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This paper considers the combined use of a hybrid numerical method for the modeling of acoustic

mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method pro-

vides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions.

It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a fi-

nite element solution in the non-uniform component. Finite element method provides flexible model-

ing of complicated geometries, varying material parameters, and boundary conditions, while the

wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward

computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL

at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler.

This task is formulated as a multiobjective optimization problem with the objectives depending on

the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjec-

tive optimization problem. Genetic algorithms can be easily combined with different simulation

methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical

experiments demonstrate the accuracy and feasibility of the model-based optimization method in

muffler design. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3621119]

PACS number(s): 43.50.Gf, 43.20.Mv, 43.20.Hq, 43.55.Ka [AH] Pages: 1359–1369

I. INTRODUCTION

In ductwork, the purpose of a muffler or a silencer is to

attenuate certain sound frequencies and thus prevent the

propagation of noise to the duct openings (see Bodén and

Glav1). They are typically divided into two categories

depending on the physical principle of sound attenuation.

Reactive mufflers are based on the reflection of sound from

suitable geometrical shapes and resonators. Dissipative muf-

flers, on the other hand, attenuate sound by absorbing materi-

als such as wool and foams. Both types have specific

benefits and drawbacks, and it depends on the application

which type of attenuation is best suited for the problem at

hand. Often mufflers are designed to have both reactive and

dissipative properties. Here, we concentrate on the modeling

and shape optimization of reactive silencers, but the same

approach is applicable also to the material or topology opti-

mization of dissipative mufflers (e.g., see Lee and Kim2).

Different kinds of mufflers are necessary components in

the attenuation of noise in automobiles, air-conditioning and

ventilation systems as well as large-scale industrial engines,

for example. They are also used to attenuate unwanted low-

frequency pulsations in many industrial applications. Espe-

cially large-scale industrial attenuators are expensive to

build and study experimentally.

Development of numerical methods for duct acoustics

and mufflers has been active since the 1970s. Most simula-

tion studies and software in duct acoustics are using the

transfer matrix method (TMM) or the four-pole method,

which is based on the assumption of plane wave propagation

(see, e.g., Munjal3 and Bodén and Glav1 for more details).

This assumption is reasonable in the low-frequency region,

which is relevant in many engine applications. Finite ele-

ment and boundary element methods have also been used for

duct acoustics in many studies (see Bilawchuk and Fyfe4 and

Mehdizadeh and Paraschivoiu5). Finite element methods

(FEMs) provide more accurate results in a wider range of

frequencies than one-dimensional plane wave methods.

They are also more flexible with respect to geometrical

details, varying material parameters, and boundary condi-

tions. Bilawchuk and Fyfe4 report comparisons on different

methods for muffler modeling and conclude that FEM is best

suited for this application.

In this work, we use a hybrid numerical method intro-

duced by Kirby6 to model sound propagation in ducts. This

method is based on combining wave based modal solution in

uniform parts of the ductwork to a finite element solution in

non-uniform parts, such as mufflers. Mode matching is used

to couple the two solution representations along given boun-

daries. Hybrid numerical method for duct acoustics is closely

related to the use of Dirichlet-to-Neumann boundary condi-

tion in finite element modeling (Astley7). It provides accurate

anechoic boundary condition on the outgoing boundary of the

non-uniform part also in the high-frequency cases where the
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assumption of plane wave propagation is no longer valid. Fur-

thermore, it leads to a straightforward computation of the

transmission loss (TL) of non-uniform components which is

very useful for the evaluation of various muffler designs.

FEM is more time-consuming and technically difficult

than TMM, which makes it less attractive in practical muf-

fler engineering (Gerges et al.8). One-dimensional models

remain useful in fast evaluation of muffler prototypes, but

we believe that model-based optimization should be based

on more accurate and reliable modeling methods, such as

FEM. Otherwise the optimization results may be misleading.

One of the main aims of this work is to develop the practical

combination of finite element based modeling and optimiza-

tion algorithms as well as to demonstrate the feasibility of

the approach.

A natural motive for computer simulations is to be able

to study and optimize devices without time-consuming and

expensive experiments. Also computer simulations may be

inefficient and lead to inadequate results if they are based

only on trial and error methodology. If there are several (five

or more) design parameters which affect the final outcome

of a simulation model, it is often very difficult, even for an

expert, to find the optimal set of parameters just by intuition.

There is an obvious need for an automated optimization pro-

cedure in addition to the simulation model.

To our knowledge the model-based shape optimization

of acoustic mufflers has first been studied by Bernhard,9 who

used both the transfer matrix method and the finite element

method for acoustic modeling. More recently, the finite ele-

ment based shape optimization has been considered by

Barbieri and Barbieri10 and Kuskinen et al.,11 and we apply

here a closely related approach. The model-based shape opti-

mization of different types of mufflers with the transfer ma-

trix method and various optimization algorithms has been

considered in a series of articles by Chiu et al.12–16

The main stages of our model-based optimization are

considered in Sec. IV, and they basically coincide with the

ones listed in Barbieri and Barbieri.10 There are, however,

significant differences in the realization of the simulation

and optimization methods. Instead of using just the finite ele-

ment method, we complement it with the hybrid method,

which provides more accurate treatment of the non-reflecting

boundaries and straightforward computation of the transmis-

sion loss of the muffler. In Barbieri and Barbieri,10 the objec-

tive is also to maximize TL at multiple frequency ranges

simultaneously, but this is formulated as a single objective

optimization problem. Thus, their result is only one repre-

sentative from the set of Pareto-optimal solutions. We solve

the actual multiobjective optimization problem, which gives

the whole family of Pareto-optimal solutions with contra-

dicting objectives (separate frequency ranges). Another

notable difference is that in Barbieri and Barbieri10 a gradi-

ent-based optimization method is used while we use genetic

algorithm which does not require gradient information.

Gradient-based methods are usually computationally more

efficient, but they require a method to compute derivatives

of the objective function with respect to control variables.

They are also more sensitive to irregularities in the objective

function (non-smoothness, discontinuities). Therefore, we

prefer here to apply more robust gradient-free methods even

though they probably lead to higher computational cost.

We study the performance of the simulation and optimi-

zation method with four test cases, which are taken from

Gerges et al.,8 Chiu et al.,12 and Chiu.17 The goals of the

tests are first to validate the simulation model with practical

measurements and to study the accuracy of the outgoing

boundary condition. We use the first test case from Gerges

et al.8 for this purpose. The results also demonstrate the bet-

ter accuracy of the FEM method in comparison with the

TMM. Three optimization test cases are used to find optimal

dimensions or perforation parameters for typical reflective

mufflers. The first optimization case is taken from Gerges

et al.,8 and it represents a muffler with a perforated duct,

where shape and perforation parameters are optimized. The

second optimization test case is taken from Chiu,17 and it

represents a more complicated reverse-flow type muffler ge-

ometry. The third optimization case is taken from Chiu

et al.,12 and it is used to demonstrate the ability of optimiz-

ing the muffler in the case with several modes propagating in

the ductwork (high-frequency case).

The rest of the article is organized as follows: Sec. II

gives the mathematical formulation of the acoustic wave

propagation and the wave based representation of the solu-

tion in the uniform parts of the ductwork. The hybrid numer-

ical method with the mode matching between finite element

approximation and wave based modal solutions is described

in Sec. III. The model-based optimization approach as well

as its practical realization with the genetic optimization algo-

rithm are considered in Sec. IV. Numerical tests and results

are reported and analyzed in Sec. V, and main conclusions

based on the results are collected in Sec. VI.

II. MATHEMATICAL FORMULATION

We consider the propagation of sound waves in a homo-

geneous and inviscid fluid with negligible heat transfer (adi-

abatic). By further assuming that the pressure and density

variations are small perturbations of the static state and the

fluid is stagnant, we are able to linearize the governing equa-

tions to obtain the linear wave equation

c2$ � 1
q

$~p� 1

q
@2 ~p

@t2
¼ 0; (1)

where ~p is the acoustic pressure fluctuation and c is the speed

of sound (see, e.g., Rienstra and Hirschberg18). By assuming

harmonic time-dependence ~p x; tð Þ ¼ p xð Þe�iwt with angular

frequency x, Eq. (1) leads to the Helmholtz equation

�$ � 1
q

$p� k2

q
p ¼ 0; (2)

where k is the wave number.

Our goal is to simulate numerically the acoustic effect

of a non-uniform perturbation in a uniform ductwork. This

problem has recently been considered by Kirby,6,19 and we

apply the hybrid numerical formulation and method intro-

duced in his articles. Such a system is illustrated in Fig. 1,
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where the geometry is divided into three parts: The inlet and

outlet ducts, denoted by XA and XC, and the non-uniform

part, denoted by XB. The inlet and outlet ducts are assumed

to have uniform cross sections and they are separated from

the non-uniform part by the planes CA and CC which are per-

pendicular to the axes of propagation of the ducts XA and

XC, respectively. These axes are denoted by x and x0 and are

shown in Fig. 1, and we assume that x¼ 0 at CA and x0 ¼ 0 at

CC. The number of inlet and outlet ducts can be larger than

one, but for simplicity we restrict our attention to the case

with one inlet and one outlet.

At the walls of the duct system we assume the sound-

hard boundary condition

n � $p ¼ 0 on Cn; (3)

but the hybrid numerical method used here would allow more

general boundary conditions of the form an �$pþ bp¼ 0

with coefficients a and b independent of the axial coordinates

of the ducts. In the non-uniform part of the system, also the

boundary conditions can be non-uniform.

A. Solutions in the uniform ducts

Solution of the Helmholtz equation Eq. (2) in the uni-

form sections XA and XC can be represented by infinite sums

of the form

pA r; h; xð Þ ¼
X1
j¼0

AjUj r; hð Þe�ikjx þ
X1
j¼0

FjUj r; hð Þeikjx;

pC r; h; x0ð Þ ¼
X1
j¼0

BjWj r; hð Þe�icjx
0 þ
X1
j¼0

CjWj r; hð Þeicjx
0
:

(4)

The functions Uj and Wj are the eigenfunctions of the Laplace

operator corresponding to the uniform cross section CA and

CC (see Rienstra and Hirschberg18). They are multiplied by

exponential terms with axial wave numbers cj and kj, and the

modal amplitudes Fj, Aj, Bj, and Cj. Only a finite number of

wave numbers cj and kj are real while the remaining values

are purely imaginary. Let us denote these finite numbers by

nA and nC. The modes corresponding to the real-valued

wave numbers are propagating and are called cut-on (see,

e.g., Kirby6 and Rienstra and Hirschberg18). The modes

corresponding to the imaginary wave numbers decay exponen-

tially with respect to the axial coordinate and are called cut-off.

The sound transmission loss (TL) of the non-uniform part

XB is defined as the ratio of the transmitted and incident sound

powers. It is obtained from the coefficients Fj and Bj by

TL fð Þ ¼ �10 log10

qA

XnA

m¼0

cmHm Bmj j2

qC

XnC

m¼0

kmIm Fmj j2
; (5)

where In ¼
Ð

CA Unj j2 dS and Hm ¼
Ð

CB
Wmj j2 dS (Kirby6).

Here, the coefficients Fj determine the incoming sound from

inlet duct. The equal modal energy density (EMED) assump-

tion, i.e., Fnj j2In ¼ Fmj j2Im for all m, n, has been chosen for

the inlet as incident sound source, as it is a good representa-

tion of the sound field emanating from a fan in a ventilation

system; see Kirby and Lawrie.20 For EMED, the incoming

modal amplitudes can be calculated from the formula

Fnj j2¼
I0

In

XnA

m¼0

km

: (6)

Modal amplitude coefficients Aj correspond to the sound that

is reflected back from the muffler, Bj correspond to the sound

propagating to the outlet duct, and Cj correspond to the

sound that is reflected back from outlet duct. By setting

Cj¼ 0 on CC for all j, a perfectly non-reflecting boundary is

imposed on CC (Astley7). With the EMED assumption Eq.

(6), we can write the transmission loss in a simpler form

TL fð Þ ¼ �10 log10

qA

XnB

m¼0

cmHm Bmj j2

qCI0

: (7)

The shape of the uniform cross sections of the ducts XA and

XC is not restricted, but often the shape is either rectangular

or circular. In these cases, it is possible to derive explicit rep-

resentations for the eigenfunctions Uj and Wj in terms of trig-

onometric or Bessel functions (Rienstra and Hirschberg18).

We concentrate here to cylindrical ducts where the modes

are of the form

Uj r; hð Þ ¼ NjJmj
krjr
� �

eimjh; (8)

where Jmj
xð Þ is order mj Bessel function of the first kind and

krj is the radial wave number. The radial wave number krj is

obtained by considering sound-hard wall boundary condition

n � $p¼ 0, which here implicates that at r¼ a, where a is the

radius of the duct wall,

J0mj
krja
� �

¼ 0: (9)

Axial wave number kzj is evaluated from the effective wave

number k and the radial wave number krj by

kzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

rj

q
: (10)

FIG. 1. The crosscut illustration of a duct system in a general case: inlet

duct XA, muffler component of arbitrary shape XB and outlet duct XC.
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B. Weak formulation with mode matching

The solution of the Helmholtz equation Eq. (2) in the non-uni-

form part XB is obtained by the finite element method. For this

purpose, we present the weak formulation of the equation: Find

pB ¼ pr þ pii; where pr 2 H1 XBð Þ; pi 2 H1 XBð Þ; such thatð
XB

1

q
$pB � $v� k2pBv
� �

dV �
ð
@XB

1

q
n � $pB v dS ¼ 0;

(11)

for any v 2 H1 XBð Þ; n is outward normal vector. Solutions

pA and pC are coupled to pB by the boundary conditions

n � $pB ¼ n � $pA on CA; (12)

n � $pB ¼ n � $pC on CC; (13)

pB ¼ pA on CA; (14)

pB ¼ pC on CC: (15)

These conditions impose the continuity of pressure and ve-

locity over the interfaces CA and CC.

The first two conditions Eqs. (12) and (13) and Neu-

mann condition Eq. (3) can be incorporated in the weak

form Eq. (11), leading to the equation

ð
XB

1

q
$pB � $v� k2pBv
� �

dV �
ð

CA

1

q
n � $pA v dS

�
ð

CC

1

q
n � $pC v dS ¼ 0: (16)

In mode matching, the two other conditions Eqs. (14) and

(15) are imposed in weak forms: Find pA 2 ZA; pB and

pC 2 ZC such that

ð
CA

pB � pAð Þ �UidS ¼ 0 andð
CC

pB � pAð Þ �WidS ¼ 0 (17)

for �Ui 2 ZA any and �Wi 2 ZC; where test function spaces

are defined as ZA¼ spanj¼0,…,1{Uj (r, h)} and ZC

¼ spanj¼0, …,1{Wj (r, h)}. In summary, the (continuous)

hybrid formulation of the acoustic problem in the waveguide

is given by Eqs. (16) and (17).

Mufflers often include perforated ducts and walls with

very fine geometrical details. Direct treatment of such details

with the finite element method is possible but usually leads to

an unnecessarily fine mesh with high computational cost.

A more practical approach is to approximate perforated walls

with an interface boundary condition which imposes the conti-

nuity of normal velocity and discontinuity of pressure through

the wall. The pressure jump Dp through the wall is given by

Dp ¼ qcnun; (18)

where n is the non-dimensional transfer impedance of the

wall and un is the normal velocity. For the impedance n, we

use the empirical relationship of Sullivan and Crocker21

given by

n ¼ 0:006þ ik tþ 0:75dð Þ
/

; (19)

where k is the wave number, t is the wall thickness, d is the

hole diameter, and / is the perforation porosity. The same

condition is used, for example, in Mehdizadeh and Paraschi-

voiu.5 There are several different empirical formulas avail-

able for the impedance (e.g., see Lee22), but the one by

Sullivan and Crocker21 is sufficient for our purposes.

Let us denote a perforated wall in the muffler by R and

assume that it separates the muffler into two distinct parts XB,1

and XB,2. The acoustic pressure pB becomes discontinuous over

the interface R and we denote the solutions in two parts by pB,1

and by pB,2. They both satisfy the Helmholtz equation sepa-

rately and are coupled by the interface conditions on R. By the

linearized Euler equation we know that the normal derivatives

of the solutions pB,1 and pB,2 on R are given by

nj � $pB;j ¼ �iqxu � nj j ¼ 1; 2: (20)

With this information and the boundary conditions on R we

can derive the weak formulation for pB,1: Find pB,1¼ pr,1

þ ipi,1, where pr;1 2 H1 XB;1

� �
and pi;1 2 H1 XB;1

� �
such thatð

XB;1

1

q
$pB;1 �$v�k2pB;1v
� �

dV�
ð

CA\@XB;1

1

q
n �$pA vdS

�
ð

CC\@XB;1

1

q
n �$pC vdS� i

k

n

ð
R

pB;2�pB;1

� �
vdS¼ 0

(21)

for all v 2 H1 XB;1

� �
. A related weak formulation is obtained

for pB,2.

III. HYBRID NUMERICAL METHOD

The hybrid numerical method developed by Kirby6 to

simulate sound propagation in acoustic waveguides is based

on the formulation of Eqs. (16) and (17). In the non-uniform

region XB, the solution pB is approximated by the finite ele-

ment method, while in the uniform regions the solutions are

represented in terms of the modal basis functions. Finite ele-

ment discretization proceeds by approximating the acoustic

pressure in XB by

pB xð Þ ¼
Xn

j¼1

Nj xð Þpj ¼ N1 xð Þ;…;Nn xð Þ½ �

p1

..

.

pn

2
664

3
775

¼ N xð ÞTp; (22)

where Nj(x) are global trial functions for finite element

mesh, pj are the nodal values of the acoustic pressure at node

j and n is the number of nodes in XB. Galerkin method of

weighted residuals proposes that Nj(x) are used as test func-

tions v. The approximation in Eq. (22) is next replaced in

Eq. (16) to form equation
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ð
XB

1

q
$N � $NT � k2NNT
� �

dV p

�
ð

CA

1

q
N n � $pAdS�

ð
CC

1

q
Nn � $pC dS ¼ 0: (23)

The modal representations of the solution pA and pC involve

an infinite number of terms and for numerical computations

only a finite number of modes can be included. For simplic-

ity, we use the same number of modes in all terms of (4),

and we denote it by m. The normal derivatives of pA and pC

on the planes CA and CC are then of the form

n �$pA r;h;0ð Þ ¼ @

@x
pA r;h;0ð Þ ¼�i

Xm

j¼0

kjAjUjþ i
Xm

j¼0

kjFjUj;

n �$pC r;h;0ð Þ ¼ @

@x0
pC r;h;0ð Þ ¼�i

Xm

j¼0

cjBjWj: (24)

These derivatives are substituted in (23) to get

ð
XB

1

q
$N � $NT � k2NNT
� �

dV p

�
ð

CA

1

q
N �i

Xm

j¼0

kjAjUjþi
Xm

j¼0

kjFjUj

 !
dS

�
ð

CA

1

q
N �i

Xm

j¼0

cjBjWj

 !
dS ¼ 0: (25)

If we introduce the matrices Ĥ; K̂; and G and vector ~f by

Ĥij ¼ ikj

ð
CA

1

q
NiUj dS;

K̂ij ¼ icj

ð
CC

1

q
NiWj dS;

Gij ¼
ð

XB

1

q
$Ni � $Nj � k2NiNj

� �
dV;

~fi ¼ i
Xm

j¼0

kj

ð
CA

1

q
NiUj dS Fj; (26)

we can write (25) in the matrix form

ĤaþGpþ K̂b ¼ ~f: (27)

Here, vector a contains m modal amplitudes Ai and vector b

contains m modal amplitudes Bi. We remind that amplitudes

Fi correspond to the known incident acoustic wave and

amplitudes Ci are assigned to be 0 to impose the non-reflect-

ing condition on CC.

By replacing Eqs. (4) and (22) (with finite number m of

modes) into Eq. (17), we get

ð
CA

�UiN
TdS p ¼

Xm

j¼0

ð
CA

Uj
�Ui dS Ajþ

Xm

j¼0

ð
CA

Uj
�Ui dS Fj;

ð
CA

�WiN
TdS p ¼

Xm

j¼0

ð
CA

Wj
�Wi dS Bj: (28)

With the matrices H, ~H; K, and ~K and vector f given by

Hij ¼
ð

CA

Uj
�Ui dS;

~Hij ¼ �
ð

CA

�Ui Nj dS;

Kij ¼
ð

CC

Wj
�Wi dS;

~Kij ¼ �
ð

CC

�WiNj dS;

fi ¼ �
Xm

j¼0

ð
CA

Uj
�Ui dS Fi: (29)

Equation (28) can be written in the matrix form

Haþ ~Hp ¼ f;

Kbþ ~Kp ¼ 0: (30)

By definition, H and K are identity matrices and fi¼ –Fi.

We can now combine Eqs. (27) and (30) to have a single

block matrix equation

H ~H 0

Ĥ G K̂

0 ~K K

2
64

3
75

a

p

b

2
64
3
75 ¼

f

~f

0

2
64
3
75: (31)

This linear equation is solved by standard LU decomposition

method to obtain the finite element solution pB and the modal

amplitudes a and b. With this information the transmission loss

of the non-uniform component XB is readily obtained by Eq. (7).

IV. MULTIOBJECTIVE SHAPE OPTIMIZATION OF
MUFFLERS

This article concentrates on optimal shape design of acous-

tic mufflers by combining a hybrid numerical simulation

method with a genetic algorithm for multiobjective optimiza-

tion. In this section, we describe the general procedure of

model-based optimization which combines a simulation method

with an optimization algorithm. We define the multiobjective

shape optimization problem of an acoustic muffler and consider

the implementational details of the optimization algorithm.

In model-based optimization, the aim is represented by a

mathematical function called an objective function. For a spe-

cific aim, the corresponding function is usually defined in

such a way that smaller values indicate better designs. The

value of the objective function depends on the solution of the

simulation model, which further depends on a certain number

of design variables. These variables may be, for example,

related to the shape of a device or its material parameters.

The main stages of a model-based optimization proce-

dure in the case of a shape optimization problem are illus-

trated in Fig. 2 (left). A more detailed explanation of each

stage is given in the following list.

1. Geometric parametrized model: The shape of the muffler

needs to be described by a finite number of real-valued

parameters. Optimization begins from some initial param-

eter values.
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2. Mesh generation: Finite element mesh needs to be gener-

ated for the non-uniform (muffler) part of the geometry.

The mesh is regenerated after each change in the geome-

try parameters.

3. Computational model: The hybrid numerical model is

solved to obtain the transmission loss at certain fre-

quency. Several different frequencies are computed to

evaluate the objective functions.

4. Optimization: The optimization cycle is terminated if the

current design is satisfactory. Otherwise an optimization

algorithm is used to alter the shape parameters to improve

the design with respect to the given objectives.

The model-based optimization procedure is modular in the

sense that each stage can be realized with different methods or

software. For example, it is possible to use different mesh gen-

erators in the second stage as long as the computational model

is able to operate with the mesh format. On the other hand, the

numerical model and the optimization algorithm can be chosen

quite freely as long as there are suitable interfaces for the dif-

ferent components to communicate. The model-based optimi-

zation approach is flexible and by no means restricted to a

specific simulation or optimization method.

In this work, we used the open-source Netgen mesh gen-

erator by Schöberl23 to create tetrahedral meshing of the

muffler geometry. The hybrid numerical method considered

in Sec. III was implemented using the Numerrin language,

which is a modeling language for numerical computing by

Numerola Ltd. As an optimization algorithm, NSGA-II of

Deb et al.24 is considered, which is explained in Sec. IV B.

A. Multiobjective optimization problem

Often in industrial design, optimization should be per-

formed with respect to multiple conflicting criteria. The gen-

eral formulation of a multiobjective optimization problem

reads as follows:

min
x2S

f1 xð Þ;

..

.

min
x2S

fm xð Þ;
(32)

where fi: Rn ! R are objective functions that depend (often

indirectly) on x 2 S, a vector consisting of design variables

xi that belong to a feasible region S of design space Rn. For

shape optimization problems, the vector x defines the shape

of the geometry to be optimized. A solution is called Pareto

optimal if no other solution exists that is better with respect

to at least one objective function and equal with respect to

other objective functions. Similarly, a solution is called non-

dominated, if no other solution within a group of (possibly

non-optimal) solutions exists that is better with respect to at

least one objective function and equal with respect to other

objective functions.

The multiobjective optimization problem for acoustic

mufflers is defined to maximize TL at two frequency ranges

simultaneously. Both ranges correspond to a separate objec-

tive function f. Shape of the muffler is defined by the design

parameters x and the frequency ranges are given by the vec-

tors x and i. Then, the objective functions are as follows:

f1 xð Þ ¼ � 1

nx

Xnx

i¼1

s x;xið Þ and f2 xð Þ ¼ � 1

ni

Xni

i¼1

s x; iið Þ;

(33)

where s is given by

s x; fð Þ ¼ min TL x; fð Þ; TLmaxð Þ: (34)

Here, TL(x, f) is the TL value given by Eq. (7) for a design

determined by x and TLmax is a limiting value for transmis-

sion loss, which is necessary due to possible narrow infinite

peaks in transmission loss function that inhibit good conver-

gence of the optimizer.

B. NSGA-II genetic algorithm

The non-dominated sorting genetic algorithm, NSGA-II

introduced by Deb et al.24 is considered as a multi-objective

optimization method. Genetic algorithms (GA) are stochastic

optimization algorithms that mimic genetic drift and the Dar-

winian strife for survival. Unlike traditional gradient-based

optimizers that need the derivatives and a good starting

point, GAs have a good opportunity to locate the global

FIG. 2. (Color online) (left) Model-based optimization cycle and (right) simplified diagram of NSGA-II algorithm.
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optimum in a near optimal manner. In genetic algorithms,

there is a population of individuals that correspond to unique

design vectors. In our implementation, the initial population

P of npop individuals is generated such that first, a random

population of 10npop individuals is generated, from which

npop best individuals are then chosen to the initial population.

In the analogy of genetic evolution, crossover and mutation

is used to evolve the population toward the optimum. In

Fig. 2 (right), the basic structure of the algorithm is illus-

trated. In the following, the NSGA-II optimization algorithm

implementation details are described briefly. The algorithm

cycle consists of the following phases.

(1) Selection: Parents for crossover are selected by binary

selection, i.e., two candidates are chosen at random and

better candidate is selected to crossover.

(2) Crossover: Simulated binary crossover (SBX) operator

of Agrawal and Deb25 is used to obtain children from

chosen parents. SBX operator combines the properties

g1, g2 from both parents according to the distribution

c1 ¼ 1þ að Þg1 þ 1� að Þg2½ �=2;

c2 ¼ 1� að Þg1 þ 1þ að Þg2½ �=2;

where a is

a ¼ 2uð Þ1= gcþ1ð Þ
if u � 0:5

1= 2 1� uð Þ½ �1= gcþ1ð Þ
if u > 0:5

(

for random variable u 2 [0,1]. Crossover distribution

index gc determines how big the difference between chil-

dren and parents is likely to become, the bigger gc makes

the operator produce more unique children. The cross-

over operator is applied to parents with probability pc.
Values pc¼ 0.9 and nc¼ 20 are used in all optimization

problems of Sec. V.

(3) Mutation: Children genes are mutated with a polynomial

mutation operator of Agrawal and Deb.25 The mu-

tation alters the design variables according to for-

mula gnew¼ goldþ d (r) (fmax – fmin), where d (r) chosen

according to distribution

d rð Þ ¼ 2rð Þ1= gmþ1ð Þ�1 if r < 1
2

1� 2rð Þ1= gmþ1ð Þ�1 if r � 1
2
;

(
(35)

where r 2 [0, 1] is a random number and gm is the mutation

distribution index determining the impact of mutation opera-

tor. Mutation operator is applied with probability pm. Values

pm¼ 0.25 and gm¼ 10 are used in all optimization problems

of Sec. V.

The child population Q [see Fig. 2 (right)] is obtained

by steps 1–3 and the objective functions are evaluated. Then

populations Q and R are mixed to form a population R which

is then sorted using the non-dominated sorting algorithm of

Deb et al.24 to rank the individuals according to their mutual

domination. Then, the best half of R is used as a new popula-

tion P in the next generation.

V. NUMERICAL EXPERIMENTS

A. Validation of the hybrid model

The hybrid numerical method is validated by comparing

the numerically evaluated transmission loss values to the ex-

perimental results reported by Gerges et al.8 The first test in

Gerges et al.8 is a simple expansion chamber which is illus-

trated and defined in Fig. 3. The transmission loss values of

this geometry are evaluated with the hybrid numerical

method for the same frequency range as in Gerges et al.8

The numerical and experimental results are plotted in Fig. 4.

There is a clear consistency between the results, and it can

be concluded that the hybrid method predicts the transmis-

sion loss behavior very accurately in chosen test problem.

Gerges et al.8 reports also TL values obtained with the trans-

fer matrix method, which gives accurate results for frequen-

cies below 2000 Hz. However, above 2000 Hz the results of

the transfer matrix method differ significantly from the ex-

perimental results, whereas the hybrid method gives reasona-

ble accuracy over the whole frequency range.

Table I reports TL values of the expansion chamber

computed by the hybrid method for two frequencies. The

number m of modes in the modal representations pA and pC

is gradually increased to study how many are needed for suf-

ficient accuracy. With both frequencies, there is not a big

change in these values as the number of modes m increases.

As the frequency is low such that there is only one propagat-

ing mode, it is not necessary to use more than one mode to

FIG. 3. The diagram of the muffler component used to validate and evaluate

the hybrid numerical model.

FIG. 4. (Color online) Numerically evaluated transmission loss compared

to experimental results with the expansion chamber of Fig. 3.
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get reasonably accurate results. The accuracy is limited also

by the spatial discretization mesh, so we can not expect full

convergence to a specific value just by increasing m. In order

to improve accuracy of the transmission loss evaluation, it

would be necessary also to use finer mesh and/or higher order

integration formula on the inlet/outlet interfaces. Otherwise,

there is no advantage of using additional modes. In optimiza-

tion test cases, 15 wave modes, m¼ 15, are considered.

B. Optimization problem #1

The dimensions and a schematic illustration of the first

optimization case representing a muffler with a perforated

duct are given in Fig. 5. Geometry of the muffler is deter-

mined by eight parameters, four of which are fixed, and four

are varied to optimize the transmission loss. The fixed pa-

rameters are as follows.

(1) Second axis of the elliptic cross section, H¼ 177.4 mm.

(2) Diameter of the perforated duct, d¼ 47.7 mm.

(3) Thickness of the perforated duct, t¼ 1.55 mm.

(4) The distance determining the locations of truncation

boundaries CA and CC mm, g¼ 20 mm.

The four design variables xi with their admissible ranges

are as follows.

(1) Length of the chamber, x1 2 [300, 500] mm.

(2) First axis of the elliptic cross section, x2 2 [82.4, 177.4]

mm.

(3) Porosity of the perforated duct, x3¼/ 2 [0.01, 0.1].

(4) Pore diameter of the perforated duct, x4¼ d 2 [1, 5] mm.

The following material parameters are used in all test

cases.

(1) The speed of sound, c¼ 343.3 m/s.

(2) Density of air at temperature 20 �C, q¼ 1.2 kg/m3.

Transmission loss is maximized for the frequency

ranges 1200–1300 Hz and 1900–2000 Hz by choosing

x¼ [1200, 1250, 1300] Hz and i¼ [1900, 1925, 1950, 1975,

2000] Hz in the formulation Eq. (33). The limiting value in

objective function (34) is given by TLmax¼ 50 dB. The pop-

ulation size npop¼ 50 was used and the average values of the

objective functions in the initial population were f1¼� 11.7

dB and f2¼� 0.6 dB.

Figure 6 presents the non-dominated fronts (approxima-

tion of Pareto optimal fronts) of all optimization test

problems (#1, #2 and #3) that are obtained by NSGA-II algo-

rithm after 100 generations. In all test cases, optimization

converged mainly to the same front with different tested ran-

dom number generator seed numbers, which implicates that

the algorithm is behaving robustly.

It can be seen that after optimization, the objectives are

clearly better than on average before optimization. In Fig. 7,

the transmission loss as a function of frequency is plotted for

an optimal solution that is chosen from the non-dominated

front at point f1¼� 18.4 dB, f2¼� 30.1 dB which corre-

sponds to the design vector x¼ [492 mm, 87.6 mm, 0.097,

1.88 mm].

TABLE I. The transmission loss of expansion chamber with respect to num-

ber m of modes.

m 500 Hz 2900 Hz

1 7.346236753 1.281625853

2 7.346236753 1.281639638

3 7.346236794 1.281639526

4 7.349007703 1.281832511

5 7.349007776 1.281832527

6 7.349008748 1.281832764

7 7.349008866 1.281832732

8 7.349009086 1.281832982

9 7.349009174 1.281833040

10 7.354649180 1.282237512

FIG. 5. The diagram of a muffler component used in optimization

problem #1.

FIG. 6. (Color online) The non-dominated fronts for optimization test cases

#1, #2 and #3.

FIG. 7. (Color online) The transmission loss versus frequency for the opti-

mization case #1 with f1¼� 18.4 dB, f2¼� 30.1 dB is plotted. It corre-

sponds to the design variable values x1¼ 492 mm, x2¼ 87.6 mm,

x3¼/¼ 0.097, and x4¼ d¼ 1.88 mm.
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C. Optimization problem #2

The second optimization test case represents a reverse

flow chamber. The dimensions and a schematic illustration

of the test case are given in Fig. 8. Geometry of the muffler

is determined by 10 parameters, six of which are fixed, and

four are varied to optimize the transmission loss. The fixed

parameters are as follows.

(1) The length of the chamber, L¼ 200 mm.

(2) The inner diameter of the ducts, d¼ 47.7 mm.

(3) Thickness of ducts is 1.55 mm.

(4) The first axis of the cylindrical chamber, W¼ 60 mm.

(5) The second axis of the cylindrical chamber, H¼ 100 mm.

(6) The distance determining the locations of truncation

boundaries CA and CC mm, g¼ 20 mm.

Four shape parameters with their admissible ranges are

as follows.

(1) The lengths of inlet duct inside the chamber, x1

2 [80,130] mm.

(2) The length of outlet duct inside the chamber x2

2 [80,130] mm.

(3) The location of inlet duct x3 2 [� 70, � 27.5] mm.

(4) The location of outlet duct x4 2 [27.5,70] mm.

Transmission loss is maximized for the frequency

ranges 1550–1600 Hz and 2450–2500 Hz by choosing

x¼ [1550, 1560, 1570, 1580, 1590, 1600] Hz and i¼ [2450,

2460, 2470, 2480, 2490, 2500] Hz in the formulation Eq.

(33). The limiting value in objective function (34) is given

by TLmax¼ 70 dB. The population size npop¼ 100 was used

and the average values of the objective functions in the ini-

tial population were f1¼� 21.3 dB and f2¼� 19.67 dB.

It can be seen that for optimization case #2, the objec-

tive function values are over 20 dB better than with the ini-

tial parameter values. In Fig. 9, the transmission loss as a

function of frequency is plotted for an optimal solution that is

chosen from the non-dominated front at point f1¼� 42.5 dB,

f2¼� 62.7 dB which corresponds to the design vector

x¼ [94.7, 126,� 56.3, 27.5] mm.

D. Optimization problem #3

The dimensions and a schematic illustration of the third

optimization problem muffler component are given in Fig. 10.

Geometry of the muffler is determined by seven parameters,

three of which are fixed, and four are varied to optimize the

transmission loss. The fixed parameters are as follows.

(1) The length of the chamber, L¼ 500 mm.

(2) The diameter of inlet and outlet ducts, d¼ 67.2 mm.

(3) The distance determining the locations of truncation

boundaries CA and CC mm, g¼ 100 mm.

The four design variables xi with their admissible ranges

are as follows.

(1) The location of inlet duct, x1 2 [d/2, L – d/2]¼ [33.6,
466.4] mm.

(2) The location of outlet duct, x2 2 [L/2, L – d/2]¼ [250,
466.4] mm.

FIG. 8. The diagram of a muffler component used in optimization test case #2.

FIG. 9. (Color online) The transmission loss versus frequency for the opti-

mization case #2 with f1¼� 42.5 dB, f2¼� 62.7 dB is plotted. It corre-

sponds to the design variable values x1¼ 94.7 mm, x2¼ 126 mm,

x3¼� 56.3 mm and x4¼ 27.5 mm.

FIG. 10. The diagram of a muffler component used in optimization problem #3.

FIG. 11. (Color online) The transmission loss versus frequency for the opti-

mization case #3 with f1¼� 42.5 dB, f2¼� 42.2 dB is plotted. It corre-

sponds to the design variable values x1¼ 410 mm, x2¼ 275 mm, x3¼ 110

and x4¼ 110 mm.
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(3) The length of the first axis of chamber’s elliptic cross

section, x3 2 [90,120] mm.

(4) The length of the second axis of chamber’s elliptic cross

section, x4 2 [90,120] mm.

Transmission loss is maximized in frequency ranges

900–1000 Hz and 2900–3000 Hz by choosing x¼ [900, 925,

950, 975, 1000] Hz and i¼ [2900, 2925, 2950, 2975, 3000]

Hz in the formulation Eq. (33). The limiting value in objective

function (34) is given by TLmax¼ 50 dB. The population size

npop¼ 200 was used and the average values of the objective

functions in the initial population were f1¼� 14.1 dB and

f2¼� 9.1 dB.

It can be seen that for optimization case #3, the objective

function values are over 20 dB better than with the initial pa-

rameter values. In Fig. 11, the transmission loss as a function

of frequency is plotted for an optimal solution that is chosen

from the non-dominated front at point f1¼� 42.5 dB,

f2¼� 42.2 dB which corresponds to the design vector

x¼ [410, 275, 110, 110] mm. The transmission loss is very

good at both optimized frequency ranges. The same parame-

ters are used also to plot the example solution in Fig. 12,

which shows the real part of the sound pressure.

VI. CONCLUSIONS

Multiobjective shape optimization of acoustic mufflers

was considered. The shape parameters of the muffler were

varied to maximize the sound transmission loss. NSGA-II

was used as an multiobjective optimization method, and

acoustic attenuation was computed by a hybrid numerical

method, which combines finite element method in the non-

uniform muffler geometry to a modal representation of the

solution in the uniform inlet and outlet ducts.

Two frequency ranges were optimized simultaneously.

For each test problem, example solutions were chosen from

the non-dominated front that was given by NSGA-II opti-

mizer algorithm. The transmission loss as a function of fre-

quency was plotted for them to evaluate the optimization

results. Desired attenuation properties were reached in all

test cases. The optimization significantly improved the

objective functions when compared to the initial random

designs.

The hybrid method provides accurate and realistic mod-

eling of acoustics in muffler component. Finite element

method allows almost arbitrary three-dimensional shape of

the design and boundary conditions, which brings versatile

possibilities to the formulation of muffler component optimi-

zation. Combined with the NSGA-II optimization algorithm,

the method offers a generic, robust, and advanced approach

to many three-dimensional muffler optimization problems.
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