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Abstract

I numerically simulated one-dimensional lattice systems describable by the
Hubbard-model and containing a �at-band. I studied the manner in which
particles initially held in place by a parabolic con�nement potential are dis-
persed across the lattice after the potential is removed. I also studied currents
�owing within one-dimensional Hubbard-rings. In both of these cases I ob-
served that the �at dispersion relation of the �at-band manifests itself as the
immobility of the particles occupying it. Particles occupying �at-band states
do not disperse even after the removal of any external con�nement, neither
do they contribute to a current within a ring.



Tiivistelmä

Optiset hilat ovat periodisia sähköisiä potentiaaleja, jotka muodostuvat vas-
takkain asetettujen lasersäteiden interferoidessa. Tällaisen potentiaalin mi-
nimikohtiin voidaan kaapata ultrakylmiä neutraaleja atomeja, jolloin muo-
dostuu eräänlainen keinotekoinen kidehila. Optiset hilat ovat monella tapaa
analogisia todellisten kiteisten materiaalien hilojen kanssa, mutta ne ovat
merkittävästi yksinkertaisempia mallintaa ja havainnoida, ja lisäksi niiden
parametrit ovat tarkasti säädettävissä. Optiset hilat ovatkin monikäyttöisiä
ja tehokkaita kokeellisia työkaluja, ja sen jälkeen kun niiden rakentaminen
tuli mahdolliseksi laser-jäähdytysmenetelmien kehityksen seuraksena pari vuo-
sikymmentä sitten, ne ovat löytäneet sovelluksia monilla eri fysiikan aloilla
aina kiinteän aineen fysiikasta kvantti-informaatioteoriaan.

Yksi optisten hilojen mielenkiintoinen piirre on se, että monessa tapauk-
sessa niitä on mahdollista mallintaa suurella tarkkuudella käyttäen hyvin
tunnettuja ja suhteellisen yksinkertaisia Hubbard-tyyppisiä Hamiltonin ope-
raattoreita. Tässä työssä keskityin yksiulotteisiin optisiin hiloihin, joita mal-
linsin käyttäen yksiulotteista Hubbardin mallia. Tutkimiani hiloja yhdisti
se, että niillä oli vähintään yksi energiavyö, jonka dispersio oli vakio kaikilla
aaltoluvun arvoilla. Tälläisellä dispersiottomalla energiavyöllä sijaitsevalla
hiukkasella on ääretön efektiivinen massa, ja vastaavasti sen ryhmänopeus
on nolla, eikä se täten liiku hilassa lainkaan.

Suoritin numeerisia simulaatioita kahdessa erilaisessa Hubbard-hilassa
(katso luku 3). Ensimmäisessä osassa tutkin kuinka johonkin hilan osaan
keskittynyt hiukkasrypäs leviää ajan kuluessa. Muodostin ensin alkutilan
laskemalla perustilan systeemille johon sisältyi ulkoinen parabolinen keskit-
tävä potentiaali. Laskin sitten tämän tilan aikakehityksen kun ulkoinen po-
tentiaali oli poistettu. Toisessa osassa tutkin virtaa hiloista muodostetuissa
renkaissa, ja erityisesti sitä miten virta muuttui hiukkaslukumäärän funk-
tiona. Molemmissa tapauksissa kiinnitin huomiota siihen miten dispersiot-
tomien energiavöiden miehitys vaikutti tuloksiini. Havaitsin että tällaisilla
vöillä olevat hiukkaset eivät hajaannu vaikka ulkoista keskittävää potentiaalia
ei olisi, eivätkä ne myöskään vaikuta renkaassa kulkevaan virtaan.
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Chapter 1

Introduction

Arti�cial crystal structures of neutral atoms held in periodic optical poten-
tials are a relatively new and a highly versatile experimental tool which of-
fers many intriguing possibilities for studying quantum many-body systems
in precisely controlled environments (See review [7]). After the realization of
these optical lattices was made possible some two decades ago by advances
in laser cooling technology, they have been utilized widely in diverse �elds
ranging from solid-state physics to quantum information theory.

One interesting aspect of these systems is that in many cases they can
be modeled to a very high accuracy using the well known and relatively
simple Hubbard-type Hamiltonians. In this work I will concentrate on one-
dimensional optical lattices described by a one-dimensional Hubbard model.
I'll study a few di�erent types of these Hubbard-chains, which all share the
property of containing an energy band with a �at dispersion for all values
of the wave number. These so-called �at-bands are characterized by the
immobility of the particles occupying them.

I perform numerical simulations concentrating on two types of Hubbard-
chains: the sawtooth-chain and the diamond-chain (see chapter 3). In the
�rst part I will study the manner in which a concentrated bunch of particles
spreads out within the chains. I �rst obtain the initial bunched up state by
computing the ground state of a system with an external parabolic potential
overlaid across the lattice. I then compute the time evolution of this state
when the external potential has been switched o�. In the second part I
study currents �owing within rings formed from the chains, and especially
how these currents depend on the number of particles in the ring. In both
of these cases I will attempt to �nd manifestations of the immobility of the
�at-band particles.
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Chapter 2

Theory

2.1 Optical Lattice

Optical lattices are periodic electric potentials created by interference of
counter-propagating laser beams. They can be used to capture ultra-cold
atomic gases consisting of neutral atoms, creating periodic many-body sys-
tems for use in experiments. The idea of using standing light waves for
trapping of atoms was �rst put forward by V.S. Letokhov in 1968 [1], and
the �rst optical lattice was build in 1987 [2]. In this �rst experiment cesium
atoms were used, but afterwards many other species of atomic gases have
been inserted into optical lattices.

A System consisting of atoms in an optical lattice is in many ways anal-
ogous to a system of electrons in a crystal lattice. However, compared to
corresponding condensed-matter systems, optical lattices are dramatically
simpler to model. They have no defects, and they do not support phononic
excitations. They are also highly tunable, and easy to observe. This makes
them extremely useful as model systems for studying theoretical concepts of
condensed-matter physics [3], as well as fundamental problems of many-body
quantum mechanics. Optical lattices can also be used to trap and study Bose-
Einstein condensates [4, 6], and the extraordinary control allowed by them
has given them applications in the �eld of quantum information processing
[5, 3].

An optical lattice is build by arranging laser beams in such a way, that
their interference creates a periodic standing wave. In such case the average
electric �eld intensity becomes periodic in space, and consequently the atoms
will receive a di�erent induced dipole moment depending on their location.
The interaction between this dipole moment and the electric �eld results in
a force, which focuses the particles either on the maxima, or the minima, of
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the electric �eld. This force is known as the dipole force, and it is explained
in greater detail in the section 2.1.1.

In practice an optical lattice is never completely homogeneous, since the
intensity of a laser beam is not constant. The intensity drops towards the
edges of the beam, which results in a con�ning potential superimposed over
the lattice. This con�nement is typically relatively weak, having an oscil-
latory frequency two to three orders of magnitude lower than that of the
potential wells of the lattice [7]. In this work I'll assume its e�ect to be
negligible, and will not take it into account.

There exists an alternative way to build an optical lattice, where the elec-
tric �eld intensity remains constant across space, and instead the polarization
of the standing wave changes periodically between linear and cylindrical. In
this kind of lattice an e�ect known as Sisyphus cooling takes place, which
can cool the atoms down to temperatures below a microkelvin [6, p. 84]. In
the following discussion, however, these types of constructions will not come
up.

2.1.1 The Dipole Force

An atom moving in an electric �eld will receive an induced dipole moment,
and have its energy levels shifted by the Stark e�ect. In the so-called dipole
approximation, in which the electric �eld is assumed to be constant on atom
sized length scales, the Hamiltonian describing the interaction between the
atom and the electric �eld can be written as

Ĥd = −d · E ,

where d = −e
∑

i ri is the dipole moment operator, ri are the positions of
the electrons with respect to the nucleus and E is the electric �eld vector.
The electric �eld vector can be expressed in the form

E(r, t) = E+ωe
−iωt + E−ωeiωt,

where choosing E−ω = E∗+ω ensures that E is real.
In the lowest order the interaction between the electric �eld and an atom

can happen in two ways. Either the atom �rst absorbs an photon, and then
emits it, or vice versa (see �gure 2.1). Before and after the process the atom
is in its ground state g, and between the interactions in an excited state e.
These processes cause the ground state energy of the atom to shift. The
e�ect is known as AC Stark-e�ect, because it is analogous to the Stark-e�ect
for time independent electric �elds. Based on the graphs in �gure 2.1, one
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Figure 2.1: Interaction between an atom on its ground state, and a time de-
pendent electric �eld. Solid line depicts the atom, and dashed line a photon.

can write down a perturbative expression for the energy shift. Vertices of the
graphs give transition amplitudes of the form

−〈final state|d · E±ω|initial state〉,

where + corresponds to photon emission, and − to photon absorption. The
internal propagator between the vertices is

1

(Eg ∓ ~ω)− Ee
,

where ~ω is the energy of the photon, and − corresponds to an emitted and
+ to an absorbed photon. Multiplying these terms together, and summing
over the graphs and all possible excited states, one gets for the ground state
energy shift an expression

4Eg =
∑
e

〈g|d · E+ω|e〉
1

Eg − Ee + ~ω
〈e|d · E−ω|g〉

+
∑
e

〈g|d · E−ω|e〉
1

Eg − Ee − ~ω
〈e|d · E+ω|g〉

=
∑
e

|〈e|d · ê|g〉|2
(

1

Eg − Ee + ~ω
+

1

Eg − Ee − ~ω

)
|Eω|2. (2.1)

In the case of a time independent electric �eld, the polarizability α of
an atom is de�ned as the factor between the electric �eld intensity and the
expectation value of the dipole moment operator

〈d〉 = αE .

The energy of the dipole in the dipole approximation is E = −〈d〉 · E . A
change in the electric �eld then results in an energy shift of

dE = −〈d〉 · dE = −αEdE ,
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and the total energy shift when integrating over the electric �eld from zero
to E is

E − E0 = 4E = −1

2
αE2. (2.2)

In the case of a time dependent electric �eld, one can use an expression
analogous to (2.2)

4E = −1

2
α(ω) < E(r, t)2 >t,

where α(ω) is the polarizability, which now depends on the laser �eld fre-
quency, and < ... >t denotes a time average. This form is achieved, when
one inserts into equation (2.1)

|Eω|2 =
1

2
< E(r, t)2 >t

and de�nes

α(ω) =
∑
e

|〈e|d · ê|g〉|2
(

1

Ee − Eg + ~ω
+

1

Ee − Eg − ~ω

)
. (2.3)

From equation (2.3) one sees, that when the radiation frequency matches with
an atomic resonance, that is (Ee − Eg)/~ = ω, the term 1/(Ee − Eg − ~ω)
diverges. Therefore when close to the resonant frequency, a good approxima-
tion for the polarizability can be achieved by considering only this divergent
term. Equation (2.3) then simpli�es to the form

α(ω) ≈ |〈e|d · ê|g〉|2

Ee − Eg − ~ω
.

The divergence in the polarizability is a consequence of ignoring the �nite
lifetime of the excited state. Let the transition frequency from the excited
state e to the ground state g be Γe. The amplitude for the excited state
must then contain a factor exp(−Γet/2) describing the exponential decay.
Because the time dependence of an energy eigenstate is described by a factor
exp(−iEet/~), the �nite lifetime can be handily accounted for by writing the
energy in the form

E ′e = Ee − i~Γe/2,

which gives

e−iE
′
et/~ = e−i(Ee−i~Γe/2t)/~ = e−iEet/~ · e−Γet/2.

Equation for the polarizability (2.3) then takes the form

α(ω) ≈ |〈e|d · ê|g〉|2

Ee − i~Γe/2− Eg − ~ω
,
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and the energy shift of the ground state is

4Eg = −1

2
Re(α(ω)) < E(r, t)2 >t, (2.4)

where

Re(α(ω)) ≈ (Ee − Eg − ~ω)|〈e|d · ê|g〉|2

(Ee − Eg − ~ω)2 + (~Γe/2)2
. (2.5)

The energy shift acts as an e�ective external potential, which exerts to
the atom a force

Fd = −∇V (r) =
1

2
Re(α(ω))∇ < E(r, t)2 >t . (2.6)

The di�erence between the laser frequency and the atomic transition fre-
quency δ = ω− (Ee−Eg)/~ is often called the detuning. From the equation
for the polarizability (2.5) it can be seen, that if δ > 0 (blue detuning) the
force points towards the minima of the electric �eld, and if δ < 0 (red de-
tuning), it points towards the maxima. Furthermore, the strength of the
dipole force (2.6) is dependent on the value of the detuning. There are thus
two ways to adjust the depth of the optical lattice potential: changing the
detuning, or changing the laser intensity. In an actual experiment the laser
frequency has to be set su�ciently far from any atomic transition to avoid
the gas being heated by the absorption of photons from the beam.

2.1.2 Constructing an Optical Lattice

The equation (2.4) gives the potential felt by an atom moving in an electric
�eld

V (r) = −1

2
Re(α(ω)) < E(r, t)2 >t,

where Re(α(ω)) is the real part of the polarizability (equation 2.5), and
< E(r, t)2 >t is the time average of the square of the electric �eld. The
potential landscape is thus determined by the average electric �eld intensity.
If it varies in space, there will be a force exerted on the atom.

Two lasers, having the same frequency and being linearly polarized along
the same plane, placed oppositely against each other, will generate an electric
�eld of the form

E = E0cos(qx− ωt) + E0cos(−qx− ωt) = 2E0cos(qx)cos(ωt).

The time average of the square of this �eld is

< E2 >t= 4E2
0 cos

2(qx)
1

2π/ω

∫ 2π/ω

0

cos2(ωt)dt = 2E2
0 cos

2(qx) = E2
0 (1+cos(2qx)).
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The result is then a one-dimensional periodic electric potential, i.e. an optical
lattice. If two or three of this kind of laser pairs, with mutually orthogonal
polarization vectors, are set up to cross in the same spot, the result is re-
spectively a two- or three-dimensional cubic lattice.

By arranging the lasers in a suitable manner, almost any kind of periodic
potential can be realized. Changing the angle of incidence of a laser pair
changes the lattice constant of the resulting lattice. If the laser frequencies
di�er slightly the result is a moving lattice, and by changing the frequency
di�erence over time one can make the lattice accelerate. The depth of the
potential wells can be changed by adjusting the intensity of the lasers. Even
the strength of the interaction between the atoms can be adjusted, through an
e�ect known as the Feshbach resonance (see [9] for a review on the subject).
An optical lattice is then an extremely versatile and a highly adjustable
experimental tool.

2.2 Particles in a Lattice

Building a quantum mechanical description of a particle in a lattice starts
with the question: what do the energy eigenfunctions look like in an in�nite
periodic potential? Clearly in the limit of a very weak lattice potential, the
states should resemble those of a free particle, i.e. plane waves. Conversely
in the limit of an extremely strong potential, when the potential wells on
the lattice sites become essentially separated, the eigenstates should become
discrete bound states resembling those of a harmonic oscillator. One would
expect then that for an average potential strength the states would share
properties from both of these extremes, being perhaps both k-dependent as
the plane waves, and discrete as the harmonic states.

This is in fact the case. The form of an energy eigenfunction in an in�nite
periodic potential was �rst given by Felix Bloch in 1928 [8], and these func-
tions became known as Bloch waves. A Bloch wave function is a modulated
plane wave, the modulating function having the periodicity of the underlying
potential. It can be written as

ϕαk(x) = eik·xuαk(x), (2.7)

where k is called the crystal momentum and uαk(x + R) = uαk(x) for any
lattice vector R (for derivation see [10, p. 134]). The function uαk(x) can
be thought to be formed from the wave functions of the bound states, which
broaden and mix as the potential strength is lowered. We use the subscript
α to denote the discrete bound state the Bloch wave derives from.
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There is a di�erent wave function, and thus energy, corresponding to
each value of α. Each of these wave functions, as well as energies, is also a
function of k. In the context of a lattice α is called the band index, and the
corresponding energies Eα(k) are called the energy bands.

The Bloch wave is periodic in the reciprocal lattice [11, p. 131], it can
therefore be written as a Fourier expansion

ϕαk(x) =
∑
i

φα(Ri,x)eik·Ri , (2.8)

where the coe�cients φα(Ri, x) are given by

φα(Ri,x) =
1

L

∑
k

ϕαk(x)e−ik·Ri , (2.9)

where L is the number of sites in the lattice.
It is easy to show that Bloch functions ful�ll

ϕαk(x + Ri) = eik·Riϕαk(x). (2.10)

By plugging (2.10) into (2.9) we �nd out that

φα(Ri,x) =
1

L

∑
k

ϕαk(x−Ri)e
ik·Rie−ik·Ri =

1

L

∑
k

ϕαk(x−Ri) = φα(x−Ri),

(2.11)
i.e. that φ's depend on x and Ri only through their di�erence.

The φα(x−Ri)'s are called Wannier functions. They are wave functions
that are concentrated around the sites of the lattice, in e�ect wave packets
formed out of the Bloch waves. It is seen from (2.8) that every Bloch wave can
be written as a linear combination of the Wannier functions. This, together
with their orthogonality, means that the Wannier functions form an alternate
complete orthogonal basis for the periodic system. This basis will later prove
to be very useful when we consider the Hubbard model.

In the case of a unit cell that contains more than a single lattice site the
Bloch wave is formed in a similar manner, but instead of a single Wannier
function, we use a linear combination of them in the form

Φα(x−Ri) =
Ns∑
n

cnαφα(x−Ri − an).

where Ns is the number of sites in the unit cell and an are the basis vectors.
The Bloch wave is then expressed similarly to (2.8) as

ϕαk(x) =
∑
i

Φα(x−Ri)e
ik·Ri . (2.12)

8



2.2.1 The Hubbard Model

The Hubbard model is an approximate model for describing interacting par-
ticles in a periodic lattice. It was originally introduced by John Hubbard
in 1963 to model electrons in a solid [12], but can be used equally well to
model other fermions, as well as bosons, in which case it is known as the
Bose-Hubbard model. The model consists of two main components:

1. an ability of the particles to hop between neighboring lattice sites

2. an on-site interaction potential, felt by particles occupying the same
lattice site.

Accordingly the parameters de�ning a Hubbard model consist of an interac-
tion term, which gives the strength of the on-site repulsion, and a collection
of hopping terms, which give the likelihood of a particle hopping between
any two lattice sites.

Despite its apparent simplicity, �nding the exact solution of the Hubbard
model has proved an enormously di�cult task. After almost half a century of
research, it has only been managed in the one-dimensional case (in 1968 by
E.H. Lieb and F.Y. Wu, using the so-called Bethe ansatz [13]). The model
can, however, be studied using a variety of numerical methods, and this
reveals many interesting properties that make a Hubbard system qualitatively
di�erent from a non-interacting tight-binding system. The most important of
these is probably the appearance of a phase transition into a Mott insulating
state.

The Mott transition happens in a lattice that contains approximately one
particle per lattice site, when the ratio between the parameters describing the
strength of the interaction and the amount of hopping between sites reaches
a certain threshold. The particles spread out uniformly across the lattice
with one particle in each site, and the system becomes jammed, with each
particle preventing its neighbors from changing site. This state resembles an
insulator, even though there is no band gap. The interplay between these two
competing aspects, hopping and the interaction, is what gives the Hubbard
model many of its interesting properties.

The Hubbard model turns out to manifest a surprisingly rich array of
phenomena. Even though it is based on several hugely simplifying approxi-
mations, and consequently cannot really accurately describe any real materi-
als, it still manages to capture many of the essential features of more general
interacting many-body systems. It has been widely used, and proved very
powerful, as a model system providing qualitative insight into many phenom-
ena of solid state physics. It is even believed that the 2D Hubbard model
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may contain important information regarding the mechanisms behind high
temperature superconductivity [14].

In the context of optical lattices, however, the Hubbard model takes on a
rather di�erent role. A system consisting of cold atomic gas held in an optical
lattice resembles in many ways the case of electrons in a crystal lattice. The
atoms in it interact with each other, and tunnel from site to site, in a similar
manner. However, due to the simplicity of optical lattices, it turns out that
many of the severe approximations behind the Hubbard model are no longer
needed. In fact it has been shown that an optical lattice can be constructed
in such a way, that it realizes the Hubbard model with very high accuracy
[15]. Furthermore, in an optical lattice the parameters of the model can be
adjusted freely, for example to induce a phase transition.

The situation reverses in a way. Instead of using the Hubbard model
to understand the optical lattice system, one can use the system to study
the properties of the model. The optical lattice works as a kind of primitive
quantum computer, in which one can run simulations of quantum mechanical
models much faster than on any conventional machine. Due to the adjusta-
bility of an optical lattice this computer can be set up to simulate a large
array of Hamiltonians, including Hubbard models with di�erent parameters
and several types of spin models (see [3] for a review on the subject).

The Hubbard Hamiltonian in a lattice

Let us now derive the Hubbard model Hamiltonian starting from a more
general many-body Hamiltonian. The Hamiltonian describing N interacting
particles in a static periodic potential is

Ĥ =
N∑
i=1

(
p̂2
i

2m
+ VL(xi)

)
+

∑
1≤i<j≤N

VI(xi − xj)

=
N∑
i=1

ĥ(xi,pi) +
∑

1≤i<j≤N

VI(xi − xj), (2.13)

where VL is the periodic lattice potential, VI is the interaction potential
between the particles, and

ĥ =
p̂2
i

2m
+ VL(xi) (2.14)

is the one-particle Hamiltonian. The assumption has been made here, that
the underlying periodic potential VL does not vary over time. In the case
of an optical lattice, this is clearly valid. In an actual solid it may not be,
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due to the possibility of phonon excitations in non-zero temperatures. Still
it can be justi�ed in many cases, through the so-called Born-Oppenheimer
approximation [16, p. 175].

First we'll want to second-quantize the Hamiltonian in some basis of one-
particle states. One such basis is formed by the energy eigenstates, which
in an in�nite periodic potential are the Bloch functions ϕαk(x) (see equation
(2.7)). We'll mark the corresponding energies by Eαk, so that

ĥϕαk(x) = Eαkϕαk(x).

A more suitable basis for our needs, however, is the basis formed by
the site-centered Wannier functions φαi(x) (see (2.9)). We'll assume that
the Wannier states are highly localized, i.e. that they are almost entirely
contained within their assigned lattice sites, with only minimal overlap with
the wave functions on neighboring sites. While problematic for real solids,
in optical lattices this assumption is in many cases valid. The range of the
Wannier functions is generally related to the size of the band gap, with a
larger gap leading to a shorter range [17]. In optical lattices the width of
the band gap can be adjusted by changing the depth of the potential wells,
which e�ectively controls the spread of these wave functions.

The localized Wannier basis is important, because it facilitates the tran-
sition from the conceptual description of the Hubbard model into its mathe-
matical formulation in terms of quantum mechanics. The Hubbard model is
expressed from the viewpoint of a particle sitting on a certain site of the lat-
tice. We can now say what this actually means: that the particle is occupying
the Wannier state corresponding to that lattice site.

Let us now introduce the creation and annihilation operators

â†αi,s, âαi,s,

which respectively create and annihilate a particle with spin s from the Wan-
nier state on band α and site i. From these one can construct the �eld
operators

Ψ̂†s(x) =
∑
αi

φ∗α(x−Ri)â
†
αi,s, Ψ̂s(x) =

∑
αi

φα(x−Ri)âαi,s, (2.15)

which create or destroy a particle with spin s on location x.
Using the �eld operators we can now express the Hamiltonian 2.13 in its
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second quantized form [18, p. 221]

Ĥ =
∑
s=↑,↓

∫
dx3Ψ̂†s(x)HiΨ̂s(x)

+
1

2

∑
s,s′=↑,↓

∫
dx3dy3Ψ̂†s(x)Ψ̂†s′(y)VI(x, y)Ψ̂s′(y)Ψ̂s(x). (2.16)

Inserting the de�nitions (2.15) into (2.16) we get

Ĥ =
∑
α,i,j,s

tαij â
†
αi,sâαj,s′

+
1

2

∑
α,β,γ,δ
i,j,k,l

∑
s,s′

Uαβγδ
ijkl â

†
αi,sâ

†
βj,s′ âγk,s′ âδl,s, (2.17)

where

tαij =

∫
dx3φ∗α(x−Ri)ĥ(x,p)φα(x−Rj) (2.18)

=
1

N2
s

∑
k

Eαke
ik·(Ri−Rj) (2.19)

and

Uαβγδ
ijkl =

∫
dx3dy3φ∗α(x−Ri)φ

∗
β(y−Rj)VI(x,y)φγ(y−Rk)φδ(x−Rl). (2.20)

I am not in this work concerned with the exact form of the Wannier functions,
or of the potentials, and will regard t's and U 's simply as parameters of the
theory.

It is easy now to decipher the meaning of the terms in the Hamiltonian
(2.17). The �rst term annihilates a particle in a lattice site, and creates one
in another. It thus describes the tunneling of a single particle to another
location. Strength of the tunneling between sites i and j is given by the
matrix element tαij. These elements are called 'hopping terms'. The second
term of the Hamiltonian causes two particles to be annihilated, and in turn
creates two new particles. It thus describes a scattering process between two
particles, the strength of which is determined by the corresponding U -term.

The hopping terms are transition amplitudes between di�erent Wannier
states, and their magnitude depends on the amount of overlap between the
corresponding wave functions. We assumed earlier, that the Wannier func-
tions are highly localized. We can thus conclude that the overlap will only
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be signi�cant between sites that are immediately next to each other. We
can then set t = 0 for all the other values of i and j, so that tunneling will
only happen between neighboring sites. This is known as the tight-binding
approximation.

Turning now to the potential term U , we would like it to be very small
for particles that are not in the same lattice site. However, in addition to
the dependence on wave function overlaps, it also depends on the strength
of the interaction VI(x,y) between the particles. In the case of a real solid,
this interaction is the Coulomb interaction, which is by no means on-site.
The assumption can be partly justi�ed by appealing to the background of
oppositely charged nuclei, which screens the interactions on long distances
[19, p. 2]. In the case of optical lattices, however, the situation is again much
simpler. The atoms loaded into an optical lattice are neutral, and the only
long range interactions between them are caused by small Van der Waals
type forces, which one can generally safely ignore. On the other hand, there
exists a strong repulsive force between atoms on the same site, caused by the
overlapping of their electron clouds. The interaction is then to a high degree
truly on-site, and it is a good approximation to set U = 0 for cases other
than i = j = k = l.

We make one further radical simpli�cation, and assume that the particles
will only occupy the lowest band in the system. Again this assumption is
much less serious in an optical lattice than in a real one. By adjusting the
depth of the potential wells one can adjust the energy gap between the �rst
and second band states, and make it su�ciently large compared to the atom
cloud temperature that no signi�cant amount of excitations will occur. Note
that this assumption is not integral to the Hubbard model, which can equally
well be used for calculations with multiple band systems.

Finally we assume that the atoms in our optical lattice system are either
spinless or spin-polarized, so that the di�erent spin states can be ignored.

After these simpli�cations the Hamiltonian (2.17) takes the form

Ĥ =
∑
〈i,j〉

tij â
†
i âj +

U

2

∑
i

â†i â
†
i âiâi (2.21)

where 〈...〉 denotes a summation over neighboring sites. Writing the potential
term of the above Hamiltonian in terms of the number operator ni = a†iai,
we get

V bos
P =

U

2

∑
i

â†i â
†
i âiâi =

U

2

∑
i

â†i (âiâ
†
i − 1)âi =

U

2

∑
i

(n2
i − ni)

13



for bosons, and

V fer
P =

U

2

∑
i

â†i â
†
i âiâi =

U

2

∑
i

â†i (1− âiâ
†
i )âi =

U

2

∑
i

(ni − n2
i )

for fermions. These expressions can be further simpli�ed by writing∑
i

n̂2
i =

∑
i

(n̂i(n̂i − 1) + n̂i), (2.22)

after which we have

V bos
P =

U

2

∑
i

n̂i(n̂i − 1), V fer
P = −U

2

∑
i

n̂i(n̂i − 1) = −V bos
P

These potential terms give U energy for each separate pair of particles in
a site. That is, the particles do not interact with themselves (Each pair is
counted twice, which is countered by the factor 1

2
).

Note that in the case of spin-polarized fermions, of which there can never
be more than one in a lattice site, the potential term of the Hamiltonian
becomes identically zero. The Hubbard model in this case reduces to a simple
non-interacting tight-binding model. We can therefore write the Hamiltonian
for both bosons and fermions in the form

Ĥ =
∑
〈i,j〉

tij â
†
i âj +

U

2

∑
i

n̂i(n̂i − 1). (2.23)

An external potential can be added to the system by introducing to the
Hamiltonian (2.23) an additional term

Vext =
∑
i

Vin̂i, (2.24)

where Vi is the potential on the lattice site i.

Matrix Form of the Hamiltonian

The states of a multi-particle system in a lattice can be handily expressed in
the Fock-space in the so-called occupation number representation, where we
choose some single-particle basis, and then express the multi-particle state
in terms of integer occupation numbers corresponding to each basis state.
In our case the logical choice of basis is the Wannier basis, and a general
multi-particle state is written as

ψ = |n1 n2 n3 · · · 〉, (2.25)
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where ni is the occupation of the Wannier state φi(x), or the number of
particles in the lattice site i. These states are all mutually orthogonal, and
we take them to be normalized to unity, i.e.

〈ψi|ψj〉 = δij.

With the Fock-states one can easily form a basis for the multi-particle
system by taking all the possible ways to place the particles into the sites.
For a spin-less fermionic system, where one can only have either zero or one
particles in a lattice site, the number of these states is

Nstates =
Ns!

Np!(Ns −Np)!
, (2.26)

where Ns is the number of the lattice sites and Np is the number of the
particles. This is simply a binomial coe�cient, giving the number of di�erent
ways to choose Np sites out of Ns. The particles are indistinguishable, so the
order does not matter. For bosons computing the number of the states is a
bit trickier. An algorithm for it is given in section 4.1.

The elements of the Hamiltonian matrix are transition probabilities be-
tween the basis states. For example, for a two-particle system with three
lattice sites, one could write

H =


〈2 0 0|Ĥ|2 0 0〉 〈200|Ĥ|1 1 0〉 · · · 〈2 0 0|Ĥ|0 0 2〉
〈1 1 0|Ĥ|2 0 0〉
〈1 0 1|Ĥ|2 0 0〉

...
. . .

〈0 0 2|Ĥ|2 0 0〉 〈0 0 2|Ĥ|0 0 2〉

 .

The dimension of the Hamiltonian matrix matches the number of basis states,
and thus increases very quickly as the size of the system increases.

We derived the Hubbard model above for an in�nitely large lattice. How-
ever, in order to perform numerical computations with it, we would like to
describe our system using a �nite sized Hamiltonian. This is achieved by
choosing a suitably sized unit cell out of the lattice, and then applying peri-
odic boundary conditions by mapping hops going out from the other side of
the cell into the sites on the opposite side.

The one-particle wave functions in an in�nite lattice are Bloch-waves
(2.7). They can be expressed as linear combinations of Wannier functions as
in (2.8)

ϕk(x) =
∑
R

eik·Rφ(x−R), (2.27)
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Figure 2.2: A linear chain with a two site unit cell.

if the lattice has a unit cell of one site. This generalizes as per (2.12) to

ϕk(x) =
∑
R

eik·R
Ns∑
n=1

cnφ(x− an −R), (2.28)

for a unit cell containing Ns sites.
Let us compute the matrix form of the Hamiltonian for a simple linear

chain with one particle per unit cell (see �gure 2.2). The Hubbard Hamilto-
nian describing this system is

Ĥ =
∑
i

(
ti,i+1â

†
i+1âi + ti,i−1â

†
i−1âi

)
,

where we have left out the interaction term, because it is of no consequence
in a single-particle system.

For demonstrative reasons we will choose a unit cell of two lattice sites.
We will also take the hopping term to be the same for all hops, and mark tij =
−t for all i and j. Choosing some arbitrary two adjacent lattice sites as our
point of interest, we mark their locations with R1 and R2. The Hamiltonian
for this single unit cell is

Ĥ = −t
(
â†R1+aâR1 + â†R1−aâR1 + â†R2+aâR2 + â†R2−aâR2

)
, (2.29)

where a is the site separation.
The Hamiltonian in the above form includes creation and annihilation op-

erators corresponding to sites other than the two in our chosen unit cell. This
can be �xed by applying periodic boundary conditions by noting that from
(2.28) follows a similar equation for the corresponding creation operators

ϕ̂k(x) =
∑
R

eikR
(
c1â
†
R + c2â

†
R+a

)
. (2.30)
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Because the lattice is in�nite, we can substitute R = R + 2a into (2.30)
without changing anything. This gives

ϕ̂k(x) =
∑
R

eik(R+2a)
(
c1â
†
R+2a + c2â

†
R+3a

)
=
∑
R

eikR
(
c1e

2ikaâ†R+2a + c2e
2ikaâ†R+3a

)
. (2.31)

Comparing (2.31) with (2.30) we get

â†R+2a = e−2ikaâ†R, â†R+a = e2ikaâ†R+3a,

where R is any Bravais lattice vector. Substituting R = R1 into the �rst
expression, and R = R1 − 2a to the second one gives

â†R1+2a = e−2ikaâ†R1
, â†R1−a = e2ikaâ†R1+a. (2.32)

Using equations (2.32) we can shift the hopping terms in (2.29) so that
they all operate on sites within the chosen unit cell. Noting that R2 + a =
R1 + 2a, this gives

Ĥ = −t
(
â†R1+aâR1 + e2ikaâ†R1+aâR1 + e−2ikaâ†R1

âR2 + â†R2−aâR2

)
= −t

(
(1 + e2ika)â†R2

âR1 + (1 + e−2ika)â†R1
âR2

)
.

Similarly for any lattice con�guration, one can handle hops out of the
unit cell by shifting the destination by a Bravais vector, and introducing the
phase term corresponding to the Bloch wave vector.

The Hamiltonian matrix for the linear chain with a two-site unit-cell is
then

H =

(
〈10|Ĥ|10〉 〈10|Ĥ|01〉
〈01|Ĥ|10〉 〈01|Ĥ|01〉

)
(2.33)

= −t
(

0 1 + e−2ika

1 + e2ika 0

)
. (2.34)

A possible external potential of the form of (2.24) would manifest itself
as diagonal terms in the Hamiltonian, giving

H =

(
V1 −t(1 + e−2ika)

−t(1 + e2ika) V2

)
. (2.35)

We can only set the potential independently in as many sites as are contained
in the chosen unit cell. Modeling a system with a parabolic con�nement
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potential therefore requires a relatively large unit cell, and consequently a
large Hamiltonian.

It is relatively straightforward to form the Hubbard Hamiltonian for any
single-particle system, without having to perform any calculations. Every el-
ement of the Hamiltonian corresponds to a hop from a lattice site to another.
One only needs to set each element to the value of the hopping parameter
corresponding to that hop, taking a sum if there are multiple ways the hop
can occur, multiply by a phase factor for hops between unit cells, and set the
diagonal elements to the value of the potential on the corresponding site.

2.2.2 Band Structure

In the context of the tight-binding approximation, the formation of energy
bands is most easily understood by starting from the limit of no overlap
between the wave functions. The atoms are then con�ned each to their own
lattice site, and are on one of the discrete energy states of the potential
well. When the depth of the potential wells is slowly decreased, and the
wave functions start to mingle allowing tunneling to occur from one site to
the next, the localized states turn into Bloch-wave type states that stretch
across the whole lattice.

In the limit of small overlap, these Bloch-waves can be thought of as linear
combinations of the localized states in the form of (2.12)

ϕαk(r) =
∑
R

eik·R
Ns∑
n=1

cnαψα(r−Ri − an), (2.36)

where R is a Bravais lattice vector, n denotes a lattice site in the unit cell,
ψα(x −Ri − an) is the localized wave function corresponding to the energy
eigenstate α and centered on the lattice site marked by the Bravais lattice
vector Ri and the basis vector an.

For any k, the number of di�erent energies, or the number of energy
bands, is equal to the number of single-particle states in the unit cell. Because
there is an in�nite number of energy eigenstates for each of the potential
wells, there is in general an in�nite number of bands. In this work I make
the assumption, that only the lowest energy eigenstate in each well will be
used. The number of energy bands will therefore be determined simply by
the number of sites in the unit cell.

The energy of a Bloch-wave of the form (2.36) is based on the energy of
the localized state it derives from. It is shifted slightly by the lowering of the
potential, and when the wave functions start to overlap, it acquires a com-
ponent dependent on the phase di�erences between amplitudes in the lattice
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sites. The phase di�erences modify the shape of the resulting probability dis-
tribution by introducing varying amounts of either constructive or destructive
interference in the area of overlap between the lattice sites. Correspondingly
the particles are either dispersed more readily to the area between the sites,
or become concentrated nearer to the bottoms of the wells. The more con-
centrated states have higher total energy, whereas the more spread-out ones
have lower energy.

In (2.36), the amplitudes in the sites of the unit cell are given by the fac-
tors cn. These are obtained by solving the eigenvectors of the Hamiltonian
of the system. Each of the Ns eigenvectors is associated with an eigenenergy,
which depends on the phase di�erences between sites of the unit cell, deter-
mined by cn, and furthermore on the phase di�erence between adjacent unit
cells, determined by the phase term eik·R of the Bloch-wave. The result is
then Ns di�erent energies, each of which is in general a function of the Bloch
wave vector k. These are the energy bands.

Flat-Band

A �at-band is a band whose energy is independent of the wave vector, at
least approximately and for a certain k-interval. Because the group velocity
of a particle on the band n is given by [11, p. 192]

vg =
1

~
∇kEn(k), (2.37)

it follows that for a particle on a �at-band, the velocity goes to zero. This is
equivalent to the particle having an in�nite e�ective mass [11, p. 191]. This
property leads to the phenomenon, that particles occupying a �at-band state
will not move, but remain stationary within the lattice.

Some heuristic arguments will now be given for determining conditions
in which a �at-band occurs in the context of the tight-binding model. For a
more rigorous treatment see for example [20].

It was argued above that the k-dependency in the energy bands is the
result of interference caused by phase di�erences between the wave functions
of neighboring unit cells. It is therefore straightforward to come up with one
situation in which a �at-band emerges. Speci�cally, when the amplitudes in
the unit cell come up in such a way, that on the unit cell borders one of
the adjacent sites always has a zero amplitude. In such a case the value of
k clearly makes no di�erence, as the parts of the wave function in di�erent
unit cells will be totally separated from each other with no overlap.

The next question then is: what kind of lattices support an energy eigen-
state that has a zero amplitude on at least one of the unit cell sites. In order
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to answer this question it is helpful to thing how the Hamiltonian through
Schrödinger equation determines the time evolution of a state.

Each element in the Hamiltonian corresponds to a transition amplitude
from one site to another. Lets take a very simple system of two lattice
sites and one particle, and describe the connection between the sites with a
hopping term th. The tight-binding Hamiltonian describing this system is

H =

(
0 t∗h
th 0

)
.

Let us then set the system into an initial state where all of the amplitude
is located in one of the sites. This state is then depicted by a state vector
ψ(0) = c|10〉 = |c 0〉 (Using the occupation number representation in the
Wannier basis). After a di�erentially small time of δt, the system is in the
con�guration

ψ(δt) = ψ(0) +
dψ

dt
δt = ψ(0)− i

~
Ĥψδt,

and using the matrix notation

ψ(δt)− ψ(0) = − i
~
Ĥψδt = − i

~

(
0 th
th 0

)(
c
0

)
δt =

(
0

−icthδt/~

)
.

The result

ψ(δt) =

(
c

−icthδt/~

)
,

shows that the amplitude on site 1 has �owed to site 2, and that the �ow
rate is proportional to the hopping term th, as well as the amplitude c in the
source site.

It is seen that the time-evolution of a single-particle state in the tight-
binding model is essentially very simple, and consists only of amplitude �ow-
ing between the lattice sites in proportion with the associated hopping terms.
If there was a lattice site with no amplitude in it, there would necessarily
be a �ow of amplitude to it from the neighboring sites. The only way to
make the situation stationary then, would be to choose the amplitudes on its
neighboring lattices so, that the �ows would perfectly cancel out each other.
In section 3 I will give some examples of lattices in which this happens.

2.2.3 Current in a Hubbard Ring

I wish to study the current �owing in a circular one-dimensional ring formed
from a Hubbard chain, when it is placed in a homogeneous magnetic �eld
passing perpendicularly through it. To achieve this I will �rst consider the

20



e�ect of a magnetic �eld on the Hamiltonian of a lattice system, and its
energy eigenstates, in a general case. I then move to the case of the Hubbard
ring, and use the modi�ed Hamiltonian to derive a current operator, whose
expectation values give the amount of current �ow for a certain state and
a given magnetic �eld. Throughout this section I will use a unit system in
which ~ = 1, and I will denote the charge of the particles by e.

The prospect of using a magnetic �eld to induce a current is of course not
applicable to an optical lattice system containing neutral atoms. Although
there are ways to build ring shaped optical lattices, and even to induce and
study currents in them (see [21]), I will not here go into that. My aim is
only to study the properties of the lattice structures, especially the e�ect of
the �at-bands on their conductive properties. For this purpose it is su�cient
to use the familiar language of charged particles in a magnetic �eld, and the
results will be applicable to the corresponding linear optical chains.

The Single-Particle Hamiltonian and Its Eigenstates

Our task is to �nd out how the single-particle Hamiltonian (2.14) is modi�ed
by the presence of an external magnetic �eld, and how this will a�ect the
form of its eigenfunctions (2.7). We start by introducing the electromagnetic
potential terms into the single particle Lagrangian, which results in

L̃(x, ẋ) =
1

2
mẋ2 + VL(x)− eAẋ− eVE(x)

= L(x, ẋ)− eAẋ,

where L is the Lagrangian for a particle with no external �eld, A is a vector
potential corresponding to some arbitrary magnetic �eld, and VE is the elec-
tric scalar potential. We take there to be no external electric �eld, and thus
can choose a gauge in which VE(x) = 0. The single particle Hamiltonian is
then obtained from the Lagrangian through a Legendre transformation

˜̂
h(x,p) = ẋp− L̃

= ẋp− L+ eAẋ

= ẋ(p + eA)− L
= ĥ(x,p + eA).

The e�ect of the magnetic �eld is thus taken into account simply by substi-
tuting

p = p + eA
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into the single-particle Hamiltonian. By this substitution the Hamiltonian
(2.14) becomes

˜̂
h =

1

2m
(p̂ + eA)2 + V (x).

The energy eigenstates of this Hamiltonian are of the form

ϕ̃k(x) = e−ieλϕk(x), (2.38)

where ϕk(x) (see 2.7) is a Bloch-wave state of the system without the mag-
netic �eld and

λ(x) =

∫
x

x0

dyA(y), (2.39)

where x0 is an arbitrary point. To prove this we �rst use the fact that

∂xλ(x) = ∂x

∫
x

x0

dyA(y) = A(x),

to show that for an arbitrary function f(x)

e−ieλp̂2eieλf(x)

=e−ieλp̂
[
e(∂xλ)eieλ + eieλp̂

]
f(x)

=e−ieλ
[
e(p̂∂xλ)eieλ + e2(∂xλ)2eieλ + 2e(∂xλ)eieλp̂ + eieλp̂2

]
f(x)

=
[
e2A2 + e(p̂A) + 2eAp̂ + p̂2

]
f(x)

=
[
e2A2 + ep̂A + eAp̂ + p̂2

]
f(x) = (p̂ + eA)2f(x), (2.40)

where in the second to last equality we have used the chain rule in the form

p̂Af(x) = (p̂A)f(x) + Ap̂f(x).

Using (2.40) it is then easy to show that

˜̂
hϕ̃(x) =

[
1

2m
(p̂ + eA)2 + V (x)

]
ϕ̃k(x)

=

[
1

2m
e−ieλp̂2eieλ + V (x)

]
e−ieλϕk(x)

=e−ieλ
[
p̂2

2m
+ V (x)

]
ϕk(x)

=e−ieλEkϕk(x) = Ekϕ̃k(x),

which proves that (2.38) is indeed an eigenstate of
˜̂
h.
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The Hubbard Hamiltonian

Deriving the multi-particle Hubbard Hamiltonian (2.23) in the case of an
external magnetic �eld is now straightforward. The only modi�cation to it
comes through the hopping matrix (2.18), which after substituting (2.2.3)
takes the form

t̃ij =

∫
dx3φ∗(x−Ri)

[
1

2m
(p̂ + eA)2 + V (x)

]
φ(x−Rj). (2.41)

Using (2.40) we write (2.41) as

t̃ij =

∫
dx3φ∗(x−Ri)e

−ieλ
[

1

2m
p̂2 + V (x)

]
eieλφ(x−Rj). (2.42)

Now by de�ning
φ̃(x−Ri) = eieλ(x)φ(x−Ri),

we can rewrite (2.42) as

t̃ij =

∫
dx3φ̃∗(x−Ri)

[
p̂

2m
+ V (x)

]
φ̃(x−Rj),

where similarly to (2.38), the e�ect of the external �eld is revealed to be only
a modi�cation of the phases of the Wannier functions.

Now if the Wannier functions are strongly localized, and on the other
hand, the vector potential A varies slowly in the scale of the lattice param-
eters, we can make the approximation

φ̃(x−Ri) = eieλ(Ri)φ(x−Ri).

The modi�ed hopping matrix then becomes

t̃ij = eie(λ(Rj)−λ(Ri))

∫
dx3φ∗(x−Ri)

[
p̂

2m
+ V (x)

]
φ(x−Rj)

= tije
ie(λ(Rj)−λ(Ri)),

and the Hamiltonian (2.23) transforms to

˜̂
H =

∑
〈i,j〉

tije
ie(λ(Rj)−λ(Ri))â†i âj +

U

2

∑
i

n̂i(n̂i − 1), (2.43)

where

λ(Rj)− λ(Ri) =

∫
Rj

x0

dyA(y)−
∫

Ri

x0

dyA(y)

=

∫
Rj

Ri

dyA(y). (2.44)

23



The Current Operator for a Ring

We will take our ring to lie on the xy-plane, and the external magnetic
�eld direction to be along the z-axis. The homogeneous magnetic �eld and
the corresponding vector potential along the ring, expressed in cylindrical
coordinates, are then

B = Bẑ, A = Aθθ̂, Aθ = B
R

2
=

Φ

2πR
, (2.45)

where R is the radius of the ring and Φ = πR2B is the magnetic �ux through
it. We denote the azimuth angle by θ.

In the cylindrical coordinate system, the only coordinate needed for de-
scribing the ring system is the angle θ. The Hamiltonian (2.2.3) can be
written in the form

˜̂
h =

1

2m
(p̂+ eAθ)

2 + V (θ) =
1

2m

(
−i~
R

∂

∂θ
+

eΦ

2πR

)2

+ V (θ),

and the Bloch waves (2.7) in the form

ϕm(θ) = eimθum(θ),

where m~ = Rk~ is the angular momentum. There is now a restriction on
the values of the angular wave number m, due to the fact that the ends of
the chain are connected and therefore the values of the wave function need
to match for θ = 0 and θ = 2π. m thus has to ful�ll

um(0) = ei2πmum(2π)⇒ ei2πm = 1⇒ m ∈ Z, (2.46)

where we have used the fact that um(0) = um(2π), which follows from um's
periodicity. The energy spectrum of the ring therefore becomes discrete,
consisting of those energies Em for which m satis�es the boundary condition.

If we assume that one hop on the chain is very short compared to the
length of the whole ring, we can, in the expression (2.39) for λ, perform the
integration along the perimeter of the ring, and it simpli�es to

λ(θ) =

∫ θ

θ0

RdθA =
Φ

2πR

∫ θ

θ0

Rdθ θ̂ =
Φ

2π
(θ − θ0), (2.47)

which allows us to write the eigenstates (2.38) of
˜̂
h in the form

ϕ̃m(θ) = e−
ieΦ
2π
θϕm(θ) = ei(m−

eΦ
2π

)θum(θ), (2.48)

24



where we have chosen θ0 = 0. Similarly to (2.46), it follows from (2.48) that

m− eΦ

2π
.
= m− Φ′ ∈ Z. (2.49)

Changing the magnetic �eld therefore changes the boundary condition. Con-
sequently the energy spectrum shifts to consist of the energies Em for which
this new condition is ful�lled, and the energies thus become dependent on
the �ux Φ. I will mark these energies by Ẽm. Notice that if Φ′ ∈ Z the
energy spectrum of the ring will exactly match that of the zero �ux case, but
the energies will correspond to di�erent values of the angular momentum.

It turns out that the current operator can be derived in a simple manner
from the Hamiltonian of the system. Starting from the eigenvalue equation

˜̂
hϕ̃ = Ẽmϕ̃, (2.50)

and multiplying it from the left by
∫ 2π

0
Rdϕ ϕ̃∗ we get∫ 2π

0

Rdθ ϕ̃∗
˜̂
hϕ̃ = Ẽm

∫ 2π

0

Rdθ ϕ̃∗ϕ̃ = Ẽm. (2.51)

Taking now a derivate of (2.51) with respect to the magnetic �ux leads to

dẼm
dΦ

=

∫ 2π

0

Rdθ

[
dϕ̃∗

dΦ
˜̂
hϕ̃+ ϕ̃∗

d
˜̂
h

dΦ
ϕ̃+ ϕ̃∗

˜̂
h
dϕ̃

dΦ

]

=

∫ 2π

0

Rdθ

[
ie
dλ

dΦ
ϕ̃∗

˜̂
hϕ̃+ ϕ̃∗

d
˜̂
h

dΦ
ϕ̃− ie dλ

dΦ
ϕ̃∗

˜̂
hϕ̃

]

=

∫ 2π

0

Rdθ ϕ̃∗
d

dΦ

(
1

2m

(
p̂+

eΦ

2πR

)2

+ V (x)

)
ϕ̃

=
1

m

e

2π

∫ 2π

0

dθ ϕ̃∗
(
p̂+

eΦ

2πR

)
ϕ̃. (2.52)

We denote the modi�ed crystal momentum by ˜̂p = p̂+ eΦ
2πR

. Taking then
the real part of (2.52) gives

Re

(
dẼm
dΦ

)
=
dẼm
dΦ

=
1

m

e

2π

∫ 2π

0

dθ Re(ϕ̃∗ ˜̂pϕ̃)

=
e

2π

∫ 2π

0

dθ
1

2m
(ϕ̃∗ ˜̂pϕ̃− ϕ̃ ˜̂p∗ϕ̃∗).
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The term inside the integral in the above equation is just the de�nition of
the probability current j [18, p. 56]. We can therefore write

dẼm
dΦ

=
e

2π

∫ 2π

0

dθ j = ej = c, (2.53)

where c is the charge current, and we have used the fact that j must be
independent of θ.

Taking the �ux derivative of the equation (2.50) now leads to

∂
˜̂
h

∂Φ
ϕ̃+

˜̂
h
∂ϕ̃

∂Φ
=
∂Ẽm
∂Φ

ϕ̃+ Ẽm
∂ϕ̃

∂Φ

⇒ ∂
˜̂
h

∂Φ
ϕ̃− ieθ

2π
˜̂
hϕ̃ =

∂Ẽm
∂Φ

ϕ̃− ieθ

2π
Ẽmϕ̃

⇒ ∂
˜̂
h

∂Φ
ϕ̃ =

∂Ẽm
∂Φ

ϕ̃ = cϕ̃ ⇒ ∂
˜̂
h

∂Φ
= ĉ,

where we have �rst used (2.48) and then (2.50). The current operator for
the single-particle case is therefore obtained simply by taking a derivative of
the Hamiltonian with respect to the magnetic �ux.

This same method works also in the case of an interacting multi-particle
system. Taking the derivative of the Hamiltonian (2.13) (with ĥ replaced by
˜̂
h) gives

∂Ĥ

∂Φ
=

∂

∂Φ

(
N∑
i=1

˜̂
h+

∑
1≤i<j≤N

VI

)

=
N∑
i=1

∂
˜̂
h

∂Φ
=

N∑
i=1

ĉ = Ĉ, (2.54)

which is just the sum of the currents contributed by each of the particles.
To obtain the second quantized version of Ĉ one then needs only to take

a derivative of (2.43) with respect to the magnetic �ux. In the case of our
one-dimensional ring this Hamiltonian takes the form

˜̂
H =

∑
〈i,j〉

tije
ie(λ(θj)−λ(θi))â†i âj +

U

2

∑
i

n̂i(n̂i − 1).

By using (2.47) we get

λ(θj)− λ(θi) =
Φ

2π
(θj − θ0)− Φ

2π
(θi − θ0) =

Φ

2π
(θj − θi) = Φlij,
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where lij = (θj − θi)/2π is the ratio of the i-j hop length to the length of the
loop. The resulting current operator is then

Ĉ =
∂

˜̂
H

∂Φ
= ie

∑
〈i,j〉

tijlije
ieΦlij â†i âj. (2.55)
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Chapter 3

Examples of Lattices and Their

Band Structures

In this chapter I present three examples of one-dimensional lattices contain-
ing a �at-band. Accompanying are plots of the band structures and some
discussion about the speci�c properties of each lattice giving rise to that
structure.

3.1 The Rake Chain

Figure 3.1 depicts a type of one dimensional lattice I call the rake chain. It
is essentially a single strip cut out of a two-dimensional line centered square
lattice, which is the simplest two-dimensional example of a �at-band lattice
(studied for example in [22]). All of the hopping parameters have the same
value of t. The Hamiltonian for this lattice, when using the primitive cell as
a unit cell, is

Ĥ = −t
(
â†R1+aâR1 + â†R1−aâR1 + â†R2+aâR2 + â†R2−aâR2 + â†R1

âR3 + â†R3
âR1

)
,

and after applying the periodic boundary conditions using

â†R2+a = â†R1+2a = e−2ikaâ†R1
, â†R1−a = e2ikaâ†R1+a = e2ikaâ†R2

(these can be derived similarly to (2.32) ), we get

Ĥ = −t
(
â†R2

âR1 + e2ikaâ†R2
âR1 + e−2ikaâ†R1

âR2 + â†R1
âR2 + â†R1

âR3 + â†R3
âR1

)
.

(3.1)
We denote a state of this chain by a vector ψ = |n1n2n3〉, where ni is the

occupation of site i of the unit cell. For a system with one particle per unit
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Figure 3.1: Structure of a rake chain, and the numbering used for the sites
of the primitive cell.

cell, the basis consists of three states: |100〉, |010〉, |001〉. The matrix form of
the Hamiltonian (3.1) is obtained as in (2.2.1)

H = −t

 0 1 + e−2ika 1
1 + e2ika 0 0

1 0 0

 . (3.2)

From (3.2) one can compute the energy levels and the corresponding
energy eigenstates of the system, by solving the eigenvalue equation

H

 c1

c2

c3

 = Eα

 c1

c2

c3

 .

We switch to a system of units in which 2a = t = 1. The eigenenergies, seen
plotted in �gure 3.2, are then

E1 = −
√

3 + 2 cos k, E2 = 0, E3 =
√

3 + 2 cos k, (3.3)

and the energy eigenstates are

ψ1 = N1

 E1

1 + eik

1

 , ψ2 = N2

 0
1

−(1 + e−ik)

 , ψ3 = N3

 E3

1 + eik

1

 ,

where Nα are normalization constants.
It is easy to see how the form of the �at-band state ψ2 comes up. In

line with our earlier predictions, there is no amplitude in the corner site R1.
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Because of this there is no overlap between wave functions in adjacent unit
cells, and consequently no k-dependence in the energy. The amplitudes on
sites two and three then have to come up in such a way that the total ampli-
tude �ow to site one becomes zero. If we do not care about normalization or
the overall phase, we can choose the amplitude on one of these sites freely.
Let us choose an amplitude of 1 for the site number two. The amplitude
�ow between sites is relative to the product of the hopping term and the
amplitude in the source site (as was shown in the section 2.2.2). For the
amplitude �ow to the corner site we thus get a term 1 ∗ 1 from the second
site of the unit cell, and a term 1 ∗ e−ik from the second site of the cell just
left of our unit cell. Because the hopping term from the site three to the
corner site is 1, the amplitude on it has to be −(1 + e−ik), because this gives
us a total �ow of

1 ∗ 1 + 1 ∗ e−ik − 1 ∗ (1 + e−ik) = 0,

and thus a stationary state.
It is possible to build more �at-band lattices by extending the rake chain

by adding sites to its unit cell in a symmetrical manner (see �gure 3.3).
Because the amplitude in the corner site will be zero, the two n-particle
strips in the unit cell will be essentially isolated from each other. Thus there
will be n �at band states corresponding to the n eigenstates of an n-site
linear chain. Lets mark these eigenstates by φi (i = 1, . . . , n). The �at-band
states of the in�nite extended rake chain will then be of the form

ψi = Ni

 0
φi

−(1 + e−ik)φi


(where φi is an n element column vector, and ψi thus a 2n+1 element column
vector).

3.2 The Sawtooth Chain

The sawtooth chain (pictured in �gure 3.4) is a �at-band containing chain,
that is even simpler than the rake chain in that it has a smaller primitive
cell of only two sites. The �at band emerges when the hopping terms to and
from the tooth tips are set to be

√
2t, when t is the hopping term along the

baseline. The Hamiltonian, after applying the periodic boundary conditions
and setting a = t = 1, becomes

Ĥ = (eik + e−ik)â†R1
âR1 +

√
2(1 + eik)â†R2

âR1 +
√

2(1 + e−ik)â†R1
âR2 . (3.4)
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Figure 3.2: Energybands of a rake chain (see �gure 3.1)

The matrix form of (3.4) is

H =

(
eik + e−ik

√
2(1 + e−ik)√

2(1 + eik) 0

)
. (3.5)

The eigenenergies for the sawtooth chain, seen plotted in �gure 3.5, are

E1 = −(2 + 2 cos k), E2 = 2, (3.6)

and the energy eigenstates are

ψ1 = N1

( √
2 cos k

2

eik/2

)
, ψ2 = N2

(
1

−eik/2
√

2 cos k
2

)
.

The e�ects caused by the �at-band states would be more apparent in the
simulations if the �at-band was the lowest energy band. This kind of situation
can be achieved by �ipping the sign of the hopping term for hops along the
baseline of the chain. This �ips the signs of the eigenenergies (3.3) and thus
changes the order of the bands, making �at band states the ground states of
the system.
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n sites

n sites

n sites

Figure 3.3: Adding sites symmetrically to the unit cells of the rake chain or
the diamond chain will result in �at-band lattices containing n �at bands.

This time the �at-band state does not have a site with zero amplitude.
The situation is a bit more subtle than in the rake chain. We know that the
energy of a state in the Hubbard model is determined by the phase di�erences
between neighboring sites of the lattice. Considering any single triangle of
the sawtooth lattice, if the lower left corner site of it has a phase of zero, the
phase of the lower right corner site will be set by the Bloch condition (2.10)
to be k. Now for the �at band state ψ2 the top site has a phase of k/2± π,
since −eik/2 = ei(k/2±π). The total phase di�erence over a single triangle of
the lattice (choosing always the angle that is smaller than π) for 0 ≤ k < 2π
is then

|k − 0|+ |0− (k/2− π)|+ |(k/2 + π)− k| = 2π,

and thus has no dependency on k. This leads to a k-independent energy, and
thus a �at-band state.

It holds generally that in a Hubbard system the phases of the lowest-
/highest energy eigenstate will be the ones that minimize/maximize the sum
of the phase di�erences between neighboring sites over the lattice. This is
true also of the eigenstates ψ1 and ψ2 of the sawtooth chain. It is a property
of the triangular lattice con�guration, that the maximal phase di�erence of
2π can always be reached by adjusting the phase in just one of the three
sites. The value of k does not matter, since it only �xes the phase di�erence
between the left and right corner sites. In cases like this a state can be �at
even though it does not have a zero amplitude in any of the sites.
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Figure 3.4: Structure of a sawtooth chain, and the numbering used for the
sites of the primitive cell.

3.3 The Diamond Chain

The diamond chain is pictured in �gure 3.6. It has the interesting property
of containing both a �at-band and a Dirac cone at the same value of k (A
Dirac cone is a conical feature in the energy band diagram, formed by the
crossing of two bands with approximately linear dispersion. See �gure 3.7).
This creates a situation where a particle with a certain energy can have either
an in�nite e�ective mass, if it is on the �at-band, or a zero e�ective mass,
if it is on one of the Dirac cone bands. Furthermore, the energy of the �at-
band in the diamond chain can be freely adjusted by changing the hopping
parameter between the sites R2 and R3 (The dotted lines in �gure 3.6).

We denote the strength of the transverse hop in relation to the others by
λ, and set a = t = 1. The Hamiltonian for the diamond chain then becomes

Ĥ =(1 + eik)(â†R2
âR1 + â†R3

âR1) + (1 + e−ik)(â†R1
âR2 + â†R1

âR3)

+λ(â†R3
âR2 + â†R2

âR3), (3.7)

and its matrix form is

H =

 0 1 + e−ik 1 + e−ik

1 + eik 0 λ
1 + eik λ 0

 . (3.8)
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Figure 3.5: Energybands of a sawtooth chain (see �gure 3.4)

The eigenenergies, seen plotted in �gure 3.7, are

E1 = −λ
2
−

√
8 cos2

k

2
+

(
λ

2

)2

, E2 = λ, E3 = −λ
2

+

√
8 cos2

k

2
+

(
λ

2

)2

,

(3.9)
and the energy eigenstates are

ψ1 = N1

(
(1 + e−ik)

λ− E3

4 cos2 k
2
− λE3

, 1, 1

)
ψ2 = N2 (0,−1, 1)

ψ3 = N3

(
(1 + e−ik)

λ− E1

4 cos2 k
2
− λE1

, 1, 1

)
.

In the diamond lattice the form of the �at-band state could be easily
guessed. The neighboring unit cells are connected through site number one
only, so a state with zero amplitude on it would be a good candidate for a
�at-band state, if it could be made stationary. Because of the symmetry of
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Figure 3.6: Structure of a diamond chain, and the numbering used for the
sites of the primitive cell. λ denotes the relative strength of the transverse
hopping terms.

the lattice, the stationarity can be achieved easily by setting the amplitudes
on the sites two and three to have a 180 degree phase di�erence, in which case
the amplitude �ows to site one will pairwise cancel each other out. Changing
the value of λ to di�er from zero does not break the stationarity of such
a state, but only accelerates the amplitude �ow between the sites two and
three. The i factor in the Hamiltonian causes an e�ective 90◦ phase shift in
the amplitude �ow, but since the phase di�erence between these sites is 180◦,
the resulting di�erence will still always be 90◦ and thus only cause rotation
of the phases. The rotation speed thus scales linearly with the hopping
term strength λ, and the energy of the state in turn scales linearly with the
rotation speed (since the time dependence of the solutions to the Schrödinger
equation in a stationary potential is always of the form eiEt). This results in
the λ dependent energy of the �at-band state ψ2.

Similarly to the case of the rake chain, one can generate more �at-band
lattices by extending the primitive cell of the diamond chain as in �gure
3.3. We will again denote the eigenstates of an n-site linear chain by φi (i =
1, . . . , n). The resulting �at-band states of the in�nite extended diamond
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Figure 3.7: Energybands of a diamond chain for λ = 0 case (see �gure 3.6)

chain will then be of the form

ψi = Ni

 0
−φi
φi

 .
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Chapter 4

Numerical Modeling

All of the numerical modeling for this thesis was done in Matlab.
The programs I developed support three types of one-dimensional chains.

A linear chain, a sawtooth chain and a diamond-chain. In all of these chains
the size of the unit cell can be freely chosen, and within the unit cell all the
hopping terms and the site potentials can be individually set. This allows one
to make, for example, a rake-chain by disabling some hops of the diamond-
chain.

The programs can handle both bosons and fermions. There is also a
separate option for bosons with in�nite repulsive on-site interaction. This
option approximates a very strong repulsive interaction, by allowing only one
boson at a time to occupy any single lattice site. This is done by forming
the systems basis only from the states which ful�ll this condition. In large
systems this results in a dramatically smaller basis, and correspondingly
faster computation times. The in�nitely repulsive bosons are then much like
fermions, except that the states are symmetric, rather than antisymmetric,
with respect to particle swaps. Spin is not taken into account, i.e. all the
particles are assumed to be either spinless or spin-polarized.

For any of these chain type and particle type choices, one can use the
programs to plot the energy bands, to solve and visualize the energy eigen-
states, to compute and visualize the time-evolution of the system starting
from any arbitrary state, and to compute the single particle state occupa-
tions corresponding to a multi-particle state.

4.1 Computing the Number of Basis States

The �rst problem was to compute the number of basis states for a system with
a given unit cell and number of particles. The case of fermions is relatively
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simple, and the formula (as already given in (2.26)) is

Nstates =
Ns!

Np!(Ns −Np)!
,

where Ns is the number of the lattice sites, and Np is the number of the
particles. This same formula works also in the case of in�nitely repulsive
bosons, since they similarly cannot share a site with another particle.

The case of interacting bosons is somewhat trickier. There is now no limit
on the number particles per lattice site, and consequently there is no more
any simple formula for acquiring the number of states. The question is: how
many ways are there to distribute Np particles into Ns lattice sites, when the
particles are completely independent of each other, yet indistinguishable? My
approach was to �rst go through the di�erent numbers of stacks the particles
may be divided to. This ranges from 1 to min(Np, Ns). If we assume that
there are Nst stacks, the following task is to �gure out how many di�erent
ways there are to form these stacks. The question is then: how many ways are
there to distribute Np −Nst particles into Nst lattice sites? We can subtract
the number of stacks from the number of particles, since each stack always
has at least one particle in it. We notice that this question is exactly the
same as our original question, only with di�erent (and smaller) parameters.
Clearly this problem lends itself to a recursive solution. The algorithm I
came up with is shown in the listing 4.1.

4.2 Forming the Basis States

The next task was to form all the basis states for a given system. These
are all the possible ways in which the particles can be distributed into the
lattice. They are represented as an Nstates × Nsites matrix, whose each row
corresponds to a basis state, and each column to a lattice site. The elements
of this matrix have positive integer values, giving the number of particles in
the lattice sites for each of the basis states. Each lattice site is here associated
with a column index. This numbering of the sites can be chosen freely, but
once set it must remain unchanged. The algorithms for forming the states
matrix are given in the listing 4.2 for fermions (and for in�nitely repulsive
bosons), and in the listing 4.3 for bosons.
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Listing 4.1: The algorithm for determining the number of basis states for a
boson system

nS i t e s = The number o f s i t e s in a un i t c e l l
nPa r t i c l e s = The number o f p a r t i c l e s per un i t c e l l

FUNCTION GetNumberOfStates ( nPar t i c l e s , nS i t e s )
nStates = 0
FOR nStacks = 1 to minimum( nSi te s , nPa r t i c l e s )

IF nPa r t i c l e s > nStacks
nWaysToMakeStacks

= GetNumberOfStates ( nPa r t i c l e s − nStacks , nStacks ) ;
ELSE

nWaysToMakeStacks = 1 ;
END IF

nWaysToOrderStacks = Binomia lCoe f f i c i en t ( nS i te s , nStacks )

nStates = nStates + nWaysToMakeStacks ∗ nWaysToOrderStacks ;

END FOR
RETURN nStates

END FUNCTION
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Listing 4.2: The algorithm for forming the basis states matrix for fermions
and in�nitely repulsive bosons

nStates = The number o f b a s i s s t a t e s in a un i t c e l l
nS i t e s = The number o f s i t e s in a un i t c e l l
s t a t e s = Matrix ( nStates , nS i t e s )
s t a t e = Vector ( nS i t e s )
stateNo = 1
FormStates (1 , 1)

FUNCTION FormStates ( part i c l eNo , s t a r t Index )
FOR si teNo = sta r t Index to ( nS i t e s − nPa r t i c l e s + par t i c l eNo )

s t a t e [ SiteNo ] = 1

IF par t i c l eNo < nPa r t i c l e s
FormStates ( pa r t i c l eNo + 1 , s i teNo + 1)

ELSE
s t a t e s [ stateNo , : ] = s t a t e
stateNo++

END IF

s t a t e [ s i t eNo ] = 0

END FOR
END FUNCTION
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Listing 4.3: The algorithm for forming the basis states matrix for bosons

nStates = The number o f b a s i s s t a t e s in a un i t c e l l
nS i t e s = The number o f s i t e s in a un i t c e l l
nPa r t i c l e s = The number o f p a r t i c l e s per un i t c e l l
s t a t e s = Matrix ( nStates , nS i t e s )
s t a t e = Vector ( nS i t e s )
stateNo = 1
FormStates (1 , 1)

FUNCTION FormStates ( part i c l eNo , s t a r t Index )
FOR si teNo = sta r t Index to nS i t e s

s t a t e [ s i t eNo]++

IF par t i c l eNo < nPa r t i c l e s
FormStates ( pa r t i c l eNo + 1 , s i teNo )

ELSE
s t a t e s [ stateNo , : ] = s t a t e
stateNo++

END IF

s t a t e ( s i teNo)−−

END FOR
END FUNCTION
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4.3 Forming the Hamiltonian

The Hamiltonian is a Nstates ×Nstates matrix, and its elements are the tran-
sition probabilities

Hij = 〈ψi|Ĥ|ψj〉,

where ψn is the n:th basis state, and Ĥ is the Hubbard Hamiltonian (2.23).
To compute the elements one needs to operate with the Hamiltonian to the
right side basis state. This is relatively straightforward. Since the Hamil-
tonian is written in terms of creation and annihilation operators, one only
needs to adjust the occupation numbers of the right side state accordingly.
The resulting inner products between basis states can then be calculated
using

〈ψi|ψj〉 = δij,

i.e. the orthonormality of the basis.
In the case of fermions there exists an additional layer of complexity due to

the anticommutativity of the creation and annihilation operators. Whereas
for bosons one can freely operate with these operators without thought, for
fermions one has to be careful to always maintain the correct order. What
this order is does not matter, as long as it is consistently used for all the
elements. I choose here to operate in the order of decreasing site number.
Then, when operating with the Hamiltonian on a state, one �rst writes the
right side state in terms of creation operators operating on a vacuum state,
in the form

|n1n2 . . . nNs〉 =
N∏
i=1

(â†i )
ni |0〉,

where ni ∈ {0, 1} are the site occupations. Operating with the terms of the
Hamiltonian would then result in for example

− tâ†i âj
[
(â†1)n1(â†2)n2 . . . (â†i )

ni . . . (â†j)
nj . . . (â†N)nN |0〉

]
=− t(−1)

Pj−1
k=1 nk â†i

[
(â†1)n1(â†2)n2 . . . (â†i )

ni . . . âj(â
†
j)
nj . . . (â†N)nN |0〉

]
=− t(−1)

Pj−1
k=1 nk+

Pi−1
k=1 nk

[
(â†1)n1(â†2)n2 . . . (â†i )

ni+1 . . . (â†j)
nj−1 . . . (â†N)nN |0〉

]
,

(4.1)

assuming that i < j. If j > i we start by �ipping the operators, which creates
one additional minus sign.

Due to the orthogonality of the basis, all the terms of the transition
probability in which the right side state does not exactly match the left
side state will go to zero. Because the Hamiltonian only contains pairs of
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operators corresponding to a particle moving to a neighboring lattice site
(as per the tight-binding approximation), a typical Hamiltonian will contain
a very large number of zero valued elements. Even more so in the case of
fermions, where a lot of the hops will result in a state that is not allowed
by the Pauli exclusion principle. Therefore when it comes to storing and
computing with the Hamiltonians, it is usually a good idea to treat them as
sparse matrices.

4.4 Solving the Time-Evolution

An arbitrary state of the multi-particle system is a linear combination of the
basis states

Ψ =
Nstates∑
n=1

cnψn,

which is represented within Matlab as a column vector v with Nstates el-
ements. The time-evolution is computed by iterating on the initial state
v(0) using a fourth order Runge-Kutta-method. The derivatives of the wave
function are obtained from the Schrödinger equation

∂v(t)

∂t
= −iHv,

where we have chosen a unit system in which ~ = 1.
To obtain the evolved state v(δt) for a di�erential time interval δt, I start

by computing the four derivatives for the fourth order Runge-Kutta-method
in the following form

d1 = −iHv(0)

d2 = −iH
(
v(0) +

δt

2
d1

)
d3 = −iH

(
v(0) +

δt

2
d2

)
d4 = −iH (v(0) + δtd3) .

I then compute the �nal state as

v(δt) = v(0) +
1

6
(d1 + 2d2 + 2d3 + d4) δt.

After each of these time-steps the state vector v is normalized, in an attempt
to slow down the inevitable deviation from the exact result.
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The time-evolution could also be computed exactly, by solving all the
energy eigenstates ψn of the system when V = 0, and expressing the initial
state in that basis as

ψinit(0) =
∑

cnψn(0).

The form of the energy eigenstates after an arbitrary time of4t is obtainable
simply by multiplying them with the corresponding phase terms eiEn4t, where
En is the energy of the state ψn. Thus

ψinit(4t) =
∑

cnψn(4t) =
∑

cne
iEn4tψn(0).

This method, while devoid of any accumulation of error, is relatively time-
consuming, since it requires one to solve the entire eigensystem of the Hamil-
tonian. The Runge-Kutta method allowed much faster computation times,
while still being easily accurate enough for my purposes.

4.5 Computing the Current

The current for a state ψ is computed simply by taking the expectation value
of the current operator (2.55) with respect to ψ. The amount of computation
needed can, however, be greatly lessened by appealing to certain symmetries
of the ring.

For example in the case of the sawtooth lattice the currents through any
of the node sites (sites corresponding to site 1 in picture 3.4) must obviously
be the same. These currents further divide to the components going in the
node from the left, and the ones leaving it towards right (or vice versa).
These components must also have the same value, or else the occupation
probability on that site would be changing over time. We can therefore take
from the total current operator only the terms corresponding to hops from a
certain node site of the ring to a certain direction, and in the end multiply
this by the number of sites Ns to get the total current. Choosing as our node
site the site number 1, we get

Ĉsawtooth = iNs

[
t12l12e

iΦl12 â†1â2 + t21l21e
iΦl21 â†2â1

+
1

2
t13l13e

iΦl13 â†1â3 +
1

2
t31l31e

iΦl31 â†3â1

]
= iNs

[
t12l12(eiΦl12 â†1â2 − e−iΦl12 â†2â1) +

1

2
t13l13(eiΦl13 â†1â3 − e−iΦl13 â†3â1)

]
,

where we have substituted e = 1, tnm = tmn and lnm = −lmn. Notice that
we must take only a half of the terms corresponding to the hop from 1 to 3.
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Otherwise multiplying by Ns would count these hops twice. Taking the site
separation to be a = 2 (see �gure 3.4), which leads to l12 = 1

2πR
, l13 = 1

πR

and Ns = 2πR, we get

Ĉsawtooth = i
[
t12(eiΦ/2πRâ†1â2−e−iΦ/2πRâ†2â1)+ t13(eiΦ/πRâ†1â3−e−iΦ/πRâ†3â1)

]
,

which is the form I use in my computations. The case of the diamond lattice
is handled in an analogous way.

4.6 Computing single-particle state occupations

In order to determine whether the �at-band states of a system are populated
or not, we would like to know which single particle states the particles of
a certain multi-particle state are occupying. The occupation of any single-
particle state ϕn can be expressed as

cn = 〈Ψ|b̂†nb̂n|Ψ〉, (4.2)

which is simply the expectation value of the number operator corresponding
to the state ϕn. Here |Ψ〉 is a general multi-particle state. By expanding |Ψ〉
in the Fock-space Wannier-basis as

|Ψ〉 =
∑
I

AI |αI〉

and expressing b̂'s in terms of the Wannier-state creation/annihilation oper-
ators as

b̂†n =
∑
i

B∗nia
†
i , b̂n =

∑
i

Bniai,

we can write (4.2) as

cn =
∑
I,J

∑
i,j

A∗IAJB
∗
niBnj〈αI |â†i âj|αJ〉,

which allows one to compute the occupations in a straightforward manner.
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Chapter 5

Results

In this chapter I present the results from the numerical simulations I ran on
multi-particle systems in the sawtooth and diamond chains. First I consider
the case where the particles are initially con�ned in place by means of an
external parabolic potential. I compute the time-evolution of the system
once the external potential is removed, and note the e�ect of occupied �at-
band states on the results. Next I compute the currents caused by magnetic
�ux through rings formed by the chains, and plot them as functions of the
particle number. Again I note the connection between these results and the
band structure of the chain.

5.1 Time-Evolution of a Con�ned State

The initial con�ned state ψinit is computed by �rst adding to the Hubbard
Hamiltonian (2.23) a parabolic potential term

Vj = V
∑
i

(xi − xj)2n̂i, (5.1)

where V controls the strength of the con�nement and j is the site it is centered
on. ψinit is the ground state of this Hamiltonian. The time-evolution of the
system is then computed as per section 4.4 starting from ψinit and using
a Hamiltonian with no external potential term. In all of the computations
shown here a value of V = 10 was used.

All of the time-developments were computed over 500 steps with a step
length of δt = 0.005.
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5.1.1 Sawtooth Chain

Figure 5.1 shows the time developments for con�ned states of 1 to 4 fermions
in the sawtooth chain. It is seen that as more particles are added into the
system, the wave function becomes more and more stationary with only
a certain part of it dispersing once the con�nement is removed. This is
the behavior one would except to see when the non-mobile �at-band states
become increasingly occupied.

(a) 1 particle (b) 2 particles

(c) 3 particles (d) 4 particles

Figure 5.1: Time developments of con�ned fermionic states of 1 to 4 particles
in a sawtooth chain of 16 sites. Here j = 8.

The connection is seen more clearly in �gure 5.2 where a similar time
development computation is shown for 1 and 2 bosons, along with graphs
showing the projections of the initial wave function to the single particle
states of the system (see section 4.6). Here the sign of the baseline hopping
term of the sawtooth chain has been �ipped, which makes the �at-band
states the ground states of the system (without this it proved to be di�cult
to get the bosons into the �at-band states at all). The lessened spreading of
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the wave function corresponds clearly with the increased occupation of the
�at-band states.

5.1.2 Diamond Chain

Figure 5.3 shows the time-development of one and two particle con�ned states
of both fermions and bosons in a diamond chain. It is seen that in the case of
a single particle there is no di�erence between a bosonic and a fermionic state.
This is to be expected. Since the only di�erence between the particle types
is the behavior of the wave function under the swapping of two particles, a
single particle does not care whether it is a boson or a fermion.

When the second particle is added, however, the results diverge. In the
case of fermions the second particle seems to go to a �at-band state. The
occupation probability in the two sites at the center of the con�ning potential
falls quickly to about a half of its initial value, but then remains approxi-
mately constant for the rest of the simulation. Conversely for bosons the
evolution of a two particle state is pretty much identical to that of the single
particle state, with the wave function dispersing in its entirety.

When the �at-band is moved below the other bands by setting λ = −2.1
(see equation (3.9)) the situation changes. The �rst particle inserted into the
system now goes completely to a �at-band state as seen in �gure 5.4. The
case of two-particle states is similar to �gure 5.3 in that the bosonic state is
decidedly more eager to spread out than the fermionic state which is still to
large a degree stationary.

5.2 Currents in a Ring

I computed the current �ow in sawtooth and diamond rings of 12 lattice sites.
I give the results here for particle numbers from 1 to 11, and for values of the
magnetic �ux Φ′ (see equation (2.49)) going from 0 to 0.5 in 0.1 increments
(the last step is actually done with Φ′ = 0.4999 to avoid problems created
by a higher degeneracy of the states at Φ′ = 0.5). This range of �uxes
is su�cient, since the currents are antisymmetric around Φ′ = 0.5, falling
back to zero for Φ′ = 1, and then repeat periodically for larger values of Φ′.
Currents were always computed for the ground state of the system, and the
results are given in units in which e = 1.
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5.2.1 Sawtooth Ring

For the sawtooth ring I computed the currents both with the normal hop-
ping term con�guration (see �gure 3.5) and with the sign of the hopping
term along the base �ipped (which �ips the signs of the eigenenergies, thus
swapping the energy bands). The respective results are given for bosons in
�gure 5.5 and �gure 5.6, and for fermions in �gure 5.7 and �gure 5.8.

The occupation of the �at band states is clearly visible in the �gures.
Particles on the �at band states do not move (as seen from equation (2.37)),
and therefore do not contribute to the current. Thus if a particle is added
into a �at-band state, the total current does not change.

If a particle is added into a non-�at-band state, the change in the current
depends on the slope of the energy band at that point. Typically for these
lattices, the slopes of the wave like energy bands are alternatively positive and
negative. For fermions, which due to the Pauli exclusion principle simply �ll
the single particle states in order, this alternating of the slope sign manifests
as a zigzag pattern seen for example in picture 5.7.

In the bosonic case the currents are symmetric with respect to the par-
ticle number. This phenomenon can be understood by considering the same
system in terms of holes instead of particles. We can make the substitution

â†i = b̂i, âi = b̂†i ,

where b̂†i and b̂i are the creation and annihilation operators for a hole. Because

for bosons these operators commute, it holds that â†i âi = b̂†i b̂i, and therefore
the Hamiltonian of the hole system is identical to that of the particle system.
A bosonic system with n particles is thus completely equivalent to a system
with n holes, and the currents also must follow this symmetry.

5.2.2 Diamond Ring

For the diamond ring I computed the currents using two di�erent values for
the transverse hop parameter λ (see equation (3.7)), λ = 0 (see �gure 3.7)
and λ = −2.1. The latter moves the �at-band from the center to below the
other bands, and thus makes the �at-band states the ground states of the
system. The respective results are given for bosons in �gure 5.9 and �gure
5.10, and for fermions in �gure 5.11 and �gure 5.12.

As an example, the energy band diagram corresponding to �gure 5.11 is
given in �gure 5.13. Changes of the current with respect to the increasing
particle number can be understood by considering the bands being occupied
in succession starting from the bottom. The alternating slopes of the wave
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like bands create the zigzag pattern, and the four degenerate �at-bands create
the plateau in the middle.
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(b) 2 particles

Figure 5.2: Time developments of con�ned bosonic states with 1 and 2 par-
ticles in a sawtooth chain of 16 sites. Here j = 8 and the baseline hopping
term sign has been �ipped. On the right side are shown the projections of
the initial states into the single particle basis, with the energies of the single
particle states in the background. The �at-band states are recognizable by
their high degeneracy
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(a) 1 fermion (b) 2 fermions

(c) 1 boson (d) 2 bosons

Figure 5.3: Time developments of con�ned fermionic and bosonic states with
1 and 2 particles in a diamond chain of 24 sites. Here j = 12 and λ = 0.
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(a) 1 fermion (b) 2 fermions

(c) 1 boson (d) 2 bosons

Figure 5.4: Time developments of con�ned fermionic and bosonic states with
1 and 2 particles in a diamond chain of 24 sites. Here j = 12 and λ = −2.1.
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Figure 5.5: The current for in�nitely repulsive bosons in a sawtooth ring
of 12 sites as a function of the particle number and the magnetic �ux (Φ′)
through the ring.
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Figure 5.6: The current for in�nitely repulsive bosons in a sawtooth ring of 12
sites as a function of the particle number and the magnetic �ux (Φ′) through
the ring. Here the sign of the baseline hopping term has been �ipped, which
makes the �at bands the lowest energy bands in the system.
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Figure 5.7: The current for fermions in a sawtooth ring of 12 sites as a
function of the particle number and the magnetic �ux (Φ′) through the ring.
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Figure 5.8: The current for fermions in a sawtooth ring of 12 sites as a
function of the particle number and the magnetic �ux (Φ′) through the ring.
Here the sign of the baseline hopping term has been �ipped, which makes
the �at bands the lowest energy bands in the system.
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Figure 5.9: The current for in�nitely repulsive bosons in a diamond ring of 12
sites as a function of the particle number and the magnetic �ux (Φ′) through
the ring.
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Figure 5.10: The current for in�nitely repulsive bosons in a diamond ring
of 12 sites as a function of the particle number and the magnetic �ux (Φ′)
through the ring. Here the transverse hopping term has been set to -2.1,
which makes the �at bands the lowest energy bands in the system.
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Figure 5.11: The current for fermions in a diamond ring of 12 sites as a
function of the particle number and the magnetic �ux (Φ′) through the ring.
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Figure 5.12: The current for fermions in a diamond ring of 12 sites as a
function of the particle number and the magnetic �ux (Φ′) through the ring.
Here the transverse hopping term has been set to -2.1, which makes the �at
bands the lowest energy bands in the system.
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Figure 5.13: The energy bands of a diamond chain with a 12 site unit cell.
The �at-band is four times degenerate.
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Chapter 6

Conclusions

I set out to study the e�ects caused by the existence of �at-bands in one
dimensional chains. The results I obtained show many clear examples of
these e�ects, and they are mostly in line with what one could have predicted
beforehand from the fact that the particles on �at-band states have a zero
group velocity. The occupation of the �at-band states is manifested as a
stationary nature of the wave function (seen for example in �gure 5.2), and
as suppression of the current in a ring (seen for example in �gure 5.8).

Regarding the computations of the time evolutions of con�ned states, in
the case of fermions in a sawtooth chain (�gure 5.1) my results show a clearly
decreasing amount of dispersion of the wave function as more particles are
loaded in to the chain. This was an expected result, as the �at-band is
the higher of the two bands and therefore will only be used after the Pauli
repulsion prevents the use of the states of the lower band. This interpretation
is con�rmed by the fact that bosons in a similar set up were far more reluctant
to occupy the �at-band states. In the case of bosons I needed to modify the
hopping terms in such a way as to make the �at-band the lowest energy
band. After this operation the bosons started to show clear signs of �at-
band occupation (see �gure 5.2).

In the case of the diamond lattice, the results were similar. If the �at-
band was situated symmetrically between the other two bands (�gure 5.3),
the bosons would not go into it, whereas for fermions already two particles
in a 24 site unit cell were enough for signi�cant �at-band occupation. If the
�at-band was moved below the other bands (�gure 5.4), the �rst particle,
whether a boson or a fermion, went completely on a �at-band state. The
second particle, however, made a di�erence. In the case of fermions it looks
like the second particle went on a non-�at-band state, leaving the �rst one still
stuck on the �at-band, while for bosons the second particle disturbed the �rst
one causing the total wave function to disperse much more completely. This
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can also be explained through the Pauli principle (which is the only option,
since after neglecting the spin it is the only di�erence between bosons and
fermions), which forces the fermions on mutually orthogonal states and thus
makes them essentially independent.

Note that in all the cases the evolution of a single fermion is exactly similar
to that of a single boson. This is natural, since the Pauli repulsion follows
from the symmetry properties of the wave function under the swapping of
two particles. A single particle, therefore, does not care whether it is a boson
or a fermion.

The results of the current computations for fermions are easy to interpret,
as they correspond clearly to the energy band diagrams of the respective
rings. They con�rm that as fermions are added to a system, they sequentially
occupy the single particle states, without disturbing each other. Each particle
changes the current according to the group velocity corresponding to its
state, and thus the degenerate �at-bands cause �at stretches of constant
current to show up. The bosonic case is more di�cult to analyze, as the
multi-particle ground states are much more complicated combinations of the
single-particle states. Still, for bosons too, the occupation of the �at-band is
in some cases clearly visible (see �gure 5.6). Interestingly the plots for bosons
in the diamond lattice show sudden spikes in the current (�gure 5.9), or no
current at all (�gure 5.10). Explaining these would require further studies
into the nature of the corresponding multi-particle wave functions.

These results were computed using the Hubbard model, and as such they
are applicable to any optical lattice system built in such a way as to realize
that model. Only further simpli�cations made are the assumption of using
either a spinless or a spin polarized gas, and the assumption of a large gap
between the �rst and second bound states of the potential wells. Both of
these conditions can be readily ful�lled in an experiment.

While the current computations are exact in the context of the model, the
time-development computations obviously contain some error due to the use
of an approximate Runge-Kutta method for solving the Schrödinger equation.
However, the limiting factor on the time-scale of these computations is not
the accumulation of error, but rather the small size of the unit cell used. The
fringes of the wave function relatively quickly reach the edges of the cell, after
which point the results no longer describe an in�nitely long chain. Because
of this I have not devoted much e�ort into trying to quantify the errors, but
rather have just made the time-step short enough that the results no longer
visibly depend on it. On the whole, therefore, there should be no appreciable
error of numerical origin in any of the results given in this thesis.

The downside of doing an exact multi-particle treatment as is done here, is
that the number of states in the system, and thus the dimension of the Hamil-
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tonian, increases extremely quickly when the number of sites or particles is
increased (see equation (2.26)). This puts a strict limit on the maximum size
of a system that can be dealt with in a reasonable time frame. There is no
easy way around this. As is shown in [22], a mean �eld calculation would
not give reliable results in this kind of a strongly correlated case.
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