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ABSTRACT

Sindhya, Karthik
Hybrid Evolutionary Multi-Objective Optimization with Enhanced Convergence
and Diversity
Jyväskylä: University of Jyväskylä, 2011, 64 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 131)
ISBN 978-951-39-4372-1
Finnish summary
Diss.

Evolutionary multi-objective optimization (EMO) algorithms, commonly used to
find a set of solutions representing the Pareto optimal front, are often criticized for
their slow convergence, the lack of a theoretical convergence proof and for having
no efficient termination criterion. In this thesis, the main focus is to improve EMO
algorithms by addressing the criticisms.

Hybrid EMO algorithms defined as hybrids of EMO algorithms and a local
search procedure are proposed to overcome the criticisms of EMO algorithms. In
the local search procedure, a local search operator originating from the field of
multiple criteria decision making (involving solving an achievement scalarizing
function based optimization problem using an appropriate mathematical opti-
mization technique) is used to enhance the convergence speed of a hybrid EMO
algorithm. A hybrid framework, a base on which hybrid EMO algorithms can
be built, is also proposed incorporating a local search procedure, an enhanced
diversity preservation technique and a termination criterion. As a case study, a
hybrid EMO algorithm based on the hybrid framework is successfully used to
find Pareto optimal solutions desirable to a decision maker in the optimal control
problem of a continuous casting of steel process.

In addition, a hybrid mutation operator consisting of both non-linear curve
tracking mutation and linear differential evolution mutation operators is pro-
posed to handle various interdependencies between decision variables in an ef-
fective way. The efficacy of the hybrid operator is demonstrated with extensive
numerical experiments on a number of test problems. Furthermore, a new pro-
gressively interactive evolutionary algorithm (PIE) is proposed to obtain a single
solution desirable to the decision maker. Here an evolutionary algorithm is used
to solve scalarized problems formulated using the preference information of the
decision maker. In PIE, the decision maker moves progressively towards her/his
preferred solution by exploring and examining different solutions and does not
have to trade-off between the objectives.

Keywords: Multiple criteria decision making, Interactive evolutionary multi-objective
optimization, Mutation, NSGA-II, Differential evolution, Achievement
scalarizing function, NAUTILUS method, Hybrid framework

slehto
Typewritten Text
(nid.), 978-951-39-4414-8 (PDF) 




Author Karthik Sindhya
Department of Mathematical Information Technology
PO Box 35 (Agora)
FI-40014 University of Jyväskylä
Finland

Supervisors Professor Kaisa Miettinen
Department of Mathematical Information Technology
P.O. Box 35 (Agora)
FI-40014 University of Jyväskylä
Finland

Professor Kalyanmoy Deb
Department of Mechanical Engineering
Indian Institute of Technology Kanpur
PIN-208016 India
and, Department of Information and Service Economy
Aalto University School of Economics
P.O. Box 21210
FI-00076 Aalto
Finland

Reviewers Professor Hisao Ishibuchi
Department of Computer Science and Intelligent Sys-
tems
Osaka Prefecture University
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Professor Carlos Artemio Coello Coello
CINVESTAV-IPN
Depto. de Computación
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México, D.F. 07300

Opponent Professor Murat Köksalan
Industrial Engineering Department
Middle East Technical University
06531 Ankara, Turkey



ACKNOWLEDGEMENTS

Foremost, I would like to thank my supervisors Professor Kaisa Miettinen and
Professor Kalyanmoy Deb, for their constant guidance and support. I had started
my doctoral studies with a crude knowledge about the optimization field, in par-
ticular, multi-objective optimization and I am eternally grateful to my supervisors
for mining, polishing and making me a confident researcher. They have been and
will be my role models as successful researchers.

Next, I am indebted to my parents Mr. Suresh Sindhya and Mrs. Shoba
Suresh, sister Ms. Krithika Sindhya and grandparents for their blessings, support
and believing in my ability to pursue my career as a researcher. Additionally,
special thanks to all my teachers at different stages of my career, all of them have
constantly enriched my knowledge, which provided a strong backbone to com-
plete my doctoral studies.

For evaluating my thesis, I would like to thank Professor Hisao Ishibuchi
from Osaka Prefecture University, Japan and Professor Carlos Artemio Coello
Coello from Av. Instituto Politécnico Nacional, México. Various suggestions
given by them were very useful. Furthermore, I appreciate my colleagues and
friends, in particular, Mr. Tomi Haanpää, Mr. Sauli Ruuska and Mr. Markus Har-
tikainen at the industrial optimization group for a scientifically enriching atmo-
sphere filled with constant discussions and Professor Hirotaka Nakayama, Konan
University, Japan for enriching my thoughts on decision making. Special thanks
to Ms. Hong Wang for a great company throughout my doctoral studies at the
University of Jyväskylä. I would like to thank the rector of the University of
Jyväskylä and Finnish Doctoral Programme in Computational Sciences, FICS for
financially supporting me during my doctoral studies. Finally, I appreciate the
generous financial support for conference and summer schools provided by FICS
and COMAS graduate schools and the Department of Mathematical Information
Technology during my doctoral studies.



LIST OF FIGURES

FIGURE 1 Lateral diversity ................................................................... 12
FIGURE 2 An example of decision and objective spaces ........................... 16
FIGURE 3 Properly Pareto optimal solution ............................................ 16
FIGURE 4 Ideal, utopian and nadir objective vectors ............................... 17
FIGURE 5 Pareto optimal solutions using the weighted sum method ........ 22
FIGURE 6 Concurrent hybrid approach.................................................. 27
FIGURE 7 Serial hybrid approach .......................................................... 29
FIGURE 8 Hybrid EMO framework ....................................................... 36
FIGURE 9 Overview of the continuous casting process. (Figure provided

by Dr. Timo Männikkö) ......................................................... 38



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION ............................................................................ 9

2 MULTI-OBJECTIVE OPTIMIZATION PROBLEM AND SOLUTION
METHODS ...................................................................................... 15
2.1 Classification of methods in multi-objective optimization ............. 18
2.2 Evolutionary multi-objective optimization .................................. 19
2.3 Scalarization in multi-objective optimization............................... 21

3 HYBRID EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION AL-
GORITHMS ..................................................................................... 26
3.1 Approaches for hybridization .................................................... 26
3.2 Issues involved in a concurrent hybrid EMO algorithm................ 29
3.3 Concurrent hybrid EMO algorithms and hybrid EMO framework

proposed ................................................................................. 34
3.4 Optimal control in continuous casting of steel process: A case

study....................................................................................... 37

4 A HYBRID MUTATION OPERATOR FOR EVOLUTIONARY MULTI-
OBJECTIVE OPTIMIZATION ALGORITHMS .................................... 40
4.1 Differential evolution mutation operator..................................... 41
4.2 Hybrid mutation operator ......................................................... 41
4.3 Summary of results of the numerical study ................................. 43

5 AN INTERACTIVE PREFERENCE BASED EVOLUTIONARY MULTI-
OBJECTIVE OPTIMIZATION ALGORITHM ...................................... 45
5.1 Classification............................................................................ 46
5.2 The PIE algorithm .................................................................... 49

6 AUTHOR’S CONTRIBUTION ........................................................... 52

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS ................ 54

YHTEENVETO (FINNISH SUMMARY) ..................................................... 57

REFERENCES.......................................................................................... 58

INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

PI Sindhya, K., Deb, K., Miettinen, K.. Improving Convergence of Evolu-
tionary Multi-Objective Optimization with Local Search: A Concurrent-
Hybrid Algorithm. Natural Computing, to appear, DOI: 10.1007/s11047-011-
9250-4, 2011.

PII Sindhya, K., Miettinen, K., Deb, K.. An Improved Concurrent-Hybrid
Algorithm for Enhanced Diversity and Accuracy in Evolutionary Multi-
Objective Optimization. Evolutionary and Deterministic Methods for Design,
Optimization and Control with Applications to Industrial and Societal Problems,
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1 INTRODUCTION

Over the past century rapid industrialization has enhanced the quality of life on
the earth. The need for economic superiority by every nation over others has led
to a rapid depletion of our natural resources. In addition, industrialization has
drastically increased the pollution of air, water and land. Hence, optimization of
processes in industry is essential for an effective utilization of resources. Opti-
mization in industries may often involve multiple conflicting objectives. Addi-
tionally, multiple conflicting objectives can also be encountered in diverse fields
like economics [71], medicine [61, 75] etc. The process of optimizing multiple
conflicting objectives is called multi-objective optimization. In multi-objective
optimization, usually there does not exist a single optimal solution, but a set of
solutions called Pareto optimal solutions, which are all mathematically equally
good. The set of Pareto optimal solutions in the decision space is called the Pareto
optimal set and the set of Pareto optimal solutions in the objective space is called
the Pareto optimal front.

Multi-objective optimization has been studied for over a century. In 1881,
Edgeworth [21] proposed a scalarization technique called an utility function for
multi-objective optimization. The concept of Pareto optimal solutions was intro-
duced by Pareto [58] in 1906. In 1951, Kuhn and Tucker [43] formulated opti-
mality conditions for multi-objective optimization. Since then, many methods in
multi-objective optimization have been proposed (see e.g. [4, 8, 9, 50, 64]). Al-
though a multi-objective optimization problem usually has many Pareto optimal
solutions, typically only one solution is desirable for implementation. A human
decision maker (DM), an expert in the domain of a multi-objective optimization
problem provides the necessary information to select the most preferred solution
based on her/his preferences. The methodologies in multi-objective optimiza-
tion revolve around the type of support provided to the DM to choose the most
preferred solution.

In the literature, there exist at least two different research fields in multi-
objective optimization, multiple criteria decision making (MCDM) [4, 50, 64] and
evolutionary multi-objective optimization (EMO) [8, 9]. In MCDM, multi-objective
optimization problems are often solved by scalarization. Scalarization means that
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a multi-objective optimization problem involving multiple objective functions is
converted into a single objective function. Henceforth, this single objective func-
tion is referred to as a scalarizing function and the optimization problem involv-
ing the scalarizing function is called a scalarized problem. It is always advis-
able to use a scalarizing function that is proven to generate Pareto optimal so-
lutions. Additionally, in MCDM, decision support is typically seen as the main
goal. The preferences of the DM are often included when formulating a scalar-
ized problem, which is subsequently solved using any suitable mathematical pro-
gramming technique to find a single Pareto optimal solution (at a time) satisfying
DM’s preferences and this process may be iterated. Different method classes can
be identified in MCDM depending on the role of the DM in the solution process
[50].

In EMO, approaches are based on evolutionary algorithms, where a popula-
tion of solutions is used and evolved using the principles of natural evolution to
obtain a set of solutions as close as possible to Pareto optimal solutions. Any two
solutions of a population are said to be non-dominated if they both are mathemat-
ically equally good, i.e., neither of the solutions is better than the other in all ob-
jectives. Furthermore, a set of solutions in a population is called a non-dominated
set, if all the solutions in this set are non-dominated to each other. This set of so-
lutions is subsequently used by the DM to analyze the solution alternatives and
find the most preferred solution. Due to the ability of the EMO algorithms to
generate multiple solutions in a single run, they have attracted a lot of attention
in the recent past, but not much attention has been paid to support the DM.

Most EMO algorithms are designed to meet two conflicting objectives as
well as possible: i.e., convergence of solutions close to the Pareto optimal front
and obtaining a diverse set of solutions that represents the entire Pareto optimal
front [9]. The first EMO algorithm was developed by Schaffer [65] in 1985. Next,
Goldberg presented a possible EMO algorithm in [29]. Subsequently, many EMO
algorithms have been proposed. Many commonly used EMO algorithms like
NSGA-II [16], SPEA2 [81] are criticized for their lack of a theoretical convergence
proof and an effective termination criterion. It is even argued in [46], that EMO
algorithms cannot simultaneously achieve both convergence and diversity.

Recently, a lot of emphasis has been laid on the incorporation of MCDM
methodologies in EMO algorithms and vice versa, to yield hybrid EMO algo-
rithms. Hybrid EMO algorithms utilize the benefits of both the methodologies to
solve multi-objective optimization problems. A scalarizing function can be used
to formulate a scalarized problem and solved using a suitable mathematical pro-
gramming technique to generate locally improved solutions within a local search
operator. A local search procedure incorporating a local search operator can be
used to enhance the convergence speed of hybrid EMO algorithms. In a hybrid
EMO algorithm, choosing a solution A from a population for the local search op-
erator and replacing the improved solution from the local search operator with
the solution A can be termed as a local search procedure. The population based
approach of evolutionary algorithms can be used in MCDM methods for a global
search of the search space and the population of solutions can be used for navi-
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gation among solutions, which in turn can enhance the interaction between the
DM and the MCDM methods.

Apart from incorporating a local search procedure into an EMO algorithm,
the convergence speed of an EMO algorithm can also be increased by using an ef-
ficient reproduction operator as a part of the EMO algorithm. Here, we consider
an operator to be efficient if it can constantly produce potentially good solutions
that increase the convergence speed of an algorithm and simultaneously main-
taining the diversity of individuals in a population. In addition, it is desirable for
an efficient reproduction operator to exploit the curvature information in the de-
cision space and handle various variable dependencies. The variable dependen-
cies can be non-linear or linear in a multi-objective optimization problem. We say
that a problem involves non-linear variable dependencies, if the Pareto-optimal
set does not fall on a plane of a lower dimension than the space itself.

Over the past decade in EMO algorithms, many methods have been pro-
posed but a little emphasis has been devoted to incorporating preference infor-
mation in them. Instead, the focus has been on generating a representation of
Pareto optimal front as close as possible to the exact Pareto optimal front with
a good distribution of non-dominated solutions. In multi-objective optimization
problems with more than two objectives, many solutions in a population are of-
ten non-dominated. Hence, the Pareto dominance scheme [8, 9] based EMO algo-
rithms like NSGA-II and SPEA2 may have a reduced selection pressure towards
the Pareto optimal front, thus, reducing their convergence speed [35]. Also, EMO
algorithms may need a large population size to obtain a set of non-dominated
solutions representing the entire Pareto optimal front, which can be computa-
tionally expensive.

Some EMO algorithms have been proposed, which incorporate the prefer-
ence information of a DM and represent only a part of the Pareto optimal front,
which the DM can subsequently investigate to choose the most preferred solu-
tion from (see e.g. [13, 14, 19, 72]). Recently, interactive EMO algorithms have
also been proposed, where there is a constant interaction between the DM and an
EMO algorithm during optimization (see e.g. [17, 40]), to find a solution or region
that is desirable to the DM. When the DM wishes to find only a single solution
satisfying her/his preference information, a single objective problem accounting
for the preference information of the DM can be formulated and solved using a
suitable mathematical programming technique. It must be noted, that the use of
EMO algorithms is not essential when the DM is not interested in exploring the
trade-offs but interested in finding a single preferred Pareto optimal solution.

As mentioned, for an EMO algorithm to be successful in solving a wide
range of multi-objective optimization problems, two crucial aspects, i.e., a) con-
vergence and b) diversity have to be addressed. The convergence aspect includes
both speed of convergence and convergence to or at least in the proximity of the
Pareto optimal front. Many multi-objective optimization problems in industry
are computationally very expensive and hence it is necessary for an EMO algo-
rithm to generate a reasonably good representation of the Pareto optimal front
taking a limited number of function evaluations. In addition, it is mandatory for
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all non-dominated solutions produced by an EMO algorithm to be as close as
possible to the Pareto optimal front, so that the non-dominated solutions have
common design principles which are common to Pareto optimal solutions [18].
In this thesis, we have proposed to use a local search procedure within an EMO
algorithm to constantly produce better solutions, which in turn can enhance the
convergence speed of an EMO algorithm. In the local search procedure, we use a
local search operator, where we propose to solve a scalarized problem (utilizing
a scalarizing function) using a suitable mathematical programming technique. In
addition, we also propose to use a local search procedure on an entire final popu-
lation to ensure convergence to the Pareto optimal front (at least locally, discussed
in Chapter 2).

Lateral diversity

Pareto optimal front
2f

f1

FIGURE 1 Lateral diversity

A good diversity of solutions in a final population is of paramount impor-
tance for an EMO algorithm to globally search for improved solutions and finally
obtain a population which is in the proximity of the Pareto optimal front. An
EMO algorithm must maintain two different types of diversity in objective space,
i.e., a) diversity among the solutions in a non-dominated set and b) lateral diver-
sity [9]. Most EMO algorithms have an explicit diversity preservation mechanism
to maintain a diverse set of solutions in the non-dominated set. The solutions in
the non-dominated set have a higher selection pressure as compared to the dom-
inated solutions. The excessive selection pressure on non-dominated solutions
causes an expeditious deletion of dominated solutions and the lateral diversity
of the solutions in a population is lost. Here we refer to lateral diversity as the
diversity of the dominated solutions as shown in Figure 1.

The depletion of lateral diversity can cause the convergence of a population
of an EMO algorithm towards a local Pareto optimal front (discussed in Chap-
ter 2) [16]. Due to the loss of lateral diversity, there can be a lack of diversity
in decision variables, hence a search for optimal solutions slows down. In EMO
algorithms, a mutation operator is commonly used for lateral diversity preserva-
tion [16]. When a local search procedure is used in an EMO algorithm, additional
non-dominated solutions may be created, hence an increased selection pressure
on non-dominated solutions will cause a loss of lateral diversity. Hence, there is
a need for an extra diversity preservation mechanism to replenish the lateral di-
versity and explore the search space for promising regions, simultaneously main-
taining a good diversity of solutions in a non-dominated set.
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The principal aim of this thesis has been method development to enhance
the efficiency of EMO algorithms. An EMO algorithm can be considered effi-
cient if it can generate a non-dominated set close to and representing the Pareto
optimal front in a limited number of function evaluations. To be more specific,
we have developed hybrid EMO algorithms to enhance the convergence speed
of EMO algorithms, a new hybrid mutation operator for EMO algorithms and
a preference based interactive evolutionary multi-objective optimization algo-
rithm. In paper [PI], we have hybridized the most commonly used EMO algo-
rithm, NSGA-II, with a MCDM-based local search operator involving a scalariz-
ing function to enhance the convergence speed of the NSGA-II algorithm. Ad-
ditionally, we have proposed an efficient termination criterion for a hybrid EMO
algorithm based on the optimal value of a scalarizing function. It was observed
in [PI], that with the increase in convergence speed, the diversity of solutions in
a population decreases. Hence, in paper [PII], we have made a first attempt to
maintain the diversity of a population using pseudo-weights in scalarizing func-
tions to generate diverse non-dominated solutions close to the Pareto optimal
front, in addition to increasing the convergence speed. In paper [PIII], we have
further developed different methods for increasing convergence speed and main-
taining diversity in hybrid EMO algorithms and proposed a general hybrid EMO
framework. The hybrid EMO framework can be used as a skeleton on which a
hybrid EMO algorithm can be implemented. In paper [PIV], we have used a hy-
brid NSGA-II algorithm based on the hybrid EMO framework and applied it to
a multi-objective control problem in the continuous casting of steel process. In
addition to hybrid EMO algorithms, a new hybrid mutation operator is proposed
in paper [PV] to generate potentially good solutions as an alternative to a linear
differential evolution mutation operator. The operator is tested on a number of
test problems using a recently developed EMO algorithm, MOEA/D [79]. Fi-
nally in paper [PVI], we have proposed a new preference based interactive EMO
algorithm, where we maintain an archive of all solutions in every generation and
subsequently use it for navigation among different previous solutions as an addi-
tional feature, initialization of a new population for a new run of an evolutionary
algorithm and to finally obtain the DM’s most preferred solution.

In what follows, in Chapter 2 we start by introducing a general multi-objective
optimization problem, different concepts and methods involved in multi-objective
optimization. The main focus is on methods and concepts relevant for this the-
sis. In Chapter 3, we present a classification of types of hybridization used in
EMO and discuss various issues involved in implementing a hybrid EMO algo-
rithm and also suggest methods to solve these issues. We conclude Chapter 3 by
summarizing different hybrid EMO algorithms and a hybrid EMO framework
proposed, in addition to using the hybrid EMO algorithm based on our hybrid
EMO framework for solving a multi-objective control problem. In Chapter 4, we
present a new hybrid mutation operator for EMO algorithms to handle differ-
ent multi-objective optimization problems with different variable dependencies.
Furthermore, we present our new preference based interactive EMO algorithm
in Chapter 5. In Chapter 6, we present the summary of contributions in Papers
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[PI]-[PVI] and finally conclude with some future research directions in Chapter 7.



2 MULTI-OBJECTIVE OPTIMIZATION PROBLEM
AND SOLUTION METHODS

In this chapter, we first present the formulation of a multi-objective optimization
problem and define Pareto optimality. Subsequently, we present several multi-
objective optimization methods that provide elements to our hybrid approaches
to be introduced in Chapter 3.

In this thesis, we deal with multi-objective optimization problems of the
form:

minimize { f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S ⊂ Rn,

(1)

with k≥2 conflicting objective functions fi : S → R. If the objective function
fi is to be maximized then we minimize the function - fi, which is equivalent
to maximizing fi. We denote the vector of objective function values by f(x) =
( f1(x), f2(x), . . . , fk(x))T to be called an objective vector. The decision vectors
x = (x1, x2, . . . , xn)T belong to the decision space S. For example, we may have
S = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, xlo ≤ x ≤ xup}, where gi : Rn → R,
i = 1, . . . , l are the functions of inequality constraints, hj : Rn → R, i = 1, . . . , m
are the functions of equality constraints and xlo, xup ∈ Rn are the lower and upper
bounds of the decision variables, respectively. The objective function values of all
decision vectors belonging to S belong to a k-dimensional space called objective
space (f(S)).

In general, problem (1) has many optimal solutions with different trade-offs.
These optimal solutions are called Pareto optimal solutions. We can also define
locally and globally Pareto optimal solutions.

Definition 1 A decision vector x∗ ∈ S for problem (1) is a Pareto optimal solution, if
there does not exist another x ∈ S such that fi(x) ≤ fi(x∗) for all i = 1, 2, . . . , k and
fj(x) < f j(x∗) for at least one index j. To be more specific, a decision vector x∗ ∈ S is
Pareto optimal if (f(x∗)− Rk

+\{0}) ∩ f(S) = ∅, where Rk
+ = {z ∈ Rk| zi ≥ 0, i =

1, . . . , k}. An objective vector is Pareto optimal if the corresponding decision vector is
Pareto optimal. This definition dictates global Pareto optimality.
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FIGURE 2 An example of decision and objective spaces
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FIGURE 3 Properly Pareto optimal solution

In simple words, the above definition means that a solution x∗ is Pareto optimal
if no objective function value can be improved without impairing any other ob-
jective. A set of all Pareto optimal solutions in S is called a Pareto optimal set
and the image of the Pareto optimal set in f(S) is called a Pareto optimal front as
shown in Figure 2.

Definition 2 Let B(x∗, δ) denote an open ball with a center x∗ and a radius δ > 0,
B(x∗, δ) = { x ∈ Rn | ‖x∗ − x‖ < δ} . A decision vector x∗ ∈ S is said to be locally
Pareto optimal if there exists δ > 0 such that x∗ is Pareto optimal in S ∩ B(x∗, δ). An
objective vector is a locally Pareto optimal solution if the decision vector corresponding to
it is locally Pareto optimal.

In addition, there exists a set of solutions, which is a subset of Pareto optimal
solutions called properly Pareto optimal solutions [74].

Definition 3 A decision vector x∗ ∈ S and the corresponding objective vector z∗ =
f(x∗) ∈ f(S) are properly Pareto optimal if (z∗ − Rk

ρ\{0}) ∩ f(S) = ∅, where,
Rk

ρ = {z ∈ Rk | maxi=1,...,k zi + ρ ∑k
i=1 zi ≥ 0} and ρ > 0 is a pre-determined scalar.

The parameter ρ produces properly Pareto optimal solutions with trade-offs boun-
ded by ρ and 1/ρ [50, 74]. In Figure 3, the bold curve represents the properly
Pareto optimal solutions and the bold and dotted curves together represent the
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f1

f2 Nadir objective vector

Ideal objective vector

f(S)
Pareto optimal front

Objective space

Utopian objective vector

FIGURE 4 Ideal, utopian and nadir objective vectors

Pareto optimal solutions. The point z∗ is an example of a properly Pareto optimal
solution.

The ranges of different objective function values in the Pareto optimal front
are defined by ideal and nadir objective vectors. An ideal objective vector (zideal)
contains the lower bounds for the objectives of solutions in the Pareto optimal
front and is obtained by minimizing each of the objective functions individually
subject to the constraints. In addition, an utopian objective vector (z∗∗) is also
frequently used in multi-objective optimization [50], which is calculated as z∗∗
= zideal − e, where the components of e, ei > 0, i = 1, . . . , k are small. A nadir
objective vector (znadir) contains the upper bounds for the objectives in the Pareto
optimal front and is usually difficult to calculate [50]. A pay-off table [1] is often
used to find an approximated nadir objective vector. Recently, a hybrid algorithm
of evolutionary and local search approaches was proposed to find a reliable es-
timation of a nadir objective vector [15]. Examples of ideal, utopian and nadir
objective vectors are shown in Figure 4.

Since there exist many Pareto optimal solutions, a decision maker is needed
for choosing one solution among them. A decision maker (DM) is a person who is
an expert in the domain of the multi-objective optimization problem and can ex-
press her/his preference information to choose a single, most preferred solution.
For example, the preference information in terms of desirable objective function
values z̄i for every objective function fi can be used to obtain a reference point
z̄ = (z̄1, z̄2, . . . , z̄k)

T. Reference points provided by the DM can be of two types
[74]:

1. An aspiration point (za): Reference point has aspiration levels as compo-
nents, which are objective function values that are desirable to the DM.

2. A reservation point (zr): Reference point has reservation levels as compo-
nents, which are objective function values that should be attained, if possi-
ble.

Additionally, a reference point is termed attainable, if the objective function values
of the reference point can be achieved, else referred to as unattainable.
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2.1 Classification of methods in multi-objective optimization

Many methods have been proposed for multi-objective optimization to obtain
Pareto optimal solutions. A commonly adopted classification of multi-objective
optimization methods as followed in [50] is:

1. No-preference methods: In no-preference methods, no preference informa-
tion from the DM is available and a multi-objective optimization problem
is solved to obtain any (typically some sort of a neutral compromise) Pareto
optimal solution. Subsequently, the Pareto optimal solution is shown to
the DM, who either accepts or rejects the solution. No-preference methods
are usually used when there is no DM available or the DM has no prefer-
ences and any Pareto optimal solution is considered satisfactory by the DM.
The method of global criterion [76] is an example of no-preference methods.
Here, the distance between an ideal objective vector and the objective space
is minimized.

2. A posteriori methods: A representative set of Pareto optimal solutions is
presented to the DM in a posteriori methods and subsequently the DM se-
lects one among them based on her/his preferences. Although representing
the entire Pareto front before looks attractive, it is impractical to try to rep-
resent the entire Pareto front in multi-objective optimization problems with
more than two objectives, as many real world multi-objective optimization
problems are computationally expensive. Furthermore, it is not trivial how
to characterize a good enough representation. Additionally, it is difficult to
display the Pareto optimal objective vectors in an effective way to the DM,
when more than three objectives are involved.

Weighted sum method (minimizing a weighted sum of objectives) [25] and
ε-constraint method (minimizing one objective subject to constraints set
to other objectives) [30] can be used as a posteriori methods. In addition,
many commonly used evolutionary multi-objective optimization methods
like NSGA-II [16] also belong to a posteriori methods, where the main objec-
tive is to represent the entire Pareto optimal front with a population. Unlike
evolutionary multi-objective optimization methods, in the weighted sum
and the ε-constraint methods, several single objective optimization prob-
lems have to be solved sequentially to obtain a representation of the entire
Pareto optimal front. On the other hand, the latter can generate Pareto opti-
mal solutions whereas evolutionary approaches cannot guarantee optimal-
ity.

3. A priori methods: In a priori methods, the preference information of the
DM is considered beforehand to formulate a scalarizing function. This scalar-
izing function is used to define a scalarized problem, which is subsequently
solved to obtain a Pareto optimal solution that satisfies her/his preferences.
Unfortunately, it may be very difficult or impossible for the DM to know a
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priori what is possible to achieve and hence her/his preference information
may be too optimistic or too pessimistic. Lexicographic ordering [23] and
goal programming [5, 6] are examples of a priori methods. In lexicographic
ordering, the DM has to provide the preference order for the objective func-
tions, which are then optimized in the same order. In goal programming,
the DM has to specify a desired aspiration level for every objective func-
tion and subsequently a solution is obtained by minimizing the deviation
between the feasible objective function value and the aspiration level.

4. Interactive methods: In interactive methods, the DM articulates preference
information iteratively and thus directs the solution process progressively.
Here, a constant interaction is required between the interactive method and
the DM. Usually, an initial Pareto optimal solution is provided to the DM
based on which the DM can specify her/his preference information, i.e. in
what way the current solution has to be improved. Using this preference
information Pareto optimal solution(s) are generated. The procedure is it-
erated until the DM is satisfied with the Pareto optimal solution and does
not wish to continue further. The advantage of using interactive methods is
that the DM can guide the solution process and simultaneously learn about
the different trade-offs between different solutions. In addition, amount
of information to consider at a time is kept small. However, many multi-
objective optimization problems in industry may be computationally ex-
pensive, hence the DM may have to wait for a long time to obtain even one
Pareto optimal solution. In such a situation, an interactive method is not a
viable alternative without some approximation tools like Pareto Navigator
[22]. Presently, meta-modelling techniques are used to approximate objec-
tive functions so that interactive methods can be easily applied [77].

Many interactive methods have been proposed in the literature, such as the
Step method [1], reference point method [74], satisficing trade-off method
[56], NIMBUS method [53], etc. They use different types of preference infor-
mation and scalarizing functions. Recently, several evolutionary algorithm
based interactive methods have also been proposed, such as progressively
interactive evolutionary multi-objective algorithm [17], an interactive terri-
tory defining evolutionary algorithm [40], etc.

So far, we have referred to evolutionary multi-objective optimization several times.
In what follows, we describe some main principles of it.

2.2 Evolutionary multi-objective optimization

Multi-objective optimization methods that are based on evolutionary algorithms
(a stochastic search optimization algorithm) are called as evolutionary multi-
objective optimization (EMO) algorithms. EMO algorithms have two main goals
[9]:
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1. To find a set of solutions that is close to the Pareto optimal front.

2. To find a diverse set of solutions representing the entire Pareto optimal
front.

In the EMO literature, a solution is called an individual, a set of solutions is called
a population and an iteration of an algorithm is called a generation. Most EMO
algorithms utilize a randomly generated population to start with. Subsequently,
new individuals also called offspring are generated using crossover and muta-
tion operations. A crossover operator usually selects two individuals from a
population called as parents and produces two offspring and a mutation oper-
ator usually selects one offspring and randomly perturbs it. Ultimately, a new
population is generated by selecting the best individuals among the parent and
offspring populations based on the objective function values. The above steps of
crossover, mutation and selection together represent one generation of an EMO
algorithm. The generations are repeated until a termination criterion is satisfied.
Several EMO algorithms have been proposed in the last decade. Among them the
NSGA-II algorithm is commonly used [10]. Next, we present briefly the NSGA-II
algorithm [16].

The NSGA-II algorithm is an elitist EMO algorithm, where the best solu-
tions found are preserved. In addition, the NSGA-II algorithm also uses crowd-
ing comparison procedure [16], an explicit diversity preservation mechanism to
obtain a well distributed Pareto optimal front. The steps involved in the NSGA-
II algorithm are enumerated in Algorithm 1. A random population of size N
is generated in Step 1 of the NSGA-II algorithm. The population is next sorted
into different non-dominated fronts in Step 2. Subsequently, in Step 3 a crowded
tournament selection operator is used for binary tournament selection and next
crossover and mutation operators are used to create an offspring population of
size N. In Step 4 of the NSGA-II algorithm, the parent and offspring populations
are combined to get a population Rt of size 2N. In subsequent steps, the popu-
lation Rt is systematically reduced to a population P1t+1 of size N. The popula-
tion Rt is sorted into different non-dominated fronts in Step 5. In Step 6, P1t+1 is
filled with individuals starting from the best non-dominated front until the size of
P1t+1 is equal to N. When all the individuals in a front cannot be accommodated
fully a crowding distance [16] is calculated in Step 7 and the solutions are added
into P1t+1 in a decreasing order of magnitude of the crowding distances. Thus,
solutions in the least crowded regions are preferred and a well distributed Pareto
optimal front can be obtained. In Step 8, the termination criterion is checked. If
the termination criterion is satisfied, the NSGA-II algorithm is terminated in Step
9, else the NSGA-II algorithm continues to the next generation in Step 2.

The NSGA-II algorithm has a swift convergence speed due to the elitist
mechanism and yields a well distributed Pareto optimal front due to the crowd-
ing comparison operator. However, in the NSGA-II algorithm both tasks of con-
vergence and well distributed solutions in Pareto optimal front cannot be ob-
tained simultaneously. In order to maintain a well distributed set of solutions in
the Pareto optimal front, the NSGA-II algorithm may sacrifice a Pareto optimal
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Algorithm 1 NSGA-II algorithm

Step 1: Generate a random initial population P0 of size N and set generation
count t = 0.

Step 2: Sort population to different non-domination levels (fronts) and assign
each solution a fitness equal to its non-domination level (1 is the best level).

Step 3: Create offspring population Q
′
t of size N using binary tournament selec-

tion, recombination and mutation operations.
Step 4: Combine the parent and the offspring populations and create Rt = Pt ∪

Q
′
t.

Step 5: Perform non-dominated sorting to Rt and identify different fronts Fi, i =
1, 2, .... etc.

Step 6: Set a new population P1t+1 = φ. Set a count i = 1 and as long as |P1t+1|
+ |Fi| ≤ N, perform P1t+1 = P1t+1 ∪ Fi and i = i + 1. Here, |P1t+1| and |Fi|
represent the cardinality of P1t+1 and Fi, respectively. If |P1t+1| is equal to N,
go to Step 8.

Step 7: Perform the crowding-sort procedure and include the most widely
spread (N-|P1t+1|) members of Fi by using the crowding distance values in
the sorted Fi to P1t+1.

Step 8: Check if the termination criterion is satisfied. If yes, go to Step 9, else set
t = t + 1 and return to Step 2.

Step 9: Stop.

solution to a solution which is not Pareto optimal, due to special emphasis given
to less crowded non-dominated solutions.

As many practical problems are computationally expensive, several attempts
have been made to increase the convergence speed of the EMO algorithms like
the NSGA-II algorithm without compromising on diversity. One such way is to
use hybrid EMO algorithms. In hybrid EMO algorithms, a few individuals of a
population are locally improved by a local search procedure. The hybrid EMO
algorithms are further discussed in Chapter 3. Several scalarization techniques
exist in the literature, which can be used in the local search operator. Next, we
describe a few of the commonly used scalarization techniques with their advan-
tages and disadvantages.

2.3 Scalarization in multi-objective optimization

As mentioned in Chapter 1, MCDM is one of the research fields, where several
methods exist to aid the DM to find a Pareto optimal solution that satisfies her/his
preferences. Usually in MCDM, multiple objectives are converted into a single
objective problem. Several scalarization techniques can be found in the literature,
but the most commonly used are:
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1. Weighted sum method: In the weighted sum method, a weighted sum of
each of the objective functions is used as a scalarizing function and a scalar-
ized problem is formulated and solved to obtain a Pareto optimal solution.
The scalarized problem is defined as:

minimize ∑k
i=1 wi fi(x)

subject to x ∈ S ,
(2)

where wi > 0, for all i = 1, . . . , k and ∑k
i=1 wi = 1. The weighted sum

method is simple to use, but has a serious shortcoming. This method can-
not find all the Pareto optimal solutions, when the Pareto optimal front is
non-convex [50]. In Figure 5, only solutions on the bold black line can be
obtained by the weighted sum method, whereas the black bold curve and
the dotted curve together represent the Pareto optimal front.

f1

f2

f(S)
Pareto optimal front

Objective space

FIGURE 5 Pareto optimal solutions using the weighted sum method

2. ε-constraint method: In an ε-constraint method, one of the objective func-
tions is considered as an objective function and the other objective functions
are converted into constraints. Thus the multi-objective optimization prob-
lem (1) gets the form:

minimize fr(x)
subject to fi(x) ≤ εi, i = 1, . . . , k and (i �= r)

x ∈ S
(3)

The ε-constraint method can be used to get Pareto optimal solutions regard-
less of the convexity of the Pareto optimal front. However, the ε-constraint
method is unsuitable when objective functions are computationally expen-
sive, as k different problems have to be solved to guarantee the Pareto opti-
mality of a single solution [50].

3. Achievement scalarizing function (ASF): Achievement scalarizing func-
tion was proposed by Wierzbicki [74]. This scalarizing function is based on
a reference point z̄ ∈ Rk and the main idea is to project the reference point in
a specified direction on to the Pareto optimal front. Different Pareto optimal
solutions can be obtained by changing the reference point.
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An example of a scalarized problem involving an ASF is:

minimize
k

max
i=1

[wi( fi(x)− z̄i)]

subject to x ∈ S ,
(4)

where wi = 1
znadir

i −zideal
i

is a weight factor assigned to each objective function

fi . In the above setting, the weight factors are used to normalize the values
of each objective function fi.

Problem (4) may not always produce properly Pareto optimal solutions,
hence an augmented ASF is commonly used. A scalarized problem using
an augmented ASF can be written as

minimize
k

max
i=1

fi(x)−z̄i
znadir

i −zideal
i

+ ρ ∑k
i=1

fi(x)−z̄i
znadir

i −zideal
i

subject to x ∈ S ,
(5)

where ρ is a sufficiently small positive scalar called an augmentation coeffi-
cient, e.g. ρ = 10−3, which is the same as used in the definition of properly
Pareto optimal solutions.

Additionally, problem (5) is non-differentiable hence an equivalent differ-
entiable formulation is commonly used, assuming functions involved are
differentiable.

minimize α + ρ ∑k
i=1

fi(x)−z̄i
znadir

i −zideal
i

subject to [wi( fi(x)− z̄i)] ≤ α ∀ i = 1, . . . , k,
x ∈ S , α ∈ R.

(6)

Problem (5) is converted to (6) by introducing an extra real-valued variable
(α) and k new constraints [50].

As a reference point, the DM can provide both aspiration (za) and reserva-
tion (zr) points. In such a case, an aspiration-reservation ASF is used.

minimize max
i=1,...,k

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 + β
fi(x)−za

i
za

i −z∗∗i
if z∗∗i ≤ fi(x) ≤ za

i
fi(x)−zr

i
zr

i−za
i

if za
i ≤ fi(x) ≤ zr

i

γ
fi(x)−zr

i
znadir

i −zr
i

if zr
i ≤ fi(x) ≤ znadir

i

subject to x ∈ S,

(7)

where β and γ are strictly positive numbers. The three cases of expression
(7) are defined for three different schemes: for achievable reference points
in the first case, for unachievable reference points in the third case and the
second case is suitable when zr is achievable, but za is not. For more details,
see [60]. Additionally, a DM can also provide preference information to alter
the weights of an ASF, thereby projecting the reference point in a desirable
direction on to the Pareto optimal front [47].

Thus, it can be seen that using an ASF provides several advantages such as:
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(a) The optimal solution of a scalarized problem using an augmented ASF
is always properly Pareto optimal.

(b) Any properly Pareto optimal solution can be obtained by changing the
reference point.

(c) The optimal value of a scalarized problem using an ASF is zero, when
the reference point is Pareto optimal.

(d) Flexibility in handling preference information, such as both aspiration
and reservation points can be handled in a scalarizing function.

However, it is not always convenient for the DM to specify the reference
point, especially when s(he) has no idea about the range of the objective
functions. To avoid that usually the ideal and nadir objective vectors are
shown before hand to the DM.

4. Weighted Chebyshev metric method: In the weighted Chebyshev metric
method we usually formulate the following weighted Chebyshev problem:

minimize
k

max
i=1

[wi( fi(x)− z∗∗i )]

subject to x ∈ S ,
(8)

where wi is a weight factor assigned to each objective function fi and has
the same role as in the ASF.

Problem (8) can be used to generate any Pareto optimal solution irrespec-
tive of the convexity of the Pareto optimal front. However, it is necessary to
know the utopian objective vector a priori by optimizing each of the objec-
tive functions separately subject to constraints before optimizing (8). Unlike
the ASF, the reference point is fixed in (8). Hence, the weighted Chebyshev
metric method is less flexible in handling preference information as com-
pared to the ASF, where different Pareto optimal solutions can be obtained
by just changing the reference point.

Every scalarizing function has its own advantages and disadvantages. An ASF
was found to be a good scalarizing function to be used in a local search opera-
tor in hybrid EMO algorithms. In hybrid EMO algorithms, the objective vector
corresponding to an individual of a population can be considered as a reference
point of an ASF. Subsequently, an ASF is used to formulate a scalarized problem
and solved using any suitable mathematical programming technique. In a hy-
brid EMO algorithm, znadir and zideal in an ASF can be substituted by fmax (the
upper bounds for the objectives of individuals in a population) and fmin (the
lower bounds for the objectives of individuals in a population), respectively. In
addition, an ASF has many advantages as mentioned before in this chapter.

Various mathematical programming techniques are available in the litera-
ture for solving a scalarized problem [57]. By suitable mathematical program-
ming technique, we mean to choose a solver based on the characteristics (i.e., lin-
ear, non-linear, differentiable, non-differentiable etc.) of a scalarized problem. In
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this thesis, a sequential quadratic programming (SQP) method is used when the
objective functions and constraints are differentiable and non-linear. A proximal
bundle method [49] is used when the scalarizing function is non-differentiable,
non-convex and Lipschitz continuous subject to non-linear constraints. Addi-
tionally, if the scalarizing functions and constraints are differentiable and linear,
linear programming methods can be used.



3 HYBRID EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION ALGORITHMS

Evolutionary multi-objective optimization algorithms though widely used are of-
ten criticized for slow convergence to the Pareto optimal front. Hence, there is a
need for EMO algorithms with enhanced convergence speed to handle compu-
tationally expensive multi-objective optimization problems. Hybrid EMO algo-
rithms are a type of effective improvements for EMO algorithms. A Hybrid EMO
algorithm is an algorithm where a local search procedure consisting of a local
search operator is combined with an EMO algorithm. The local search operator
can be considered as an extra operator in a hybrid EMO algorithm. An EMO al-
gorithm plays the role of a global solver to find promising regions of importance
and a local search procedure locally improves the individuals of a population to
the nearest local optima. We can obtain the following advantages by using a hy-
brid EMO algorithm: a) increased convergence speed to the Pareto optimal front,
b) guaranteed convergence to the Pareto optimal front and c) an efficient termina-
tion criterion. Next, we present a classification for hybridizing EMO algorithms
with a local search procedure.

3.1 Approaches for hybridization

At least two different approaches can be used for hybridization of an EMO algo-
rithm with a local search procedure:

1. Concurrent hybrid approach: A general framework of a concurrent hy-
brid approach is shown in Figure 6. In a concurrent hybrid approach, a
local search procedure is used within an EMO algorithm to improve some
of the individuals of a population in a generation. Additionally, a local
search procedure may be applied to all individuals of the final population
to guarantee convergence to the Pareto optimal front (at least locally). We
call a hybrid EMO algorithm based on a concurrent hybrid approach as a
concurrent hybrid EMO algorithm. By locally improving a few individuals
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of a population, the convergence speed of a concurrent hybrid EMO algo-
rithm can be significantly enhanced. There exist a few issues that have to be
addressed regarding the implementation of a concurrent hybrid approach
such as: a) frequency of local search procedure (excessive use of a local
search procedure can consume more function evaluations and sparse us-
age of the local search procedure may not enhance the convergence speed),
b) choice of individuals for the local search procedure, c) a local search pro-
cedure can disturb the balance in the extent of exploration and exploitation
by a concurrent hybrid EMO algorithm, hence have to be rebalanced and
d) an efficient termination criterion for a concurrent hybrid EMO algorithm.

EMO algorithm

Local search

Pareto optimal front

Local search

Termination criterion 
satisfied

No

Yes

FIGURE 6 Concurrent hybrid approach

Several concurrent hybrid EMO algorithms can be found in the literature.
Ishibuchi and Murata [34] presented probably the first hybrid multi-objective
algorithm called multi-objective genetic local search algorithm (MOGLS) by
hybridizing the multi-objective genetic algorithm [55] with a local search
procedure. The local search procedure was used on every offspring gen-
erated by genetic operations. The local search operator consisted of us-
ing a weighted sum of objectives as a scalarizing function with random
weights and a neighbourhood search i.e., a small number of neighbouring
solutions around every offspring was examined to find an improved off-
spring. The algorithm was tested on a flow shop scheduling problem. In
[36], Jaszkiewicz proposed a new genetic local search (GLS) algorithm for
multi-objective combinatorial optimization. Here, a weighted linear utility
function or a weighted Chebyshev utility function, with random weights
were used as a scalarizing function in the local search operator. Goel and
Deb in [28] proposed both concurrent and serial hybrid approach based hy-
brid algorithms and tested on a number of engineering shape optimization
problems. A weighted sum of objectives were used as a scalarizing function
for the local search operator and a neighbourhood search to find improved
offspring. The local search procedure was used on all offspring in the con-
current hybrid EMO algorithm.



28

More recently, Lara et al. [45] have proposed a new local search strategy
called the hill climber with sidestep (HCS). Here, the geometry of the di-
rectional cones of optimization problems is utilized and can work with and
without gradient information. Depending on the distance of the current
solution from the (locally) Pareto optimal set, solutions can be generated
both towards and along the (locally) Pareto optimal set. The strength of
this strategy is demonstrated on test problems from the DTLZ test suite [20]
by hybridizing HCS with NSGA-II and SPEA2. Apart from the algorithms
mentioned here, several concurrent hybrid EMO algorithms proposed in
the literature have been summarized in Paper [PI].

2. Serial hybrid approach: In a serial hybrid approach, a local search proce-
dure is used only after the termination of an EMO algorithm. We call a
hybrid EMO algorithm based on a serial hybrid approach a serial hybrid
EMO algorithm. Using a local search procedure after the termination of an
EMO algorithm ensures the (local) Pareto optimality of the final population
of a serial hybrid EMO algorithm. However, serial hybrid EMO algorithms
can have the following shortcomings:

(a) The convergence speed of a serial hybrid EMO algorithm is not en-
hanced during the run of an EMO algorithm.

(b) A termination criterion using a local search procedure cannot be de-
vised to terminate a serial hybrid EMO algorithm. When a serial hy-
brid approach is used, the proximity of the final population of a serial
hybrid EMO algorithm cannot be efficiently determined, i.e., the fi-
nal population can be either far away from the Pareto optimal front or
in the proximity of the Pareto optimal front. Thus, excessive function
evaluations may be used when the local search procedure is applied on
all individuals of a final population which is far away from the Pareto
optimal front. Additionally, all the individuals resulting from the local
search procedure can lie on a local Pareto optimal front when the final
population is far from the Pareto optimal front.

Some algorithms based on serial hybrid approaches can be found in the lit-
erature. Goel and Deb [28] proposed a serial hybrid EMO algorithm in addi-
tion to the concurrent hybrid EMO algorithm. A local search operator using
a neighbourhood search was used in the local search procedure and applied
to all the non-dominated solutions obtained by NSGA-II. A weighted sum
of objectives was used as a scalarizing function in the local search operator.
Talbi et al. [70] used a local search procedure as a means to attain acceler-
ation and refinement of genetic search. Here, once a set of non-dominated
solutions was obtained, a local search procedure was applied on all indi-
viduals. A weighted sum of objectives was used as a scalarizing function
and a neighbourhood search is performed to find improved solutions. The
algorithm was tested on flow shop problems. Harada et al. in [31] proposed
a new hybrid algorithm using the Pareto descent method (PDM) as a local
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FIGURE 7 Serial hybrid approach

search operator. Here Pareto descent directions were found and improved
solutions found in these directions. Thus, simultaneous improvement in all
objectives can be obtained. A serial hybrid EMO algorithm was found to be
better than the concurrent hybrid EMO algorithm, when tested on bench-
mark problems with continuous search spaces available in the literature.

It can be seen above, that in most algorithms a naive weighted sum of objec-
tives with a neighbourhood search procedure is used in a local search operator.
As mentioned in Chapter 2, a weighted sum of objectives cannot find all Pareto
optimal solutions when the Pareto optimal front in non-convex. In a neighbour-
hood search procedure, when more than two objectives are involved, often many
solutions may have to be investigated in the neighbourhood. Thus a neighbour-
hood search is not an effective operator. Additionally, it can also be observed
that the speed of convergence of an EMO algorithm can only be enhanced by
using a concurrent hybrid approach. Hence, in our research we have developed
hybrid EMO algorithms based on a concurrent hybrid approach. However, as
mentioned before there exist a few issues to be addressed for a successful imple-
mentation of a concurrent hybrid EMO algorithm. In this thesis, we address these
issues and propose concurrent hybrid EMO algorithms and a hybrid framework
using which a concurrent hybrid EMO algorithm can be developed.

3.2 Issues involved in a concurrent hybrid EMO algorithm

Next, we consider issues involved in the implementation of a concurrent hybrid
EMO algorithm and discuss methods developed to tackle these issues.

1. Type of scalarizing function: In a local search operator, we usually convert
the multiple objectives into a single objective. In this thesis, we use an ASF
as a scalarizing function. A detailed description of an ASF and advantages
of using it in hybrid EMO algorithms have been given in Chapter 2. The
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objective function values of an individual chosen for the local search proce-
dure, f(x) is considered as a reference point (z̄) of an ASF and problem (6)
is formulated and solved using any suitable mathematical programming
technique. The individual is then replaced by the resulting locally optimal
solution.

2. Frequency of local search procedure: The number of individuals of a pop-
ulation to be improved using a local search procedure in any generation
is very difficult to estimate. In the literature, it is common to either apply
local search procedure on all individuals or randomly selected individuals
of a population or use a fixed probability of local search. We consider a
probability of local search, which indicates an average number of usages of
a local search procedure every generation as an estimate of the frequency
of local search procedure. In any generation, an individual is selected and
a random number is generated. If the random number is less than or equal
to the probability of local search, the local search procedure is used. This
procedure is repeated on all individuals of a population. In this thesis, we
propose two different ways to fix the probability of local search.

(a) Cyclic probability of local search: Here a saw tooth probability func-
tion is used to implement a cyclic behaviour. The probability of local
search is fixed to zero at the first generation and then linearly increased
to a pre-fixed maximal probability of local search at generation t. Next,
at generation t + 1, the probability of local search is reduced to zero
and then the entire cycle continues. In Paper [PI], the maximum prob-
ability of local search allowed is fixed based on an empirical study on
a number of test problems.
The main idea behind the cyclic probability of local search is to main-
tain a balance between the local and global search phases. When the
probability of local search is low, the global search operators (crossover
and mutation) are allowed to act and find better solutions and when
the probability of local search is high, the local search procedure is
used multiple times to locally improve the individuals and converge
to the nearest locally or globally optimal solutions.

(b) Fixed probability of local search: The probability of local search can
be fixed (and remains the same throughout the algorithm runtime).
The balance between a global and a local search operators is main-
tained by enhancing the diversity of the population. In this thesis, we
suggest a probability of local search based on an empirical study on a
number of test problems. However, the suggested value of probabil-
ity of local search is just a guideline and can be changed to any other
suitable value.

3. Diversity enhancement: In hybrid EMO algorithms, the locally optimized
solutions (as a result of a local search procedure) may be far from the cur-
rent population towards the Pareto optimal front. Such solutions are called
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as super individuals. The super individuals may dominate the entire popu-
lation and have an increased selection pressure. In subsequent generations,
the entire population may develop a tendency to move towards the super
individuals and the diversity of individuals in the population is lost. Thus,
there is a need for restoration of diversity. In the literature, random weights
in scalarizing functions are used to obtain solutions in different regions of
the Pareto optimal front, thus maintaining diversity. We propose two dif-
ferent ways to maintain diversity in a population:

(a) Use of pseudo-weights: Luque et al. in [47] have suggested that by
altering the weights used in problem (5), different Pareto optimal so-
lutions can be obtained. In other words, the direction of projection
of an individual onto a Pareto optimal front can be altered. As men-
tioned in Section 2.2, the population of EMO algorithms can be sorted
into different non-dominated fronts [16]. For an individual belonging
to a front F, Deb and Goel in [12] proposed a way for specifying the
weights relative to the extremes in the front called as pseudo-weights.
The pseudo-weight qi of an individual is given by

qi =
( f rmax

i − fi(x))/( f rmax
i − f rmin

i )

Σk
j=1( f rmax

j − f j(x))/( f rmax
j − f rmin

j )
(9)

for all i = 1, 2, . . . , k. Here f rmin
i and f rmax

i are the minimum and maxi-
mum objective function values of the individuals belonging to front F.
Thus for an individual with minimum value for fi, qi is maximum. The
pseudo-weight indicate the relative position of an individual from the
worst solution in every objective [9]. We utilize these pseudo-weights
as a multiplying factor in the weights of Problem (5), as

wi =
1

qi( f max
i − f min

i )
(10)

for all i = 1, 2, . . . , k.
When we use the same projection direction in every local search pro-
cedure, the resulting solutions may all lie in the same region of the
Pareto optimal front, thereby creating more super individuals. By us-
ing (10) as the weights in problem (5) helps us to project individuals in
different directions based on the position in the non-dominated front,
ultimately maintaining the diversity in a population.

(b) Use of clustering (UC): In Paper [PIII], we cluster a population of a
hybrid EMO algorithm to roughly estimate the loss in diversity of a
population and to restore the diversity of a population. The diversity
in the objective space is necessary because a local search procedure
needs distinct reference points to obtain solutions in different regions
of the Pareto optimal front.
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At the end of any generation, an EMO algorithm has a parent and an
offspring population. Next, a non-dominated sorting of the combined
population is performed and the combined population is sorted into
different non-dominated fronts. The new population for the next gen-
eration is built by considering the individuals from the best front and
continued to the next best front, until the number of individuals in the
new population is equal the population size. A clustering procedure is
used to estimate the diversity of the new population. The new popu-
lation is projected on a hyperplane (H) ( f max

i ∈ H, i = 1, . . . , k, where
f max
i is the maximum function value of an objective fi in the new pop-

ulation) and clustered into K = k + 1 clusters. Next a clustered quality
index is calculated as

Q = ∑K
i=1

1
|RPt

i | ∑Cj∈RPt
i
(D(Cj, σi)), (11)

where t is the generation number, K is the number of clusters, σi rep-
resents the cluster centroid of the cluster i and Cj represents an indi-
vidual in the cluster i. Furthermore, D(Cj, σi) is the Euclidean distance
of an individual in the cluster i to its centroid, RPt

i is the population
in the cluster i and |RPt

i | is the number of individuals in the cluster i.
If all the individuals in the new population are very close and in one
cluster, Q will have a very low value and a high value if we have a well
spread population. A detailed description of the use of Q to decide on
the diversity of a population is given in Paper [PIII].
When the cluster quality index indicates a loss in diversity of a popula-
tion (i.e. a low index value), the local search procedure is not used due
to the danger of creating more super individuals. Instead, the diversity
of the new population is increased by reconsidering the combined pop-
ulation. The combined population is now projected on a hyperplane
(H1) ( f 1max

i ∈ H1, i = 1, . . . , k, where f 1max
i is the maximum function

value of an objective i in the combined population). The projected pop-
ulation can be clustered to get a sub-population in each cluster. Each
of these sub-populations can be sorted into different non-dominated
fronts individually. Next, the new population is rebuilt by first consid-
ering the individuals of the first front in every cluster. Subsequently,
we move to the next non-dominated front in every cluster. The proce-
dure is repeated until the number of individuals in the new population
is equal to the population size. A detailed description of constructing a
hyperplane and projection of solutions on it is provided in Paper [PIII].

4. Choice of individuals for local search procedure: In the literature related
to hybrid EMO algorithms, there are no clear guidelines to choose an in-
dividual for a local search procedure. Usually any random individual is
picked from a population and a local search procedure is performed. In this
thesis, we propose a procedure that can be adopted to choose an individual
for a local search procedure. We propose to apply a local search procedure
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only when a population has not undergone a loss in diversity. The new
population obtained after combining parent and offspring populations is
projected on a hyperplane (H). The projected population is clustered into
different clusters. Here we propose to cluster the projected population in
to k + 1 clusters, i.e., one cluster at k extremes and at the centroid of the
hyperplane. A solution from a randomly selected cluster from the gener-
ated k + 1 clusters is selected for a local search procedure. Since, whenever
a local search procedure is used, a random cluster is selected, a solution in
different parts of the Pareto optimal front can be generated.

5. An efficient termination criterion: In EMO, the algorithms are either termi-
nated after a prefixed number of generations or when no new individuals
have entered the non-dominated set (a set of non-dominated individuals)
after a prefixed number of generations. These termination criteria do not
indicate the proximity of a population to the Pareto optimal front. A ter-
mination criterion based on a prefixed number of generations can consume
many unnecessary function evaluations when set to a very large value and
the final population can be very far from the Pareto optimal front when it is
set to a very small value. The number of generations needed for the popula-
tion to reach the Pareto optimal front cannot be determined a priori for any
practical problem. When an EMO algorithm is terminated based on no new
individuals having entered the non-dominated set after a prefixed number
of generations, the reason can be either due to the inability of the operators
of an EMO algorithm to generate good solutions or the population has con-
verged to the Pareto optimal front. Hence, there is a need for a stopping
criterion, which should be automatic and ensure an adequate convergence
to the Pareto optimal front.

When an ASF is used as a scalarizing function in a scalarized problem, the
optimal value of the scalarized problem can be used to devise a new ter-
mination criterion for a hybrid EMO algorithm. The optimal value of a
scalarized problem, Ωt, at every generation t is stored in an archive. Then
a moving average Γt = 1

Λ ∑t
j=t−Λ+1 Ωt is calculated at a generation t (after

Λ generations), where Λ is a pre-fixed number of generations. If Γt ≤ ε,
where ε is a pre-fixed small positive scalar, at any generation t, the hybrid
EMO algorithm is terminated. The optimal value of a scalarized problem
is zero, when an individual chosen for a local search procedure is a Pareto
optimal solution. If the optimal value of an ASF based scalarized problem
in every local search procedure is always a small positive scalar, it can be
an indication that the population is near to the Pareto optimal front. Thus,
the procedure proposed above can be considered as an effective termination
criterion.

Now, having addressed issues involved in the implementation of a concurrent
hybrid EMO algorithm, we present different concurrent hybrid EMO algorithms
and a hybrid framework proposed in Papers [PI]-[PIII].
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3.3 Concurrent hybrid EMO algorithms and hybrid EMO frame-
work proposed

In [66], we have proposed a concurrent hybrid approach for increasing the speed
of convergence of the NSGA-II algorithm. We have used an ASF as a scalarizing
function in local search operator. The cyclic probability of local search based on a
saw tooth probability function is used to decide on the frequency of local search
procedure. In every generation of the NSGA-II algorithm, every individual in an
offspring population is evaluated and checked with a probability of local search
for its improvement with a local search procedure. Thereafter, the parent and
offspring populations are combined together and non-dominated sorting [9] is
performed. Next, the NSGA-II algorithm continues as usual. The results showed
a drastic reduction in function evaluations, when tested on a number of problems
from ZDT [9] and DTLZ [20] test suites, when compared to the original NSGA-II
algorithm.

In Paper [PI], we extend the hybrid approach presented in [66] into a concur-
rent hybrid EMO algorithm. Three prominent changes were added to the original
NSGA-II algorithm, a) local search procedure introduced as an additional opera-
tor sparingly, using a cyclic saw tooth probability density function, b) a termina-
tion criterion based on the optimal value of an ASF based scalarized problem and
c) a local search procedure is used on all the individuals of the final population
to guarantee at least the local Pareto optimality. A gradient based solver using
approximate gradients (forward difference method), SQP, was used to solve the
scalarized problem in local search operator. An extensive parametric study was
performed on the maximum number of iterations of SQP that can be allowed in
a local search procedure and the best value was found to be rather low, around 5.
For comparison studies in addition to the ZDT and DTLZ test problems, two ad-
ditional practical problems, water resources planning problem [24] and a welded
beam design problem [9] were used. For comparison studies, two hybrid algo-
rithms based on concurrent and serial hybrid approaches were used with NSGA-
II as an underlying EMO algorithm.

The performance measures adopted for the comparison studies in Paper
[PI] were, a) a stopping criterion based on the error in objective fk between ob-
tained solution and corresponding fk value obtained by substituting other objec-
tive values ( f1 . . . fk−1) in the Pareto optimal relationship ( fk = fk( f1, . . . , fk−1)),
calculated for every non-dominated individual in a population. If the sum of the
square of errors generated by all non-dominated solutions was less than or equal
to 0.001, the hybrid algorithm was terminated. This termination criterion ensures
that final population is in the proximity of the Pareto optimal front. It must be
noted, that this termination criterion is used only to test the efficacy of our algo-
rithm with test problems and cannot be applied to any practical problem, as the
Pareto optimal front is unknown and b) hypervolume measure [82] for diversity.
The concurrent hybrid NSGA-II algorithm was found to take a smaller number of
function evaluations as compared to the serial hybrid NSGA-II algorithm to reach
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the Pareto optimal front in most test problems. Next, exact gradients were used
in SQP to show that a further reduction in the number of function evaluations can
be achieved when exact gradients are available or non-gradient based solvers are
used. A novel termination criterion based on the optimal value of an ASF based
scalarized problem (described earlier) was also shown to be an efficient termina-
tion criterion. However, no additional diversity preservation technique was used,
apart from the diversity preservation already present in the NSGA-II algorithm.

In Paper [PII], an initial attempt was made to incorporate an additional di-
versity enhancement in the concurrent hybrid EMO algorithm using NSGA-II as
an EMO algorithm. Two prominent changes were made to the concurrent hybrid
EMO algorithm presented in Paper [PI], a) a local search procedure applied with
a fixed probability on multiple solutions in different non dominated fronts and
b) use of pseudo-weights in an ASF for projecting individuals in different regions
of the Pareto optimal front. In every generation of the concurrent hybrid NSGA-
II algorithm, a combined population was obtained by combining parent and off-
spring populations. A non-dominated sorting was performed on the combined
population and classified into different non-dominated fronts. A local search pro-
cedure was applied with a pre-fixed probability on three random individuals one
each from best, median and worst non-dominated fronts. A random individual
from the median and worst non-dominated fronts were chosen for a local search
procedure to maintain lateral diversity. Next, the concurrent hybrid NSGA-II al-
gorithm continued similar to the NSGA-II algorithm. Finally, when the algorithm
was terminated, a local search procedure was applied on all individuals of a pop-
ulation to at least guarantee local Pareto optimality.

In the concurrent hybrid NSGA-II algorithm proposed in Paper [PII], a fixed
probability of local search was used. The number of non-dominated fronts in ev-
ery generation was recorded. Whenever the number of non-dominated fronts in
a generation was greater than the previously known highest value of the number
of non-dominated fronts, the probability of local search was set to zero for the sub-
sequent generation and later set back to the pre-fixed value. It was observed that
whenever a local search procedure was used and when a super individual was
generated, there was a sudden outburst in the number of non-dominated fronts.
This can result in a sudden loss of diversity. By setting the probability of local
search to zero, global search operators can restore the diversity of individuals in a
population.

For comparison studies in Paper [PII], two hybrid algorithms based on con-
current and serial hybrid approaches were used with NSGA-II as an underlying
EMO algorithm. A number of test problems from ZDT and DTLZ test suites were
considered in addition to two practical problems, water resources planning prob-
lem and welded beam design problem for comparison tests. The performance
measures adopted were the same as in Paper [PI] for the test problems. For the
two practical problems, hypervolume of the resulting population was calculated
after 25, 000 function evaluations. The convergence test was not carried out for
the practical problems as the exact Pareto optimal front is unknown and the error
metric could not be calculated. The proposed concurrent hybrid EMO algorithm



36

was better than the serial hybrid EMO algorithm both in terms of convergence to
the Pareto optimal front and the hypervolume.

In Paper [PIII], we proposed a generalized hybrid framework for hybrid
EMO algorithms. In this hybrid EMO framework, different functional modules
were proposed and developed to tackle the issues mentioned before. The frame-
work can be considered as a skeleton on which hybrid EMO algorithms can be
effectively built. Any code can be used in each of the modules, which matches the
corresponding functionalities. The proposed hybrid EMO framework is shown
in Figure 8. A hybrid EMO algorithm based on this framework starts with an
EMO algorithm module, which encompasses selection, crossover and mutation
operations to produce an offspring population from the parent population. Also,
the parent and offspring population are combined to generate a new population.
The new population is next sent to the project and cluster module, where the
population is projected on a hyperplane (H) and clustered in to k + 1 clusters.

Start

EMO algorithm

Project and
cluster

Diverse ?

Local search 1

Local search 2

Termination ?

End

Diversity
enhancement

No

No

Yes

Yes

FIGURE 8 Hybrid EMO framework

After clustering, a clustering quality index is calculated to estimate the di-
versity of the population. If the diversity of the new population is not lost, the
new population is sent to the local search module with the clustered population.
In the local search module, a random cluster is selected and every individual is
checked against a selection criterion for a local search procedure, i.e a random
number is generated and checked if it is less than or equal to the probability of lo-
cal search. When an individual in the clustered population is selected, the corre-
sponding individual in the new population is chosen and an ASF based scalarized
problem is formulated and solved using any suitable mathematical programming
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technique. The resulting solution replaces the chosen solution in the new popu-
lation. Finally, the termination criterion is checked. If the termination criterion
is satisfied, the hybrid EMO algorithm is terminated and a local search proce-
dure is used on all individuals of the final population to guarantee at least the
local Pareto optimality, else the algorithm moves to the next generation. Dur-
ing the diversity check, if there is a lapse in diversity, a diversity enhancement
(UC) is carried out and the hybrid EMO algorithm moves to the next genera-
tion. We have shown the efficacy of the proposed hybrid EMO framework with
extensive numerical experiments by considering the most widely used EMO al-
gorithm, NSGA-II as an example. Here, a number of test problems from ZDT and
DTLZ test suites are considered and the IGD metric [7] is used as a performance
measure. We have shown that an algorithm based on our hybrid EMO frame-
work can achieve faster convergence towards the Pareto optimal front without
loss in diversity, which is also our goal in this research.

3.4 Optimal control in continuous casting of steel process: A case
study

In this section, we present a case study related to the optimal control of the con-
tinuous casting of steel process considered in Paper [PIV]. We consider a multi-
objective formulation of the optimal control of the surface temperature of the steel
strand, where constraint violations are minimized. We use the HNSGA-II algo-
rithm based on our hybrid framework proposed in Paper [PIII], to obtain a set of
Pareto optimal solutions with different trade-offs. In addition, we also consider
additional preference information in the weights of an ASF to generate solutions
with different trade-offs in preferable regions of the Pareto optimal front.

In the continuous casting of steel process, molten metal is solidified into
semi-finished slabs. A continuous casting machine is shown in Figure 9. The
initial stage is a primary cooling region, wherein molten steel is fed into a water
cooled mould. A solid shell is formed on the steel strand in the mould. Next,
steel strand enters a secondary cooling region. The steel strand exits at the base
of the mold (z1), which is supported by rollers and cooled by water spays. In
the secondary cooling region, the cooling of the steel strand takes places such
that at the end of this region, the solidification of the steel strand is complete.
The secondary cooling regions contain a number of cooling zones and each zone
consists of a group of spray nozzles. After the secondary cooling region (at the
point z2), the steel strand is subsequently cooled by radiation alone. Finally, the
steel strand is straightened at the unbending point z4 and cut at the cutting point
z5.

The final quality of steel depends on the distribution in the surface temper-
ature and the solidification front as a function of time. The optimization problem
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FIGURE 9 Overview of the continuous casting process. (Figure provided by Dr. Timo
Männikkö)

that we are interested is a temperature control problem in the secondary cooling
region to obtain a good quality steel. The problem is to minimize the variation of
the surface temperature distribution on the boundary of the strand to be close to
a pre-defined surface temperature distribution. This resulting objective function
has 325 control variables describing the intensities of water sprays from differ-
ent sprayers in the secondary cooling region. In addition, the model has four
constraints: surface temperature bound constraint, avoiding excessive cooling or
re-heating on the surface of strand, restricting the length of the liquid pool and to
avoid too low temperatures at the unbending point.

In [54], it has been shown that the above described single objective formu-
lation has an empty feasible region. Hence, in [54] a multi-objective optimization
problem was considered. Here, in addition to the original single objective func-
tion, the constraint violations were also considered as objective functions. Thus,
some infeasible solutions of the single objective optimization problem formula-
tion are feasible solutions for the multi-objective optimization problem formu-
lation. The objective functions are: a) to keep the surface temperature in the
secondary cooling region as near to the desired temperature as possible, b) to
maintain the temperature in between the upper and lower bounds, c) to avoid
excessive cooling and re-heating of the surface of the steel strand, d) to restrict
the length of the liquid pool and e) to avoid too low temperatures at the unbend-
ing point. Additionally, for every cooling region an upper bound for the spray
water flow rate is fixed, which act as box constraints.

This problem was subsequently solved using HNSGA-II algorithm proposed
in Paper [PIII]. A non-differentiable solver, proximal bundle method [49] was
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used to solve ASF’s during the local search procedure, as the objective functions
were non-differentiable functions. It was difficult to generate Pareto optimal so-
lutions representing the entire Pareto optimal front for a five objective optimiza-
tion problem with a finite population size. Hence, the preference information, i.e.,
the objective functions representing the constraints are more important than the
original objective function itself, was incorporated into the weights of the ASF’s.
The local search procedure in addition to diversity preservation techniques was
found to be helpful in obtaining a diverse set of Pareto optimal solutions. The di-
verse set of Pareto optimal solutions was clustered and the value paths for every
cluster were shown to a DM. By analyzing the value paths, the DM understood
the trade-offs in each cluster.

The different Pareto optimal solutions in each cluster, was analyzed to ob-
tain valuable information regarding the working of a continuous caster (see Pa-
per [PIV]). The DM chose one solution (with minimum constraint violations)
that matched her/his preference information. Furthermore, the HNSGA-II algo-
rithm was altered to explore solutions with low constraint violations with a small
probability, to obtain diverse solutions in the preferable regions of the Pareto op-
timal front. Again, the Pareto optimal solutions were clustered and value paths of
every cluster were shown to the DM. The DM used the knowledge about the dif-
ferent trade-offs that existed in the clusters and chose the most preferred solution
among them. The case study not only demonstrated the potential of hybrid EMO
algorithms in orienting the search towards the preferable regions of the Pareto
optimal front, but also showed how one can end up having a multi-objective
optimization problem, even though the original problem is a single objective op-
timization problem.



4 A HYBRID MUTATION OPERATOR FOR
EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION ALGORITHMS

As discussed, evolutionary multi-objective optimization algorithms have several
important components such as crossover, mutation operators, etc., which dictate
their efficient working. In a recent CEC 2009 competition for the constrained
and unconstrained multi-objective optimization problems, we used the concur-
rent hybrid EMO algorithm [67] developed in Paper [PI] to generate Pareto opti-
mal solutions. A prominent change made was to use a k-means clustering algo-
rithm [48] instead of a crowding distance in NSGA-II, as the crowding distance
mechanism is effective mainly in bi-objective problems [44]. The concurrent hy-
brid EMO algorithm performed reasonably well in the competition. However,
the SBX recombination operator [11] used in the concurrent hybrid EMO algo-
rithm was inefficient in generating potential good solutions in most of problems.
In fact, most of the Pareto optimal solutions produced were found to be due to the
local search operator. This shows that the local search operator in a concurrent
hybrid EMO algorithm can supplement as a potential good solutions generator,
when other operators fail. Additionally, this also made us realize the importance
of using an efficient recombination operator in an EMO algorithm.

Another interesting observation in the CEC 2009 competition was, that all
the best performing EMO algorithms were based on the differential evolution
(DE) [68] mutation operator. The winning algorithm was MOEA/D [78], a re-
cently proposed high performance EMO algorithm using a linear DE operator.
Differential evolution is one of the most widely used evolutionary algorithms
in multi-objective optimization. It contains a linear mutation operator, which is
very simple, yet a powerful mechanism to generate trial vectors. In this study,
we use the word trial vectors to refer to solutions obtained as a result of muta-
tion. Furthermore, on investigation we found that the efficiency of the opera-
tor can suffer if there are non-linear variable dependencies (we say that a prob-
lem involves non-linear variable dependencies, if the Pareto-optimal set does not
fall on a plane of a lower dimension than the space itself) in the Pareto optimal
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set. Hence, to make EMO algorithms based on DE mutation more robust, we
suggested a hybrid mutation operator with curve tracking capabilities to be effi-
ciently able to handle various dependencies between variables. In addition, our
main motivation was to develop a hybrid operator without drastically increasing
the computational complexity of the linear DE operator.

Next, we briefly describe the linear DE operator and present the hybrid mu-
tation operator and finally conclude this chapter with results obtained by an ex-
haustive numerical study.

4.1 Differential evolution mutation operator

Differential evolution is a stochastic evolutionary algorithm proposed by Storn
and Price [68] for optimizing a real-valued function of continuous variables. In
DE, a subset of three decision vectors Q = {x0, x1, x2} is randomly selected from
a population. A mutated vector x̂t is calculated as x̂t = x0 + F(x1 − x2), where
F > 0 is a scaling factor. We refer to this mutation operator as a linear mutation
operator (LIMO). In LIMO, the scale and orientation of the search are adapted to
the extent of the current population by using difference vectors and hence self-
adaptive. This self-adaptation works especially well if all the variable dependen-
cies in the multi-objective optimization problem are linear, but fails to extract in-
formation of any non-linear dependencies based on the relative positioning of the
solutions in the population. Many operators have been proposed for DE, which
have been summarized in Paper [PV].

We propose a new mutation operator designed to detect and exploit non-
linear variable dependencies among the decision variables by extracting curva-
ture information from a population of decision vectors and combine it with LIMO.
We call this operator a hybrid mutation operator, which is described next.

4.2 Hybrid mutation operator

The hybrid mutation operator proposed in Paper [PV] consists of both LIMO and
polynomial mutation operators. Here we use polynomials to model the non-
linear variable dependencies between decision variables. In other words, the cur-
vature detection between decision vectors is based on the polynomial approxi-
mation. This polynomial approximation is used to guide the generation of new
trial vectors.

We fit a polynomial-based curve to three randomly selected decision vectors
x0, x1, x2 chosen from a population, so that the curve interpolates these vectors. A
tracking curve p created using x0, x1, x2 is a function from R into Rn,

p(t) = (p1(t), p2(t), . . . , pn(t))T, (12)

where n is the number of variables and pi is a polynomial from R into R for each
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i = 1, . . . , n given by

pi(t) = ci
2t2 + ci

1t1 + ci
0. (13)

The polynomial pi interpolates pairs (0, x0
i ), (1, x1

i ) and (2, x2
i ) for all i = 1, . . . , n

and its coefficients c2, c1 and c0 are as follows:

ci
2 =

x0
i − 2x1

i + x2
i

2
,

ci
1 =

4x1
i − 3x0

i − x2
i

2
and

ci
0 = x0

i .

(14)

Once the polynomial p(t) is found based on the vectors x0, x1, x2, we can
calculate a new trial vector with an appropriate t value. Here we refer to p as the
polynomial mutation operator (POMO). The POMO operator uses t as a parame-
ter to generate new trial vectors. When the t values equal 0, 1 and 2, we get x0, x1

and x2, respectively. Now, when the t value is between 0 to 2, the trial vectors are
generated by interpolation and when the t values are higher than 2 or lower than
0, the trial vectors are generated by extrapolation.

The variable dependencies are not known a priori in any practical prob-
lem, hence we suggest to use a hybrid operator of both LIMO and POMO, so
that linear variable dependencies are efficiently handled by LIMO and non-linear
variable dependencies by POMO. In our hybrid operator, we use either LIMO
or POMO for trial vector generation with a probability. In addition, POMO can
generate a trial vector by interpolation or extrapolation with prefixed probability.
The interpolation and extrapolation are used here to balance between exploration
and exploitation behaviour of POMO. When we generate trial vectors by interpo-
lation, POMO exploits the curvature information between chosen decision vari-
ables and when we generate trial vectors by extrapolation, POMO can explore
the search space, though locally. Next, we propose our hybrid operator (HOP):

• Generate a random number r between 0 and 1.

• If r ≤ 0.75, set x̂t = x0 + F(x2 − x1)

• Else set x̂t = p(t), where t is randomly selected

– between 0 and 2 if random number for probability of interpolation is
below Pinter and

– between 2 and 3 otherwise.

Due to the simple structure of HOP, it can be used as a mutation operator in any
appropriate EMO algorithm (instead of LIMO).
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4.3 Summary of results of the numerical study

For the numerical study, we considered all the test problems of the CEC 2007 [32]
and 2009 [80] EMO competitions, as these test problems were designed to rep-
resent various problem types and were accepted for comparing different EMO
algorithms. These sets contain 14 bi-objective problems, 9 problems with three
and 8 problems with five objectives and contain problems with both linear and
non-linear variable dependencies. We considered the winning EMO algorithm in
the CEC 2009 competition MOEA/D and replaced LIMO with HOP in it. For con-
venience, we refer to MOEA/D with HOP as MOEA/D-HOP and MOEA/D with
LIMO as MOEA/D-LIMO. The main focus of this study was to see if we could
improve the performance of MOEA/D-HOP algorithm in problems with both
linear and non-linear variable dependencies as compared to MOEA/D-LIMO. A
detailed description of the MOEA/D algorithm used here is presented in [79]. A
list of test problems with their corresponding numbers of variables and objectives
and type of dependency in their Pareto sets is provided in Paper [PV].

To have a fair comparison with the competition results of the competitions,
we borrowed the performance metric (IGD metric) [7] and parameter settings of
the CEC 2009 competition. For both MOEA/D-LIMO and MOEA/D-HOP, we
recorded the best, median and worst IGD values from 30 independent runs. The
IGD values of both algorithms were subsequently used to perform the Wilcoxon
rank sum test [27], a non-parametric statistical test at 5% significance level. The
overall performance of the MOEA/D-HOP algorithm was judged based on the
total number of significant successes achieved over the MOEA/D-LIMO algo-
rithm. An exhaustive parametric study of the probability of performing interpo-
lation and extrapolation in HOP was performed for MOEA/D-HOP.

The probability of interpolation (Pinter) considered for tests were 0.00, 0.25,
0.50, 0.75 and 1.00 for all test problems. The number of significant successes for
MOEA/D-HOP was smaller than that of MOEA/D-HOP for Pinter = 0.0, i.e, when
only extrapolation was used in POMO of HOP. With Pinter = 0.25, the number
of significant successes of MOEA/D-HOP and MOEA/D-LIMO were 6 and 5,
respectively. At the Pinter value of 0.50 the number of significant successes for
MOEA/D-HOP and MOEA/D-LIMO were 12 and 5. Furthermore, the number
of significant successes for MOEA/D-HOP at 0.75 increased to 14, but the num-
ber of significant successes for MOEA/D-LIMO at 0.75 remained 5. When the
Pinter value was further increased to 1.00, i.e, when only interpolation was used in
POMO of HOP, the number of significant successes for MOEA/D-HOP, reduced
to 9 and the number of significant successes for MOEA/D-LIMO increased to 7.
Thus, it can be concluded from the study that the extremes of only extrapola-
tion or interpolation in POMO degrades the performance of the MOEA/D-HOP
algorithm and both extrapolation and interpolation are necessary for the best per-
formance of MOEA/D-HOP. The maximum number of significant successes for
MOEA/D-HOP was observed at Pinter = 0.75, hence, our choice. Nevertheless,
any value between 0.50 and 0.75 can be a reasonable choice for Pinter. For a de-
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tailed analysis of the results with the tables showing the numbers of significant
successes of MOEA/D-HOP against MOEA/D-LIMO, see Paper [PV].

To conclude, the MOEA/D-HOP algorithm performed equally well on prob-
lems with linear and non-linear variable dependencies. Typically, MOEA/D-
HOP either performed better or on par with the MOEA/D-LIMO algorithm,
which provides us confidence for using the POMO based operator HOP. Regard-
less of the fact, that MOEA/D is a high performance EMO algorithm and one can-
not expect drastic improvements in performance, the hybrid operator provided
robust performance and better results for many test problems. In short, after this
study we could conclude that using HOP can be a safe and more reliable choice
for solving multi-objective optimization problems as compared to LIMO.



5 AN INTERACTIVE PREFERENCE BASED
EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION ALGORITHM

In multi-objective optimization, the main aim is to find the most preferred solu-
tion to the DM. Evolutionary multi-objective optimization algorithms are com-
monly used to obtain a set of diverse non-dominated solutions close to the Pareto
optimal front. Using a posteriori approach, this set of solutions are subsequently
used with the preference information of the DM to obtain the most preferred so-
lution to her/him. To obtain a set of diverse Pareto optimal solutions with a
reduced number of function evaluations as compared to the EMO algorithms,
hybrid EMO algorithms (discussed in Chapter 3) can be used. However, EMO al-
gorithms are not usually suitable to handle more than three objective functions, as
many solutions in a population are non-dominated. Hence it becomes difficult to
add new solutions into the population. In addition, a very large number of Pareto
optimal solutions may be necessary to represent the entire Pareto optimal front
and the visualization of the Pareto optimal solutions become extremely difficult
in multi-objective optimization problems involving more than three objectives.

Assuming that the DM can specify her/his preference information a priori,
EMO algorithms can be tuned to search and generate solutions in desirable re-
gions, reflecting the preference information of the DM, thereby approximating a
specific region of the Pareto optimal front. A few EMO algorithms have been pro-
posed in conjunction with MCDM based approaches such as light beam search
method [37], reference direction method [41] etc., to approximate a region of the
Pareto optimal front based on the preference information of the DM, e.g. [2], [19]
etc. This approach can alleviate the need for generating the entire Pareto optimal
front and is useful when a DM is aware of his aspirations. In addition, the entire
process of generating a part of the Pareto optimal front can be iterated with new
preference information from the DM, until a satisfactory solution is found by the
DM. Such an approach can be referred to as a priori - interactive approach. How-
ever, when a DM cannot provide the preference information a priori, a priori -
interactive approach based algorithms can be computationally very expensive, as
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the DM may have to evaluate multiple regions of the Pareto optimal front before
converging to her/his preferred solution. When such a case arises, interactive
algorithms can be used. Recently, several interactive EMO algorithms have been
proposed, e.g. [17, 40, 72].

Next, we propose a classification to show at least two possible ways in
which evolutionary approaches and MCDM approaches are combined in the lit-
erature to obtain interactive EMO algorithms.

5.1 Classification

Interactive EMO algorithms can be broadly classified into two classes: evolution-
ary algorithm in MCDM and MCDM in EMO.

1. Evolutionary algorithm in MCDM: In an algorithm in this class, a single
objective evolutionary algorithm is used to solve a scalarized problem for-
mulated in an interactive MCDM approach using the preference informa-
tion of the DM. Several evolutionary algorithm in MCDM algorithms have
been proposed in the literature. In [39, 62, 63], an interactive fuzzy satis-
ficing method was proposed, which considered the fuzzy goals of the DM
to formulate an augmented minimax problem. A genetic algorithm (GA)
[29] was used to solve an augmented minimax problem. Multi-objective
0-1 programming problems were considered in [39, 62] and non-convex
programming problems were considered in [63]. In [33], Imai et al. con-
sidered a multi-objective integer programming problem (ship’s container
stowage and loading plans as objective functions) and formulated a scalar-
izing function using the weighted sum method. Multiple runs of GA was
used to solve the scalarized problems and obtain a set of non-dominated
solutions. A new scheme for interactive multi-criteria decision making was
proposed in [69]. Here three approaches, i.e. a priori, a posteriori and inter-
active ones are combined into a single multi-objective optimization frame-
work. In this framework, different interactive methods such as STEM [1],
Geoffrion-Dyer-Feinberg [26] etc. can be used. The single objective opti-
mization problem formulated in each of these methods is solved using any
evolutionary algorithm. In [51], the interactive NIMBUS method [53] was
used for optimal control of a continuous casting of steel process. Here, a
scalarized problem formulated using the preference information of the DM
was solved using a GA. All the references mentioned in this class, utilize
evolutionary algorithms (e.g. GA) to solve a scalarized problem. In every
iteration of the interactive (MCDM) method, when the DM specifies new
preference information, a new scalarized problem is formulated and solved
using a new run of GA.

2. MCDM in EMO: An EMO algorithm is used in conjunction with a MCDM
approach. In this class, instead of approximating the entire Pareto optimal
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front using an EMO algorithm, the main goal is to approximate a part of
the Pareto optimal front and/or to find a single solution desirable to the
DM. Interactive algorithms based on MCDM in EMO have received a lot of
attention in the last decade. In this class, two types of approaches can be
found in the literature:

(a) A priori approach - The preference information of the DM is incorpo-
rated into an EMO algorithm a priori and then a part of the Pareto op-
timal front reflecting the DM’s preferences is obtained. In [3], Branke
et al. proposed a new evolutionary algorithm called the guided multi-
objective evolutionary algorithm (G-MOEA). The G-MOEA algorithm
considers the maximal and minimal acceptable weightings for one ob-
jective over other as the preference information from the DM and use
it to guide the algorithm towards a region within these boundaries. In
[14], the light beam search procedure proposed in [37] was combined
with NSGA-II. One or more pairs of aspiration and reservation points
and a threshold vector are supplied by the DM as the preference infor-
mation. The procedure finds a set of Pareto optimal solutions, illumi-
nated by a light beam from the aspiration point towards the reserva-
tion point with a span given by the threshold vector. The procedure
proposed can generate multiple regions on the Pareto optimal front,
when the DM provides multiple aspiration and reservation points. In
[13], the RD-NSGA-II algorithm was proposed, where a reference di-
rection approach [41] was coupled with the NSGA-II algorithm. The
algorithm finds only Pareto optimal solutions in the reference direc-
tion specified by the DM.

(b) Progressively interactive approach: In this approach, the DM provides
preference information progressively throughout the solution process
and guides the search to her/his preferred solution. In [59], Phelps and
Köksalan proposed the first interactive EMO algorithm. Here, an esti-
mated utility function is constructed based on the preference informa-
tion of the DM, which is used to guide the search towards the preferred
solution. The DM can provide her/his preference information by com-
paring pairs of solutions during the run of the algorithm. Thiele et al.
[72] proposed a new preference based evolutionary algorithm. Here,
a rough approximation of the Pareto optimal front is first produced, a
representative set is chosen from the approximation and shown to the
DM. Next, the DM specifies her/his preference information as a refer-
ence point. An ASF is formulated using the reference point and used
with the fitness function to drive the search to the preferred solution
of the DM. They set a new reference point and focus the search to a
subset of the Pareto optimal front. The ASF helps in ordering Pareto
optimal solutions which can help the DM to find the most preferred so-
lution. More recently, Köksalan and Karahan proposed a new interac-
tive EMO algorithm called interactive territory defining evolutionary
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algorithm (iTDEA) [40]. Here, the DM specifies the number of times
s(he) likes to evaluate a representative set of solutions to pick her/his
preferred solution. This preference information from the DM is used to
define a new preferred weight region, a territory and guide the search
to the selected region. In [17], Deb et al. proposed a new interactive
EMO algorithm based on progressively approximated value functions.
Here, every few iterations the DM is asked to rank a set of solutions ac-
cording to her/his preference. This preference information is used to
obtain a value function, which is used by the EMO algorithm to direct
the search towards the preferred solution of the DM.

It can be seen that the algorithms belonging to the MCDM in EMO class,
employ an EMO algorithm and a suitable MCDM approach is used as an
external aid to embed the preference information of the DM and ultimately
converge to her/his preferred solution.

The two classes mentioned above can be used depending on the necessity. When
a DM is aware of his aspirations and wishes to improve her/his current known
solution, an Evolutionary algorithm in MCDM class of algorithms can be used.
However, when a DM has an exploration attitude and wishes to investigate a
set of solutions in a region, to learn about the different trade-offs and simultane-
ously learn about the interdependencies between the objectives, MCDM in EMO
class of algorithms can be used.

Recently, a new MCDM method called the NAUTILUS method [52] has
been proposed. The NAUTILUS method belongs to the Evolutionary algorithm
in MCDM class, when an evolutionary algorithm is used to find an optimal so-
lution of a scalarized problem formulated therein. The NAUTILUS method is
a progressively interactive approach employing a single objective optimization
solver. In our research, we have suggested a possible improvement to the NAU-
TILUS method called the PIE algorithm. Next, we present a brief description of
the NAUTILUS method. Subsequently, we present the PIE algorithm with the
prominent features.

The NAUTILUS method accounts for two very important behaviours of a
DM: a) past experiences affect the DM’s hopes, in other words, the solutions pre-
viously considered can narrow the range of our expectations causing anchoring
effect [73] and b) the DM does not react symmetrically to gains and losses [38],
i.e. when a DM is shown Pareto optimal solutions in successive iterations s(he)
may be hesitant to move from the current Pareto optimal solution, as a sacrifice
in one of the objectives is essential. It has been suggested in [42] that people react
asymmetrically to gains and losses, which can be considered as one of the causes
for a low number of iterations taken in an interactive decision process, in addition
to the interactive decision process being highly efficient in supporting the DM. In
NAUTILUS the nadir objective vector is considered as a starting solution, which
provides flexibility for the DM to reach any Pareto optimal solution without sac-
rifices and a possibility to improve every objective in every iteration accounting
the preference information of the DM.
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To get started an ideal and a nadir objective vector are provided to the DM
and the DM is asked to enter the iterations s(he) would like to carry out before
seeing the Pareto optimal solution. The number of iterations can be changed at
any stage of the decision process. From the nadir objective vector, the DM has
to provide her/his preference information. The preference information can be
provided e.g. by ranking objectives into index sets (representing the importance
levels) or by sharing 100 credits among all the objectives [47]. This preference
information is incorporated into the weights of problem (6). However, any other
suitable mode of expressing preference information can be used. Next, an opti-
mal solution for Problem (6) is found. The solution which the DM is investigating
is called an iteration point. The distance of the iteration point from the optimal
solution is calculated. Based on the number of iterations specified by the DM, a
new iteration point and the upper and lower bounds are calculated as described
in [52]. The upper and lower bounds indicate the reachable part of the Pareto op-
timal front. When the iteration point is the nadir objective vector, the entire Pareto
optimal front is reachable to the DM and the reachable part shrinks with every
new iteration of the NAUTILUS method. At this new iteration point, the DM can
re-specify her/his preference information to change the direction of search or con-
tinue in the same direction to the next iteration. The NAUTILUS method stops
when the iteration point is a Pareto optimal solution. In addition, the DM can
revisit the previously evaluated solutions and re-specify her/his preference in-
formation to investigate and learn about the different trade-offs that exist among
the Pareto optimal solutions. The idea is not to get to a Pareto optimal solution
too fast because no improvement is possible from there without sacrifice.

The NAUTILUS method can be considered as a versatile tool for aiding the
DM to find her/his preferred Pareto optimal solution. The NAUTILUS method
starts from an undesirable nadir objective vector and moves progressively to-
wards the Pareto optimal solution, which avoids the need for trade-off among
different Pareto optimal solutions by the DM. The DM always gets to investi-
gate a solution that dominates the previous one, hence the DM is more focussed
towards the search and explores to find her/his preferred solution without pre-
maturely converging to any Pareto optimal solution. Because of these features,
we have considered the NAUTILUS method as a backbone for our PIE algorithm,
which we describe next.

5.2 The PIE algorithm

The basic principle behind the PIE algorithm is the same as the NAUTILUS method
and belongs to the Evolutionary algorithm in MCDM class. Here a single objective
evolutionary algorithm is used to solve the scalarized problem formulated using
the preference information of the DM. The PIE algorithm starts by calculating the
ideal objective vector and generating an initial random population. The initial
random population is assumed to be far from the Pareto optimal front. Next,
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the DM is asked to choose a starting reference point as a representative of the
nadir objective vector. The DM is provided with a representative set of distinct
solutions from the initial population, from which s(he) can choose one as the rep-
resentative nadir objective vector. If the DM does not wish to choose the repre-
sentative nadir objective vector, a representative nadir objective vector containing
the upper bounds for the objectives of individuals in a population is chosen. In
addition, a hybrid algorithm of evolutionary and local search approaches pro-
posed in [15] can also be used to find a nadir objective vector. At this reference
point, the DM is asked to specify her/his preference information similar to the
NAUTILUS method. Using the preference information, the weights of problem
(6) is calculated. Next, problem (6) is solved using an evolutionary algorithm to
obtain a Pareto optimal solution. During the run of an evolutionary algorithm,
the entire population at every generation and the solution having the minimum
ASF value in a generation are saved in two archives.

Next, the Euclidean distance between the present reference point and the
Pareto optimal solution obtained is calculated and the DM is asked at what per-
centage of this distance does the DM wish to investigate the new iteration point.
Based on the reply of the DM, the new iteration point is correspondingly calcu-
lated and presented to the DM. The DM examines the new iteration point and
can follow one of the following paths:

1. The new iteration point is acceptable and the DM specifies a new percentage
distance to obtain a new iteration point (to get closer to the Pareto optimal
front).

2. The DM specifies new preference information at the current iteration point.

3. The DM wishes to examine solutions in the archive. Subsequently, the DM
is provided with a representative set of solutions from the archive (the DM
specifies the number solutions s(he) wishes to examine). The DM examines
the solutions and chooses a new reference point and subsequently provides
her/his preference information.

4. The DM wishes to give a new aspiration point.

When the DM has chosen a new reference point and specified the new prefer-
ence information, problem (6) is formulated and solved to find a new Pareto op-
timal solution. However, when the DM wishes to specify an aspiration point, the
present reference point is considered as a reservation point and problem (7) is
solved to find a new Pareto optimal solution. It must be noted that when the DM
wishes to specify a new aspiration point, the DM may no more get a new iterate
point dominating the previous one. Hence, the DM is warned when such a case
arises. The entire procedure iterates, until the DM has examined a Pareto optimal
solution and does not wish to continue.

Paper [PVI] can be referred for a complete description of the PIE algorithm.
The PIE algorithm differs from NAUTILUS in the following ways: a) the DM



51

chooses the nadir objective vector to start with, b) the next iterate solution cal-
culation is based on the percentage distance from the Pareto optimal solution
and in the NAUTILUS method it is calculated using the number of steps the DM
wishes to take to reach the Pareto optimal solution, c) the entire population of a
run of an evolutionary algorithm is saved, which can be used by the DM not only
to revisit the saved solutions, but also used to generate a new initial population
for a new run of an evolutionary algorithm when a new scalarizing function is
formulated using the new preference information of the DM and d) the PIE al-
gorithm provides extra flexibility to the DM by providing a possibility to specify
a new aspiration point. In Paper [PVI], the PIE algorithm is demonstrated us-
ing an example consisting of five objectives for finding the location of a pollution
monitoring station. Using the PIE algorithm the DM could freely navigate and
converge to the preferred Pareto optimal solution.



6 AUTHOR’S CONTRIBUTION

The basic idea for this research arose during the author’s visit to the Helsinki
School of Economics (now Aalto University School of Economics), Helsinki to
take part in the FiDiPro project on combining the methodologies of MCDM and
EMO. The main goal for this research is to use MCDM methodologies in EMO
algorithms to enhance their speed of convergence and guaranteed convergence
to the Pareto optimal front. Most of the research carried out during the thesis was
done in extensive collaboration with the author’s advisors, Prof. Kaisa Miettinen
and Prof. Kalyanmoy Deb.

The main theme in all the papers included in this thesis has been to en-
hance the performance of EMO algorithms. This would enable wide applica-
bility of EMO algorithms in large scale multi-objective optimization problems.
The Papers [PI]-[PIV] were mainly written by the author, but the co-authors con-
tributed to the writing process with exhaustive comments. The research for Pa-
pers [PI]-[PIII] was carried out in collaboration with Prof. Kaisa Miettinen and
Prof. Kalyanmoy Deb. In Paper [PI], the author developed the idea of the hybrid
approach with the thesis advisors, Prof. Kaisa Miettinen and Prof. Kalyanmoy
Deb. The computer program in C language was developed and tested by the au-
thor and the paper was written by the author and Prof. Kalyanmoy Deb. While
Prof. Kaisa Miettinen provided useful comments to improve the presentation
and readability aspect of the paper. Paper [PII] is a continuation of Paper [PI] and
all the computer program development and testing was done by the author. In
addition, the entire paper was also written by the author. Prof. Kaisa Miettinen
and Prof. Kalyanmoy Deb provided useful comments to improve the paper and
improve the method.

In Paper [PIII], diversity was incorporated in a hybrid EMO algorithm. The
concept was developed by the author in consultation with Prof. Kaisa Miettinen.
The computer program development, testing and writing of the paper were done
by the author. Prof. Kaisa Miettinen and Prof. Kalyanmoy Deb provided valu-
able comments for improving the paper. In Paper [PIV], a new hybrid framework
was developed in close co-operation with Prof. Kalyanmoy Deb and Prof. Kaisa
Miettinen. The computer program development, testing and writing of the pa-
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per were done by the author. Prof. Kaisa Miettinen and Prof. Kalyanmoy Deb
provided extensive comments and hints for writing the paper and reporting test
results. In Paper [PIV], the hybrid EMO algorithm was applied to a continu-
ous casting of steel process to find Pareto optimal solutions. Mr. Vesa Ojalehto
combined the computer program of the hybrid algorithm in C language (written
by the author) to the continuous casting of steel model and the proximal bun-
dle method in fortran language. The test setting was jointly formulated by Prof.
Kaisa Miettinen and the author. The paper was written by the author and Prof.
Kaisa Miettinen provided comments for solving the problem and improving the
paper.

In Paper [PV], a new hybrid mutation operation was developed in close
co-operation with the co-authors. The author and Mr. Sauli Ruuska initially
realised the need for another operator for differential evolution to handle both
linear and non-linear variable dependencies. Mr. Tomi Haanpää and the author
co-developed the operator based on polynomial approximation and the author
incorporated the operator in the MOEA/D algorithm. The author performed the
initial tests and Mr. Sauli Ruuska subsequently performed the statistical tests
and compiled the results. The paper was jointly written by the author, Mr. Tomi
Haanpää and Mr. Sauli Ruuska. All through the research Prof. Kaisa Miettinen
constantly provided valuable advise and comments for improving the paper.

Finally, in Paper [PVI] a new interactive EMO algorithm was proposed and
developed by the author, Ms. Ana Belen Ruiz (University of Malaga) and Prof.
Kaisa Miettinen. The algorithm was programmed and tested in MATLAB by the
author and the paper was jointly written by the author and Ms. Ana Belen Ruiz.
Prof. Kaisa Miettinen, Prof. Francisco Ruiz, Dr. Dmitry Podkopaev and Dr. Petri
Eskelinen provided valuable comments for improving the paper.



7 CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

Evolutionary multi-objective optimization algorithms are commonly used to han-
dle multi-objective optimization problems. Nevertheless, they are commonly
criticized for the lack of a theoretical convergence proof, slow convergence speed
to the Pareto optimal front and a lack of an efficient termination criterion. In our
research, we have formulated these criticisms as goals and proposed hybrid EMO
algorithms by combining an EMO algorithm with a local search procedure to ad-
dress these goals. In addition, we have recognised various issues such as, type
of approach for hybridization (serial and concurrent), type of scalarizing func-
tion to be used in a local search procedure, frequency of local search procedure,
loss in diversity due to increase in convergence speed, that arise for a successful
implementation of a hybrid EMO algorithm. In Paper [PI], we have made a first
attempt to increase the convergence speed of an EMO algorithm. A concurrent
hybrid approach was used and an ASF was identified as an effective scalariz-
ing function and used in the local search operator. The optimal value of an ASF
is zero, when the reference point is Pareto optimal and this property was used
to devise an effective termination criterion for our hybrid EMO algorithm. No
explicit diversity preservation mechanism was used in Paper [PI] to handle the
lapse in diversity created by the local search procedure.

In Papers [PI]-[PIII], we have proposed various methods to incorporate var-
ious diversity preservation mechanisms in our hybrid EMO algorithm. In Pa-
per [PII], we have used pseudo-weights of solutions in the local search operator,
which indicate their position along a non-dominated front, into the weights of
an ASF, to yield new offspring individuals in different regions of the Pareto op-
timal front. In Paper [PIII], we have proposed a generalized framework for a
hybrid EMO algorithm. Here we have identified different modules representing
different functionalities and synchronised to obtain an efficient framework. Any
suitable method can be used in each of the modules. The individuals of a popu-
lation are projected on a hyperplane and clustered and individuals from different
clusters can be used for every local search procedure. This enables us to obtain
diverse offspring individuals in different regions of the Pareto optimal front. In
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addition, we have used a cluster quality index, a by-product of clustering to iden-
tify the loss in diversity. When there is a loss in diversity the combined parent and
offspring populations are projected on a hyperplane and clustered. The individ-
uals in every cluster are subjected to non-dominated sorting. Next, individuals
from different clusters belonging to the best front are used in the new population
and the procedure continued until the population size is satisfied. This procedure
helps the hybrid algorithm to maintain the lateral diversity in the population. An
empirical study for the frequency of local search procedure was also carried out
and a heuristic was suggested.Thus, in the hybrid framework, we have achieved
the goals set a priori for our study.

The research has addressed the criticisms faced by EMO algorithms. Even
so, there may exist simpler ways to enhance the diversity of EMO algorithms
without lowering the convergence speed. Hence, further quest may be focussed
on identifying these ways. In Paper [PIV], we have used our hybrid algorithm
on continuous casting of steel, a large scale multi-objective optimization problem
and showed it to be effective in producing Pareto optimal solutions. Further tests
on different practical problems must be carried out to identify areas of improve-
ment in the hybrid framework based algorithms.

By participating in the CEC 2009 competition, we realized the importance
of an efficient operator to make EMO algorithms more efficient. A recently pro-
posed MOEA/D algorithm was found to be a high performing algorithm. Here a
DE based linear operator was used for producing new offspring solutions. A DE
based linear operator may not necessarily handle non-linear variable dependen-
cies. Hence, a new hybrid operator was proposed in Paper [PV]. The hybrid oper-
ator has two components, a polynomial operator to efficiently handle non-linear
variable dependencies and a linear DE operator to handle linear variable depen-
dencies. Either of the components is selected during a run with a pre-fixed prob-
ability to be able to handle various types of problems. The hybrid operator based
MOEA/D algorithm was shown to be statistically better than the MOEA/D al-
gorithm based on the linear DE operator. The polynomial operator is one of the
ways to handle non-linear variable dependencies in a multi-objective optimiza-
tion problem. Further research is necessary to identify alternative ways to handle
non-linear variable dependencies. In addition, more exhaustive tests with differ-
ent algorithms are necessary for obtaining further confidence in using our hybrid
operator.

Finally, in Paper [PVI], we have proposed a new interactive EMO algorithm,
the PIE algorithm. The algorithm is based on the NAUTILUS method and uses an
evolutionary algorithm to solve the scalarized problems formulated therein. An
evolutionary algorithm provides significant advantages, e.g. diverse problems
can be handled with little or no change of the algorithm. The population of an
evolutionary algorithm in every generation and run can be saved for easy naviga-
tion by the DM to revisit some previous solutions and the saved population can
be used to generate a new population for a new run of an evolutionary algorithm.
In addition, the PIE algorithm has additional flexibility to handle both aspiration
and reservation points. The efficiency of the PIE algorithm is demonstrated on an
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example problem. However, the PIE algorithm needs to be tested with different
problems and DMs. Equally important, a graphical user interface is necessary to
be developed for easy use of the algorithm by the DM.

Every attempt in this thesis has been to significantly enhance the perfor-
mance of the algorithms to handle multi-objective optimization problems. We
have just scratched a surface of the hybrid EMO field. Further simpler methods
to handle various discrepancies in EMO algorithms and an unified platform to
integrate various methods developed for easy use by researchers and industries
is our next quest.
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YHTEENVETO (FINNISH SUMMARY)

Monitavoiteoptimoinnissa etsitään päätöksentekijää tyydyttäviä kompromissirat-
kaisuja, ns. Pareto-optimeja, usean ristiriitaisen tavoitteen väliltä. Monitavoiteop-
timointiin kehitettyjä evoluutioalgoritmeja (EMO) käytetään yleisesti etsittäessä
monipuolista joukkoa edustamaan Pareto-optimaalisia ratkaisuja. Näitä algorit-
meja kuitenkin kritisoidaan usein hitaan konvergenssin ja teoreettisen konver-
genssitodistuksen puutteen vuoksi sekä siksi ettei niillä ole tehokasta lopetus-
ehtoa. Tässä väitöskirjassa kehitetään entistä parempia EMO-algoritmeja vält-
tävät mainittuja puutteita.

Hybridialgoritmeiksi määritellään EMO-algoritmien ja lokaalin haun mene-
telmien yhdistelmät ja niillä pyritään välttämään EMO-algoritmien heikkouk-
sia. Tässä työssä lokaalissa haussa hyödynnetään apufunktiona monitavoitteisen
päätöksenteon alalla laajasti käytettyä saavutusfunktiota, joka optimoidaan teh-
tävälle parhaiten sopivalla menetelmällä. Näin nopeutetaan hybridialgoritmin
konvergenssia. Lisäksi työssä esitellään hybridimenetelmärunko, jonka avulla
hybridialgoritmeja voidaan rakentaa. Siihen kuuluvat edellä mainittu lokaali
haku, tehostettu diversiteetin säilyttävä tekniikka ja lopetusehto. Hybridimene-
telmärungon käyttökelpoisuutta havainnollistetaan väitöskirjassa laatimalla sen
avulla hybridialgoritmi. Tuota hybridialgoritmia sovelletaan menestyksellisesti
optimisäätöön liittyvään tehtävään. Kyseiselle teräksen jatkuvavalutehtävälle
löydettiin tehokkaasti päätöksentekijää tyydyttäviä Pareto-optimaalisia ratkaisuja.

Työssä esitellään myös uusi hybridimutaatio-operaattori, joka koostuu sekä
epälineaarisesta käyränseuranta- että lineaarisesta differentiaalievoluution mutaa-
tio-operaattorista. Operaattori soveltuu erilaisten muuttujien välisten riippuvuuk-
sien tehokkaaseen käsittelyyn. Hybridioperaattorin tehokkuutta havainnolliste-
taan laajoilla numeerisilla testeillä.

Lopuksi esitellään uusi interaktiivinen evoluutioalgoritmi PIE, joka tuottaa
kullakin iteraatiolla yhden päätöksentekijää tyydyttävän ratkaisun. Evoluutio-
algoritmia käytetään skalarisoitujen ja päätöksentekijän preferenssitietoa sisältävi-
en apufunktioiden ratkaisemiseen. PIE-menetelmässä päätöksentekijä liikkuu
vaiheittain kohti mieluisia ratkaisuja tarkastellen eri ratkaisuja ja parantaen kaik-
kien tavoitteiden arvoja eikä hänen tarvitse tinkiä tavoitteiden arvoista, kuten
Pareto-optimaalisten ratkaisujen yhteydessä.
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