
Viljo Pilli-Sihvola

Intelligence as a Service

Master's Thesis

in Information Technology

December 16, 2010

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Abstract

Pilli-Sihvola, Viljo

Intelligence as a Service / Viljo Pilli-Sihvola

Jyväskylä: University of Jyväskylä, 2010

81 p.

Master's Thesis

The problem of providing intelligence functionalities as a service in large, complex

software systems is discussed. Intelligence is here considered to be a capability to

solve problems by answering questions. The problem is decomposed into sub-problems

of communication, service consumer's interface and service provider's interface. For

communication, pull type services, mediator pattern and shared, interoperable ontolo-

gies are proposed as a solution. Service consumer's and service provider's interfaces

are proposed to be implemented with help of adapters, which understand the shared

ontologies. A callback mechanism is proposed for providing two-way communication

between the consumer and the service provider. One implementation has been devised

based on the research, and it is described and analyzed. The implementation is tested

with the integration of three di�erent types of AI applications.

Keywords: arti�cial intelligence, multi-agent systems, service-oriented architecture

Tiivistelmä

Pilli-Sihvola, Viljo

Älykkyys ohjelmistopalveluna / Viljo Pilli-Sihvola

Jyväskylä: Jyväskylän yliopisto, 2010

81 s.

pro gradu -tutkielma

Työ käsittelee älykkyystoiminnallisuuksien tarjoamista palveluna suurissa ja monimutkai-

sissa ohjelmistoympäristöissä. Älykkyys määritellään kyvyksi ratkoa ongelmia vas-

taamalla kysymyksiin. Ongelma on hajoitettu pienempiin osiin, jotka ovat kommu-

nikaatio, asiakkaan rajapinta ja palveluntarjoajan rajapinta. Kommunikaation on-

gelmiin tarjotaan ratkaisuiksi palvelun käyttämistä asiakkaan aloitteesta, Välittäjä-

suunnittelumallia ja jaettuja keskenään yhteensopivia ontologioita. Asiakkaan ja palvelun-

tarjoajan rajapinnat ehdotetaan toteutettavaksi jaettujen ontologioiden mukaan to-

teutetuilla sovittimilla. Kahden suunnan kommunikaation toteuttamiseksi asiakkaan

ja palveluntarjoajan välillä ehdotetaan takaisinkutsuja. Yksi tutkimuksen pohjalta

toteutettu järjestelmä kuvataan ja analysoidaan. Toteutus on testattu kolmen erityyp-

pisen tekoälysovelluksen järjestelmään liittämisellä.

Avainsanat: tekoäly, moniagenttijärjestelmät, palvelukeskeinen arkkitehtuuri

Glossary

ACL agent communication language

AI arti�cial intelligence

API application programming interface

FIPA Foundation for Intelligent Physical Agents

FIPA-ACL FIPA ACL standard

HTTP Hypertext Transfer Protocol

LAN local area network

MAS multi-agent system

N3 Notation3

OWL The Web Ontology Language

RAB reusable atomic behaviour

RDF Resource Description Framework

RDF/XML XML serialization format for RDF

S-APL Semantic Agent Programming Language

SOA service-oriented architecture

VPN virtual private network

W3C The World Wide Web Consortium

WAN wide area network

WLAN wireless local area network

XML Extensible Markup Language

i

Contents

Glossary i

1 Introduction 1

1.1 Problem description . 1

1.2 Structure of the work . 2

2 Term de�nitions 3

3 Key concepts 5

3.1 Service . 5

3.2 Service-oriented architecture . 6

3.3 Agent . 7

3.4 Multi-agent systems . 7

3.5 Knowledge base . 8

3.6 Ontology . 8

3.7 Inference . 9

3.8 Sample AI applications . 9

3.8.1 Mathematical models . 10

3.8.2 Expert systems . 10

3.8.3 Semantic reasoners . 11

4 Use cases 12

4.1 Intelligence for the Internet . 12

4.2 Intelligence for industrial use . 13

5 Problem decomposition and proposed solutions 15

5.1 Communication . 15

ii

5.2 Solutions for communication . 17

5.2.1 Knowledge representation . 17

5.2.2 Shared ontologies . 18

5.2.3 Functional representation of knowledge in communication 20

5.2.4 Gateway as the mediator . 20

5.2.5 Data synchronization . 21

5.3 Problems from consumer's perspective 22

5.4 Problems from intelligence service provider's perspective 23

5.5 Solutions for involved parties . 24

5.5.1 Adaptation . 24

5.5.2 Question and reply format for calling the service 24

5.5.3 De�ning questions an intelligence service can answer 25

5.5.4 Transferring consumer's local knowledge to the service provider 26

5.6 Machine-to-Human interoperability . 28

5.7 Learning . 29

5.7.1 Reinforcement learning . 29

5.7.2 Supervised learning . 29

5.7.3 Solutions for learning . 30

6 Possible concrete solutions 31

6.1 Pull type service . 31

6.2 Adapters . 31

6.3 Intelligence services as web services . 33

6.4 The gateway . 34

6.5 Multi-agent approach . 35

7 Summary of analysis 37

8 Practical part introduction 38

8.1 Chosen approach . 38

8.2 Rationale of design . 38

iii

8.3 Technologies . 39

8.3.1 JADE . 39

8.3.2 UBIWARE . 39

8.3.3 S-APL . 40

9 Technical description 41

9.1 High level view of the architecture . 41

9.2 Agents . 43

9.2.1 Consumer . 43

9.2.2 Gateway . 43

9.2.3 Intelligence service . 44

9.2.4 Example intelligence query . 44

9.3 Fault tolerance . 45

9.4 Security . 45

10 Using the solution 47

10.1 Example cases of AI services . 47

10.1.1 Mathematical model . 47

10.1.2 Expert system . 48

10.1.3 Semantic reasoner . 49

11 Analysis of the implementation 51

12 Summary 52

13 Acknowledgements 54

14 References 55

Appendices

A Test case mathematical model 61

B Test case expert system 64

iv

C Test case semantic reasoner 70

v

1 Introduction

As software applications and their complexity grow, so does the need for solutions

supporting development of them. With advancing ubiquitousness and interconnec-

tivity of software, distributed architectures such as service-oriented architectures and

multi-agent systems become more and more common. One of the basic applications of

software is it to function intelligently, and to solve that, various arti�cial intelligence

technologies have been developed. Such applications can often be bene�cial when im-

plementing larger software systems. These are the starting points which this work is

based on.

1.1 Problem description

The work concentrates on the problem of how to provide intelligence functionalities

as a software service e�ectively, when intelligence functionality is considered to be a

capability of solving problems by answering questions. The intelligence functionalities

can be either arti�cial intelligence or human intelligence.

The problem is divided into sub-problems of communication and the implemen-

tation of the interfaces of the involved parties (the service consumer and the service

provider). The problem of communication is divided further into smaller sub-problems

of data synchronization, mutual comprehension, functional representation of knowledge

and coupling.

The motivation for providing intelligence as a service is in the general bene�ts of

implementing software functionalities as a service. Implementing software functional-

ities as services naturally separates the functionalities from each other. That makes

the reuse of software functionalities easier in various contexts by increasing the level of

cohesion [1].

1

The abstract analysis is done on a high enough level to possibly give insights on

various design domains. The solution is, however, designed keeping in mind the possible

practical implementations, which lie in complex and logically distributed systems, most

notably in multi-agent systems and service-oriented architectures. It is presented as a

general software architecture that could be used in actual implementations. Many of

the design solutions are derived from common design patterns that can be found in the

literature.

On a practical level, the work discusses how to implement a multi-agent system in

which the usage of arti�cial intelligence technologies is as easy as possible. The ease

here translates to requirements of ease of implementation, scalability and tolerance for

changes, which are all important issues in various software development scenarios.

The main approach taken in this work for providing intelligence functionalities as a

service is to specify an interface which is implemented by all the services, and to make

the interface as useful as possible. The purpose of the interface is to help in larger

scale integration of arti�cial intelligence software applications to complex and logically

distributed systems. The interface achieves this by lowering the level of coupling of the

functionalities.

The scope of the solution is limited to arti�cial intelligence capable of answering

questions somehow. However, intelligence provided by human users is not ruled out,

and it is also discussed. The scope of the entire solution is dynamic large systems with

a large amount of di�erent arti�cial intelligence software applications in use, where a

high level of coupling and a low level of cohesion would be impractical.

1.2 Structure of the work

The work is divided into a theoretical part and a practical part. The theoretical

part describes, analyzes and proposes solutions for the research problem, and also

includes short descriptions of the relevant technologies and concepts. The practical

part describes implementation of one possible solution and testing and an analysis of

it. Finally, a summary is presented.

2

2 Term de�nitions

For the sake of clarity, this section de�nes terms important for this work. Terms such

as �intelligence� could otherwise be understood in various ways.

• Intelligence: Intelligence is understood within the context of this work as the

ability to solve problems [2]. The de�nition is wide, but works to its purpose,

as the purpose of it is to function as a term to cover seemingly intelligent deci-

sion making either software or human beings can perform. The ability to solve

problems does not, however, need to be general in any way. An ability to solve

a single problem is enough to be considered as intelligence. A problem, in the

context of the de�nition of intelligence here, is de�ned as something that can be

formulated as a question and solved by a reply to it.

• Intelligence software application: Refers to a software application of some arti�-

cial intelligence technology or a software application with its intelligence provided

by a human user.

• Intelligence service: Refers to an intelligence software application provided as a

service.

• Service environment: Refers to an environment, where intelligence services are

located and provided as a service for other components. Service environment

can refer to a web service environment, a multi-agent system or possibly some

other environment hosting services. The service environment is presumed to be

dynamic, meaning that services and other components can be added and removed

during run-time.

• Consumer: Refers to a potential user of a service. User within this context is a

software process, either human guided or not.

3

• Provider: Refers to a service provider, a unique invokable service, usually an

intelligence service within the context of this work.

• Caller: Refers to a consumer invoking a pull type intelligence service.

• Callee: an invoked pull type intelligence service

• Query: a single message sent by a consumer, containing a question for the intel-

ligence services to solve

4

3 Key concepts

The scope of this work covers several technologies and concepts seen essential to de-

scribe here in order avoid ambiguity. The focus of the descriptions is on what is essential

for this work.

3.1 Service

According to [4], �a service is a mechanism to enable access to one or more capabilities,

where the access is provided using a prescribed interface and is exercised consistent with

constraints and policies as speci�ed by the service description.� The de�nition comes

from a reference model of service- oriented architectures, and is well applicable to all

the usage scenarios of the term within this work. The same source also considers that

the concept of service combines the following ideas:

• �The capability to perform work for another�

• �The speci�cation of the work o�ered for another�

• �The o�er to perform work for another�

Another, more practice-oriented de�nition with proposed bene�ts is as: �Services

are self-describing, open components that support rapid, low-cost composition of dis-

tributed applications� [5]. The same source promotes services as suitable infrastructure

components in distributed computing application integration. The source discusses

web service style services, but this work is not limited only to them.

An important aspect with services regarding this work is that which party (the con-

sumer or the provider) is in control of the delivery of the service. The party in control

de�nes if the service is either of pull type or push type. A pull type service works by the

consumer initiating the service use every time, while a push type service works like a

5

subscription. Using a push type service typically would mean the consumer registering

as a user of some service, and receiving the bene�ts of that service automatically.

3.2 Service-oriented architecture

Service-oriented architecture (SOA) is a software architecture methodology designed

to help in the implementation of large, complex systems [3]. By the de�nition in [4],

�Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing dis-

tributed capabilities that may be under the control of di�erent ownership domains.�

From a pragmatic point of view, in SOA, software functionalities are encapsulated into

services. These services can then be used as building blocks to compose new software

functionalities.

Service-oriented architecture systems are considered to be one of the application

�elds of this work. Another reason for discussing SOA is that systems implemented

with some other paradigm can also bene�t from SOA solution models.

In a stereotypical SOA implementation, the services are usually web services imple-

mented by open standards, such as Basic Pro�le 1.0 [6], which relies heavily on XML.

The Web Services Interoperability Organization (WS-I) is the standard organization

responsible for the most relevant standards regarding web services.

Service broker

Service requester Service provider

Find Publish

Bind

Figure 3.1: SOA architecture

6

The basic idea, as visualized in 3.1, is to have the functionalities encapsulated as

services published in a repository. The service requesters then �nd desirable services

from the registry, and bind to them. The service repository can be just a catalog

of the services available. This kind of catalog is known as a registry. If the registry

o�ers intelligent search capability and taxonomy or classi�cation data, it is identi�ed

as a broker. If the broker can also describe business logic (interaction rules between

components, services in this case), it can be referred to as an aggregator or a gateway [7].

3.3 Agent

An agent here is understood as a software component complying to a wider de�nition

from [8]. It de�nes an agent to be �anything that can be viewed as perceiving its

environment through sensors and acting upon that environment through e�ectors�. As

a simple example clarifying the meaning of sensors and e�ectors, a human being can be

thought to be an agent, and its eyes of being sensors and hands being e�ectors. Many

other sensors and e�ectors could also be described for a human, of course. A more

practice- oriented de�nition from [10] de�nes agents as �active, persistent (software)

components that perceive, reason, act, and communicate�, which is also consistent with

this work's use of the term. Various other de�nitions of agents exist, but they are not

relevant to describe for this work.

3.4 Multi-agent systems

Multi-agent system is an architectural model proposed as useful for system development

of larger systems [9]. The basic component in it is an agent that acts independently in

the system environment. The idea is to avoid centralized control logic.

The bene�t of using agents as basic components is that the idea of an agent is

inherently modular, and an agent can be constructed locally for each resource, provided

it can be made capable of communicating with the rest of the system [10]. In [11], the

positive and negative aspects of multi-agent systems are discussed, stating multi-agent

7

systems to be well-suited for reactive and ubiquitous systems. According to the same

source, the negative aspects of multi-agent systems are the absence of overall system

controller, poor global perspective of the agents, and the di�culty for humans to trust

in autonomous software components. The problem of lack of trust can probably be

seen with systems where an agent would be able to use a person's bank account for

making purchases.

There are various di�erent ways to implement multi-agent systems. For example, all

the agents can be similar or di�erent, and they can act democratically or hierarchically.

A discussion on di�erent kinds of agent systems and characteristics of agents can be

found in [10].

The interoperability between agents is usually important, and it can be accom-

plished with a common communication protocol (ACL, for example), a language, and

shared ontologies. If a common communication standard is used, even di�erent MAS

software platforms can possibly interoperate with each other. As with SOA, a stan-

dards organization, The Foundation for Intelligent Physical Agents (FIPA), has been

set up to promote interoperability. An example of multi-agent systems is UBIWARE

platform, used in the practical part of the work. UBIWARE is described later in 8.3.2.

3.5 Knowledge base

In general, a knowledge base is a collection of facts. A more informal de�nition, taken

from [8], is as follows: a knowledge base is a set of representations of facts (sentences)

about the world (the environment it is related to). The sentences are expressed in a

formal representation language, called a knowledge representation language.

3.6 Ontology

In computer science, an ontology is an explicit speci�cation of a conceptualization.

Conceptualization in turn is an abstract, simpli�ed view of the world that we wish

to represent. In practice, for example, a common ontology can be used to de�ne the

8

vocabulary of queries and assertions used within some system [12]. Ontologies are a key

part of semantics-based technologies [13], and they have been developed to facilitate

knowledge sharing in arti�cial intelligence [14].

Ontologies provide a common access to information, and it is an interesting bene�t

regarding the scope of this work. The common access to information is useful when

multiple agents base their actions on the same information. The ontology is used as

an agreed standard for mapping the information [13].

When applied explicitly in a technical context, ontologies are often encoded in

formal languages known as ontology languages. An example of such language is OWL,

which is a family of languages for authoring ontologies endorsed by W3C [15] based

on RDF. RDF is a model of metadata [17] usually serialized as XML or Notation3

[16]. As a simple example of an ontology, the following de�nitions can be considered:

a person can either be a man or a woman, and a mother is a woman who has a child.

3.7 Inference

Various AI applications use inference. In general, inference means drawing conclusions

from existing information. Within this work, it can mean deriving new facts from

a given set of facts (logical inference) or deriving new facts from quantitative data

(statistical inference). There are various methods how inference can be accomplished,

but they are irrelevant for this work and therefore, out of scope. Descriptions of them

can be found for example in [8].

3.8 Sample AI applications

The solution is concerned mainly in how to integrate arti�cial intelligence into a larger

system. Therefore, a few arti�cial intelligence methods are chosen for test cases and

described here. The choices here are to be taken as demonstrative rather than exclusive.

They have been used as a reference during the design and analysis of the solutions

described later.

9

3.8.1 Mathematical models

A wide range of AI applications based purely on mathematical models exist with various

bene�ts (and drawbacks), and they pose an interesting test case for this work. For

example, statistical inference (such as Bayesian inference [8]) can be used in decision

making, or arti�cial neural networks, which are basically mathematical models working

like functions with input-output mapping [18, 19]. The inner workings of such methods

vary, and are out of the scope of this work. What is within the scope is their usage,

which is usually de�ned by the values they take as input and what they produce as

output.

3.8.2 Expert systems

Expert systems are reasoners that work according to the knowledge that is hard-coded

into them. They are usually narrow in their scope, focusing on some well-de�ned

problem domain, possessing a knowledge base on the subject. By an exact de�nition,

expert systems are systems where the program logic and rules used in reasoning are

separated [20]. In a more technical view, it is stated that computer-based expert

systems approximate expert reasoning through two major components, a knowledge

base and an inference engine [21].

Time saving, revenue increases, cost cuts, knowledge preservation and propagation,

consistency improvement, and reduced development times have been listed as bene�ts

of expert systems [22]. Expert systems also have their drawbacks. Being complicated

systems, they are not an optimal solution everywhere. It is also argued that building

the knowledge base can be problematic, as the reliability of the information can vary

depending on the quality of the building process [23].

As an example AI application, expert systems provide an interesting test scenario

because of their possible conversational nature. An expert system might ask for di�er-

ent kinds of additional information, depending on the previous input values. Support-

ing this kind of activity is a notable requirement from a technical point of view.

10

3.8.3 Semantic reasoners

Semantic reasoners are logical reasoners that can also employ semantic information.

Like all logical reasoners, they work via forward or backward chaining and infer logical

consequences from a set of facts. The di�erence is that they might use ontologies in

inference, therefore being aware of semantic relations, which can be considered to be

their main bene�t. This automated inference is, alongside ontologies, an important

part of semantics-based technologies [13]. Using the ontology from 3.6, the following

is an example of functionality of a semantic reasoner: given Mary is a woman, and

Mary has a child, the reasoner can infer the fact that Mary is a mother. For this work,

semantic reasoners provide a test case for integration of semantic technologies.

11

4 Use cases

To give the problem a background, possible practical applications for a solution are

described. These are given as examples, and many other possible applications for the

solution could be described.

4.1 Intelligence for the Internet

Figure 4.1: Intelligence for the Internet

In 4.1, an usage example for the Internet is visualized. In this scenario, intelligence

services are exposed to the public Internet. An intelligence service could be used and

published by anyone with proper technological resources. It is visualized as a cloud

inside a cloud (the Internet). The clouds represent the idea of abstracting away the

12

actual technical infrastructure. The consumers are pure software applications or regular

everyday Internet users working with the help of some software facilitating their web

use. Example service providers here provide human expertise, computing power like

resource-intensive AI algorithms ran on computer clusters, and stored knowledge that

can be bene�tted from.

The bene�ts of a working such system could be numerous. In fact, the World

Wide Web resembles such a system in a passive form. The vision of intelligent services

presented here would activate the web, making e�ective use of its content easier. For

example, instead of browsing Wikipedia, you could ask it questions and it would answer

to best of its knowledge. This is, actually quite convergent with the idea of Semantic

Web [24].

In practice, to prevent abuse or to guarantee quality, access control needs to be

implemented, either for the users or the service providers, or both. The scenario seems

intriguing in the sense that it would increase the functionality of the Internet, but

somewhat unrealistic because of the possible security and interoperability issues.

4.2 Intelligence for industrial use

Another usage example for the solution is visualized in 4.2. This is a scenario possi-

bly more interesting for corporate parties, as it represents integration of an internal

information system. The need for this kind of systems is expressed for example in [25].

Here, the intelligence service cloud is as the same as in 4.1, but the larger cloud de-

picts a closed internetwork instead of the Internet. The consumers and service providers

are internal systems or workers, and the intelligence service cloud works like an internal

service bus for intelligence requiring activities. The main bene�t would be reducing

the e�ort needed for integrating di�erent intelligence applications. The problems with

interoperability and security are less of a threat in this scenario, as it deals with a more

closed environment.

The actual use for the prototype described in the practical part falls into this cate-

gory. The prototype is implemented for a middleware platform (UBIWARE) designed

13

Figure 4.2: Intelligence for industrial information system

to support, amongst other scenarios, industrial scenario software integration.

14

5 Problem decomposition and proposed solutions

In this chapter, the problem is decomposed to di�erent parts with the aim of identi-

fying the necessary requirements for a system providing intelligence functionalities as

services. Abstract solutions are also proposed.

The problem is analyzed from the service consumer's and provider's perspective.

This is considered to be a logical approach for systems consisting of services. The

presumption of consumers possessing local information is made, as it seems to be the

norm when considering complex systems with separate processes, such as multi-agent

systems or SOA systems.

An important point is the communication between the consumer and the service

providers, and it is handled �rst. Human user as the intelligence source and learning

possibilities for the intelligence services are also considered. The done analysis does

not directly rely on any source.

5.1 Communication

The idea of providing intelligence functionalities as services sets the stage up for at

least two roles: the service consumer and the service provider. A presumption that

some communication, either direct or indirect, between these two is needed is then

quite rational. Otherwise, the system would not really resemble a system providing

services. The need of communication obviously arises from the consumer using the

intelligence services.

When using external intelligence, the consumer needs to identify how it wishes to

use it. This practically translates here, in an environment with di�erent intelligence

services, to what intelligence service it should use. This needs to be addressed somehow.

Another need in the communication is the possible transfer of knowledge required

15

from consumer to intelligence service, and the other way around. The consumer might

need to transfer knowledge to the intelligence service for it to work, and the intelligence

service might need to transfer knowledge to the consumer about what knowledge it

requires to work. The answer to the question, obviously, also needs to be communicated

to the consumer somehow by the service provider.

The following issues are identi�ed as problems in communication:

• Mutual comprehension: The consumer and service provider must understand each

other. Simply put, they must always be talking of the same things. Otherwise,

any question or answer is useless. This does not directly imply that the consumer

and the provider must use the same terminology. Translation can be an option.

• Functional representation of knowledge: Even if the communicating parties un-

derstand each other verbally, they might have problems with the di�erences in

the functional representation of their knowledge [26]. A simple example of such

scenario could be the following: service provider asks the consumer for its coor-

dinates in a scale with accuracy of 10 centimeters, but the consumer only has its

coordinates on a scale with accuracy of 3 centimeters (let us assume the origin

of both the coordinate systems is the same). The problem is simple for human

mind, but special program logic is needed for automating it.

• Data synchronization: If the data used in the process is replicated in any stage

of the process, its synchronization must be taken into account. For example,

the consumer sends all its relevant local knowledge to the service provider for

it to perform reasoning based on the relevant knowledge. Now, the possibility

that the consumer's relevant local knowledge changes while the service provider

is still reasoning must not preferably cause any indeterministic behaviour in the

system.

• Coupling of the service consumers and providers: More concretely, the question

if consumers use intelligence services directly, or via some mediator mechanism.

Mediator here is understood as it is understood in the well-known design pattern

16

from [27]. Note, however, that the pointed out design pattern is understood here

as a model of design rather than a design pattern implemented at program code

level.

5.2 Solutions for communication

A distributed software environment presumably already has a standard way of com-

munication for transferring content between the components, such as XML messages

or ACL. It is reasonable to use it, but this does not solve the issue in mutual com-

prehension of how content is understood. A format like XML does not provide much

information about the content.

Schema de�nitions, such as XML schema could be used to increase the semantic

information of the content. The idea applied lightly leads to a message passing archi-

tecture with custom message formats, such as SOA with WS-I web service standards.

Applied vigorously, it leads to a knowledge representation language like RDF/XML

with more semantic information.

So, a proposed solution consists of a standard way of knowledge representation.

For this to be useful, shared ontologies are also considered as a requirement. However,

the shared ontologies should be consistent enough to avoid problems in functional rep-

resentation of the knowledge. The knowledge represented with the ontologies should

comply with interoperable standards. For coupling the consumers and services, a me-

diator approach is proposed. All these proposed solutions to the identi�ed problems in

communication are described in more detail in the following subsections.

5.2.1 Knowledge representation

As discussed, some sort of solution for representing semantic information of content

of messages between service consumers and service providers is required. Two kinds

of options are identi�ed: a knowledge representation language, or some other less

expressive language. If a language is more expressive than a designated knowledge

17

representation language, it can be very well considered as a knowledge representation

language. The di�erence between these two is visualized below.

Figure 5.1: Expressiveness of languages, comparison

In �gure 5.1, the di�erence of expressiveness is as expected. A possible problem

that can arise in practice is visualized in �gure 5.2. In practice, something might be

harder to express with a language that is more expressive than other, up to the point of

being impractical. As an example, bitmap data might be quite impractical to express

in RDF/XML.

Special cases aside, a knowledge representation language should be the most expres-

sive formal language available when representing data according to explicitly de�ned

ontologies, as this is what they are designed for. This is why they are proposed as a

useful tool in the design of an intelligence service interface solution.

5.2.2 Shared ontologies

Using the same ontologies in data representation can be a way to unify the informa-

tion which consumers and service providers use. Without such, the consumers and

service providers can understand di�erent words (representations of concepts) di�er-

18

Figure 5.2: Expressiveness of languages in practice, comparison

ently, what should be avoided. This does not mean that a system that does not use

formally de�ned ontologies would be automatically faulty; such system can be seen

using ontologies which are not explicitly de�ned. If the service and consumer software

are to be developed in isolation, which is an aspect that should be supported with a

low level of coupling, an explicitly de�ned formal ontology is proposed to be useful.

For consumers, this would mean at minimum that the service call or subscription

is made according to the shared ontologies. If consumer's local knowledge needs to

be made available for service providers, it should also be represented according to the

shared ontologies.

For service providers, this would mean at minimum that at least part of it under-

stands the ontologies (preferably the adapter, introduced later in 6.2), translating the

queries to the underlying intelligence software application if necessary. Translation is

also an option to be considered if sharing ontologies between the consumer and the

service provider is impossible or otherwise impractical.

19

5.2.3 Functional representation of knowledge in communication

As noted in [26], shared ontologies often are not enough for functional mutual com-

prehension in communication. If an intelligence service's answers are according to the

shared ontologies, the consumer might still not be able to understand it. The consumer

might lack the business logic required to bene�t from the answer. It seems unrealistic

to expect the consumer to be able to react to everything possible to express with the

shared ontologies, if they are not overly simple. The answers should be therefore some-

how de�ned. It can be as simple as answering either true or false, or the information

included in the answer could be somehow de�ned in the service signature.

Agreed standards could be used to avoid problems with di�erent scales in knowledge

representation. Di�erent scales could still be used, if translation for them is provided.

The standards would then help in avoiding interoperability problems with di�erent

functional representations of knowledge. In practice, with explicitly de�ned ontologies

in use, this would mean that it is impossible with them to express knowledge that is

not translatable to other possible representations of the same knowledge.

5.2.4 Gateway as the mediator

The mediator pattern [27] seems to be a simple solution for the problem of how the

communication between consumers and intelligence services could be done. Otherwise,

the consumer should communicate directly with all of the intelligence services, at least

to �nd out which ones are providing services the consumer needs. This seems di�cult,

given it should also be able to locate all of them. Also, given a dynamic service envi-

ronment, this would mean additional logic and resource requirements for the consumer.

The consumer would need to have the functionalities to discover and keep track of the

services.

Additionally, as an alternative or an augmentation to the mediator pattern, a reg-

istry pattern [28] could be used. It addresses the issue of the need to communicate

with all of the intelligence services by helping the consumer (or the mediator) choose

which ones to communicate with. A solution with a combination of a mediator and a

20

registry sounds therefore very promising. This approach is dubbed as a gateway, and a

visual representation of it follows in 5.3. The term selection of gateway is based on the

usual use of it within software engineering design patterns, as in [28], or in [7], which

slightly di�ers from the afore-mentioned.

Figure 5.3: The gateway architecture

The additional component between the service consumer and service providers also

reduces the work needed to be done by a single consumer. When the consumer soft-

ware processes run in a resource-limited environment, this could be an important fac-

tor. Some functionalities are also facilitated by the mediator pattern, such as caching

queries, auctioning, composing answers from various services, keeping track of quality

of service and applying security policies.

5.2.5 Data synchronization

Three approaches for data synchronization are identi�ed. These are full, partial, and

no synchronization. The full synchronization is simple: it is just made sure that no

replicated data is handled by separate processes at the same time. This would be like

the common mutual exclusion (�mutex�) algorithms.

No synchronization is also simple, as it is e�ectively no synchronization at all.

The challenge with it is to have a system which does not su�er from lack of any

21

synchronization. As an example, a system with totally stateless components could use

this approach.

Partial synchronization lies obviously in between these two afore-described ap-

proaches. In it, only necessary parts are synchronized.

Data synchronization becomes an important issue when deciding whether intelli-

gence services should be push type or pull type. Push type services seem to be consid-

erably more di�cult to synchronize, compared to pull type services. This is because of

the consumer knowing better when to expect the service of pull type services. Because

of knowing the exact delivery time of the service, it can easily synchronize the nec-

essary resources e�ectively without losing time unnecessarily. However, if the system

does not need any synchronization related to external intelligence services, using push

type services becomes easier.

If any synchronization is done, the relevant synchronization for the problem is

synchronizing the data the intelligence functionalities use as their input, and the data

their output might have e�ect upon. Various possibilities on how the synchronization

could be done exist. Possibly the simplest is full synchronization done in a way that

the caller of an pull type intelligence service denies any changes to its data as it waits

for the intelligence service to answer. The main negative aspect of this approach is

that it increases the idle time of the caller process, as the intelligence service's answer

might not be delivered in an instant.

5.3 Problems from consumer's perspective

There are mainly two problems for the consumer of the intelligence services. These are

quite fundamental when discussing interfaces.

• How to use the service: More precisely, how to inform the service provider about

the problem the consumer needs to resolve. For pull type service, the problem is

how to ask the question. The problem includes the de�nition of how to invoke the

service and how to formulate the question. For push type services, the problem

22

is how to formulate the subscription. Both types of services have the problem of

how to transfer required knowledge from consumer to the service provider.

• What to expect in response: This is the problem of how to bene�t from the

provided services. Consumers need to be able to bene�t from providers' answers.

5.4 Problems from intelligence service provider's perspective

The problems from the service provider's perspective are related to the interface and

the integration of the intelligence software into the system. The following problems are

identi�ed:

• How to handle the questions: This is mostly the issue of translating the questions

to the intelligence software represented by the service.

• How to provide responses for the consumer: The actual response is dependent on

the protocols used in the technical implementation, but the theoretic problem is

what to respond.

• How to de�ne the required input data: Di�erent intelligence applications require

di�erent input data, which might even be de�ned at runtime. This should be

addressed somehow in the solution.

• How to gather the required input data: While communication with the consumer

is important, facilitating also communication with other sources than the con-

sumer can increase intelligence service's capabilities. The problem is how the

required input data is gathered from the caller and elsewhere for the service

provider.

• Con�icts: A risk exists that some intelligence services might understand di�erent

questions in a di�erent way. This can be caused by the question format. As an

example, if the question would be de�ned as a subject- object pair, the question

�I, sick� might cause di�erent kinds of interpretations for expert systems and

23

semantic reasoners. An expert system might try to determine if the service

consumer is sick, while a semantic reasoner might try to determine if the service

consumer and the concept of sick are equal.

5.5 Solutions for involved parties

Though the problems were identi�ed separately for service consumers and providers

in 5.3 and 5.4, the proposed solutions apply mostly for both. The solutions are therefore

presented here for both together. The section ends the abstract analysis of the aspects

deemed as most relevant regarding the whole research problem. Having human users

as intelligence providers and learning are shortly discussed on the following chapters,

however.

5.5.1 Adaptation

If the consumers or the service providers provide technically heterogeneous interfaces,

they need to be somehow adapted to provide a common interface. Otherwise, they

cannot communicate in a standard way. Another possible problem that can require

adaptation is di�erences in knowledge representation.

A straight-forward approach to adaptation is to create adapter components. They

are later discussed in detail in 6.2. The adapter would be responsible of and handling

communication �ow and translating the communication if needed.

5.5.2 Question and reply format for calling the service

When a component in the service environment wishes to use some intelligence service's

ability to answer questions, it provides them somehow the question, and receives an

answer. The basic idea of a useful interface is to provide a mean of accessing some

functionality. Here, it translates to a de�nition of the way how the question is presented

to the service provider by the consumer and how the service provider communicates its

response to the consumer. As the scope of the intelligence provided by the services was

24

answering questions somehow, an approach of de�ning a question and a reply format

for all intelligence services is proposed as a solution.

The question is formulated obviously according to the de�ned question format, and

the service replies with an answer according to the reply format. For facilitating adding

varied types of intelligence services to the system, the formats should be �exible. Im-

portantly, the question format should be as unambiguous as possible, to avoid con�icts

in interpreting or delivering the questions. This was described earlier when discussing

problems in communication in 5.4.

This kind of solution would address mostly the consumer's view's problems de-

scribed earlier. It could be a good idea to have the question and reply formats some-

thing as close as possible a language as already is used in the system where the intel-

ligence service interface is implemented. For example subject-predicate-object clauses

in an environment that already uses subject-predicate-object clauses as its language.

In the absence of such a language a new one has to be obviously employed. The basic

requirement for the format is that it should be able to express questions. A knowledge

representation language is therefore desirable.

5.5.3 De�ning questions an intelligence service can answer

It seems reasonable to have the intelligence services de�ne the questions they have

a chance of answering successfully. Otherwise, locating potential answerers from the

services can become resource consuming, assuming there is a large number of them.

Without the services identifying what kind of questions they can answer, a question

needs to be made available for all of them to �nd the best answer. Having the intelli-

gence services de�ne somehow what kind of questions they can answer can presumably

narrow the amount of resources needed to get the best result. Therefore it is suggested.

An interesting aspect on de�ning the questions an intelligence service can answer

is how it is actually implemented. If a knowledge representation language is used

for formulating questions and answers, a logical approach would be to also use it for

de�ning the questions an intelligence service can answer. The most direct solution

25

seems to be to describe the questions a service can answer in the same format as they

are asked. This would resemble the idea of a function call signature, and it is dubbed

here as a service call signature.

An intelligence service capable of answering numerous amounts of di�erent ques-

tions needs special treatment, however. It would be impractical, for example, to sep-

arately de�ne all the questions a service can answer, if it takes a real number as an

input value. The solution could be devised at the syntactic level by using wildcards,

which could represent groups of possible input values. Other possible way is to employ

ontologies and match questions to service call signatures with semantic networks. The

intelligence service could then simply de�ne, for example, that it can answer all speeds

regarding the top speeds of cars. It would then be identi�ed by its service call signature

as able to receive and answer questions about top speed of any car model.

The approach of using ontologies makes adding semantic information to the service

call signature easy. The idea then is basically the same as in semantic annotation of a

service; the functionality (problem solving) is hard-coded, but the parameters it takes

are semantically described (the question). This is not very far from other ideas, such as

semantic web services (as for example described in [29]) or OntoNuts described in [30].

Both have been used as an inspiration source.

5.5.4 Transferring consumer's local knowledge to the service provider

The consumer's relevant local knowledge should be available for service providers it is

using. This way the intelligence services have more knowledge to base their functional-

ity on. The question is whether it is the responsibility of the consumer, or the service

provider, or should there be other kind of support for it. This is discussed next.

If the responsibility of providing all the necessary is left for the consumer, one

solution for pull type services would be to de�ne all the necessary input information

in the service call signature. This sounds sub-optimal from the coupling point of

view, for because it would change the call signature each time when the required input

information changes. This would mean that di�erent intelligence services answering the

26

exact same question would end up with di�erent service call signatures. It would raise

the level of coupling signi�cantly. This could be overcome, however, with dynamically

forming the service calls at run time. Additionally, if the intelligence software works

in a conversational way, like an expert system might, it would then be very likely to

often require more information than it is actually needed from the caller. This could,

however, because of the lower layer communication protocols' overhead, lead to less

tra�c generated by the communication in some cases.

Another possible solution, which would leave the responsibility of making the nec-

essary consumer's local information available for service providers, is to have the con-

sumer transfer all of its relevant knowledge for the service time every time the service

is invoked. This kind of approach seems to be vulnerable to performance issues in

environments with relatively high amounts of local consumer knowledge. The transfer

of all the knowledge could be therefore done in a piece-meal fashion. For example, the

consumer would �rst transfer all of its knowledge, and later on, only changes that have

occurred in its local knowledge.

To remove the need for a two-way connection without requiring any special reactiv-

ity from consumer or the service provider, an external system storing consumers' local

knowledge could be used. This seems like a solution introducing additional complexity,

however. It would either reduce the system to be basically a centralized system, or it

would ask for replication of high amount of data. This would introduce di�culties in

synchronizing. It seems to be a viable option for both push type and pull type services,

though.

If the responsibility of �nding relevant consumer's local knowledge is left for the

service providers, they should be able to query the consumer. To make it possible, the

technical system environment should provide a support for service providers to query

additional input information from service consumers. For pull type services, a callback

mechanism could be implemented.

If no external storage for consumers' local knowledge is used, a push type service

would require an ability to connect to consumer for querying additional information.

Another option, which is practically the same, would be the consumer keeping an active

27

connection available for the service provider to use. A push delivery already implicitly

requires an ability to connect to consumers for delivering its updates for the subscribed

consumers, but it does not imply it has the ability to read consumer's local knowledge.

The issue needs also therefore be addressed with push type services.

5.6 Machine-to-Human interoperability

While the problem is primarily scrutinized as a software integration problem, nothing

in it really rules out providing user interfaces for human users. Human users could be

in intelligence and consumer roles. The possibility to employ human intelligence as the

intelligence of a service is shortly discussed, alongside with the possibility of humans

being consumers of the intelligence services.

Using an adapter to connect the intelligence functionality to the system does not

dictate the encapsulated software application to not be controlled by a human. To

add human intelligence providers to the system, only a control interface (preferably a

graphical user interface) to the adapter is needed. The control interface should note the

human user of incoming queries and it should also be capable of letting the human user

answer them. Some sort of translation of the incoming messages and outgoing answers

can be required, as the messages are encoded in machine understandable format (not

necessarily human understandable). This kind of approach would be a simple way to

create a heterogeneous service provider population serving both human and arti�cial

intelligence.

The same approach should work for letting human act as a consumer in the system.

Message translation and a graphical user interface for sending queries and answering

queries should be enough. This would then provide an interesting user interface for

multiple intelligence applications, backed up by arti�cial or human intelligence.

The challenges of machine-to-human interoperability seem to mostly lie in knowl-

edge representation method's usability for human users. The human users should be

aware of the ontologies and possible translations should be as unambiguous as possible.

Another issue of note is that introducing humans as controllers of parts of the query

28

process can cause unpredictable latencies. This can be however true for pure software

processes also, more so if they interact with physical environment.

5.7 Learning

The issue of learning is shortly covered, just to make sure the proposed solutions do

somehow support it. Within the scope of arti�cial intelligence applications of this

work, two types of learning seem to be reasonable to take account in the design of the

solution. The relevant types are reinforcement learning and supervised learning.

5.7.1 Reinforcement learning

Reinforcement learning would be as it is generally understood in the context of machine

learning, meaning receiving feedback on actions, and learning from it. Within the

context of this work, this would mean the intelligence service receiving input, choosing

answer based on the input, and receiving information of the e�ectiveness of its answer.

The intelligence service would then adjust its future answers based on the perceived

e�ectiveness of previous answers [31].

With reinforcement learning, the problem seems to be the workings of a feedback

mechanism. It obviously needs the involvement of both the consumer and the provider,

unless some sort of external feedback mechanism is devised. The external mechanism

sounds likely to be a more complicated option.

5.7.2 Supervised learning

By de�nition from [8], supervised learning is giving the learning element correct value of

the function for particular inputs. The learning element then changes its representation

of the function to try to match the given information.

Here, supervised learning means the possibility of external components having an

ability to alter the intelligence service's answers by a�ecting the underlying intelligence

mechanism. In practice it would be giving the service provider certain inputs and the

29

expected outputs.

5.7.3 Solutions for learning

If the adapter is the only component communicating with the intelligence software, the

adapter obviously needs to participate in any learning that is dependent on feedback

from the service environment. This would mean an interface in the adapter for learning

activities.

As a system that would externally monitor actions in the service environment

sounds di�cult to implement, it is proposed that the consumer takes part in the

learning. When giving feedback, as in reinforcement learning, the consumer, being

best aware of query result's correctness and its e�ect on the environment, initiates the

action. For supervised learning, the input-output mappings can come practically from

anywhere. This implies that the consumer should preferably be able to control it.

30

6 Possible concrete solutions

A few possible approaches for a concrete solution to the problem are presented. They

are not really original in their abstract sense, but the applications within this problem

domain are claimed to be at least of independent origin. They are based on the previous

analysis of requirements and sub-problems. The solutions are analyzed, and a concrete

implementation of one combination of them is later described in the practical part.

6.1 Pull type service

As identi�ed earlier in 5.2.5, push type services seem to be harder to synchronize in

certain contexts. As the problem is present with the technologies this work considers

as possible application �elds, push type services are dismissed as being unpractical.

From this point on within this work, services are considered to be of pull type only.

6.2 Adapters

The need for adaptation was identi�ed in 5.5.1. A proposed approach here is to imple-

ment adapters for consumers and every intelligence software application that is to be

integrated in to the system. The idea of an adapter is quite universal, but as a more

formal de�nition of it, the adapter design pattern [27] can be used.

When using adapters, instead of directly embedding the software into the system,

a separate component for each of them is created to integrate them into the system.

This is called the adapter component. Here, with the service providers, it provides the

interface for potential users of the intelligence software. The consumer of the intel-

ligence service does not communicate directly with the intelligence service's adapter,

but with the interface the adapter adapts the intelligence software. For example, this

31

might be an agent in a MAS or a web service in SOA.

The intelligence software is required only to expose enough of functionality to be

used by an adapter, practically meaning some sort of application programming inter-

face. The idea of the intelligence service's adapter is visualized in the image below.

Figure 6.1: The adapter architecture

In the case the intelligence software needs additional information, either from the

consumer or from elsewhere from the environment, its adapter should take care of

the task it or delegate it further. This seems to logically be the responsibility of its

adapter, if it is desired to keep the intelligence software independent of the service

environment. Then, its adapter is the only component interacting directly with the

intelligence software.

If the consumers are technically homogeneous and their knowledge is already en-

coded according to the shared ontologies, only one adapter implementation can be

enough. This is the case in the practical part's implementation with UBIWARE.

Otherwise, same kind of approach as with service providers is recommended for imple-

menting consumer adapters.

32

6.3 Intelligence services as web services

An obvious approach applying SOA principles would be to implement intelligence ser-

vices as web services. This has the bene�t of making them relatively easy to integrate to

SOA architectures. That would also retain ease of integration to multi-agent systems,

because various solutions have been devised for it [32, 33, 34]. These solutions address

the problems that systems implemented with the two di�erent paradigms (MAS and

SOA) might have in the communication by having a mediating system in between the

di�erent systems. They do, however, add complexity to the solution if used.

If an AI software has a programmable interface, it should be possible in most of

the cases to create an adapter working as a web service for it, as web services are in

practice programmable interfaces. The web service standards de�ne methods for data

transfer for caller and callee; however, they are not enough according to the previous

analysis in 5.4 if a two-way connection is desired.

If the agents are made to directly use the web services, some problems arise from

the nature of web services being by their de�nition one-way in their call structure. This

would mean increased complexity if the callee wants to call the caller. One possible

solution for implementing two-way communication of the web service caller and the

callee is to create HTTP sessions.

With direct agent-to-web service communication, problems might also arise if the

service environment is a multi-agent system software platform and high level integration

of the intelligence services to the environment is desired. For example, data gathering

for decisions from data sources that are represented by agents in the MAS platform

would require the web service to also understand the communication standards of the

MAS platform. Such would add to the complexity of the solution.

A question and a reply format should be de�ned, for constructing queries and

replies, and a format for de�ning what questions an intelligence service can answer.

All these could be possibly de�ned by an ontology language like OWL. This would

practically lead to web services with their meaning semantically described, also known

as semantic web services.

33

For the web services to be found and for them to be useful without a high level of

coupling, a registry or a broker is needed. This complies with the usual SOA design.

If a registry is used, the services in this particular registry would be identi�ed by the

questions they can answer. In the case of a broker, the broker would, according to

some logic, �nd the potential answerers for queries. The broker is actually mostly the

same approach as the gateway solution described next.

6.4 The gateway

To address the need of a mediator, a component functioning as a gateway to the

intelligence services can be considered, as was rationalized in 5.2.4. The SOA broker

mentioned in 6.3 could function as a gateway to the intelligence services, as it has

been already stated. Another way to implement a gateway precisely for a multi-agent

system could be to implement an agent or a group of agents functioning as a gateway.

When using gateway design pattern, the elementary idea is for the gateway to

function as an access point to some other system or resource, as described in [28].

This would mean the consumers send their queries to the gateway, and the gateway

communicates with the intelligence services, and returns an answer by them to the

consumer awaiting it. This de�nition does not however directly solve the need for

two-way communication. Some sort of callback mechanism for it is needed.

To address the need for such, the gateway can receive calls containing questions

from consumers and invoke suitable intelligence services, acting as a proxy (like the

proxy-pattern in [27]) in the process if the intelligence services need to communicate

with the caller via callbacks.

In another possible solution, the gateway can function like a registry. The con-

sumer �nds suitable intelligence services from the registry, and binds to them on its

own. This was already proposed for a web service based system, but it would neverthe-

less also be a possible approach for a multi-agent system. It seems to be a rather simple

approach, but however eliminates some interesting possibilities, such as automatic an-

swer composition from multiple answerers. Such could of course also be implemented

34

in the consumer side logic, though. The downside of that would be increased resource

requirements on the consumer side.

For supporting dynamic addition and removal of intelligence services, the intelli-

gence services should be responsible for informing the gateway of their availability.

In this sense, its functionality would resemble that of a registry. If there are multiple

agents functioning as a gateway, it is necessary for them to share their knowledge about

intelligence services. Otherwise they will not be able to serve the gateway's users with

equal quality.

6.5 Multi-agent approach

The use of multiple agents to solve the problem can also be applied to the problem. If

the target application �eld is multi-agent systems, this would be a natural approach. If

not, using a multi-agent architecture for solving this particular problem might introduce

unnecessary technical complexity, and therefore should be carefully considered.

The main approach would be to implement intelligence services as agents in the

multi-agent system environment. With an adapter approach, it would mean wrapping

each intelligence software application in an agent interface. This brings the bene�t

of using the messaging standards of the multi-agent system platform. Implementing

intelligence services as agents in a multi-agent system can therefore make the commu-

nication with other components (agents) in the environment simpler.

Compared to web services, agents are seen as more potential problem solvers.

Agents are considered to be better in composing functionalities [35] and integrating

results provided by several services [36]. These points can be used to argue that

multi-agent approach is a better way to implement a system providing intelligence

functionalities as a service.

If the multi-agent approach is employed, the need for a gateway still remains for

the most of it. Applying design patterns originating from object-oriented design to

multi-agent systems is not uncommon [37], and it is also done here. The analysis done

earlier in 5.2.4 on the subject is still valid, though possible alternative solutions can

35

easily be found. The intelligence service agents could, for example, form a peer-to-peer

network handling queries. The gateway approach is, however, selected as the most

potential solution.

36

7 Summary of analysis

As a summary of the analysis, the following points are proposed as the fundamental

requirements for a system providing intelligence services via a uni�ed interface:

• Method of communication

• Unambiguous method of knowledge representation

• Standard ways of representing functional knowledge

• Adaptation of the components to the system

The most promising solutions for communication issues seem to lie in what are

known as gateway, registry, and mediator patterns. Knowledge representation lan-

guages and shared ontologies are proposed to be the best solution for unambiguous

knowledge representation. To improve the functionality of represented knowledge, in-

teroperable standards are proposed. Adaptation can be done with separate adapter

components, if necessary. In the next chapters, a demonstrative concrete solution is

described and analyzed.

37

8 Practical part introduction

An implementation of the system solving the research problem was implemented to

test the done analysis. It was tested with three AI software applications of di�erent

types. The results are described here, and they can be used as a demonstration of the

feasibility of the design, or as a reference architecture for future designs, or whatever

else they may suit for. The resulting implementation is analyzed here from the relevant

points of views regarding this work.

8.1 Chosen approach

From the solutions described before, suitable parts were selected and the composition

of them is described here. A multi-agent system, UBIWARE platform, is used as an

application �eld, a�ecting design choices. The technical solution itself is implemented

on the JADE platform, using JADE libraries. The integration of the creation with

UBIWARE is quite loose, and therefore the solution could be easily modi�ed to work

just on JADE, and possibly with ease on other systems implemented atop of JADE.

The abstract solution is also potentially possible to implement on other similar plat-

forms. The desired functionalities from such a platform are support for communication

between components and support for automatically discovering other components. A

�exible way of representing knowledge in the platform can also be very useful.

8.2 Rationale of design

Most of the design choices are a�ected by UBIWARE's and JADE's design. The solu-

tion is designed to integrate with ease to existing UBIWARE architecture, leveraging on

the work already done. JADE supports development of multi-agent systems nicely [38],

38

and UBIWARE's system of knowledge representation seemed to ful�ll the requirement

for a knowledge representation system. The author's familiarity of UBIWARE and

JADE, and their relevance for the research projects on which this work is related were

also factors a�ecting the technology choices.

8.3 Technologies

The used technologies are given a short introduction here. For details, see the references

given. The whole solution is implemented atop Java, making it easily portable. The

technologies selected are not to be taken as exclusive in any way. The solution should

also be possible to implement with many other technologies.

8.3.1 JADE

JADE is a FIPA standards compliant multi-agent system software framework imple-

mented in Java programming language. It is designed to function as middleware in

multi-agent systems [39]. It is free and open source software, and is currently used in

various projects by corporations and universities alike [40].

8.3.2 UBIWARE

UBIWARE is a software middleware platform developed at University of Jyväskylä

built using the JADE framework. It is a multi-agent platform, and according to [41]

it �will allow creation of self- managed complex industrial systems consisting of dis-

tributed, heterogeneous, shared and reusable components of di�erent nature, e.g. smart

machines and devices, sensors, actuators, RFIDs, web-services, software components

and applications, humans, etc.� As such, it provides an interesting environment for

intelligence services.

Aside S-APL, which is described next, UBIWARE platform agents can be pro-

grammed with RABs (reusable atomic behaviour). RABs are Java classes, which in-

terface with S-APL. A RAB is employed in the implementation of the solution for

39

UBIWARE agents to connect with the intelligence functionalities.

8.3.3 S-APL

The UBIWARE platform's agents are programmed with S-APL, which is a subset

of N3. It uses subject- predicate-object triples and linked sets of them as its main

construct. The S-APL scripts describe the main logic of an agent, and the S-APL

subject-predicate-object triples are considered as the agent's beliefs. The beliefs usually

change dynamically during runtime, re�ecting the agent's behaviour. Yet another

useful point is that the vocabulary of S-APL can be de�ned by ontologies. S-APL is

proposed also as a capable content language in communications [42, 43]. This aspect

is employed in the example solution.

40

9 Technical description

In this chapter, a more detailed desciption of the main technical points of the example

solution is given. The inner details of the implementation are quite irrevelant for this

work, and therefore they are mostly left out.

9.1 High level view of the architecture

A multi-agent approach (as discussed in 6.5) with a gateway (as discussed in 6.4) is

used. The gateway and intelligence services are implemented as agents in a multi-agent

system, and possible consumers also are agents in the same system. The consumers are

supposed to be UBIWARE agents, but other agents could also function as consumers.

The service environment therefore is the multi-agent system, and all the identi�ed

components exist in the same environment.

As the gateway approach is used, it separates the agents into three di�erent roles:

consumers, gateway, and service providers. The consumers and service providers only

communicate with the gateway. The communication �ows are visualized in 9.1. While

the gateway is not spoken of in plural, it could be a group of several agents acting

together. However, support for such was not implemented in the prototype. Doing so

would result into some additional complexity.

The UBIWARE platform's S-APL already functions as a way to represent knowl-

edge in programming UBIWARE agents, and its use as a knowledge representation

language is also applied elsewhere in the solution. It is used as a content language

for communicating queries and responses between the consumers, gateway and service

providers. The service signatures of intelligence services, which are an important part

of the communication, are also de�ned with it. The gateway functions like a registry for

the services, performing the binding of the queries to the services capable of answering

41

Figure 9.1: Communication

42

them.

9.2 Agents

The consumers, gateway and intelligence services are all implemented as agents on

the JADE platform. The consumers are the only part of the implementation that is

connected to the UBIWARE. The consumers are UBIWARE agents, which are JADE

agents having additional functionalities making them UBIWARE agents. The gate-

way and the intelligence services are pure JADE agents. The distinctive technological

di�erence between JADE and UBIWARE agents is that UBIWARE agents are pro-

grammed with S-APL and possibly with Java in the RABs, while pure JADE agents

are programmed only with Java.

9.2.1 Consumer

The UBIWARE agent consumer's ability to query the intelligence services is imple-

mented as a UBIWARE RAB. It can be seen as the consumer's adapter for the intel-

ligence service system. It takes several parameters, and the most relevant of them is

the S-APL statement, which is the question itself. At the current state, the queries

can only be answered with true or false, and the question statement is added to the

agent's beliefs accordingly. It would be, however, technically trivial to modify the sys-

tem so that the queries are answered with any S-APL statements, which could easily

be added to the consumer's beliefs. After the answer is in agent's beliefs, it is up to

the programmed logic of the agent to react to it.

9.2.2 Gateway

The gateway agent does not need any modi�cations from the potential user of the

example solution. It is a JADE agent binding queries to services, holding a registry

of available intelligence services, keeping track of the conversations, and forwarding

queries and answers to and forth between the consumers and the service providers.

43

The agent's implemented logic keeps track only of states of the conversations; the

communication between consumers and services is otherwise asynchronous.

9.2.3 Intelligence service

The intelligence services are integrated to the rest of the system with the help of an

adapter created separately for each intelligence service. The adapter, as discussed

in 6.2, is implemented as inheritable (or, extendable in Java terminology) Java classes

in the example solution. As much as possible of the functionality is included in those

classes. The classes to be extended with inheritance are themselves inherited from a

JADE agent and behaviour base classes.

The essential included functionalities in the extendable classes are support for reg-

istering and unregistering the service, error recovery in the query process, and a way

to query the consumer for additional information (the callback mechanism). The con-

sumer is queried for more information in practice essentially in the same way the belief

matching is done in UBIWARE agent programming with S-APL. The matching pattern

is forwarded to the consumer via the gateway, and the consumer replies to it based on

its beliefs.

An important issue in implementing intelligence services is to use the same ontolo-

gies as the consumers in their logic providing the intelligence. Or, if it is not possible,

the intelligence service should be able to translate the essential information from the

consumer's represented knowledge to its inner data representation. The example solu-

tion does not provide any help for such translation.

9.2.4 Example intelligence query

An example of one intelligence query is depicted in a UML sequence diagram in 9.2.

Note, however, that the intelligence service could query for additional information more

than once (the query for additional information part could be repeated any number of

times).

44

Figure 9.2: Sequence diagram of an intelligence query

9.3 Fault tolerance

To cope with errors, the implemented system keeps track of the duration of the con-

versations. Timeouts can be con�gured to discard conversations taking too much time,

possibly because of failures in consumer's or service provider's program logic. No spe-

ci�c reason has been found why the gateway agent could not be made redundant with

some amount of technical work. The gateway agent could be clustered, or they could

form a peer-to-peer network. This was not, however, implemented in the example

solution.

9.4 Security

The problem and its o�ered solutions do not really concentrate on security issues, but

the topic is important enough to give it a note. The example solution does not o�er

any security solutions on its own, but it relies on security solutions implemented on the

lower layers of the architecture. The JADE project has various solutions which can be

employed, and if a closed internetwork (such as VPN) is used as the whole system's

45

environment, security problems become easier to solve.

46

10 Using the solution

A description about the usage of the example solution is given with examples. For

running the system, a UBIWARE installation was augmented with the implemented

RAB for UBIWARE agents to use, a JADE gateway agent, and a small class library

used in implementing the intelligence service adapters.

10.1 Example cases of AI services

Three di�erent kinds of intelligence services were implemented to test the plausibility

of the solution from the aspect of a service provider. They were chosen to represent AI

software applications which could be possibly used in real systems, with some diversity.

Descriptions of the �ndings follow. It should be noted that the evaluations are not

done in a very systematic way, and they are therefore very subjective. The created

implementations are available in appendices for further review.

10.1.1 Mathematical model

A simple model basing its reasoning in a function was used for testing the implemented

system. The model asks for pulse and age information as input to the question whether

the consumer is sick. From those values, a decision is made, and it is o�ered as an

answer. This simple model functions as a test case for applications that have a static

set of input values. The inner workings of the model are not important, and an overly

simpli�ed model with no scienti�c base was used.

The task of integrating such a model to the system was relatively easy using the

implemented framework classes. The required information is queried by the adapter

from the consumer, and if something is missing, the process can be aborted or default

values used. A sample code can be seen at A. The required two classes were imple-

47

mented, and the created framework supported the implementation quite well, as can

be seen from the program code samples which are not overly complicated or lengthy.

10.1.2 Expert system

To test integrating expert systems, Drools Expert rule engine was used. Drools Expert

is an open source rule engine part of a larger Drools business logic integration plat-

form [44]. The purpose of this test case was to provide information on how di�cult it

is to integrate expert systems to the implemented system.

Drools Expert o�ers many possibilities how it could be employed with its wide API.

The approach used in the integration was to make the expert system logic to be able

to work directly on the concepts de�ned by the ontologies used by the entire system.

It was also made able to query the consumer from the expert system logic if required.

The taken approach was not overly di�cult. Various issues however arose during

the work, and they are possibly enough to question the whole approach. As expert sys-

tems are designed to function on a narrow domain, their technical workings also try to

support it. This con�icts with the taken approach that aimed for generalization. The

expert system used in testing (Drools Expert) is focused on domain-speci�c solutions,

and designed to technically support it. So, in practice this can be seen on its use of

objects, which are supposed to model domain-speci�c concepts. During the testing it

became clear that this does not really work well instantly when working with informa-

tion expressed in a knowledge representation language like N3, as it di�ers quite a lot

in its idea from data modeled with static class de�nitions.

Di�erent kinds of possible approaches were identi�ed for integrating expert systems.

First, using objects can be ignored totally. This is however a solution for which the

used expert system software was not designed for. Second, the information used could

be mapped to belief objects, or something similar. This is a bit more like what the

Drools Expert software is designed for, but it is somewhat unwieldy still in practice.

The third approach is to create and use objects that represent the domain concepts

with the expert system software. This makes using the example expert system eas-

48

ier, but requires more classes and translation of information from the used knowledge

representation language (S-APL) to objects.

The �rst approach was tested, as the second one did not seem very useful, and the

third one would have mostly resembled ordinary expert system implementation. Some

problems were identi�ed with the �rst approach. In addition to the problem of the

approach not being supported well by the used expert system software, it was noted

that using S-APL notation and querying for more information during the reasoning

progress will probably require additional solutions in integrating Drools Expert.

For the querying of additional information, there are basically two kinds of ways:

to control the queries from the rule logic, or from the programming code logic. The

�rst is more di�cult to implement, but it adheres better to the principle used in expert

systems of separating programming logic from the rule logic.

Nevertheless of the problems found, the main intelligence interface solution does

seem capable of also supporting expert systems. The integration of the object-oriented

Drools Expert to the entire system just is not a trivial task. It is suggested also that

something else than an object-oriented expert system could be possibly easier to inte-

grate with the entire system, based on the problems which object-oriented programming

support caused in the test.

10.1.3 Semantic reasoner

For testing the solution for semantic reasoners, Jena was used. Jena is a Java frame-

work for building Semantic web applications, originally developed by Hewlett Packard

Labs [45]. An intelligence service was set up which responds to queries about whether

some statement expressed with the ontologies it uses for reasoning is true.

During the test, no major problems were found regarding the solution. After the

intelligence service receives the query, the consumer is queried for the relevant infor-

mation, and semantic reasoning engine checks whether the statement in the query is

true, and the service responds accordingly.

The querying of the additional information could be optimized to not query all the

49

information expressed with the service's ontologies, but this would require integration

of the adapter to the reasoning engine to be tighter. It would also create more mes-

saging, possibly eliminating the bene�ts of the optimization in the communication.

But if optimizing the transfer of consumer's local knowledge is not taken into account,

integrating Jena seemed to be an easy task.

50

11 Analysis of the implementation

The abstract solutions given are claimed to work as purposed, solving the initial prob-

lem described. However, while the example solution seems to work plausibly, more

testing would be needed for better understanding. A system large and dynamic enough

should be used in the testing. The simple test cases serve only as a starting point. Be-

fore larger testing, additional improvements should be considered. Semantic service

signature matching and clustering of the gateway are identi�ed as possible technical

improvements.

One distinct problem with using ontologies as a tool in integration, as pointed out

in [46], is that a change in the ontologies can easily cause problems in the system.

As an example, if there is a change in an ontology that an apple does not mean an

apple anymore, but an orange instead, this needs to be communicated to all the parties

relying on the meaning of an apple. In practical terms, a change in an ontology can

possibly break all components using it. Finding solutions for this could be bene�cial.

If technically heterogeneous components are to be used, the implemented prototype

might become cumbersome. Currently, it is practical with any technology that inter-

faces easily with Java, as the adapters are Java classes. If something other is desired,

a need for another adapter might arise. This starts to sound sub- optimal and overly

complicated. Therefore, if it is desired to avoid such scenarios, the adapter should

be technologically more agnostic, such as a web service interface. Another possibility

could be to de�ne a standard message format and a protocol of communication with

the intelligence services. This could be something encapsulated in ACL, for example.

51

12 Summary

An analysis of the problem of providing intelligence functionalities as services has been

made, and concrete approaches for a solution proposed. One of such was selected to

be tested, and a test implementation was made using the UBIWARE platform.

The problem was decomposed to sub-problems of communication and the interfaces

of the involved parties (the service consumer and the service provider).

The problem of communication was further divided into sub-problems of data syn-

chronization, mutual comprehension, functional knowledge representation and cou-

pling. For data synchronization, no other point was made than that pull type services

are signi�cantly easier to synchronize than push type. For mutual comprehension,

knowledge representation languages and shared ontologies are proposed as solutions.

For functional knowledge representation, interoperable standards are proposed as a

solution. A mediator design pattern and a registry pattern matching services by their

service call signature are proposed as solutions for coupling.

The solutions for the consumer's and service provider's interface apply generally for

both. A knowledge representation language is proposed as a suitable tool for de�ning

service signatures and as suitable content language for intelligence service's answers.

Shared ontologies are proposed as useful in de�ning general service signatures. A call-

back mechanism in the consumer is proposed as a solution for the intelligence services

to be able to communicate their input information requirements dynamically. Separate

adapter components are proposed as a solution to widen the range of applications that

can be integrated to the system.

Three example arti�cial intelligence software applications were integrated to the

test implementation to test the usefulness of the solution. The integration did not

provide much di�culty, and therefore the solution seems even more plausible. It was

however found out that if the technical ideas of the to-be-integrated software application

52

di�er much from the technical idea of intelligence interface, the integration might be

somewhat challenging. 10.1.2 provides an example case.

After all, the problem of providing intelligence functionalities (if they are de�ned

as capabilities of answering questions) as a service, in general, seems to be a problem

of how to provide some speci�c software functionalities as a service. Based on the

research done, it is concluded that at the current state of related software solutions,

raising the abstraction level from that would result in less useful solutions, and lowering

the abstraction level would increase the work needed in integration.

Depending on the amount of intelligence functionalities needed to integrate, a lower

level of abstraction can be acceptable or not. With less intelligence functionalities, there

is less work in integration. A higher amount of intelligence functionalities can be more

practical to integrate with the �intelligence as a service� - approach. High, of course,

being a relative term dependent on the context.

53

13 Acknowledgements

The author wishes to thank the UBIWARE project for providing funding and an in-

teresting research topic for this thesis work.

54

14 References

[1] Johann Eder, Gerti Kappel, and Michael Schre�, Coupling and Cohesion in Object-

Oriented Systems, Technical report, University of Klagenfurt, 1994.

[2] Marvin Minsky, The Society of Mind, Simon & Schuster Inc., New York (NY),

1988.

[3] Michael P. Papazoglou et al., Service-Oriented Computing: State of the Art and

Research Challenges. Computer, Vol. 40 Issue 11 (2007), p. 38�45.

[4] OASIS, Reference Model for Service Oriented Architecture 1.0, available in WWW

<URL: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf>, referenced

6.8.2010.

[5] M. P. Papazoglou and D. Georgakopoulos, Service-Oriented Computing, Commu-

nications of the ACM, Vol. 46 Issue 10 (2003), p. 25�28.

[6] The Web Services-Interoperability Organization, Basic Pro�le,

Version 1.0 (Final), available in WWW <URL:

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html>,

16.4.2004.

[7] Joseph Bih, Service Oriented Architecture (SOA) A New Paradigm to Implement

Dynamic E-business Solutions, ACM Ubiquity, August (2006), p. 4:1�4:1.

[8] Stuart J. Russell and Peter Norvig, Arti�cial Intelligence: A Modern Approach,

Prentice-Hall International, Inc., New Jersey, 1995.

[9] Nicholas R. Jennings, An Agent-based Approach for Building Complex Software

Systems, Communications of the ACM, Vol. 44 Issue 4 (2001), p. 35�41.

55

[10] Michael N. Huhns and Munindar P. Singh, Readings in Agents, Morgan Kaufmann

Publishers, Inc., San Francisco, 1998.

[11] Nicholas B. Jennings and Michael J. Wooldridge, Applications of Intelligent

Agents, in Agent Technology - Foundations, Applications and Markets, (ed.

Nicholas R. Jennings and Michael J. Wooldridge), Springer, Berlin Heidelberg,

1998, p. 3�28.

[12] Thomas R. Gruber, Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, International Journal of Human-Computer Studies, (Vol. 43,

Issues 5-6) 1995, p. 907�928.

[13] Michael Uschold and Michael Gruninger, Ontologies and Semantics for Seamless

Connectivity, ACM SIGMOD Record, Vol. 33, Issue 4 (2004), p. 58�64

[14] Michel Klein et al., Ontologies and Schema Languages on the Web, in Spinning

the Semantic Web, (ed. Dieter Fensel et al.), The MIT Press, Cambridge (MA),

2005, p. 95�139.

[15] Michael K. Smith, Chris Welty, Deborah L. McGuinness, OWL Web Ontology Lan-

guage Guide, available in WWW <URL: http://www.w3.org/TR/owl-guide/>,

referenced 19.8.2010.

[16] Tim Berners-Lee, Notation3 (N3) A readable RDF syntax, available in WWW

<URL: http://www.w3.org/DesignIssues/Notation3>, referenced 19.8.2010.

[17] Ora Lassila and Ralph R. Swick, Resource Description Framework

(RDF) Model and Syntax Speci�cation, available in WWW <URL:

http://www.w3.org/TR/PR-rdf-syntax/>, referenced 19.8.2010.

[18] Bernard Widrow and Michael A. Lehr, 30 Years of Adaptive Neural Networks:

Perceptron, Madaline, and Backpropagation in Proceedings of the IEEE (Vol 78,

Issue 9) 1990, p. 1415�1442.

56

[19] Simon Haykin, Neural Networks - Comprehensive Foundation, IEEE Computer

Society Press, Macmillan College Publishing Company, Inc., New York (NY),

1994.

[20] Seppo Linnainmaa, Asiantuntijajärjestelmät, in Tekoälyn ensyklopedia, (ed. Eero

Hyvönen, Ilkka Karanta, Markku Syrjänen), Gaudeamus, Hämeenlinna, 1993,

p. 264�276.

[21] Chuck Williams, Expert Systems, Knowledge Engineering, and AI Tools - An

Overview, in Expert Systems - A Software Methodology for Modern Applications,

(ed. Peter G. Raeth), IEEE Computer Society Press, Los Alamitos (CA), 1990,

p. 2�6.

[22] Larry Bielawski and Robert Lewand, Intelligent Systems Design - Integrating Ex-

pert Systems, Hypermedia, and Database Technologies, John Wiley & Sons, Inc.,

New York (NY), 1991.

[23] Peter J. Denning, Towards a Science of Expert Systems, in Expert Systems -

A Software Methodology for Modern Applications, (ed. Peter G. Raeth), IEEE

Computer Society Press, Los Alamitos (CA), 1990, p. 420�423.

[24] Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, The MIT

Press, Cambridge (MA), 2004.

[25] Je� Y. C. Pan and Jay M. Tenenbaum, An Intelligent Agent Framework for En-

terprise Integration, IEEE Transactions on Systems, Man, and Cybernetics, Vol.

21, No. 6 (1991), p. 1391�1408.

[26] Yolanda Gil, Knowledge Mobility, in Spinning the Semantic Web, (ed. Dieter

Fensel et al.), The MIT Press, Cambridge (MA), 2005, p. 253�278.

[27] Erich Gamma et al., Design Patterns - Olio-ohjelmointi - Suunnittelumallit,

(trans. Anita Toivonen), IT Press, Helsinki, 2001.

57

[28] Martin Fowler et al., Patterns of Enterprise Application Architecture, Addison-

Wesley, Boston (MA), 2003.

[29] Sheila A. McIlraith, Tran Cao Son and Honglei Zeng, Semantic Web Services,

Intelligent Systems (IEEE), 16 (March 2001), p. 46�53.

[30] Sergiy Nikitin, Artem Katasonov and Vagan Terziyan, Ontonuts: Reusable seman-

tic components for multi-agent systems, in The Fifth International Conference on

Autonomic and Autonomous Systems (ICAS 2009), 21�25 April, 2009, IEEE CS

Press, Valencia, Spain, p. 200�207.

[31] Leslie Pack Kaelbling, Michael L. Littman and Andrew W. Moore, Reinforcement

Learning: A Survey, Journal of Arti�cial Intelligence Research, 4 (1996), p. 237�

285

[32] Dominic Greenwood and Monique Calisti, Engineering Web Service - Agent Inte-

gration, in 2004 IEEE International Conference on Systems, Man and Cybernetics,

10�13 October, 2004, p. 1918�1925.

[33] M. Omair Sha�q, Ying Ding and Dieter Fensel, Bridging Multi Agent Systems and

Web Services: towards interoperability between Software Agents and Semantic Web

Services, in Proceedings of the 10th IEEE International Enterprise Distributed

Object Computing Conference (EDOC'06), IEEE Computer Society, Washington

(DC), 2006, p. 85�96.

[34] Katia Sycara,Multi-agent Infrastructure, Agent Discovery, Middle Agents for Web

Services and Interoperation, in Multi-agents systems and applications (ed. Jaime

G. Carbonnell and J. Siekmann), Springer-Verlag New York, Inc., New York (NY),

2001, p. 17�49.

[35] Michael N. Huhns, Agents as Web Services, IEEE Internet Computing, July-

August (2002), p. 93�95.

[36] Katia Sycara et al., Automated discovery, interaction and composition of Semantic

Web services, Journal of Web Semantics, 1 (2003), p. 27�46.

58

[37] Elizabeth A. Kendall and Margaret T. Malkoun, Design Patterns for the Devel-

opment of Multiagent Systems in Multi-Agent Systems Methodologies and Appli-

cations, (ed. Chengqi Zhang and Dickson Lukose), Springer-Verlag, Berlin Heidel-

berg, 1997.

[38] Fabio Bellifemine et al., JADE: A software framework for developing multi-agent

applications. Lessons learned, Information and Software Technology, 50 (2008),

p. 10�21.

[39] Fabio Bellifemine, Agostino Poggi and Giovanni Rimassa, Developing Multi-

agent Systems with JADE, in Itelligent Agents VII, (ed. C Castelfranchi and Y.

Lespérance), Springer-Verlag, Berlin Heidelberg, 2001, p. 89�103.

[40] Telecom Italia SpA, JADE project web site, available in WWW <URL:

http://jade.tilab.com/>, referenced 19.8.2010.

[41] Industrial Ontologies Group, UBIWARE project description, available in WWW

<URL: http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm>, refer-

enced 31.8.2010.

[42] Artem Katasonov and Vagan Terziyan, Semantic Agent Programming Language

(S-APL): A Middleware Platform for the Semantic Web, in Proceedings of the

2nd IEEE International Conference on Semantic Computing, August 4�7, 2008,

Santa Clara, USA, Copyright IEEE, p. 504�511.

[43] Artem Katasonov, UBIWARE Platform and Semantic Agent Pro-

gramming Language - Developer's guide, available in WWW <URL:

http://users.jyu.fi/ akataso/SAPLguide.pdf>, referenced 31.8.2010.

[44] JBoss Community team, Drools, available in WWW <URL:

http://jboss.org/drools>, referenced 22.8.2010.

[45] Jena Semantic Web Framework, available in WWW <URL:

http://jena.sourceforge.net/>, referenced 29.8.2010.

59

[46] Sergiy Nikitin, Vagan Terziyan and Michal Nagy, Mastering Intelligent Clouds

- Engineering Intelligent Data Processing Services in the Cloud, in Proceedings

of the 7th International Conference on Informatics in Control, Automation and

Robotics (ICINCO-2010), Vol.1, (ed. J. Gilipe, J. Andrade, and J.-L. Ferrier),

15�18 June, 2010, Funchal, Madeira, Portugal, p. 174�181.

60

A Test case mathematical model

The test case with a mathematical model has two �les, TestAIAdapterAgent1.java and

TestAIBehaviour1.java. They represent what a mathematic model's integrator would

need to implement and are both relatively simple.

// TestAIAdapterAgent1 . java

package a i ;

import java . u t i l . ArrayList ;

import java . u t i l . L i s t ;

public class TestAIAdapterAgent1 extends In te l l i g enceAdapte rAgent {

@Override

protected void setup () {

Lis t<Str ing> matches = new ArrayList<Str ing >() ;

matches . add ("<http ://www. ubiware . jyu . f i / sap l#I> " +

"<http ://www. ubiware . jyu . f i / s ap l#i s> " +

"<http ://www. ubiware . jyu . f i / t e s t#s ick>") ;

addMatchStrings (matches) ;

r e g i s t e r (1 000) ;

this . addBehaviour (new TestAIBehaviour1 (this)) ;

}

}

// TestAIBehaviour1 . java

package a i ;

61

import jade . lang . a c l . ACLMessage ;

public class TestAIBehaviour1 extends I n t e l l i g en c eBehav i ou r {

public TestAIBehaviour1 (Inte l l i g enceAdapte rAgent aiAgent) {

super (aiAgent) ;

}

@Override

public void ac t i on () {

ACLMessage r e c e i v ed = rece iveQuery () ;

i f (r e c e i v ed != null) {

// Query i s r e c e i v ed . Querying a d d i t i o n a l in format ion .

St r ing r ep ly = askForOne (

"<http ://www. ubiware . jyu . f i / t e s t#pulse> " +

"<http ://www. ubiware . jyu . f i / sap l#i s> ?x" , r e c e i v ed) ;

i f (r ep ly == null) return ;

int pu l s e = 0 ;

try {

pu l s e = In t eg e r . pa r s e In t (r ep ly) ;

} catch (NumberFormatException e) {

f a i l ("Could not understand pu l s e value . " , r e c e i v ed) ;

}

r ep ly = askForOne ("<http ://www. ubiware . jyu . f i / t e s t#age> " +

"<http ://www. ubiware . jyu . f i / sap l#i s> ?x" , r e c e i v ed) ;

i f (r ep ly == null) return ;

int age = 0 ;

try {

age = In t eg e r . pa r s e In t (r ep ly) ;

} catch (NumberFormatException e) {

f a i l ("Could not understand age value . " , r e c e i v ed) ;

}

St r ing i s S i c k = " f a l s e " ;

// The ac t ua l i n t e l l i g e n c e f u n c t i o n a l i t y

62

i f (pu l s e > 90) i s S i c k = " true " ;

i f (pu l s e > 80 && age > 40) i s S i c k = " true " ;

answer (i s S i ck , r e c e i v ed) ;

return ;

} else {

block () ;

}

}

}

63

B Test case expert system

The test case with an expert system has �ve �les, TestAIAdapterAgent2.java, Tes-

tAIBehaviour2.java , ConsumerConnection.java, Answer.java and testrules.drl. They

represent what an expert system's integrator would need to implement and are both

relatively simple. The �le testrules.drl contains the rules the expert system uses in its

reasoning, the knowledge base. The �les ConsumerConnection.java and Answer.java

are utility classes.

// TestAIAdapterAgent2 . java

package a i ;

import java . u t i l . ArrayList ;

import java . u t i l . L i s t ;

public class TestAIAdapterAgent2 extends In te l l i g enceAdapte rAgent {

@Override

protected void setup () {

Lis t<Str ing> matches = new ArrayList<Str ing >() ;

matches . add ("<http ://www. ubiware . jyu . f i / sap l#I> " +

"<http ://www. ubiware . jyu . f i / t e s t#should> " +

"<http ://www. ubiware . jyu . f i / t e s t#getRepaired>") ;

addMatchStrings (matches) ;

r e g i s t e r (1 000) ; // The parameter i s the t imeout .

this . addBehaviour (new TestAIBehaviour2 (this)) ;

}

}

64

// TestAIBehaviour2 . java

package a i ;

import org . d r oo l s . KnowledgeBase ;

import org . d r oo l s . KnowledgeBaseFactory ;

import org . d r oo l s . bu i l d e r . KnowledgeBuilder ;

import org . d r oo l s . bu i l d e r . KnowledgeBuilderFactory ;

import org . d r oo l s . bu i l d e r . ResourceType ;

import org . d r oo l s . i o . ResourceFactory ;

import org . d r oo l s . runtime . State fu lKnowledgeSess ion ;

import jade . lang . a c l . ACLMessage ;

public class TestAIBehaviour2 extends I n t e l l i g en c eBehav i ou r {

public TestAIBehaviour2 (Inte l l i g enceAdapte rAgent aiAgent) {

super (aiAgent) ;

}

@Override

public void ac t i on () {

ACLMessage r e c e i v ed = rece iveQuery () ;

i f (r e c e i v ed != null) {

// Query i s r e c e i v ed . The expe r t system i s r e s p on s i b l e

// f o r query ing a d d i t i o n a l in format ion .

KnowledgeBase kbase = KnowledgeBaseFactory . newKnowledgeBase () ;

KnowledgeBuilder kbu i l d e r = KnowledgeBuilderFactory

. newKnowledgeBuilder () ;

kbu i l d e r . add (ResourceFactory . newClassPathResource (

" t e s t r u l e s . d r l " , g e tC la s s ()) ,

ResourceType .DRL) ;

i f (kbu i l d e r . hasErrors ()) {

System . e r r . p r i n t l n (kbu i ld e r . g e tEr ro r s () . t oS t r i ng ()) ;

}

65

kbase . addKnowledgePackages (kbu i l d e r . getKnowledgePackages ()) ;

State fu lKnowledgeSess ion k s e s s i on =

kbase . newState fu lKnowledgeSess ion () ;

k s e s s i on . s e tGloba l (" connect ion " ,

new ConsumerConnection (this , r e c e i v ed)) ;

f ina l Answer expertAnswer = new Answer (fa l se) ;

k s e s s i on . s e tGloba l ("answer" , expertAnswer) ;

k s e s s i on . f i r eA l lRu l e s () ;

answer (Boolean . t oS t r i ng (expertAnswer . getValue ()) , r e c e i v ed) ;

return ;

} else {

block () ;

}

}

}

// ConsumerConnection . java

package a i ;

import jade . lang . a c l . ACLMessage ;

public class ConsumerConnection {

private f ina l ACLMessage r e c e i v ed ;

private f ina l I n t e l l i g en c eBehav i ou r behaviour ;

public ConsumerConnection (I n t e l l i g en c eBehav i ou r behaviour ,

ACLMessage r e c e i v ed) {

this . behaviour = behaviour ;

this . r e c e i v ed = re c e i v ed ;

}

public St r ing askForOne (St r ing infoQuery) {

66

return behaviour . askForOne (infoQuery , r e c e i v ed) ;

}

public int askForOneInt (S t r ing infoQuery , int onFai l) {

try {

return I n t eg e r . pa r s e In t (

behaviour . askForOne (infoQuery , r e c e i v ed)) ;

} catch (NumberFormatException e) {

return onFai l ;

}

}

}

// Answer . java

package a i ;

public class Answer {

private boolean value ;

private St r ing r ep ly ;

public Answer (boolean de fau l tVa lue) {

this . va lue = de fau l tVa lue ;

r ep ly = "" ;

}

public boolean getValue () {

return value ;

}

public void setValue (boolean value) {

this . va lue = value ;

}

67

public void addToReply (S t r ing add i t i on) {

setReply (getReply () + add i t i on) ;

}

public St r ing getReply () {

return r ep ly ;

}

public void setReply (St r ing r ep ly) {

this . r ep ly = rep ly ;

}

}

// t e s t r u l e s . d r l

g l oba l a i . ConsumerConnection connect ion ;

g l oba l a i . Answer answer ;

r u l e " Susp i c i ou s motor value − bad o i l p r e s su r e "

when

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#fa i lRa t e > " +

<http : //www. ubiware . jyu . f i / s ap l#is> ?x " , 0) > 20)

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#o i lP r e s su r e > " +

"<http ://www. ubiware . jyu . f i / s ap l#i s> ?x" , 100) < 100)

then

answer . setValue (true) ;

answer . addToReply ("Bad o i l p r e s su r e ") ;

end

ru l e " Susp i c i ou s motor value − batte ry l e v e l low"

when

68

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#fa i lRa t e > " +

"<http ://www. ubiware . jyu . f i / s ap l#i s> ?x" , 0) > 10)

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#batteryLeve l> " +

"<http ://www. ubiware . jyu . f i / sap l#i s> ?x" , 100) < 50)

then

answer . setValue (true) ;

answer . addToReply ("Low batte ry l e v e l ") ;

end

ru l e " Susp i c i ou s motor value − bad f u e l consumption"

when

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#fa i lRa t e > " +

"<http ://www. ubiware . jyu . f i / s ap l#i s> ?x" , 0) > 50)

eva l (connect ion . askForOneInt

("<http ://www. ubiware . jyu . f i / t e s t#fuelConsumption> " +

"<http ://www. ubiware . jyu . f i / sap l#i s> ?x" , 100) > 100)

then

answer . setValue (true) ;

answer . addToReply ("Bad f u e l consumption") ;

end

69

C Test case semantic reasoner

The test case with a semantic reasoner has two �les, TestAIAdapterAgent3.java and

TestAIBehaviour3.java. They represent what a semantic reasoner's integrator would

need to implement. The sample code has some unwieldy manual string parsing, which

could be replaced by a cleaner implementation. The issue is, however, irrelevant for

the work's topic.

// TesAIAdapterAgent3 . java

package a i ;

import java . u t i l . ArrayList ;

import java . u t i l . L i s t ;

public class TestAIAdapterAgent3 extends In te l l i g enceAdapte rAgent {

@Override

protected void setup () {

Lis t<Str ing> matches = new ArrayList<Str ing >() ;

matches . add ("<http ://www. owl−on t o l o g i e s . com/ gene ra t i on s . owl#.∗> " +

"<http ://www. owl−on t o l o g i e s . com/ gene ra t i on s . owl#.∗> " +

"<http ://www. owl−on t o l o g i e s . com/ gene ra t i on s . owl#.∗>") ;

addMatchStrings (matches) ;

r e g i s t e r (1 000) ; // The parameter i s the t imeout .

this . addBehaviour (new TestAIBehaviour3 (this)) ;

}

}

// TestAIBehaviour3 . java

70

package a i ;

import java . u t i l . L i s t ;

import com . hp . hpl . j ena . onto logy . OntModel ;

import com . hp . hpl . j ena . rd f . model . InfModel ;

import com . hp . hpl . j ena . rd f . model . Model ;

import com . hp . hpl . j ena . rd f . model . ModelFactory ;

import com . hp . hpl . j ena . rd f . model . Property ;

import com . hp . hpl . j ena . rd f . model . Resource ;

import com . hp . hpl . j ena . rd f . model . ResourceFactory ;

import com . hp . hpl . j ena . rd f . model . S e l e c t o r ;

import com . hp . hpl . j ena . rd f . model . S imp l eSe l e c to r ;

import com . hp . hpl . j ena . r ea sone r . Reasoner ;

import com . hp . hpl . j ena . r ea sone r . ReasonerRegistry ;

import jade . lang . a c l . ACLMessage ;

public class TestAIBehaviour3 extends I n t e l l i g en c eBehav i ou r {

private OntModel ontModel ;

public TestAIBehaviour3 (Inte l l i g enceAdapte rAgent aiAgent) {

super (aiAgent) ;

ontModel = ModelFactory . createOntologyModel () ;

ontModel . read (" f i l e : /// example/ gene ra t i on s2 . n3" , "N3") ;

}

@Override

public void ac t i on () {

ACLMessage r e c e i v ed = rece iveQuery () ;

i f (r e c e i v ed != null) {

// Query i s r e c e i v ed . Querying a d d i t i o n a l in format ion .

List<Str ing> rep ly = askForAl l ("?x ?y ? z" , r e c e i v ed) ;

71

// Parsing the consumer ' s b e l i e f s to the in f e r ence model

// f o r reasoning (nes ted b e l i e f s are not suppor ted) .

for (S t r ing s t r : r ep ly) {

s t r = s t r . r ep l a c e ("<" , "") ;

s t r = s t r . r ep l a c e (">" , " ") ;

s t r = s t r . tr im () ;

S t r ing [] s p l i t t e d = s t r . s p l i t ("\\ s+") ;

try {

Resource sub j e c t =

ResourceFactory . c reateResource (s p l i t t e d [0]) ;

Property p r ed i c a t e =

ResourceFactory . c r eateProper ty (s p l i t t e d [1]) ;

Resource ob j e c t =

ResourceFactory . c reateResource (s p l i t t e d [2]) ;

ontModel . add (

ResourceFactory . createStatement (

subjec t , p red i ca te , ob j e c t)) ;

} catch (Exception e) {

System . out . p r i n t l n (

"Error with adding b e l i e f " + s t r +

" to the model . Stack t r a c e : ") ;

e . pr intStackTrace () ;

}

}

Reasoner owl = ReasonerRegistry . getOWLMiniReasoner () ;

Reasoner wreasoner = owl . bindSchema (ontModel) ;

InfModel i n f b = ModelFactory . c reate In fMode l (wreasoner , ontModel) ;

// The answer ' s content i s parsed to s u i t a b l e format .

St r ing [] s p l i t t e d =

re c e i v ed . getContent () . s p l i t (" : : ") [2] . s p l i t ("\\ s+") ;

for (int i = 0 ; i < s p l i t t e d . l ength ; i++) {

s p l i t t e d [i] = s p l i t t e d [i] . r e p l a c e (">" , "") ;

s p l i t t e d [i] = s p l i t t e d [i] . r e p l a c e ("<" , "") ;

}

72

S e l e c t o r s e l e c t = new S imp l eSe l e c to r (

i n f b . getResource (s p l i t t e d [0]) ,

i n f b . getProperty (s p l i t t e d [1]) ,

i n f b . getResource (s p l i t t e d [2])) ;

Model quer i ed = in fb . query (s e l e c t) ;

S t r ing r ep l yS t r = " f a l s e " ;

i f (quer i ed . l i s t S t a t emen t s () . hasNext ()) r ep l yS t r = " true " ;

answer (rep lySt r , r e c e i v ed) ;

return ;

} else {

block () ;

}

}

}

73

