
transform into a total derivative under a supersymmetry transformation. We
would therefore like to have a notation where invariance under supersymmetry
becomes manifest. Such a notation is provided by the superspace formalism,
which was introduced by Salam and Strathdee in 1974 [15, 16]. The superspace
notation is in many ways superior to the notation used in the previous sec-
tion, much like the manifestly Lorentz invariant notation ∂µφ̄∂µφ is superior
to something like |φ̇|2−|∇φ|2. In particular, it is easy to consruct Lagrangians
for supersymmetric field theories using the superspace formalism.

A point (x, θ, θ̄) in superspace is represented by the element of the supersym-
metry group

G(x, θ, θ̄) = exp
(
−ixµPµ − iθQ− iθ̄Q̄

)
. (1.34)

(This is in complete analogy with the correspondence between the point xµ in
Minkowski space and the group element exp(−ixµPµ) of the Poincaré group,
as expressed by Eq. (A.29) in Appendix 3.) Using the identity eAeB =
e(A+B+[A,B]/2+... ), we can show that left multiplication in the group has the
effect

G(0, ξ, ξ̄)G(x, θ, θ̄) = G
(
xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄

)
. (1.35)
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The operators Q and Q̄ generate translations in superspace. From Eq. (1.35)
we read off that they are represented by the differential operators

Qα = ∂α − i(σµ)αα̇θ̄
α̇∂µ,

Q̄α̇ = −∂̄α̇ + iθα(σµ)αα̇∂µ.
(1.36)

They obey the algebra

{Qα, Qβ} = 0, {Q̄α̇, Q̄β̇} = 0,

{Qα, Q̄α̇} = 2i(σµ)αα̇∂µ.
(1.37)

So we see that left multiplication in the group leads to Pµ being represented
by +i∂µ. The reason for this is that group multiplication corresponds to a
superspace translation with a reversed order of multiplication. For example,
G(0, ξ, ξ̄)G(0, η, η̄) corresponds to the translation (x, θ, θ̄)→ (x+ . . . , θ+ξ, θ̄+
ξ̄)→ (x+. . . , θ+ξ+η, θ̄+ ξ̄+η̄). This is more or less a historical accident. Had
superspace translations been chosen to be represented by right multiplication,
they would have been generated by the operators

Dα = ∂α + i(σµ)αα̇θ̄
α̇∂µ,

D̄α̇ = −∂̄α̇ − iθα(σµ)αα̇∂µ,
(1.38)

which satisfy the algebra

{Dα, Dβ} = 0, {D̄α̇, D̄β̇} = 0,

{Dα, D̄α̇} = −2i(σµ)αα̇∂µ.
(1.39)

Furthermore, all of the Q operators anticommute with all of the D operators.
We will soon find that the operators D and D̄ have a task to fulfill as the
so-called supercovariant derivatives.

Superfield are functions defined on superspace. A superfield Φ(x, θ, θ̄) can be
expanded as a series in θ and θ̄, and because θ and θ̄ both have only two
independent components, the expansion has only a finite number of terms:

Φ(x, θ, θ̄) = φ(x) + θχ(x) + θ̄ξ̄(x) + θ̄σ̄µθvµ(x)

+ θ2F (x) + θ̄2G(x) + θ̄2θη(x) + θ2θ̄ζ̄(x) + θ2θ̄2D(x). (1.40)

The action of a supersymmetry transformation on superfields is given by

δεΦ = (εQ+ ε̄Q̄)Φ = (εαQα − ε̄α̇Q̄α̇)Φ. (1.41)

The transformation laws for the various fields appearing in Eq. (1.40) can
be derived by carrying out the calculation on the right using Eq. (1.36), and
comparing powers of θ and θ̄ on each side. In particular, we have

δεD(x) =
i

2
∂µ
(
εσµζ̄(x)− ε̄σ̄µη(x)

)
. (1.42)
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We see that D(x), the component field of highest mass dimension in Eq. (1.40),
transforms by a total derivative, as already advertized in section 1.3. This en-
ables one to use superfields to construct Lagrangians that are invariant under
supersymmetry transformations with relatively little effort. We will return to
this point in the next section.

Linear combinations of superfields, as well as their products, are also super-
fields. However, the derivative of a superfield with respect to θ or θ̄ is not
a superfield: it does not transform according to Eq. (1.41) in supersymmetry
transformations, because the derivatives ∂α and ∂̄α̇ do not anticommute with
the supersymmetry generators Qα and Q̄α̇. However, the operators Dα and
D̄α̇ anticommute with Qα and Q̄α̇, and so if Φ is a superfield, then DαΦ and
D̄α̇Φ are also superfields. For this reason, Dα and D̄α̇ are called supercovariant
derivatives.

Because linear combinations and products of superfields are also superfields,
superfields form representations of the supersymmetry algebra. Usually these
representations are highly reducible. We may reduce the size of the representa-
tion by introducing various constraints. These constraints need to be invariant
under supersymmetry transformations, in order for the reduced set of fields
to still form a representation of the supersymmetry algebra. Such constraints
are, for example, D̄α̇Φ = 0, and Φ̄ = Φ.

Superfields satisfying the condition

D̄α̇Φ = 0 (1.43)

are called chiral superfields, or scalar superfields. Any function of the variables
yµ = xµ + iθσµθ̄ and θ satisfies Eq. (1.43), because D̄α̇y

µ = 0 and D̄α̇θ = 0.
Therefore

Φ = φ(y) + θψ(y) + θ2F (y)

= φ(x) + θψ(x) + θ2F (x) + iθσµθ̄∂µφ(x)

+
i

2
θ2θ̄σ̄µ∂µψ(x) +

1

4
θ2θ̄2�F (x). (1.44)

This is in fact the most general chiral superfield. It contains precisely the fields
which appear in the Wess–Zumino model. Using Eqs. (1.36) and (1.41), one
can reproduce the transformation laws (1.24), (1.26) and (1.27). It simplifies
the calculation somewhat if we express the supercharges in terms of the y
coordinate as

Qα = ∂α, Q̄α̇ = −∂̄α̇ + 2iθα(σµ)αα̇∂µ,

where ∂µ now denotes the derivative with respect to yµ.

The conjugate superfield Φ̄ satisfies DαΦ̄ = 0. Superfields satisfying this con-
dition are called antichiral superfields. Any superfield which is a function of
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ȳµ = xµ − iθσµθ̄ and θ̄ is an antichiral superfield. The most general antichiral
superfield is given by the complex conjugate of Eq. (1.44).

Superfields which satisfy the constraint

V̄ = V (1.45)

are called vector superfields, or real superfields. The most general vector su-
perfield is given by

V (x, θ, θ̄) = C(x) + θχ(x) + θ̄χ̄(x) + θ̄σ̄µθvµ(x)

+ θ2G(x) + θ̄2Ḡ(x) + θ̄2θη(x) + θ2θ̄η̄(x) + θ2θ̄2E(x), (1.46)

where the fields C, vµ and E are real. Among its components there is the
vector field vµ, after which the whole superfield is named. The real part of a
chiral superfield Λ,

Λ + Λ̄ = φ+ φ̄+ θψ + θ̄ψ̄ + θ2F + θ̄2F̄ + iθσµθ̄∂µ(φ− φ̄)

+
i

2
θ2θ̄σ̄µ∂µψ +

i

2
θ̄2θσµ∂µψ +

1

4
θ2θ̄2�(φ+ φ̄),

is a special kind of a vector superfield, whose vector component is a spacetime
derivative. This suggests that we define the superspace generalization of the
usual U(1) gauge transformation as

V → V + Λ + Λ̄, (1.47)

where Λ is a chiral superfield. The effect of this transformation on the various
fields is

C → C + φ+ φ̄,

χ→ χ+ ψ,

G→ G+ F,

vµ → vµ − i∂µ(φ− φ̄),

η → η +
i

2
σµ∂µψ̄,

E → E +
1

4
�(φ+ φ̄).

(1.48)

First of all, we see that the fields

λ = η − i

2
σµ∂µχ̄, D = E − 1

4
�C (1.49)

are gauge invariant. Secondly, we see that it is possible to choose a gauge where
the fields C, χ and G all vanish. In this gauge, known as the Wess–Zumino
gauge, the vector superfield takes the form

V = θ̄σ̄µθvµ(x) + θ̄2θλ(x) + θ2θ̄λ̄(x) + θ2θ̄2D(x). (1.50)
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Powers of V are now easy to calculate:

V 2 = −1

2
θ2θ̄2vµvµ, V 3 = 0. (1.51)

The Wess–Zumino gauge still allows us to make the normal gauge transforma-
tions in the vector field, since a gauge transformation (1.47) with φ = −φ̄, and
ψ = 0, F = 0, preserves the Wess–Zumino gauge, while inducing on the vector
field the transformation

vµ → vµ + ∂µα (1.52)

with α = −i(φ− φ̄) being a real field.

1.5 Lagrangians from the superspace formalism

In this section, we will see how superfields can be used to write down La-
grangians which are invariant under supersymmetry transformations. The im-
portant fact which enables us to do so is that the highest component of any
superfield transforms by a total derivative in a supersymmetry transformation.
In fact, all possible renormalizable supersymmetric Lagrangians can be con-
structed using only chiral superfields and vector superfields.

To begin with, we will define integration in superspace. Integration involving
a single anticommuting variable θ is conventionally defined as∫

dθ = 0,

∫
dθ θ = 1. (1.53)

This can be generalized to the superspace variables θα and θ̄α̇ without too
much trouble. If we define

d2θ = −1

4
εαβθ

αθβ, d2θ̄ = −1

4
ε̄α̇β̇ θ̄α̇θ̄β̇, d4θ = d2θd2θ̄, (1.54)

we then find that we can integrate in superspace according to the rules∫
d2θ θ2 = 1,

∫
d2θ̄ θ̄2 = 1,

∫
d4θ θ2θ̄2 = 1. (1.55)

In what follows, the use of superspace integration will be to pick out compo-
nents of superfields that are invariant under supersymmetry, which can then
be used to build invariant Lagrangians, remembering that products of mul-
tiple superfields are still superfields. For example, for any superfield Ψ, the
Lagrangian L =

∫
d4θΨ is invariant under supersymmetry. We may then

write the action in the aesthetically pleasing form as an integral over all of
superspace,

S =

∫
d4xL =

∫
d4x d4θΨ.

Let us now recover the Lagrangian for the Wess–Zumino model using super-
fields. We will need a chiral superfield Φ and its conjugate Φ̄. The kinetic term
is given by

L0 =

∫
d4θ Φ̄Φ = φ̄�φ+

i

2
∂µψ̄σ̄

µψ + F̄F, (1.56)
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in agreement with Eq. (1.30) up to a partial integration. More generally, we
can take a set of chiral superfields Φi, and consider the Lagrangian

L =

∫
d4θ Φ̄iΦ

i +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ), (1.57)

where the so-called superpotential is

W (Φ) = aiΦ
i +

1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk, (1.58)

and the coefficients mij and gijk are symmetric. Renormalizability requires
that the superpotential cannot contain terms with more than three superfields,
because the θ2 component ofW has mass dimension of one more thanW itself,
while the mass dimension of Φ is 1. The Lagrangian (1.57) will contain mass
terms, as well as interaction terms, which we did not consider in section 1.3.
Using

ΦiΦj = φiφj + θ(φiψj + φjψi) + θ2(φiF j + φjF i − ψiψj),
ΦiΦjΦk = φiφjφk + θ(φiφjψk + φiφkψj + φjφkψi)

+ θ2(φiφjF k + φiφkF j + φjφkF i − ψiψjφk − ψiψkφj − ψjψkφi)

where all the component fields are functions of yµ = xµ + iθσµθ̄, we find that
(1.57) becomes, up to total derivatives,

L = φ̄i�φ
i +

i

2
∂µψ̄iσ

µψi + F̄iF
i

+

[
mij

(
φiF j − 1

4
ψiψj

)
+ gijk

(
φiφjF k − 1

2
ψiψjφk

)
+ aiF

i + h.c.

]
.

(1.59)

The equations of motion for the auxiliary fields Fi are

F i + a∗i +m∗ijφ̄j + g∗ijkφ̄jφ̄k = 0,

F̄i + ai +mijφ
j + gijkφ

jφk = 0.

With the help of these, we can put the Lagrangian into the form

L = φ̄i�φ
i +

i

2
∂µψ̄iσ

µψi − 1

4
mijψ

iψj − 1

4
m∗ijψ̄iψ̄j

− 1

2
gijkψ

iψjφk − 1

2
g∗ijkψ̄iψ̄jφ̄k − V (φ, φ̄) (1.60)

where
V (φ, φ̄) = F̄iF

i =
∑
i

|ai +mijφ
j + gijkφ

jφk|2. (1.61)

A still more general theory can be obtained through dropping the requirement
of renormalizability, as well as allowing a more general form of the kinetic term
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[1, 3]. We therefore take a set of chiral superfields Φi, and take the Lagrangian
to be

L =

∫
d4θK(Φ, Φ̄) +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ), (1.62)

where K(Φ, Φ̄) is a real function of its arguments. To express this Lagrangian
in terms of the component fields, the functions K and W are expanded in
power series as

K(Φ, Φ̄) =
∑

ai1...im,j1...jnΦi1 · · ·ΦimΦ̄j1 · · · Φ̄jn ,

W (Φ) =
∑

bi1...imΦi1 · · ·Φim .

We introduce the geometrical notation

gij̄ =
∂2K(φ, φ̄)

∂φi∂φ̄j
≡ ∂i∂j̄K(φ, φ̄),

Γijk = gil̄∂kgl̄j , Γīj̄k̄ = gīl∂k̄glj̄ ,

∇µψ̄ī = ∂µψ̄
ī + Γīj̄k̄∂µφ̄

j̄ψ̄k̄, (1.63)

∇iW = ∂iW, ∇i∇jW = ∂i∂jW − Γkij∂kW,

Rijk̄l̄ = ∂j∂l̄gik̄ − gmn̄∂igjn̄∂k̄gml̄.

This allows us to express the result of a lengthy calculation, some of whose
details are given in [1] and [3], as

L =− gij̄∂µφi∂µφ̄j +
i

2
gij̄ψ

iσµ∇µψ̄j +
1

16
Rijk̄l̄ψ

iψjψ̄kψ̄l

− gij̄∂iW∂j̄W −
1

4
ψiψj∇i∇jW −

1

4
ψ̄iψ̄j∇ī∇j̄W. (1.64)

This Lagrangian has the following geometrical interpretation. The scalar fields
φi are interpreted as the coordinates of the so-called target space, which is a
Riemannian manifold with the metric ds2 = gij̄dφ

idφ̄j̄ . The spinor fields ψi

play the role of vectors in the tangent space. A manifold whose metric is derived
from a function K – called in this context a Kähler potential – according to
Eq. (1.63), is called a Kähler manifold. The Lagrangian (1.64) therefore gives a
supersymmetric generalization of a non-linear sigma model whose target space
is a Kähler manifold.

1.6 Supersymmetric gauge theories

The vector superfield V is, in some sense, the supersymmetric generalization
of the gauge field Aµ which appears in the usual gauge theories of particle
physics. In this section, we will see how supersymmetric gauge theories are
constructed with the help of vector superfields. We will first take up the case
where the gauge group is U(1), leading to a supersymmetric version of QED.
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Then we will consider the generalization to non-abelian gauge groups. This
will give us a supersymmetric generalization of Yang–Mills theory.

In a gauge theory, we have a gauge group G, and a gauge field Aµ, which takes
values in the Lie algebra of G:

Aµ = AaµT
a, (1.65)

where T a are the generators of G. The covariant derivative is defined as

Dµ = ∂µ − igAµ. (1.66)

The field strength tensor then is

Fµν = − i
g

[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (1.67)

Under a gauge transformation U(x) in G, the covariant derivative should trans-
form covariantly. This requirement fixes the transformation of the gauge field
as

Aµ →
i

g
U−1DµU = U−1AµU +

i

g
U−1(∂µU).

The field strength then transforms covariantly: Fµν → U−1FµνU .

Using the vector superfield V , we may define a spinor-valued superfield, which
can be thought of as a supersymmetric field strength tensor, as

Wα = −1

4
D̄2DαV. (1.68)

The superfield Wα is chiral – this follows immediately from its definition be-
cause D̄3 = 0. Moreover it is gauge invariant under the supersymmetric gauge
transformation (1.52). Using the chirality of Λ, we have

Wα → −
1

4
D̄2Dα

(
V + Λ + Λ̄

)
= Wα −

1

4
D̄α̇
(
D̄α̇Dα +DαD̄α̇

)
Λ = Wα,

since D̄α̇ commutes with {Dα, D̄α̇} = −2i(σµ)αα̇∂µ.

Since Wα is gauge invariant, we may calculate its component expansion in any
gauge, in particular, in the Wess–Zumino gauge. We use Eq. (1.50), and write
V (x, θ, θ̄) = V (y− iθσθ̄, θ, θ̄), where yµ = xµ + iθσµθ̄ is the natural variable in
which the chiral superfield Wα should be expanded. We find

Wα = −iλα(y) + θαD(y)− i

2
(σµσ̄ν) β

α θβFµν(y) + θ2(σµ)αβ̇∂µλ̄
β̇(y), (1.69)

where Fµν = ∂µvν − ∂νvµ.

The Wess–Zumino gauge does not respect supersymmetry, in the sense that
a vector superfield originally in the Wess–Zumino gauge does not remain in
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that gauge under a supersymmetry transformation. A supersymmetry trans-
formation should therefore be accompanied with a compensating gauge trans-
formation of the form (1.47), with Λ chosen so that the vector superfield gets
transformed back into the Wess–Zumino gauge. So, the complete supersym-
metry transformation of a vector superfield V now is

δεV = −
(
εQ+ ε̄Q̄

)
V + Λε + Λ̄ε. (1.70)

To fix the parameters of Λε, we note that

−
(
εQ+ ε̄Q̄

)
V = θσµε̄vµ − θ̄σ̄µεvµ − θ2ε̄λ̄− θ̄2ελ+ . . . ,

where the dots represent additional terms which are in the Wess–Zumino gauge.
If we therefore take

Λε = φ+ θψ + θ2F (1.71)

with
φ = 0, ψα = (σµ)αα̇ε̄α̇vµ, F = ε̄λ̄, (1.72)

the superfield V remains in the Wess–Zumino gauge under the transformation
(1.70).

Let us now turn to the construction of the Lagrangian for supersymmetric
QED. Using Wα and W α̇, we may write down the Lagrangian

L =
1

4

(∫
d2θWαWα +

∫
d2θ̄ W α̇W

α̇
)

= −iλσµ∂µλ̄−
1

4
FµνFµν −

1

2
D2. (1.73)

This will be the kinetic part of our supersymmetric QED Lagrangian. To add
mass terms and interaction terms, we introduce two chiral superfields Φ+ and
Φ−, which transform under U(1) gauge transformations as

Φ+ → eieΩΦ+, Φ− → e−ieΩΦ−,

where Ω is a chiral superfield. The reason why Ω must appear here is that
the superfield eieω(x)Φ, with ω(x) a real function on Minkowski space, would
no longer be a chiral superfield. However, now a kinetic term like Φ̄+Φ+ is
no longer gauge invariant – instead, it transforms into Φ̄Φei(Ω−Ω̄). To remedy
this, we use the vector superfield V , and require that it transforms under gauge
transformations as

V → V − i(Ω− Ω̄), (1.74)

in order to make the terms Φ̄±e
±eV Φ± gauge invariant. The superfield Ω is

therefore related to Λ of Eq. (1.47) by Ω = iΛ. With this, we write the full
supersymmetric QED Lagrangian as

LQED =
1

4

(∫
d2θWαWα +

∫
d2θ̄ W α̇W

α̇
)

+

∫
d4θ

(
Φ̄+e

eV Φ+ + Φ̄−e
−eV Φ−

)
+m

(∫
d2θΦ+Φ− +

∫
d2θ̄ Φ̄+Φ̄−

)
. (1.75)
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Carrying out the integrals in LQED, and eliminating the auxiliary fields D and
F±, one would find that the Lagrangian describes a charged fermion of mass m
and a neutral gauge boson – the electron the photon – as well as their super-
symmetric partners, a charged scalar particle of mass m and a neutral massless
fermion – the selectron and the photino [1].

We now go on to consider the case of a non-abelian gauge group G [3]. Take a
chiral superfield Φ belonging to a unitary representation of G, which we take
to be the adjoint representation. Under a gauge transformation, Φ transforms
as

Φ→ eiΩΦ, Φ̄→ Φ̄e−iΩ. (1.76)

The proper generalization of the transformation law (1.74) reads

eV → eiΩ̄eV e−iΩ. (1.77)

In these equations, Ω and V now take values in the Lie algebra of G – that is,
they are the matrices

(Ω)ij = (T a)ijΩ
a, (V )ij = (T a)ijV

a,

with the generators T a belonging to the adjoint representation of G:

[T a, T b] = ifabcT c, Tr T aT b = δab.

To first order in Ω, the transformation (1.77) reduces to (1.74). As long as
(1.77) is a symmetry of our Lagrangian, we may therefore work in the Wess–
Zumino gauge, using (1.77) to put a vector superfield V in the form (1.50).

The definition of the field strength Wα is generalized in the non-abelian case
to

Wα = −1

4
D̄2
(
e−VDαe

V
)
. (1.78)

Under the gauge transformation (1.74), Wα transforms as

Wα → eiΩWαe
−iΩ. (1.79)

The combination TrWαWα is therefore gauge invariant, and we may use it to
construct the Lagrangian for supersymmetric Yang–Mills theory.

In the Wess–Zumino gauge, we have V 3 = 0, and consequently

eV = 1 + V + 1
2V

2.

Using this in Eq. (1.78), we find

Wα = −1

4
D̄2DαV +

1

8
D̄2[V,DαV ],

which results in the component expansion

Wα = −iλα(y) + θαD(y) + i(σµν) β
α θβFµν(y) + θ2(σµ)αα̇Dµλ̄α̇(y), (1.80)
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where we now have

Fµν = ∂µvν − ∂νvµ −
i

2
[vµ, vν ], (1.81)

Dµλ̄α̇ = ∂µλ̄
α̇ − i

2
[vµ, λ̄

α̇]. (1.82)

As of now, the Yang–Mills coupling constant is absent from the theory. To
introduce the coupling constant g, we scale the vector superfield V by 2g, so
that the field strength Wα becomes

Wα = −1

4
D̄2
(
e−2gVDαe

2gV
)
. (1.83)

Then the gauge transformation of Eq. (1.77) needs to be changed to

e2gV → e2igΩ̄e2gV e−2igΩ. (1.84)

Furthermore, Eqs. (1.81) and (1.82) are replaced by

Fµν = ∂µvν − ∂νvµ − ig[vµ, vν ], (1.85)

Dµλ̄α̇ = ∂µλ̄
α̇ − ig[vµ, λ̄

α̇]. (1.86)

We also define the quantity

τ =
Θ

2π
+

4πi

g2
, (1.87)

where Θ is the theta parameter of Yang–Mills theory. The supersymmetric
Yang–Mills Lagrangian is then given by

LSYM =
1

32π
Im

[
τ

∫
d2θTrWαWα

]
= Tr

(
−1

4
FµνF

µν − iλσµDµλ̄+
1

2
D2

)
+

Θg2

32π2
TrFµνF̃

µν , (1.88)

where the dual field strength tensor is

F̃µν =
1

2
εµνρσFρσ. (1.89)

The last term in the Lagrangian can be written as ∂µKµ, with

Kµ =
Θg2

16π
εµνρσ Tr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
.

As a total derivative, this term can be ignored when doing perturbation theory.
However, it does give rise to non-perturbative effects through so-called instan-
ton configurations, for which the boundary term

∮
d3ΣµK

µ has a nonzero
value.
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We may add matter fields to the theory through a multiplet of chiral superfields
Φi, which transform under G as

Φi →
(
e2igΩ

)i
j
Φj , Φ̄i → Φ̄i

(
e−2igΩ̄

)i
j
, (1.90)

where Ω = ΩaT a. A kinetic term of the form

Φ̄i

(
e2gV aTa)i

j
Φj ≡ Φ̄e2gV Φ

is then gauge invariant, and so the Lagrangian for the matter fields is

Lm =

∫
d4θ Φ̄e2gV Φ +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ). (1.91)

The form of the superpotential W (Φ) is constrained by the requirement of its
gauge invariance. Let R be the representation to which the Φi belong to. Then
a term of the form γi1...iN Φi1 . . .ΦiN may appear in the expansion ofW (Φ) only
if the N -fold product R × · · · × R contains the trivial representation, and if
γm1...mN is an invariant tensor of the group G. Renormalizability further re-
stricts W (Φ) to be at most a cubic polynomial of Φ [5].

There is one more type of term which can appear in the Lagrangian, if the
group G contains U(1) factors. Let κ = κaT a be a central element of the Lie
algebra of G – that is, the index a takes nonzero values only when T a is a
commuting element of the algebra. The so-called Fayet–Iliopoulos term,

LFI = g

∫
d4θTrκV = gTrκD, (1.92)

is then supersymmetric and gauge invariant, and so it may be included in the
Lagrangian.

The component expansion of the complete Lagrangian, after one has eliminated
the auxiliary fields, comes out to be

L = LSYM + Lm + LFI

= Tr

(
−1

4
FµνF

µν − iλσµDµλ̄+
Θg2

32π2
FµνF̃

µν

)
−Dµφ̄iDµφi −

i

2
ψiσµDµψ̄i + Tr

(
igφ̄iλψ

i − igλ̄ψ̄iφi
)

− 1

4

∂2W

∂φi∂φj
ψiψj − 1

4

∂2W

∂φ̄i∂φ̄j
ψ̄iψ̄j − V (φ, φ̄), (1.93)

where

V (φ, φ̄) = F̄iF
i +

1

2
TrD2 =

∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

g2

2

∑
a

∣∣φ̄iT aφi + κa
∣∣ , (1.94)

and
Dµφ = ∂µφ−

i

2
vaµT

aφ, Dµψ = ∂µψ −
i

2
vaµT

aψ. (1.95)
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To obtain the supersymmetric version of QCD, the gauge group G is taken to
be SU(3). The chiral superfields belong to the 3⊕ 3̄ representation of SU(3).
That is, we have chiral superfields

Φi = φi + θqi + θ2F i,

Φ̃i = φ̃i + θq̃i + θ2F̃ 2, (1.96)

where i = 1, 2, 3, and Φi transforms in the 3 while Φ̃i transforms in the 3̄.
The qi and q̃i are the quarks and antiquarks, while the φi and φ̃i are their
spin-0 supersymmetric partners, the squarks and antisquarks. (Note that here
q̃ denotes the antiparticle of q, contrary to the standard notation used in
particle physics, where the quarks are denoted by u, d, etc., and the squarks
are denoted by ũ, d̃, etc.) There are also the gluons vaµ, with a = 1, . . . 8, as
well as the spin-1/2 gluinos λa. The Lagrangian cannot have a Fayet–Iliopoulos
term, because G does not contain any U(1) factors.

1.7 Spontaneous supersymmetry breaking

Before we conclude our chapter on supersymmetry, we will consider two topics,
which will not be relevant to the rest of this work, but nevertheless are impor-
tant and interesting enough to be worthy of at least a brief mention. In this
section, we will look into how supersymmetry may be broken. To have mech-
anisms for breaking supersymmetry is important for the business of applying
supersymmetry to Nature, because if supersymmetry is a symmetry of Nature
at all, it needs to be broken, as the degeneracy in mass between bosons and
fermions, which is a consequence of unbroken supersymmetry, is not observed
in Nature even approximately. In the next section, we will discuss some of
the features of supersymmetric quantum field theories, thereby gaining a little
more insight into the reasons for why supersymmetry is so widely considered
to be such an attractive idea.

Even though there are other ways to break supersymmetry, we will only discuss
spontaneous supersymmetry breaking, that is, the breaking of supersymmetry
through choosing a vacuum which is not invariant under supersymmetry. The
action of the supersymmetry anticommutator {Qα, Q̄β̇} on an eigenstate of
momentum is

{Qα, Q̄β̇}|p〉 = 2(σµ)αβ̇ pµ|p〉 = 2

(
−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
αβ̇

|p〉.

In particular, the energy is

p0|p〉 = 1
4

(
{Q1, Q̄1}+ {Q2, Q̄2}

)
|p〉,

so the Hamiltonian is the positive semidefinite operator

H =
1

4

(
Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2

)
. (1.97)
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Therefore every state, including the vacuum |Ω〉, has an energy of at least
zero. Moreover, the vacuum has zero energy if and only if it is annihilated by
all the supercharges. Therefore a vacuum with zero energy is supersymmetric,
whereas a vacuum with a positive energy spontaneously breaks supersymmetry.
Spontaneous breaking of supersymmetry thus depends only on the minimum
value of the potential, in contrast to the spontaneous breaking of a gauge sym-
metry, which depends only on the shape of the potential.

To spontaneously break supersymmetry, a theory must therefore have a field
ϕ whose supersymmetry variation has a nonzero vacuum expectation value:

〈Ω|δεϕ|Ω〉 > 0.

In order to not break Lorentz invariance, the variation δεϕ must be a Lorentz
scalar. The field ϕ must thus be fermionic, because the supersymmetry varia-
tion of a bosonic field would be proportional to a fermionic field, which would
transform nontrivially under a Lorentz transformation. The fermion fields ψ
and λ contained in chiral and vector superfields, respectively, transform under
supersymmetry as

δεψα = −2εαF + . . . , δελα = −2εαD + . . . (1.98)

We see that to spontaneously break supersymmetry, it is enough if one of the
auxiliary fields F and D has a positive vacuum expectation value. The corre-
sponding fermion ψ or λ is then called a Goldstone fermion, in analogy with
the Goldstone boson which appears when a continuous gauge symmetry is bro-
ken.

An example [17] of theory which breaks supersymmetry through a positive
vacuum expectation value of a F field was given by O’Raifeartaigh [18]. It
has the Lagrangian (1.57), with three chiral superfields Φ0, Φ1 and Φ2. The
superpotential is given by

W (Φ) = Φ1g1(Φ0) + Φ2g2(Φ0), (1.99)

where g1 and g2 are polynomials which are chosen so that the equations

g1(φ0) = 0, g2(φ0) = 0

do not have a simultaneous solution for φ0. The auxiliary fields are eliminated
from the Lagrangian by setting Fi = −∂W/∂φ̄i. This introduces into the
Lagrangian the potential term

V =
∑
i

|Fi|2 =
∣∣φ1g

′
1(φ0) + φ2g

′
2(φ0)

∣∣2 + |g1(φ0)|2 + |g2(φ0)|2. (1.100)

By assumption, the last two terms cannot simultaneously vanish. Therefore
this theory has a positive vacuum energy, and so it spontaneously breaks su-
persymmetry. Eq. (1.100) explicitly shows that the supersymmetry breaking is
due to one of the fields F1 and F2 having a positive vacuum expectation value.
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A further example of spontaneous supersymmetry breaking, which involves an
interesting intertwining of supersymmetry and gauge symmetry, is given by a
supersymmetric gauge theory whose gauge group is U(1), and which contains a
single chiral superfield Φ having a nonzero charge under the gauge group [19].
A gauge invariant superpotential is therefore not possible. However, there can
be a Fayet–Iliopoulos term, whose contribution to the Lagrangian is

V =
g2

2

∣∣φ̄φ+ κ
∣∣ . (1.101)

Two different outcomes are now possible. If κ > 0, the vacuum has φ = 0.
The vacuum energy is then positive, and so supersymmetry is spontaneously
broken. However, if κ < 0, the vacuum satisfies φ̄φ = |κ|. Then the vacuum
energy is zero, so supersymmetry remains unbroken. On the other hand, the
gauge symmetry is now spontaneously broken, as indicated by the nonzero
vacuum expectation value of φ.

1.8 Quantization of supersymmetric field theories

We briefly outline the quantization of a theory with a single chiral superfield
Φ [1, 6]. Just as in usual field theory, we are supposed to consider the object

Z[J, J̄ ] =

∫
DΦDΦ̄ exp

[
i(S0 + SJ)

]
, (1.102)

where

S0 =

∫
d4x d4θ Φ̄Φ +

∫
d4x

(∫
d2θ

1

2
mΦ2 +

∫
d2θ̄

1

2
mΦ̄2

)
, (1.103)

SJ =

∫
d4x

(
−
∫
d2θ JΦ−

∫
d2θ̄ J̄Φ̄

)
. (1.104)

Before we can make further progress, we should express S0 and SJ entirely as
integrals over the whole superspace. Using the identities

D̄2D2Φ = −16�Φ,

which is valid for a chiral superfield Φ, and∫
d4x d2θΨ = −1

4

∫
d4x D̄2Ψ,

which holds for any superfield Ψ, we can rewrite S0 and SJ as

S0 =

∫
d4x d4θ

[
Φ̄Φ +

m

2
Φ

(
D2

4�

)
Φ +

m

2
Φ̄

(
D̄2

4�

)
Φ̄

]
, (1.105)

SJ =

∫
d4x d4θ

[
J

(
−D

2

4�

)
Φ + J̄

(
−D̄

2

4�

)
Φ̄

]
. (1.106)
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We may then express Z[J, J̄ ], interpreting the integral inside the exponential
as a sum, in the form

Z[J, J̄ ] =

∫
DΦDΦ̄ exp

(
−X∗iMijXj +X∗iKi +XiK

∗
i

)
,

where X = (Φ, Φ̄), and M is an appropriate 2-by-2 matrix and K an appro-
priate two-component vector. By analogy with the integral∫ N∏

k=1

dzk dz
∗
k exp

(
−z∗iAijzj + u∗i zi + uiz

∗
i

)
=

(2πi)N

det A
exp(u∗iA

−1
ij uj),

we find

Z[J, J̄ ] = exp

[
i

∫
d4x d4θ

(
J̄

1

�−m2
J +

1

2
J

m

�−m2

D2

4�
J +

1

2
J̄

m

�−m2

D̄2

4�
J̄

)]
.

Introducing the notation z = (x, θ, θ̄), we find that the propagators are given
in momentum space by〈

Φ(z1)Φ̄(z2)
〉

=
1

p2 +m2
δ(4)(θ1 − θ2),

〈
Φ(z1)Φ(z2)

〉
=

m/4p2

p2 +m2
D2(p, 1)δ(4)(θ1 − θ2), (1.107)

〈
Φ̄(z1)Φ̄(z2)

〉
=

m/4p2

p2 +m2
D̄2(p, 1)δ(4)(θ1 − θ2)

where
D(p, i) =

∂

∂θi
+ σµθ̄i pµ. (1.108)

The vertex rules are derived by taking functional derivatives of Z[J, J̄ ] with
respect to J , according to the rule

δJ(z2)

δJ(z1)
= −1

4
D̄2δ(4)(x1 − x2)δ(4)(θ1 − θ2).

The Feynman rules for the theory then are the following:

• For each external line, write a Φ(p, θ) or a Φ̄(p, θ).

• For internal lines, use the propagators given by (1.107).

• For a Φn vertex with k internal lines, insert k−1 operators −1
4D̄

2 acting
on the propagators. For a Φ̄n vertex, use the operators −1

4D
2.

• Include integrals over all the external momenta and the loop momenta.
For each vertex, include an

∫
d4θ.

• Multiply by the symmetry factor, according to the rules of the usual φn

theory.
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The absence of ultraviolet divergences in supersymmetric field theories was
already pointed out in section 1.2. We are now in a position to understand the
improved quantum behaviour of supersymmetric theories in a little more detail.

One of the consequences of the above Feynman rules is that the contribution
from any graph can be expressed in terms of a single superspace integral

∫
d4θ.

Consider a graph containing some number of loops, and focus on one of them.
This part of the diagram gives a multitude of delta functions with D2’s and
D̄2’s acting on them, and an integral over d4x1 d

4θ1 · · · d4xn d
4θn. Using partial

integrations, the delta functions can be made free of the D2’s and D̄2’s one by
one. Having done so, we may use the delta functions carry out all of the d4θi
integrations except one. This leaves us with a term like∫

d4θn (D2)k(D̄2)lδ(4)(θn − θ1)
∣∣∣
θ1=θn

,

or a similar term with D2 and D̄2 reversed. The numbers k and l are either
zero or one. If either of them is zero, the term vanishes; otherwise it equals
16
∫
d4θn. We may continue this process one loop at a time, until we have

reduced the whole graph to an expression of the form∫
d4θ

∫
d4x1 . . . d

4xn F1(x1, θ, θ̄) . . . Fn(xn, θ, θ̄)G(x1, . . . , xn), (1.109)

where the F ’s are products of superfields and their derivatives.

A remarkable consequence of the above observation is the so-called nonrenor-
malization theorem. The theorem states that in a renormalizable theory, the
superpotential is not renormalized at any order in perturbation theory. This
is so because the superpotential is an integral over only half of superspace,
while all the counterterms are necessarily integrals over all of superspace. The
superpotential contains both the mass and the coupling constant, and so the
tree-level masses and couplings will not receive loop corrections from higher
orders of perturbation theory. Supersymmetry therefore provides a solution
to the hierarchy problem of particle physics, since a set of tree-level masses
is protected from ever receiving any radiative corrections. This is one of the
most attractive of the phenomenological features of supersymmetry.
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Chapter 2

Supergravity

2.1 The vielbein formulation of general relativity

As supersymmetry is a symmetry between bosons and fermions, it is clear that
spinor fields are an essential component of supersymmetric theories. However,
it is difficult to generalize the transformation properties of spinors to curved
spacetimes, since (in D spacetime dimensions) spinors form a representation of
the Lorentz group SO(1, D−1), rather than the group GL(D) of general coor-
dinate transformations. The usual formulation of general relativity is therefore
not ideal for dealing with spinors. The purpose of this section is to introduce
an alternative formalism, the so-called the vielbein formalism, which is better
suited for introducing spinors into a theory of gravity [21, 26, 27].

Let us begin with a brief review of the standard formulation of general relativity
[21, 26]. It consists of the metric gµν , and the connection Γλµν . The connection
coefficients Γλµν are often called the Christoffel symbols in the literature. The
connection is used to construct the covariant derivative

∇µ = ∂µ − Γλµν∆ ν
λ . (2.1)

The operator ∆ ν
λ acts on covariant and contravariant indices as

∆ ν
λ Vµ = δνµVλ, ∆ ν

λ V µ = δµλV
ν . (2.2)

On a tensor with multiple indices, ∆ ν
λ acts additively on each index.

The commutator of two covariant derivatives measures, roughly speaking, the
extent to which two parallel transports in different directions fail to commute.
The commutator is given by

[∇µ,∇ν ] = −T ρ
µν ∇ρ −R σ

µνρ ∆ ρ
σ .

It defines two tensors – the torsion tensor T ρ
µν and the curvature tensor R σ

µνρ

– as
T ρ
µν = Γρµν − Γρνµ, (2.3)
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and
R σ
µνρ = ∂µΓσνρ − ∂νΓσµρ + ΓλνρΓ

σ
µλ − ΓλµρΓ

σ
νλ. (2.4)

The Jacobi identity [∇λ, [∇µ,∇ν ]]+cyclic permutations = 0 gives rise to iden-
tities involving the torsion and the curvature. These are called Bianchi identi-
ties.

Let us now consider the requirement that the covariant derivative of a tensor
should transform as a tensor under general coordinate transformations. Under
the coordinate transformation x→ x′(x), a tensor T (x) transforms into T ′(x′).
Let δT (x) denote the variation of a tensor at a fixed spacetime point x: δT (x) ≡
T ′(x) − T (x). Infinitesimal coordinate transformations, x → x − ξ(x), are
generated on tensors by the Lie derivative. That is, δξT = LξT , where the Lie
derivative is

Lξ = ξµ∂µ + ∂µξ
ν ∆ µ

ν . (2.5)

The requirement that the covariant derivative of a tensor is a tensor is now
expressed as δξ∇µT = Lξ∇µT , and it leads to the transformation law

δξΓ
λ
µν = LξΓλµν + ∂µ∂νξ

λ

for the connection under an infinitesimal coordinate transformation.

In general relativity, one usually requires the covariant derivative to satisfy
∇λgµν = 0. Geometrically, this requirement guarantees that the length of a
vector remains unchanged under parallel transport. This condition determines
the symmetric part of Γλµν in terms of the metric and the torsion tensor. In
the usual formulation of general relativity the torsion tensor is taken to vanish.
The connection is then symmetric in µ and ν and is given by

Γλµν =
1

2
gλρ
(
∂µgρν + ∂νgµρ − ∂ρgµν

)
. (2.6)

From the curvature tensor, we can construct the Ricci tensor Rµν = R ρ
µρν ,

and the curvature scalar R = R µ
µ . The field equations for general relativity

follow from the action

S = −1

2

∫
d4x
√
−g R+ Sm (2.7)

where Sm denotes the action for the matter fields. (For now we will set 8πG =
1. Had we not done so, the numerical factor in the first term would have been
1/16πG.) This action gives rise to the Einstein equation

Rµν −
1

2
Rgµν = Tµν , (2.8)

where the energy-momentum tensor is constructed from the matter field action
as Tµν = −(2/

√
−g)(δSm/δgµν).
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In the vielbein formalism, we introduce a locally inertial – that is, flat – coor-
dinate system at each spacetime point. Such a coordinate system is spanned
by the orthnormal set of basis vectors e µ

m (x), where the index m takes the
values 0, . . . , D − 1 in a D-dimensional spacetime. The orthonormality of the
basis vectors is expressed as

gµν(x)e µ
m (x)e ν

n (x) = ηmn. (2.9)

We also have the ”inverse” vectors e m
µ (x), which satisfy

e m
µ (x)e ν

m (x) = δνµ, e µ
m (x)e n

µ (x) = δnm. (2.10)

The set of vectors e m
µ (x) is called the vielbein. The metric can be expressed

in terms of the vielbein as

gµν(x) = ηmne
m
µ (x)e n

ν (x). (2.11)

Using the vielbein, we may transform local Lorentz indices m,n, . . . into gen-
eral coordinate indices µ, ν, . . . and vice versa:

V m = e m
µ V µ, V µ = e µ

m V m. (2.12)

The vielbein is clearly not unique: it is determined only up to local Lorentz
transformations e m

µ (x)→ e n
µ (x)Λ m

n (x), with Λ l
n (x)Λ m

l (x) = δmn .

In the vielbein formalism, assuming one wishes to make a distinction between
fundamental and non-fundamental objects, the vielbein is considered to be
the fundamental object representing the gravitational field, while the metric is
constructed from the vielbein and is therefore not fundamental.

We can now introduce spinors. Under general coordinate transformations they
transform as scalars, while under local Lorentz transformations they transform
in the spinor representation of the Lorentz group. On a Dirac spinor ψ, the
action of the generators Mmn of local Lorentz transformations is given by

Mmnψ =
1

2
γmnψ,

while on vectors the generators act as

MmnV
l = δlmVn − δlnVm.

The generators Mmn satisfy the Lorentz algebra

[Mmn,Mpr] = ηmpMnr − ηnpMmr + ηnrMmp − ηmrMnp. (2.13)

To define covariant derivatives of Lorentz tensors, we introduce the so-called
spin connection ω mn

µ , in terms of which the Lorentz covariant derivative is
given by

Dµ = ∂µ −
1

2
ω mn
µ Mmn, γmn =

1

2
[γm, γn]. (2.14)
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We now have two covariant derivatives, Dµ for Lorentz tensors and ∇µ for
GL(D) tensors. We would like the two covariant derivatives to be equivalent,
in the sense that ∇µVν = e m

ν DµVm. This requirement implies that the full
covariant derivative of the vielbein vanishes,

Dµe
m
ν − Γλµνe

m
λ = ∂µe

m
ν − ω n

µ me
n
ν − Γλµνe

m
λ = 0. (2.15)

(Note that this is consistent with the condition ∇λgµν = 0.) From this equa-
tion, an explicit expression for the spin connection in terms of the vielbein and
its derivatives can be found. In the general case, with nonvanishing torsion,
we have

ω mn
µ =

1

2
elµ

(
Ωmnl − Ωnlm − Ωlmn

)
+K mn

µ . (2.16)

where
Ωmnl = e µ

m e ν
n

(
∂µeνl − ∂νeµl

)
(2.17)

and
K mn
µ =

1

2

(
Tmnµ + T mn

µ + Tm n
µ

)
. (2.18)

The commutator of two Lorentz covariant derivatives defines a curvature tensor
through

[Dµ, Dν ] = −1

2
R mn
µν Mmn

as
R mn
µν = ∂µω

mn
ν − ∂νω mn

µ − ω ml
µ ω n

νl + ω ml
ν ω n

µl . (2.19)

This is related to the usual spacetime curvature tensor through R mn
µν =

R σ
µνρ eρme n

σ .

Using the vielbein, we can define gamma matrices in curved spacetime. Let

γµ(x) = e m
µ (x)γm, (2.20)

where γm are the standard gamma matrices which obey {γm, γn} = 2ηmn. The
matrices γµ(x) then satisfy

{γµ(x), γν(x)} = 2gµν(x).

This enables us to write down Lagrangians for spinor fields in curved spacetime.
We replace partial derivatives with the Lorentz covariant derivatives, and the
usual gamma matrices with the matrices (2.20), and insert a factor of

√
−g to

obtain a proper integration measure. For example, for a Dirac spinor we would
have

S = −
∫
d4x |e|ψ̄

(
iγµ(x)Dµ +m

)
ψ,

where |e| = det(e a
µ ) =

√
−g. In four dimensions, we can also define a curved

space version of the Pauli matrices, σµ(x) = e µ
m (x)σm, and similarly for σ̄µ(x),
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To conclude this section, we give the formulation of general relativity in the
vielbein formalism. The Einstein–Hilbert Lagrangian is expressed in terms of
the vielbein as

LEH = −1

2

√
−g R = −1

2
|e|e µ

m e ν
n R

mn
µν . (2.21)

We should now choose whether to not impose the condition (2.15) and regard
the vielbein and the spin connection as independent, or to impose (2.15) and
treat the spin connection as a function of the vielbein. The first choice, where
the Lagrangian is L[e, ω], is known as the first-order formulation, or the Pala-
tini formulation. The latter choice, with the Lagrangian L[e(ω)] is called the
second-order formulation.

In the Palatini formulation, we have the Lagrangian

LP[e, ω] = −1

2
|e|e µ

m e ν
n R

mn
µν [ω]. (2.22)

Its variation is given by

δLP = −|e|
(
R m
µ − 1

2e
m
µ R

)
δe µ
m − 3|e|

(
Dµe

m
ν

)
e µ

[me
ν
n e

λ
l] δω

nl
λ . (2.23)

(Some details of the calculation of the variation are given in [23].) This gives
two equations, the latter of which is equivalent to Eq. (2.15) in the case of zero
torsion, and the first gives Einstein’s equation when the solution for ω in terms
of e is inserted into it.

The Palatini formulation gives rise to a trick, sometimes called the 1.5 order
formulation, which significantly simplifies the variation of the action, and which
is often used in constructing supergravity theories. We will illustrate the trick
with the Einstein–Hilbert Lagrangian, but it can be used with any Lagrangian
which contains two or more different fields, of which one has an algebraic
equation of motion, and so can be expressed in terms of the other fields. The
Einstein–Hilbert Lagrangian and the Palatini Lagrangian are connected by the
relation LEH[e] = LP[e, ω]|ω=ω[e]. We can then calculate the variation of LEH

as

δLEH[e] =

(
δLP

δe m
µ

∣∣∣∣
ω=ω[e]

+
δLP

δω nl
ν

∣∣∣∣
ω=ω[e]

δω nl
ν

δe m
µ

)
δe m
µ .

However, the second term in the above expression vanishes, because ω[e] is
a solution to its equation of motion. The variation of the Einstein–Hilbert
Lagrangian can therefore be calculated by varying the Palatini Lagrangian
with respect to the vielbein only, using for the spin connection the expression
found by solving its equation of motion. The variation is explicitly given by
the first term of Eq. (2.23).
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2.2 Local supersymmetry

Before we go on to discuss simple supergravity, we would like to give an ex-
ample [21] of the general proposition that if we promote supersymmetry into a
local symmetry, then gravity automatically becomes introduced into the the-
ory. We start from the free, massless Wess–Zumino model, make the parameter
ε of supersymmetry transformations spacetime dependent, and find what ad-
justments we have to make to preserve supersymmetry.

Our starting point is the Lagrangian

L(0) = −∂µφ̄∂µφ−
i

2
∂µχ̄σ̄

µχ, (2.24)

where the fields φ and χ now transform under supersymmetry as

δεφ = ε(x)χ, δεφ̄ = ε̄(x)χ̄, (2.25)

and
δεχ = 2iσµε̄(x)∂µφ, δεχ̄ = −2iεσ̄µ∂µφ̄. (2.26)

We now find that the Lagrangian (2.24) is no longer invariant under super-
symmetry, its supersymmetry variation being given (up to a total derivative)
by

δεL(0) =
1

2
∂ν φ̄ χσ

µσ̄ν∂µε+ c.c.

In order to cancel this term, and so to preserve supersymmetry, we introduce
the gauge field ψµ, which is a Weyl spinor, and which transforms as

δεψµ =
1

κ
∂µε+ . . . , δεψ̄µ =

1

κ
∂µε̄+ . . . (2.27)

On dimensional grounds, we introduced the constant κ, which has mass dimen-
sion −1, and which will eventually be identified with

√
8πG. Using the field

ψµ, we construct the term

L(1)
ψ = −κ

2
∂ν φ̄ χσ

µσ̄νψµ + c.c., (2.28)

and add it to the Lagrangian, so that now the combination L(0) + L(1) is
invariant to order κ0. To order κ, we have

δε
(
L(0) + L(1)

)
= i∂ν φ̄∂λφ ε̄σ̄

λσµσ̄νψµ + . . .

= −iκ
(
εσνψ̄µ − ψµσν ε̄

)(
∂µφ̄∂νφ+ ∂ν φ̄∂µφ− ηµν∂ρφ̄∂ρφ

)
− κ εµνρσ∂µφ̄∂νφ

(
εσ̄ρψ̄σ − ψ̄σσρε̄

)
,

where the dots indicate a term quartic in the fermion fields, which we will
ignore. For the moment, we will also ignore the second term of the final ex-
pression. In the term on the middle line, there appears the energy-momentum
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tensor of the scalar field φ. To cancel this term, we have to introduce a sym-
metric tensor hµν , which appears in the Lagrangian through the term

L(1)
h =

1

2
κhµνT

µν , (2.29)

and whose variation under supersymmetry is given by

δεhµν = 2i
(
εσ(µψ̄ν) − ψ(µσν)ε̄

)
. (2.30)

Our total Lagrangian, to order κ, now reads

L = L(0) + L(1)
ψ + L(1)

h = −
(
1 + 1

2κh
ρ
ρ

)(
ηµν − κhµν

)
∂µφ̄∂νφ. (2.31)

We do not continue our calculation to higher orders in κ, since it should now
seem plausible that if we were to complete the calculation to all orders, we
would be led to introduce a metric gµν , and the kinetic term of the scalar field
in Eq. (2.24) would get replaced by

√
−g gµν∂µφ̄∂νφ. Explicitly, to order κ, we

have
gµν = ηµν + κhµν , so gµν = ηµν − κhµν ,

and √
−g = 1 +

1

2
κh ρ

ρ .

This process of iteratively modifying the Lagrangian and the transformation
laws of the fields in order to promote a global symmetry into a local one is
known as the Noether method. The parameter, in whose powers the calcula-
tion is organized, will take the role of a coupling constant in the end. During
the calculation, one has to introduce additional fields, which couple in the
Lagrangian to the conserved currents corresponding to global symmetries. In
our calculation, ψµ couples to the current of global supersymmetry, while hµν
couples to the energy-momentum tensor, which is the current of spacetime
translations. The Noether procedure was the method first used to construct
both the on-shell and off-shell formulations of four-dimensional supergravity
[29, 31, 32, 33], see also [2].

We are still to deal with the second term in the variation δε
(
L(0) + L(1)

)
. It

can be expressed in the form

κ

2
εµνρσ∂µ

(
φ∂ν φ̄− φ̄∂µφ

)(
εσ̄ρψ̄σ − ψ̄σσρε̄

)
.

Supersymmetry is now completely restored to order κ if we introduce for the
field ψµ the kinetic term

L(0)
ψ = εµνρσ

(
∂µψνσρψ̄σ + ψσσρ∂µψ̄ν

)
, (2.32)

and modify the supersymmetry variation of ψµ to read

δεψµ =
1

κ
∂µε−

κ

4
ε
(
φ∂µφ̄− φ̄∂µφ

)
. (2.33)
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Eq. (2.32) is the Lagrangian of a free, massless spin-3/2 particle. It was first
constructed by Rarita and Schwinger in 1941 [28].

The field ψµ is the gravitino, the supersymmetric partner of the graviton. It
has spin 3/2, as we can see by considering the object ψββ̇α = (σµ)ββ̇ψµα and
decomposing it as

ψββ̇α =
1

2

(
ψββ̇α + ψαβ̇β

)
+

1

2

(
ψββ̇α − ψαβ̇β

)
,

that is, (
1
2 ,

1
2

)
⊗
(

1
2 , 0
)

=
(
1, 1

2

)
⊕
(
0, 1

2

)
.

In a theory with N supersymmetry generators, there is a conseved current for
each generator. The result of a Noether method calculation would be to couple
each of the currents to a gravitino in the Lagrangian, and so in a theory with
N supersymmetries there will be N gravitinos.

2.3 Simple supergravity

We will now move on to discuss N = 1 supergravity in four dimensions
[20, 21, 23], which commonly goes by the name of simple supergravity. This
theory contains the graviton and the gravitino, and no additional fields. In
this section, we will give the on-shell formulation of the theory and show its
invariance under supersymmetry, deferring the construction of the off-shell for-
mulation, including the question of finding a proper set of auxiliary fields, to
the following sections.

For the graviton, a kinetic term is readily given by the Einstein–Hilbert La-
grangian. For the gravitino, we use the Rarita–Schwinger Lagrangian (2.32),
and replace the spacetime derivatives by Lorentz covariant derivatives. We do
not introduce a connection Γλµν for the spacetime index in ψµ, since it can be
shown that an antisymmetric combination of spacetime derivatives transforms
as a tensor under general coordinate transformations by itself, even without a
connection. We therefore take the Lagrangian to be

L = −1

2
|e|e µ

m e ν
n R

mn
µν + 2εµνρσ

(
Dµψνσρψ̄σ + ψσσρDµψ̄ν

)
. (2.34)

The form of the spin connection ω mn
µ is found by solving its equation of mo-

tion, which is obtained by varying the Lagrangian with respect to the spin
connection taken as an independent field. We again have an unconventional
normalization, but one could equally well use the standard normalization, pro-
vided that compensating adjustments are made in the supersymmetry varia-
tions of the fields.

Before we determine the spin connection, we put the Lagrangian into a form
from which its variation is easier to calculate. We use the identity

|e|e µ
m e n

n = −1
4εmnrsε

µνρσe r
ρ e

s
σ
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to write

L = εµνρσ
(

1

8
εmnrse

r
ρ e

s
σ R

mn
µν + 2Dµψνσρψ̄σ + 2ψσσρDµψ̄ν

)
. (2.35)

Under the variation ω → ω + δω, the curvature tensor R mn
µν transforms by

Dµδω
mn
ν −Dνδω

mn
µ , and so we have

δL = −1

4
εµνρσ

(
εmnrse

r
ρ e

s
σ Dνδω

mn
µ + 4ψν(σmnσr + σrσ̄mn)ψ̄σe

r
ρ δω mn

µ

)
.

A partial integration, together with the identity σmnσr + σrσ̄mn = iεmnrsσ
s,

now leads to

δL =
1

2
εmnrsε

µνρσe r
ρ

(
Dνe

s
σ − 2iψνσ

sψ̄σ
)
δω mn

µ .

Therefore
Dµe

m
ν −Dνe

m
µ = 2i

(
ψµσ

mψ̄ν − ψνσmψ̄µ
)
. (2.36)

It is possible to solve this equation explicitly for the spin connection. The
result is

ω mn
µ = ω mn

µ (e) + 2i
(
ψµσ

[mψ̄n] + ψ[mσn]ψ̄µ + ψ[mσµψ̄
n]
)
, (2.37)

where ω mn
µ (e) is the spin connection from Eq. (2.16), with Km n

µ set to zero.

Equations of motion for the vielbein and the gravitino are derived by varying
(2.34) or (2.35) with respect to the fields. Variation with respect to the viel-
bein gives the equation R m

µ − 1
2e

m
µ R = T m

µ , where the energy-momentum
tensor is given by an expression involving the gravitino and its derivatives.
The curvature tensor contains terms involving the gravitino, because the spin
connection now depends on ψ. Therefore, to put the equation of motion into
the standard form of the Einstein equation, one would have to split the cur-
vature tensor into terms containing the gravitino, and terms depending only
on the vielbein, the latter of which would give the usual curvature tensor of
general relativity.

For the gravitino we find, varying (2.35) with respect to ψµ,

εµνρσσνDρψ̄σ = 0. (2.38)

If we define ψ̄µν = Dµψ̄ν −Dνψ̄µ and Gµ = |e|−1εµνρσσνDρψ̄σ, we can prove
several identities which we will make use of later:

εµνρσG
σ = 3σ[µψ̄νρ],

ψ̄µG
µ = 2iσ̄µνψ̄µν , σµσ̄νG

µ = 2iσµψ̄νµ, (2.39)

σ̄ρσµνG
ρ =

1

2
εµνρσψ̄

ρσ − iψ̄µν ,
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where the tensor εµνρσ is related to the numerically invariant εµνρσ-symbol by
εµνρσ = |e|εµνρσ.

We are now going to show that the Lagrangian (2.34), or equivalently (2.35),
is invariant under the supersymmetry transformations

δεe
m
µ = 2i

(
εσmψ̄µ − ψµσmε̄

)
,

δεψµ = Dµε, δεψ̄µ = Dµε̄.
(2.40)

Note that the transformation law of the vielbein implies Eq. (2.30). We will
calculate the supersymmetry variation of the Lagrangian in the form (2.35),
using the 1.5 order formalism. That is, we vary only the vielbein and the grav-
itino, while for the spin connection we use Eq. (2.37). We further divide the
variation into two parts, the one proportional to ε and the one proportional to
ε̄. Then it is enough to consider one of the parts, say the one proportional to ε,
because the Lagrangian is real, and each of the parts is the complex conjugate
of the other.

In (2.35), we therefore have to vary only e and ψ, while ψ̄ and ω are not
varied. The vielbein enters also through the σρ–matrices, which are obtained
by converting the index m of the constant σm–matrices into the index ρ using
e m
ρ . The variation of σρ is given by

δε(σρ)αα̇ =
(
δεe

m
ρ

)
(σm)αα̇ =

(
2iεσmψ̄ρ

)
(σm)αα̇ = −4iεαψ̄ρα̇,

where we neglected the part proportional to ε̄, and the last form is obtained
from the one preceding it through a Fierz rearrangement. We then have for
the ε-part of the variation of (2.35)

δεL = 2εµνρσ
(
i

4
εmnrsεσ

sψ̄σe
r
ρ R

mn
µν +DµDνεσρψ̄σ

− 4iDµψνεψ̄ρψ̄σ +DσεσρDµψ̄ν − 4iψσεψ̄ρDµψ̄ν

)
.

Due to the overall εµνρσ-symbol, we are free to antisymmetrize in suitable in-
dices inside the brackets. First of all, this makes the first term in the second
line vanish, because it contains the factor ψ̄ρψ̄σ, which is symmetric in ρ and σ.
In the fourth term we integrate by parts to bring both of the covariant deriva-
tives to act on ψ̄ν . In the terms with two derivatives, we then antisymmetrize
in their indices, which allows us to write

D[µDν]ε = −1

4
R mn
µν εσmn, D[σDµ]ψ̄ν = −1

4
R mn
µν σ̄mnψ̄ν .

We then find

δεL = 2εµνρσ
(

1

4
ε
(
iεmnrsσ

s − σmnσr − σrσ̄mn
)
ψ̄σε

r
ρ R

mn
µν

− 4iψσεψ̄ρDµψ̄ν −Dσe
m
ρ εσmDµψ̄ν

)
,
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where the last term was generated by the partial integration. The first term
vanishes because of the identity σmnσr + σrσ̄mn = iεmnrsσ

s. Using Eq. (2.36)
in the last term, we find

δεL = −4iεµνρσψσ
(
2εψ̄ρ + σmψ̄ρεσm

)
Dµψ̄ν .

Using a Fierz rearrangement, we can now show that the two terms inside the
brackets cancel each other.

To complete the demonstration of the supersymmetry of the Lagrangian, we
still need to show that the algebra of the symmetry transformations closes
on-shell. We do not expect it to close off-shell, since as of now we have not
introduced any auxiliary fields into the theory. We have to show that the
commutator of any two symmetry transformations of the Lagrangian, which
include general coordinate transformations, local Lorentz transformations, and
local supersymmetry transformations, can be expressed as a combination of
symmetry transformations.

We denote the variations under the various transformations by δG, δL and δS .
For the vielbein, the commutator of two successive supersymmetry transfor-
mations is given by[

δS(ε1), δS(ε2)
]
e m
µ = 2iDµ

(
ε2σ

mε̄1 − ε1σmε̄2
)
≡ Dµξ

m. (2.41)

We now define ξm = ξνe m
ν , so that

Dµξ
m = ξν∂νe

m
µ + ∂µξ

νe m
ν + ξν

(
∂µe

m
ν − ∂νe m

µ

)
+ ξνω m

µν ,

where we have added and subtracted ξν∂νe m
µ . In the third term, we use Eq.

(2.36), leading to

Dµξ
m = ξν∂νe

m
µ + ∂µξ

νe m
ν + ξνω m

νµ − iξν
(
ψνσ

mψ̄µ − ψµσmψ̄ν
)
.

From Eq. (2.5) we see that the first two terms represent a general coordinate
transformation with the parameter ξν . The third term gives a local Lorentz
transformation with the parameter λnm = −ξνω nm

ν , and the last term is a
local supersymmetry transformation with the parameter ε12 = −ξνψν . We
therefore have[

δS(ε1), δS(ε2)
]
e m
µ =

(
δG(ξ) + δL(λ) + δS(ε12)

)
e m
µ . (2.42)

We see that this commutator closes off-shell.

On the gravitino, the same commutator is[
δS(ε1), δS(ε2)

]
ψµ =

1

2

(
δS(ε1)ω mn

µ σmnε2 − δS(ε2)ω mn
µ σmnε1

)
. (2.43)

To determine the supersymmetry variation of the spin connection, we apply to
Eq. (2.36) the operator δ+, which gives the part of the supersymmetry variation
which is proportional to ε. On the left-hand side, we find

δ+

(
Dµe

m
ν −Dνe

m
µ

)
= iD[µ

(
εσmψ̄ν]

)
− e n

[µ δ+ω
m

ν]n ,
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while on the right-hand side we get iD[µεσ
mψ̄ν]. Comparing the two sides, we

see that
e n

[µ δ+ω
m

ν]n =
i

2
εσmψ̄µν .

We then use the identity

ωνmn = e ρ
m e σ

n

(
ω[νρ]σ − ω[ρσ]ν + ω[σν]ρ

)
,

to find
δ+ωµmn =

i

2
e ν
m e ρ

n ε
(
σνψ̄µρ − σρψ̄µν − σνψ̄ρν

)
. (2.44)

Using Eq. (2.39), we can write the final result as

δS(ε)ωµmn = i
(
εσµψ̄mn − ψmnσµε̄

)
− i

2
εmnrse

r
µ

(
εGs − ε̄Ḡs

)
. (2.45)

We will now eliminate all of the terms that vanish on-shell. According to the
gravitino equation of motion, we can immediately drop the terms involving
G and Ḡ. Furthermore. Eq. (2.39) shows that on-shell ψ̄mn is anti-self-dual,
and consequently ψmn self-dual. In Eq. (2.43), δS(ε)ω mn

µ gets multiplied with
σmn, which is self-dual, and so of the first two terms we need to keep only one
which involves the self-dual object ψmn. On-shell, we therefore have[

δS(ε1), δS(ε2)
]
ψµ =

i

2

(
(ψmnσµε̄2)σmnε1 − (ψmnσµε̄1)σmnε2

)
.

Using a Fierz rearrangement and Eq. (2.39), we can put this in the form[
δS(ε1), δS(ε2)

]
ψµ = ξνDνψµ − ξνDµψν

= ξν∂νψµ + ∂µξ
νψν +

1

2

(
ξνω mn

ν

)
σmnψµ −Dµ

(
ξνψν

)
, (2.46)

where we have the same vector ξν as we had previously. Thus

[δS(ε1), δS(ε2)
]
ψµ =

(
δG(ξ) + δL(λ) + δQ(ε12)

)
ψµ, (2.47)

with the same parameters λ and ε12 as for the vielbein, showing that the com-
mutator closes on the gravitino, even though only on-shell.

All of the remaining commutators are straightforward to calculate. They all
close off-shell, and are given by[

δG(ξ), δG(η)
]

= δG(ζ) ζµ = ην∂νξ
µ − ξν∂νηµ[

δL(λ), δL(κ)
]

= δL(ω) ω = [κ, λ][
δG(ξ), δL(λ)

]
= δL(ω) where ω = −ξµ∂µλ, (2.48)[

δG(ξ), δS(ε)
]

= δS(χ) χ = −ξµ∂µε,[
δL(λ), δS(ε)

]
= δS(χ) χ = −1

2λ
mnεσmn.
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Four-dimensional supergravity was first constructed by Freedman, van Nieuwen-
huizen, and Ferrara [29, 30]. They took the spin connection to be a function of
the vielbein, and performed a tedious calculation, which involved introducing
additional terms in the Lagrangian and adjusting the transformation laws of
the fields until the invariance of the action had been established. In hindsight,
the effect of all the adjustments was just to replace the ω(e) of Eq. (2.16) by
the ω(e, ψ) of Eq. (2.37). Not long after, Deser and Zumino demonstrated the
invariance of the action using an independent spin connection [31]. Both of
these analyses are rather complicated compared to the one provided by the 1.5
order formalism, which combines the advantages of both the first-order and
the second-order formalism.

2.4 Tensor calculus for supergravity

We now proceed to find a suitable set of auxiliary fields needed to construct an
off-shell formulation of simple supergravity. It is possible, but rather compli-
cated, to do this directly in the component field formulation [32, 33]. We prefer
to construct the off-shell formulation using a tensor calculus, outlined in [20]
and [21], which applies not only to supergravity, but to a more general class
of gauge theories. When applied to supergravity, this formalism is equivalent
to the superspace tensor calculus [34], which is briefly described in Appendix
4, and which was originally developed for supergravity by Wess and Zumino
[1, 35, 36, 37], and by others, e.g. [38].

We begin by introducing gauge transformations and exterior derivatives for
tensor fields. Under a gauge transformation, a tensor field transforms by a
term which involves only the gauge parameters ξM and not their derivatives.
We can therefore write

δξT = ξM∆MT ; (2.49)

this essentially defines an operator ∆M on tensor fields. For the exterior deriva-
tive d = dxµ∂µ, we write

dT = AM∆MT. (2.50)

This introduces the gauge fields AMµ through AM = dxµAMµ . We now assume
that the gauge fields AMµ include the components of an invertible matrix e m

µ ,
and we denote the rest of the gauge fields by AM̂µ . Eq. (2.50) now allows us to
define gauge covariant derivatives as

∆m = e µ
m

(
∂µ −AM̂µ ∆M̂

)
T. (2.51)

In order for this to be gauge covariant, we must have that ∆MT is a tensor
field, if T is a tensor field. This requires that the operators ∆M obey

∆M (T1T2) = (∆MT1)T2 + (−1)|M ||T1|T1(∆MT2), (2.52)

where |O| is the Grassmann parity, or the grading, of the object O, and
|M | = |∆M | = |ξM |. For the gauge fields we have |AMµ | = |M |.
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In order to ensure that our formalism really provides an off-shell formulation
of a gauge theory, we must introduce certain consistency requirements. The
first consistency condition is that the algebra of gauge transformations must
close:

[δξ1 , δξ2 ]T = δξ12T, (2.53)

with possibly field-dependent parameters ξ12. From Eq. (2.49), we find that
this implies

ξN2 ξ
M
1

∣∣∆M ,∆N

∣∣T = ξP12∆PT, (2.54)

where the bars denote the graded commutator,∣∣A,B∣∣ = AB − (−1)|A||B|BA. (2.55)

Therefore, |A,B| = [A,B], unless both of A and B are odd, in which case
|A,B| = {A,B}.

Since the right-hand side of Eq. (2.54) contains only the parameters ξ12 and
not their derivatives, we may introduce the tensor fields F P

NM by writing
ξP12 = ξM1 ξN2 F P

NM . We then have∣∣∆M ,∆N

∣∣ = −F P
NM ∆P . (2.56)

The F ’s have the same symmetry properties as the graded commutator, namely

F P
MN = −(−1)|M ||N |F P

NM . (2.57)

The graded Jacobi identity∑
(MNP )

∣∣∆M , |∆N ,∆P |
∣∣ = 0, (2.58)

where the cyclic sum is defined as∑
(MNP )

OMNP = (−1)|M ||P |OMNP + (−1)|N ||M |ONPM + (−1)|P ||N |OPMN ,

now gives constraints on the structure functions F . Assuming that the ∆M

are linearly independent, we find that Eqs. (2.56) and (2.58) imply the Bianchi
identities ∑

(MNP )

∆MF Q
NP + F R

MN F Q
RP = 0. (2.59)

These identities give rise to nontrivial restrictions when this formalism is ap-
plied to a gauge theory.

We will introduce two further consistency requirements. We require that exte-
rior differentiation commutes with gauge transformations, and that the exterior
derivative satisfies d2 = 0. A detailed analysis of these conditions is given in
[20]. The result is that the first requirement gives the transformation law of
the gauge fields as

δξA
M
µ = ∂µξ

M +APµ ξ
NF M

NP , (2.60)
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while from the second requirement there results the equation

∂µA
M
ν − ∂νAMµ +APµA

N
ν F M

NP = 0. (2.61)

This equation can be solved for the structure functions F M
mn , which can be in-

terpreted as curvatures corresponding to the derivatives ∆m, since [∆m,∆n]T =
−F M

mn ∆MT. We have

F M
mn = e µ

m e ν
n

(
∂µA

M
ν − ∂νAMµ +AP̂µA

N̂
ν F M

N̂P̂

)
+AN̂µ

(
e µ
m F M

nN̂
− e µ

n F M
mN̂

)
. (2.62)

For the gauge fields AMµ , one can use Eqs. (2.59) and (2.60) to show that all
of the consistency requirements are satisfied on them.

We note that we can put the transformation laws of the various fields into a
more standard form by defining the new transformation parameters

ξµ = e µ
m ξm, εM̂ = ξM̂ − ξµAM̂µ .

The transformation laws of the fields are then given by

δξT = ξν∂νT + εM̂∆M̂T,

δξe
m
µ = ξν∂νe

m
µ + ∂µξ

νe m
ν +APµ ε

N̂F m
N̂P

,

δξA
M̂
µ = ξν∂νA

M̂
µ + ∂µξ

νAM̂ν + ∂µε
M̂ +APµ ε

N̂F M̂
N̂P

.

(2.63)

Now the transformations proportional to ξµ are generated by the Lie deriva-
tive, and so they correspond to general coordinate transformations.

Finally, we would like to remark that even though Eq. (2.60) looks like the
transformation law of the gauge field in a Yang–Mills theory, the algebra (2.56)
is not a graded Lie algebra, but instead a more general algebraic structure,
because in the place of the structure constants there are the objects F P

MN ,
which need not be constant.

2.5 Off-shell formulation of simple supergravity

We now apply the above formalism to construct an off-shell formulation of
simple supergravity [20, 21]. This amounts to choosing a suitable set of struc-
ture functions F P

MN , which have to satisfy the Bianchi identity (2.59). The
invertible matrix e m

µ , which is contained among the gauge fields AMµ , is now
identified with the vielbein. The gravitino and the spin connection constitute
the rest of the gauge fields AM̂µ . The gauge transformations corresponding to
these fields are given by general coordinate transformations, local supersym-
metry transformations, and local Lorentz transformations.
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We denote the generators of general coordinate transformations and local su-
persymmetry transformations with DA. Thus,

∆M =
(
DA,Mmn

)
, DA =

(
Dm,Dα, D̄α̇

)
.

We adopt the summation conventions

XMYM = XAYA +
1

2
XmnYmn,

XAYA = XmYm +XαYα +Xα̇Y
α̇ = XmYm +XαYα.

(2.64)

From Eq. (2.50) we then have

Dm = e µ
m

(
∂µ − ψαµDα − ψµα̇D̄α̇ − 1

2ω
mn
µ Mmn

)
= e µ

m

(
Dµ − ψαµDα

)
. (2.65)

The derivative Dm is called a supercovariant derivative, since in addition to the
spin connection it involves the gravitino, and so it is covariant also with respect
to local supersymmetry transformations. It does not contain the Christoffel
connection Γλµν , because in the present formalism, tensor fields must be scalars
with respect to general coordinate transformations, since we have required that
the gauge transformation of a tensor field must not contain derivatives of the
transformation parameters. Supercovariant tensor fields therefore cannot carry
curved spacetime indices, and so Dm does not need a term with Γλµν .

We now turn to study the restrictions that we should put on the structure
functions F . The commutators of the generators ∆M with Mmn involve the
functions F R

[mn]P , and so these functions should form representations of the
Lorentz group. We therefore take

F s
[mn]r = −ηmrδsn + ηnrδ

s
m,

F β
[mn]α = (σmn) β

α , F β̇
[mn]α̇ = (σ̄mn) β̇

α̇ ,

F [st]
[mn][pr] = −2

(
ηmpδ

[s
n δ

t]
r − ηnpδ[s

mδ
t]
r + ηnrδ

[s
mδ

t]
p − ηmrδ[s

n δ
t]
p

)
,

(2.66)

corresponding to the vector, spinor and adjoint representations, respectively.
All the functions F R

[mn]P where P and R are not the same type of index are
taken to vanish. The remaining functions F M

AB can be interpreted as the
torsion and curvature of superspace:

F C
AB = T C

AB , F [mn]
AB = R mn

AB . (2.67)

The algebra of the operators ∆M = (DA,Mmn) now reads∣∣DA,DB∣∣ = −T C
AB DC −

1

2
R mn
AB Mmn,

[Mmn,Dr] = ηmrDn − ηnrDm,

[Mmn,Dα] = −(σmn) β
α Dβ, [Mmn, D̄α̇] = −(σ̄mn)α̇

β̇
D̄β̇.

(2.68)
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In contrast to Minkowski space, there is nonvanishing torsion even in flat super-
space, where e µ

m = δµm. From the anticommutator {Qα, Q̄β̇} = 2i(σm)αβ̇Pm
we can read off that T m

αβ̇
= 2i(σm)αβ̇.

We still need to place further constraints on the above introduced torsion
and curvature tensors, since they contain a great number of superfluous com-
ponents, and we would like to eliminate as many of them as possible. The
constraints need to respect the Bianchi identities (2.59). It turns out that the
only nontrivial identities are∑

(ABC)

DAT D
BC + T E

AB T D
EC −R D

ABC = 0, (2.69)

∑
(ABC)

DAR mn
BC + T D

AB T mn
DC = 0, (2.70)

where
R D
ABC = −1

2
R mn
AB F D

[mn]C . (2.71)

The remaining identities are automatically satisfied due to the functions F R
[mn]P

giving representations of the Lorentz group and the torsion and curvature be-
ing Lorentz tensors. We would now have to solve the above identities for the
components of the torsion and curvature tensors in terms of as few indepen-
dent fields as possible. Some of the components of T C

AB and R D
ABC can be

expressed in terms of their remaining components and the gauge fields using
(2.62) Furthermore, it can be shown that (2.70) is a consequence of (2.69), and
so it suffices to solve only the identities (2.69) [40].

We will only give a brief outline of the long analysis required to solve the
Bianchi identities. To begin with, a field redefinition of the form ∆M →
O N
M ∆N , with the corresponding adjustments on the gauge transformation

parameters, can be used to make as many as possible of the structure functions
vanish. A detailed analysis [39] shows that we may choose

T m
αβ̇

= T m
β̇α

= 2i(σm)αβ̇,

T r
mn = 0, T γ

αβ = T γ̇

α̇β̇
= 0, T

γ

αβ̇
= T

γ

αβ̇
= 0,

(2.72)

where γ denotes either γ or γ̇. Different further restrictions now lead to dif-
ferent formulations of simple supergravity. The so-called minimal formulation
is obtained by imposing the conditions

T m
αβ = T m

α̇β̇
= 0, T n

αm = −T n
mα = 0. (2.73)

With these constraints, it follows from the Bianchi identity with ABCD =
αβγδ that

T γ̇
αβ = 0, and T γ

α̇β̇
= 0. (2.74)

With these constraints, there remain thirteen independent Bianchi identities
which have to be solved. The result of a complicated analysis, whose details

49



are given e.g. in [1] and [41], shows that all of the components of the torsion
and the curvature can be expressed in terms of a complex scalar field C and
a real vector field bm, or can be written down using Eq. (2.62). The Bianchi
identities give

T β
α̇m =

i

8
C(σm)βα̇, T β̇

α̇m = −i
(
δβ̇α̇bm + bn(σ̄nm)β̇α̇

)
,

R mn
α̇β̇

= −C(σ̄mn)α̇β̇, R mn
αβ̇

= 2iεmnrs(σr)αβ̇b
s,

R rs
α̇m = i

(
(σm)αα̇T

rsα − (σr)αα̇T
s α
m + (σs)αα̇T

r α
m

)
,

(2.75)

while from Eq. (2.62) we find

T r
mn = e µ

m e ν
n

(
Dµe

r
ν −Dνe

m
µ − 2iψµσ

rψ̄ν + 2iψνσ
rψ̄µ

)
,

T α
mn = e µ

m e n
n Dµψ

α
ν + ψαmT

α
nβ + T α

mβ̇
ψ̄β̇n − (m↔ n), (2.76)

R rs
mn = e µ

m e ν
n R

rs
µν (ω) + ψαmψnβR

rs
αβ − ψαmR rs

αn + ψαnR
rs

αm

where R rs
µν (ω) is the curvature tensor given in Eq. (2.19) with K = 0. The

first equation shows that from the constraint T r
mn = 0 we recover the condi-

tion (2.36).

All of the remaining torsions and curvatures either vanish or are related by
complex conjugation to those that are already known. The fields C and bµ will
fulfill the task of auxiliary fields in the off-shell formulation of four-dimensional
supergravity.

The supersymmetry transformations of the fields are found either from Eq.
(2.63), or from the Bianchi identities, which give the action of Dα on the
auxiliary fields as

DαC =
16

3
(σmn)αβT

β
mn , DαC̄ = 0,

Dαbββ̇ =
1

3
εβα(σ̄mn)β̇α̇T

α̇
mn − (σmn)αβTmnβ̇.

(2.77)

The supersymmetry generators now satisfy the algebra

{Dα, D̄α̇} = −2i(σm)αα̇ + 2bβα̇M
β

α − 2Bαβ̇M̄
β̇

α̇

{Dα,Dβ} = C̄Mαβ, {D̄α̇, D̄β̇} = −CM̄α̇β̇,
(2.78)

where

Mαβ =
1

2
(σmn)αβMmn, M̄α̇β̇ = −1

2
(σ̄mn)α̇β̇Mmn. (2.79)

These operators give the self-dual and anti-self-dual parts ofMmn, as explicitly
shown by the decomposition

Mmn = (σmn)αβMαβ − (σ̄mn)α̇β̇M̄α̇β̇.
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It is clear that the algebra of supersymmetry transformations now closes by
construction. This is guaranteed by the closure of the algebra of the ∆M

operators. In the commutator[
δQ(ε1), δQ(ε2)

]
= δG(ξ12) + δL(λ12) + δQ(ε12)

the auxiliary fields C and bµ appear only in the parameter λ12 of local Lorentz
transformations.

A way to construct an invariant Lagrangian for supergravity can now be found
by investigating how the chiral multiplet of section 1.3 should be generalized
to the case of local supersymmetry. It turns out that a proper generalization
of the chiral multiplet is given by the fields (φ, χ, F ), where the chiral scalar
field φ satisfies the constraints

D̄α̇φ = 0, M̄α̇β̇φ = 0, (2.80)

and the remaining fields in the multiplet are given in terms of φ by

χα = Dαφ, F = −1

2
D2φ. (2.81)

The requirement that the algebra (2.78) is satisfied on the fields determines
the action of the supercovariant derivatives on the fields as

Dαφ = χα, D̄α̇φ = 0,

Dαχβ = −εαβF, D̄α̇χβ = −2i(σm)βα̇Dmφ, (2.82)

DαF = −1

2
C̄χα, D̄α̇F = −2i(σm)αα̇Dmχα + (σm)αα̇bmχ

α,

where

Dmφ = e µ
m

(
∂µφ− ψµχ

)
,

Dmχ = e µ
m

(
Dµχ− ψµF − 2iσνψ̄µDνφ

)
.

(2.83)

Using the above transformation laws, one can calculate the supersymmetry
variation of the field F and find that it is not a total derivative. However, it
can be shown [20, 21] that the combination

|e|
(

2F + 4iψµσ
µχ− 3C̄φ− 16ψ̄µσ̄

µνψ̄νφ
)

transforms by a total derivative under supersymmetry. We therefore have that
if we take any chiral scalar field φ, and apply to it the operator

∆ = −D2 + 4iψ̄µσ̄
µD − 3C̄ − 16ψ̄µσ̄

µνψ̄ν + c.c., (2.84)

we obtain an expression which is real, and invariant under supersymmetry
when multiplied by |e| and integrated over the whole spacetime.
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The Lagrangian for simple supergravity is obtained by taking φ = 3
32C. Using

the Bianchi identities, one can show that

D2C = −8

3
R mn
mn + 2C̄C − 16bmb

m + 16iDmbm,

where R mn
mn can be calculated using Eq. (2.76). The Lagrangian is then given

by

L0 = |e|
(
− 1

2
e µ
m e ν

n R
mn

µν − 3bµb
µ − 3

16
C̄C

)
+ εµνρσ

(
Dµψνσρψ̄σ + ψσψρDµψ̄ν

)
. (2.85)

On-shell, the auxiliary fields C and bµ vanish, provided that we do not have
couplings to matter or other generalizations, so that (2.85) is the whole La-
grangian. After the elimination of the auxiliary fields, the Lagrangian becomes
equal to that of Eq. (2.34). In the present formalism, the action is supersym-
metric by construction, and so there is no need to show its supersymmetry by
calculation.

To conclude this section, we point out that any complex number λ is trivially
a chiral field. Even so, we can construct from λ the non-trivial Lagragian

Lλ = −|e|λ
(

3C̄ + 16ψ̄µσ̄
µνψ̄ν

)
+ c.c. (2.86)

The theory defined by the Lagrangian L = L0 + Lλ has a massive gravitino,
as well as a negative cosmological constant. The vacuum of this theory is
therefore anti de-Sitter space, instead of a Minkowski space.

2.6 Supersymmetry in higher dimensions

We would now like to move on to discuss supergravity theories in spacetimes
of higher dimension. We begin by generalizing the analysis of the representa-
tions of the supersymmetry algebra to higher-dimensional spacetimes, leading
to a knowledge of all possible supergravity theories in spacetimes of various
dimensions [22, 23]. Because the generators of supersymmetry transformations
are spinors, we will have to include a discussion on which kind of spinors can
exist in different spacetime dimensions [42, 43]. At this point, we will abandon
the two-component notation for spinors, as it does not generalize to arbitrary
dimensions.

In a D-dimensional spacetime, a representation of the Clifford algebra

{Γm,Γn} = 2ηmn (2.87)
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is given by a set of 2bD/2c gamma matrices, which can be taken to be

Γ0 = iσ1 ⊗ σ0 ⊗ σ0 ⊗ · · · ,
Γ1 = σ2 ⊗ σ0 ⊗ σ0 ⊗ · · · ,
Γ2 = σ3 ⊗ σ1 ⊗ σ0 ⊗ · · · ,
Γ3 = σ3 ⊗ σ2 ⊗ σ0 ⊗ · · · ,
Γ4 = σ3 ⊗ σ3 ⊗ σ1 ⊗ · · · ,

etc.

(2.88)

Under hermitian conjugation, they behave as

Γ†0 = −Γ0, Γ†i = Γi. (2.89)

In even dimensions, the generalization of γ5 is given by the object

Γ̄ = −(−i)bD/2cΓ0Γ1 . . .ΓD−1, (2.90)

which satisfies Γ̄2 = 1, and anticommutes with all of the other gamma matri-
ces. In the representation (2.88) we have Γ̄ = σ3 ⊗ σ3 · · · .

In both even and odd dimensions, there exists a charge conjugation matrix C
with the properties

CT = −εC, ΓTm = −ηCΓmC
T , (2.91)

where ε = ±1 and η = ±1. The values of ε and η depend on D, and are given
in [42].

In D dimensions, an unconstrained spinor has 2bD/2c components. There are
two ways to reduce the number of components and so obtain irreducible rep-
resentations of the Clifford algebra. In even dimensions, we can define the
projection operators

PL =
1

2

(
1 + Γ̄

)
, PR =

1

2

(
1− Γ̄

)
, (2.92)

and use them to cut the number of spinor components in half by defining Weyl
spinors through the conditions PLψ = ψ and PRψ = ψ.

In some dimensions, it is possible to put on a complex spinor a reality condition
of the form

ψ∗ = Bψ, (2.93)

where
B = eiα

(
CA−1

)T
, A = Γ0 . . .ΓD−1.

A consistency analysis, based on examining the Lorentz transformations of the
both sides of (2.93), then shows that it is possible to impose a reality condi-
tion when D = 0, 1, . . . , 4 mod 8. Spinors satisfying such a condition are called
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Majorana spinors. (We will not make a distinction between Majorana spinors
and pseudo-Majorana spinors, contrary to e.g. the references [23] and [24].)

Even if a reality condition of the form (2.93) is not possible, a so-called sym-
plectic condition can still be introduced, provided that we are dealing with a
multiplet of spinors. The condition reads

ψ∗i = BΩijψj , (2.94)

where Ω is an antisymmetric matrix satisfying Ω∗Ω = 1.

If the reality condition (2.93) can be consistently enforced on Weyl spinors,
then both the Weyl and Majorana conditions can be imposed on spinors simul-
taneously. This is possible when D = 2 mod 8. A simultaneous imposition of
the Weyl condition and the symplectic condition is possible whenD = 6 mod 8.

The particle content of supergravity theories is determined by the representa-
tions of the supersymmetry algebra. A detailed analysis is given in [44], and
its results are summarized in [24].

If we consider massless representations, we have as in section 1.2 that half of
the supercharges vanish (see e.g. [22]), and of the remaining supercharges half
act as raising operators and half as lowering operators with respect to helicity.
The states in the representations are constructed by choosing a state of lowest
helicity and acting on it with the raising operators. We must not have too
many raising operators in order to not have states of spin higher than 2. In
eleven spacetime dimensions, a single unconstrained spinor supercharge has 32
components, while in twelve dimensions, the number of components is already
64. Thus, we find that eleven is the highest number of dimensions in which
a supergravity theory can be constructed, as in twelve dimensions a single
Majorana spinor would give rise to 16 raising operators. Furthermore, the
eleven-dimensional theory is unique, since there is only one N = 1 multiplet
which contains a spin-2 particle but is free of a spin-5/2 particle. A table of
all possible theories of pure supergravity – that is, theories which are free of
matter fields – is given in [24]; there are 26 of them in total.

2.7 Eleven-dimensional supergravity

In eleven dimensions, the most general form of the supersymmetry algebra is
given by

{Qa, Q̄b} = 2(Γµ)abPµ +
(
Γµν)abZµν +

(
Γµ1···µ5

)
ab
Zµ1···µ5 . (2.95)

In contrast to four dimensions, it is possible to have nonvanishing central
charges even though there is only one supercharge. For the moment, we will
set the central charges to zero; we will return to them at the end of this section.

54



The fields which appear in the eleven-dimensional theory of supergravity are
determined by a suitable massless representation of the supersymmetry alge-
bra. As we now have P 2 = 0, we can take P0 = P10 and set the rest of the
components of Pµ to zero. The supersymmetry algebra can then be put into
the form

{Qa, Q†b} = 2
(
ΓµΓ0

)
ab
Pµ = 2

(
1 + Γ10Γ0

)
ab
P0, (2.96)

in which the object on the right-hand side is a projection operator. This shows
explicitly that half of the supercharges act as zero on states in the representa-
tion.

The field content of eleven-dimensional supergravity could now be constructed
by group-theoretical arguments. From Eq. (2.96) one can show that the sixteen
non-vanishing supercharges obey a Clifford algebra of the form {Qa, Qb} ∼ δab,
and so form a representation of the group SO(16). On the other hand, the
physical degrees of freedom of a massless particle in eleven dimensions give
a representation of SO(9). The fields are then determined by how the vari-
ous representations decompose under the embedding SO(16) ⊃ SO(9) [22, 23].

We choose to not go into any further into the group-theoretical analysis here,
because the proper set of fields can also be deduced by counting the transverse
degrees of freedom of the fields. The vielbein e m

µ has 1
2(D−1)(D−2)−1 = 44

components, while the Majorana spinor (ψµ)a has 1
22bD/2c(D − 2 − 1) = 128

components. The −1 in these expressions is due to a tracelessness requirement
on e m

µ and ψµ, i.e. γµψµ = 0, and similarly for the vielbein. The remaining
bosonic degrees of freedom can be assigned to an antisymmetric scalar field
Aµνρ, which has

(
9
3

)
= 84 components, as required.

The Lagrangian of eleven-dimensional supergravity was found by Cremmer,
Julia and Scherk in 1978 [45]. Not long after, a superspace formulation of the
theory was constructed [46, 47], but an off-shell formulation of the theory is,
to the best of my knowledge, not known.

The Lagrangian has the form

L =− 1

2
|e|R(ω)− |e|ψ̄µΓµνρDν

(
1
2(ω + ω̂)

)
ψρ −

1

24
|e|FµνρσFµνρσ

− 1

96
|e|
(
ψ̄µ1Γµ1µ2ν1···ν4ψµ2 + 12ψ̄ν1Γν2ν3ψν4

)(
Fν1···ν4 + F̂ν1···ν4

)
+

4

1442
εµ1···µ11Fµ1···µ4Fµ5···µ8Aµ9µ10µ11 . (2.97)

Here Fµνρσ is the field strength of the gauge field Aµνρ,

Fµνρσ = 4∂[µAνρσ], (2.98)

and the covariant derivative of the gravitino is given by

Dµ(ω)ψν = ∂µψν −
1

4
ω mn
µ Γmnψν ,

ω mn
µ = ω mn

µ (e) +K mn
µ ,

(2.99)
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where K mn
µ is a sum of terms involving the ψµ and the gamma matrices.

The Lagrangian contains terms up to fourth order in the fermions. These are
absorbed in the supercovariant objects

ω̂ mn
µ = ω mn

µ +
1

4
ψ̄νΓ mnνρ

µ ψρ,

F̂µνρσ = Fµνρσ + 3ψ̄[µΓνρψσ].
(2.100)

That they are supercovariant means that their variations under supersymme-
try do not contain derivatives of the transformation parameter ε.

The transformation laws of the fields under supersymmetry are given by

δe m
µ = ε̄Γmψµ, δAµνρ = −3

2
ε̄Γ[µνψρ],

δψµ = Dµ

(
ω̂
)
ε+

1

144

(
Γ ν1···ν4
µ + 8Γν1ν2ν3δν4µ

)
εF̂ν1···ν4 ≡ D̂µε.

(2.101)

In [45], a description is given of how the Lagrangian (2.97) is obtained by a
brute force calculation. One begins with a Lagrangian which contains a kinetic
term for each of the fields e, ψ and A. The supersymmetry variation of the
Lagrangian can be put into a form where similar types of terms are grouped
together. Some types of terms cancel by themselves. To make possible the
cancellation of the remaining terms, additional terms are introduced into the
Lagrangian. These eventually take the form of the interaction term and the
topological term in Eq. (2.97). In the course of the calculation, the covariant
objects ω̂ and F̂ are introduced. Once the Lagrangian has been constructed,
its invariance under supersymmetry, and the on-shell closure of the supersym-
metry algebra, are demonstrated by an explicit calculation.

In addition to its invariance under supersymmetry transformations, as well as
general coordinate transformations and local Lorentz transformations, the La-
grangian (2.97) is invariant under the gauge transformations δAµνρ = ∂[µΛνρ].
Furthermore, the effect of the so-called Weyl transformations,

e m
µ → eαe m

µ , ψµ → eα/2ψµ, Aµνρ → e3αAµνρ, (2.102)

is to multiply the Lagrangian by the constant factor e9α. We will restore the
gravitational constant κ for a moment; the Lagrangian is then given by the
expression in Eq. (2.97) multiplied with κ−2. While this is not a symmetry
of the Lagrangian, it is a symmetry of the equations of motion, because two
Lagrangians which differ by a constant factor give rise to the same equations
of motion. Furthermore, the effect of a Weyl transformation can then be can-
celled through a scaling of κ by e9α/2.

To conclude this section, we will give an interpretation of the central charges
appearing in the algebra (2.95) [22]. By analogy with electrodynamics, where
the magnetic and the electric fluxes are given by the surface integrals

∮
dΣ ·F
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and
∮
dΣ · ?F , respectively, we could think of calculating fluxes corresponding

to the field strength Fµ1···µ4 , and its dual

?Fµ1···µ7 =
1

7!
εµ1···µ7ν1···ν4F

ν1···ν4 − F[µ1···µ4Aµ5µ6µ7],

The fluxes would be given by surface integrals of F over the boundary of a
5-dimensional region, and of ?F over the boundary of an 8-dimensional re-
gion. These regions are orthogonal to a 5-brane and a 2-brane (branes will be
explained in Chapter 3), and so the charges corresponding to the fluxes are
Lorentz tensors of rank 5 and rank 2. These can be identified with the central
charges Zµ1···µ5 and Zµν of Eq. (2.95).

2.8 Ten-dimensional supergravities

In ten dimensions, it is possible to simultaneously impose the Majorana and
the Weyl condition on spinors, and so the supercharges are Majorana–Weyl
spinors. As such, each supercharge has eight components, which constitute an
eight-dimensional Clifford algebra. We therefore have three different represen-
tations of the group SO(8), one of which contains the supercharges, and the
other two contain the bosonic and fermionic fields. For more details, includ-
ing how the particle content of ten-dimensional supergravities is deduced from
these representations, see [22].

There are three different theories of supergravity in ten dimensions. The N = 1
theory, which is based on a single Majorana–Weyl supercharge, has the name
of type I supergravity [48, 49]. There are two different N = 2 theories. The
so-called type IIA supergravity [50, 51, 52] has two Weyl supercharges of op-
posite chirality, which arise from a single Majorana supercharge. We therefore
say that it is a N = (1, 1) theory. The third ten-dimensional theory is known
as type IIB supergravity [53, 54, 55]. It has two Majorana–Weyl supercharges
of the same chirality, and so it is a N = (2, 0) theory.

Each of the ten-dimensional supergravities is the low energy limit of a cor-
responding string theory: type IIA supergravity of the type IIA superstring
theory, and likewise for the type IIB theories, while for type I supergravity
there correspond the type I superstring theory and the heterotic string theory.

In the rest of this section, we will give an outline of the IIA and IIB super-
gravity theories. We will not discuss the type I theory in any more detail,
except to note that it was the first ten-dimensional theory of supergravity to
be constructed.

Type IIA supergravity can be derived from eleven-dimensional supergravity by
compactification [25]. We take the coordinate x10 to describe a circle of radius
R, and so the points x10 and x̃10 are equivalent if x̃10 = x10 + 2πnR for some
integer n. The fields can then be expanded in Fourier series in the coordinate
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x10 ≡ Rθ. The expansion of a generic field ϕ has the form

ϕ(xµ, θ) = ϕ(xµ) +
∑
n6=0

ϕn(xµ)einθ. (2.103)

(From now on, the indices µ, ν, . . . take only the values 0, . . . , 9; indices which
take values from 0 to 10 are denoted by µ̂, ν̂, . . . ) The fields ϕn with n 6= 0 are
massive, their masses being inversely proportional to the radius R. To give an
example [56], consider a scalar field φ. The kinetic part of the action is given
by

Sφ =

∫
dDxφ(−�D +m2)φ.

The derivative operator decomposes as

�D = �D−1 +
∂2

∂x2
10

.

Using the expansion (2.103), the action then becomes

Sφ = 2πR
∑
n

∫
dD−1xφn

(
−�D−1 +m2 +

n2

R2

)
φn.

As R→ 0, the fields with n 6= 0 become infinitely massive. Therefore we keep
only the massless fields and discard the massive ones. The discarding of the
massive fields amounts to taking all of the fields in eleven dimensions to be
independent of x10.

Under the reduction from eleven dimensions to ten, the eleven-dimensional
fields decompose schematically as

e m̂
µ̂ → e m

µ , Bµ, φ; ψµ̂a → ψµa, λa; Aµ̂1µ̂2µ̂3 → Aµ1µ2µ3 , Aµ1µ2 .

The specific decomposition [25], from which type IIA supergravity is obtained,
is given by

Aµ̂1µ̂2µ̂3 =
(
Aµ1µ2µ3 , Aµ1µ2

)
,

e m̂
µ̂ =

(
e−σ/12e m

µ 2e2σ/3Bµ
0 e2σ/3

)
,

ψm̂ =

(
e−σ/24e µ

m ψ′µ,
2
√

2

3
e17σ/24λ

)
,

(2.104)

where

ψ′µ = e−σ/24

(
ψµ −

1

6
√

2
ΓµΓ̄λ

)
− 4
√

2

3
e3σ/4Bµλ. (2.105)

This decomposition gives rise to the Lagrangian

L =− 1

2
|e|R(ω)− 1

24
|e|eσ/2F ′µ1···µ4F

′µ1···µ4 +
1

6
|e|e−σFµνρFµνρ

− 1

2
e3σ/2FµνF

µν +
1

4
∂µσ∂

µσ +
1

1442
εµ1···µ10Fµ1···µ4Fµ5···µ8Aµ9µ10

− 1

4
ψ̄µΓµνρDνψρ −

1

4
|e|λ̄ΓµDµλ+ . . . (2.106)
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where the dots denote numerous further terms involving the fermion fields, and

Fµν = ∂µBν − ∂νBµ, Fµνρ = 3∂[µAνρ],

F ′µνρσ = 4∂[µA
′
νρσ] + 12A[µ1µ2Gµ3µ4],

A′µνρ = Aµνρ − 6B[µAνρ].

(2.107)

The general coordinate transformations in the coordinate x10 of the eleven-
dimensional theory become gauge transformations, whose gauge field the field
Bµ is, in the ten-dimensional theory. To see how this comes about, we note that
the decomposition (2.104) corresponds to rearranging the eleven-dimensional
metric into the form

ds2 = gµνdx
µdxν + e4σ/3

(
dx10 +Bµ dx

µ
)(
dx10 +Bν dx

ν
)
.

From this expression, we see explicitly that the coordinate transformation(
xµ, x10

)
→
(
xµ, x10− ξ(x)

)
induces the transformation Bµ → Bµ+∂µξ in the

field Bµ [22].

Besides its invariance under supersymmetry, the Lagrangian (2.106) is invari-
ant under the following transformations:

σ → σ + α, Bµ → e−3α/4Bµ, Aµν → eα/2Aµν , Aµνρ → e−α/4Aµνρ.

This symmetry arises from the Weyl transformation of Eq. (2.102), which can
be made into a symmetry of the ten-dimensional theory, provided that it is
accompanied with a transformation x10 → e−9αx10 in the eleventh coordi-
nate. The effect of the latter is to replace

∫
dx10 with e−9α

∫
dx10, and so the

ten-dimensional action, which is obtained by carrying out the trivial integral∫
dx10 in the eleven-dimensional action, is invariant under the combined trans-

formation. As the gravitational constant κ occurs in the Lagrangian only as
an overall multiplicative factor κ−2, we see that the ten-dimensional and the
eleven-dimensional gravitational constants are connected by the relation

1

κ2
10

=
2πR

κ2
11

. (2.108)

It is clear that κ10 is invariant under the combined transformation, since the
Weyl transformation (2.102) effectively replaces κ11 by e−9α/2κ11.

Type IIB supergravity is based on two Majorana–Weyl spinors of the same chi-
rality. It contains the bosonic fields e m

µ , Aµν , a and Bµνρσ, and the fermionic
fields (ψµ)Ia and λIa. The fermionic fields ψµ and λ are complex. Both of the
gravitinos have the same chirality, which is opposite to the chirality of the λI

fields. Instead of the complex fields Aµν and a, we can equivalently use the
real fields C, σ, Bµν and Cµν . The four-form gauge field Bµνρσ is real.

The field strength Gµ1···µ5 of the four-form field satisfies a self-duality condition
of the form

(?G)µ1···µ5 ≡
1

5!
εµ1···µ10Gµ6···µ10 = Gµ1···µ5 . (2.109)
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This complicates the construction of a Lagrangian, as a standard kinetic term

Gµ1···µ5G
µ1···µ5

for the four-form field now vanishes on the account of the self-duality condition.
Nevertheless, one can give a formulation of the theory in terms of an action
principle, using an action in which Gµ1···µ5 is not self-dual and imposing the
self-duality condition as an additional field equation [56]. This action is given
by

S =

∫
d10x

[
1

2
|e|e2σ

(
R+ 4(∂σ)2 − 1

2
|H(3)|2

)
− 1

4
|e|
(
|F (1)|2 + |G(3)|2 +

1

2
|G(5)|2

)]
− 1

4

∫
B(4) ∧H(3) ∧ F (3),

(2.110)

where all the terms involving the fermions have been omitted. The various
field strengths are defined as

G(3) = F (3) − CH(3),

G(5) = F (5) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F (3),

(2.111)

where

F (1) = dC,

H(3) = dB(2),

F (3) = dC(2),

F (5) = dB(4),

(2.112)

and for a p-form, we have defined

|F (p)|2 =
1

p!
F̄µ1···µpF

µ1···µp . (2.113)

The self-duality condition ?G(5) = G(5) does not follow from the action, and so
it has to be enforced by hand. There is also an alternative formulation of the
theory, in which an auxiliary fields is introduced, and the self-duality condition
appears not as an equation of motion, but through a gauge fixing requirement
on the auxiliary field [57].

The scalar fields C and σ can be interpreted as giving a parametrization of
a SU(1, 1)/U(1) coset space. In the SU(1, 1)/U(1) formulation of the theory
[58], we have the scalar fields V α

+ and V α
− , where α is a SU(1, 1) index, and

the + and − denote the charge of the fields under U(1). The coset space
SU(1, 1)/U(1) is described by the matrix

U =

(
V 1
− V 1

+

V 2
− V 2

+

)
, (2.114)
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with the constraints

(V 1
−)∗ = V 2

+, V 1
−V

2
+ − V 1

+V
2
− = 1.

The U(1) invariant complex variable

z =
V 2
−
V 1
−

(2.115)

can be used as a coordinate of the coset space, and as such it represents the
physical degrees of freedom of the scalar fields. The SU(1, 1) transformation(

V 1
−
V 2
−

)
→
(
µ ν
ν̄ µ̄

)(
V 1
−
V 2
−

)
(2.116)

corresponds to the transformation

z → µ̄z + ν̄

µz + ν

in the variable z. The SU(1, 1) transformations can be expressed as SL(2,R)
transformations through the change of variables

z =
1 + iτ

1− iτ
.

Under the transformation (2.116), the variable τ transforms as

τ → aτ + b

cτ + d
, (2.117)

where the matrix
(
a b
c d

)
of the transformation parameters is an element of

SL(2,R). The scalar fields C and σ are related to τ by

τ = C + ie−σ. (2.118)

The action in the form (2.110) arises naturally from the low energy limit of
type IIB string theory. However, the SL(2,R) symmetry of the theory is not
manifest in Eq. (2.110). The symmetry can be made manifest by performing a
transformation from the so-called string frame, in which the action has the form
(2.110), to the so-called Einstein frame [56]. The transformation is achieved
by setting

(e m
µ )E = eσ/4e m

µ , τ = C + ieσ, D(3) =
F (3) − τH(3)

√
Im τ

. (2.119)

In the Einstein frame, the action then has the form

S =
1

2

∫
d10x |eE |

(
RE −

∂µτ̄ ∂
µτ

2(Im τ)2

)
− 1

4

∫
d10x |eE |

(
1

2
|F (1)|2 − |D(3)|2 − 1

2
|G(5)|2

)
+
i

4

∫
B(4) ∧ D̄(3) ∧D(3).

(2.120)
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The SL(2,R) transformations leave the vielbein and the field B(4) invariant.
The field τ transforms according to Eq. (2.117). The fields B(2) and C(2)

transform among each other so that the field D(3) transforms as

D(3) → cτ̄ + d

|cτ + d|
D(3). (2.121)

The action in the form (2.120) is manifestly invariant under these transforma-
tions.

In addition to the gravitational constant κ, both of the type II supergravities
contain another coupling constant, which is the expectation value 〈eσ〉. These
are related to the string length ls and the string coupling constant gs of the
respective string theories. In particular, we have gs = 〈eσ〉. The SL(2,R)
transformations can now be seen as duality transformations which take one
from a strong string coupling into a weak string coupling, or vice versa. In
particular, the transformation which takes τ = C + ie−σ into τ ′ = −1/τ
transforms the coupling constant gs = 〈eσ〉 into g′s = 1/〈eσ〉 [25].
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Chapter 3

Duality

3.1 Elements of superstring theory

In the 1960’s, the understanding of the strong interaction was very incom-
plete, and physicists were charged with the task of organizing and interpreting
a large amount of experimental data. An ad hoc scattering amplitude, which
reproduced several experimental facts, was proposed by Veneziano in 1968 [62].
String theory [63, 64, 65] got started soon after, when Nambu and Goto showed
that such an amplitude is predicted by a theory in which elementary particles
are realized as the vibrational states of relativistic strings.

However, such theories were initially found to be not satisfactory. The primary
difficulties were the following: All such theories contained a tachyon, and sev-
eral contained a massless spin-2 particle, which were not possible to get rid
of. Furthermore, it was not possible to introduce fermions into the theory, and
the quantum theory was Lorentz invariant only when the number of spacetime
dimensions is 26. All of these difficulties were resolved during the 1970’s. A
way to include fermions was found by Neveu and Schwarz [66], and by Ramond
[67]. Gliozzi, Scherk and Olive were able to eliminate the tachyons and in the
process introduced supersymmetry into string theory [68]. Moreover, a way to
reduce the theory into four dimensions by compactifying the extra dimensions
was found, and it was understood that the spin-2 particle should be viewed
as a manifestation of the fact that gravity is naturally included in string theory.

String theory is formulated in terms of an action principle, where the action
is given by the area of the worldsheet, i.e. the two-dimensional surface traced
into spacetime by the string, in analogy with the action principle of a rela-
tivistic point particle, where the action is given by S = −m

∫
dt
√

1− v2 =
−m

∫
dt
√
−ηµνdxµdxν = −m

∫
ds. For bosonic string theory, the so-called
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Nambu–Goto action is given by

S = − 1

2πα′

∫
d2ξ

√
−det

(
ηµν∂aXµ∂bXν

)
= − 1

2πα′

∫
d2ξ

√(
Ẋ ·X ′

)2 − Ẋ2X ′2. (3.1)

The worldsheet is parametrized by the coordinates (ξ0, ξ1). The functions
Xµ(ξ) give the location of the worldsheet in spacetime; they can be viewed as
the spacetime coordinates of the worldsheet. We have denoted Ẋ = ∂Xµ/∂ξ0

and X ′ = ∂Xµ/∂ξ1. The indices µ, ν are spacetime indices, while the in-
dices a, b refer to the worldsheet coordinates. The parameter α′ is related to
the string length scale ls by α′ = l2s . The string tension is given by T = 1/2πα′.

An alternative action for bosonic string theory is given by the Polyakov action

S = − 1

4πα′

∫
d2ξ
√
−hhab∂aXµ∂bXµ. (3.2)

The advantage of the Polyakov action is that the square root in the Nambu–
Goto action has been gotten rid of. This comes at a cost of having to introduce
the worldsheet metric hab. The metric hab can be eliminated using its equation
of motion. The action then reduces to the form (3.1).

Figure 1. Closed strings propagating in spacetime. The string on the left is free,
while the other two drawings represent interactions between strings [56].

The Neveu–Schwarz–Ramond formulation of superstring theory is based on a
generalization of the Polyakov action. In addition to the bosonic worldsheet
coordinatesXµ and the metric hab, the action involves the fermionic worldsheet
coordinates ψµ and ψ̄µ, and the gravitino χa. The fields (Xµ, ψµ) form D sets
of chiral supermultiplets, and the metric h and the gravitino χ also combine
into a supermultiplet. The action has the form

S = − 1

4πα′

∫
d2ξ
√
−h
[
hab∂

aXµ∂bXµ +
i

2
ψ̄µ/∂ψµ

+
i

2

(
χ̄aγ

bγaψµ
)(

∂bX
µ − i

4
χ̄ψµ

)]
. (3.3)

The spacetime index µ takes values from 0 to D − 1; the quantum theory is
consistent only if D = 10. The indices a, b = 1, 2 refer to the worldsheet coor-
dinates ξa.
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The fields on the worldsheet are separated into so-called left-moving and right-
moving fields. The fields ψµ are right-moving, while ψ̄µ are left-moving. The
action is invariant under both left-moving and right-moving supersymmetry
transformations on the worldsheet. Boundary conditions have to be specified
which relate the left-moving and right-moving fields into each other. There are
two different choices for the boundary conditions. These split the fields into
two different sectors, the NS sector and the R sector. The quantum ground
state of the NS sector is a boson while the ground state of the R sector is a
fermion.

In the case of closed strings, the massless particle states are obtained as tensor
products of left-moving and right-moving fields. The massless states are thus
divided into four sectors. The bosons belong to the NS-NS and the R-R sectors
while the fermions are in the NS-R and R-NS sectors. The particle content of
the various sectors is as follows:

• The NS-NS sector contains the graviton, an antisymmetric rank-2 tensor
field and a scalar field.

• The R-R sector contains antisymmetric tensor fields of various ranks,
and possibly a scalar field.

• The NS-R and R-NS sectors each contain a Majorana–Weyl gravitino
and a spin-1/2 particle.

The two gravitinos may either have opposite chiralities, or they may both have
the same chirality. The theories where these possibilities are realized are known
as type IIA and IIB superstring theories, respectively. In the IIA theory, the
R-R sector contains a vector field and a rank-3 antisymmetric tensor field,
while in the IIB theory, there are a scalar field, a rank-2 antisymmetric tensor
field and a self-dual rank-4 antisymmetric tensor field. Both of the type II
theories contain two gravitinos, and so they have local N = 2 supersymmetry,
with 32 supercharges.

In addition to the type IIA and IIB superstring theories, which are theories of
oriented closed strings, there is the type I superstring theory, which involves
unoriented closed strings and unoriented open strings, and which only has
N = 1 supersymmetry. In addition, there is the heterotic string theory, which
is somehow a mixture of superstring theory and bosonic string theory, as it has
ten left-moving fields but 26 right-moving fields on the worldsheet. The type
I and heterotic theories have a gauge symmetry; the gauge group is dictated
by the requirement that the theory must be free of quantum anomalies. The
gauge group of the type I theory is uniquely determined as SO(32), while for
the heterotic theory one may take either SO(32) or E8 × E8.

The low-energy limits of superstring theories are supergravity theories. The
low-energy action of a given superstring theory can be found by the following
counting: A scalar field has weight 0, a fermion field has weight 1/2, and a
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derivative has weight 1. The low-energy action is then obtained by discarding
terms which have a weight greater than 2. In particular, the type IIA and IIB
superstring theories reduce to type IIA and IIB supergravity in the low-energy
limit.

There are numerous connections, or dualities, which relate the five ten-dimensio-
nal superstring theories to each other. The dualities give one a reason to sus-
pect that all the superstring theories are just different limits of a single under-
lying theory. One can view them as perturbative expansions of the underlying
theory about different points (in the space of physically acceptable vacua). The
underlying theory is named M-theory. A proper definition or a formulation for
M-theory is not known. The theory is presumably eleven-dimensional, and
eleven-dimensional supergravity is believed to be its low-energy limit. A point
in favour of this interpretation is that there is a unique eleven-dimensional
supergravity theory, so it is plausible that it could be the low-energy limit of
a well-defined fundamental theory. However, it should be borne in mind that
the uniqueness of eleven-dimensional supergravity is due to the requirement
that spin-5/2 particles be absent from the theory, which in turn is dictated
by the difficulties in constructing a quantum field theory involving interacting
spin-5/2 particles. However, it is not clear whether one can deduce from these
difficulties that a fundamental theory of Nature should be free of spin-5/2
particles. It is conceivable that the difficulties could be a reflection of some
limitation in the standard methods of quantum field theory, and that a theory
of spin-5/2 particles could be constructed by other means.

One of the string dualities is T-duality [65], which relates to each other two
string theories having a dimension which is compactified on a circle. If the
radius of the compact dimension is R, then the momentum of the string in
the compact direction is quantized, and has one of the values p = n/R, with
n an integer. With closed strings, an additional excitation results from the
possibility that the string may be wound around the compact dimension a
certain number of times. If m is the winding number, then the energy related
to this excitation is given by Em = m(2πRT ) = mR/α′, where T = 1/2πα′ is
the string tension. In the lower-dimensional theory, the two kinds of excitations
appear as corrections to mass, as the squared energy is now given by

E2 =
( n
R

)2
+

(
mR

α′

)2

+ . . . (3.4)

The important point is that this remains unchanged when R is replaced by
α′/R, and m and n are interchanged. T-duality is the statement of equiva-
lence between two theories, whose compact dimensions have radii R1 and R2

which are related by R1R2 = α′. Excitations along the compact dimension
in one theory correspond to winding excitations in the dual theory. The type
IIA and IIB theories are related to each other by T-duality, as are the two
heterotic theories. Note that the limit R→ 0 in one theory corresponds to the
decompactification of a dimension in the dual theory.

66



Another string duality is the so-called S-duality, which relates the strong cou-
pling limit of a theory into the weak coupling limit of another theory. The
type I superstring theory and the heterotic SO(32) theory are related to each
other by S-duality. Furthermore, type IIB superstring theory is self-dual under
S-duality. Under quantization, the SL(2,R) invariance of the classical theory
is reduced to a SL(2,Z) invariance. The SL(2,Z) transformations are the
S-duality transformations. A particular S-duality transformation replaces the
coupling constant gs with 1/gs, and the invariance of the theory under SL(2,Z)
translates to the prediction that the strong coupling and weak coupling limits
of the theory are equivalent. This is significant as it allows one to extract
information about the strong coupling limit from perturbative calculations.

The different string dualities combine in various ways into an intricate web of
dualities which indirectly relates all of the superstring theories to each other
and to M-theory. The dualities give rise to a number of highly nontrivial pre-
dictions, and the topic is certainly not adequately understood as of now. We
will not explore this topic any further, but turn instead to other matters.

The antisymmetric tensor fields which appear in superstring theories can be
identified with differential forms, the rank-p + 1 tensor field Aµ0···µp being
identified with the p+ 1-form

A(p+1) =
1

(p+ 1)!
Aµ0···µp dx

µ0 ∧ · · · ∧ dxµp . (3.5)

A p+ 1-form naturally couples to geometrical objects of dimension p+ 1. The
p+ 1-dimensional objects which are charged under A(p+1) are called p-branes
[56, 63, 65]. A 0-brane is a point particle, and a 1-brane is a string, but p may
have any value up to 9. The coupling is given by

iQp

∫
Σp+1

A(p+1) = iQp

∫
Σp+1

Aµ0···µp dx
µ0 ∧ · · · ∧ dxµp .

This can be thought of as the generalization of the coupling Aµẋµ in electro-
dynamics.

The field A(p+1) has the so-called magnetic dual A(D−3−p)
m , which is related to

A(p+1) by
dA(D−3−p)

m = ?dA(p+1). (3.6)

Consequently, the magnetic dual of a p-brane is a D − 4 − p brane to which
the field A(D−3−p)

m couples.

In type II string theories, there are p-branes which couple to the R-R fields
A(p+1), and their magnetic duals. In the IIA theory p has even values, while
in the IIB theory p has odd values. The NS-NS field Bµν couples to a 1-brane,
which is the fundamental string. The magnetic dual of the string is a 5-brane.
In M-theory, the only antisymmetric tensor field is the three-form field Aµνρ,
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and consequently the theory only allows a 2-brane, and its magnetic dual,
which is a 5-brane.

On the other hand, in string theories there are so-called Dp-branes [63, 70, 71],
which arise when Dirichlet boundary conditions are specified on open strings.
If Dirichlet boundary conditions are imposed on p spatial coordinates, this
constrains the p coordinates to have certain values, which makes the most
sense physically if there are p + 1-dimensional objects in spacetime on which
the endpoints of open strings may attach themselves. These objects are the
Dp-branes.

Figure 2. Open strings ending on Dp-branes [71].

Dp-branes are lower-dimensional defects in the ten-dimensional spacetime.
Their fluctuations are described by the excitations of the open strings which
are attached to them. The open string boundary conditions identify the left-
moving and right-moving supercharges with each other. Open strings therefore
have only half as many supersymmetries as closed strings, and so in type II
superstring theories, Dp-branes preserve only a half of the 32 supersymmetries
of the theory. Dp-branes may interact with closed strings which propagate in
the whole spacetime. On hitting the brane, the closed string splits into two
open strings, whose endpoints become attached to the brane. Conversely, a
pair of open strings may become a closed string and leave the brane. Dp-branes
therefore act as sources of closed strings (see Fig. 3).

Figure 3. A D-brane emits a closed string, which is then
absorbed by another D-brane [71].
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It can be shown that a Dp-brane carries one unit of charge under the R-R field
A(p+1). This suggests that Dp-branes are related to the p-branes described
earlier. All Dp-branes are in fact p-branes, but there are p-branes which are
not Dp-branes. In particular, the fundamental string is not a D1-brane. The
charge of a Dp-brane can be related to the tension of the brane, which is given
by

Tp =
1

(2π)pgsl
p+1
s

. (3.7)

This is inversely proportional to the coupling constant, which shows that the
brane is a non-perturbative effect. In string perturbation theory, when gs � 1,
the tension, or the energy density, of the brane becomes very large, and so the
brane can be thought of as some kind of a heavy, semiclassical object.

3.2 Large N field theory

String theory was motivated by the desire to find a theory for strong inter-
actions. A satisfactory theory for strong interactions was later provided by
QCD, which is a non-abelian gauge theory with the gauge group SU(3). How-
ever, while QCD is extremely suitable for studying strong interactions at high
energies, it is a less ideal tool for low-energy phenomena. The so-called large
N limit of QCD [69, 72] strongly suggests that QCD might be related to a
string theory, as the perturbative expansion of QCD in the large N limit is
identical in structure to the perturbative expansion which appears in string
perturbation theory. It would be extremely desirable to uncover the duality
connection between QCD and a string theory, if there indeed is one, as the
dual theory might provide a more suitable description of the physics at low
energies. An additional motivation for considering the large N limit of QCD,
is the hope that an exact solution could be found for the N = ∞ theory. If
such a solution were found, the N = 3 theory could then be treated by an
expansion in powers of 1/N .

The large N limit of gauge theories was first considered by ’t Hooft [73]. The
idea is very general, and applies to any non-abelian gauge theory with the
gauge group U(N) or SU(N). The order N of the gauge group is considered
as a parameter, and physical quantities are expanded in powers of 1/N . We
consider a generic U(N) or SU(N) gauge theory, which has the fields ϕai in
the adjoint representation of the gauge group. The index a is the gauge group
index, and i is some additional index (say, a Lorentz index) which labels the
fields. We assume that the Lagrangian has the form

L = Tr
[
(dϕi)(dϕ

i) + gYMaijk
(
ϕiϕjϕk

)
+ g2

YMbijkl
(
ϕiϕjϕkϕl

)]
. (3.8)

The prescription for how the N →∞ limit should be taken is dictated by the
equation

dgYM

d lnE
= − 11

48π2
Ng3

YM +O
(
g5
YM
)
, (3.9)
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which describes the running of the coupling constant in an SU(N) Yang–Mills
theory. The leading terms are of the same order if we let N → ∞ and at the
same time gYM → 0 in such a way that λ ≡ g2

YMN remains fixed. The quantity
λ is often called the ’t Hooft coupling.

If we scale all the fields ϕi in the Lagrangian (3.8) by 1/gYM, it becomes

L =
N

λ
Tr
[(
dϕi
)(
dϕi
)

+ aijk
(
ϕiϕjϕk

)
+ bijkl

(
ϕiϕjϕkϕl

)]
. (3.10)

The adjoint field ϕa can be written as a direct product ϕji of a fundamental
and an anti-fundamental field. The Feynman diagrams of the theory may then
be written in a double line notation, where the lines correspond to the indices
i and j. This notation was also introduced by ’t Hooft.

From the Lagrangian (3.10), we may read off that in a Feynman diagram
each vertex gives a factor of N/λ, and each propagator gives a factor of λ/N .
(Strictly speaking, the propagator depends on whether the gauge group is
U(N) or SU(N). In the SU(N) case, we have 〈ϕjiϕlk〉 ∼ δliδ

j
k − (1/N)δji δ

l
k,

while for U(N) only the first term is present. In the SU(N) case, the propa-
gator therefore has an additional term, but it can be neglected in the N →∞
limit.) Furthermore, each loop gives an additional factor of N , which arises
from

∑
δaa = N . These rules allow us to deduce the N -dependence of a gen-

eral Feynman diagram, and find which diagrams dominate in the large N limit.

Consider first vacuum diagrams. In the double line representation, a general
vacuum diagram can be viewed as a surface, which may in general be multiply
connected. In this picture, the propagators are the edges of the surface and
the loops are its faces. A diagram with V vertices, E propagators and F loops
will be proportional to

NV−E+F .

There is a theorem due to Euler, which relates the combination V −E + F to
the number of holes H in the surface by

V − E + F = 2− 2H. (3.11)

We therefore have that the N -dependence of a general Feynman diagram is
given by

N2−2H . (3.12)

The perturbative expansion for a particular quantity then has the form
∞∑
H=0

N2−2H
∞∑
k=0

cH,kλ
k ≡

∞∑
H=0

N2−2HfH(λ). (3.13)

In the large N limit, the expansion is dominated by the diagrams for which
H = 0. These are the so-called planar diagrams. They are proportional to N2,
while all the other diagrams will be proportional to lower powers of N . In the
double line representation, the planar diagrams can be drawn onto a plane so
that none of the lines lie on the top of each other.
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Figure 4. The diagram on the left is planar; the one on the right is not [74].

The topological nature of the expansion (3.13) is a strong indication that large
N field theories may be related to string theories. In a theory of closed, ori-
ented strings, the perturbative expansion has the form of Eq. (3.13), but with
the inverse string coupling constant 1/gs in the place of N ; thus gs should be
identified with 1/N . Apparently the double-line diagrams of the field theory
are some kind of deformations of diagrams which represent the interactions of
strings.

The form of the expansion (3.13) actually is the same also for diagrams with
external lines, even though we derived it only for vacuum diagrams [69]. In the
double line notation, each external line becomes a vertex of the surface, and so
the analysis leading to Eq. (3.12) is valid for diagrams with external lines, too.
It can be shown that each external line reduces the power of N by one, and so
in the large N limit, the dominant contribution to an n-point function will be
proportional to N2−n. The two-point functions is therefore independent of N ,
the three-point function is proportional to 1/N , and so on. This shows that
the coupling constant is indeed 1/N .

3.3 Geometry of anti de Sitter spaces

The n+ 1-dimensional anti de Sitter space AdSn+1 [63, 69] may be defined as
the hyperboloid

x2
0 + x2

n+1 −
n∑
i=1

x2
i = R2 (3.14)

in the flat n+ 2 dimensional space whose metric is

ds2 = −dx2
0 − dx2

n+1 +

n∑
i=1

dx2
i . (3.15)

From this definition, it is clear that the isometry group of AdSn+1 is SO(2, n).
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(Picture from Wikipedia.)

Figure 5. The space AdS2 can be represented as a hyperboloid in
a three-dimensional embedding space.

A possible parametrization of AdSn+1 is given by

x0 = R cosh ρ cos τ,

xn+1 = R cosh ρ sin τ,

xi = R sinh ρΩi,

(3.16)

where the coordinates Ωi parametrize the sphere Sn−1, and satisfy
n∑
i=1

Ωi = 1.

In these coordinates, the metric of AdSn+1 reads

ds2 = R2
(
− cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2

)
. (3.17)

The whole hyperboloid is covered as the parameters ρ and τ take values from
0 to ∞, and from 0 to 2π, respectively. Near ρ = 0, the metric has the form

ds2 = R2
(
−dτ2 + dρ2 + ρ2 dΩ2

)
.

This shows that AdSn+1 has the topology S1 × Rn. The sphere S1 represents
closed timelike curves. These are eliminated by taking the universal cover of τ ,
which amounts to allowing τ to have values from −∞ to ∞, and points with
different values of τ are not identified with each other. From now on, we take
AdSn+1 to mean this universal covering space.

Physically, anti de Sitter space is the maximally symmetric solution of the
empty space Einstein equation with a constant negative curvature [75]. That
is, it is a solution of the equation

Rµν −
1

2
Rgµν =

1

2
Λgµν (3.18)
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with Λ > 0. That the solution is maximally symmetric means that it has the
largest possible number of Killing vectors. For such a solution, the curvature
tensor is given by

Rµνρσ = const.×
(
gµρgνσ − gµσgνρ

)
.

Furthermore, the near-horizon geometry of the so-called extremal charged
black hole is described by an anti de Sitter space [63, 72]. The metric de-
scribing a black hole of mass M and charge Q is given by

ds2 = −
(

1− r+

r

)(
1− r−

r

)
dt2 +

[(
1− r+

r

)(
1− r−

r

)]−1

dr2 + r2 dΩ2,

(3.19)
where the horizons are located at r± = M ±

√
M2 −Q2. The extremal black

hole has Q = M , and so r+ = r−. Defining the coordinate ρ = M2/(r −M),
the metric can be written near r = r+ as

ds2 =
M2

ρ2

(
−dt2 + dρ2

)
+M2 dΩ2. (3.20)

The first term is the metric of AdS2 in the so-called Poincaré coordinates. The
near-horizon geometry is thus described by the direct product AdS2 × S2.

The spaceAdSn+1 has a certain kind of a boundary [75], which can be described
using the coordinates

ξ = x0 + ixn+1, η = x0 − ixn+1, (3.21)

so that the condition (3.14) now reads

ξη − ~x2 = R2. (3.22)

Roughly speaking, the boundary arises when the length of the vector ~x ∈
AdSn+1 becomes very large. If we define (ξ̃, η̃, x̃i) by (ξ, η, xi) = (aξ̃, aη̃, ax̃i),
then Eq. (3.22) shows that in the limit R → ∞ we have ξ̃η̃ − ~̃x2 = 0. But
instead of a we could have used ta with any real number t, and so the boundary
should more properly be considered as the set of points which satisfy

ξη − ~x2 = 0, (3.23)

with the prescription that the points (ξ, η, ~x) and t(ξ, η, ~x) for any t ∈ R are
considered identical.

We would now like to show explicitly that the isometry group SO(2, n) acts
on the boundary of AdSn+1 as the conformal group on Minkowski space [75].
An infinitesimal SO(2, n) transformation acts on the boundary point (ξ, η, ~x)
as (

1 + ω
)ξη

~x

 .
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The requirement that the transformation must preserve the metric of the em-
bedding space dictates that the matrix ω has the form

ω =

 a 0 ~αT

0 −a ~βT

1
2
~β 1

2~α ωn

 , (3.24)

where ωn is an antisymmetric n× n matrix. We then have

(
1 + ω

)ξη
~x

 =

ξ′η′
~x′

 =

 (1 + a)ξ + ~α · ~x
(1− a)η + ~β · ~x

~x+ (ξ/2)~β + (η/2)~α+ ωn~x

 .

We can use the scaling (ξ, η, ~x) ∼ t(ξ, η, ~x) to put any point on the boundary
(except the point η = 0) into the form (~x2, 1, ~x), so that the boundary point is
being represented by the vector ~x. The image point (ξ′, η′, ~x′) is transformed
to this form by dividing each component with (1 − a)η + ~β · ~x. After these
adjustments, we have that the infinitesimal SO(2, n) transformation acts on
the boundary points as

~x→
(
1 + a− ~β · ~x

)
~x+

~x2

2
~β +

1

2
~α+ ωn~x. (3.25)

This is indeed a combination of (i) a translation through ~α/2, (ii) a Lorentz
rotation with the parameters given by ωn, (iii) a dilation, i.e. a scaling of ~x by
1+a, and (iv) a special conformal transformation with the parameter ~b = ~β/2.
The only nontrivial point is (iv); taking the bµ in Eq. (A.32) to be infinitesimal,
we have

xµ → xµ + x2bµ − 2bνxνx
µ.

On the other hand, if only ~β 6= 0, then Eq. (3.25) becomes

~x→ ~x− (~β · ~x)~x+
~x2

2
~β;

a special conformal transformation with the parameter bµ = ~β/2.

An alternative parametrization for AdSn+1 is given by the coordinates u, t and
~y ∈ Rn−1, which are defined by

x0 =
1

2u

(
1 + u2

(
R2 + ~y2 − t2

))
, xi = Ruyi,

xn+1 =
1

2u

(
1− u2

(
R2 − ~y2 + t2

))
, xn+2 = Rut.

(3.26)

The coordinate u takes values from 0 to ∞. The coordinates (3.26) cover a
half of the hyperboloid (3.14). In these coordinates, the metric is

ds2 = R2

(
du2

u2
+ u2

(
−dt2 + d~y2

))
. (3.27)
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The boundary of AdSn+1 is located at u =∞, and this boundary is the four-
dimensional Minkowski space.

Yet a different version of the metric is obtained by defining r = R2/u. We
then have

ds2 =
R2

r2

(
dr2 − dt2 + d~y2

)
. (3.28)

The boundary is now at r = 0. This form of the metric makes it clear that
AdSn+1 is conformally equivalent to flat space. Both of the metrics (3.27) and
(3.28) are sometimes called the Poincaré metric in the literature.

There is also a version of AdSn+1 with a Euclidean time coordinate. This is
obtained by replacing xn+1 with xE = −ixn+1. AdSn+1 then is defined by

x2
0 − x2

E − ~x2 = R2 (3.29)

in an embedding space whose metric is

ds2
E = −dx2

0 + dx2
E + d~x2. (3.30)

Equivalently, one can replace the Poincaré t coordinate by −it. The various
metrics of AdSn+1 given above are written in Euclidean form as

ds2
E = R2

(
cosh2ρ dτ2

E + dρ2 + sinh2ρ dΩ2
)

= R2

(
du2

u2
+ u2

(
dt2E + d~y2

))
=
R2

r2

(
dr2 + dt2E + d~y2

)
. (3.31)

The Euclidean AdSn+1 can be mapped into a (n + 1)-dimensional disk. The
boundary – an n-dimensional disk – corresponds to u = ∞, except for one
point. The full boundary includes the point u = 0, corresponding to the point
~y =∞.

3.4 Branes in supergravity

We will now look in some detail into the p-brane solutions in type II super-
gravities [63, 69, 76]. In the string frame, the relevant part of the low-energy
action reads

S =
1

16πG

∫
d10x

√
−g
(
e−2φ

[
R+ 4(∂φ)2

]
− 1

2(p+ 2)!
F 2

(p+2)

)
+ . . . (3.32)

where F (p+2) is the field strength of the field A(p+1). The gravitational constant
G is related to the string length ls by

16πG = (2π)7l8s . (3.33)
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In the type IIA theory, p is odd, and in the type IIB theory, p is even. Alter-
natively, one can derive the brane solution by starting from the action written
in the Einstein frame, where it reads

S =
1

16πG

∫
d10x

√
−g
(
R− 1

2
(∂φ)2 − 1

2(p+ 2)!
e−(p−3)φ/2F 2

(p+2)

)
,

and which is obtained from the string frame metric by the Weyl rescaling
gµν → e−φ/2gµν . This approach is spelled out in great detail in [75].

The equations of motion which arise from the action (3.32) are

Rµν + 2∇µ∇νφ =
e2φ

2(p+ 1)!

(
F 2
µν −

gµν
2(p+ 2)

F 2

)
,

d ? F (p+2) = 0, R = 4(∂φ)2 − 4�φ.

(3.34)

In the first equation, F 2
µν is a shorthand notation for Fµµ1···µp+1F

µ1···µp+1
ν . It

turns out that the solution which describes a p-brane is given by

ds2 = H−1/2(r)

(
− f(r) dt2 +

p∑
i=1

(
dxi
)2)

+H1/2(r)

(
dr2

f(r)
+ r2 dΩ2

8−p

)
.

(3.35)
The coordinates t and xi are the coordinates on the volume of the brane, while
the coordinate r and the angular coordinates are perpendicular to the brane.
The equations of motion imply that

e2φ = g2
s H

(3−p)/2(r), (3.36)

and that the functions H and f are harmonic in the transverse coordinates.
A p-brane is pointlike in the transverse subspace, and so it is reasonable to
expect that its fields are spherically symmetric in the transverse coordinates.
The requirement of spherical symmetry constrains the functions H and r to
have the form

H(r) = 1 +

(
L

r

)7−p
, f(r) = 1−

(r0

r

)7−p
. (3.37)

One can also have more general solutions. For example, the so-called multi-
center solution is given by

H(~r) = 1 +
M∑
i=1

Niξi
|~r − ~ri|7−p

,

where
ξi = 25−pπ(5−p)/2Γ

(
1
2(7− p)

)
gsl

7−p
s .

This solution corresponds to M parallel p-branes located at the positions ~ri,
the R-R charge of the i-th brane being Ni.
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Some features of the geometry of the p-brane solution become perhaps more
transparent when a new coordinate ρ is defined by

ρ7−p = L7−p + r7−p.

The metric then takes the form

ds2 = − f+(ρ)

f
1/2
− (ρ)

dt2 + f
1/2
− (ρ)

p∑
i=1

(dxi)2

+ f−(ρ)
−1/2−5−p

7−p
(

dρ2

f+(ρ)
+ f−(ρ) ρ2 dΩ2

8−p

)
. (3.38)

where

f±(ρ) = 1−
(
r±
ρ

)7−p
, (3.39)

and
r− = L, r7−p

+ = r7−p
0 + L7−p. (3.40)

The metric (3.38) has singularities at ρ = r±. One can show that at ρ = r−,
there is a curvature singularity except when p = 3. Moreover, for p ≤ 6 there
is a horizon at ρ = r+. If r+ > r−, the singularity is hidden inside the horizon,
and the solution represents a black hole.

The p-brane solution has mass (per unit volume) M and R-R charge N , which
are given by

M =
(8− p)f7−p

+ − r7−p
−

(7− p)(2π)7dpl8P
, N =

(
r+r−

)(7−p)/2
dpgsl

7−p
s

. (3.41)

Here lP = g
1/4
s ls is the Planck length in ten dimensions, and the numerical

factor dp is
dp = 25−pπ(5−p)/2Γ

(
1
2(7− p)

)
. (3.42)

The condition r+ > r−, which guarantees the absence of a naked singularity,
leads to the following inequality between the mass and the R-R charge:

M ≥ N

(2π)pgsl
p+1
s

. (3.43)

The solution whose mass satisfies the lower bound is called an extremal p-
brane. The extremal brane presumably corresponds to the brane being in the
ground state in the quantum description. The solutions whose masses are
greater than the lower bound are non-extremal p-branes. The non-extremal
branes are sometimes called black branes, because of the event horizon at r+.

The case p = 3 is special, as it is completely free of singularities. The p = 3
brane therefore represents a smooth, localized defect in spacetime. At the clas-
sical level, the singular p 6= 3 branes are maybe best regarded as unphysical
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objects analogous to the Dirac monopole in electrodynamics. However, when
the relevant string theory is quantized, one is forced by symmetry consider-
ations to include these in the theory; however, at least in the limit of weak
string coupling, the singularities will be removed [63].

In the extremal limit r0 → 0, the 3-brane solution (3.35) becomes

ds2 =

(
1 +

L4

r4

)−1/2 (
−dt2 + d~x2

)
+

(
1 +

L4

r4

)1/2 (
dr2 + r2 dΩ2

5

)
. (3.44)

As r → ∞, the metric reduces to that of flat Minkowski space. Furthermore,
as r → 0, the metric takes the form

ds2 =
L2

z2

(
−dt2 + d~x2 + dz2

)
+ L2 dΩ2

5 (3.45)

in terms of the variable z = L2/r. This is a direct product of the space AdS5,
whose radius of curvature is L, and the sphere S5 of radius L. The geometry
can be visualized as an infinitely deep ”throat”, which opens up into flat ten-
dimensional Minkowksi space when r � L (see Fig. 6).

Figure 6. The geometry of the extremal 3-brane solution [56].

The maximal symmetry of the spaces AdS5 and S5 implies that the curvature
tensor in both spaces has the form

Rijkl = ± 1

L2

(
gikgjl − gilgjk

)
, (3.46)

where the − sign belongs to AdS5 and the + sign to the sphere. This shows
that the geometry is non-singular even as r → 0, and that all the curvatures
are inversely proportional to L. The classical supergravity description of the
p-branes is appropriate as long as the curvature of the p-brane geometry is
small in comparison with the string length ls. When the curvature becomes
comparable to ls, the full string theory description should be used. In the
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case of extremal 3-branes, the requirement that the curvature is small enough
translates to L� ls. As we have

L7−p = dpgsNl
7−p
s , (3.47)

we see that the supergravity description is valid when

gsN � 1. (3.48)

The p-branes of type II supergravity are charged under the R-R gauge field
A(p+1), and it can be shown that the extremal p-branes preserve half of the 32
supersymmetries of the supergravity theory. This suggests that the extremal
p-branes should be identified with the Dp-branes of superstring theory – ap-
parently they are just two different descriptions of the same physical objects.
It was shown by Polchinski [70] that that a stack of N Dp-branes on top of
each other has N units of charge under the field A(p+1). In string perturba-
tion theory, in the case of N coincident Dp-branes, the expansion parameter
is given by gsN , and so the Dp-brane description can be used when

gsN � 1. (3.49)

This is the opposite of where the supergravity description is appropriate.

Figure 7. Stacks of D-branes with open strings ending on them.
On the left, the branes are on the top of each other, while on the

right they are separated by finite distances [56].

An interesting, and extremely relevant, feature of D-branes is that the effective
low-energy theory of open strings and D-branes is a supersymmetric gauge
theory on the world volume of the branes [69, 77]. This was first worked out
by Witten [78]. The massless excitations of open strings on a single Dp-brane
reproduce the spectrum of a U(1) gauge theory with maximal supersymmetry
in p+1 dimensions. In the case of N parallel Dp-branes located on top of each
other, the gauge group is improved to U(N), as suggested by the fact that the
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endpoints of a string can be located on the branes in N2 different ways, and
N2 is the dimension of the adjoint representation of U(N). There are 9 − p
massless scalar fields, which are interpreted as the Goldstone bosons related to
the transverse excitations of the branes. When all the branes are on top of each
other, all the scalar fields have vanishing vacuum expectation values. The case
where the vacuum expectation values do not vanish corresponds to the branes
being at different locations, and their relative distances are proportional to the
expectation values.

3.5 Conformal field theories

In this section, we will describe some properties of conformally invariant field
theories [69]. The conformal group, which is briefly outlined in Appendix 3,
is a generalization of the Poincaré group. In addition to the spacetime trans-
formations of the Poincaré group, it includes scale transformations. Theories
invariant under the conformal group are therefore scale invariant. Many field
theories, for example the four-dimensional Yang–Mills theory, are classically
scale invariant. The scale invariance generally does not carry over to the quan-
tum theory, though sometimes, such as in the D = 4, N = 4 supersymmetric
Yang–Mills theory, it does. Although it has not been proven, there are no
known counterexamples to the proposition that unitary, interacting scale in-
variant field theories are always invariant under the full conformal group.

The physically most relevant representations of the conformal group consist of
fields, or operators, which are eigenfunctions of the dilation operator D with
eigenvalues −i∆. The number ∆ is the conformal dimension, or the scaling
dimension, of the field. Under the transformation xµ → λxµ, a field of confor-
mal dimension ∆ transforms as φ(x)→ λ∆φ(x).

The commutation relations

[D,Pµ] = −iPµ, [D,Kµ] = iKµ, (3.50)

show that Pµ raises the conformal dimension of a field by one unit, while Kµ

lowers it by one unit. The requirement of unitarity places a lower bound on
the conformal dimensions of fields; for example, a scalar field φ must have
∆φ ≥ (D−2)/2, where the equality can only be achieved by a free scalar field.
Each representation of the conformal group therefore has to have a certain
operator of lowest dimension, called a primary operator, which is annihilated
by Kµ.

A representation of the conformal group can be constructed by starting from
a primary operator, and including all the operators which can be constructed
by acting on the primary operator with the generators of the conformal group.
Such a representation is labeled by the conformal dimension of the primary
field, and by the representation of the Lorentz group to which it belongs. As
the operators in the representation are eigenfunctions of D, they generally are

80



not eigenfunctions of H = P0 or M2 = −PµPµ. A representation correspond-
ing to massless fields has M2 = 0, but otherwise the representation has a
continuous mass spectrum, with M2 taking values from 0 to ∞.

The properties of a conformal field theory are strongly constrained by the re-
quirement of conformal invariance, as the conformal group is much larger than
the Poincaré group. For example, the form of correlation functions between
primary operators is very restricted, as the operators must be invariant under
conformal transformations. It can be shown (see e.g. [79]) that the two-point
function vanishes unless both of the fields have the same conformal dimension,
and for two scalar fields of conformal dimension ∆, the two-point function is
restricted to have the form〈

φi(x1)φj(x2)
〉

=
cij

(r12)2∆
, (3.51)

where r12 = |x1 − x2|. Similarly, for the three-point function we have〈
φi(x1)φj(x2)φk(x3)

〉
=

cijk
(r12)∆1+∆2−∆3(r13)∆1+∆3−∆2(r23)∆2+∆3−∆1

.

(3.52)
Even though the two-point function and the three-point function are deter-
mined up to a constant by conformal invariance, the same is not true of the
general n-point function, which may depend on an arbitrary function of the
so-called cross ratios rijrkl/rikrjk, which are invariant under conformal trans-
formations.

In certain spacetime dimensions, and with a suitable number of supercharges, it
is possible to include the conformal generators to the supersymmetric Poincaré
algebra to form a so-called superconformal algebra. All possible such algebras
were classified by Nahm [80]. In particular, a superconformal algebra is only
possible if D ≤ 6. In addition to the Poincaré and conformal generators, the
superconformal algebra includes further fermionic generators S, one for each
supercharge Q, and possibly the generators of an R-symmetry. The generators
S arise from the anticommutator [K,Q] ∼ S, and their appearance doubles
the number of fermionic generators compared to the supersymmetric Poicaré
algebra.

A particular example of a conformal field theory is given by the N = 4 su-
persymmetric Yang–Mills theory in four dimensions [56, 81]. The theory can
be constructed by dimensional reduction from the ten-dimensional N = 1 su-
persymmetric Yang–Mills theory [82, 83], which is the unique supersymmetric
theory in ten dimensions which does not include gravity.
The ten-dimensional theory is desrcibed by the Lagrangian

L = − 1

2g2
Tr
(
FµνF

µν − 2iλ̄ΓµDµλ
)
, (3.53)

where

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ], Dµ = ∂µ + igAµ. (3.54)
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The field λ is a Majorana–Weyl spinor. The Lagrangian is invariant under the
supersymmetry transformations

δεAµ = −iε̄Γµλ, δελ =
1

2
FµνΓµνε. (3.55)

Under the reduction from ten dimensions to four, the ten-dimensional gauge
field Aµ gives rise to the four-dimensional gauge field, and to six scalar fields
Xi. The ten-dimensional spinor λ splits into four Majorana spinors λa, which
are subject to an SU(4) symmetry. The resulting Lagrangian is

L = Tr
(
− 1

2g2
FµνF

µν +
θ

8π2
FµνF̃

µν − iλ̄aσ̄µDµλa −DµXiD
µXi

+ gCabi λa[X
i, λb] + gC̄iabλ̄

a[Xi, λ̄b] +
g2

2

∑
i,j

[Xi, Xj ]2
)
. (3.56)

where the matrices Cabi are related to the gamma matrices belonging to the
six reduced dimensions.

It is possible to formulate the four-dimensional theory in terms of superfields.
In the superfield description, one of the λa spinors combines with the gauge
field Aµ into a vector superfield, while the remaining three spinors each com-
bine with two of the scalar fields into three chiral superfields.

The single ten-dimensional Majorana–Weyl supercharge splits into four Majo-
rana supercharges in four dimensions, and the Lagrangian (3.56) is invariant
under supersymmetry by construction. The supersymmetry transformation
laws of the fields could be deduced from Eq. (3.55). The Lagrangian is also
invariant under the conformal group, and under conformal supersymmetries,
which are generated by the conformal supercharges Saα and S̄ a

α̇ arising from
the commutator of Kµ with the Q supercharges.

The SU(4) symmetry of the λa fermions is a remnant of the Lorentz invariance
of the ten-dimensional theory, as the ten-dimensional Lorentz group decom-
poses as SO(1, 9) → SO(1, 3)× SO(6) ∼ SO(1, 3)× SU(4). The fermions λa
transform in the fundamental representation 4 of SU(4), while the scalars Xi

transform in the rank 2 antisymmetric tensor representation 6. The gauge field
Aµ is an SU(4) singlet. The algebra of the SU(4) transformations commutes
with the conformal algebra. The supercharges Q a

α and S̄ a
α̇ transform in the

4 of the SU(4), whereas Q̄aα̇ and Saα̇ transform in the 4̄. All of the global
continuous symmetries of the theory combine together to form the so-called
supergroup SU(2, 2|4).

The Lagrangian (3.56) is subject to a further discrete symmetry, which is best
expressed by making use of the complex coupling constant

τ =
θ

2π
+

4πi

g2
. (3.57)
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The classical theory is invariant under θ → θ + 2π, which corresponds to τ →
τ + 1. According to the Montonen–Olive conjecture [84], the transformation
τ → −1/τ is also an invariance of the quantum theory. When θ = 0, this
transformation replaces g with 1/g. Together, these transformations form the
S-duality group SL(2,Z), which consists of the transformations

τ → aτ + b

cτ + d
, with ad− bc = 1, (3.58)

and where the numbers a, b, c, d are integers.

The quantized D = 4, N = 4 SYM theory is free of ultraviolet divergences in
perturbation theory. The theory is presumably ultraviolet finite, as instanton
configurations also give only finite contributions. The exact conformal invari-
ance of the theory carries over to the quantum theory, since no dependence on
a scale defined by a cutoff Λ is ever introduced; consequently, the beta function
of the theory is identically zero.

We will briefly consider the construction and classification of operators in the
super-Yang–Mills theory [56]. We restrict ourselves to operators that are lo-
cal, gauge invariant, and polynomial in the gauge invariant fields Xi, λa and
Fµν± . All such operators can be constructed from the so-called superconformal
primary operators, which are defined by the condition

[S,O] = 0, (3.59)

where the brackets denote either the commutator or the anticommutator, de-
pending on whether O is a bosonic or a fermionic operator. The operator O0

of lowest dimension in a given superconformal multiplet is a superconformal
primary operator. The remaining operators in the multiplet are obtained by
repeatedly applying one of the Q supercharges to the primary operator O0.
This implies that the commutator of any operator with Q cannot be a primary
operator. The relations

[Q,X] ∼ λ, {Q,λ} ∼ F+ + [X,X],

[Q,F ] ∼ Dλ, {Q, λ̄} ∼ DX,

therefore show that superconformal primary operators may not involve the
fields λ or F , nor the derivatives or commutators of the fields X. The primary
operators will be gauge invariant objects involving only the fields Xi. The
simplest primary operators are the so-called single trace operators, which have
the form

str
(
Xi1 · · ·Xin

)
, (3.60)

where str denotes a symmetrized trace over the SO(6) algebra. There are also
multiple trace operators, which are constructed as products of the single trace
operators.
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3.6 Maldacena’s conjecture

The first concrete example of the idea that string theories and gauge theories
could be related to each other was given by Maldacena [59], who argued that a
particular compactification of type IIB superstring theory is equivalent to the
N = 4 supersymmetric Yang–Mills theory in four dimensions. More details
on how the theories are related to each other were soon supplied by Gubser,
Klebanov and Polyakov [85], and by Witten [86].

The conjectured equivalence between the two theories by the name of AdS/CFT
correspondence, or duality, since the non-compact dimensions of the IIB theory
belong to an anti de Sitter space. Since Maldacena’s discovery of the duality
between the two theories specified above, several other examples have been
found of dualities between various superstring or supergravity theories and
gauge theories. The term AdS/CFT duality is often used to refer to any or all
of these dualities. The term gauge–gravity duality, which also is often used,
is perhaps more appropriate, since it allows for the possibility that the string
theory is defined on some other kind of a geometry instead of an anti de Sitter
space.

We will now desrcibe the argument on which the Maldacena conjecture is based
[69]. We consider type IIB superstring theory in flat spacetime, and we take
a stack of N parallel D3-branes, which are located very close to each other.
In the string theory, there are closed strings, and open strings which end on
the D-branes. The open strings describe the excitations of the branes, while
the closed strings describe the excitations of empty space. If we consider the
system in the low-energy limit, where the relevant energies are small compared
to 1/ls, then only massless excitations can appear. The massless excitations
of the closed strings are described by the Lagrangian of type IIB supergravity,
while the Lagrangian describing the massless excitations of the open strings
is that of the N = 4 U(N) supersymmetric Yang–Mills theory in four dimen-
sions, as we explained in section 3.4. (We hope that no confusion arises from
the fact that the number of supercharges and the order of the gauge group are
both denoted by N .)

We may now consider the above construction from two different points of view.
On the one hand, we can write down the effective action describing the massless
excitations. It has the form

S = Sbulk + Sbrane + Sint, (3.61)

where Sbulk contains the type IIB supergravity action, Sbrane contains the
N = 4 super-Yang–Mills action, and Sint describes the interactions between
the brane excitations and the empty space excitations. The action Sbulk can be
split into the part which describes freely propagating massless particles, and
the remaining terms, which are proportional to (positive) powers of κ =

√
8πG.

The interaction term Sint is also proportional to positive powers of κ.
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It is more convenient to take the low-energy limit by letting ls → 0, while
keeping the energies and all other parameters fixed. We then have, from Eq.
(3.33), κ ∼ l4s → 0. This means in particular that the interactions between
the brane excitations and the other excitations vanish in the low-energy limit.
The bulk action reduces to one that describes free IIB supergravity, while the
brane action reduces to the action of the four-dimensional N = 4 U(N) super-
Yang–Mills theory. The system of strings and D-branes has been reduced to
a free supergravity theory in the full spacetime, and a gauge theory in four
dimensions. Furthermore, these theories are decoupled – that is, they do not
interact with each other.

Now, on the other hand, we may use the extremal p-brane solution of super-
gravity to give an alternative description of the above system. For extremal
3-branes, we have

ds2 = H−1/2(r)
(
−dt2 + dx2 + dy2 + dz2

)
+H1/2(r)

(
dr2 + r2 dΩ2

5

)
, (3.62)

where

H(r) = 1 +
L4

r4
, L4 = 4πgsNl

4
s . (3.63)

From the metric, we read off that the energy of an object, measured by a
stationary observer at distance r, is related to the energy measured at infinity
by

E(r) = H1/4(r)E∞. (3.64)

For an observer at infinity, there are therefore two different kinds of low-energy
excitations: massless excitations of long wavelength, which may propagate
anywhere at all in spacetime, and excitations of any mass and any wavelength,
located very close to r = 0. In the low-energy limit, the excitations near
r = 0 do not have enough energy to escape to large distances, and it can be
shown that the cross-section for absorption of particles by the branes becomes
negligible in the low-energy limit [77, 87, 88]. The two kinds of excitaions
therefore become decoupled in the low-energy limit. The low-energy theory is
again reduced to two decoupled components: a free supergravity theory in the
whole spacetime, and the whole IIB superstring theory in the so-called near-
horizon region of the metric (3.62). The geometry of the near-horizon region
is given by the r → 0 limit of the metric as

ds2 =
r2

L2

(
−dt2 + dx2 + dy2 + dz2

)
+ L2

(
dr2

r2
+ dΩ2

5

)
. (3.65)

We recognize this as the metric of AdS5 × S5.

We have now shown that two different descriptions of the system of strings and
D3-branes both give rise to two decoupled theories in the low-energy limit. One
of the theories is type IIB supergravity in flat space in either case, but the other
theory is different in the two cases. These considerations led Maldacena to put

85



forward the conjecture that the other theories, despite appearing to be com-
pletely different, should actually be identified with each other. The conjecture
thus amounts to the seemingly surprising statement that type IIB superstring
theory on AdS5×S5 is equivalent to the four-dimensional N = 4 U(N) super-
symmetric Yang–Mills theory.

The relation between the parameters of the two theories is given by

gs =
g2
YM
4π

, L4 = 4πgsNl
4
s , (3.66)

where L is the radius of curvature of the AdS5, and the radius of the S5. The
relation between the string coupling constant and the Yang–Mills coupling
constant can be justified by considering the so-called Dirac–Born–Infeld action
[63], which describes the dynamics of Dp-branes. The relevant part of the
action is given by

Sp = −Tp
∫
dp+1ξ e−φ

√
−det

(
Gab + 2πl2sFab

)
, (3.67)

where the indices a, b refer to the coordinates along the brane, and Gab is the
metric on the world volume of the brane. One can show that in the low-energy
limit, the action takes the form

Sp =

∫
dp+1ξ

1

4
(2πl2s)

2 Tp Tr
(
FµνF

µν
)

+ . . . (3.68)

In particular, for D3-branes we find, using Eq. (3.7),

S3 =

∫
d4ξ

1

2(4πgs)
Tr
(
FµνF

µν
)

+ . . . (3.69)

This shows that g2
YM should be identified with 4πgs, which reproduces the re-

lation in Eq. (3.66).

The conjecture, as it was originally formulated by Maldacena, states that the
equivalence between the IIB string theory and the D = 4, N = 4 super-Yang–
Mills theory holds for all values of the parameters N and gs or gYM. This
statement is now known as the strong form of the conjecture. It is possible to
formulate weaker forms of the conjecture, which sacrifice generality in order to
make the implications of the conjecture more tractable [56]. One of the weaker
forms is obtained by taking the large N limit, keeping λ ≡ gsN ∼ g2

YMN
fixed, as specified in section 3.2. The interpretation of this limit in the gauge
theory side was elaborated on in section 3.2. In the string theory side, the limit
implies that gs → 0, so it corresponds to doing string perturbation theory in
the limit of weak string coupling. Thus, the correspondence now is between
the classical limit of a string theory and the large N limit of a gauge theory.
The other weak form of the conjecture is obtained in the limit λ→∞, and it
corresponds to the strong coupling limit on the gauge theory side, and to the
classical supergravity limit on the string theory side.

86



A natural question to ask at this point is that how can the type IIB theory
and the supersymmetric Yang–Mills theory be equivalent to each other, de-
spite appearing completely different. An answer to this question is given by
the following considerations [69]. In the super-Yang–Mills theory, it is valid to
do perturbation theory as long as g2

YMN � 1. On the other hand, the classical
supergravity description can be trusted when the radius of curvature of the
AdS5 and S5 is very large compared to the string length ls. We have already
shown in Eq. (3.48) that this corresponds to gsN � 1, and thus to g2

YMN � 1.
This shows why there is no obvious contradiction in the conjecture even though
the two theories do not look the same at all – it is because the weak coupling
limit of each theory corresponds to the strong coupling limit of the other.

A nontrivial test of the Maldacena conjecture is that the global symmetries of
the IIB theory and the SYM theory match exactly [56, 75]. This is an impor-
tant test, because it suggests that the conjecture could be valid for all values
of N , and not just in the large N limit. The isometry group of AdS5 × S5

is SO(2, 4) × SO(6), where the factors are the isometry groups of AdS5 and
S5, respectively. The SYM theory is conformally invariant, and the SO(2, 4)
factor is to be identified with the group of conformal transformations in four
dimensions, as we have argued in section 3.3 and in Appendix 3. The SO(6)
factor is identified with the SU(4) symmetry of the supercharges and the scalar
fields of the SYM theory. The number of fermionic symmetry generators is also
the same in both theories. Even though the IIB theory has 32 supercharges
and the SYM theory only 16, the SYM theory has in addition the 16 conformal
supercharges, and so both of the theories have 32 fermionic generators in total.

In addition, both the IIB theory and the SYM theory have a discrete SL(2,Z)
symmetry, which acts on the complex coupling constant τ as

τ → aτ + b

cτ + d
. (3.70)

In the IIB theory and in the SYM theory we have, respectively

τIIB = C + ie−φ, and τSYM =
θ

2π
+

4πi

g2
YM

. (3.71)

As the closed string coupling constant is given by gs = e〈φ〉, this gives us an
alternative reason to identify gs with g2

YM/4π.

Naturally, in addition to identifying the symmetries of the two theories, it
should be possible to also identify the actual representations of the symmetry
group on both sides of the corrrespondence with each other. That is, operators
in the SYM theory should be related to the fields of the IIB theory on AdS5×
S5. The general prescription is given by [69, 85, 86]〈

e
∫
d4xφ0(~x)O(~x)

〉
SYM

= Zs

[
φ(~x, z)

∣∣
z=0

]
= Zs

[
φ0(~x)

]
. (3.72)
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Here the object on the left is the generating function of correlation functions
in the gauge theory. Correlation functions are calculated by taking functional
derivatives of the generating function with respect to φ0 and setting φ0 = 0
in the end. On the right, we have the partition function of the full string
theory. The field φ(~x, z) is defined on AdS5, and satisfies the boundary con-
dition φ(~x, 0) = φ0(~x). Eq. (3.72) therefore puts fields on the AdS side into a
one-to-one correspondence with operators on the SYM side. More details on
this correspondence can be found e.g. in [56, 69, 75].

We will now give a brief outline on how the correlation functions on the two
sides of the correspondence are related to each other [56, 69, 85, 86]. On the
SYM side, we have a conformal field theory, and so we can immediately write
down that the two-point and three-point functions have the form〈

O∆1(~x1)O∆2(~x2)
〉

=
δ∆1∆2

(x1 − x2)2∆1
,

〈
O∆1(~x1)O∆2(~x2)O∆3(~x3)

〉
=

c∆1∆2∆3(gYM, N)

(r12)∆1+∆2−∆3(r13)∆1+∆3−∆2(r23)∆2+∆3−∆1
.

(3.73)

On the AdS side, we may perform an expansion of the supergravity action in
powers of the five-dimensional gravitational constant κ5. The limit of small
κ5 corresponds to the limit of large N , because κ5 and N are related by κ2

5 =
4π2/N2. The expansion can be represented graphically in terms of so-called
Witten diagrams. A Witten diagram is a disk, whose interior represents the
bulk of AdS5, and whose boundary represents the boundary of AdS5. On the
boundary, there are source fields ϕ∆(~xi). The source fields are connected to
each other, or to interaction points within the bulk, by a boundary-to-bulk
propagator. Interaction points in the bulk are connected to each other by a
bulk-to-bulk propagator. The interactions in the bulk obey the Feynman rules
derived from the supergravity action.

Figure 8. Witten diagrams [69].

If we use for AdS5 the Euclidean coordinates, where the metric is ds2 = (dz2
0 +

d~z2)/z2
0 , then the boundary-to-bulk propagator is given by

K∆(z0, ~z, ~x) = C∆

(
z0

z2
0 + (~z − ~x)2

)∆

, (3.74)
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where C∆ is a numerical factor and ~x is a point on the boundary. The two-
point function on the AdS side thus agrees with the two-point function on the
SYM side, as we have

lim
z0→0

z−∆
0 K∆(z0, ~z, ~x) ∼ 1

(~z − ~x)2∆
.

The evaluation of the three-point function is more complicated, as it involves
an integration over an interaction point in the bulk. A calculation, which has
been done in [89, 90], nevertheless shows that the three-point function on the
AdS side agrees with the three-point function of Eq. (3.73).

Finite temperature field theory on the gauge theory side of the correspondence
can be studied by replacing the extremal D-branes with non-extremal ones,
thus introducing into the AdS5 a black hole, whose Hawking radiation can
be interpreted as providing the finite temperature [63, 69, 77]. At finite tem-
perature, neither supersymmetry nor conformal invariance is preserved, which
complicates the comparison between the two sides of the correspondence. The
near-horizon limit of the non-extremal 3-brane geometry is given by

ds2 =
r2

L2

(
−f(r) dt2 + dx2 + dy2 + dz2

)
+ L2

(
dr2

f(r)r2
+ dΩ2

5

)
, (3.75)

where
f(r) = 1−

(r0

r

)4
. (3.76)

The Euclidean version of the metric is obtained by setting t = −itE , and tE is
related to the temperature by tE = 1/T . There is now a Schwarzschild black
hole in the AdS5; the horizon is at r0. The metric enables one to calculate the
area of the horizon and thus find the entropy SBH of the non-extremal 3-brane
at temperature T . This entropy is related to the strong coupling limit of the
super-Yang–Mills theory. On the other hand, the entropy S0 of a free N = 4
U(N) supersymmetry multiplet can be calculated from statistical mechanics.
These calculations show that SBH = 3

4S0. This provides a starting point for an
analysis on how the entropy and other thermodynamical quantities depend on
the coupling constant in the D = 4, N = 4 super-Yang–Mills theory; see e.g.
[91, 92, 93, 94].

The AdS/CFT correspondence seems to give a concrete implementation of the
so-called holographic principle [69, 95, 96]. The holographic principle roughly
states that in a quantum theory of gravity, it should be possible to associate
the degrees of freedom inside a given region with the boundary of the region.
Furthermore, there should be no more than one degree of freedom assigned
to each Planck area of the boundary. The holographic principle originates
from the study of the thermodynamics of black holes. More specifically, it
was shown by Bekenstein and Hawking that a black hole can be viewed as
a thermodynamical object, whose entropy is proportional to the area of the
event horizon, and is given by SBH = A/4G [97, 98, 99]. This can be taken to
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suggest that the degrees of freedom of the black hole somehow belong to the
event horizon. One can also show that the entropy inside any region can never
exceed the value of SBH [69]. As the entropy somehow is a measure of the
number of degrees of freedom within the system, it thus seems to be generally
true that the degrees of freedom of a physical configuration should be assigned
to the boundary of the region in which the configuration is contained.

The holographic principle seems to imply that one should be able to describe
the physics within some region by a theory defined on the boundary of the
region. This is exactly what happens in the AdS/CFT correspondence, since
the conjecture states that the theory which describes the physics in the AdS5

(we are presumably free to not pay any attention to the compact dimensions) is
equivalent to a field theory defined on a space whose dimension is lower by one.
A detailed demonstration that the AdS/CFT correspondence is compatible
with the holographic principle, including a proof that there is exactly one
degree of freedom per each Planck area, was given by Susskind and Witten
[100].

3.7 Holographic models for QCD

In its original form, the AdS/CFT duality has only a very limited applicabil-
ity to questions related to experimental observations. The gauge theory side
of the duality has conformal invariance and maximal supersymmetry, neither
of which are realized in Nature. In order to make the duality into a tool for
doing calculations related to QCD, one has to find a way to reduce the sym-
metry of the gauge theory by breaking the conformal invariance and possibly
bringing the N = 4 supersymmetry down to N = 1 supersymmetry or to no
supersymmetry at all. There are two main approaches to this. One may start
from a full string theory and make various adjustments and deformations in
order to make the dual gauge theory less symmetrical, with the hope of ending
up with a theory resembling QCD. One may also begin with a phenomeno-
logically motivated gauge theory and apply the duality to it, hoping to build
up the theory and to eventually be able make a connection with a string theory.

It is not our intention to go into the applications of the duality in any depth;
however, before we conclude this work, we will give a brief discussion of a
particular class of models, developed by Kiritsis and collaborators [101, 102,
103, 104]. The models are based on a five-dimensional gravity theory, which
contains the metric gµν and a scalar field Φ. The metric is dual to the energy-
momentum tensor of the gauge theory, and the scalar field is dual to TrF 2.
The effective action for the gravity theory is given by

S = −N2M3
P

∫
d5x
√
−g
(
R− 4

3
(∂Φ)2 + V (Φ)

)
+ 2N2M3

P

∫
d4x
√
−hK,

(3.77)
where K is a curvature scalar associated with the four-dimensional boundary,
and the five-dimensional gravitational constant is given by N2M3

P = 1/16πG5.
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The second term is the so-called Gibbons–Hawking term. It has a role in en-
suring consistency of the quantum theory, but it will not be relevant to the
calculations which we are going to perform.

By varying the action, we find Einstein’s equation,

Rµν −
1

2
Rgµν =

4

3

(
∂µΦ∂νΦ− 1

2
(∂Φ)2gµν

)
, (3.78)

and the equation of motion for the scalar field,

�Φ +
3

8

∂V

∂Φ
= 0. (3.79)

(The Laplacian is defined as � = gµν∇µ∇ν , where ∇µ is the covariant deriva-
tive.) These equations have vacuum solutions, given by

ds2 = b(r)2
(
−dt2 + d~x2 + dr2

)
, (3.80)

as well as black hole solutions, which have the form

ds2 = b(r)2

(
−f(r) dt2 + d~x2 +

dr2

f(r)

)
. (3.81)

In either case Φ is a function of r only. The boundary is at r = 0; furthermore,
the black hole solution has a horizon at r = rh, so that f(rh) = 0. The
coordinate r is related to an energy scale in the four-dimensional gauge theory,
according to E = E0b(r). Arguments on why this is a reasonable identification
are given in [101]. Moreover, eΦ is identified with the (running) ’t Hooft
coupling λ = g2

YMN . These identifications allow us to define the beta function
of the gauge theory in terms of quantities belonging to the gravity theory as

β(λ) ≡ dλ

d lnE
= λ

Φ̇

ḃ/b
. (3.82)

Here, and for the rest of this section, the dot denotes a derivative with respect
to r.

Depending on one’s point of view, a particular model for QCD can be specified
by giving either the potential V (Φ), or the function b(r). In either case, Eq.
(3.79) gives a relation between V (Φ) and b(r). In principle, the form of V (Φ)
or b(r) can be chosen freely. Of course, one should try to make the choice so
that the resulting theory would have as many features as possible resembling
those of QCD. This is a distinctly phenomenological approach, because it is
not attempted to derive, say, the form of V (Φ) from first principles. In some
sense, V (Φ) or b(r) is a fitting parameter of the theory. From now on, we will
focus on the black hole solutions, which correspond to a finite temperature on
the gauge theory side. Even so, the function f(r) does not provide another
fitting parameter, because it is determined by the equations of motion once
V (Φ) or b(r) is specified.
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An important feature that we require the model to have is that it produces
confinement in the low energy limit. This requirement translates into a con-
dition on the asymptotic behaviour of the beta function [102], in a way which
we will now briefly describe. The idea is to calculate the energy of a config-
uration where two quarks are bound together by a string in such a way that
the quarks are constrained to remain on the four-dimensional boundary, but
the string extends also along the fifth dimension [105, 106]. Confinement then
arises if the energy increases linearly with the separation of the quarks, in the
limit where the separation is large. Assuming the metric in the string frame
has the general form

(gS)µνdx
µdxν = −gtt(r) dt2 + gxx(r) d~x2 + grr(r) dr

2,

the result of the analysis is that the energy is given as a function of the sepa-
ration L by

E(L) = Tsg(r∗)L− 2Ts

∫ r∗

0
dr
h(r)

g(r)

√
g(r)2 − g(r∗)2, (3.83)

where r∗ is the turning point of the string in the fifth direction, and the func-
tions g(r) and h(r) are defined as

g(r) =
√
gtt(r)gxx(r), h(r) =

√
gtt(r)grr(r). (3.84)

In the limit of large L, provided that g(r∗) 6= 0, the first term in Eq. (3.83) is
dominant over the second term. In this limit, the energy therefore is

E(L) = Tsg(r∗)L. (3.85)

This shows that a condition which leads to an energy which grows linearly
with L when L is large, and thus guarantees confinement, is that g(r) does not
vanish at r = r∗. Further analysis is required to make a connection between
this condition and the properties of the QCD model. The analysis can be
found in [102], and we will not go into it here. The result is that if the metric
has the form (3.81), and if the function b(r) obeys

ln b(r) ∼ −Crα when r →∞,

then the model exhibits confinement if and only if the potential goes as

V (λ) ∼ λ4/3
(
lnλ

)1−1/α (3.86)

when λ is large. An equivalent condition for confinement, given in terms of
the beta function, is that

lim
λ→∞

(
β(λ)

λ
+

3

2

)
lnλ ≤ 0; (3.87)

this includes the case where the limit is equal to −∞.
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To conclude this section, we will look more closely into a particular holographic
QCD model. The model is defined by setting [102, 107]

b(r) =
L

r
e−Λ2r2/3 =

LΛ
√
y
e−y/3, (3.88)

where L is the radius of the anti de Sitter space, Λ is an (in principle arbitrary)
energy scale, and we have defined y = Λ2r2.We then take the black hole metric
(3.81), and calculate its Einstein tensor. Doing so, we find that the Einstein
equations (3.78) become

6
ḃ2

b2
− 3

b̈

b
=

4

3
Φ̇2, (3.89a)

f̈

ḟ
+ 3

ḃ

b
= 0, (3.89b)

6
ḃ2

b2
+ 3

b̈

b
+ 3

ḃ

b

ḟ

f
=
b2

f
V. (3.89c)

We also have the equation for the scalar field,

Φ̈ +

(
ḟ

f
+ 3

ḃ

b

)
Φ̇ +

3b2

8f

dV

dΦ
= 0;

however, one can show that this equation follows from the three Einstein equa-
tions, and so we may disregard it. It proves advantageous to eliminate the
second derivatives of b from the above system of equations, at the cost of in-
troducing an additional equation [107]. Defining W = −ḃ/b2, we may show
that the system of equations (3.89) is equivalent to

Ẇ = 4bW 2 − 1

f

(
Wḟ +

1

3
bV

)
, (3.90a)

W = − ḃ

b2
, (3.90b)

λ̇ =
3

2
λ
√
bẆ , (3.90c)

f̈ = 3bWḟ. (3.90d)

We are going to solve this system in terms of the variable y. It is straightfor-
ward to show that Eq. (3.90c) implies

λ(y) = λ0 exp

(
−1

2

√
y(y + 9

2)

)(
√
y +

√
y + 9

2

)9/4

. (3.91)

To solve for f(r), we note that Eq. (3.90d) is equivalent to

ḟ(r) =
C

b(r)3
.
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With the function b(r) specified in Eq. (3.88), this equation has an analytical
solution. It is given by

f(y) =
yh − 1− (y − 1)ey−yh

yh − 1 + e−yh
. (3.92)

where the constants of integration have been adjusted so that f(0) = 1 and
f(yh) = 0. Finally, from Eq. (3.90a) we find

V
(
y(λ)

)
=

12

L2
e2y/3

[(
1

3
y2 +

5

6
y + 1

)
f(y)−

(
1

3
y2 +

1

2
y

)
f ′(y)

]
, (3.93)

where the prime denotes differentiation with respect to y.

Let us now examine the properties of this solution. In the high energy limit,
r → 0, and

b(r) ∼ L

r
.

For the beta function, we then have

β(λ) =
λ̇

ḃ/b
= −rdλ

dr
.

Matching this with the one-loop beta function of QCD,

β(λ) = −b0λ2,

we find
b0λ(r) = − 1

ln(Λr)

with Λ = constant. This shows that as r → 0, λ(r) → 0, so the model re-
produces asymptotic freedom in the high energy limit. To determine whether
there is confinement in the low energy limit, we use Eq. (3.91) to calculate the
beta function predicted by the model as

β(λ) = −3

2
λ

√
1 + 9/2y

1 + 3/2y
. (3.94)

In the limit y →∞, we have

β(λ) = −3

2
λ

(
1 +

3

4y
+ . . .

)
= −3

2
λ

(
1 +

3

8 lnλ
+ . . .

)
. (3.95)

This implies that

β(λ)

λ
+

3

2
= − 3

8 lnλ
+O

(
1

(lnλ)2

)
,

from which we see that this model indeed satisfies the criterion (3.87) for
confinement. Furthermore, if we set f = 1 in Eq. (3.93) and use Eq. (3.91), we
find that in the limit of large y the potential has the asymptotic form

V (λ) ∼ λ4/3
√

lnλ, (3.96)
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again in agreement with Eq. (3.86), because we now have α = 2.

The present model can be used to make calculations about the thermodynamics
of QCD. Other quantities, such as the masses of the so-called glueballs (bound
states of gluons), can also be calculated. Such calculations have been performed
e.g. in [103, 104, 107]. The results are in good agreement with data obtained
from lattice simulations.
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Conclusions

This thesis can be regarded as a documentary about my journey from hav-
ing a reasonable knowledge of quantum field theory and general relativity to
achieving some kind of an understanding of the duality between gauge theories
and string theories. I will hopefully be able to shed some light on my reasons
for wanting to take on such a journey a little later. A look at the table of
contents shows that many things need to be learned in order to be able to
trace a path from quantum field theory and general relativity to the AdS/CFT
duality. Because of this learning process, I feel that my time working on this
thesis was well spent, even though I did not produce an answer to a research
question, and my results cannot be quantified by conventional measures, such
as the number of papers published.

The contents of this thesis form a fairly accurate representation of what I have
studied along my way towards understanding the gauge theory–string theory
duality. In retrospect, I now look at some of the topics which I studied as
detours, which did not take me any closer to the ultimate goal of my journey,
and whose purpose was only to look more closely into a particularly interest-
ing scenery, which was unfolding somewhere along the way. In particular, I
feel that the construction of an off-shell formulation for simple supergravity is
not a topic important enough to deserve such a detailed treatment. If I were
to write this thesis again, I would be inclined leave out most of the material
in sections 2.4 and 2.5, replacing it with a more detailed treatment of some
aspects of the AdS/CFT duality.

It seems appropriate to give a brief summary of what I feel I have learned dur-
ing the course of this work. I naturally achieved a basic knowledge feel ideas
related to the AdS/CFT duality, including supersymmetry and supergravity,
to the point that I feel I am able to read basic research papers on these sub-
jects. Also, my ability to perform technical calculations probably became bet-
ter; however, this is not really specific to this work, as one can improve one’s
calculational skill by performing pencil-and-paper calculations related to any
field of physics. An incomplete list of my less obvious learning achievements
includes the following: Learning to appreciate the merits of supersymmetry
and string theory, and so becoming able to understand why they have been
in the focus of theoretical research during the last couple of decades despite
their seemingly obvious difficulties; becoming aware of the underlying analogy
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between how general relativity is constructed and how gauge theories are con-
structed in particle physics; going from knowing practically no group theory at
all to knowing a little about group theory; and improving my understanding
of some parts of physics which I already knew, in particular general relativ-
ity. Instead of trying to give a more detailed account of my learning process,
I would now like to bring this work to a conclusion with a few closing thoughts.

The AdS/CFT duality has shown itself to be a useful computational tool. Mod-
els such as the one we described in section 3.7 provide one with a method for
calculating quantities which would be extremely difficult to calculate directly
from QCD. The models have reasonable predictive power, in that a greater
number of physical quantities can be calculated from the model than there
are adjustable parameters in it. Moreover, the results mostly agree with those
derived from lattice calculations, which give one confidence that QCD can be
reasonably modeled by making use of the AdS/CFT duality, even though a
string theory is not known which could be put into direct correspondence with
QCD.

One should keep in mind that the duality offers computational simplicity only
as long as one can use the classical supergravity description on the string the-
ory side. This corresponds to going to the large N limit on the gauge theory
side. There could very well be situations on the gauge theory side in which
the large N approximation is not satisfactory. In such cases, using classical
supergravity on the string theory side might yield incorrect results, and one
would have to calculate corrections from the full string theory, provided one
still wants to make use of the duality. In this case, much of the computational
simplicity would be lost, as the string corrections could turn out to be very
difficult to calculate.

I am not convinced whether the AdS/CFT duality should be regarded as any-
thing more than a useful computational tool, and how seriously one should
take the picture that the observable world is the boundary of a five-dimensional
space, and elementary particles are the endpoints of strings living on this five-
dimensional space. The validity of this picture naturally depends, among other
things, on whether or not string theory has any relevance to Nature. While
string theory certainly is an extremely impressive theoretical construction,
which has a multitude of remarkable features, I find it quite worrying that
practically no connection has been managed to make between string theory
and Nature, even though superstring theory has been in existence for almost
thirty years. This certainly cannot be blamed on not enough research having
been done on string theory.

A perhaps more conventional topic for a master’s thesis would have been to
take a particular model for QCD motivated by the duality, and examine its
consequences in great detail. I would not have felt happy with such a topic,
partly because I, like a lot of theoreticians, find pleasure in working with things
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which I find aesthetically pleasing. Another part of the reason is that I feel
that the studying of purely phenomenologically motivated models has only very
limited potential to advance our understanding of Nature, due to their quite
incomplete theoretical foundations. To gain a more satisfying understanding
from such models, one should try to put the model on a more solid theoretical
basis; however, it seems extremely difficult to improve the foundations of the
model without at the same time making it completely intractable.

In some sense, the choice between theory and phenomenology ultimately is
not much more than a matter of taste. Any succesful theory of physics should
be able to connect itself with Nature in the end, and one could be able to
construct a good theory regardless of whether one takes theoretical consid-
erations, or what is observed in Nature, as one’s starting point. However,
the way I look at physics is that phenomenology should be viewed not as an
end, but as a means to an end, the end being to accomplish a satisfactory
fundamental theory of physics. In more concrete terms, I feel that defining a
model in an ad hoc manner, by postulating the metric given by Eqs. (3.81) and
(3.88), is not really satisfying at all, and in an ideal world one would be able
to show that the model follows as a consequence of a more fundamental theory.

To make a connection between a QCD model and a fundamental theory is of
course more easily said than done. The task of deriving such a model from
string theory, and the task of working one’s way up from such a model until
one reaches a string theory, both seem close to impossble at the moment. It
also seems very difficult to judge which of them might be less impossible, and
so it is perfectly justifiable that both approaches are being studied side by side.
One should also remain open to the possibility that the fundamental theory
might not be a string theory at all.
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Appendices

A.1 Conventions

Our conventions do not entirely follow those of any single author. They are a
compromise between personal preference and the need to conform to the ref-
erences which were being used.

We naturally use units in which c = ~ = 1. For Newton’s constant, we some-
times set 8πG = 1, but sometimes we keep it explicit, often in the form
κ ≡

√
8πG. We also set Boltzmann’s constant k = 1, though this will be

relevant only in section 3.6.

For flat Minkowski spacetime, we use the mostly plus metric

ηµν =


−1

+1
. . .

+1

 . (A.1)

We define the ε-symbol so that in D-dimensional spacetime

ε01···D−1 = 1, and consequently ε01···D−1 = −1. (A.2)

There are not enough letters in the Latin and Greek alphabet to enable one to
write down various indices so that there would be absolutely no potential for
confusion. Our choices for different indices are summarized below:

• Spacetime indices are denoted by µ, ν, . . .

• Indices referring to the locally flat coordinate systems in the vielbein
formalism are denoted by m,n, . . .

• Four-component spinor indices are denoted by a, b, . . .

• Two-component spinor indices are denoted by α, β, . . .

• Various internal indices are denoted by a, b, . . . , and by i, j, . . . , and
sometimes by r, s, . . .
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In four spacetime dimensions, we treat spinors using two-component Weyl
spinors and the notation of dotted and undotted indices. A four-component
spinor contains two two-component Weyl spinors according to

Ψa =

(
ψα
χ̄α̇

)
.

In this formalism, a Dirac spinor contains two different Weyl spinors, while
a Majorana spinor contains only one. The above spinor therefore is a Dirac
spinor; a Majorana spinor has the form

Ψa =

(
ψα
ψ̄α̇

)
.

The two-component indices are raised and lowered with the ε-matrices

εαβ = εα̇β̇ =

(
0 −1
1 0

)
, εαβ = εα̇β̇ =

(
0 1
−1 0

)
. (A.3)

Undotted indices are contracted from upper left to lower right, and dotted
indices are contracted from lower left to upper right:

ψχ = ψαχα = εαβψβχα,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = εα̇β̇ψ̄

β̇χ̄α̇.

The index structure of the Pauli matrices is

(σµ)αα̇, (σ̄µ)α̇α ≡ εα̇β̇εαβ(σµ)ββ̇. (A.4)

We also define

(σµν) β
α =

1

4

(
(σµ)αα̇(σ̄ν)α̇β − (σν)αα̇(σ̄µ)α̇β

)
,

(σ̄µν)α̇
β̇

=
1

4

(
(σ̄µ)α̇α(σν)αβ̇ − (σ̄ν)α̇α(σµ)αβ̇

)
.

(A.5)

For anticommuting spinors χ and ψ, we have the Fierz identities

χαψβ = −1

2
χψεαβ −

1

4
χσµνψ(σµν)αβ,

χ̄α̇ψ̄β̇ = −1

2
χ̄ψ̄εα̇β̇ −

1

4
χ̄σ̄µνψ̄(σ̄µν)α̇β̇,

χαψ̄β̇ = +
1

2
χσµψ̄(σ̄µ)αβ̇.

(A.6)

Using the Fierz identities and identities satisfied by the Pauli matrices, which
can be found e.g. in [1], one can derive a number of further identities, such as

χ̄σµχ χ̄σ̄νχ = −1

2
χ2χ̄2ηµν ,

which are often needed in supersymmetry calculations.
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A.2 The Lorentz group. Spinors

The Lorentz group [6, 108, 109] is the group O(1, 3) of coordinate transforma-
tions xµ → xµ′, under which the length squared of xµ,

−(x0)2 + (x1)2 + (x2)2 + (x3)2,

is invariant. The group is generated by the six operators Mµν , which are
antisymmetric in µ, ν, and which obey the algebra

[Mµν ,Mρσ] = −i
(
ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ

)
. (A.7)

The Lorentz group splits into four components, L↑+, L
↑
−, L

↓
+ and L↓−, which

are disconnected from each other, and which contain, respectively, the identity
element, the parity operator, the time reversal operator, and the combination
of parity and time reversal. The transformations belonging L↑+ or L↓− have
determinant +1, and so they constitute the group SO(1, 3). The set L↑+ is
a group by itself. It is denoted by SO+(1, 3), and is sometimes called the
proper orthochronous Lorentz group [6]. Many authors, when they speak of
the Lorentz group, actually mean the group SO(1, 3) or SO+(1, 3).

The representations of the group SO(1, 3) are found by separating the gen-
erators Mµν into the generators of rotations Ji and the generators of Lorentz
boosts Ki, where i goes from 1 to 3. These generators obey the algebra

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (A.8)

We then define the linear combinations

J± =
1

2

(
J ± iK

)
. (A.9)

This splits the algebra into two commuting SU(2) algebras, as the generators
J± obey

[J+i, J+j ] = iεijkJ+k, [J−i, J−j ] = iεijkJ−k, (A.10)

and
[J+i, J−j ] = 0. (A.11)

As the representations of SU(2) are labeled by a number j, which takes the
values 0, 1

2 , 1, . . . , we have that representations of SO(1, 3) are labeled by a
pair of numbers (j+, j−), each of which is an integer or a half-integer. The
representation (j+, j−) consists of (2j+ + 1)(2j− + 1) objects ϕmn, where the
index m takes values from −j+ to j+, while n goes from −j− to j−.

The (0, 0) representation is the scalar representation. The representations
(1

2 , 0) and (0, 1
2) correspond to Weyl spinors of opposite chiralities. These can

be combined into the (1
2 , 0)⊕ (0, 1

2) representation, which is a Dirac spinor. By
counting the number of components, one would expect that the representation
(1

2 ,
1
2) is the vector representation, and this in fact is indeed so.

103



We would like to discuss the spinor representations of the Lorentz group in
some more detail. Our discussion closely parallels that of [6]. It has been
shown [110, 111] the unitary irreducible representations of the Lorentz group
are given by the irreducible representations of the so-called universal covering
group. The universal cover of a group G is a simply connected group which is
locally isomorphic to G, and contains all of the elements of G.

We will focus for the moment on the proper orthochronous group SO+(1, 3).
Its universal cover is given by the group SL(2,C), as can be shown by defining

X(x) = σµxµ =

(
x0 − x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

The objects X(x) define the so-called carrier space, which contains the vectors
xµ, and on which the representation of Lorentz transformations will act. As
we now have xµxµ = −detX, we see that Lorentz transformations will be
represented by elements of SL(2,C). If we denote the representation matrices
by ρ(L), then Lorentz transformations act on X as

LX(x) = ρ(L)X(x)ρ†(L). (A.12)

The transformation matrix is explicitly given by

ρ(L) = exp

[
1

2

(
−i~θ · ~σ + ~β · ~σ

)]
. (A.13)

If the direction of the boost is the same as the axis of the rotation, then
the matrix factorizes as ρ(L) = RLBL, where RL represents a rotation and
BL represents a boost. This gives us a two-to-one mapping from SL(2,C) to
SO+(1, 3), as we have Rθ+2π = −Rθ, but the minus sign cancels in Eq. (A.12),
because it has two ρ matrices.

In the fundamental representation, the carrier spaceW is the space of complex
two-component Weyl spinors,

χ =

(
χ1

χ2

)
,

on which Lorentz transformations act as Lχ = ρ(L)χ.

In order to define inner products between spinors, we introduce the dual space
W̃ , whose elements have the form

ψ̃ =
(
ψ1 ψ2

)
.

The Lorentz group acts in the dual space as Lψ̃ = ψ̃ρ(L−1).
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An inner product is now given by (χ, ψ) = χTMψ, where M is a mapping
which takes a ψ ∈ W to ψTM ∈ W̃ . The requirement of Lorentz invariance
essentially restricts M to have the form

M =

(
0 1
−1 0

)
≡ εαβ. (A.14)

For each χα ∈ W , we therefore define χα ≡ εαβχβ ∈ W̃ . The inner product,
which we will denote by χψ from now on, is then given by

χψ = εαβχβψα. (A.15)

The requirement that the inner product is symmetric implies that spinors are
anticommuting: χβψα = −ψαχβ .

We will further define the complex conjugate representation, whose carrier
space W consists of the elements ψ̄α̇, whose Lorentz transformations are given
by Lψ̄ = ρ†(L)ψ̄. The dual space is now defined by

ψ̄α̇ = εα̇β̇ψ̄
β̇, (A.16)

where

εα̇β̇ =

(
0 −1
1 0

)
. (A.17)

We have εαβεβγ = δγα, and a similar identity for εαβ.

The representations corresponding to W and W are the (1
2 , 0) and (0, 1

2) rep-
resentations, respectively. That the representation (1

2 ,
1
2) is the vector rep-

resentation is explicitly shown by the definition xαα̇ = (σµ)αα̇xµ. A general
representation (m/2, n/2) can be constructed as a tensor product of m + n
Weyl spinors. These give objects of the form ϕ α̇1···α̇n

α1···αm
.

To conclude this section, we will discuss the universal cover of the full Lorentz
group O(1, 3). We are to consider a collection of D objects γµ, with µ =
0 . . . D − 1. The anticommutator of two such objects is

{γµ, γν} = 2ηµν . (A.18)

We denote by V the vector space spanned by the γµ. The Clifford algebra C(V )
is now defined as the vector space spanned by all different antisymmetrized
combinations of the γµ. That is,

C(V ) = C + V + V ∧ V + V ∧ V ∧ V . . .

where the n-fold wedge product V ∧ · · · ∧ V is the vector space spanned by all
the antisymmetrized combinations of n γ’s. On the account of Eq. (A.18), the
sum which defines C(V ) terminates after the D-fold wedge product.
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We denote by C+(V ) and C−(V ) the parts of the Clifford algebra which con-
tain, respectively, even and odd numbers of the γµ. We also define the opera-
tion τ as (

γµ1 · · · γµn
)τ

= (−1)nγµn · · · γµ1 . (A.19)

The pin group and the spin group are now defined as

Pin(V ) ≡
{

Λ ∈ C(V ) | ΛΛτ = 1, and ΛV Λτ ⊃ V
}
,

Spin(V ) ≡ Pin(V ) ∩ C+(V ).
(A.20)

The pin group contains a representation of the group O(V ), the action of an
L ∈ O(V ) being given by

ΛLγµΛτL = ΛLγµΛ−1
L = γνΛνµ.

The group Pin(1, 3) is the so-called double cover of the full Lorentz group
O(1, 3), while the respective spin group is a double cover of SO(1, 3). For
example, to the operators of parity and time reversal there correspond the
elements of the pin group ΛP = γ0 and ΛT = iγ1γ2γ3. The operator ΛP
reverses the sign of γµ when µ = 1, 2, 3, while leaving γ0 untouched, while ΛT
reverses the sign of γ0 only. The operator of finite Lorentz transformations is

ΛL = exp

(
1

2
ωµνΣµν

)
, (A.21)

where L is an element of L↑+, and Σµν = 1
4 [γµ, γν ].

The field content of Lorentz invariant theories is given by the representations
of the Clifford algebra. The smallest representation is a four-dimensional one.
It is given by

γµ =

(
0 iσµ

−iσ̄µ 0

)
, (A.22)

where we have defined
(σ̄µ)αα̇ = εα̇β̇εαβ(σµ)ββ̇. (A.23)

The matrices γµ act on a pair of Weyl spinors, which combine into the Dirac
spinor

Ψ =

(
χα
ψ̄α̇

)
. (A.24)

If we define γ5 = iγ0γ1γ2γ3, then the operators

P± =
1

2

(
1± γ5

)
(A.25)

project the different Weyl spinors out of the Dirac spinor.

106



A.3 The Poincaré group and the conformal group

The Poincaré group is the group of transformations which leave invariant the
metric

ds2 = −dt2 + dx2 + dy2 + dz2

of Minkowski space. The Poincaré group clearly contains the Lorentz group as
a subgroup.

The generators of this group are the four generators of translations Pµ, and
the six Lorentz generators Mµν .The algebra of the generators is

[Pµ, Pν ] = 0,

[Pµ,Mνρ] = i
(
ηµρPν − ηνρPµ

)
,

[Mµν ,Mρσ] = −i
(
ηµρMνσ − ηνρMµσ + ηνσMµρ − ηµσMνρ

)
.

(A.26)

A particular representation of the generators is given by

Pµ = −i∂µ, Mµν = i
(
xµ∂ν − xν∂µ

)
. (A.27)

Elementary particles form representations of the Poincaré group. Its irre-
ducible representations are labeled by the eigenvalues of the Casimir operators.
These are given by P 2 and W 2, where

Wµ =
1

2
εµνρσP

νMρσ (A.28)

is the so-called Pauli–Lubanski vector.

For massive representations, with P 2 = −m2, it can be shown that W 2 =
−m2s(s + 1), where s is an integer of a half-integer; it is the spin of the par-
ticle. Massive representations are therefore labeled by their mass and their
spin. For massless representations, we have P 2 = 0 and W 2 = 0. However,
one can show thatWµ = λPµ. The integer or half-integer λ labels the massless
representations. It is the helicity of the particle [6].

To each point in Minkowski space, there corresponds an element of the Poincaré
group, according to

xµ ←→ exp
(
−ixµPµ

)
. (A.29)

This correspondence enables us to express the action of the Poincaré group in
Minkowski space as multiplication of the group elements [4]. The multiplication

exp
(
−iaµPµ

)
exp
(
−ixµPµ

)
= exp

(
−i(xµ + aµ)Pµ

)
represents a translation through aµ. Similarly, a Lorentz transformation is
represented by

exp
(
− i

2λ
ρσMρσ

)
exp
(
−ixµPµ

)
= exp

(
xµΛ ν

µ Pν
)

exp
(
− i

2λ
ρσMρσ

)
,
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where the matrix Λ ν
µ is defined through

Λ ν
µ Pν = exp

(
− i

2λ
ρσMρσ

)
Pµ exp

(
i
2λ

ρσMρσ

)
.

A Poincaré transformation exp(−iaµPµ) exp(− i
2λ

µνMµν) therefore has the ef-
fect xµ → xνΛ µ

ν + aµ.

The conformal group is the group of coordinate transformations which leave
the metric gµν(x) invariant up to a scale factor:

gµν(x)→ Ω(x)gµν(x). (A.30)

Such transformations preserve the angle between any two vectors. In Minkowski
space, the conformal group contains the Poincaré group as a subgroup.

The generators of the conformal group can be found [79] by considering an
infinitesimal coordinate transformation xµ → xµ + εµ, and the Minkowski
metric, for which we have

ds2 → ds2 +
(
∂µεν + ∂νεµ

)
dxµdxν .

We must therefore have

∂µεν + ∂νεµ = ω(x)ηµν , (A.31)

and by taking the trace we find ω(x) = (2/D)∂λελ. From Eq. (A.31) we can
further show that (

ηµν� + (D − 2)∂µ∂ν
)
∂λελ = 0.

Therefore, in dimensions higher than two, ε can be at most quadratic in x. (In
two dimensions, one can use Eq. (A.31) to show that conformal transformations
amount to analytic coordinate transformations of the form z → f(z) in the
complex coordinate z.) We thus find that the conformal group consists of the
following transformations:

• Translations, with εµ = aµ,

• Lorentz rotations, with εµ = ωµνxν ,

• Dilations, with εµ = λxµ,

• Special conformal transformations, with εµ = x2bµ − 2xµxνbν .

A finite special conformal transformation has the form

xµ → xµ + x2bµ

1 + 2bµxµ + b2x2
. (A.32)

Under such a transformation, we have

xµ′

x′2
=
xµ

x2
+ bµ, (A.33)
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from which we see that the special conformal transformation is a combination
of an inversion and a translation, followed by another inversion.

The algebra of the conformal group is given by Eq. (A.26), together with the
following additional nonvanishing commutators:

[Pµ,Kν ] = 2i
(
Mµν − ηµνD

)
,

[Mµν ,Kρ] = −i
(
ηµρKν − ηνρKµ

)
,

[D,Pµ] = iPµ, [D,Kµ] = −iKµ.

(A.34)

A representation of the generators of dilations and conformal transformations
is given by

D = −ixµ∂µ, Kµ = −i
(
x2∂µ − 2xµx

ν∂ν
)
. (A.35)

The conformal group in D spacetime dimensions is isomorphic to the group
SO(2, D), as can be shown [63] by considering the generators Mµν together
with

MµD =
1

2

(
Kµ − Pµ

)
, Mµ(D+1) =

1

2

(
Kµ + Pµ

)
, MD(D+1) = D.

A.4 Differential geometry in superspace

The purpose of this section is to illustrate the connection between the formal-
ism of section 2.4 and the theory of differential forms in superspace [1, 34]. We
will do this by introducing enough of the theory so that we will be able to see
how the Bianchi identity (2.69) arises from this formalism. We denote a point
in superspace by zM = (xµ, θα, θ̄α̇). We also introduce the basis one-forms
dzM , whose multiplication obeys the rules

dzMdzN = −(−1)|M ||N |dzNdzM , dzMzN = (−1)|M ||N |zNdzM . (A.36)

We can then define differential forms,

Ω = dzM1 · · · dzMpωMp...M1(z), (A.37)

as well as an exterior derivative, which acts on differential forms as

dΩ = dzM1 · · · dzMpdzN∂NωMp...M1(z). (A.38)

For the product of a p-form and a q-form, we have

d
(
Ω(p)Λ(q)

)
= Ω(p) dΛ(q) + (−1)qdΩ(p) Λ(q). (A.39)

The coefficient functions ωMp...M1 are odd if they have an odd number of spinor
indices; otherwise they are even.

Equations that are written in terms of differential forms and exterior derivatives
are covariant under general coordinate transformations

zM → yM (z).
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In order to demonstrate this, we define the mapping φ∗, which maps functions
of z to functions of y according to

φ∗F (z) = F
(
y(z)

)
= F (y). (A.40)

It can then be shown that φ∗ has the properties

φ∗
(
Ω + Λ

)
= φ∗Ω + φ∗Λ,

φ∗
(
ΩΛ) =

(
φ∗Ω

)(
φ∗Λ

)
,

d
(
φ∗Ω

)
= φ∗

(
dΩ
)
.

In analogy with general relativity, we now introduce local coordinate frames,
whose basis one-forms

EA = dzME A
M (z) (A.41)

are called the vielbein. We can then consider both general coordinate trans-
formations and local Lorentz transformations. Under the latter, the vielbein
transforms as

δE A
M = E B

M L A
B (z),

while under an infinitesimal general coordinate transformation z → z − ξ(z)
we have

δE A
M (z) ≡ E′MA(z)− E A

M (z) = −ξL∂LE A
M −

(
∂Mξ

L
)
E A
L .

To define covariant derivatives, we introduce the connection

φ = dzMφM , φM = φ AB
M , (A.42)

whose transformation law is

δφ = Lφ− φL− dL. (A.43)

The covariant derivative then is given by

DΩ = dΩ + Ωφ. (A.44)

Using the covariant derivative, we construct the torsion tensor

TA = DEA = dEA + EBφ A
B

=
1

2
dzMdzNT A

NM =
1

2
EBECT A

CB , (A.45)

and the curvature tensor

R B
A = Dφ B

A = dφ B
A + φ C

A φ B
C

=
1

2
dzMdzNR B

NMA =
1

2
ECEDR B

DCA . (A.46)

The torsion and the curvature are subject to the Bianchi identities

D2EA = EBR A
B , DTA = EBR A

B . (A.47)
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The second identity follows directly from Eq. (A.45), while the first can be de-
rived by showing with a short calculation that dDEA = EBR A

B −DE B
A φB.

In the basis determined by the EA, we have

DTA =
1

2
D
(
EBECT A

CB

)
=

1

2

(
EBECDT A

CB + EBTCT A
CB − TBECT A

CB

)
.

Consequently, the second Bianchi identity takes the form

EBECED
(
DDT A

CB + T E
DC T A

EB −R A
DCB

)
= 0. (A.48)

This is equivalent to Eq. (2.69).
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