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ABSTRACT

Jyviésjdrvi, Jussi

Environmental drivers of lake profundal macroinvertebrate community
variation - implications for bioassessment

Jyvaskyla: University of Jyvaskyld, 2011, 52 p.

(Jyvaskyla Studies in Biological and Environmental Science

ISSN 1456-9701; 223)

ISBN 978-951-39-4365-3 (nid.), 978-951-39-4366-0 (PDF)

niiden merkitys jarvien biologisen tilan arvioinnissa

Diss.

The EU Water Framework Directive (WFD) aims to achieve at least good
ecological status for European waterbodies. Ecological assessment is essentially
premised on comparison of the observed biota with reference biota
representing conditions undisturbed by human. Hence, successful assessment
requires basic research into both natural and anthropogenic sources of
biological variation. Profundal macroinvertebrates (PMI) are one of the
elements required for the ecological assessment of lakes. My study aims were: 1)
to determine the extent of natural PMI community variation and its dependence
on, and hence predictability from, environmental variation insensitive to
human disturbance; 2) to evaluate various modelling approaches in comparison
to the operative WFD-compliant lake typology to predict the natural variation
(i.e. the reference status of PMI fauna); and 3) to quantify the importance of
food in relation to oxygen and temperature in structuring PMI communities.
The natural variation of PMI communities was primarily attributable to lake
depth. A novel paleolimnological validation procedure showed that a simple
linear regression model was superior to typology in the estimation of reference
values for a key PMI assessment metric. Development of multivariate models to
predict the PMI fauna was more challenging and the models were imprecise,
although apparently outperforming the typology approach. Food controlled the
PMI communities, particularly in nutrient-poor lakes, but in general, the
communities are structured by food, oxygen and temperature in concert. The
results imply that comparison of PMI communities among lakes, and hence also
the assessment of PMI fauna, should be controlled for lake morphometry,
preferably by statistical models rather than categorical typologies. The
functional explanation for lake morphometry as a key predictor of PMI fauna is
the covariance of the proximate driving factors with depth in particular.

Keywords: Bioassessment; ecological stoichiometry; predictive modelling;
profundal macroinvertebrates; stable isotopes; Water Framework Directive.

Jussi Jyvdsjirvi, University of Jyvdskyld, Department of Biological and Environmental
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1 INTRODUCTION

1.1 Profundal macroinvertebrate communities

The bottom of lakes is divisible into three distinct zones: littoral, sublittoral and
profundal. The latter, the profundal area, can be characterised as the deeper
water area with fine sediments, lacking illumination and thus rooted vegetation
(Wetzel 2001). Thermal stratification of dimictic boreal lakes during the summer
and winter stagnation periods results in permanently low water temperature
and extended periods when the hypolimnetic oxygen consumed by degradation
of organic material depositing at the lake bottom is not replenished (Suess 1980).
Consequently, low oxygen concentration, or even complete anoxia, are a
common situation in profundal areas of boreal lakes (Fulthorpe & Paloheimo
1985). Due to the lack of light, the profundal ecosystem is heterotrophic and
fully dependent on poor quality sedimenting organic material originating from
the upper water column, littoral areas or terrestrial production (Lopez &
Levington 1987, Covich et al. 1999).

Despite the harsh conditions, the profundal zone provides a unique
habitat for a characteristic and surprisingly diverse and abundant
macroinvertebrate fauna (Jénasson 1996). The core of profundal benthic
communities in boreal lakes is typically comprised of larvae of non-biting
midges (Diptera: Chironomidae) and of segmented worms (Annelida:
Oligochaeta). Amphipod crustaceans (e.g. Monoporeia affinis, Pallasea
quadrispinosa), small mussels (Pisidium spp. and Sphaerium spp.), water mites
(Acari: Hydrachnellae) and non-chironomid dipteran larvae (Chaoboridae and
Ceratopogonidae) are usually the additional components.

Profundal macroinvertebrates play a key role in lake ecosystems. Most
species are detritivores and, due to high abundances, they are capable of
processing considerable amounts of dead and dying organic matter
sedimenting from the upper water column. Furthermore, many species are
important prey items for predatory invertebrates and benthivorous fish
(Lindegaard 1994). The various substances assimilated by profundal
invertebrates are thus transferred to higher trophic levels within a lake, or
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alternatively transported to adjacent terrestrial ecosystem via aerial life stages
of e.g. chironomids and chaoborids (Reinhold et al. 1999, Jones & Grey 2011).

1.2 Profundal macroinvertebrates in lake monitoring

Benthic macroinvertebrates are perhaps the most widely used group of
organisms in biological monitoring and assessment of freshwaters. Several
factors advocate the utility of benthic assemblages in bioassessment. First, they
are long-lived and sedentary and the communities will thus indicate
environmental stress at a meaningful scale, both in time and space. Second,
macroinvertebrate assemblages comprise diverse species with varying and well
known responses to human-induced environmental stress (Rosenberg & Resh
1993). Furthermore, the sampling of macroinvertebrates is relatively cheap,
quick and well standardized and their identification has become easier due to
revised taxonomy and availability of up-to-date identification guides (e.g.
Brooks et al. 2007).

Research into profundal macroinvertebrate communities has a long-
standing tradition in limnology. The early lake classifications schemes were
based on profundal chironomid fauna and their empirical relationships to lake
trophy (see Brinkhurst 1974 for a review). Three subsequent studies were
particularly seminal and formed the cornerstones of profundal bioassessment.
Brundin (1949, 1951) was among the first to show empirically that hypolimnetic
oxygen is pivotal in structuring profundal communities and this has since
remained a central tenet of profundal macroinvertebrate ecology (Int Panis et al.
1996, Real et al. 2000, Verneaux et al. 2004). Later, Saether (1979) characterized
the trophic preferences of 57 Palearctic and Nearctic profundal chironomid taxa
and developed a classification system in which the occurrence of particular taxa
indicated the varying nutrient status of a lake, corresponding to one of 15 lake
types (a - o). Wiederholm (1980) quantified the indicator values of profundal
macroinvertebrates by developing the Benthic Quality Index (BQI), which uses
the relative abundances of seven chironomid taxa or five oligochaete species to
indicate anthropogenic nutrient enrichment.

The demonstrations by Saether (1979) and Wiederholm (1980) of the
correspondence between occurrence of profundal indicator species and lake
nutrient status enabled a more comprehensive understanding of pelagic-benthic
coupling: anthropogenic nutrient enrichment accelerates algal primary
production, and the diversity, abundance and community composition of
profundal fauna respond to the consequent alteration of nutrient and oxygen
regimes prevailing in the profundal zone (Hanson & Peters 1984, Rasmussen &
Kalff 1987, Graf 1989, Johnson & Wiederholm 1992, Goedkoop & Johnson 1996,
Blumenshine et al. 1997). After the works of Saether (1979) and Wiederholm
(1980), profundal assemblages rapidly became widely applied in the monitoring
of either water quality or biota per se (e.g. Edmonds & Ward 1979, Kansanen et



al. 1984, Aagaard 1986, Gerstmeier 1989, Johnson & Wiederholm 1989, Johnson
et al. 1992, Int Panis et al. 1996, Dinsmore et al. 1999, Real et al. 2000, Milbrink et
al. 2002, Verneaux et al. 2004).

Lake sediments in profundal areas are a burial ground for organic and
inorganic material, pollutants and many dead aquatic and terrestrial organisms
such as fish, aquatic insects, algae and plants. Hard body parts (e.g. diatom
[Bacillariophyceae] valves, chitinized exoskeleton of insects, fish scales) are
usually well preserved in the bottom sediments and thus provide a unique
paleolimnological archive of various physico-chemical and biological changes
at a site during its ontogeny (Smol 2008).

Chironomids are one of the most frequently used groups in
palaeolimnological studies as the heavily chitinized subfossil head capsules of
chironomid larvae shed during ecdysis can be identified usually to genus level
or in some cases, even to species (e.g. Davies & Jackson 2006, Smol 2008). Due to
their ubiquitousness, high abundance in lake sediments and well established
ecological preferences of the majority of taxa, lentic chironomids have been
successfully applied to infer past nutrient status (Lotter et al. 1998, Brodersen &
Lindegaard 1999), oxygen availability (Quinlan & Smol 2002), acidification
(Schnell & Willasen 1996) and climatic oscillations (e.g. Larocque et al. 2001,
Heiri et al. 2003, Larocque & Hall 2003).

Finnish paleolimnologists have contributed to paleolimnological research
by many excellent case studies demonstrating the long-term succession of
profundal chironomid assemblages during the heavy pollution periods in the
20th century. The studies have indisputably authenticated and quantified the
degradation of chironomid communities during the pollution period and
reversibility of this process following the gradual recovery. Indeed, these
studies have demonstrated that profundal chironomid communities respond
‘ideally” to stress (see Rapport 1992), as they show marked and consistent i)
reduction of species richness, ii) predominance of pollutant-tolerant species and
iif) alteration of species abundance within and among taxa due to
anthropogenic disturbance (e.g. Kansanen 1985, Merildinen et al. 2000, 2003,
Hynynen et al. 2004).

1.3 Bioassessment of freshwaters

1.3.1 Towards a global emphasis on the natural status of biota

Global concern of perpetual degradation of freshwater and marine ecosystems
has engendered legislative mandates, such as the Clean Water Act in the United
States (Anon. 1972), the National River Health Program in Australia (Norris &
Norris 1995) and the Water Framework Directive in Europe (WFD; Anon. 2000),
for protection and management of surface waters. These programs are
fundamentally altering the conventional water quality-centred monitoring of
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freshwaters by emphasising ecosystem integrity as a primary management
objective. More specifically, the assessment in these programs is based on the
Reference Condition Approach (RCA), in which the current status of an
evaluated site is compared to the reference conditions representing the
presumed natural status of the site (Hughes et al. 1995, Reynoldson et al. 1997,
Bailey et al. 2004, Stoddard et al. 2006).

The Water Framework Directive (Anon. 2000) was formed to promote the
sustainable use of aquatic resources and to harmonise and consolidate the
ecological assessment among the EU Member States. The Directive necessitates
the assessment of biological and hydro-morphological conditions as well as
evaluation of water quality and harmful substances of coastal areas, rivers and
lakes. The ecological assessment of lakes is based predominantly on the
composition and abundance of phytoplankton, fish, macrophytes and
macroinvertebrates. The deviation from the natural conditions is quantified by
comparing the observed (O) biological parameter to the expected (E) reference
value (Ecological Quality Ratio; EQR). The evaluated site is classified into one
of the five ecological classes (high [EQR ~ 1], good, moderate, poor and bad
[EQR ~ 0]) on the basis of EQR values, and all surface water bodies should
achieve at least good ecological status or good ecological potential (heavily
modified water bodies) by 2015 (Anon. 2000) or later (see Hering et al. 2010).

1.3.2 Controlling for natural biological variation

Establishing the reference conditions is the most challenging and critical stage
of ecological assessment (Irvine 2004). Inaccuracy in assessment of the
biological condition due to poorly estimated reference status might impede
detection of severe ecological impacts or, alternatively, cause economic waste
because of unnecessary remedial actions.

As data representing the pristine status of a lake or a river are virtually
never available, various alternative approaches have been proposed for the
estimation of the natural biological status of water bodies (Stoddard et al. 2006).
The simplest approach, and the default in the WFD, is classification, or more
precisely termed a priori typology of sites on the basis of their natural
environmental characteristics (Anon. 2000, 2003). Even though typology is easy
to understand and use, there is growing awareness that such a rough
categorical classification may be over-simplistic and thus inadequate in
accounting for continuous variation of environment and biological communities.
A number of studies now suggest that considerably more accurate estimates of
site-specific reference status and thus more credible assessment results can be
obtained by statistical modelling approaches (Davy-Bowker et al. 2006, Mazor
et al. 2006, Aroviita et al. 2009).

1.3.3 Measuring ecological status

Univariate biotic indices are traditionally used for summarising the
macroinvertebrate community patterns and assessing the status of assemblages
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in relation to various environmental stresses (e.g. eutrophication, acidification;
see Cairns & Pratt 1993, Johnson et al. 1993). Many indices have a long history
in aquatic research, their calculation is simple and they are thus easy to use in
practical bioassessment. Nevertheless, the use of indices may have some
shortcomings. In most cases, univariate biotic indices are stressor-specific and
calibrated for certain locally pivotal environmental gradients and taxa.
However, aquatic ecosystems are rarely disturbed by a single stressor and
therefore the utility of unidimensional, stressor-specific metrics might ignore
the complex interactions of multiple coexisting environmental stressors
(Johnson et al. 1993, Aroviita 2009). In addition, the use of often over-adjusted
biotic indices potentially hinders the harmonization of ecological classification
among different ecoregions and countries (Hering et al. 2010). Thus, there has
been widespread interest to develop more general measures of biological
integrity.

Predictive multivariate models provide a variety of approaches to estimate
the occurrence of native taxa (i.e. those expected to occur at a site in the absence
of human disturbance). The expected number of taxa in reference conditions (E)
is derived by summing the predicted probabilities of occurrence, estimated by
the model, and the faunal deviation of an evaluated site from the reference
conditions is quantified by the relative difference between observed (O) and
expected taxonomic composition (E) - the O/E (hereafter O/Eraxa) index, or
‘taxonomic completeness’ (Hawkins 2006). Given that O is always a subset of E,
the O/Eraxa quantifies the integrity of native biota and is thus a globally
consistent, ecologically meaningful and easily interpreted measure of biotic
condition (Hawkins 2006).

The pioneer of predictive modelling for bioassessment needs was the
River InVertebrate Prediction And Classification System (RIVPACS; Moss et al.
1987, Wright et al. 2000, Clarke et al. 2003) which was originally developed for
stream macroinvertebrates. RIVPACS-type models have since been adapted to
lotic fishes (Joy & Death 2002, Kennard et al. 2006, Meador & Carlisle 2009),
macrophytes (Mykrd et al. 2008), and diatoms (Feio et al. 2007), and also to lake
littoral macroinvertebrates (Johnson 2003, Neale & Rippey 2007). The example
of RIVPACS models led to emergence of alternative modelling approaches
based either on a similar philosophy (Linke et al. 2005, Chessman et al. 2008) or
different statistical approaches (Oberdorff et al. 2001, Olden 2003, Joy & Death
2004). Hitherto, such approaches have not been developed for profundal fauna
and there is a clear need for an evaluation of the potential of these approaches
to measure taxonomic completeness of profundal communities.

1.3.4 Validation of the assessments

Whatever index or metric will be used in biological assessment, it is essential to
validate the approaches used. This fundamental stage often remains
unsatisfactory as we are lacking data prior to disturbance, and hence
documentation of the actual biological impairment and its magnitude. Cao &
Hawkins (2005) and Hawkins et al. (2009) tried to overcome this problem by
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comparing the assessed against simulated impairment of stream
macroinvertebrate community composition. In lakes, paleolimnological records
offer a more valid alternative. The biological records representing the pre-
industrial period (Smol 2008) can be used either to authenticate the detected
anthropogenic impairment or to validate alternative approaches for
establishment of reference conditions for those groups leaving remains in
sediments (e.g. lentic chironomids or diatoms). Recent studies have utilized
paleolimnological methods for ascertaining the present pristine environmental
(Kauppila et al. 2002, Andersen et al. 2004, Miettinen et al. 2005) or biological
(Bennion et al. 2004, Leira et al. 2006) conditions of individual reference sites. To
my knowledge, only few studies have applied palaeolimnological data to
directly assess the ecological status of a site (Merildinen et al. 2003, Kauppila et
al. 2011), while none have validated approaches for estimation of reference
conditions or assessments of biological impairment by palaeolimnological data;
for these uses there are obvious opportunities and needs.

1.4 Study aims

Understanding the extent of natural biological variation and causal
relationships between biological responses and anthropogenic disturbance
requires in-depth studies of species and community level patterns and their
relationships with environmental variation. This will help to recognise the
factors structuring biological communities in space and time in both near
pristine and disturbed sites and will enable discrimination of the human
induced community changes from those driven by natural temporal and spatial
variation. Profundal communities are considered to be governed by multiple
inter-related environmental factors (i.e. bottom temperature, oxygen and food)
that covary along with both natural (lake morphometry) and anthropogenic
(nutrient enrichment) environmental variation. However, their actual
contribution in structuring profundal fauna, food in particular, is still poorly
known, thus impeding the interpretation of causes of natural community
variation and anthropogenic degradation.

This thesis focuses on profundal macroinvertebrate communities in boreal
lakes and the relationships between community and environmental variation.
One of the primary objectives was, on the basis of a large national data set, to
evaluate the extent and origin of natural variation of lake profundal
communities and, furthermore, to address the implications of this natural
variation for the status assessment of profundal fauna (I). The second objective
was, based on the patterns uncovered by the first study, to develop predictive
models for estimation of the reference status of profundal assemblages and to
evaluate their potential in lake bioassessment. For this purpose, a simple
regression model (II) and also a selection of more complex multivariate
predictive models (III) were developed to estimate values of chironomid
Benthic Quality Index (BQI) and the occurrence of taxa, respectively, in the
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absence of human disturbance and to serve as reference conditions for status
assessment. The BQI model (II) was validated using a novel approach based on
paleolimnological archives representing the pristine status of a site, whereas
multivariate predictive models (III) were validated with independent
contemporary data. In both cases the performance of modelling approach was
evaluated in comparison to a WFD-compliant a priori typology. These
approaches for predicting and controlling for the natural biotic variation need
to use easily measured predictors, which are not affected by humans. These
correlates do not necessarily reveal any causality. Therefore, the third aim was
to evaluate the relative importance of environmental variables (oxygen,
temperature and food) generally considered more proximally structuring
profundal macroinvertebrate fauna (IV). Particular emphasis was put on
analysis of quantity, quality and origin of sedimenting organic material (food
resource) in order to evaluate its previously poorly known contribution to
regulation of profundal community composition.
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2 MATERIAL AND METHODS

2.1 National profundal macoinvertebrate data (I-III)

2.1.1 Site selection and environmental data

The studies I-IIl were based on an extensive national macroinvertebrate and
environmental data set compiled for this thesis and also for the development of
ecological classification of profundal macroinvertebrate communities of Finnish
lakes. The data were repeatedly updated as more data became available, and
therefore the studies I-III differ in the number of reference sites (Table 1).
Presently, the data set contains 179 mainly central and eastern Finnish lake
basins (Fig. 1A), and has been compiled from various sources, including the
archives of the Finnish environmental authorities, monitoring reports, theses
and my own observations. The sites were divided into two a priori groups: sites
with minimal anthropogenic disturbance (hereafter REF sites, n = 107) and sites
with varying human impact (IMP sites, n = 72). REF site selection followed the
criteria suggested by the EU REFCOND guidance document (Anon. 2003) and
was based on suggestions of authorities from the Finnish Environment Institute
(FEI) using all available information on anthropogenic pressures.
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TABLE 1 Data sources and number of study basins for the studies I - IV. REF and IMP
denote minimally disturbed reference sites and variously impacted sites due
to human actions, respectively.

Data Status Study | Study Il Study IIl  Study IV
National macroinvertebrate data REF 55 73 74 -
REF (Validation) - - 33 -
IMP - - 72 -
Paleolimnological literature data REF & IMP - 24 - -
Sediment trap data REF & IMP - - - 26

Site-specific environmental data were acquired from the HERTTA-database
maintained by FEI (Table 2). The data cover a range of environmental
characteristics including geographic, water quality and morphometric variables.
The water quality measurements are accordant to the Finnish standards and are
from the macroinvertebrate sampling sites and from the summer stagnation
period (August) of the year of macroinvertebrate sampling. In those few cases,
when these data were not available, water quality information from the
preceding year was used. Landscape position of the 55 REF sites used in the
tirst study (I) was characterized by lake order. This is analogous to Strahler’s
stream order (Strahler 1952) and provides a proxy for numerous physical,
chemical and biological features essential for lake functioning (see Riera et al.
2001, Quinlan et al. 2003). Lake order was determined following Riera et al.
(2001) using 1:15 000 scale electronic maps.
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TABLE 2

Summary of geographic, morphometric and water chemistry variables for 107

REF sites and 72 IMP sites. Variables considered as independent of human
actions and thus used as community predictors in studies I-III are denoted
with symbol *.

REF sites (n=107)

IMP sites (n=72)

Mean Min Max Mean Min Max
Altitude (m.a.s.l.)* 114 47 254 104 71 222
Latitude (N°)* 62.4 60.2 69.1 62.4 61.1 64.6
Longitude (E°)* 274 236 31.2 27.3 235 31.0
Area (km?)* 1235 12 13780 147.6 14 13780
Volume (km?)* 132 0.001 14.88 195 0.002 14.87
Mean depth (m)* 7.9 2.3 21.0 7.6 2.7 165
Sampling depth (m)* 26.7 3.7 91.0 23.9 3.9 71.0
Depth ratio* 0.36 0.14 0.87 0.35 0.15 0.80
Relative depth* 0.71 0.10 2.31 0.51 0.10 2.70
Temperature (°C)* 10.26 4.97 19.8 119 41 19.6
Distance to shore (m)* 379 31 3001 442 41 1651
Total phosphorus (ug ™) 111 4.3 37.2 204 6.0 61.7
Tota nitrogen (ug 1) 379.1 177.8 1288.3 570.5 208.9 1288.3
Conductivity (mSm™) 5.2 15 15.9 6.5 2.7 145
Chlorophyll a (ug 1™ 6.7 18 42.7 11.3 2.0 58.9
Dissolved oxygen (mg 1™ 6.1 1.0 12.7 5.2 1.0 115
Colour (mg Pt I™)* 48.9 55 161.0 65.3 11.0 161.0

2.1.2 Macroinvertebrate data

Macroinvertebrate samples for the studies I-III were collected and species
identified by various people and agencies. However, the sampling procedure in
all cases was in accord with the Finnish standard (SFS 5076). The quantitative
macroinvertebrate samples were taken from the deepest part of each basin in
September-November using an Ekman grab or a similar sampling device
(surface area 250-300 cm?). Sampling effort ranged from 2 to 8 replicates per site.
In cases of more intensive sampling, five replicates were randomly resampled
to produce a balanced data set. The collected material was passed in most cases
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through a 500 um sieve in the field and the retained material was preserved in
70 % ethanol. In the laboratory, all animals were screened from other material
on a well illuminated white dish. If necessary, head capsules of chironomid
larvae, whole oligochaetes and chaoborid larvae were mounted on microscope
slides for identification and the animals were identified to the lowest possible
taxonomic level and counted. In order to achieve taxonomic consistency, the
species data were harmonised as necessary, e.g. some species identifications
reduced to genus. At the final stage, the data comprised 112 taxa, which were
identified to 83 species/species-group, 23 genera, one sub-family, three families,
one sub-order and one class.
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FIGURE1 The geographical locations of A) 179 lake basins with national
macroinvertebrate data (I, II and III), B) 24 paleolimnological validation sites
(I) and C) 26 sediment trap sites (IV). The area delineated in panel B with
dashed line denotes the region represented in panel C.

2.1.3 Lake typology

The establishment of type-specific biological, hydromorphological and physico-
chemical reference conditions for Finnish lakes is based by default on lake
typology “System B” (Anon. 2000). Lake surface area and water colour
(indicative of geology) are the primary typology descriptors, and altitude,
morphometry (mean depth as a binary factor, threshold 3.0 m), hydrology
(short vs. long retention time), and catchment geology are used as additional
variables to differentiate special lake types from the main categories (Vuori et al.
2006). Using this typology, the 179 (I, II, III) sites of the national
macroinvertebrate data were first divided into three categories based on water
colour. Oligohumic lakes (OHL, n=63) were further divided into types of
medium-sized (MOHL, n=29), large (LOHL, n=30) and shallow (ShOHL, n=4)
lakes. Mesohumic lakes (MHL, n=90) were assigned to four lake types
according to surface area (SMHL, n=41; MMHL, n=18; LMHL, n=22) and mean
depth (ShMHL, n=9). Polyhumic lakes (PHL, n=22), were divided into two lake
types based on mean depth (DPHL, n = 11; ShPHL, n=11). Two sites were
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assigned to the type of short retention time lakes (SRT) and naturally nutrient-
rich (NNR) lakes. High altitude lakes (HAL) was the only lake type not
represented in the present data (Fig. 2).

All 179 sites
_ SRT, n=2
NNR, n=2 Retention time < 10 d
HAL, n=0 —

I |
OHL, n=63 MHL, n=90 PHL, n=22
Colour <30 mg PtL" Colour 30-90 mg Pt L" Colour > 90 mg Pt L"
MOHL, n=29 SMHL, n=41 LMHL, n=22 DPHL, n=11

Area 5-40 km® Area < 5 km’ Area > 40 km’ Mean depth >3 m
- LOHL, n=30 MMHL, n=18 ShMHL, n=9 ShPHL, n=11

Area > 40 km’ Area 5-40 km® Mean depth <3 m Mean depth <3 m
| | ShOHL, n=4

Mean depth <3 m

FIGURE2 The operational Finnish lake typology showing the division criteria and
number of study sites assigned to each lake type.

2.2 Sediment trap data (IV)

2.2.1 Collection of sedimenting organic material

Sedimenting organic material (SOM) and profundal macroinvertebrates were
collected from 26 basins of 11 lakes in central and eastern Finland (Fig. 1C) in
2005 (13 basins) and 2008 (13 basins). The data set comprises sites with varying
human disturbance, and encompasses the faunal and environmental variation
among Finnish lakes. SOM was collected using a sediment trap technique
(Bloesch & Burns 1980, Blomqvist & Hdkanson 1981). The traps were deployed
1.5 m above the lake bottom in the deepest point of each study basin in late
August, and removed after 26-30 days. The samples were stored in preweighed
plastic vials (50 ml), freeze-dried for 72 h and reweighed to determine the areal
rate of dry weight accumulation (g m day-!) of the collected material.

The proportion of organic matter (loss on ignition; % LOI) was determined
by weighing a subsample of material before and after combustion at 550 °C for
3 h. The proportions of carbon (C %) and nitrogen (N %) and their stable
isotope ratios (8'3C and 6'°N) were determined using a FlashEA 1112 elemental
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analyzer coupled to a Thermo Finnigan DELTAplus Advantage isotope ratio
mass spectrometer. Total phosphorus content was measured from the
preweighed subsamples of sediment trap material using a spectrophotometric
determination of POy after hot-acid hydrolysis with K25:0s (Grasshoff et al.
1983). The stoichiometric ratios of carbon, nitrogen and phosphorus (C:N:P)
were calculated based on their molar units. The sedimentation rates (g m-2 day1)
of organic matter, C, N and P were calculated from their proportional
contributions to the total sedimentation.

2.2.2 Macroinvertebrate data

Quantitative profundal macroinvertebrate samples were taken from the
sediment collection sites using standardised methods (SFS 5076) described
above. All animals were identified to the lowest possible taxonomic level,
counted and wet weights (g) of macroinvertebrate groups (Chironomidae,
Oligochaeta, Chaoboridae, Bivalvia, Acari, Crustacea and Ceratopogonidae)
were weighed according to Finnish standard (SFS 5076) with an accuracy of 0.1
mg. Supplementary chironomid samples were taken to evaluate the variation of
stable isotope signatures and stoichiometric ratios within and among
chironomid taxa with contrasting trophic preferences (Saether 1979,
Wiederholm 1980). Head capsules of the larvae were mounted on microscope
slides for later identification and the abdomens were dried at 62 °C and after
homogenisation, the samples were analysed for C:N:P stoichiometry and 6'3C
and &"°N.

2.3 Macroinvertebrate indices (I-IV)

Community variation and status of profundal macroinvertebrate fauna was
evaluated with four univariate indices which have been widely used in
profundal studies: Shannon diversity index (I, IV), Oligochaeta/Chironomidae
-index (I), Benthic Quality Index (I, II, IV), total biomass (IV). In addition, the
utility of multivariate measures of taxonomic completeness (i.e. O/Eraxa) in
assessment of profundal fauna were tested (III).

Shannon diversity index (H’; Shannon & Weaver 1949) is a classical
ecological metric and is frequently used to measure the diversity of profundal
invertebrate assemblages (Bazzanti & Seminara 1985, Johnsson & Wiederholm
1989, Veijola et al. 1996, Dinsmore et al. 1999). It is estimated using the formula

He3 )

where S is the number of taxa, n; is the number of individuals belonging to the
taxon i out of the S species and 7 is the total number of individuals in a sample.
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The ratio of Oligochaeta and Chironomidae (O/C; Wiederholm 1980) was
calculated as the percentage of oligochaete individuals in the total of
oligochaete and sedentary (non-Tanypodinae) chironomids. The O/C index is
based on the assumption that the abundances of generally more tolerant
oligochaete species will increase with nutrient enrichment in relation to more
intolerant chironomid fauna and has been widely applied in profundal
assessment studies (Sarkka 1982, Zinchenko 1992, Johnson 1996, Johnson 1998).

The chironomid Benthic Quality Index (BQI, Wiederholm 1980) was used
to assess the composition and ecological status of the chironomid assemblages
(Johnson & Wiederholm 1989, Johnson 1998, Hamaildinen et al. 2003, Merildinen
et al. 2003, Rask et al. 2011, Verbruggen et al. 2011). BQI is based on the relative
abundances of seven chironomid species or genera, which are scored by
integers from 1 (eutrophic species) to 5 (oligotrophic) according to their
perceived preference along a lake trophy gradient. BQI was calculated for each
site from the pooled macroinvertebrate samples as the abundance weighted
average of taxon scores ki:

. xk
BQI=Y A%
27N

7

where kiis the score for each indicator taxon i, niis the numerical abundance of
taxon i and N is the sum of n. The included indicator taxa with their
corresponding scores are: Chironomus plumosus (Cp, k = 1), Chironomus
anthracinus (Ca, 2), Sergentia coracina (Sc, 3), Stictochironomus rosenschoeldi (Sr, 3),
Micropsectra spp. (Msp, 4), Paracladopelma spp. (Psp, 4) and Heterotrissocladius
subpilosus (Hs, 5). According to Wiederholm (1980), the absence of indicator
species gives a BQI value of zero, which indicates the worst or most stressful
conditions. However, these observations were systematically ignored because 1)
they may stem from sampling error, ii) the index in these cases is formally
undefined and iii) inclusion of zero values would make the BQI scale non-
continuous.

The secondary production of the profundal fauna was indirectly
quantified by the total biomass (TB; Rasmussen & Kalff 1987, Dinsmore et al.
1999), which is simply a sum of wet weights (g) of all taxonomic groups (see
above) in an aggregated sample per unit area (m?).

Taxonomic completeness, or the O/Eraxa, was calculated as the ratio of
number of observed taxa (O) predicted to be captured (Praxon = threshold
probability, Pt) to the expected number of these taxa (E) estimated by the
evaluated approaches (IV, see below). E will be given by

E = ZPTAXON| PTAXON 2 R :

Taxa with small capture probabilities are commonly excluded from O/Eraxa
calculations (e.g. Hawkins et al. 2000, Aroviita 2009) and Pi= 0.5 is a commonly
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used threshold for stream macroinvertebrates. According to initial trials,
O/Eraxa obtained by P:= 0.25 were generally the most accurate and precise for
the profundal fauna and thus the results are presented for P;= 0+ and P:= 0.25
Iv).

2.4 Multivariate ordination analyses (I, IV)

Profundal macroinvertebrate community patterns were demonstrated, and
their relationships with environmental variation were quantified (I, IV) using
two multivariate ordination techniques. Detrended Correspondence Analysis
(DCA; I, IV) was used to summarize the principal patterns of community
composition. DCA is an ordination technique based on reciprocal averaging
and it ordinates both the species and samples simultaneously (Hill & Gauch
1980).

DCA suggested a unimodal model for both species data (I, IV) (first axis
gradient length > 3.0 standard deviation units; see ter Braak & Prentice 1988)
and, therefore, Canonical Correspondence Analysis (CCA) with a randomized
Monte Carlo permutation test was used to reveal relationships between the
studied environmental variables and the species data. CCA is a direct gradient
analysis in which the ordination axes are constrained to be linear combinations
of the environmental variables so as to maximize the species-environment
relationships (ter Braak 1986). To meet the requirements of normal distributions,
environmental variables with skewed distributions were either logio-,
arcsine(SQRT)- or X01 -transformed.

Partial CCA (pCCA) (Borcard et al. 1992, Jkland & Eilertsen 1994) was
used to evaluate the relative contribution of environmental variables insensitive
to human activities, geographical position and variables sensitive to
anthropogenic disturbance (I), and of oxygen, temperature and food (IV). More
specifically, the first variable group in study I consisted of a suite of
morphological variables, altitude, hypolimnetic water temperature, and colour
- a soil-dependent surrogate for humic content (Jones & Arvola 1984, Jones 1992,
Kortelainen 1993). Group 2 included the geographical coordinates of the study
sites (X, latitude, and Y, longitude) and their quadratic and cubic terms plus
their interactions (Borcard et al. 1992). Group 3 included total phosphorus and
dissolved oxygen, which are assumed to affect the biota more directly than the
variables in groups 1 and 2 but are also strongly influenced by human
disturbances (Simola & Arvola 2005) and are therefore usually the main concern
in lake monitoring and assessment. In study IV, principal component analysis
was applied (see below) to summarise the quality and quantity of food (Group
1). Hypolimnetic dissolved oxygen and temperature based on single end-of-
summer measurements represented oxygen (Group 2) and thermal (Group 3)
conditions, respectively.

A series of separate CCAs were run in which the variables of each group
were included step-wise as explanatory variables to assess the extent of total
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variation attributable to these variables. Then the total explained inertia was
determined, including all the selected variables of the three variable groups in
the analysis. The total variation was partitioned among the three variable
groups using one group at a time as constraining variables and the two other
groups as covariables, one at a time and simultaneously. From the results of
these runs, the fractions of community variance (unexplained, shared with the
predictor groups, and unique to each group) were calculated according to
Okland & Eilertsen (1994). Variance inflation factors (VIF) were applied to
control for the possible multicollinearity of the explanatory variables.

Multiple autocorrelated measures of SOM were summarised using
principal component analysis (PCA). Principal component analysis uses an
orthogonal transformation to convert a set of observations on correlated
variables into a set of values of uncorrelated latent variables i.e. principal
components (PC) (McCune & Grace 2002). A broken-stick model (Jackson 1993)
was here applied to choose the appropriate number of components.
Multivariate analyses were performed using CANOCO software (I) (version 4.0;
ter Braak & Smilauer 1998), PC-Ord software (I) (version 4.39; McCune &
Mefford 1999) and vegan-package (IV) (Oksanen et al. 2008) designed for the R-
program (Anon. 2008).

2.5 Estimation of reference conditions for profundal fauna (II, III)

2.5.1 Development and validation of BQI regression model (II)

A multiple linear least squares regression model was developed to predict the
natural Benthic Quality Index values corresponding to undisturbed conditions.
Using the calibration data from 73 REF sites (Table 1), forward selection with
the stepwise method was applied to select significant (a = 0.05) predictors of
BQI variation from the candidate environmental variables insensitive to
anthropogenic disturbance (Table 2). Variables were transformed (logio., SQRT-
or arcsine(SQRT)) if necessary to meet statistical assumptions of the analysis.

The performances of the regression model and WFD-compliant typology
were evaluated by two validation procedures. First, an internal ‘leave-one-out’
cross-validation technique (e.g. Stone 1974, Efron & Gong 1983, Fielding & Bell
1997) was applied. For the modelling approach, each site in turn was excluded
from the data and the BQI for this site was predicted by the regression model
titted to the remaining n-1 sites. For the typology approach, each site in turn
was removed from the data and the reference value was estimated for the
excluded site using the remaining sites of the corresponding lake type (see
Aroviita et al. 2009). The predicted (cross-validated) BQI was compared with
the observed BQI and linear regression (R?) and Root Mean Squared Error of
the Prediction (RMSEP) (Wallach & Goffinet 1989) was used to assess the
predictive performance of the approaches.
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Historical values for BQI calculated from subfossil chironomid head
capsules using paleolimnological literature data were used for external
validation of the model. Data for 24 sites (Fig. 1B, Table 1) were obtained from
12 Finnish (21 sites), Swedish (two sites) and Russian (one site) case studies (II).
For each site the average BQI of the period considered to represent pristine
status (number of sediment strata 1-10, from the period of ca. 1800-1900), was
used as an estimator of the reference value (Epqi). For these sites with
paleolimnological data an environmental data was also compiled for predicting
the reference values of BQI by the developed regression model and by typology.
The predictive performance of the two approaches was assessed as described
above, considering the paleolimnological E as the true site-specific reference
value.

The paleolimnological literature data were also applied to validate the
compared approaches in the actual assessment of faunal change. The topmost
(corresponding to ca. 2 cm of sediment) BQI values from the sediment cores
were used as estimates of the present observed BQI (O) to calculate the O/Epq:
ratio, using historical BQI as the reference value. From 19 of these sites
standardised contemporary macroinvertebrate data were available (II) to obtain
the present BQI (O). Site-specific O/Epq1 ratios were calculated using Epar
estimated by both the typology approach and the modelling approach. These
O/Epai ratios were compared to those derived from paleolimnological data,
which were assumed to show the actual change in BQI, using coefficient of
determination (R?) and RMSEP as measures of success.

2.5.2 Estimation of expected taxa (I1I)

All available 179 sites (Table 1) were used in this study and from all available
107 REF sites 33 were randomly separated for model validation (hereafter VLD
sites) and the rest were used for calibration of the typology and modelling
approaches (hereafter CAL sites) (Fig. 1A). To have appropriate data for the
taxon-specific modelling approach (see below), the rarest 73 taxa occurring in
less than three calibration sites were omitted from the analyses.

Four statistical modelling approaches and a priori lake typology were
used to estimate the Praxon in the absence of human disturbance. Typology (Fig.
2) is the simplest approach suggested by the European Union WFD (Anon.
2000), and therefore also the basis of the national lake assessment (Vuori et al.
2006). The following selected statistical models represented a variety of
approaches differing in principle. Multivariate regression tree (MRT; De'ath
2002) is a categorical approach and the output is grouping, which is analogous
to typology. However, whereas typology classifies the sites a priori, based on
their environmental variables only, MRT groups the sites based on their
biological similarities, so as to enable the groups to be -categorically
differentiated by environmental variables. The output of MRT is equally user-
friendly as is the typology (see Aroviita et al. 2009).

Limiting Environmental Differences (LED) is a recently introduced
method where the selection of reference data is based on similarity matrices
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(Chessman et al. 2008). The original, and to my knowledge still the only,
published LED-model by Chessman et al. (2008) showed a great potential for
prediction of species-poor stream fish fauna and it performed considerably
better than the RIVPACS modelling (see below). Therefore this method was
selected as a candidate for prediction of the also species-poor profundal fauna.

As the other approaches are based on modelling patterns of the whole
communities, Non-Parametric Multiplicative Regression (NPMR; McCune 2006)
was selected to represent taxon-specific modelling. Taxon-specificity was
assumed to be a potential advantage as it allows different environmental
predictors for different taxa. Finally, RIVPACS (Moss et al. 1987) is the most
widely used, ‘standard” approach to model freshwater faunas and provides a
good baseline for the alternatives. The probability of taxa capture (Praxon) was
estimated according to Clarke et al. (2003) and Aroviita et al. (2008).

A baseline for model performance in measuring taxonomic completeness
was set by developing a null model (Van Sickle et al. 2005) in which all sites are
allocated to one group yielding a single E for all sites. Mean O/Eraxa-ratios
derived by different approaches were calculated for CAL, VLD and IMP -sites
and standard deviations (SD) of O/Eraxa for CAL and VLD sites. For a
successful model, mean O/Eraxa in reference sites should be close to unity
(high accuracy relative to the theoretical reference O/Eraxa = 1.0) and standard
deviation low (high precision). The sensitivity of the approaches to detect
anthropogenic impairment of the fauna was assessed by the proportion of IMP
sites with an O/Eraxa-value deviating from natural variation (% IMP sites with
an O/Eraxa ratio smaller than the 10w percentile of VLD-site O/Eraxa
distribution; e.g. Ostermiller & Hawkins 2004, Van Sickle et al. 2005, Aroviita et
al. 2010).
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3 RESULTS AND DISCUSSION

3.1 Natural variation of profundal macroinvertebrate
communities (I)

After exclusion of taxa occurring only at one site (n = 30), 46 taxa remained in
the data set. DCA suggested a considerably large community variation among
the 55 REF sites as the gradient lengths for the first three axes were 3.633, 2.052,
and 1.862 SD units. Such long gradients also suggest unimodal species
responses along the first two axes. The first DCA axis represented the depth
gradient as the site-specific first DCA axis scores were very strongly correlated
with mean (Fig. 3A) and sampling (Fig. 3B) depth of a site.
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FIGURE3  The relationships of primary community variation (DCA 1 axis scores [SD

units]) to mean depth (A) and depth of a sampling site (B) among the 55 REF
sites.

The predictor groups 1, 2 and 3 together explained 29.4 % of the total inertia of
partial CCA. Group 1 (mean depth, water colour and hypolimnetic temperature)
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contributed 66.8 % of the total explained variance, of which 38.5 % was unique
for this group. When these variables were each used in turn as the only
constraining variable, 45.9 % of community variation was explained by mean
depth, 25.7 % by water colour and 23.6 % by temperature. The contribution of
the spatial variation was marginal (5.47 %), and the unique contribution of DO
and TP was 209 %. The considerable (28.3 %) proportion of community
variation shared by groups 1 and 3 indicated a strong redundancy between
these groups.

All three community indices showed considerable variation among 55
REEF sites. Variation of these indices was primarily attributed to lake mean and
relative depth (Fig. 4) and water colour, which in various combinations
accounted for 54.8 %, 38.4 % and 63.7 % of variation of the O/C index, Shannon
H’ and BQI, respectively.
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FIGURE4  The relationships of Oligochaeta/Chironomidae index (A), Shannon diversity
(B) and Benthic Quality Index (C) to lake morphometry (i.e. mean and relative
depth).

The major contribution of lake morphometry in structuring the lake profundal
fauna is not a particularly novel finding, as numerous studies based on both
paleolimnological and contemporary data have observed a widespread and
strong relationship between lake depth and community variation within
(Hynynen et al. 1999, Heiri 2004, Eggermont et al. 2008, Kurek & Cwynar 2009,
Engels & Cwynar 2011) and among lakes (Brundin 1949, Wiederholm 1980,
Johnson & Wiederholm 1989, Korhola et al. 2000). It is generally well known
that lake morphometry, and lake mean depth in particular, is a common
denominator for numerous limnological characters (Wetzel 2001) and is also the
main natural determinant of lake trophic status (Moss 1980, Jeppesen et al. 1997,
Cardoso et al. 2007). This relationship was documented as early as the 1950s by
Rawson (1955), who noted that lentic secondary production (plankton, benthic
invertebrates, and fish) was strongly related to lake mean depth.

Lakes with naturally high dissolved organic carbon concentration seemed
to have a characteristic profundal fauna. Highly coloured humic lakes are
typical of the boreal coniferous region with a high percentage of peatland
coverage (Kortelainen 1999). Due to dark colour and usually small size, humic
lakes are prone to strong thermal stratification (Jones 1992) and consequential
chronic oxygen depletion (Fulthorpe & Paloheimo 1985). Thus, the profundal
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fauna in humic lakes is rather distinctive and normally restricted to a few taxa
(e.g., Chaoborus flavicans and Chironomus spp. larvae) adapted to oxygen-poor
conditions (Jager & Walz 2002, Brodersen et al. 2004). The operative Finnish
lake typology is largely based on lake surface area and water colour, the latter
as a surrogate for catchment soil geology (Vuori et al. 2006). Despite the
dependence of water colour on anthropogenic activity, it tends naturally to vary
strongly among boreal lakes. Thus, considering the major influence of colour on
profundal assemblages, it is apparently an important factor that should be
taken into account when predicting benthic fauna in undisturbed lakes. To
identify reference communities and make valid assessments for impacted lakes,
the original water colour should be known from historical measurements or be
estimated by palaeolimnological techniques (Miettinen et al. 2005) or
hydrogeomorphological modelling.

This study was first to assess profundal macroinvertebrate community
variation among minimally disturbed boreal lakes with extensive ranges of
environmental gradients (size, depth, humidity). The results showed that the
occurrence of profundal fauna generally considered indicative of disturbed
status is actually natural in shallow lakes. Therefore, the comparison of
profundal fauna among lakes with differing morphometries is unjustified
without controlling for lake depth, for example by statistical modelling.

3.2 Development and validation of BQI regression model (II)

Mean depth contributed most strongly to the variation of BQI among the 73
sites, and explained 61.2 % of the variation in BQI. The ratio of mean to
maximum depth (i.e. depth ratio) nearly significantly explained part of the
residual variation, being only weakly correlated with mean depth (r = -0.28, VIF
=1.1). Compared to the single variable (mean depth) model, inclusion of depth
ratio for a secondary predictor variable provided more accurate estimation of
site-specific reference BQI for multiple sub-basins within a single lake. The final
two-order model explained 63.2 % of BQI variation in the calibration data and
was formulated as follows:

Reference BQI=0.572+0.994x ,/Mean depth (m) — 1.212x Depth ratio

The variation of BQI within each lake type was large (SD range = 0.40-0.99,
mean SD = 0.71) and thus the estimated reference values were imprecise
(internal cross-validation, R? = 0.28, RMSEP = 0.86). The regression modelling
performed much better, as the estimated BQI correlated more strongly (R? =
0.58) with and were closer (RMSEP = 0.65) to the observed BQI. The regression
model also produced considerably more accurate estimates of the historical
reference BQI (R? = 0.71, RMSEP = 0.55) compared to the estimates obtained by
typology (R? = 0.10, RMSEP = 0.97). Similarly, the O/Epqr ratios based on
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modelled reference values corresponded to the actual O/Epqr ratios from the
paleolimnological data much more closely (R? = 0.79, RMSEP = 0.09) than did
the O/ Epqi ratios derived by the typology approach (R? = 0.62, RMSEP = 0.23).

The correlation between lake depth and BQI was first observed by the
index developer himself (Wiederholm 1980), who represented a strong
curvelinear relationship of BQI with lake nutrient status (chlorophyll a) divided
by the mean depth. This relationship actually does not resolve the unique
effects of depth and productivity (if any). Wiederholm (1980) admitted the
crudity of this procedure and the need for alternative approaches to control for
the effect of depth. However, this has been largely neglected by later studies
and BQI has been widely applied in profundal bioassessment with some
possible misleading interpretations.

The BQI is based on seven key chironomid taxa with highly differing
preferences for temperature, oxygen and nutrient status (Brodersen &
Anderson 2002, Brodersen & Quinlan 2006). Hence, BQI taxa exhibit strict
ecological niches and this is manifested by their systematic positioning along
primary community and environmental gradients of multivariate ordination
planes in a variety of profundal studies (Fig. 5A, see also Johnson et al. 1990,
Kansanen et al. 1990, Mousavi 2002). Consequently, BQI seems to integrate
effectively the variation of the whole profundal macroinvertebrate community
both in space (Fig. 5B, Kansanen et al. 1990) and time (Hynynen et al. 2004). BQI
can thus be considered a representative metric for assessment of the status of
the profundal macroinvertebrate community. Indeed, it has been provisionally
used as a key macroinvertebrate metric in Finnish and Swedish lake
bioassessment mandated by the WFD (Anon. 2000), as it corresponds to the
‘taxonomic composition and abundance” and ‘ratio of disturbance-sensitive taxa
to insensitive taxa” included in the WFD’s normative definitions of ecological
status classification. The apparent response of BQI to human disturbance has
been convincingly documented by paleolimnological case studies that reported
consistent changes in BQI values with lake degradation by municipal and
industrial wastewaters, and with recent recovery (e.g. Merildinen et al. 2003,
Hynynen et al. 2004).

The paleolimnological validation data showed that the model based on
contemporary reference data provided accurate estimation of the historical BQI.
Thus, the model reliably estimates the “true” reference values and, moreover,
the results suggest that criteria and practices for selecting the reference lakes, at
least for profundal fauna, has been successful. The paleolimnological literature
data provided an exceptional opportunity to validate and compare the
performance of lake typology and modelling in estimation reference values for
an assessment metric, and even more importantly, to authenticate the
performance of the approaches based on contemporary data and modelled
reference values in estimation of actual site-specific change in metric values.
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FIGURES5 A) Two-dimensional DCA ordination based on the 73 REF sites (II).
Abbreviations of only the chironomid taxa included in the Benthic Quality
Index are displayed (together with their BQI scores) and their positioning
along with the first DCA -dimension (DCA 1 axis [SD units]) is illustrated
with solid vertical lines. B) The relationship between DCA 1 axis scores (i.e.
community variation) and Benthic Quality Index.

3.3 Estimation of expected taxa (III)

All five evaluated approaches yielded reasonably accurate predictions of
expected taxa (E) (Fig. 6). Mean O/Eraxa among the 33 validation sites varied
between 0.964 (MRT) and 1.029 (RIVPACS) when all 39 taxa were included (P:=
0+) and between 0.966 (NPMR) and 1.053 (RIVPACS) after omission of the rare
taxa (Pt=0.25). When all taxa were included, MRT was most precise (SD of
O/Eraxa 0.298). Other models were markedly less precise, lake typology being
even inferior to the null model. Exclusion of rare taxa (P:= 0.25) improved the
precision of all approaches and then NPMR was the most precise method (SD =
0.279) (Fig. 6). Typology was outperformed by the models, which produced an
average 13.5 % (range 11.56 - 18.77 %) improvement of precision over the null
model.

The average taxonomic completeness among the 72 IMP sites was lowest
for typology (Mean O/Eraxa = 0.734 for Py= 0.25) and LED (0.759). MRT, NPMR
and RIVPACS suggested much better status of macroinvertebrate fauna among
the IMP sites (Mean O/Eraxa range 0.817 - 0.842 for Pi= 0.25). The omission of
rare taxa increased the sensitivity of all predictive approaches and all four
models provided a relatively consistent suggestion of the faunal impairment in
IMP sites (35-46 %), whereas typology was again more sensitive implying that
56 % of IMP sites were taxonomically incomplete (Fig. 6).
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FIGURE 6  Approach-specific means (A) and standard deviations (B) of O/Etaxa among
33 validation sites and percentage of 72 IMP sites interpreted as biologically
impaired (C).

The discrepancy in sensitivity between lake typology and predictive models
was mainly confined to one abundant lake type (large, humic lakes). More
detailed analyses revealed a strong correlation between depth of the sampling
site and O/Eraxa ratios for the IMP sites of this type; shallower basins had
consistently lower taxonomic completeness but only when assessed by TYPO.

O/Eraxa based on MRT and TYPO showed moderately poor correlation
with the other approaches, whereas the outputs of LED, NPMR and RIVPACS
were strongly correlated. The pair-wise comparisons revealed considerable
discrepancy between the approaches in assigning sites as impaired. Typology
indicated an impaired status of macroinvertebrate fauna at many sites (13 -
20 %) assessed to be in reference condition by the models. RIVPACS and NPMR
provided most concordant assessment and uniquely classified only 8 and 5 % of
sites as biologically impaired, respectively.

A plausible explanation for the observed less precise predictability of
profundal fauna compared to stream or lake littoral macroinvertebrates
(Ostermiller & Hawkins 2004, Van Sickle et al. 2005, Neale & Rippey 2007,
Aroviita et al. 2009) is the typically small number of species persisting in the
harsh environment in the profundal zone: poor nutritional conditions, cold
water and possible oxygen deficiency (e.g. Jonasson 1996, 2003). The low
number of species evidently leads to an even lower number of expected taxa
and, in consequence, to unstable O/Eraxa ratios; a single missing or extra taxon
then contributes significantly to the O/Eraxa (Marchant 2002). However,
accurate and precise predictive models have been developed for equally
species-poor fish assemblages (Oberdorff et al. 2001, Joy & Death 2002, Kennard
et al. 2006, Chessman et al. 2008, Meador & Carlisle 2009). In contrast to fish
communities, profundal communities are typically composed of only a few core
taxa and numerous ‘satellite” taxa (Hamaéldinen et al. 2003) apparently visiting
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from littoral and sublittoral areas and their occurrence may thus not be
predictable from environmental attributes driving the actual profundal fauna.

The better sensitivity of lake typology seemed to be a bias and more
specifically a result of a strong association between sampling depth and
O/ Eraxa ratios derived by the typology approach. This result is consistent with
the conclusion of study I, that taking lake morphometry into account merely by
a categorical division into shallow and deeper lakes is insufficient and may lead
to erroneous inferences of integrity of the profundal fauna.

Even though the predictive models tested here provided improved
estimation of the native fauna compared to lake typology, the utilisation of
taxonomic completeness in assessment of species-poor profundal assemblages
is questionable. To reduce the major impact of having a missing or extra taxon
on the variation of the presence/absence-based O/Eraxa, the predictive
approaches tested here could be similarly used to estimate the relative
abundances of the native taxa, which could be furthermore summarised into a
one-dimensional index of community similarity, such as Percent Model Affinity
(Novak & Bode 1992).

3.4 Role of food in structuring profundal communities (IV)

Principal component analysis of sedimenting organic matter variables
generated three latent principal components, which were used as proxies of
food quality and quantity (hereafter food). The three evaluated community
predictor ‘groups’ (food, temperature and oxygen) jointly explained 23.1 % of
the total macroinvertebrate community variation (inertia) in CCA. Food
contributed 45 % to the total explained community variance, whereas the
temperature (23 %) and oxygen (13 %) seemed to be of minor importance in
controlling community composition.

According to partial regression analysis (Legendre & Legendre 1998), food
explained 28.4 % of the variation of total biomass. Dissolved oxygen was the
best predictor of Shannon H" explaining 34.7 % of the variation and only minor
part of variation (10.5 %) was attributed to food. The regression model
developed for Benthic Quality Index included all three predictor variables
which together accounted for 84.4 % of the index variation. Perhaps
surprisingly, temperature contributed by far the most strongly to the variation
of BQI, alone explaining 32.6 % of the total explained variance.

Profundal fauna in meso/eutrophic basins (Total phosphorus > 10 pg 1)
and oligotrophic basins (< 10) showed markedly different response to the
variation of food quantity. In oligotrophic lakes, the community composition
was closely related to the organic content of sedimenting material and the
inputs of OM, C and N, whereas macroinvertebrate assemblages of more
nutrient rich sites showed no correlations with SOM. Community variation did
not correlate with stoichiometric ratios of food. In contrast, community
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variation showed strong correlation with the origin of food resources (inferred
from 813C), regardless of the nutrient status of a basin.

Chironomid indicator taxa with varying trophic preferences differed
markedly in their body stoichiometry. A consistent pattern was observed
between chironomid body stoichiometry and their indicator value (BQI score;
see above); the taxa preferring oligotrophic conditions had higher C:N ratios
and lower C:P and N:P ratios. The degree of deviation of chironomid larval
body 8'3C signatures from those measured from SOM was also closely
associated with their trophic preference; eutrophic taxa deviated more from
SOM 613C whereas oligotrophic chironomids seemed to be more directly
relying on sedimenting organic matter as a food source (Fig. 7).

Benthic Quality Index score
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FIGURE7  Relationship between the deviations (mean + SD) of larval body and SOM
carbon isotope signatures (6'3C) and Benthic Quality Index scores of seven
chironomid taxa with differing trophic preferences.

The direct qualitative and quantitative measurements of SOM enabled me to
provide the first comprehensive evaluation of the relative importance of food,
oxygen and temperature in controlling different aspects (composition, diversity,
productivity, ecological status) of profundal communities. The results agreed
with the general consensus that profundal macroinvertebrate communities are
tuelled by sedimenting organic material (Graf 1989, Johnson & Wiederholm
1992, Goedkoop & Johnson 1996) and, furthermore, stressed that profundal
assemblages are indeed controlled by food, oxygen and temperature in concert
rather than any of these factors alone or even predominantly (Brodersen &
Andersen 2002, Brodersen & Quinlan 2006).

The chironomid larval analyses suggested appealing relationships
between chironomid stoichiometry and their ecological niches. Stoichiometric
ratios differed markedly among the studied chironomid indicator taxa. The
observed correlations between taxa-specific elemental ratios (C:N:P) and the
BQI score (i.e. tolerance to environmental stress) were partly counterintuitive
compared to the general theorem about consumer-resource coupling (Tilman
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1980). The peculiar stoichiometric variation of chironomids suggest that
chironomids with differing ecological niches varyingly assimilate the central
macroelements, either due to differences in feeding habits (Johnson 1987,
Goedkoop et al. 1998), selective feeding (Johnson et al. 1989) or stoichiometric
requirements of available food.

Carbon stable isotopic signatures of chironomid larvae suggested among
taxa differences in utilisation of SOM. The taxa preferring eutrophic conditions
(Chironomus anthracinus and C. plumosus) presumably utilized methane-
oxidising bacteria (Jones et al. 2009, Jones and Grey 2011), whereas the taxa
inhabiting deep and oligotrophic lake basins (Heterotrissocladius subpilosus and
Micropsectra spp.) were likely more directly dependent on freshly deposited
organic material as their energy source.

The somewhat unexpected strong association between profundal
assemblage turnover and carbon stable isotope signal (613C) of SOM suggested
that the origin of carbon is of major importance in determining the species
composition of profundal assemblages. The carbon isotopic signatures (see
France 1995) as well as low carbon:nitrogen ratios (C:N; Hakanson & Jansson
1983, Meyers & Teranes 2001) suggested that SOM is primarily of
autochthonous origin. The variation of carbon isotope signatures of SOM
suggests differences in epilimnetic algal composition, which might in turn
control the profundal invertebrate communties by the consequential alteration
of e.g. fatty acid composition of SOM (Veefkind 2003). This could be a novel
and important link between profundal macroinvertebrate assemblages and lake
nutrient status and future studies are needed for validation of these
relationships.

3.5 A note on depth preferences of profundal macroinvertebrates

A strong relationship between lake depth and profundal macroinvertebrate
community structure is primarily an end-product of varying depth preferences
of dominating profundal chironomid and oligochaete taxa (Fig. 8). These fairly
strongly confined depth optima with small tolerances (abundance-weighted SD)
are admittedly due to among taxa differences in preference of oxygen and
thermal conditions, but as the study IV suggests, are also a consequence of
divergences in utilisation and assimilation of organic matter deposited on the
lake bottom.

Nonetheless, the correlation between depth preferences and ‘trophic’
indicator scores of profundal taxa has marked implications for interpretation of
the occurrence of these indicator species and, thus, for community level
bioassessment of boreal lakes. For instance, C. plumosus inhabits only the
shallowest basins, H. subpilosus can be found exclusively in the deepest boreal
lake basins and the coexistence of these two taxa is hardly ever possible.
Moreover, community turnover from the fauna dominated by H. subpilosus to C.
plumosus-communities requires an extensive nutrient loading and massive
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deterioration of lake status (Merildinen & Hamina 1993, Merildinen et al. 2001,
Hynynen et al. 2004).

Therefore, it is recommended that future studies based on either
contemporary data or palaeolimnological records should take the role of lake
depth in the occurrence of profundal macroinvertebrate taxa carefully into

account.

Indeed, the community metric candidates developed for the

assessment of profundal fauna must recognise the depth dependence of
profundal key taxa, and preferably disentangle the effect of lake depth by
means of species or community level predictive modelling.

Benthic Quality Index score
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FIGURES8 Weighted averaged (ter Braak & Prentice 1988) depth optima and tolerances

of the seven chironomid (A) and four oligochaete (B) Benthic Quality Index
indicator taxa. Optima calculations are based on 107 REF sites. Solid curves
denote the third order polynomial regression lines. The original oligochaete
BQI (Wiederholm 1980) is modified according to Kansanen et al. (1986) by
adding Lamprodrilus isoporus as an indicator of highly oligotrophic conditions
(cf. Heterotrissocladius subpilosus). Note also that the data for Potamothrix
hammoniensis were not available due to taxonomic inconsistency of the data.
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4 CONCLUSIONS

The results of this thesis indicated a major contribution of lake morphometry to
structuring profundal macroinvertertebrate assemblages among minimally
disturbed boreal lakes. Parallel to community variation, the values of widely
applied community indices were strongly related to lake morphometry; the
fauna in shallow lakes indicated highly eutrophic conditions and poor
ecological status. This result has considerable implications for modern
bioassessment, in which the biological status of evaluated site is compared to
the expected natural conditions. Due to strong dependence of profundal fauna
on lake morphometry, the profundal fauna is not directly comparable among
lakes with differing morphometries. This might result in erroneous
interpretations of ecological status with significant economic or ecological
implications, depending on the direction of bias.

Although the effect of lake depth on the prevailing conditions is most
palpable at the bottom of lakes, depth has also been frequently reported to be a
major regulatory factor for other biota, including zooplankton (O’'Brian et al.
2004, Amsinck et al. 2006), and fish (Jackson and Harvey 1992, Olden 2003,
Mehner et al. 2007). Considering this and the predominant role of lake
morphometry in determining the general trophic status of lake (Moss 1980,
Cardoso et al. 2007), it is possible, and is even supported by empirical data
(Researcher J. Alahuhta, Finnish Environment Institute, unpublished data), that
similarly strong relationships between lake morphometry and other groups of
aquatic organisms might exist.

This study demonstrated that predictive modelling is an efficient
approach to disentangle the effect of lake depth and other important
environmental factors on profundal macroinvertebrate community variation. In
comparison to categorical a priori typology, modelling provided more precise
estimates of reference conditions, particularly for a univariate metric, the
chironomid BQI, and, in consequence, more trustworthy judgment of the
biological impairment. Further development of predictive modelling for lake
bioassessment purposes not only for profundal macroinvertebrates, but also for
other biological groups, is thus strongly recommended.
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The general assumption that profundal communities are simultaneously
driven by multiple environmental factors (oxygen, temperature and food)
seems to be valid and these complex inter-relations should be considered in
assessment and, in particular, protection and management of the profundal
invertebrate communities as an integral constituent of functional lake
ecosystems. This study provided the first comprehensive quantitative and
qualitative evaluation of the role of actual food resources in among lake
variation of profundal macroinvertebrate communities and concludes that food
is of major importance, particularly in nutrient-poor lakes. The fact that the
origin of food correlated most strongly with the community variation, implies
that some additional, but yet poorly understood depth-dictated mechanisms
might be driving the occurrence of profundal macroinverebrate fauna, and
hence the whole community structure.
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YHTEENVETO (RESUME IN FINNISH)

Jarvisyvinteiden pohjaeldinyhteisojd sddteleviat ymparistotekijat ja niiden
merkitys jarvien biologisen tilan arvioinnissa

Vaativiin olosuhteisiin ndhden runsaslukuinen ja monimuotoinen jarvien
syvdnnepohjaeldimisto reagoi voimakkaasti ravinnekuormituksen aiheutta-
maan levituotannon lisddntymiseen ja siitd seuraavaan pohjan happitilanteen
heikentymiseen. Tamé&n vuoksi syvédnteiden pohjaeldimid on pitkdan hyodyn-
netty jdrvien tilan seurannassa.

Euroopan Unionin vuonna 2000 asettaman vesipolitiikan puitedirektiivin
(VPD) keskeisin tavoite on yhtendistdd eurooppalaista vesiensuojelua ja
mahdollistaa vesistdjen hyvan ekologisen tilan saavuttaminen vuoteen 2015
mennessd sekd sen sdilyttdminen tulevaisuudessa. Uusi lainsddadanté muuttaa
perinteistd veden kayttokelpoisuuteen perustuvaa tila-arviota asettamalla
tavoitteet ensisijaisesti vesiston elidyhteisdjen tilan perusteella. Muiden
vesielididen ohella pohjaeldimilld on keskeinen rooli tilan mddrittelyssd ja
seurannassa.

Jarvien ekologinen tila luokitellaan sen mukaan, kuinka paljon elidyhteisot
poikkeavat luonnontilaisten jarvien yhteisoistd. Yksittdisten jarvien luonnontila
ei kuitenkaan yleensd ole tiedossa puuttuvan historiallisen aineiston vuoksi.
Siksi jdrvien luonnontilan arvioimiseen kdytetddn ensisijaisesti VPD:n
ehdottamaa tyypittelyd, jossa vesimuodostumat ryhmitellidn mahdollisimman
samankaltaisiin tyyppeihin niiden luonnollisiin ominaisuuksiin perustuen ja
kullekin tyypille maédritellidan tyyppikohtaiset vertailuolot. Vaihtoehtoisesti
vertailuolojen maddrittdmiseen voidaan kayttdd tilastolliseen mallinnukseen
perustuvia menetelmid. Kategoriseen tyypittelyyn verrattuna ennustava
mallinnus huomioi paremmin biologisen vaihtelun jatkuvuuden, tuottaen nain
paikkakohtaisia ja ainakin teoriassa luotettavampia arvioita vertailuoloista.
Vertailuolojen luotettavuus on edellytys sille ettd ekologinen luokka voidaan
madrittdd oikein. Virheellisilld tila-arvioinneilla voi olla huomattavia
taloudellisia ja yhteiskunnallisia vaikutuksia, silld vesistoon ja sitd ympardivaan
valuma-alueeseen kohdistettavien hoitotoimenpiteiden tarve ja laajuus
perustuvat arvioon vesiston ekologisesta tilasta. Siksi ekologisen tilan
arvioinnissa kédytettyjen elioryhmien luonnollisen yhteisévaihtelun sekd sita
sddtelevien ympdristotekijoiden perusteellinen tuntemus on avainasemassa
arvioitaessa yhteisojen tilan heikentymistd ihmisen toiminnan vuoksi.

Tassd vditoskirjassa tarkastelin jarvisyvanteiden pohjaeldinyhteisoraken-
teen vaihtelua suhteessa eri ympadristotekijoihin pddasiassa laajaan, 179
jarvisyvannettd kasittdvadn aineistoon perustuen. Osoitin, ettd luonnollinen
yhteisovaihtelu on huomattavan suurta jdrvien vdlilld ja voimakkaasti
yhteydessd ennen kaikkea jarven syvyyteen. Myos yleisesti vesistoseurannoissa
kaytettyjen yhteisomuuttujien vaihtelu selittyi ensisijaisesti jarvialtaan syvyyttd
tai muotoa kuvaavilla ympdaristomuuttujilla. Arviot syvanneyhteisojen tilasta
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voivat siten olla virheellisid ilman syvyyden erityistd huomioimista esimerkiksi
mallinnuksen keinoin.

Testasin tydssdni kahden yhteison tilaa kuvaavan muuttujan luonnontilaa
vastaavien arvojen ennustamista tilastollisten mallinnusmenetelmien avulla.
Syvéanneseurannoissa yleisesti kdytetyn, surviaissddskitoukkien runsaussuhtei-
siin perustuvan pohjalaatuindeksin (Benthic Quality Index; BQI) luonnontilaiset
arvot kykenin ennustamaan lineaarisella monimuuttujaregressiomallilla, jossa
pddasiallisena selittdjand oli jdarvialtaan keskisyvyys. Esiteollista aikaa
edustavan paleolimnologisen validointiaineiston avulla osoitin, ettd mallin
tuottamat ennusteet BQ-indeksin luonnontilaa vastaavista arvoista (ns.
vertailuarvot) ovat luotettavia ja ettd 1900-luvun aikana tapahtunut yhteistjen
tilan heikkeneminen kyetddn luotettavasti arvioimaan mallinnettuihin
vertailuarvoihin ja nykyhetkelld kerattyihin pohjaeldinaineistoihin perustuen.

Jokien pohjaeldimiston tila-arviointi perustuu usein arvioon alkuperdisen
lajiston sdilyneisyydestd. Vaikka tdmaé tilamittari on helposti yleistettdvissa ja
mielekkddsti tulkittavissa myos muissa elinympadristoissd ja elioryhmissd, on
sitd sovellettu jarvissd vdahan eikd lainkaan jarvisyvénteiden pohjaeldimiston ti-
lan arvioinnissa. Testasin voimassa olevan jdrvityypittelyn ohella neljaa
erityyppistd ~ mallinnusmenetelmdd  alkuperdisen  jarvisyvannelajiston
ennustamiseen ympdristotekijoiden perusteella. Mallit tuottivat jarvityypitte-
lyyn verrattuna hieman luotettavampia arvioita alkuperdisestd lajikoostumuk-
sesta, mutta epdtarkempia ennusteita vastaaviin jokieliostolle kehitettyihin
malleihin verrattuna. Jarvisyvanneyhteisoille tyypillinen vdhdinen lajiluku-
mddrd lienee keskeisin syy epdtarkkuudelle ja siten esteend tilamittarin
soveltamiselle jarvisyvanteiden ekologisen tilan arvioinnissa.

Jarven syvyyden merkitys syvanneyhteistjen rakenteen sddtelyssd liittyy
syvyyden myotd tapahtuviin muutoksiin pohjan lampétila-, happi- ja ravinto-
olosuhteissa. Ndiden tekijoiden, erityisesti ravinnon mddrdn ja laadun rooli
yhteisosddtelyssd on huonosti tunnettu. Tutkin ravinnon osuutta yhteistjen
sddtelyssd suhteessa pohjan ldmpdétilaan ja happioloihin tekemdilld suoria
havaintoja sedimentoituvan orgaanisen aineksen mddrdstd ja laadusta (hiili-
typpi-fosfori-stoikiometria) sekd arvioita aineksen alkuperdstd (hiilen vakaat
isotoopit). Osittaisordinaatio- ja -regressioanalyyseilld osoitin ravinnon olevan
keskeisin tekijd yhteisokoostumuksen ja biomassan sddtelyssd, mutta lajiston
monimuotoisuuden ja BQIn vaihtelu liittyi voimakkaammin pohjan
happipitoisuuteen ja lampdotilaan. Tulokseni kuitenkin tukivat yleistd oletta-
musta, ettd syvdnteiden pohjaeldinyhteistjen rakenne ja toiminta ovat useiden
ympdristotekijoiden yhtdaikaisesti sddtelemid. Syvanneyhteisdjen koostumuk-
sen ja sedimentoituvan aineksen alkuperdd ilmentdvan hiilen isotooppiarvon
(6C)  wvdlilla oli voimakas yhteys, mikd viittaa kasviplank-
tonyhteisokoostumuksen keskeiseen merkitykseen pohjaeldimiston
yhteisorakenteen sddtelyssd. Tyo antaa aihetta jatkotutkimuksille, joiden kautta
voidaan perusteellisemmin ymmartdd jarvisyvanneyhteisdjen rakenteen yhteys
jarven tuottavuuteen.
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Vditoskirjani tulokset jarvialtaan morfometrian keskeisestd merkityksesta
syvanteiden pohjaeldinyhteisojen rakenteen ja ekologisen tilan s&ddtelyssd tulisi
huomioida myds muiden elidyhteisojen tilan seurannassa. Jdrven syvyys on
erds keskeisimpid jarven toimintaa ja tuottavuutta sddtelevida ymparistotekijoitd,
ja syvyyden vaikutus tulisi huomioida nykyistd paremmin niin veden
kemiallisen kuin biologisenkin laadun seurannassa. Padasiallisesti jarvialtaan
morfometriaan perustuva tilastollinen mallinnus osoittautui pohjaeldimiston
osalta toimivaksi ratkaisuksi jarven biologista luonnontilaa arvioitaessa, ja
vastaavanlainen ldhestymistapa voisi tuottaa nykyistd luotettavampia arvioita
jarvien ekologisesta tilasta my6s muiden vesilainsddddnnon edellyttamien
biologisten elementtien osalta.
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