

slehto
Typewritten Text
(nid.), 978-951-39-4352-3 (PDF)

To Professor Ilppo Simo Louhivaara,
who for so long
tried to make me a mathematician

5

ABSTRACT

Sakkinen, Markku

Inheritance and Other Main Principles of C++ and Other Object-oriented
Languages / Markku Sakkinen

Jyväskylä: University of Jyväskylä, 1992.

208 p.

(Jyväskylä Studies in Computer Science, Economics and Statistics
ISSN 0357-9921; 20)
ISBN 951-680-817-4 (nid.), 978-951-39-4352-3 (PDF)

Diss.

A definition of ‘object’, and consequently of ‘object-oriented pr ogram-
ming language’, is pr esented, based in part on many earlier definitions
from the literatur e. The partially object-oriented language C++ is
assessed twice, first as it was in 1988, then in its curr ent version. Some
severe defects and a host of small faults are found. Mainly, its compatibil-
ity with C keeps it low-level and unsafe, but also its object orientation is
insufficient. Because C++ is very popular and widely used today , all
problems in it must be taken seriously . — The ‘‘Law of Demeter ’’, a style
rule for object-oriented pr ogramming is analysed, and adapted better to
the particularities of C++. Some changes and clarifications to the law in
general are suggested. — Some important facets of inheritance ar e stud-
ied; a clear distinction between essential and incidental inheritance is
made. Inheritance is modelled to a lar ge part by composition. Multiple
inheritance is divided into two varieties: independent and fork-join. It is
claimed that the multiple-inheritance principles of most languages except
C++ violate the integrity of super classes in fork-join inheritance. A fur-
ther analysis uncovers several anomalies also in the inheritance principles
of C++, especially concerning multiple inheritance. Concrete corrections
to all these pr oblems are proposed. It is made plausible that multiple
inheritance can be defined in a consistent and conceptually satisfying
way. Implementation problems are not treated, however. — Lastly, sev-
eral promising directions for continuing this r esearch are briefly pre-
sented.

6

Key words and phrases: object orientation, pr ogramming languages,
object-oriented programming, C++, inheritance, multiple inheritance,
programming style.

ACM Computing Reviews categories:
D.3.2 Programming Languages: Language Classifications

Object-oriented languages
D.1.5 Programming Techniques: Object-oriented Programming
D.3.3 Programming Languages: Language Constructs and Features

Markku Sakkinen
Department of Computer Science and Information Systems
University of Jyväskylä
PL 35
SF-40351 Jyväskylä
Finland

Electronic mail: sakkinen@jytko.jyu.fi
or (EARN/BITNET:) SAKKINEN@FINJYU

Telephone: +358 41 603016
Telefax: +358 41 603611

7

PREFACE

When I returned to work for the University of Jyväskylä in August 1985,
one of my incentives was to earn the doctor ’s degree in Computer Science
before retirement age. Nine years earlier, I had earnestly tried to do doc-
toral studies in Mathematics, spurr ed by the principal pr ofessor of my
studying years, Ilppo Simo Louhivaara, and also supported by pr ofessors
Wolfgang Tutschke (Halle) and Heinrich Begehr (Berlin, Fr ee University).
That was in vain — I had alr eady lost more than half of my heart to com-
puters, and in programming tasks (if not alr eady during military service,
immediately after the Lic.Phil. degr ee in 1972) had also lost my grip on
mathematics.

At the department of Computer Science 1, although my position as
a laboratory engineer was in principle technical and practical instead of a
research job, I was met with an atmospher e that encouraged all r esearch
interests. For a small department (now two full and two associate pr ofes-
sors, and disproportionately few lower teaching and r esearch positions),
the spectrum of research topics is very wide. The most important person
for me was associate pr ofessor Seppo Sippu, although I was not inter -
ested in his own speciality, which was parsing theory at that time (he has
published an impressive two-volume book on it with Eljas Soisalon-Soini-
nen).

The most directly interesting research at the department, from my
viewpoint, was Airi Salminen’s work on document databases which was
partially supervised by Sippu. She studied several interesting models for
documents and document databases before the one that was presented in
her dissertation in 1989. I began cooperation with Salminen (and Sippu)
in order to find some closely r elated topic that could serve for my own
dissertation. Slowly, mainly during the year 1988, object-oriented pr o-
gramming grew to be the main ar ea of my r esearch efforts, which it still
seems to remain at least for a couple of years.

It was evident that I would not be able to achieve much r esearch
beside my ordinary duties: despite the supportive atmospher e, there was
so much to do. I also had thr ee children, which limited the amount of
evening and weekend time that I was willing to of fer for science. Fortu-
nately, there have been many periods of full-time r esearch (at least in
principle), for which I am very grateful.

1 The English name has been later prolonged with ‘and Information Systems’, although
the official name of the department in Finnish has not changed.

8

The first r esearch period of 1 1 months in 1987 was in a pr oject
funded by the Academy of Finland and led by Seppo Sippu. It was
immediately followed by fundings from the national doctoral programme
in Computing Technology (6 months), another pr oject of the Academy of
Finland (6 months), led by Eljas Soisalon-Soininen (University of
Helsinki), and fr om the national doctoral pr ogramme in Computer Sci-
ence (7 months). Later, I was employed for the whole year 1991 by the
project, ‘‘Object-oriented languages and techniques’’, funded again by the
Academy of Finland and led by Kai Koskimies (University of T ampere).
This project, which is continuing until the end of 1992, has been fr uitful
e.g. in connecting researchers from three universities.

Considering the total duration of the research periods, it has taken
much longer to write this thesis than I had expected; it would have taken
still longer in monograph form. Perhaps the main reason is that I always
studied those problems that happened to interest me most, instead of tak-
ing guidance and following a laid-out plan. Now, finishing the thesis, I
do not feel a threatening emptiness after a great achievement; rather there
seems to be a large number of promising topics for further research.

I hope that all people who have had a dir ect influence on one or
more of the constituent papers of this dissertation have been duly
acknowledged in those papers. My thesis supervisor was Seppo Sippu
until the end of 1990, when he moved to the University of Helsinki, and
Kai Koskimies after that. Here is the place also to thank the of ficial
reviewers of the thesis, pr ofessors Jørgen Lindskov Knudsen (Aar hus
University) and Karl Lieberherr (Northeastern University), for their thor -
ough work and their suggestions. It is very pleasant that Dr . Oscar Nier-
strasz (University of Geneva) has pr omised to act as my ‘ ‘opponent’’
(examiner).

There are several other people whose influence has been mor e
indirect but still significant. For instance, many coworkers at Valmet Cor-
poration and Pr ocons OY in 1979 − 1985, and colleagues at the depart-
ment after that (not least those two who take car e of almost everything:
amanuensis Mirja Tervo and department secr etary Kaarina Suonia), as
well as some people fr om the Computing Centr e and from the Depart-
ment of Mathematics. The international ‘ ‘object-oriented fraternity’’,
especially the organisers and participants of the annual ECOOP confer -
ences since 1988 (I did not yet attend the first ECOOP in 1987), has been
very stimulating.

One important factor in my r esearch has been the Internet,
together with its user community. Its rapid evolution during the last few
years has provided us with instant electr onic mail to the most important
countries, a wealth of newsgr oups (actually discussion groups) on the
most diverse topics, and the ability to fetch even lar ge collections of files
from many sites in many countries. Thanks to the net, I have been able

9

both to get brand new r esults and papers fr om other researchers and to
have some of my own ideas and drafts very quickly criticised. It would
be impossible to list all people whose messages and newsgr oup postings
have been useful, while not always pleasant at the moment. Also to all
those people, mostly ‘ ‘invisible’’, who work har d to keep the local,
national and international networks operational and to enhance their ser -
vices, I express my sincere gratitude.

Incidentally, I consider it unfortunate that English has become the
international language of science in general and Computer Science in par-
ticular, for two dif ferent reasons. The first is that English is so bar oque
and unstructured, at least by the criteria on which programming languages
are usually judged. The second reason is that the selection of any national
language as the pr evailing international language of science is unfair;
Latin or Esperanto would be neutral. — This is not meant to be an excuse
for any bad English in the dissertation. I have certainly tried to write as
well as possible.

The text of this dissertation has been pr oduced using Gr off, the
freeware (GNU) text formatter pr oduced by James Clark and compatible
with device-independent Troff, with the ‘‘-me’’ macro package. It was rel-
atively easy to modify the chapters to a unified format, although they had
been originally output in different styles and layouts.

Last but not least, I want to thank my family for the support and
encouragement that they have given to my endeavours: my wife Ritva,
my children Annukka, Päivikki and Jarkko, and my par ents Kerttu and
Lauri. Fortunately, the usual apologies for neglecting the family for the
benefit of the dissertation ar e not due; they had often been much worse
off when I was doing ‘ ‘real work’’. I can count on loyal family support
even for my future scientific work.

Jyväskylä, July 1992
Markku Sakkinen

11

CONTENTS

Chapter 1: Overview and outlook 15
Structure of the thesis 16
1. Definitions of object orientation 17

1.1. Introduction 17
1.2. Some well-known characterisations 18
1.3. The Object-Oriented Database System Manifesto 20
1.4. My own view 21

2. An overview of the constituent papers — with hindsight 22
2.1. General 22
2.2. On the darker side of C++ 23
2.3. Comments on ‘‘the Law of Demeter’’ and C++ 24
2.4. Disciplined inheritance 25
2.5. A critique of the inheritance principles of C++ 27
2.6. The darker side of C++ revisited 28

3. More about inheritance 29
3.1. Class inheritance 29
3.2. Strict inheritance 30
3.3. Deferred (abstract) classes 32
3.4. Mix-in inheritance 33
3.5. Some related research 34

4. Other topics of further research 35
References 37

Chapter 2: On the darker side of C++ 43
Abstract 44
1. Introduction 44
2. About object orientation and language extensions 46
3. Miscellaneous problems inherited from C 47
4. Array problems 49
5. Classes 50
6. Problems with constructors and destructors 52
7. Mistakes with derived classes 53
8. A problem with virtual functions 54
9. Some suggestions to cope with the problems 56
10. Operator overloading 58
11. Constants and pointers to constants 59
12. Some practical difficulties and hints 60
14. Conclusion 62
Acknowledgements 63

12

References 63
Appendix: Some features of C++ (and C) 65

Chapter 3: Comments on ‘‘the Law of Demeter’’ and C++ 69
Abstract 70
1. Introduction 71
2. The law in class and object forms 72
3. Critique of the law in general 74
4. Applying the law to untyped languages 76
5. A new suggestion 77
6. Interpretations of the law for C++ 79
7. A new proposal for C++ 81
8. Non-class objects and the Law 82
9. Further subtleties with C++ 84
10. Conclusions 84
References 85

Chapter 4: Disciplined inheritance 87
Abstract 88
1. Introduction 89
2. What are objects 90
3. Less important properties of objects 92
4. Essential vs. incidental inheritance 94
5. Inheritance as aggregation 95
6. Modelling incidental inheritance 97
7. Modelling essential inheritance 99
8. Fork-join inheritance 102
9. Topics to be pursued 104
Acknowledgements 105
References 106

Chapter 5: A critique of the inheritance principles of C++ 111
Abstract 112
1. Introduction 113
2. The if and the how of multiple inheritance 115

2.1. If: the main points of Cargill and Waldo 115
2.2. How: the different cases 116

3. Inheritance and accessibility 117
3.1. Access levels of class members 117
3.2. Modes (access levels) of inheritance 119
3.3. Some definitions 120
3.4. Problems of private inheritance 122
3.5. A proposed solution 124
3.6. Virtual base classes 126

13

3.7. Non-virtual overriding and overloading 128
4. Independent multiple inheritance 130

4.1. Problems in current C++ 130
4.2. Different solutions 132
4.3. Private multiple inheritance 134

5. Fork-join inheritance 135
5.1. The positive side 135
5.2. Accessible base classes 137
5.3. Inaccessible base classes 138
5.4. Mixed cases 139
5.5. Virtual functions with virtual base classes 140
5.6. Virtual functions with non-virtual base classes 143
5.7. Further considerations 144

6. Summary and conclusions 146
Acknowledgements 147
References 148
Corrigendum 150

References (for corrigendum) 151

Chapter 6: The darker side of C++ revisited 153
Abstract 154
1. Preliminaries 155

1.1. Introduction 155
1.2. My angle of view 157
1.3. An endemic culture 159

2. C++ as a conventional language 160
2.1. Syntax 160
2.2. Conventional data types 162
2.3. Array problems 163
2.4. Drawbacks of pointer arithmetic 165
2.5. Reference types and argument passing 166
2.6. Statements and expressions 168
2.7. Miscellaneous 169

3. Classes and objects 171
3.1. Terminology 171
3.2. Class declarations (definitions) 173
3.3. Inheritance 174
3.4. Virtual functions 176
3.5. The fundamental defect: type loss 177
3.6. Polymorphic variables and ‘‘typecase’’ programming 179
3.7. Storage classes and garbage collection 181
3.8. Object identity 183

4. Overloading 184
4.1. Overloading versus multiple dispatching 184

14

4.2. Overloadable operators 186
4.3. Operators and references 188

5. Some further subtleties 189
5.1. Assignment and copying 189
5.2. Constructors and destructors 191
5.3. Constant objects 192
5.4. No instance-level protection 192
5.5. Pointers to components (members) 193

6. Conclusion 194
Acknowledgements 196
References 197

Yhteenveto (Finnish summary) 203
Viitteet 208

15

CHAPTER 1

OVERVIEW AND OUTLOOK

16

OVERVIEW AND OUTLOOK

Structure of the thesis

The main contribution of this thesis consists of papers that either have
been published or will appear in various conference proceedings, jour-
nals, and newsletters; reprinted here as Chapters 2 through 6. The year of
first publication was 1988 for Chapters 2 and 3, 1989 for Chapter 4, and
1992 for Chapters 5 and 6.

I regarded it as important for readers that the constituent papers
be really reprinted as integral parts of the dissertation. I am grateful to
the Publication Board of the university and to the series editor, Airi Salmi-
nen, for allowing this, somewhat contrarily to currently recommended
practice. Thanks are due as well to the original publishers for allowing
reprinting or parallel publication, either as a standard policy or by grant-
ing a specific permission. The publishers are Springer-Verlag (2 and 6),
Association for Computing Machinery (3), Cambridge University Press
(4), and the University of California Press (5).

In order to keep the internal references consistent, chapter num-
bers have not been prepended to section and subsection numbers in the
reprinted parts. For consistency, the chapter number has been left out
also in this first chapter. This may cause some inconvenience to readers
browsing to and fro within the whole book. Another inconvenience typi-
cal for ‘‘bundle’’ dissertations is that every chapter has its own list of ref-
erences (and in a format slightly different from the others).

17

The rest of Chapter 1 is not necessarily best read contiguously.
The subsections of Section 2 are most naturally read together with the cor-
responding chapter, and Sections 3 and 4 might as well have been organ-
ised as Chapter 7. The other chapters are ordered by the time of original
publication, and need not be read in that order. Professor Knudsen
indeed suggested tentatively that Chapter 2 could be omitted entirely
from the thesis. However, the later chapters (6 in particular) refer to it for
some observations that I did not want to repeat.

Chapter 5 requires much more previous knowledge of C++ than
the other parts of the dissertation. Readers who are not very familiar
with C++ previously should probably read Chapters 2 (at least its
Appendix) and 6, in that order, before embarking on Chapter 5.

1. Definitions of object orientation

1.1. Introduction

‘Object-oriented’ (OO) has become such a fashionable term during the
last few years that many of those people who really work with object-ori-
ented systems and research are feeling uncomfortable with its indiscrimi-
nate use [King 89]. Nevertheless, it has a solid enough kernel of meaning
to remain usable, especially to characterise programming languages and
programming style. The current dissertation focusses on object-oriented
programming languages (OOPLs), mainly sequential ones, rather than on
object-oriented programming (OOP). I have taken into account some ideas
and insights from object-oriented databases (OODBs). This is purely a
matter of restriction, and in no way do I wish to denigrate the importance
of the object-oriented approach in areas such as user interfaces, specifica-
tion languages, information systems analysis and design, and so forth.

A ‘‘solid kernel’’ does not mean that there would be any single
definition of the essential features of object orientation upon which a
majority of the researchers could agree. Certainly a language’s being
object oriented or not is not a ‘‘yes or no’’ question: different people at
least give different weights to the various criteria. There are, on the one
hand, relatively few languages that everybody would label absolutely
object oriented, and on the other hand, few modern high-level languages
that have no object-oriented features whatsoever.

18

The book [Masini &c 91], which describes and compares a wide
spectrum of more or less object-oriented languages, avoids giving a firm
short definition of objects or object orientation. That looks reasonable in
today’s situation. It is more important to know what assumptions each
author or subculture makes about object orientation, than what the ‘‘cor-
rect’’ meaning of the term is.

One thing that fascinates me is that one can study objects and
object-oriented systems from many viewpoints and get rather different
interpretations even for the basic features. A challenge then is to develop
languages and models that are consistent from as many viewpoints as
possible.

1.2. Some well-known characterisations

One rather popular definition, obviously originating from the Smalltalk
community, is that the heart of object orientation is ‘‘the message-passing
paradigm’’. I have mentioned my dissatisfaction with this notion in more
than one of the constituent papers, but only in passing. Why do I really
think that this phrase is out of place in the meaning of dynamically
bound procedure invocations with an implicit this or self argument?

‘Message passing’ has an established meaning in computer com-
munications and concurrent programming. The two main architectures
of concurrent systems are tightly coupled systems, in which processes
may communicate using shared storage, and loosely coupled systems, in
which communication must happen by message passing [Atkinson 91
§6.1]. The following key characteristics of true message passing do not
apply to Smalltalk-style ‘‘message passing’’:
• The communication may be asynchronous, the sender can continue its

execution immediately after sending a message.
• The receiver can process messages one at a time (ordinary OOP

requires a stack for active method invocations).
• The receiver may get to know the address or identity of the sender.
• The receiver may decide the order in which it processes queued mes-

sages, and may even discard some messages.
• Broadcast or group messages can be sent in some systems.

For instance, the ABCL/1 language, which is object-oriented and
concurrent, has three message-passing types: past, now, and future
[Yonezawa &c 87b §3]. There are also two modes, ordinary and express,
where an express message can interrupt the processing of an ordinary
one. ‘‘Now’’ messages are closest to Smalltalk messages, but they cannot
be sent recursively [Yonezawa &c 87b §4], or deadlock will occur.

19

The following simple formula, mentioned e.g. in [Danforth &c 88]
(and slight variants) seems to be quite popular as well:

object-oriented programming = abstract data types + inheritance

Obviously the possibility of dynamic binding is here implied by inheri-
tance. This simplification goes too far at least because it does not say any-
thing about the identity and mutability of objects.

In general, one should be a little cautious about the differences
between abstract data types (ADTs) and objects. Foremost, ADT theory
tends to be highly value-oriented. It may apply well to many types of
small and simple objects, which have well-defined values. When we
regard complex, application-oriented objects, it is impossible to define
their values sensibly and unambiguously. Such an object cannot be
treated as a black box, as many ADT approaches require: an operation on
it may cause far-reaching side effects to many other objects, and vice
versa. However, the same situation appears also in CLU, probably the
best-known ADT language. See [Liskov 88] for a comparison of CLU and
object-oriented programming.

A short characterisation of OOP according to the Scandinavian
school appears e.g. in [Knudsen &c 88]:

A program execution is regarded as a physical model, simulating the behav-
ior of either a real or imaginary part of the world.

This is very broad and conceptual, omitting all technical issues. It seems
also that this definition suits best for the large application-oriented
objects, and not so well for the more primitive objects which implement
the former ones. It is thus somewhat complementary to the previous def-
inition.

The single presentation that opens the widest perspective on the
landscape of object-oriented programming is probably [Wegner 90].
However, it still maintains prominent a one-dimensional hierarchic classi-
fication, already presented in [Wegner 87]:

object-based languages: the class of all languages that support objects
class-based languages: the subclass that requires all objects to belong to a

class
object-oriented languages: the subclass that requires classes to support inheri-

tance

This classification has become rather popular in the literature, but it does
not seem extremely relevant to me. For instance, those languages that are
based on prototypes or exemplars instead of classes, can reach only the
‘‘object-based’’ level, no matter how many other object-oriented proper-
ties they have. (These languages are taken into account later in Wegner ’s
papers, however.)

Even Wegner does not really point out the difference between
objects and values. This has been done very extensively in [MacLennan

20

82]. Practically the only detail on which I cannot agree with MacLennan
is the following claim (p. 77):

Therefore, everything "in" a computer is an object; there are no values in
computers.

My view is that both objects and values can be regarded without directly
considering an implementation or execution. (An approach that tries to
forbid treating pieces of software as abstract entities [Fetzer 88] is a seri-
ous fundamental misunderstanding.) When a programme is executed,
both objects and values must be concretely represented in the computer:
the former roughly as storage areas, the latter as bit patterns stored in
them.

1.3. The Object-Oriented Database System Manifesto

One consensus-based list of the defining properties of object orientation is
in [Atkinson &c 89]. The authors are all OO database researchers, but they
divide their requirements into DBMS-related and OO-related ones; we
omit the former here. The mandatory features presented in the Golden
Rules of the Manifesto are the following (in italics), with my short com-
ments.

1. Complex objects. Object-oriented programming languages
mostly do not support these very well: there is no way to distinguish a
part�whole relationship from mere associations between objects. Lan-
guages that are not restricted to reference semantics, e.g. C++, are better
than most others in this respect.

2. Object identity. This is extremely important. Purely value-based
approaches that omit the concept of object identity, such as functional
(applicative) programming and relational databases, cannot be truly
object oriented, no matter how many other features (typically inheritance)
they adopt.

3. Encapsulation; information hiding is subsumed here, as is the
custom in a large part of the literature.

4. Types or classes, where a type is regarded more as a compile-
time, a class as a run-time notion. (This is in a way database-related as a
mandatory feature. Programming languages can be based on the proto-
type approach, but a database without a schema does not look sensible).

5. Class or type hierarchies, i.e. inheritance. Four types of inheri-
tance are listed: substitution, inclusion, constraint, and specialisation.

6. Overriding, overloading and late binding. This needs no comment.
7. Computational completeness. In the world of programming lan-

guages, this is already an implicit assumption.

21

8. Extensibility, in the meaning that new types can be defined and
there is no distinction in usage between system-defined and user-defined
types. In hybrid OO languages, system-defined types are often weaker
than user-defined ones: e.g. they cannot be inherited from. (In extensible
database systems the situation may often be the converse.)

There is a short list of optional features (or goodies) in [Atkinson
&c 89]. Multiple inheritance is the only one among these that clearly
belongs to object orientation. Further, at least type checking and type infer-
encing is tangential. A few things are labelled as open choices in the man-
ifesto. All of these concern object orientation to some extent: programming
paradigm, representation system, type system, and uniformity.

The Manifesto is not aimed to be the final word on the subject.
Indeed, the last rule given at the very end is: ‘‘Thou shalt question the
golden rules.’’ (All rules are formulated in such archaic English.)

1.4. My own view

I still consider the list in Ch. 4 §2�3 quite adequate. If I try to condense
my current view into a couple of short sentences, it becomes:

Definition: An object-oriented programming language supports the
encapsulation of data and behaviour in objects with strong identity and
integrity and some degree of information hiding. Normally it allows
inheritance, with the dynamic binding of operations, either between
objects or between object classes. Normally it also allows objects to be
created, modified, and deleted.

Note that ‘encapsulation’ here is not meant to imply information hiding
or data abstraction in itself.

What is meant by a strong notion of object identity is explained
well in [Khoshafian &c 86]. However, the question becomes a little more
complicated if complex objects in the sense of the previous subsection are
supported, and if superclass subobjects are considered (Ch. 6 §3.8). The
definition is very permissive in that it does not absolutely require muta-
ble objects — although I cannot really imagine a sensible object-oriented
language without them. The notion of identity is relevant even in such a
‘‘single assignment’’ language, although it is much more important when
objects are modified.

22

Strong integrity is more difficult to define concisely in positive
terms. One typical breach of object integrity is that typing is not strong
enough: e.g. in C++ it is easy to handle areas of storage without any
regard to the type of objects stored there. Another kind of breach is that
superclass subobjects may be arbitrarily split in multiple inheritance, e.g.
in Flavors and Eiffel (Ch. 4 §3.8).

The deletion of objects raises an important question at once:
should it be requested explicitly, or happen automatically when objects
become unreachable? It is sometimes claimed that existence by reachabil-
ity and garbage collection (or some other kind of automatic storage man-
agement) are essential features of OOPLs. For instance, Zdonik and
Maier ’s reference model for OODBs [Zdonik &c 90 p. 13] has persistence
by reachability (from the root object of the database) as one requirement.
I disagree nevertheless with this view (§4).

2. An overview of the constituent papers — with hindsight

2.1. General

Of the five papers in this dissertation, the fourth and fifth (Chapters 5 and
6) are very recent. The three other articles are already so old (3 � 4 years)
that I have been able to rethink about their topics. The corresponding
subsections will therefore be longer.

Looking at the titles of the papers (chapters), a reader might legiti-
mately think that a more appropriate title for the collection could be ‘‘My
combat against C++’’, and that the thesis lacks more general interest. The
attitude is not adamantly negative, however: e.g., the inheritance features
of C++ are judged mostly superior to those of competing languages in
Ch. 4. I also think that there are at least two good reasons why this thesis
can be relevant to other people besides C++ insiders.

First, the discussion in the articles is mostly based on more general
principles and comparisons with many other languages. Many of the
important conclusions and suggestions, especially in Ch. 5, are applicable
much more widely than only to C++. I have tried to avoid treating details
that are marginal to the principles of good programming, although they
might be very important for some specific applications. A good example
is the current hot debate on whether and how an exponentiation operator
should be added to C++ — without doubt an important feature for

23

numeric programming.
Second, as the foundations of object-oriented programming have

not been definitely laid out yet, learning from the experiences (especially
negative experiences) of existing languages is one good way to progress.
Pointing out defects in the existing languages should also help against
complacency and make people think that progress is still needed. Today
there seems to be a real danger of premature fixation and standardisation
on C++ in the OOP community; the situation has changed dramatically
from the time when Ch. 2 was written.

All constituent papers are very informal. I do not think that for-
malism is always necessary as a goal in itself. Evidently, some of the
ideas in Ch. 4 and 5 could be fruitful starting points for more rigorous
treatment in the future, but that job is better suited for researchers who
are already well versed in appropriate formal methods and tools. I felt
sympathy with the following note [Madsen 92a]:

During the design of BETA we were often criticized for not developing a
formal semantics together with the language. The reason we were not do-
ing this was that formal semantics did not have anything new to offer. The
main contribution of formal semantics is a clarification of well known lan-
guage constructs. When new language constructs are invented it is very
useful to refine them using formal theories.

2.2. On the darker side of C++

As briefly mentioned in §1 and §13 of Ch. 2, the first paper arose from my
experiences in trying to implement parts of Airi Salminen’s document
database model [Salminen 87, 89] in C++. It gradually dawned upon me
that this work was near something that was called ‘‘object-oriented pro-
gramming’’. C++ was not generally regarded as a mainstream OOPL in
1987 � 1988, at least not in Europe. It was not possible to compare C++
extensively to other more or less object-oriented languages at that point. I
had no experience with any of those languages, and there was not so
much literature available. For instance, the landmark book [Meyer 88]
had not appeared yet.

This chapter thus analyses C++ mainly with two points of refer-
ence: established conventional languages such as Pascal and Ada, and a
budding general philosophy of object orientation. Perhaps the most
important point of the whole article is that C is an unsound basis for
object-oriented extensions. A large number of defects and problems, of
varying degrees of severity, in C++ as it was at the time (before Release
2.0), are described. In most cases, I give either a suggestion for improving

24

the language, some advice to programmers to work around the problem,
or both.

A few of the flaws noted in Ch. 2 were obviously incurable. For
some others again, corrections had already been advertised to come in the
next release. Those features that fall in between these two extremes are
interesting concerning the possible effects of my article. Indeed, a few
things have been improved more or less as I had suggested: e.g., the dif-
ferent integral types are now clearly distinct (Ch. 2 §3), and member func-
tions are not allowed to modify constant objects (Ch. 2 §11). These ideas
are so obvious that they can have occurred even earlier to the developers
of C++, of course.

I have not noted anything essential in Chapter 2 behind which I
cannot still stand today. There are some small slips in details: e.g.
‘restricted private types’ of Ada in Ch. 2 §2 instead of ‘limited private
types’. The constructor in the ‘flexstring’ class presented as an example in
Ch. 2 §8 is a little too streamlined: one should first check whether this is
non-null, implying that the object is not being created on the heap and
therefore its size is already fixed. However, the whole original method of
dynamic storage allocation and deallocation has been superseded by
much better principles in newer releases of C++.

2.3. Comments on ‘‘the Law of Demeter’’ and C++

The second paper (Ch. 3) treats a question that can concern either object-
oriented programming languages themselves, their programming envi-
ronments, or just the style and discipline to which programmers may
adhere. This paper was important for me because it began a co-operation
with the Demeter group at Northeastern University, which has continued
with varying intensity ever since.

The article tries to clarify and criticise the Law of Demeter as orig-
inally presented. The critique about not being always able to verify con-
formance to the law may be unnecessarily strong. The main contribution
of Ch. 3 is, as the title suggests, in examining some alternative ways for
interpreting the law in a hybrid language, especially C++. Also, the rela-
tionship of the law to untyped languages is discussed, as it had been orig-
inally formulated for typed languages. (I have been later persuaded by
some people to speak of statically typed vs. dynamically typed languages
rather than typed vs. untyped.)

The idea of acquaintances is proposed in Ch. 3 §3 and §7 as a direct
analogue of friends in C++. While an outside class or function needs to be
a friend of a class A in order to have access to A’s private components, it

25

would need to be an acquaintance of A in order to access its public com-
ponents. This would happen by declaring A as a known class in the
header of the other class or function.

It must be confessed that the reasoning is rather opaque and hard
to follow in some parts, e.g. Ch. 3 §4 and §8. However, the conclusions
and suggestions still appear sensible to myself.

The critique and ideas of Ch. 3 were taken into account in [Lieber-
herr &c 89], which developed further the Law of Demeter. The idea of
acquaintances from Ch. 3 was accepted, but note that meaning of the term
was inverted to conform to its usage in Hewitt’s actor model: the acquain-
tances of a class are those other classes that it is allowed to access.

The main restriction set by the Law of Demeter is that one should
not see more than one level of the structure of a complex object from one
viewpoint. There may be one important situation in which this require-
ment is conceptually invalid; it has not been recognised as an exception
in Ch. 3, nor in [Lieberherr &c 89]. Namely, several consecutive levels of
structure may sometimes model the structure of objects in the real world,
and should not be hidden from the programmers. Such part hierarchies
had been discussed already in [Blake &c 87]; one example from that paper
is

joe leftLeg.foot.bigToe.wiggle

The hindsight here is that I had not seen [Blake &c 87] when writing
Chapter 3. Such situations can be handled nicely in the current Demeter
system by propagating interfaces through the class hierarchy [Lieberherr
92].

This last observation is directly analogous to the fact that the weak
variant of the Law is more appropriate to some cases than the strong vari-
ant, which forbids direct access to inherited instance variables. This
aspect is treated thoroughly in Ch. 4.

2.4. Disciplined inheritance

The working title of the third paper (Ch. 4) was ‘‘Inheritance considered
harmful’’, when I began to write it. It appeared at ECOOP’89 that some
other authors had thought about the same name for their contributions,
but all had been sensible enough to change it.

The main objectives of Ch. 4 are to subordinate inheritance to the
more important principles of object orientation, to classify it into at least
two clearly different variants, and to warn against its overuse. As a reac-
tion to the common overemphasis on inheritance, I try to ‘‘explain it
away’’ as far as possible, by aggregation and some constraints.

26

It should be noted that late binding is not counted as an inherent
facet of inheritance, but as a separate feature. This conforms to [Atkinson
&c 89], while [Cook 89] takes the opposite view: the essence of inheri-
tance. I will treat this more in the next section.

The two opposite cases, incidental and essential inheritance, are
recognised in the article. The former corresponds approximately to imple-
mentation inheritance, the latter to interface inheritance; these are terms
employed by many authors. Incidental inheritance is shown to be equiv-
alent to aggregation with three simple constraints; the difference between
a component (instance variable) and a superclass part (subobject) is thus
very small.

In hindsight, it is an exceptionally strong requirement in Ch. 4 §6
that late binding be suppressed in incidental inheritance. I probably had
the misconception (and probably not I alone) that this were the case in the
private inheritance of C++. When writing Chapter 5, it became clear to me
that C++, on the contrary, allows even too far-reaching late binding of vir-
tual functions in private inheritance. — It is consistent with the strong
requirement to require also that the protected operations of the superclass
not be invokable from the subclass in incidental inheritance (Ch. 4 §6).

The three constraints listed in Ch. 4 §5 are not tied together by log-
ical necessity, as noted in Ch. 4 §9. The relationship between components
and parents (aggregation and inheritance) has meanwhile been exten-
sively studied in [Taivalsaari 91]. Today, I would relax the above require-
ment and distinguish between incidental inheritance and mere aggrega-
tion on the basis of whether late binding is possible or not. Consequently,
there is no difference when the superclass has no virtual operations!

I maintain now, even more strongly than expressed in the paper,
the opinion that essential inheritance is the more important and interesting
kind. This has often been regarded as a typical European attitude, while
many American researchers favour the viewpoint of implementation
reuse. Essential inheritance, implying an is-a or at least is-like [Wegner &c
88] relationship, does not rely on late binding for its definition. Indeed, it
is the kind of inheritance that is used in knowledge representation, where
operations in the OOP sense do not normally exist [Touretzky 86].

I also continue to consider it desirable that all operations need not
be virtual (although virtuality could be the default, contrarily to the prac-
tice of Simula and C++), and even that late binding can be suppressed in
invocations of virtual operations within the same class. There is a some-
what opposite opinion in [Cook 89 §4.4]:

Local access, which performs the effect of a z operation but does not use the
virtual z component, should be used only when the operation is not proper-
ly viewed as an abstract use of the z operation. It is almost impossible to
justify using an operation in any way but its abstract form.

27

As long as non-virtual operations are allowed, the question about
the temporary early binding of virtual operations could even be consid-
ered moot. Namely, a class designer can decompose each virtual opera-
tion ‘oper’ so that there is a private non-virtual counterpart ‘oper_static’
and ‘oper’ only calls ‘oper_static’ with its own arguments. Instead of an
early-bound call of ‘oper’, one just calls ‘oper_static’ directly. — In strict
inheritance (§3.2), there can never be a need to force early binding.

The main reason why I like the possibility of early binding is a
‘‘humble programmer ’’ [Dijkstra 72] viewpoint. There is not even a gen-
eral definition of when a redefinition of an operation in a subclass
behaves similarly enough to the superclass operation. The assertion
redefinition rule [Meyer 88 §11.1.2] helps if the pre- and postconditions
have been specified well enough, but assertions cannot in general be
checked statically. Most OOPLs do not even support assertions or any
similar mechanism. A class designer can therefore have more confidence
in getting the expected behaviour of an operation with early than late
binding.

We could say that here lies a fundamental dilemma of virtual opera-
tions (in non-strict inheritance): should the operation behave consistently
mainly with its class of definition (i.e., its lexical environment) or with the
(sub)class on whose instance it is invoked (its dynamic environment)?
The former goal favours static binding of other operations invoked on
self (this), the latter goal, dynamic binding.

The analysis of fork-join inheritance (Ch. 4 §8), although short,
might be the most important contribution of the paper. It is shown that
the typical published and implemented approaches to multiple inheri-
tance, including that of Eiffel, violate the integrity of superclass subob-
jects. The multiple inheritance principles that had been announced for
C++ are completely sound in this respect. Finding faults even in those
principles became later the main theme of the following paper included
in this dissertation.

2.5. A critique of the inheritance principles of C++

The initial idea for the fourth paper (Ch. 5) was born during my one-week
visit at Northeastern University in the autumn of 1990, inspired by dis-
cussions with several people there. The original rule was:

Public inheritance should be ‘‘virtual’’ (shared), private inheritance ‘‘non-
virtual’’ (duplicated).

Of course, this was a little too crude because late binding applies even to
private inheritance (§2.4). An essential distinction is therefore made in

28

the chapter between accessible and inaccessible superclasses (Ch. 5 §3.3).
All immediate superclasses of a class C are accessible to C itself, but pri-
vate superclasses are inaccessible to subclasses of C. The final refinement
is presented as the Rule in Ch. 5 §5.4 — the main result of the paper.

The problem with private inheritance mentioned in the previous
subsection is solved with the requirement (Thesis 1) that a descendant
class must not be able to redefine a virtual function of an inaccessible
ancestor class (Ch. 5 §3.4). This is one of the few suggestions that concern
already single inheritance. Most others purport to improve the semantics
of multiple inheritance.

An anomalous consequence of the current C++ rules, which was
truly surprising to myself at first, is presented in Ch. 5 §5.6 and called
‘‘the exponential yoyo problem’’. An interesting although remote anal-
ogy are some of the anomalies shown in [Baker 91] about the linear super-
class precedence ordering of CLOS, e.g.

A generic function may require O(n!) method combinations for a class hav-
ing only O(n) methods defined.

The article is constructive in the sense that it offers a concrete sug-
gestion of remedy to each claimed defect or problem. My guess is that
the proposed modifications would not have detrimental cross effects to
other parts of C++, nor cause a large proportion of existing C++ software
to change its behaviour or become illegal. — Many of the suggestions
could actually be realised by mere programming discipline. Some others,
notably the main rule, absolutely require changes to the language itself.

About the initialisation of shared (virtual) superclass subobject,
Ch. 5 §3.6 just says that the current C++ rule is inconvenient. It has
already appeared that it is not so simple to invent a better rule as I had
supposed [Sakkinen 92b].

Since I had long believed in the utility of multiple inheritance, the
results of Ch. 5 were encouraging. They are also rather obviously gener-
alisable to other object-oriented languages. Doing that and making the
treatment more rigorous is one of my next research goals.

2.6. The darker side of C++ revisited

The fifth paper (Ch. 6) tries to take a broad look at disadvantages not cov-
ered by Ch. 5 and mostly not treated in Ch. 2 either. It can thus not be
highly focussed. It is the most political and most opinionated of the con-
stituent papers, but I tried to give technical backing to the political state-
ments. A reason for the partisan attitude was given in §2.1.

29

The prime argument of Ch. 5 is that C++ is insufficiently object
oriented because its objects do not contain enough run-time type informa-
tion. The consequences are unsafety, type loss, and impossibility of
unconstrained polymorphism. This disadvantage was only quite briefly
mentioned in Ch. 2. I continue to point out the compatibility with C as
the other serious (if not fatal) defect of C++. In particular, new harmful
aspects of pointer handling in C and C++ are pointed out.

One well-known further problem of pointer arithmetic, or of its
harmful interference with the object-oriented features of C++, that would
have been worth mentioning in Ch. 6 §2.4 is the following: If T is a class
type and S a subclass of T, a pointer of type T* can legally point also to an
instance of S. However, no address arithmetic is allowed in that case
even if the referent object is an array element. The reason is that instances
of S are usually larger than instances of T.

Since the C community has a long-standing habit of regarding
Ada as an overly complex monster, I did not omit the opportunity to
remark that C++ has already grown to the same order of complexity —
even though it does not yet tackle the problems of concurrency!

3. More about inheritance

3.1. Class inheritance

Class-based languages are even today the mainstream of object-oriented
programming, and all constituent papers of this dissertation concentrate
on them. It is therefore natural to restrict this section to the class
approach as well. Inheritance is then a relationship between classes, not
instances.

The identity concept was stressed as fundamental in §1, for
instances. The essence of identity is that two objects can have exactly the
same value or contents and still be distinguishable. Consequently, if
classes are also objects (as in Smalltalk-80), two classes can be completely
alike but still distinct from each other. Even in those languages in which
classes are not first-rate objects, structural class (type) equivalence can be
seen as contrary to object orientation. There is an enjoyable discussion of
its good and bad sides in [Nelson &c 91 §8.1]; Modula-3 does use struc-
tural equivalence, but object orientation is indeed not its main goal.

30

An example originally designed to show the advantages of static
typing [Magnusson 91] happens to illustrate my point:

CLASS Circle
operations: Draw, Move

CLASS Cowboy
operations: Draw, Move, Shoot

With structural equivalence, Cowboy without the Shoot operation would
be equal to Circle, assuming that even the signatures of the operations
conform. The additional operation makes it a subtype (subclass) of Cir-
cle. This would not hold in most statically typed object-oriented lan-
guages. Structural equivalence thus loses some semantic power.

Therefore, I support ‘‘name equivalence’’ or rather declaration
equivalence for classes. That does not exclude the possibility of later iden-
tifying two classes that have been declared separately but are exactly
alike, whether they have the same name or not. (This is fully analogous
to the coalescing of instances [Khoshafian &c 86].) A language could let
the programmer decide for each class separately whether structural or
declaration equivalence should be applied to it .

In the same vein, the term ‘inheritance’ should be used according
to the prevailing tradition, i.e. only when a subclass is explicitly declared
to inherit a superclass, or perhaps vice versa [Pedersen 89]. There are
some approaches in which two classes may be said to have an inheritance
relationship although they have been defined fully independently of each
other. Such relationships are better called ‘subtyping’ or ‘conformance’.

There are also approaches in which subtyping and inheritance are
completely separated. This brings some advantages: very often the
implementation hierarchy tends to be opposite to the subtype hierarchy
[Snyder 87]. Unfortunately, subtyping usually seems to be based on
structural type equivalence [Cook &c 90; America &c 90]. Semantic
problems of the same kind as in the above example then remain.

3.2. Strict inheritance

Inheritance is called strict if descendants do not delete or modify (over-
ride) any inherited features, non-strict otherwise. While people are proba-
bly aware that a large part of the problems connected with inheritance are
caused by non-strictness, we mostly seem to think that strict inheritance
is much too limited to be interesting. Here I try to indicate briefly some
ways in which strict inheritance could be beneficial. Essential (public)
inheritance is assumed on the first stage.

31

There may be useful cases of independent multiple inheritance in
which the subclass is simply a Cartesian product of its immediate super-
classes, i.e. it does not even need to add any instance variables or opera-
tions. Any name clashes between features inherited from different super-
classes should be regarded as casual [Knudsen 88], i.e. simple overload-
ings. An often-discussed example would be the class Coloured_point
that inherits Coloured_object and Point (cf. §3.4). — In fork-join inheri-
tance, there shall be only one subobject of each non-immediate ancestor
class. A typical simple case consists of the classes Person, Student,
Employee, and Student_employee (Ch. 5 §5.2).

With strict inheritance, the devious problems of inheritance graph
linearisation [Snyder 87; Baker 91] simply disappear! When casual name
clashes are disambiguated, there is always only one superclass in which a
given feature is defined. Linearisation could be made consistent even in
non-strict inheritance by the following constraint: if two classes A and B
both redefine some operation inherited from a common ancestor, and nei-
ther of them is a subclass of the other, then no class must inherit both A
and B. This rule would make ‘super’ (in the Smalltalk sense) unambigu-
ous even with multiple inheritance.

I imagine that many typical class hierarchies, which contain a lot
of operation redefinitions in subclasses, could be reorganised so that all
inheritance becomes strict. Generalisation mechanisms [Pedersen 89]
could aid in such reorganisation. Pedersen’s proposal has the disadvan-
tage that every new class created by generalisation becomes a top-level
class, i.e., has no superclasses. This disadvantage is negligible in strict
inheritance.

It is also possible to design classes originally in such way that later
subclasses only rarely need to redefine inherited operations. A typical
class such as Person can actually consist of a set of kernel features and
another set of default features. The former are those that the class
designer would, even with afterthought, claim essential also to all imag-
inable subclasses of Person. The latter are those that allow instances of
Person to be created before any subclasses are defined; this is necessary
for typical object-oriented software development. — Now, simply keep
only the kernel features in class Person, and define a subclass
Default_person, which contains the default features. It might even
appear useful to relegate the least universal features further into Stan-
dard_person, which would be a subclass of Default_person. Alterna-
tively, the defaults could be divided into several parallel subclasses.

This reasoning is heading in the direction of fine-grain inheritance
[Johnson &c 92], which aims to a large number of very simple classes
with a ‘‘dense’’ multiple-inheritance graph. It seems that it would be rela-
tively easy to make fine-grain inheritance strict.

32

Finally, let us look at incidental (private) inheritance. It is utterly
non-strict toward clients, since none of the superclass operations can be
invoked on a subclass object unless explicitly re-exported. However, it is
sensible to call an incidental inheritance relationship inward strict if the
subclass does not redefine any superclass operations nor make them
unavailable inside a subclass object. The advantages of strictness actually
come from the non-redefinability.

3.3. Deferred (abstract) classes

The most common term for a class that cannot have direct instances is
‘abstract class’, and its opposite thus ‘concrete class’. Unfortunately the
word ‘abstract’ has so many mutually related meanings that I will prefer
‘deferred class’ and its opposite ‘effective class’ [Meyer 88 §10.3].

Interestingly, the Demeter system [Lieberherr &c 91] requires an
even stronger division of conventional classes than the kernel vs. default
split recommended in the previous subsection: it is not allowed to inherit
effective classes at all. On the other hand, Demeter does not require strict
inheritance.

There are different degrees of deferredness. The ultimate is a
mere interface: operation signatures and possibly some assertions.
Another important kind are classes which can additionally contain imple-
mentations of operations but no instance variables. These are called ‘pro-
tocols’ in [Whitewater 91]: yet another overloading of that term. I will
call these, ‘pure deferred classes’. Of course, a class can in general define
(or inherit) even instance variables and still be deferred. The approach of
[Dodani&c 92] forbids this, however: all deferred classes must be pure
deferred.

Essential (public) inheritance from deferred classes is largely the
opposite of incidental (private) inheritance from effective classes. In the
former case, parts of the functionality of the superclass are implemented
by subclasses. In the latter case, parts of the functionality of the subclass
are implemented by superclasses. The next subsection will try to look at
inheritance from an even more symmetric viewpoint.

Regarding interface classes as types looks to me to be a more
object-oriented alternative to the complete separation of inheritance and
subtyping (§3.1). To be precise, an interface class could be regarded as a
type if and only if no other classes that are not themselves types appear in
its signature. — Interfaces are behaviourally underspecified [Wegner &c
88]. One could be more general and regard all pure deferred classes as
types; they could then be overspecified.

33

A common problem in statically typed languages is that the cre-
ation of a new object must be statically bound (to an effective class), while
one would often like to have late binding just as in calling virtual opera-
tions [Koskimies &c 91]. In the most usual case in which the actual class
of the new object should be the same as that of an existing object, the task
is easy in Smalltalk and similar languages:

someObject class new

The way to achieve this in e.g. C++ is obvious but hardly ‘‘easy’’ as adver-
tised in [Stroustrup 91 §6.7.1]: one must remember to redefine a virtual
function that creates the new object, in every subclass.

There are no deep reasons why the actual class of an object to be
created could not be late-bound even in a statically typed language.
Indeed, a mechanism is presented in [Palsberg &c 91a] which automati-
cally binds directly recursive occurrences of new to the dynamic class of
the invoking object.

3.4. Mix-in inheritance

Mix-in classes are widely used in LISP-based object-oriented languages.
A mix-in is characterised in [Bracha &c 90] as an abstract subclass, simi-
larly to abstract (deferred) superclasses. Terms such as ‘difference class’
[Stein 88] have also been used. The main problem with mix-ins seems to
be that they complicate method lookup and method combination.

The situation becomes simple if we restrict ourselves to strict mix-
in inheritance (§3.2). We then get a true ‘‘class algebra’’ [Stein 88] (see Ch.
4 §5): since redefinitions are forbidden, no distinction between subclass
and superclass is needed. An effective class may be defined as the Carte-
sian product of a set of (possibly deferred) component classes C1, ..., Cn
provided that:
• No operation is defined as public (exported) in more than one class.
• Every operation that is deferred (imported) in some class Ci is defined

(exported) in some other class Ck.
This becomes more useful but also a little more complicated if we

require only inward strictness. The visibility of every public operation of
every component class can then be specified, to other component classes
and to clients of the product class. Even multiple definitions of opera-
tions can be allowed if their scopes do not overlap. Here we have again
an idea that would seem to apply well to fine-grain inheritance (§3.2).

There is a problem presented in [Stein&c 89 §3.5], which is said to
lack a fully satisfactory solution in existing class-based languages. Let

34

there be an arbitrary hierarchy of subclasses of Shape, representing differ-
ent kinds of geometric objects, and suppose that an amount of software
using that hierarchy has been built. At that point, we would like to add a
colour attribute to new geometric objects, without having to modify the
existing classes. Defining a separate Colour_mixin class is better than
directly defining a subclass Coloured_shape, but in any case coloured
versions of all classes in the hierarchy must be produced.

A possible way to handle a class hierarchy as a unit and make a
‘‘parallel’’ hierarchy by one definition is briefly sketched in [Cook 89
§3.5]. The idea looks far from fully developed, however. Another solu-
tion would be to allow an object to be a direct instance of more than one
class [Sakkinen 90b §3]. The Colour_mixin class could then be used also
together with classes that are not descendants of Shape.

3.5. Some related research

The dissertation [Cook 89] examines and explains inheritance using for-
mal semantics, as is evident from the title. The redefinition and late bind-
ing of operations is taken as the most important facet of inheritance,
unlike I am doing here. Actually, late binding is mostly regarded as con-
cerning the self-reference of objects, as in delegation. A nice concise defini-
tion from the chosen viewpoint is given in [Cook 89 §1.1]:

Inheritance is a mechanism for incremental programming in the presence of
self-reference.

It is tacitly assumed here that the self-reference is late-bound.
Cook treats many interesting topics. For instance, he shows [Cook

89 Ch. 9] that the relationship between subclasses and superclasses in
BETA is almost the inverse of that in most other OOPLs. It is also pointed
out that operation redefinition in BETA is much more disciplined than in
the mainstream languages, because it is controlled by ‘inner’ in the super-
class and no complete replacement is possible. (However, ‘inner ’ is a
genuine imperative: it may be executed many times in the same super-
class operation.)

The thesis [Taivalsaari 91] takes a very different approach than
Cook. It is much more informal, but also more constructive, e.g. present-
ing three possible new models for object-oriented languages [Taivalsaari
91 Ch. 5]. The interest is more on mechanisms than conceptual mod-
elling, as the title implies. Inheritance is examined on two levels: inter-
face inheritance and property inheritance [Taivalsaari 91 Ch. 4]. Addi-
tionally, the distinction between class-based and prototype-based lan-
guages is made orthogonal to the distinction between delegation and

35

concatenation.
The disadvantages of class hierarchy linearisation in multiple

inheritance were well explained already in [Snyder 87]. One approach for
avoiding those disadvantages without always needing explicit disam-
biguations of multiply defined names is presented in [Carré &c 90]. I had
not happened to read that paper before writing Chapter 5. It seems that
the ‘‘point of view’’ method could handle situations with possible ‘‘side-
ways inheritance’’ (Ch. 5 §5.5) more flexibly. On the other hand, it would
evidently not solve the problem that mutually unrelated operations with
the same name (and signature) are forcibly unified (Ch. 5 §4.1).

4. Other topics of further research

The ontology of objects is an interesting area. Stressing object identity as
one of the prime concepts is already a stand on the question what it
means for an object to exist. As mentioned in §1.4, I do not believe that
the garbage collection of unreachable objects is the only correct way to
remove unnecessary objects from a system. Rather the opposite: in value-
oriented systems, objects can be regarded as auxiliary entities whose exis-
tence or deletion is merely a pragmatic issue; in an object-oriented sys-
tem, both the creation and the destruction of an object can be semantically
meaningful events.

Many object-oriented languages offer no means for the direct dele-
tion of objects; a serious conceptual defect in my opinion. The significant
pragmatic advantage gained is of course that dangling references need
not be worried about. I began to study possibilities to reconcile the prin-
ciples of garbage collection and explicit (possibly cascading) deletion in
[Sakkinen 88b], by ‘‘positive’’ and ‘‘negative’’ existential dependences
between objects. I am planning to continue that work in the near future.

Ensuring the locality, or preventing too wide propagation, of
object operations is a problem that is not very often mentioned. This is
the additional complexity that pure abstract datatypes have not got (§1.2).
For instance, the Law of Demeter only restricts the direct visibility of
objects to operations, not how far their effects may reach indirectly. An
interesting recent paper in this area is [Hogg 91]. The problem looks
really fundamental: I do not believe that any complete and general solu-
tion exists.

Related to the locality problem is the problem of indirect recursion
in the following meaning: Suppose that some operation O of an object A

36

calls an operation P of another object B. Object A cannot know whether
that call causes one or more other operations (another O not excluded) of
A to be invoked before control returns to the point after the call of P. If
we have assertions in the style of Eiffel [Meyer 88 §7.4; Meyer 92 Ch. 9],
there remains a surprising gap: an object invoking some operation on
another object cannot in general be sure that even the class invariant of the
callee holds, because an ‘‘outer ’’ operation on it may be in progress some-
where on the call stack. — Instance-wise direct recursion, i.e. calls on this
(self), is most typical object-oriented programming; it is not similarly
devious as the indirect case.

Combining classes and prototypes is a research pursuit that con-
cerns dynamic object-oriented languages, and not the statically typed,
compilable variety that I have mostly studied. However, the idea of
‘‘titles’’, which was originally invented to disambiguate name conflicts,
rather naturally lead to such extensions [Sakkinen 90b]. This may not be
one of the most urgent topics for me to develop further.

Enumerated types are not common in object-oriented languages;
however, at least C++ and Modula-3 support them. In [Sakkinen 91b] I
argued strongly in their favour as a simple abstraction mechanism com-
plementary to classes. The difficulties of extending enumerations have
been one major cause why they have been abandoned in some recent lan-
guages. I now have some initial ideas about extensible enumerations. An
overlapping problem is the relationship of enumerations to inheritance.

For a long time already, I have tried to generalise the concept of
order between values and between objects [Sakkinen 87, 88a, 90a]. I still
think that more general orderings than linear and partial order within col-
lections can be useful, especially in object-oriented database systems. For
instance, the just-mentioned problem of extending enumerated types can
be solved more consistently if they are either completely unordered or
quasi-ordered (preordered).

I mentioned the fascination of object orientation already in §1.1.
For a researcher, almost every solved problem seems to raise equally
interesting new questions and possibilities. For a language designer and
a practitioner, the fascination may be even dangerous. My current view is
that the features and facilities offered by object-oriented languages must
be used with intelligence and in moderation for object-oriented program-
ming to really result in better software, more easily created and main-
tained than with the tools and methods of the past.

37

References

[ACM 87] ACM Turing Award Lectures: The First Twenty Years: 1966 �
1985. ACM Press 1987.

[Allen 89] F.E. Allen (Chair). POPL ’90 (Principles of Programming Lan-
guages) Proceedings. ACM Press 1990.

[America 91] Pierre America (Ed.). ECOOP ’91 (European Conference on
Object Oriented Programming) Proceedings. Springer-Verlag 1991
(LNCS 512).

[America &c 90] Pierre America, Frank van der Linden. ‘‘A Parallel
Object-Oriented Language with Inheritance and Subtyping’’. [Mey-
rowitz 90], 161 � 168.

[Atkinson 91] Colin Atkinson. Object-Oriented Reuse, Concurrency and
Distribution : An Ada-based Approach. ACM Press 1991.

[Atkinson &c 89] Malcolm Atkinson, François Bancilhon, David DeWitt,
Klaus Dittrich, David Maier, Stanley Zdonik. ‘‘The Object-Oriented
Database System Manifesto’’. [Kim &c 89b], 40 � 57.

[Baker 91] Henry G. Baker. ‘‘CLOStrophobia: Its Etiology and Treat-
ment’’. ACM OOPS Messenger Vol. 2 No. 4 (October 1991), 4 � 15.

[Bézivin &c 87] Jean Bézivin, Jean-Marie Hullot, Pierre Cointe, Henry
Lieberman (Eds.). ECOOP ’87 (European Conference on Object Oriented
Programming) Proceedings. Springer-Verlag 1987 (LNCS 276).

[Blake &c 87] Edwin Blake, Steve Cook. ‘‘On Including Part Hierarchies
in Object-Oriented Languages, with an Implementation in
Smalltalk’’. [Bézivin &c 87], 41 � 50.

[Bracha &c 90] Gilad Bracha, William Cook. ‘‘Mixin-based Inheritance’’.
[Meyrowitz 90], 303 � 311.

[Carré &c 90] Bernard Carré, Jean-Marc Geib. ‘‘The Point of View notion
for Multiple Inheritance’’. [Meyrowitz 90], 312 � 321.

[Cook 89] William R. Cook. A Denotational Semantics of Inheritance. Dis-
sertation, Brown University (Providence, RI, USA) 1989.

[Cook &c 90] William R. Cook, Walter L. Hill, Peter S. Canning. ‘‘Inheri-
tance Is Not Subtyping’’. [Allen 89], 125 � 135.

[Danforth &c 88] Scott Danforth, Chris Tomlinson. ‘‘Type Theories and
Object-Oriented Programming’’. ACM Computing Surveys Vol. 20 No.
1 (March 1988), 29 � 72.

[Dijkstra 72] Edsger W. Dijkstra. ‘‘The Humble Programmer ’’. CACM
Vol. 15 No. 10 (October 1972), 859 � 866. Reprinted in [ACM 87], 18 �
31.

[Dodani &c 92] Mahesh Dodani, Chung-Shin Tsai. ‘‘ACTS: A Type Sys-
tem for Object-Oriented Programming Based on Abstract and Con-
crete Classes’’. [Madsen 92b], 309 � 328.

38

[Fetzer 88] James H. Fetzer. ‘‘Program verification: the very idea’’.
CACM Vol. 31 No. 9 (September 1988), 1048 � 1063.

[Gjessing &c 88] S. Gjessing, K. Nygaard (Eds.). ECOOP ’88 (European
Conference on Object Oriented Programming) Proceedings. Springer-Ver-
lag 1988 (LNCS 322).

[Hogg 91] John Hogg. ‘‘Islands: Aliasing Protection In Object-Oriented
Languages’’. [Paepcke 91], 271 � 285.

[Johnson &c 92] Paul Johnson, Ceri Rees. ‘‘Reusability Through Fine
Grain Inheritance’’. Technical report, GEC-Marconi Research
(Chelmsford, England) 1992.

[Kangassalo &c 90] Hannu Kangassalo, Setsuo Ohsuga, Hannu Jaakkola
(Eds.). Information Modelling and Knowledge Bases. IOS Press 1990.

[Khoshafian &c 86] Setrag N. Khoshafian, George P. Copeland. ‘‘Object
Identity’’. [Meyrowitz 86], 406 � 416.

[Kim &c 89a] Won Kim, Frederick H. Lochovsky (Eds.). Object-Oriented
Concepts, Databases, and Applications. ACM Press 1989.

[Kim &c 89b] Won Kim, Jean-Marie Nicolas, Shojiro Nishio (Eds.).
DOOD ’89 (Deductive and Object-Oriented Databases) Proceedings. Else-
vier 1989.

[King 89] Roger King. ‘‘My Cat is Object-Oriented’’. [Kim&c 89a], 23 �
30.

[Knudsen 88] Jørgen Lindskov Knudsen. ‘‘Name Collision in Multiple
Classification Hierarchies’’. [Gjessing &c 88], 93 � 109.

[Knudsen &c 88] Jørgen Lindskov Knudsen, Ole Lehrmann Madsen.
‘‘Teaching Object-Oriented Programming is More than Teaching
Object-Oriented Programming Languages’’. [Gjessing &c 88], 21 �
40.

[Koskimies &c 92] Kai Koskimies, Juha Vihavainen. ‘‘The Problem of
Unexpected Subclasses’’. Journal of Object-Oriented Programming, to
appear.

[Kristensen &c 87] Bent Bruun Kristensen, Ole Lehrmann Madsen,
Birger Møller-Pedersen, Kristen Nygaard. ‘‘The BETA Programming
Language’’. [Shriver &c 87], 7 � 48.

[Lieberherr &c 89] Karl Lieberherr, Ian Holland. ‘‘Formulations and
Benefits of the Law of Demeter’’. ACM SIGPLAN Notices Vol. 24 No.
3 (March 1989), 67 � 78.

[Lieberherr &c 91] Karl J. Lieberherr, Paul Bergstein, Ignacio Silva-Lepe.
‘‘From objects to classes: algorithms for optimal object-oriented
design’’. Software Engineering Journal Vol. 6 No. 4 (July 1991), 205 �
228.

[Lieberherr 92] Karl Lieberherr. Private communication, 1992.
[Liskov 88] Barbara Liskov. ‘‘Data Abstraction and Hierarchy’’. [Power

&c 88], 17 � 34.

39

[MacLennan 82] B.J. MacLennan. ‘‘Values and objects in programming
languages’’. ACM SIGPLAN Notices Vol. 17 No. 12 (December 1982),
70�79. Reprinted in [Peterson 88], 9 �14.

[Madsen 92a] Ole Lehrmann Madsen. Unpublished workshop contribu-
tion, Århus (Denmark) 1992.

[Madsen 92b] Ole Lehrmann Madsen (Ed.). ECOOP ’92 (European Con-
ference on Object Oriented Programming) Proceedings. Springer-Verlag
1992 (LNCS 615).

[Magnusson 91] Boris Magnusson. ‘‘Adjusting the Type-Knob’’. [Pals-
berg &c 91b], 44 � 48.

[Masini &c 91] Gérald Masini, Amedeo Napoli, Dominique Colnet,
Daniel Léonard, Karl Tombre. Object-Oriented Languages. Academic
Press 1991 (A.P.I.C. Series, No. 34).

[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Pren-
tice Hall 1988.

[Meyer 92] Bertrand Meyer. Eiffel: the Language. Prentice Hall 1992.
[Meyrowitz 86] Norman Meyrowitz (Ed.), OOPSLA (Object-Oriented Pro-

gramming: Systems, Languages, and Applications) ’86 Proceedings. ACM
SIGPLAN Notices Vol. 21 No. 11 (November 1986).

[Meyrowitz 87] Norman Meyrowitz (Ed.), OOPSLA ’87 Proceedings.
ACM SIGPLAN Notices Vol. 22 No. 12 (December 1987).

[Meyrowitz 88] Norman Meyrowitz (Ed.), OOPSLA ’88 Proceedings.
ACM SIGPLAN Notices Vol. 23 No. 11 (November 1988).

[Meyrowitz 89] Norman Meyrowitz (Ed.), OOPSLA ’89 Proceedings.
ACM SIGPLAN Notices Vol. 24 No. 10 (October 1989).

[Meyrowitz 90] Norman Meyrowitz (Ed.). OOPSLA/ECOOP ’90 Proceed-
ings. ACM SIGPLAN Notices Vol. 25 No. 10 (October 1990).

[Nelson &c 91] Greg Nelson (Ed.). Systems Programming in Modula-3.
Prentice Hall 1991.

[Paepcke 91] Andreas Paepcke (Ed.). OOPSLA ’91 Proceedings. ACM
SIGPLAN Notices Vol. 26 No. 11 (November 1991).

[Palsberg &c 91a] Jens Palsberg, Michael I. Schwartzbach. ‘‘What is
Type-Safe Code Reuse?’’. [America 91], 325 � 341.

[Palsberg &c 91b] Jens Palsberg, Michael I. Schwartzbach (Eds.). Types,
Inheritance and Assignments (ECOOP’91 workshop papers). Aarhus
University (Denmark) 1991.

[Pedersen 89] Claus H. Pedersen. ‘‘Extending Ordinary Inheritance
Schemes to Include Generalisation’’. [Meyrowitz 89], 407 � 417.

[Peterson 88] Gerald E. Peterson (Ed.). Tutorial: Object-Oriented Comput-
ing, Volume 1: Concepts. IEEE Computer Society Press 1988.

[Power &c 88] Leigh Power, Zvi Weiss (Eds.). OOPSLA ’87 Addendum to
the Proceedings. ACM SIGPLAN Notices Vol. 23 No. 5 (May 1988).

40

[Sakkinen 87] Markku Sakkinen. ‘‘Comparison as a Value-yielding
Operation’’. ACM SIGPLAN Notices Vol. 22 No. 8 (August 1987), 105
� 110.

[Sakkinen 88a] Markku Sakkinen. ‘‘Generalised order concepts for
databases’’. Manuscript, University of Jyväskylä 1988.

[Sakkinen 88b] Markku Sakkinen. ‘‘Objects, non-objects, and existential
dependences’’. Manuscript, University of Jyväskylä 1988.

[Sakkinen 90a] Markku Sakkinen. ‘‘Modelling order in databases’’.
[Kangassalo &c 90], 177 � 202.

[Sakkinen 90b] Markku Sakkinen. ‘‘Between classes and instances, aided
by titles’’. Manuscript, University of Jyväskylä 1990.

[Sakkinen 91a] Markku Sakkinen. ‘‘On treating Basic and Constructed
Types Uniformly in OOP’’. [Palsberg &c 91b], 60 � 63.

[Sakkinen 91b] Markku Sakkinen. ‘‘Another defence of enumerated
types’’. ACM SIGPLAN Notices Vol. 26 No. 8 (August 1991), 37 � 41.

[Sakkinen 92a] Markku Sakkinen. Multiple Inheritance and Multiple Sub-
typing (ECOOP’92 workshop papers). University of Jyväskylä 1992.

[Sakkinen 92b] Markku Sakkinen. ‘‘On the initialisation of shared super-
class parts’’. [Sakkinen 92a], 42 � 43.

[Salminen 87] Airi Salminen. ‘‘A Relational Model for Unstructured
Documents’’. [Yu &c 87], 196 � 207.

[Salminen 89] Airi Salminen. A Model for Document Databases. Disserta-
tion, University of Jyväskylä 1989.

[Shriver &c 87] Bruce Shriver, Peter Wegner (Eds.). Research Directions in
Object-Oriented Programming. MIT Press 1987.

[Snyder 87] Alan Snyder. ‘‘Inheritance and the Development of Encap-
sulated Software Systems’’, [Shriver &c 87], 165 � 188.

[Stein 88] Lynn Andrea Stein. ‘‘Compound Type Expressions: Flexible
Types in Object Oriented Programming’’. [Meyrowitz 88], 360 � 361.

[Stein &c 89] Lynn Andrea Stein, Henry Lieberman, David Ungar. ‘‘A
Shared View of Sharing: the Treaty of Orlando’’. [Kim &c 89a], 31 �
48.

[Stroustrup 91] Bjarne Stroustrup. The C++ Programming Language, Sec-
ond Edition. Addison-Wesley 1991.

[Taivalsaari 91] Antero Taivalsaari. Towards a taxonomy of inheritance
mechanisms in object-oriented programming. Licentiate thesis, Univer-
sity of Jyväskylä 1991.

[Touretzky 86] David S. Touretzky. The Mathematics of Inheritance Sys-
tems. Morgan Kaufmann 1986.

[Wegner 87] Peter Wegner. ‘‘Dimensions of Object-Based Language
Design’’. [Meyrowitz 87], 168 � 182.

[Wegner 90] Peter Wegner. ‘‘Concepts and Paradigms of Object-Ori-
ented Programming’’. ACM OOPS Messenger Vol. 1 No. 1 (August
1990), 7 � 87.

41

[Wegner &c 88] Peter Wegner, Stanley B. Zdonik. ‘‘Inheritance as an
Incremental Modification Mechanism or What Like Is and Isn’t
Like’’. [Gjessing &c 88,] 55 � 77.

[Whitewater 91] ACTOR® Programming, Eighth Printing. The Whitewa-
ter Group 1991.

[Yonezawa &c 87a] Akinori Yonezawa, Mario Tokoro (Eds.). Object-Ori-
ented Concurrent Programming. MIT Press 1987.

[Yonezawa &c 87b] Akinori Yonezawa, Etsuya Shibayama, Toshihiro
Takada, Yasuaki Honda. ‘‘Modelling and Programming in an Object-
Oriented Concurrent Language ABCL/1’’. [Yonezawa &c 87a], 55 �
89.

[Zdonik &c 90] Stanley B. Zdonik, David Maier (Eds.). Readings in
Object-Oriented Database Systems. Morgan Kaufmann 1990.

[Yu &c 87] C. Yu, C. Van Rijsbergen (Eds.). Research and Development in
Information Retrieval, ACM SIGIR Conference Proceedings. ACM Press
1987.

43

CHAPTER 2

ON THE DARKER SIDE OF C++

First published in the Proceedings of ECOOP ’88 (Editors S. Gjessing and
K. Nygaard), European Conference on Object-Oriented Programming
(Oslo, August 1988), Lecture Notes in Computer Science 322, © Springer-
Verlag 1988 (p. 162 - 176). — Reprinted with the permission of Springer-
Verlag. This version has more complete trademark acknowledgements.
Other differences to the original version are purely typographic.

44

ON THE DARKER SIDE OF C++

Abstract

We discuss several negative features and properties of the C++ language,
some common with C, others pertaining to C++ classes. Remedies are
proposed for most of the latter ones, most of the former ones being feared
to be already incurable. The worst class-related defects claimed in
present C++ have to do with free store management. Some hints are
given to programmers on how to avoid pitfalls.

1. Introduction

The C++ programming language [Stro1, Stro2] is a rather new language
for which, evidently, no standardising efforts are yet underway; but it has
had significant influence on the draft ANSI standard of the C language, as
mentioned in [Bana]. It is reportedly used quite a lot at AT&T, where it
was originally developed. In addition to that, C++ seems to gain popu-
larity in the UNIX™ community. The USENIX society has recently

45

arranged a workshop on C++ [Caro]. There are commercial implementa-
tions available, e.g. [Gloc]. Furthermore, various software packages have
been and are being implemented in C++ [Carg, Rich, Wien, Nuut, Gorl].
There does not seem to be much critique yet published on the language;
in [Snyd] and [Wegn] some of its features are compared with several
other languages. The paper [Nuut] does indicate rather strong discontent
with C++, but does not specify it closer (although that paper comes from
Finland, too, I do not suspect a general unsuitability of C++ for Finnish
temperaments).

This paper tries to bring up some points in and around C++ that I
think bad or problematic. Some of them are flaws in the currently avail-
able implementations only, some might be considered and ameliorated in
the evolution of the language, but some others are certainly inherent and
should be taken into account by programmers when deciding which lan-
guage to use for a given task. The focus will be on semantics, orthogonal-
ity, compile-time detection of possible errors, and somewhat on run-time
efficiency. Problems that concern concrete syntax only are bypassed,
because I consider them both relatively unimportant and to a high degree
matters of taste. This paper is not a balanced assessment of C++, the lan-
guage’s virtues are mostly mentioned only where they are connected to
some problem. In consequence, readers are warned that the language is
not as bad as would appear from the present exposition alone; read some
of Stroustrup’s articles to see the sunny side.

My practical acquaintance with C++ stems from an ongoing
project, the purpose of which is a document database management sys-
tem. In that project, the AT&T C++ Translator, Release 1.0 [AT&T] was
used first. Now the work is continuing with Glockenspiel ‘designer
C++’™ [Gloc], on another computer. While the final revision of this
paper was going on, our department got the Release 1.2 of AT&T’s prod-
uct for the first computer; there is no significant experience on it yet. It is
a definite lack in my background that I have no practical experience with
e.g. Simula™, Ada®, or Smalltalk™. All readers can take § 2 with a grain
of salt because I am no authority on object orientation.

At the request of the Program Committee, I have tried to make the
text understandable to people without previous knowledge of C++ or
even C. For this purpose, there is a short Appendix describing several
language features that are used in the examples. Those who are already
committed to C will probably either find nothing new in the criticism in §
3 and 4, or disagree with it.

46

2. About object orientation and language extensions

There is no consensus about what ‘object’ and ‘object orientation’ pre-
cisely mean. The paper [Stro3] approximately equates ‘object-oriented
programming’ with ‘inheritance’, trying to distinguish it clearly from ‘data
abstraction’, which is presented as another important goal of C++. It
looks to me that the issues of object integrity and identity [Khos] have not
been considered important, or that the C heritage has made it impossible
to take them very well into account. Interestingly, the taxonomy of
[Wegn] also almost ignores the identity and integrity of objects, except in
connexion with databases (persistent objects).

Wegner classifies C++ as an object-oriented language, while CLU
[Lisk] qualifies as class-based but not object-oriented because there is no
inheritance. Ada is classified only as object-based but not class-based
because its packages have no class, i.e. type. It would be more appropriate
to regard the restricted private types as classes and their instances as
objects; Ada would then be class-based. In the sense of [Wegn], C++ has
no data abstraction (because instance variables of objects can be directly
accessible) and no virtual resources (because virtual functions cannot be
left unimplemented in their base class). It has somewhat non-strict inher-
itance (operations of ancestors can be redefined in descendants, but only
if they were declared virtual in the first place), and inheritance is by code
sharing. It can also be regarded as strongly typed.

A conspicuous omission in [Wegn] is that no distinction is made
between languages in which ‘‘everything is an object’’ (Smalltalk-80
[Gold] et al.) and those in which objects are just one kind of entity among
others. One can write huge programmes in C++ without defining any
classes at all. In Smalltalk, one must program in an object-oriented way
since no other paradigm is available. This is not to say that the Smalltalk
way is ‘‘good’’ — I don’t know whether there exists any extremely object-
oriented language that offers even nearly the same possibilities for struc-
tured programming and compile-time checking as C++ or Ada. Probably
the ‘‘Turing tar-pit’’ is easily lurking whenever programming is reduced
to a very small set of primitive concepts.

One of the primary goals in the design of C++ was upward com-
patibility with C [Harb, Bana], as far as feasible. This goal has been very
well attained, too. As a consequence, previous C users can quite well
upgrade gradually to programming in C++, in the first step just feeding
their existing C code through the C++ translator and checking if some
small modifications would be necessary. Unfortunately, this approach
has necessarily transported several drawbacks of C to C++ as well.

47

If we compare C with Pascal, for instance (a language of roughly
the same age), we find that the latter is more object oriented as far as con-
cerns the integrity of data objects. The C language was originally
designed with much more concern to machine registers than pro-
grammer-defined objects. Moreover, while Pascal is (even overly) strict,
C is sloppy. Some features have been defined so as to be convenient for
their most obvious application, but causing illogicalities in more complex
combinations. (In this respect, C resembles the UNIX command inter-
face.) On the other hand, the existence of pointers to procedures (always
‘functions’ in C terminology) makes C more object oriented in the sense
that behaviour can be connected to data. Further, the generality of
pointer expressions can often simplify the handling of complex objects in
comparison to Pascal.

Extending some existing language with lower-level capabilities is
not very difficult in general. The extreme in this direction is the escape to
assembler, which exists in several languages or implementations. But
when someone sets out to enrich an existing language with object-ori-
ented or other higher-level features, trying to keep totally upward compat-
ible with the base language can be problematic. Obviously, it is easier to
extend a language that seems too restricted (e.g. Pascal) than one that has
very general, powerful, and accordingly error-prone facilities (e.g. C).
One recent example of extending Pascal in an object-based direction (in
CLU fashion) is presented in [Saje, Olsz].

Several ‘‘machine-oriented high-level languages’’ such as Mary
[Conr] have tried to solve the dilemma of powerful low-level features and
protected high-level environment by defining a safe subset of the language
and requiring some explicit operations (e.g. compiler options) or notation
for programme modules or sections of them that use unsafe features. This
principle could perhaps be applied to C++, too, to alleviate the hetero-
geneity between high-level and even very low-level operations. Of
course, it would be much more difficult to decide a posteriori which facili-
ties should be classified as unsafe than design a new language with an
eye to this classification.

3. Miscellaneous problems inherited from C

The concept of a type is somewhat vague already with simple types. For
instance, char and short are something between full-fledged types and int
crammed into a smaller space. In contrast, e.g. a pointer to short is a true

48

type of its own, different from a pointer to int. Moreover, long is a true
type, separate from int, although they are physically identical in typical
32-bit implementations. Because of operator and function overloading,
type is a more important concept in C++ than C, and the vagueness thus
more irritating. As an example, one cannot define an overloading of a
function identifier such that there is one variant for an int parameter and
another for a char parameter.

Enumerations, which possess different degrees of ‘‘typeness’’ in
different C implementations (or are not implemented at all) [Harb], are
definitely not types in C++, just another way to declare int constants and
synonyms for ‘int’. This is a pity, especially considering the overloading
facility. Furthermore, since C++ has a general means to declare named
constants (which C traditionally lacks), enumerations are completely
superfluous under the present definition.

A programmer can prescribe the evaluation order of expressions
by using parentheses, except between operators of the same precedence.
The compiler is free to rearrange those operators that are regarded as
associative or commutative. This stipulation in C is intended to allow
more extensive optimisations. It overlooks the fact that even the basic
arithmetic operations are not absolutely associative because of overflows,
underflows, and rounding errors. This misfeature could be removed
from C++ without affecting upward compatibility with C.

The language proper is not concerned with input and output;
those functions are relegated to the standard library. (Ada has followed
the same model.) This already tends to make them more error-prone than
incorporating them into the language, because both compile-time and
run-time possibilities to check function parameters are limited (although
better in C++ than in most dialects of C). The facilities of the standard
I/O functions are on a very low level of abstraction when compared to
Pascal. However, just about anything can be done using them, whereas
standard Pascal I/O is far too restricted for other than toy applications.
The low level is probably not a big nuisance to software houses that
define and build their own high-level I/O on top — it will be easily (?)
portable across C++ implementations. — Object input/output is envis-
aged in [Stro5].

49

4. Array problems

In my opinion, the worst common feature of C and C++ (‘‘degree of bad-
ness weighted by importance’’) is the handling of arrays. An array type,
say, atype defined by the declaration

typedef basetype atype [dimension];

is handled as a true type only when storage is allocated for an atype vari-
able, or when arithmetic is done in a pointer expression of type atype*
(pointer to array of type atype). Otherwise, the name of an array just
stands for the address of its first element. Continuing the above example,

atype array1, *apointer;
apointer = &array1;

the assignment is illegal in C++ (and in many C dialects); it would be
legal if atype were any other kind of data type except array! (Cf. explana-
tion in appendix.)

Array handling in C and C++ is very much prone to devious pro-
gramming errors, mainly because it is equated to pointer handling. Of
course, indexing can be regarded as just a special case of pointer arith-
metic, but it is very common, and could be made essentially safer by
treating it specially as most languages do. I have not seen ‘‘index check-
ing’’ (what a familiar and natural thing to Fortran and Pascal program-
mers) mentioned in connection with any C or C++ compiler. There are no
aggregate operations for arrays in the language, which means that even
assignments between arrays must be programmed by writing explicit
loops; this creates more chances for indexing errors.

The original main reason for the unfortunate way of handling
arrays was probably a striving to pass parameters and function results in
hardware registers. That caused arrays to be passed by address, whereas
simple types are passed by value. The principle makes it in most cases
impossible to write sensible and efficient array-valued functions. The
actual array cannot be a local variable of the function, because it would be
destroyed when returning. Therefore, it must be created by the new
operator, and the caller of the function is responsible for explicitly delet-
ing it later. Actually, the language specification [Stro1] forbids array-val-
ued functions, but present compilers accept them gladly.

The unorthogonality of the C and C++ approach to arrays
becomes even more evident if we think about embedding an array into a
structure with no other components. As a parameter to a function, the
structure would then be passed by value, the array by address. More-
over, an assignment statement would be legal for the structure, but not
for the embedded array. Conversely, any structure can be embedded in a

50

one-element array, with similar consequences.
A very important special case of arrays are character strings. They

also serve well to illustrate the defects of not handling arrays as objects.
To make general routines for handling strings of different length at all
possible, there is a convention of marking the end of a string with a null
byte (the compilers generate it for string literals). This means that the
whole string must be traversed even when only the actual length must be
found out. Also, there is no built-in way to mark the reserved length of a
string variable, but the programmer must keep care of it separately.
Accordingly, most string handling functions in the standard library come
in two variants, one of them having as an additional parameter the maxi-
mal number of characters to be read or modified. — Note that there is no
way to make a null byte a part of a string as interpreted by the standard
functions.

The term ‘string’ is conventionally used in C and C++ literature to
mean a pointer to an actual character array. Exactly speaking, the type of
such a pointer is not ‘pointer to character array’ as one would expect, but
‘pointer to character’ (char*), i.e. it points to the first character of the
actual string. One reason for this convention must be the pointer assign-
ment problem described in the first paragraph. One consequence is that
the declared types of a pointer to a null-terminated string and a pointer to
a single character become identical.

5. Classes

Classes, borrowed from Simula 67 [Dahl], are the vehicle C++ offers for
object orientation. They have facilities comparable to classes in other lan-
guages. An equivalent for the inspect statement of Simula has deliber-
ately not been included in C++, because it would be contrary to the quest
for data abstraction. The possibilities of data hiding are very versatile;
they have even been enhanced [Stro4] from the original. Each component
of a class is either private (the default: accessible only to member and
friend functions), protected (accessible also to member and friend func-
tions of any derived class), or public (accessible wherever the class is
defined).

The equivalent of a method in Smalltalk is called a member function
in C++; it is common to all instances of a class. This is quite another thing
than a pointer-to-function component, which naturally can be different in
different instances. Functions and even whole classes (which means all

51

their member functions) can also be declared friends of some class so that
they can access its private components. Probably at the time of this con-
ference, available implementations of the language will support even
multiple inheritance [Stro4]. Until now, friend declarations must often
have been used as a substitute for it.

Classes in C++ are defined in such a way that a struct becomes
just a special case of a class, which is nice economy of concept. Also,
variables of a class type can be defined like any other variables: they can
belong to any storage class (need not be allocated by new) and be compo-
nents of arrays and other classes. (Restrictions to this will be mentioned
in the following sections.) Class declarations are further organised so as
to make a very efficient run-time implementation possible. This principle
causes compile-time drawbacks: in most cases, changing the declaration
of a class, even the private parts, requires all modules utilising that class
to be recompiled [Carg].

Objects of a given class are, in principle, all of the same size. As
mentioned in [Stro1] (§ 5.5.8), there are ways to circumvent this restriction
for class objects allocated on the free store, but they are not without prob-
lems. When one wants to implement classes for things such as well-
behaved variable-sized character strings, or anything else of really
dynamic size, in practice one has to declare two classes. One of them is
the generally visible main class, and the other is an auxiliary class, which
contains the actual variable-sized objects and is only used by the main
class.

Contrarily to C++, many languages, e.g. CLU [Lisk] and those
proposed in [Saje, Olsz], always implement aggregates indirectly via
implicit pointers, thus increasing run-time overhead for every level of
structure in comparison to direct aggregates. The previous paragraphs
imply that in several cases, that method can be easier in the programme
development phase. To be fair, C++ does not prevent a programmer from
using classes in an indirect way in order to relieve the compile-time over-
head where possible. It suffices to declare

class myclass;

in a source module where only pointers to myclass objects will be han-
dled. However, the CLU approach would then result in simpler source
code in those modules in which the C++ programmer must be concerned
about both myclass and myclass* values. We will return to this subject in §
12. — One can observe that one kind of indirect aggregate is very com-
mon in C and C++ programming: the pointer array. It is especially often
used instead of an array of character strings, with obvious advantages.

The book [Stro1] uses the word ‘member ’ (of a class) in a meaning
that, in my opinion, is in contradiction with its connotations in set theory
and everyday speech. In this paper, the word ‘component’ will be used
instead. However, ‘member function’ does not sound misleading,

52

because normally every invocation of a member function of some class is
connected to an object (‘member’ in the ordinary sense) of the class.

Within a member function, there is always an implicit parameter
this, which is a pointer to the class instance whose component the func-
tion is invoked as. Perhaps a little surprisingly, a member function of
myclass, say, can be called even without an instance of myclass:

myclass* myc_p = 0; // null pointer
myc_p -> myfunction (); // call function via pointer

In the above invocation of myfunction, the current instance pointer this
will simply be null. However, this bit of code will crash if myfunction is a
virtual function (cf. § 8), because in that case the class object must really
be accessed at run time to find out the appropriate variant of the virtual
function. By adding an explicit class prefix like myclass::myfunction even a
virtual function can be invoked.

6. Problems with constructors and destructors

The possibility to declare constructors for a class is very useful, indeed
necessary for achieving sophisticated abstract data types. Among other
things, they permit a distinction between initialisation and assignment,
which is often crucial (although uninteresting for simple types). Con-
structors also allow the creation of auxiliary objects ‘‘behind the scenes’’,
as mentioned in the previous section. Such constructors are typical cases
which necessarily need a destructor as well, to delete the auxiliary
objects.

However, constructors and destructors are not without problems,
the way they are defined in C++. One obvious defect is that, although
constructors will typically take parameters, there is no way to pass
parameters in the definition of an array of class objects. More subtle diffi-
culties may result from the fact that the order in which the destructors for
the automatic variables of a block will be called is undefined.

The capability for the programmer to take care of memory alloca-
tion within a constructor is useful; it is the only way to create class objects
of variable size. It can also allow a more efficient allocation of specific
classes. Unfortunately, it is presently offered in a rather unstructured, ‘‘ad
hoc’’ manner, by the appearance of an assignment to the automatically
defined variable this. (Correspondingly, a zero value can be assigned to
this in a destructor to bypass standard memory deallocation; this possi-
bility is needed less often.) There is no compile-time check against using

53

such a constructor on external, static, or automatic variables (which are
necessarily allocated before the constructor can be called); the program-
mer must make an appropriate test at run time.

The present C++ translators do not allow the new and delete
operators to be overloaded for a class, contrarily to § 6.2 of [Stro1].
According to [Stro4], the facility will be implemented in the next release.
By overloading new and delete the need to assign to this in constructors
and destructors can be obviated. Unfortunately, this solution does not
work for variable-sized objects.

If one builds a large structure of class objects connected hierarchi-
cally (or otherwise) to each other, it can easily happen at the end of the
programme that all those objects are destroyed laboriously one by one, to
no benefit at all. That can take approximately as much time as building
the structure. Fortunately, this ‘‘domino effect’’ can be avoided, e.g. by
having enough strategic objects created by new and not deleting them at
the end.

If a class aclass has a constructor with one parameter of some type
atype (there can be additional parameters if they have default values),
then that constructor will also be used automatically as a conversion
function so that

atype tom; aclass jerry = tom;

will succeed (without compiler warning). This is mentioned in [Stro1], §
6.3.1 and 6.3.2. In many cases, one might not want such automatic con-
versions, as they can cause programming errors to pass unobserved.
Then one must simply avoid defining one-parameter constructors.

7. Mistakes with derived classes

A derived class in C++ means a class type that possesses all components of
its base class, and normally some additional components. A class can also
have components of another class type; this is not quite the same as being
a derived class, but the problems to be discussed in this section are the
same for both cases. The major difficulties with derived classes, and
classes with class components, occur in constructor and destructor func-
tions when there is explicit storage allocation and deallocation. That is,
we get more complicated problems in addition to those discussed in the
previous section.

The "Reference Manual" part of [Stro1] says (in §8.5.5):

54

‘‘If a class has a base class or member objects with constructors, their con-
structors are called before the constructor for the derived class. The con-
structor for the base class is called first.’’

Correspondingly, it says (in §8.5.7):
‘‘The destructor for a base class is executed after the destructor for its de-
rived class. Destructors for member objects are executed after the destructor
for the object they are members of.’’

The reference manual recognises that the case is different if there is
explicit storage allocation in the constructor of the derived class, by the
following passage (in §8.5.8):

‘‘Calls to constructors for a base class and for member objects will take place
after an assignment to this. If a base class’s constructor assigns to this, the
new value will also be used by the derived class’s constructor (if any).’’

The C++ reference manual errs badly in the last point above: the
constructors of both base and derived class should not be allowed to
assign to this, or conflicting memory allocations will result. (The manual
also forgets to say that if a destructor of a derived class assigns a zero
value to this, then the destructors for the base class and any component
classes should be called before that assignment.) Even when these errors
are corrected, this approach is very difficult in practice, because it cannot
generally be known at compile time where the assignment to this will
actually take place.

At least both C++ implementations mentioned in § 1 make a gross
error in the opposite direction to the manual: If there seems to be an
assignment to this in the constructor (destructor) of the derived class,
they simply do not call the constructor (destructor) of the base class at all!
This bug must have caused a lot of trouble to people programming in
C++. One way of handling the storage allocation problem for derived
classes consistently will be presented in § 9.

8. A problem with virtual functions

The smaller difference between the base class of a derived class and a
class component of a containing class is that there is no direct way to han-
dle the ‘‘base object’’ as an entity, only its components separately. The
main difference is the ability to define virtual functions in a base class,
which can then be redefined in some derived classes if required.

Unfortunately, virtual functions are another feature, at least in the
present implementations of C++, that does not mix freely with

55

programmer-controlled memory allocation. Moreover, neither the book
[Stro1] nor the compilers will warn you about the pitfall, which is the fol-
lowing. The ‘‘first hook’’ for the virtual function facility is a pointer,
placed immediately after all declared data components of a base class that
has at least one member function declared virtual. If variable-sized objects
are allocated, the pointer will be left in the middle. Fortunately, there is a
portable way to circumvent the difficulty.

The solution is best illustrated by a small example, showing part
of a class declaration (further public components, denoted by the ellipsis,
may be functions and variables), a constructor and another public mem-
ber function. The private member function contents is defined within the
class declaration itself (thus automatically becoming an inline function).

class flexstring {
unsigned space, length;
char* contents ()

// pointer to start of actual string
{ return (char*) this + sizeof (flexstring); }

public:
flexstring (unsigned = 20);

// constructor with default size
void copy (char*);

// copy ordinary string into flexstring
virtual void put ();

// output (somehow)
. . .

};

flexstring::flexstring (unsigned size = 20)
{

this = (flexstring*) new char [size + sizeof (flexstring)];
space = size; length = 0;

}

void flexstring::copy (char* cp)
{

length = min (strlen (cp), space);
// min is not a standard function,

strncpy (contents (), cp, length);
// but strlen and strncpy are standard

}

The sizeof operator gives the size of a flexstring object as known to the
compiler, including the virtual function pointer. The constructor allocates
space for this plus the requested number of bytes for the actual string to
be stored. All other member functions that need to access the actual
string (copy above is a simple example) get its address by calling contents.

56

Another solution to the same problem is to declare an auxiliary
class that has a virtual function, then derive all classes that need both
variable-sized instances and virtual functions from that auxiliary class:

class virtual_aid {
virtual void dummy () { } // do nothing

};

This solution is simpler (derived classes will not become as contrived as
flexstring above), but probably has a greater risk of not working with all
coming C++ releases if the virtual function mechanisms are changed. The
completely straight approach to variable-sized class objects in § 5.5.8 of
[Stro1] is successful because the class char_stack defined there has no vir-
tual functions.

One should be aware that the sizeof operator is purely a compile-
time device in all cases. It does not behave at all like virtual functions: if p
is a pointer to aclass then sizeof(p*) will always yield the declared size of
an aclass instance although p may point to an instance of a derived class.
It would not even be possible to offer a general ‘‘runtime-sizeof ’’ operator
without a significant change of current C++ object implementation. This
is a consequence of the weak support of object identity.

9. Some suggestions to cope with the problems

We will try to sketch some amendments to the C++ language that would
settle most of the difficulties described in § 6 to 8. A complete proposal
with a detailed syntax would be a little beyond the scope of this confer-
ence paper.

As already mentioned in § 6, it will become possible to overload
the new and delete operators for a class. Very importantly, the new oper-
ator function will get as one parameter the size of the object to be allo-
cated. It is thus possible to write an allocator for a base class that will
work correctly for any derived class also. Alternatively, one may write an
overriding allocator for some derived class if needed. In either case, the
appropriate version of new will be called before any constructor and so
the need to assign to this within constructors disappears. Hence, the con-
structors can really be invoked in the order described in § 7.

An analogy of the previous paragraph holds for destructors.
However, the delete operator function does not get any size parameter.
Data structures to store programmer-allocated class objects must there-
fore be designed so that the size of each allocated object is known at

57

deletion time.
This coming improvement in storage allocation and deallocation

will only cater for classes whose all instances are of the same size, as we
said in § 6. The reason is that the size passed to new is the compile-time
(declared) size of the original or derived class. In principle, it would be
possible to declare a differing object size for any constructor of a class.
This would still be a compile-time matter, thus easily applicable even to
automatic, static, and external class variables. With C++ as it stands, a
programmer can obtain an equivalent effect by declaring a separate (typi-
cally derived) class for each object size. A proliferation of classes can then
become a problem, although multiple inheritance may help a little.

An orderly solution to the problem of run-time determination of
the size of each class instance (cf. example of § 8) would be more compli-
cated. The following is one feasible solution: Corresponding to each con-
structor for which dynamic size determination is desired, a size calcula-
tion function with the same parameter signature as the constructor must
be declared. This function will automatically be invoked with the initiali-
sation parameters to yield the size parameter to new. After new has allo-
cated the correct amount of space, the constructor will be called with the
same initialisation parameters as the size calculation function. The com-
piler should allow such a constructor to be invoked only on objects cre-
ated by the new operator. In present C++, the designer of a class has no
means to enforce such a constraint, but obeying it is necessary with a
class like flexstring. I cannot imagine other reasons than the creation of
variable-sized objects, that would absolutely forbid a constructor to oper-
ate e.g. on automatic variables.

One consequence of the last proposal is that a variable-size con-
structor must not be used to initialise the base class of a derived class, nor
a component of another class. In consequence, the whole example of the
previous section cannot be written in this manner by just simplifying the
constructor and adding a separate size calculation function: declaring
functions virtual serves no purpose unless derived classes can be defined.
This problem can be solved as suggested in § 5, in a way that might have
been clearer in the first place (but we had to illustrate a point in current
C++): We make the anonymous variable-sized part of flexstring a separate
class, say flexbytes, and add a pointer to it as a component of flexstring (the
contents function is no longer needed). Now, only flexbytes has variable-
sized instances, and flexstring can have virtual functions.

From the object-oriented standpoint, it would appear beneficial if
every class instance had a run-time descriptor at its beginning. At
present, classes with virtual functions have a kind of descriptor (unfortu-
nately not at the beginning, as explained earlier) but other classes have
none. The associated overhead would not be unreasonable even if the
descriptor included a length field. A standardised length field would

58

facilitate the writing of constructors, destructors, and memory allocators
/ deallocators. The struct keyword would remain for declaring plain C
structures without any implicit overheads.

The two minor problems mentioned in § 6 could be solved if con-
sidered worthwhile. Constructor parameters for an array of class objects
could be passed by using the same syntax already invented for initialiser
lists of aggregates ([Stro1] Reference Manual, §8.6.1). The order of
destruction of a block’s automatic variables could be defined as the
inverse of their creation order; the newer translator versions already seem
to work like this.

10. Operator overloading

The capability of operator overloading for class operands is such that a
separate function must be written for each desired operator. This can
cause some difficulties for both the implementer and the utiliser of a
class. The implementer of a typical general-purpose class must write a
great number of operator functions. The utiliser must learn the semantics
of each operator separately, since they need not have similar relationships
to each other as they have with the basic data types.

The most evident area in which the problem just mentioned could
be alleviated are the six different relational operators. They could be
taken care of by writing only one comparison function, which should be
directly accessible, too. Indeed, for comparing strings, the standard
library of C and C++ contains only a function that returns a negative
number if the first string is lexicographically less than the second, a posi-
tive number in the converse case, and zero if the strings are equal. An
expedient stipulation would be that a comparison function for a class
automatically defines all relational operators in the obvious way, but if
there is no comparison function then any or all relational operators can be
defined explicitly. — The basic idea can be used in defining classes even
though it is not built into the language. The paper [Sakk] elaborates on
this subject.

The modifying assignment operators (‘+=’, ‘*=’, etc.) are further can-
didates for reducing the number of functions. Probably the most useful
way would not be to define them automatically on the basis of the corre-
sponding ‘‘ordinary’’ operators, but vice versa. That means, if ‘+=’ is
explicitly defined in some class aclass for a right-hand operand of type
atype (not necessarily the same as aclass), the variable a is of type aclass

59

and the variable b of type atype, then the expression a + b would be auto-
matically implemented as

(aclass temp = a, temp += b)

(This is not real C++, since declarations are not allowed within expres-
sions.) An explicit definition of ‘+’ would only be allowed for a class if
‘+=’ is not defined for it (with the same type of right-hand operand). The
same principle applies to all modifying assignment operators.

When the operators ‘++’ and ‘--’ are overloaded, the distinction
between their postfix and prefix application is lost. This could be reme-
died, and the semantics of these operators with classes be made even oth-
erwise analogous to that with basic types, as follows. If, for the class
aclass, the operator ’+=’ is defined with a right-hand operand of some
arithmetic type, and a is of type aclass, then the pre-increment expression
++a would automatically be defined as a += 1. Otherwise, an explicit def-
inition for ’++’ could be written. The post-increment expression a++
would in both cases be automatically implemented as

(aclass temp = a, ++a, temp)

(Even this is not real C++, of course.) The decrement operator would be
handled similarly.

The undesirability of the rearrangement of expression evaluation
order, noted in § 3, is really pronounced with overloaded operators. It is
totally up to a class implementer to achieve all those commutativity and
associativity properties that the compiler assumes some operators to
have.

11. Constants and pointers to constants

C++ allows one to derive a constant type from any non-constant data
type. This general ‘constant’ concept is very useful, exists in many other
languages, and is unambiguously defined when applied to ‘‘pure data’’
types. However, when the base type is a class with member functions,
there arises a problem that none of the references has observed: what
member functions, if any, of a constant class instance should be callable?
The present implementations appear to allow all member functions to be
called, including the assignment operator if it is overloaded. A real solu-
tion to this problem would require, either an explicit declaration of those
member (and friend) functions that are allowable with constant class
objects, or disproportionate run-time effort, at least on typical current

60

computers (with a truly sophisticated hardware architecture like that of
Burroughs, it could be easier). We should thus only warn programmers
not to trust ‘‘constants’’ of any class that has any modifying member or
friend function.

The book [Stro1] discusses pointers to constants (in § 2.4.6). More
exactly, a ‘pointer to constant’ is defined as a pointer through which the
referenced object cannot be modified. In consequence, Stroustrup contin-
ues:

‘‘One may assign the address of a variable to a pointer to constant since no
harm can come from that. However, the address of a constant cannot be as-
signed to an unrestricted pointer since this would allow the object’s value to
be changed.’’

This is logical. Unfortunately, the old C++ Translator [AT&T] turns things
upside down: a pointer to constant can be assigned directly to an unre-
stricted pointer variable without any warning, but the reverse assignment
cannot be done even with an explicit type cast (which normally allows
almost anything to be assigned to any variable)! This behaviour has been
corrected in the newer releases of the translator.

There are situations in programming when one would like to clas-
sify the above kind of pointer as a ‘nonmodifying pointer’ and have also
a ‘pointer to true constant’ available. Then one could assign a static local
pointer to constant once in a function and rest assured that even no other
part of the programme could modify the constant between invocations of
the function. Obviously, assignment of a pointer to constant to a nonmodify-
ing pointer variable would be allowed, but not vice versa.

12. Some practical difficulties and hints

The definition and implementation of a typical general-purpose class
takes quite a lot of effort. Certainly, the same goes for a typical general-
purpose private type in Ada. Modules that use several classes will need
to include several big header files [Carg] (some of the standard header
files needed e.g. for standard I/O are already large). This costs so much
in compilation time that one is inclined to write much longer source mod-
ules than would be optimal from some other viewpoint. Compilations
become expensive and time-consuming also for the reason that the cur-
rent C++ implementations translate the source code into ordinary C (with
an appreciable increase in code size) and then invoke the C compiler. The
paper [Dewh] can give interesting insight into some aspects of the

61

language and the AT&T translator, even to persons who are not planning
to build their own C++ compiler.

A general guideline for C++ programmers to minimise inclusion
and recompilation overheads is as follows: Define hierarchies of derived
classes only when every level must be visible to the ‘‘end user’’, as in the
example ‘employee - manager - director - vice_president - president’
([Stro1], § 7.2.5). Define classes with class components only when needed
for runtime efficiency, or if the component classes are very simple. In
other cases, declare just pointers to lower-level classes as components of
upper-level classes. — Many of the ideas presented in [Stro5] seek to
improve essentially the speed and ease of compilation, module manage-
ment, and software maintenance. When such improvements get imple-
mented, this advice will become less relevant.

Considering the problems discussed in § 8, you should regard any
class whose constructor may create instances of different sizes as abnor-
mal. Such classes should not be visible to the ‘‘end user’’ but be hidden
behind normal classes. An abnormal class should be kept disjoint with all
other classes in the sense that it should be neither a derived class itself
nor a base class of another, derived class, nor a component of another
class. However, no harm can arise from a normal class being a compo-
nent of an abnormal one. Do not define functions that return abnormal
values: according to [Stro6] there is no commitment to support variable-
size objects. The earlier version of the C++ Translator [AT&T] handled
such return values wrong; current versions handle them correctly in many
cases, but a function that returns an abnormal class value may again
cause mysterious errors with some future release.

If you define some class aclass with a constructor (a typical non-
trivial class will mostly need it), it is not advisable to define functions
returning a value of type aclass even if the class is normal. At least cur-
rent C++ versions implement them in a very inefficient way. It is better to
have an additional parameter of type aclass* or aclass& (a reference, cf.
appendix), but so that the object to hold the value is created before the
call, not in the called function. Likewise for reasons of efficiency, you
should avoid passing large class objects directly as parameters, because
they must then be physically copied; again, rather use pointers or refer-
ences, but now to constant since the effect of a value parameter is desired.
This does not hold if the function really needs a local, modifiable copy or
the parameter object. Also, a pointer to an allegedly constant class object
is not completely safe (cf. § 11).

To my knowledge, there are at present no debugging facilities
usable at the C++ level. When debugging, one must resort to the C level,
except for source programme line numbers. The most awkward thing in
this is that the C names generated by the translator from overloaded C++
identifiers can be extremely long and hard to type. Moreover, the

62

debugging tools usually available in UNIX environments are rather unso-
phisticated and hard to use e.g. in comparison to the VAX/VMS™ debug-
ger. Better tools are coming — Pi [Carg] is an example of a more
advanced debugger. Even today, the personal overall assessment in [Tric]
compares C++ favourably over Common Lisp as a software development
tool.

13. Conclusion

If a little pun is allowed, perhaps incrementing C by 1 is not enough to
make a good object-oriented language to all tastes. The existence of such
ambitious object-oriented programming libraries as Gorlen’s OOPS [Gorl]
is some evidence of the capabilities of C++, although one cannot claim
that C++ is object-oriented because OOPS is object-oriented and written
in C++. One advantage of C and C++ over several other languages is that
the capability to handle many machine-dependent aspects of program-
ming explicitly in the language often makes it possible to write very
portable code, paradoxical though this may sound. Of course, the same
capability also makes it possible for bad programmers to write utterly
unportable code.

The realm in which C++ may be competitive against truly high-
level, object-oriented languages would be those tasks for which the low-
level capabilities afforded by C++ are essential. Development plans for
the document database management system mentioned in § 1 are an illus-
trative example. The user interface layer will probably be realised in Pro-
log by modifying an existing Prolog prototype [Salm] as required. Mod-
ules written in C++ will be used as Prolog primitives. Finally, an existing
database management system might be added as the third, lowermost
layer.

63

Acknowledgements

This work was supported by the Academy of Finland and the Ministry of
Education (doctoral programme in information technology).

Bjarne Stroustrup (of AT&T Bell Laboratories) has been very help-
ful and communicative, among other things by sending me copies of
some references that would otherwise have been omitted. This was
notwithstanding that the first submitted version of this paper, which I
sent him, was a lot more arrogant towards his language than the present
one. Correspondence with Stroustrup has caused numerous changes
especially in § 9 (elsewhere they concern mostly details).

The suggestions of the ECOOP’88 Program Committee have cer-
tainly helped to make this paper more generally interesting and under-
standable than the original version. Seppo Sippu (of our department) has
given useful comments at more than one stage of writing.

UNIX is a trademark of AT&T. Designer C++ is a joint trademark
of XEL, Inc. and Glockenspiel, Ltd. Simula is a trademark of Simula a.s.
Ada is a registered trademark of the United States Department of
Defense, Ada Joint Program Office. Smalltalk-80 is a trademark of Parc-
Place Systems, Inc. VAX/VMS is a trademark of Digital Equipment Cor-
poration.

References

[AT&T] UNIX System V AT&T C++ Translator Release Notes, AT&T
1985 (307-175 Issue 1).

[Bana] Mike Banahan, The C Book : Featuring the draft ANSI C Stan-
dard, The Instruction Set Series, Addison-Wesley 1988.

[Carg] T. A. Cargill, Pi - A Case Study in Object-Oriented Program-
ming, OOPSLA ’86 Proceedings, ACM SIGPLAN Notices Vol. 21
No. 11 (November 1986), p. 350-360.

[Caro] John Carolan, The Santa Fe Trail, EUUG Newsletter Vol. 8 No. 1
(Spring 1988), p. 41-44.

[Conr] Reidar Conradi and Per Holager, MARY Textbook, RUNIT
(Trondheim, Norway) 1974.

64

[Dahl] Ole-Johan Dahl, Bjørn Myhrhaug and Kristen Nygaard, SIM-
ULA 67 Common Base Language, Norwegian Computing Cen-
ter 1968 (No. S-2).

[Dewh] Stephen C. Dewhurst, Flexible Symbol Table Structures for Com-
piling C++, Software - Practice and Experience, Vol. 17 No. 8
(August 1987), p. 503-512.

[Gloc] designer C++ release 1.2 User Guide, Glockenspiel Ltd. of
Dublin 1987.

[Gold] Adele Goldberg and David Robson, Smalltalk-80: The Language
and its Implementation, Addison-Wesley 1983.

[Gorl] Keith E. Gorlen, An Object-Oriented Class Library for C++ Pro-
grams, Software - Practice and Experience, Vol. 17 No. 12 (December
1987), p. 899-922.

[Harb] Samuel P. Harbison and Guy L. Steele Jr., C : a Reference Man-
ual, Prentice-Hall 1984.

[Khos] Setrag N. Khoshafian and George P. Copeland, Object Identity,
OOPSLA ’86 Proceedings, ACM SIGPLAN Notices Vol. 21 No. 11
(November 1986), p. 406-416.

[Lisk] Barbara Liskov et al., CLU Reference Manual, Lecture Notes in
Computer Science 114, Springer-Verlag 1981.

[Nuut] Esko Nuutila et al., XC - A Language for Embedded Rule Based
Systems, ACM SIGPLAN Notices, Vol. 22 No. 9 (September 1987), p.
23-31.

[Olsz] Jacek Olszewski, Capability Oriented Aliasing Language Ratio-
nale, Technical Report No. 87/89, Department of Computer Sci-
ence, Monash University (Australia) 1987.

[Rich] John E. Richards, GKS in C++, EUUG Newsletter, Vol. 7 No. 1
(1987), p. 53-64.

[Saje] A. S. M. Sajeev and J. Olszewski, Manipulation of Data Struc-
tures Without Pointers, Information Processing Letters, Vol. 26 No.
3 (November 1987), p. 135-143.

[Sakk] Markku Sakkinen, Comparison as a Value-yielding Operation,
ACM SIGPLAN Notices, Vol. 22 No. 8 (August 1987), p. 105-110.

[Salm] Airi Salminen, A method for designing tools for information
retrieval from documents, Proc. 4th Symp. on Empirical Founda-
tions of Information and Software Sciences (1986), p. 261-272,
Plenum Press 1988.

[Snyd] Alan Snyder, Encapsulation and Inheritance in Object-Oriented
Programming Languages, OOPSLA ’86 Proceedings, ACM SIG-
PLAN Notices Vol. 21 No. 11 (November 1986), p. 38-45.

65

[Stro1] Bjarne Stroustrup, The C++ Programming Language, Addison-
Wesley 1986.

[Stro2] Bjarne Stroustrup, An Overview of C++, Object-Oriented Pro-
gramming Workshop, ACM SIGPLAN Notices Vol. 21 No. 10 (Octo-
ber 1986), p. 7-18.

[Stro3] Bjarne Stroustrup, What is ‘‘Object-Oriented Programming’’?,
Proc. 1st European Conf. on Object Oriented Programming, Paris
(June 1987), also to appear in IEEE Software, May 1988.

[Stro4] Bjarne Stroustrup, The Evolution of C++ : 1985 to 1987, Proc.
USENIX C++ Workshop, Santa Fe, New Mexico, U.S.A. (November
1987).

[Stro5] Bjarne Stroustrup, Possible Directions for C++, Proc. USENIX
C++ Workshop, Santa Fe, New Mexico, U.S.A. (November 1987).

[Stro6] Bjarne Stroustrup, private communication, 1988.
[Tric] Howard Trickey, C++ versus Lisp: A Case Study, ACM SIGPLAN

Notices, Vol. 23 No. 6 (February 1988), p. 9-18.
[Wegn] Peter Wegner, Dimensions of Object-Based Language Design,

OOPSLA ’87 Proceedings, ACM SIGPLAN Notices Vol. 22 No. 12
(December 1987), p. 168-182.

[Wien] Richard S. Wiener, Object-Oriented Programming in C++ - A
Case study, ACM SIGPLAN Notices, Vol. 22 No. 6 (June 1987), p.
59-68.

Appendix: Some features of C++ (and C)

The languages C and C++ can be called Algol-like: they are imperative
and block-structured, have largely the same complement of statement
types and basic data types as any language of the Algol family, and allow
recursion. Conspicuous syntactic differences from Algol 60 are an easier
attitude to semicolons and the substitution of begin and end by ’{’ and ’}’
respectively. Comments in C are bracketed by ’/*’ and ’*/’; C++ addi-
tionally allows end-of-line comments beginning with ’//’.

C (and C++) has a text-substitution preprocessor facility that
allows macros both with and without parameters. The capabilities most
often needed in C++ are probably compile-time inclusion of secondary
source files and conditional compilation. Several other things, common
in C (e.g. defining symbolic constants as macros), can be better done in
the C++ language proper. The preprocessor is rudimentary in

66

comparison to any modern macro assembler.
The fundamental data types of C are signed and unsigned integers

of several sizes (char is most naturally considered one of them), floating-
point numbers, and void (an empty set of values). The most important
derived data types are arrays (many-dimensional arrays are handled sim-
ilarly to Pascal), structures (struct, like records in Pascal), and pointers.
The classes of C++ are discussed in the main text. C++ allows the defini-
tion of constants (const) of any type.

The logic of a type definition is approximately inverse to that in
most Algol-like languages: it tries to describe how one will get a value of
the base type from the declared variable (or, in the case of a typedef state-
ment, from a value of the new type). Thus, in the example of § 4, index-
ing an atype value gives a basetype value, the variable array1 is of atype,
and dereferencing apointer (‘*’ is the dereferencing or indirect addressing
operator, prefixed to its operand) gives an atype value. The type ‘pointer
to atype’ is often denoted by ‘atype*’. The unary, prefix ‘&’ is the referenc-
ing or address-of operator: when applied to an (addressable) object of
type sometype, it yields a value of type sometype*. The last statement in the
example is erroneous because array1 is not regarded as a variable of type
atype, but instead as a constant of type basetype*, namely &array1[0] (array
indexes always start from 0).

Function declarations follow the same logic as variable declara-
tions. In fact, the only thing that distinguishes the declaration of an atype
variable from the declaration of a function returning atype is that there
must be a pair of parentheses after the function name (even if there are no
formal parameters). A function declaration that is also a definition is
recognised from a block of code (in braces) immediately following the
parameter parentheses. C++ accepts the attribute inline for a function,
meaning that the function body shall be in-line expanded at every place
where the function is called, thus minimising the overhead for very small
functions.

Components of classes (both data and functions) are accessed by
conventional dot notation. Alternatively, a right arrow can be used in
conjunction with a pointer to the class type (as in the example of § 5); this
is not essential but handy because the dereferencing operator ‘*’ has
lower priority than the dot (component selector).

Typing is strong as a rule (cf. § 3), but there are some implicit type
conversions (cf. example in § 6). Furthermore, explicit type conversions
or casts can be effected very generally between types; even if atype cannot
be converted to btype, at least atype* can be converted to btype*. The
example of § 8 uses traditional C cast notation in the constructor function
flexstring::flexstring to convert a char* value to flexstring*. Whenever the
target type can be expressed as just a type name, functional notation can
be used as well:

67

this = flex_pointer (new char[somesize]);
// suppose type flex_pointer has been defined

In addition to pointers, references to any data type can be declared
in C++: atype&. A reference is semantically almost the same as a constant
pointer but can cause the automatic creation of a temporary variable to
refer to, in some cases. Syntactically, declaring a formal parameter of a
function to be atype& (instead of atype*) makes function calls look just as if
one had a reference parameter (var parameter in Pascal).

The most important storage classes of variables are extern
(global), static (roughly equivalent to own in Algol 60), and automatic
(allocated on the stack). The allocation and deallocation of variables in
free store (dynamic memory, heap) is similar to Pascal. C++ has the stan-
dard operators new and delete for this purpose; in C various library func-
tions are used (depending on the environment and implementation).

C and C++ are statement languages, not expression languages like
Algol 68. However, instead of the more conventional assignment state-
ment, the main workhorse is an expression statement. The assignment
operator ‘=’ (not to be confounded with the equality test operator ‘==’) is
just an operator that both has a side effect and yields a value. In addition
to ordinary assignment, there are ‘‘modifying assignment’’ operators cor-
responding to most binary operators: their left-hand operand is evaluated
once, then used in the binary operation, and last assigned the result of the
operation (cf. § 10). As a special case, there are unary operators ‘++’ and
‘--’ for incrementing and decrementing an arithmetic variable by one.
They can be used as either prefix and postfix operators; the value of the
postfix expression is the old value of the variable. Another unconven-
tional operator, usable within any expression, is the sequencing operator
‘,’ — its left-hand operand is evaluated first (presumably for the sake of
its side effects) and its value discarded, the right-hand operand is evalu-
ated then and its value used for the whole expression (cf. § 10).

There is no ‘main programme’ nor are there ‘procedures’ in C or
C++; all statements are within functions. A function with the name main
will be recognised as the main programme, and functions with result type
void (thus returning no result) can be defined. Any function can be
invoked in the manner of a procedure call if the result is not needed.
Functions cannot be lexically nested; all functions are either on the global
level or within class declarations. It is possible to define extern and static
variables outside of functions. The type of a function is defined by its sig-
nature, i.e. the type of result and the number and types of formal parame-
ters; traditionally in C the type of a function has been determined solely
by its result type. (We use the word ‘parameter ’ in this paper, although
the C and C++ community prefers ‘argument’.)

Code and data are completely separated in principle, but pointers
to functions are possible. There is a distinct pointer type corresponding

68

to every distinct function type. If an implementation does not completely
protect code segments at run time, code can naturally be mutilated, e.g.
after casting a pointer to a function to another pointer type.

The programmer can declare any function name to be overloaded;
names of member functions (of classes) are automatically regarded as
overloaded. The C++ translator determines the correct function to apply
from the types of actual parameters and result, applying standard conver-
sions if necessary. Overloaded functions with the same name must there-
fore be distinguishable from each other by their signatures in the C++
type system. The class of a member function can be explicitly specified in
a function call thus (the type of anobject must be thatclass or derived from
it):

z = anobject.thatclass::somefunction (x, y);

Virtual functions of derived classes will very often need this possibility to
call the corresponding functions of their base classes. — Almost all opera-
tors can be overloaded analogously to functions.

It is possible to define a constructor function for a class, even sev-
eral constructors if they have different parameter signatures. If this is
done then it is guaranteed that any instance of the class, independently of
storage class, will be automatically initialised by the appropriate con-
structor before first use. Likewise, it is possible to define a destructor
function (only one) for a class. In this case, the destructor is guaranteed
to be called automatically to operate on every instance of the class when it
is being deleted. Note that this also happens to external and static vari-
ables of a class type at programme exit, but not to instances created by the
new operator unless they are explicitly deleted by delete.

69

CHAPTER 3

COMMENTS ON ‘‘THE LAW OF DEMETER’’
AND C++

First published in ACM SIGPLAN Notices, Vol. 23 No. 12 (December
1988), p. 38 - 44. — Reprinted according to the policies of SIGPLAN
(copyright not transferred to the publisher).

70

COMMENTS ON ‘‘THE LAW OF DEMETER’’
AND C++1

Abstract

A rule of good style for object-oriented programming has recently been
put forward, actually in several flavours (class vs. object, weak vs.
strong). Some possible problems in the original rule are discussed, and a
modified formulation is proposed to overcome at least part of the them.
Doubts still remain about how useful the rule is with Smalltalk and other
untyped languages. Then the application of the rule to the C++ language
is studied and shown not to be as straightforward as has been suggested.
This is largely a consequence of the intertwining of the conventional and
the object-oriented component in C++. On the other hand, being typed, it
is a promising language for enforcing rules of this kind at compile time.
A new language-specific formulation is finally presented, argumenting
that it is better in class than object flavour.

1 This work was supported by the Academy of Finland.

71

1. Introduction

The paper [Lieb2] (a shorter version appeared as [Lieb1]) suggests a sim-
ple rule for writing ‘‘good’’ code in an object-oriented language, analo-
gous to the rules of structured programming for conventional languages.
This rule is called ‘‘the Law of Demeter’’ or ‘‘the Law of Good Style’’. Its
essence could be put shortly thus (my suggestion): The methods of a
class should not depend in any way on the structure of any class, except
the immediate (top-level) structure of their own class. Further, each
method should send messages to objects belonging to a very limited set
of classes only. Together with the Law itself, the authors recommend
programmers to minimise:
(M1) code duplication,
(M2) the number of arguments passed to methods,
(M3) the number of methods per class.

The advantages of following all these guidelines are classified into
six areas in [Lieb2] §4:

• coupling control,
• information hiding,
• information restriction,
• localisation of information,
• narrow interfaces,
• structural induction.

When one speaks about programming style, that normally
includes only properties that can be assessed by static analysis of source
code. This has been the starting point in the original papers on the Law
of Demeter, of course. We will introduce here a new distinction to make
our reasonings clearer: given a style rule, we will say that a programme
(or module, or fragment) is:

• in good style if it can be verified by static analysis to obey the rule;
• in bad style if it can be verified by static analysis to break the rule;
• in questionable style otherwise.

Evidently, a style rule is the less useful, the more code fragments it will
classify as questionable; although a rule that makes everything good or
everything bad is worthless as well.

The present article presupposes that readers have either of the
original papers available, preferably [Lieb2]. Otherwise it would have
been necessary to quote too large parts of them. Those papers, although
trying to be independent of any particular language, were written some-
what from the viewpoint of Lisp/Flavors, and I am not familiar with it.
That might have caused some slight misunderstanding of the law’s conse-
quences in the next section. I hope that the terminology differences

72

between the literatures on different languages will not create confusion.
Both in the original paper on the Law of Demeter and in the

present one, there is a danger of the main message being submerged
under a mass of technical detail. We recommend the reader to keep an
eye on the bold-printed passage in the first paragraph above.

2. The law in class and object forms

The Law of Demeter is originally formulated in [Lieb2] §3 for the Deme-
ter™2 interface built on top of Lisp/Old-Flavors; while Flavors is an
untyped language, Demeter seems to be typed. The law goes effectively
as follows:

(A) For all classes C, and for all methods M attached to C, all objects to
which M sends a message must be instances of classes associated with the
following classes: (read simply: ‘‘... must be instances of the following
classes:’’ for Lisp/Flavors without Demeter)
(A1) The argument classes of M (including C).
(A2) The classes of objects created by M, or by functions or methods

which M calls.
(A3) The classes of global variables.
(A4) The instance variable classes of C.

In [Lieb1] and [Lieb2] the cases (A2) and (A3) are included in (A1)
by saying that ‘‘[those objects] are considered as arguments of M’’. We
have paraphrased the law here in a more systematic way. Obviously, we
should then, in §1 of this paper, modify item (M2) in the list of things to
be minimised into:
(M2´) the number of global variables, arguments passed to methods, and

object creations (direct or indirect) in methods;
In §7 of [Lieb2], one special circumstance is described that ‘‘vio-

lates the spirit of the Law’’: In many OOPL’s including Lisp-Flavors-
Demeter, every instance variable of a class causes a method of the same

2 Demeter is designated as a trademark in [Lieb2].

73

name, returning the current value of the instance variable, to be generated
automatically. (Another method for setting the value of the instance vari-
able is generated likewise.) Invoking such methods effectively penetrates
one level into the structure of the objects concerned. We can assume that
the authors want to implicitly follow an additional restriction that would
be approximately as follows:
(A5) No message that directly names an instance variable of its receiver

must be sent unless that instance variable’s class is itself covered
by some of the conditions (A1) - (A4).
The notion of instance variables in (A4) above is ambiguous on

purpose. In §8 of [Lieb2] a distinction is made between the Weak and the
Strong Law of Demeter, depending on whether inherited instance vari-
ables are included or not. As noted there, this distinction is not needed
with languages in which the visibility of instance variables can be defined
in class declarations. This happens to be the case in newer versions of
C++ [Stro2] (as correctly mentioned in [Lieb2], too): they have the choice
of visibility attributes public, private, and protected (visible to class itself
and its subclasses).

The above rules (A) are stated purely in terms of classes (types).
The Law of Demeter is later sharpened into terms of objects, motivated by
an example that is regarded as pathological ([Lieb2] §4). The object form
can be formulated thus:

(B) For all classes C, and for all methods M attached to C, all objects to
which M sends a message must be:
(B1) M’s argument objects (including the self object), or
(B2) objects created by M, or by functions or methods which M calls, or
(B3) objects in global variables, or
(B4) instance variable objects of C.

The ‘‘implicit rule’’ (A5) would naturally be transformed into:
(B5) No message that directly names an instance variable of its receiver

must be sent unless that instance variable’s object is itself covered
by some of the conditions (B1) - (B4).
The paper [Lieb2] claims that the object form is more natural from

the conceptual point of view, but harder to check at compilation time than
the class form. It concludes that it is better to retain the class form, also
because pathological cases as in the example are not likely to occur often.

74

3. Critique of the law in general

Concerning the choice between class and object formulation, I would
make a stronger statement than that in the previous paragraph. The Law
of Demeter is concerned with style, i.e. static reasoning about source code
(cf. §1). In a language with sufficiently strict type checking, every state-
ment can be classified as being in either good or bad style according to (A)
in a given context ([Lieb2] §10). If we switch to the object form (B), then
most bad statements will become questionable style, because only in few
special cases (e.g. literal constant objects) can two distinct object refer-
ences be compile-time verified to certainly denote different objects. No
bad statements can become good, but some good statements will become
bad. Some good statements will also become questionable style — proba-
bly often a large proportion of them. This means that the object law is a
poorer style guide than the class law.

Going to the object form would tend to mix the main issue of the
Law of Demeter with some rather different objectives. The ‘‘pathologi-
cal’’ cases remedied by the object formulation can be seen as run-time
problems, and they violate only one of the six principles listed in §1,
namely information hiding. One can construct examples that are some-
what similarly pathological but yet do not violate even the object form of
the law. The situation is analogous to the fact that the rules of structured
programming cannot remove all anomalies from procedural program-
ming. In my opinion, we should not try to accomplish too much at one
scoop.

Such skepticism notwithstanding, the object formulation is in
some way more satisfying conceptually. The class formulation will in
most cases allow each method invocation to access a very large set of
objects it should logically better not deal with. To subdivide classes only
in order to restrict the accessibility of objects to various methods would
be in glaring contradiction to the Razor of Occam (‘‘do not multiply con-
cepts without necessity’’). One can take the object Law as a goal to be
approximated in programming; the main objection above was that it is
not enforceable or checkable.

As a more technical remark: in order for the object form (B) of the
Law to be really in terms of objects, obviously one should restrict alterna-
tive (B4) into either one of the following:
(B4´) instance variable objects of those of the objects mentioned in (B1) -

(B3) that belong to class C.
(B4´´) instance variable objects of the self object.
The rule (B5) should be restricted respectively into either one of the fol-
lowing:

75

(B5´) No message that directly names an instance variable of its receiver
must be sent to other objects than those mentioned in (B1) - (B3)
that belong to class C.

(B5´´) No message that directly names an instance variable of its receiver
must be sent to other objects than the self object.

The rest of this section concerns the class and the object form equally.
The paper [Lieb2] contains no motivation explicitly for (A2) and

(B2). Including them seems to run counter to the purposes of the Law,
viz. to simplify modifications and to simplify the complexity of program-
ming. Especially allowing messages even to classes of objects created by
methods which M calls, makes it possible to look more than one level
deep into the structure of objects, which the Law specifically tries to ban-
ish. — On the other hand, probably the result class of M should be
included in the list, even in the case that M does not create its result object.

No explicit motivation is given for (A3) and (B3), either. In fact, I
don’t know exactly what ‘global variables’ mean in this context. It seems
reasonable that standard built-in classes such as integer should be
allowed, at least in those languages in which their definitions are
immutable. With regard to the goals of the Law (§1), I would still like to
require in the heading of class C an explicit listing of all classes allowed
under (A3) in C’s methods (‘known classes’). This would be a restriction of
the original law; on the other hand, we could get a useful relaxation of the
law by allowing any class K to be declared known to C, or C an acquain-
tance of K. We will speak more about acquaintances in §7.

The explanatory text in the beginning of §4 of [Lieb2] stresses that
the immediate structure of C but not of M’s arguments is allowed to be
known by M — rule (A4). This keeps us unnecessarily trapped within the
unelegant asymmetry of most OOPL’s that the first operand of an opera-
tion is in a very different role (the object owning the method) than all oth-
ers (the arguments). One elegant exception is CLOS [Bobr]; C++ is
another exception, and we will examine it closely in the later sections. I
suggest that the instance variable classes of the argument and result
classes of C should also be allowed. For a nice short justification of this,
see e.g. [Øste].

76

4. Applying the law to untyped languages

The majority of presently popular OOPL’s, including Smalltalk-80™3,
Objective-C™4 (its object component), and CLOS, are untyped. As §10 of
[Lieb2] shows, the authors have pondered on the difference between
typed and untyped languages, but maybe not sufficiently. They describe
three different cases that make ‘‘compile-time’’ checking of the Law of
Demeter impossible (i.e. make pieces of code to be in questionable style),
but fail to mention explicitly the most common and most important rea-
son: that the types (classes) of objects owned by variables cannot be
known at compile time. This will certainly cause a large part of normal
code written in any untyped OOPL to be in questionable style (§1).

Let us compare the class and object forms of the Law of Demeter
as applied to an untyped language. I suppose that object identity is never
easier to decide at compile time than class equality, in most languages.
(However, one could possibly devise a language construct in which two
objects could be verified to be different but the equality on their classes
would be undecidable.) As long as this assumption holds, all code that is
questionable under the class form will stay questionable under the object
form; thus the object law cannot be better than the class law even for an
untyped language. But we will see that, contrarily to the situation with a
typed language, it is no worse either.

The only case in which we can be sure of an object being of the
same class as an argument of the method M is referencing the object via
that argument; hence substituting rule (A1) by rule (B1) makes no good
fragment into questionable or bad. Conversely, there is no case in which
we can be sure of an object not being of the same class as an argument;
hence no fragment is bad on the basis of rule (A1) and, vacuously, no bad
fragment can become questionable by introducing rule (B1). Thus, rule
(B1) is no worse than rule (A1). — We can handle the rest of the rules
pairwise in the same way (taking some reasonable interpretation of
‘global variables’ in (A3) and (B3)) and finally conclude that the object
form of the Law of Demeter is no worse than the class form, for an
untyped language.

Unfortunately, the main lesson from the previous reasonings is
that the Law of Demeter is not very effective with untyped languages.
This can be seen either as a defect in the law or as yet another argument

3 Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
4 Objective-C is a trademark of The Stepstone Corporation.

77

in favour of strong typing in OOPL’s, or both. I would draw mainly the
second conclusion: part of the price languages such as Smalltalk must pay
for their dynamism and malleability is that the possibilities for static anal-
ysis are very limited. Perhaps we can imagine some amount of run-time
checking of the Law in the test phase of new software; an end user would
probably not be interested to get sporadic error messages like ‘‘Method
M1 of class C1 broke the Law of Demeter by sending message M2 to an
object of class C2’’. As in all testing and debugging, only negative evi-
dence from such run-time checking would be certain. Probably run-time
checking is a bit more expensive for the class form of the Law — one must
go from each object to its class and then look for equalities — so that the
object form could be preferred.

The paper [Lieb2] at many places proposes rather a reasonable
aspiration than absolute conformance to the Law of Demeter, as wit-
nessed by its §11 on minimum documentation. From this point of view,
neither the object form of the law nor its application to untyped lan-
guages are so ineffective as from the more formal perspective we have
taken here.

Contrarily to their conclusion mentioned at the end of the previ-
ous section (at the end of §4 of [Lieb2]), the authors have chosen the object
form of the law in the formulations for other OOPL’s in §12 of [Lieb2] —
perhaps motivated by problems such as above with untyped languages.
These reformulations have unfortunately been too hastily written in gen-
eral, without really considering all relevant differences of the languages.
For instance, concerning Smalltalk-80, messages to the class of C (i.e. a
metaclass object) are not explicitly mentioned, although they should
surely be allowed; the same holds for the (meta)classes of all other classes
covered by (B1) - (B4).

5. A new suggestion

In order to be a little more constructive, we present a complete new ver-
sion of the Law; as a consequence of our previous reasoning it is in terms
of classes, not objects.

(C) For any class C, and for any method M attached to C, every object to
which M sends a message must be either one of the following classes or
an instance of it, in order of decreasing preference:

78

(C1) the class C itself;
(C2) the classes of the arguments and result of M;
(C3) the instance variable classes of C;
(C4) the classes explicitly declared as known to C;
(C5) the instance variable classes of the classes mentioned in (C2).
It is additionally required that
(C6) no message that directly names an instance variable of its receiver

must be sent, unless the receiver is an instance of one of the classes
mentioned in (C1) and (C2).

The rule (C6) would be stronger and perhaps better if modified
thus:
(C6´) no message that directly names an instance variable of its receiver

must be sent.
However, I feel that this would be implicitly in terms of objects, while the
form (C6) is strictly in terms of classes.

To the list of things to be minimised (in §1), we should add the fol-
lowing:
(M4) the number of all classes in a system;
(M5) the number of classes to which and to whose instances messages

are sent, both per method and per class (union over all methods);
(M6) the number of classes covered by both (C1) or (C2) or (C4) and (C3)

or (C5), for each method;
(M7) the number of known classes per class.

Note that the items (M4) - (M6) are equally valid for the original
law (A), except that (M6) would need an accordingly different formula-
tion:
(M6´) the number of classes covered by both (A1) or (A2) or (A3) and

(A4), for each method;
This item tries to further prevent the same kind of anomalies as rule (A5)
or (C6), without resorting to a formulation in terms of objects. Note also
that item (M2) from §1 is valid in its original form for our formulation
(C), (M2´) from §2 is not needed.

We will try also an object formulation, equivalent to (C) as far as
possible. The most problematic detail in this translation is (C4), because
we really want something more restricted than all global objects (B3).
Now we do not try to define any order of decreasing preference, because
the rule would become too complicated.

(D) For any class C, and for any method M attached to C, every object to
which M sends a message must be either one of the following objects or
its class:

79

(D1) the arguments and result of M and the self object;
(D2) objects owned by global variables or created by M, which addition-

ally belong to the same class as at least one object mentioned in
(D1);

(D3) the instance variable objects of the objects mentioned in (D1) and
(D2);

(D4) objects owned by global variables or created by M, which addition-
ally belong to a class explicitly declared as known to C;

It is additionally required that
(D5) no message that directly names an instance variable of its receiver

must be sent, except to the objects mentioned in (D1) and (D2).

Both ‘global variables’ and ‘created by M’ remain somewhat
vague in this language-independent formulation. The adaptation of rules
(D2) and (D4) to specific languages thus requires some reflection.

6. Interpretation of the law for C++

C++ is essentially a strongly typed language (cf. [Sakk] for some flaws in
its type system). The philosophy of C++ includes a much more static
binding strategy (e.g. between functions and their argument types) than
is typical in OOPL’s. Most importantly, every invocation of a member
function is closely bound to a particular class type. Thanks to this, it
would be possible to enforce the Law of Demeter in its class form more
easily and completely at compilation time than in most other languages.
For that purpose, one would need a modified C++ compiler (or transla-
tor), most conveniently with a Demeter option, which could be omitted in
order to accept normal (unrestricted) C++.

The object version of the Law of Demeter is reformulated in §12 of
[Lieb2] for C++, although the class version could have been preferred.
The law is effectively as follows (paraphrased again):

(E) For all classes C, and for all member functions M attached to C, all
objects to which M sends a message must be either:
(E1) M’s argument objects, including the object pointed to by this.
(E2) Objects created by M, or by functions which M calls.

80

(E3) Objects in global variables.
(E4) Data member objects of class C.

In the above, the translations of ‘method’ to ‘member function’
and ‘self’ to ‘this’ are probably the best possible, and the translation of
‘instance variable’ to ‘data member’ is almost correct (but see next para-
graph). Yet, the adaptation of the law’s original formulation to C++ terms
is badly incomplete. It must still be elaborated quite a bit, mainly because
C++ is not a totally object-oriented language [Sakk], but partly also
because of additional terminology differences. To start with, ‘object’ in
the Law is used in the OOP connotation, but in C++ an object is only ‘‘a
region of storage’’ ([Stro1] §r.5). No messages can be sent to objects, in
fact there is no ‘message’ in the whole C++ terminology. In a way, ‘to
send a message to an object’ would be approximately translated into ‘to
invoke a member function of a class object’, but we will in fact equate it
with ‘to access a class object’.

We should note that a class is not an object in C++, but it is possi-
ble to declare ‘‘static data members’’, which are equivalent to class vari-
ables. The C++ formulation of the Law of Demeter as given above,
clearly implies that static members can be accessed, too. Probably this
was the authors’ intention, but if it was not, then the formulation should
be amended accordingly. Then we should also either forbid static data
members altogether or devise an equivalent of class methods to handle
them. This is possible by declaring friend functions to the class. By the
way, the explicit or implicit invocation of a C++ constructor is very much
analogous to the invocation of a class method.

As we said in §2, the roles of the owning object and the explicit
arguments of a function are definitely more symmetric in C++ than in
most other OOPL’s. In the special case of overloaded binary operators,
the syntax is even more symmetric than the semantics: you can write
‘obj1 * obj2 + obj3’. In other cases, you must write e.g. ‘obj1.memfunc
(obj2, obj3)’, but the particular variant of an overloaded function to
invoke is always decided on the basis of the types of all arguments (and
the required result type, if it can be seen from the context). This is done at
compile time (as a contrast, CLOS does essentially the same thing by run-
time dispatching), but a more specific variant (with the same types of
result and explicit arguments) can be selected at run time if the function is
virtual.

Whenever a truly symmetric function needing to access compo-
nents of objects belonging to several classes is desired, it can be defined as
a friend of all those classes but a member of none. Here we have another
situation in which friend functions are useful. Accessing static data mem-
bers was the first such situation; in a case in which we need only access

81

static members and no instance of the class at all, using a member function
would be unnatural.

7. A new proposal for C++

Before going deeper into the details of the C++ language, we present a
new version of the Law of Demeter for C++, derived from the form (C) in
§5. It is in terms of classes, and should in principle be enforceable at com-
pile time.

(F) For any class C, and for any member function M of C, every class
object that M directly accesses or references in any way must belong to
one of the following classes, in order of decreasing preference:
(F1) the class C itself;
(F2) the classes of the arguments and result of M;
(F3) the data member classes of C;
(F4) the classes explicitly declared to be known to C;
(F5) the data member classes of the classes mentioned in (F2).
Further, this access or reference
(F6) must not directly specify any data member, class or non-class, of the

object concerned unless the object is an instance of one of the
classes mentioned in (F1) and (F2).

For any function M that is not a member of any class, the above rules shall
hold with the addition that classes can be explicitly declared known to M.

Let us look at the most important implications of (F). First, we
must clarify a little what we mean by the function M ‘directly accessing or
referencing’ an object of a given class, say K. That means the appearance
of any expression of type K in the code of the function M itself, not in
another function that M calls. Also, the mere appearance of an object of
type pointer or reference to K does not count. ‘Directly specifying a data
member ’ (F6) means that either the direct (‘.’) or indirect (‘->’) member
selector with the name of a data member appears in the code of the func-
tion M itself.

Second, the last paragraph of (F) is necessary because C++ func-
tions need not be members of any class. For such functions, the alterna-
tives (F1), (F3), and (F4) are obviously vacuous.

82

Third, we will not make writing law-conforming programmes
essentially more difficult, but will make checking much easier, by
demanding that no data member of any class be declared public. This will
prohibit most illegal accesses. To allow legal accesses belonging to case
(F5), the function M needs to be declared a friend of its result and argu-
ment classes. This declaration must be inside the definitions of those
classes; the situation is thus very similar to M being a member function of
several classes simultaneously. This alternative should not be exploited
without true need, therefore it can well be somewhat laborious. We can
also prohibit all friend declarations except those just described.

Fourth, in order to utilise alternative (F4), a programmer will need
to declare acquaintances. This is the only addition to standard C++ syntax
required by the present suggestion. While friends of a class K are
declared in the definition of K, class C being an acquaintance of K is
declared by declaring K known in the definition of C. This is a strictly
weaker condition than class C being a friend of K: the member functions
of an acquaintance can only access an object of class K as a whole and
invoke its public member functions; the member functions of a friend class
can access f2all function and data members of a K object.

8. Non-class objects and the Law

None of the built-in datatypes of C++ (essentially the same as in C) is a
class, and more non-class data types can be derived from existing class or
non-class types also as vectors (arrays) and pointers, even pointers to
functions being possible. (Unfortunately, C++ nomenclature has reserved
the term ‘derived class’ to mean ‘subclass’, so we must be cautious with
the word ‘derived’ to avoid ambiguities.) We will try first the most
straightforward approach: that the Law of Demeter shall not concern non-
class objects.

The class concept of C++ is intentionally defined so as to comprise
the structures (struct) and unions of C as well. For the sake of simplicity,
we leave unions out of the discussion; their utility as classes is very lim-
ited anyway. For the purposes of the Law of Demeter we will demand a
clear dichotomy: only ‘‘pure structures’’ and ‘‘pure classes’’ shall be
allowed, no intermediate forms, which are possible in C++ as such.
Classes shall be defined with the keyword ‘class’ and have no public data
members (as already required in the previous section). Structures shall be
defined with the keyword ‘struct’; their all data members shall be public,

83

and they shall have no member functions, probably no static members
either. Structures will then be considered non-class aggregations like vec-
tors.

The consequences of this approach to the interpretation of rules
(F3), (F5), and even (F6) are not quite self-evident: what exactly are the
data member classes of some class C? There is no problem when each
data member is either of another class type or of a ‘‘purely non-class’’
type. In ‘‘mixed’’ cases, e.g. when a data member of class C is a vector of
pointers to class objects (of class D, say), that class D should be regarded
as a data member class of C.

The principle described in the previous paragraphs would tend to
minimise the number of distinct classes in a hierarchy. A diametrically
opposite approach, maximising the number of classes and also the encap-
sulation, could be the following:
(N1) Regard as a class type any type that is a class itself (pure class) or

derived (even partially) from a class type. A function type is
regarded to be derived only from its result type, not the argument
types.

(N2) The data members of a class must be either all of non-class types or
all of class types.

(N3) If a class has more than one data member of class type, each of
them must be a pure class.

(N4) If a class has only one data member of class type, it can also be a
vector of pure class objects, a pointer or reference to a pure class, or
a pointer or reference to a function returning a class value.
The same distinction between classes and structures that was

made in the beginning of this section is understood. The above rules will
allow structures of pure non-class objects only. — The complexity of
these definitions stems mostly from the fact that the abstraction and
encapsulation facilities of a class cannot be used in C++ with other type
derivations than class = struct (and union). This is in contrast to e.g.
Demeter ([Lieb2] §2), although Demeter does not offer as many deriva-
tion methods as C++, only construction (aggregation), alternation (union),
and repetition (list aggregation).

The alternative approach could be pushed even further by consid-
ering every built-in datatype a pure class. (E.g. in CLOS, a corresponding
class has been defined for every Common LISP data type.) The rules (1)
and (2) in the previous paragraph would then be vacuous, and every
derived type should in effect be a class, too.

84

9. Further subtleties with C++

Member functions of classes can be either private, protected, or public;
this facility of C++ can be employed by a programmer to define addi-
tional restrictions beyond the Law of Demeter.

Explicit pointers are essential types in C++, and pointers to class
objects are necessary to implement any conventional dynamic data struc-
tures. This brings us all the familiar problems with null pointers, dan-
gling references, multiple references, etc., but such dynamic problems
were not the issue of the Law in the first place. Under the interpretation
of the previous section, pointers can e.g. cause a class object to be simulta-
neously the object owned by one or more of its own instance variables. I
suppose even this is not contrary to the spirit of the Law, at least if we
stick to the class formulation.

An important positive factor is that C++ pointers are typed. How-
ever, the language allows explicit type casts between arbitrary pointer
types. In fact, a perverse programmer can pretend any type of data or
function to reside at any place in the available address space (subject only
to the alignment rules of the machine). If we really tried to adapt the
object form of the Law of Demeter to C++, we should prohibit such type
casts, and probably some other circumventions of the type system as well.
Pointer arithmetic and even array indexing are unsafe operations: even
they easily allow a part of memory to be accessed as if it contained a cer-
tain type of data, no matter what there really is.

10. Conclusions

The basic idea of the Law of Demeter is sound, no doubt. Positive experi-
ences of applying it in practice are mentioned in [Lieb2] §13. Neverthe-
less, some details appear debatable, and the ramifications of the Law
should at least be treated and explained more fully than has been done so
far. This paper has mostly pointed out some questionable spots and dis-
cussed alternatives. The formulation of the Law in terms of classes is
probably more useful than that in terms of objects, but the choice depends
on the point of view. If we want to have a rule that can be checked at
compile time the class form is certainly preferable; but with conventional
untyped languages such checking is impossible in any case. Therefore,

85

the Law appears to be more effective for typed languages.
The application of the Law of Demeter to C++ is promising,

because the language is typed. We have seen, however, that the differ-
ence in paradigm between this procedural and only partially object-ori-
ented language and the most archetypal object-oriented languages makes
it non-trivial to translate programming rules from one environment into
another. The original formulation of the Law for C++ clearly falls short of
the mark. We have proposed a new formulation, which looks fairly logi-
cal and is compile-time checkable. More discussion and thinking about
all details of the language will surely be needed before reaching a final
result.

References

[Bobr] Daniel G. Bobrow et al., CommonLoops: Merging Lisp and
Object-Oriented Programming, Proc. ACM OOPSLA ’86 Conf.
(Portland, Oregon, 1986), ACM SIGPLAN Notices Vol. 21 No. 11,
p. 17-29.

[Lieb1] Karl Lieberherr, Ian Holland, Gar-lin Lee, and Arthur J. Riel, An
objective sense of style, Computer (IEEE) Vol. 21 No. 6 (June 1988),
p. 79-81 (The Open Channel).

[Lieb2] K. Lieberherr, I. Holland, and A. Riel, Object-Oriented Program-
ming: An Objective Sense of Style, Proc. ACM OOPSLA ’88 Conf.
(San Diego, California, September 1988), to appear.

[Øste] Kasper Østerbye, Abstract Data Types with Shared Operations,
ACM SIGPLAN Notices Vol. 23 No. 6 (June 1988), p. 91-96.

[Sakk] Markku Sakkinen, On the darker side of C++, Proc. 2nd European
Conf. on Object Oriented Programming (Oslo, August 1988), Lecture
Notes in Computer Science 322, Springer-Verlag 1988, p. 162-176.

[Stro1] Bjarne Stroustrup, The C++ Programming Language, Addison-
Wesley 1986.

[Stro2] Bjarne Stroustrup, The Evolution of C++ : 1985 to 1987, Proc.
USENIX C++ Workshop (Santa Fe, New Mexico, November 1987).

87

CHAPTER 4

DISCIPLINED INHERITANCE

First published in the Proceedings of ECOOP ’89 (Editor Stephen Cook),
Third European Conference on Object Oriented Programming (Notting-
ham, July 1989), BCS Workshop Series, © Cambridge University Press
1989 (p. 39 - 56). — Reprinted with the permission of Cambridge Univer-
sity Press.

88

DISCIPLINED INHERITANCE

Abstract

Several other properties of objects are regarded as more important than
inheritance. Inheritance is classified into two alternatives: incidental and
essential. Incidental inheritance is a matter of implementation and soft-
ware engineering, and should be completely encapsulated. Essential
inheritance models important relationships in the problem domain, and
should be completely visible. It is then attempted to model inheritance in
terms of aggregation and dependence. A number of omissions and diver-
gences and some surprising parallels are found in the treatment of inheri-
tance in existing object-oriented languages and previous literature. This
contribution does not pretend to close the case yet: for instance, interme-
diate forms between purely incidental and purely essential inheritance
are not discussed.

Keywords: Inheritance, encapsulation, complex objects, type compatibil-
ity, delegation, programming discipline, class design.

89

1. Introduction

Many of us can agree with Bertrand Meyer when he states in the Preface
of [Meye2], about the design of the Eiffel™ language:

‘‘The foremost influence has been that of Simula, which introduced most of
the concepts twenty years ago, and had most of them right; Tony Hoare’s re-
mark about Algol 60 — that it was such an improvement over most of its
successors — applies to Simula as well.’’

The first definition of SIMULA 67, later renamed simply Simula™,
is [DaNyMy]. Single inheritance is well defined already there, although
the word used is ‘concatenation’. The language definition even in general
has a down-to-earth style. Anthropomorphisms and overstatements have
become part of object-oriented parlance later, apparently stemming from
the Smalltalk (!) community. Examples of overstatement are ‘active
objects’ and ‘message passing’ as applied to Smalltalk-80™ [GolRo] and
similar languages. As [YokTo] explains, reconciling true asynchronous
message passing with Smalltalk ‘‘message passing’’ is not quite simple.

‘Inheritance’ is an appealing word because its meaning in object-
oriented programming (OOP) is so analogous to its usual meaning, which
in turn is familiar to everybody. Still, probably because of this intuitive-
ness, there seems to be no common definition of ‘inheritance’. Even in
the ordinary meaning, there are many different kinds of inheritance, at
least biological, juridical, and cultural; each of these has different rules.

To advance the state of OOP, we will need on one hand systems
[AghHe, HaiNg, MinRo] that give the programmer more explicit choice
over inheritance and other mechanisms that are fixed more or less ad hoc
in conventional languages, and on the other hand tentative rules and
restrictions that promote ‘‘better ’’ programming [JohFo, LiHoRi, Sakk2,
LieHo]. Here we stress the latter side of the coin, i.e. disciplined pro-
gramming and software engineering. Features aiming at ‘‘exploratory
programming’’ need not necessarily make the programmer into a Vasco
da Gama or an Amundsen; she may well become Alice in Wonderland,
never knowing what metamorphoses some seemingly innocent act may
cause.

The main purpose of this paper is to suggest how the problems
and ambiguities of inheritance could be controlled, and how inheritance

Eiffel is a trademark of Interactive Software Engineering Inc.
Simula is a trademark of Simula a/s.
Smalltalk-80 is a trademark of ParcPlace Systems.

90

could be modelled by other mechanisms. As I currently, agreeing with
[Amer1,2], do not believe that inheritance is the central principle of OOP,
it seems obligatory to present first the framework in which it will be dis-
cussed. In conscious provocation, I will list several properties of objects
as more fundamental than either inheritance or classes — although I do
believe in classes. We will also try to classify the intents of inheritance in
a dichotomy.

The great variability of object-oriented terminology makes it prob-
lematic to write ‘‘cross-language’’ articles. Here we will not even try to
speak about each specific language in the terms of its own literature, but
neither will we succeed to establish a completely language-independent
one-to-one relationship between terms and meanings. I apologise for the
lack of concrete examples; they would have taken too much space.

2. What are objects

Here are again one person’s views on what are the more important and
less important characteristics of things to be called objects. Necessarily,
most of these are requirements on the system (programming language or
other) that manages objects.

The most important property of an object is identity. The identity
must be unique within a given universe of objects and a permanent prop-
erty of each object. The most degenerated possible kind of objects are
those that have no other properties at all, but even they can be interesting
— the whole general set theory is built on them.

The second property in importance is integrity. By object
integrity I mean that no property of an object must be changed except by
operations that intend and have the right to modify that object. The mean-
ing of ‘intend’ here is very wide, covering even extremely indirect effects.
— Weak support of object integrity in a language typically goes together
with the lack of explicit identity: C++ [Stro1, Sakk1] is a good example.

The third property is that objects may in general be created
and/or deleted. However, there can be objects that (at least conceptually)
need not be created and/or cannot be deleted. The possibility of deletion
can be a property of individual objects, and in that case need not be a per-
manent property.

The fourth property is that an object has a type. The type can be
primitive; or it may be defined either constructively (structurally) from
other types or behaviourally (as an abstract datatype), or in a mixed way.

91

In conventional OO systems the type of each object is permanent, but
sometimes there are good reasons for letting even the type change
[SkaZd].

One aspect of type is that an object may have attributes (data
components). Attributes can be either non-object values or themselves
objects. A special case of a non-object value is a reference (or surrogate),
which is equal to the identity of some object or nil. In almost all OO lan-
guages and in some languages not considered object-oriented, e.g. CLU
[Lisk&al], all variables are of a reference type. This has had consequences
for the concept of inheritance (cf. §5). Some languages employ capabilities
[AnPoWa], which combine references with access right information.

A second aspect of type is that an object may have operations
(methods) that are executable. The difference between attributes and oper-
ations can become blurred in systems with triggers or access-based pro-
gramming: what seems simply a read or update access to an attribute
may actually cause the invocation of an operation.

A third aspect of type is that an object may have processes (activi-
ties). This is impossible in most current object-oriented languages: either
they have only one sequential thread of control, or a process is a special
kind of object or a separate implementation notion. In Simula, BETA
[BKri&al], Actor languages, and newer concurrent/parallel OOPL’s
[YonTo], objects form also the units of concurrency (true or quasi-). In
Emerald [Blac&al], operation invocations may proceed concurrently with
each other and with their object’s process. The Parallel Objects model of
[CorLe] allows a high degree of controlled intra-object concurrency.

Sometimes [Viha, Sakk3] abstract entities such as (constant) inte-
gers are not considered to be objects. The argument is that it makes no
sense to say that e.g. the integer 743 is ‘‘created’’ or ‘‘deleted’’, and saying
that ‘‘the integer adds another integer to itself’’ feels hardly more appetis-
ing to a mathematically trained mind. Under this view, abstract entities
need not have identities in the same sense as objects. — The opposite
viewpoint is well motivated in [Lieb2] for the classless Actor languages.
In a more typical language like Smalltalk-80, however, it appears hard to
define consistently how a class that inherits e.g. from Integer and adds
some instance variables should behave.

92

3. Less important properties of objects

Compared with Simula, most current object-oriented languages prohibit
effective nesting, at least that of class definitions or their equivalents
[BuhZa]. In compensation they enforce a stronger encapsulation, often
so that only the operations and no attributes nor the process of an object
can be directly accessed from outside the object itself. Although this is
mainly beneficial, it sometimes requires operations concerning several
objects to be defined in an unnaturally asymmetric manner; an exception
is CLOS [Bobr&al] with its ‘‘multi-methods’’. Some languages allow
more selective encapsulation, e.g. C++ with its friend declarations that
can solve most of the asymmetry problem. — We will have more to say
about encapsulation at several places.

One of the key concepts in OOP is inheritance. However, in spite
of its flexibility and other attractions, unrestricted inheritance has been
found to cause many problems as well. One fundamental contradiction is
between inheriting specifications or behaviour on the one hand, and
implementation or structure on the other hand. Also, single inheritance
has lead to many unnaturally asymmetric constructions; this has later
been remedied by multiple inheritance in many languages, but multiple
inheritance has caused new problems (name conflicts etc.). We will base
our constructions on multiple inheritance throughout. — Sometimes the
concept of delegation [Lieb1] is proposed instead of or as a complement to
inheritance [AghHe]. The claim that delegation is more powerful than
inheritance was refuted by [Stei1], however. Note that some authors, e.g.
[UngSm, HaiNg], use ‘inheritance’ approximately in the same meaning as
some others use ‘delegation’.

One feature connected to inheritance that is invariably counted as
a principal factor in the flexibility of OOPL’s is the redefinition of inher-
ited operations. Nevertheless, this possibility is also a principal source of
devious programming errors. We will suggest restrictions to such redefi-
nitions in sections 6 and 7.

There can be existential dependences between objects; the atti-
tudes of typical OO programming languages (garbage collection of totally
unreachable objects) and most database systems (explicit, possibly cas-
caded deletions) are opposite to each other. There are some recent
attempts [Kim&al, Sakk3] to combine these views. Existential depen-
dences are a very special case of constraints in an object system. They can
be efficiently enforceable, whereas more general systems of constraints
very easily become undecidable. Dependences will be used in this paper
as an auxiliary tool to model or even replace inheritance with aggrega-
tion. — The assertions of Eiffel seem to be an example of efficiently

93

manageable constraints in an OOPL, but they are viewed mainly as a
specification and debugging device. In ThingLab [Born] constraints are
the essence of the system.

Most OOPL’s are built around classes. A class is more than just a
type: it is also a first-class object in e.g. Smalltalk and an ‘‘almost object’’
in e.g. C++ (a C++ class can have static variables that are accessible to all
its instances). Typically, all operations are defined within classes and can-
not be redefined in instance objects, although they are called ‘‘instance
methods’’ in Smalltalk and many other languages. As an inheritance
from C, C++ objects can have attributes that are pointers to functions, but
these are not considered operations of the object. Inheritance also goes
strictly between classes: an instance object cannot inherit anything but is
instantiated with what the class has inherited.

There are languages that dispense with class as a primitive con-
cept, e.g. Actors [AghHe] and Self [UngSm]. Instantiation is there substi-
tuted by replication of a prototype or exemplar object. This approach often
goes together with replacing inheritance by delegation, but not always
[LaThPu]. Our presentation will mostly be independent of the class-pro-
totype controversy; I am suggesting elsewhere [Sakk4] that to reject
classes is to throw the child out with the wash.

In Algol 68, Ada®, and some other languages, although types are
only compile-time entities, formal type parameters can be used to define
generic (or parametric) packages, procedures, new types, or whatever
(depending on the language). The advantages of genericity are thor-
oughly discussed in [Meye1,2]. Generic classes have not been imple-
mented in many OOPL’s besides Trellis/Owl™ [Scha&al], Mode [Viha],
and Eiffel. Of course, the whole principle is relevant only to strongly
typed class-based languages; the majority of currently popular languages
is weakly typed.

It is not common to regard the type of an object (or of a non-object
value) as a first-class value that can e.g. be assigned to a variable of type
‘type’. However, this approach has been chosen in the Mode language,
and it looks like a sensible enrichment of the type system. It does not
mean that the type of an object could be magically changed by updating
its ‘‘type field’’.

Ada at least was a registered trademark of the United States Government (AJPO).
Tr ellis is a trademark of Digital Equipment Corporation.

94

4. Essential vs. incidental inheritance

There is often too much inheritance in object-oriented programming. Pro-
grammers can sometimes apply inheritance when plain aggregation
would be more suitable, but even some languages as such force too much
of a good thing. The Smalltalk tradition that there must be a universal
superclass (Object) causes problems, especially if it is still enforced with
multiple inheritance. This requirement does not exist in Simula and its
direct followers.

There are also many flavours of inheritance. The difference
between the views of inheriting specification (behaviour) or implementa-
tion was mentioned several times at ECOOP’88 in Oslo (panel discussions
are not recorded in [GjeNy]), often saying the former to be typically Euro-
pean and the latter typically American. We propose two new terms that
seem to clarify the picture a little at least for the present purposes: essen-
tial and incidental inheritance. Inheritance of implementation only is
always incidental. Inheritance of specification is essential, whether
implementation is inherited also or not. In the classification of [HaiNg],
the case ‘‘Code Sharing and Reuse’’ corresponds to our incidental inheri-
tance, the others to different facets of essential inheritance: ‘‘Type Theory
Inheritance’’ implies inheritance of implementation as well, while ‘‘Exter-
nal Interface Inheritance’’ and ‘‘Simple Polymorphism’’ do not. Ian Hol-
land has proposed the following interpretation:

Incidental inheritance seems to appear as a result of software engineering
and program design. Essential inheritance occurs as a result of domain
analysis and system design.

This captures the heart of the matter.
We do not claim the distinction between essential and incidental

to be absolutely sharp. One might say that as the commonality decreases
and the differences increase between two ‘‘like’’ types [WegZd], their rela-
tionship becomes more and more incidental. A simple example that
could be regarded as incidental inheritance of specification can be drawn
from the ever-popular domain of data structures. A stack and a queue
can have the same set of operations, and even with the same signatures.
Nevertheless, if a software designer should change the operations of a
stack, this need not necessarily affect the interface of a queue. There
might further be e.g. a ‘button’ class in the same system, which could also
have a ‘push’ operation like a stack. The connexion between these opera-
tions would be a purely incidental name collision — we have not got
enough space here to explain how we would completely exclude cases
like this from ‘‘inheritance’’ (cf. §9).

95

Examples of insightful recent papers on essential inheritance are
[WegZd] and [LKnu]. On the contrary, the interesting paper [Snyd3] (a
slightly modified version of [Snyd2] with a CommonObjects example
added) focusses on incidental inheritance. Snyder explicitly uses ‘inheri-
tance’ in the meaning ‘inheritance of implementation’ (so does [JohFo]).
He does mention inheritance of specification, calling it ‘subtyping’. The
same terminology is used in [Amer1], a paper that is fully relevant to
non-parallel languages as well. Readers should note the difference in
terms between these papers and ours. However, we will actually not
study situations in which only specification is inherited, because there
would not be much to say about them (well, [Amer2] says a lot). We will
thus stay on the common ground that practically all authors call inheri-
tance.

Since we consider the properties of §2 more important than inheri-
tance, we will not accept such features of inheritance that would clearly
be in conflict with any of those properties. As pointed out in [Amer1],
inheritance will probably play a less important role in parallel than
sequential languages. We will not even discuss inheritance of processes,
although already Simula offers the inner keyword for that purpose. It
allows the superclass to define at what point the body (process) of any
subclass shall be executed: a kind of converse to the super construct of
many languages that allows a subclass operation to define that a super-
class operation is to be invoked.

5. Inheritance as aggregation

Contrary to almost all non-OO languages, almost all OO languages
enforce the principle of totally indirect aggregation (composition): vari-
ables in objects cannot contain subobjects directly but only references to
other objects. The obvious advantage is that classes remain really inde-
pendent of each other’s implementations. Certainly the best-known
exception that treats aggregation (both arrays and records) like ‘‘ordi-
nary’’ programming languages is C++. EXTRA [CaDeVa] is similar, but
more in Pascal style and handles even sets. Both C++ and EXTRA allow a
class designer to use pointers (references) whenever more appropriate.

The principle of indirect aggregation must be a major culprit for
the overuse of inheritance in OOP. It is also the main reason why we
need a concept of incidental inheritance at all, instead of mere aggrega-
tion: the parent part normally is physically concatenated to the non-

96

inherited part of an object, conforming to the original Simula approach
(cf. §1). However, if we add three restriction capabilities that are missing
from most languages today, we can model inheritance (both kinds) by
aggregation. Aggregation is a much less ambiguous concept than inheri-
tance. We will concentrate on data (instance variables) and not speak any-
thing yet about inheriting operations. It is actually the more important
half of the question, but it depends on the kind of inheritance, and will be
discussed in the following sections. — We will speak in terms of classes,
but the discussion is applicable to prototype-based languages as well.

The ‘‘mathematical difference’’ of a subclass object and a corre-
sponding superclass object is not defined in the conventional OO view, or
in any case it is not an object. This can be seen as a defect in the object or
class algebra; the problem has been recognised in [Stei2]. We strive to a
model in which the difference will always be an object. We will thus
allow even objects that have a ‘‘negative compound type’’, while [Stei2]
does not permit such types to be instantiated; but these objects cannot
exist alone, only as parts of complex objects. In [WegZd] §7 it is noted
that it is often most convenient to define largely similar classes by giving
only their incremental differences. This thought is not far from Stein’s
type expressions.

To be definite, suppose class C has the immediate superclasses D1,
..., Dn. Let us regard any instance O of class C as a complex object, consist-
ing of a full-fledged object Pi of each class Di, and one further object O-

that contains the non-inherited instance variables (components) of O. Let
us call the class of O- analogously C-. With a slight change to common
OOPL usage, we could actually define C- first without naming the super-
classes, and then C as a ‘‘sum class’’. This would then explicitly be ‘‘pro-
gramming by difference’’. The exact structure of the complex object O
turns out to be different in essential and incidental inheritance, and so is
deferred to the following sections.

To obtain the usual semantics of inheritance, the three restrictions
we must be able to put on every subobject (parent component) Pi of O are
as follows:
(1) Pi is deleted when and only when O has been deleted. (In the

terms of [Sakk3], Pi is ‘‘immediately completely dependent’’ on O.)
(2) The connexion between O and Pi is permanent.
(3) O must export no reference (surrogate) to Pi neither to its other

components nor to its clients (objects that invoke O’s operations).
In fact, these restrictions apply to O- as well; we can denote that

subobject also by ‘P0’, and C- by ‘D0’. The inheritance model of conven-
tional OOPL’s certainly fulfills these conditions: (1) and (2) because each
Pi is physically contained in O, (3) because the components are not objects

97

at all and thus cannot be referred to.
The class C-, if it really needs a superclass to be meaningful, is a

kind of mirror image of an abstract class, which needs a subclass to be
meaningful. Our present approach implies that even abstract classes can
be instantiated, but their instances must always be components of other,
subclass objects. We can say that they, too, have negative compound
type. Thinking in terms of difference classes seems to make the relation-
ship between subclass and superclass more symmetric. A further advan-
tage of difference classes is that some of them may be sensibly combined
with different parent classes, thus reducing duplicated declarations.

The ‘‘mix-in’’ classes (flavors) of Flavors (mentioned in [Snyd3]
but not in [Moon]) seem to be largely equivalent to our difference classes.
In Flavors, parents are called ‘components’ as they are here, but the word
has a slightly different meaning — instance variables are not components.
Further, the ‘‘mixing’’ principle means that there will generally be no real
subobjects in a Flavors object, because components lose their integrity. In
most other OOPL’s a parent object essentially exists within each child
object, but one cannot refer to it as such (as noted above): it has integrity
but no identity.

6. Modelling incidental inheritance

Now we take up the questions of inherited operations and complex object
structure. One would expect it to be more straightforward to model or
replace incidental than essential inheritance by aggregation. This proves
to be the case. Suppose that class C has the parent classes D1, ..., Dn, O is
an instance of C, and Pi (i = 1, ..., n) are the corresponding instances of the
parent classes, like in the previous section. Incidental inheritance means
that we do not want to say that C is-a Di, not even that C like Di [WegZd].
Therefore, a client of O will not expect to get from it any of the services
provided by Di objects. We certainly intend that C is-a C-, so we must not
count C- = D0 as a parent class in this section!

I found a striking parallelism between [Snyd2,3] and [Lieb&al,
LiHoRi, Sakk2] when parent classes in the former papers are equated
with component classes in the latter ones. As regards attributes (instance
variables), Snyder’s requirement that instance variables of a parent class
should not be directly accessible in a child class is equivalent with the

98

rule in the Law of Demeter™ that a class’s methods should see only the
immediate structure (components) of the class. (Snyder ’s requirement as
such is also presented in [LiHoRi] as an additional rule that makes the
difference between the strong and the weak Law of Demeter.) As regards
operations (instance methods), Snyder’s requirement that ‘‘a class may
refer to non-immediate ancestors only if they are exposed via the inter-
vening classes’’ is again equivalent with a rule in the Law of Demeter:
operations of the components of a class must not be directly invoked from
outside the class.

In the implementation of CommonObjects [Snyd1], our complex
object O would be a tree of subobjects such that O- is its root and P1, ..., Pn
are its leaves. This is the most logical representation; we will just regard
the subobjects as first-class objects too.

Neither multiple inheritance nor even repeated inheritance of the
same parent [Meye2] presents many additional problems in this
approach. In the terms of [LKnu], only casual horizontal name collisions
can occur, and these can be resolved by qualification. Thus at worst, O
must request any otherwise ambiguous inherited operation from an
explicitly specified parent object. Both Snyder and Demeter require that
the attributes of a parent component Pi not be directly available to (the
operations of) O, and the operations of Pi not be directly available to other
components nor clients of O. This does not prevent O from exporting any
or all of Pi’s operations to O’s clients, renaming them or not, but the
clients will see them as O’s own operations.

Our approach actually comes close to delegation here (cf. [Snyd3]
§2.3) in that we model the inherited parts as objects in their own right.
We make the significant difference to conventional delegation that no
request within a Pi for any of its own operations shall be dynamically
changed into a request for an operation of O (O-) with the same name,
because we do not regard it as the ‘‘same’’ operation. This, I think, closes
the last leak that still remained in [Snyd3] in encapsulating inheritance.
Late binding of operations, which many languages enforce in all situa-
tions, can make a parent class Di in a way a client of the child class C:
encapsulation is severely violated. Weird situations are possible even in a
generally well-disciplined language like Eiffel ([Meye2] §11.2): If an oper-
ation f of class Di is redefined in class C, the original f can be renamed and
invoked within C by the new name. But there is no way whatsoever for
other operations of Di to invoke the original f, guaranteedly uninterfered
by any later subclass definition.

Demeter is a trademark of Northeastern University.

99

Many languages, including CommonObjects, do offer a means to
specify that some particular operation invocation is to be bound early (to
the class of the invoking operation). Some languages, at least Simula and
C++, additionally allow an ancestor class to declare which of its opera-
tions can be redefined in descendant classes (are virtual) and which not.
BETA further allows a descendant class to modify an inherited virtual
function to non-virtual for its own descendants, which is a very logical
possibility. Here we have a situation different from all these: early bind-
ing of Di’s operations is a property of C, not of Di itself, and is a conse-
quence of the inheritance from Di to C being strictly incidental and there-
fore encapsulated.

A property distinct from (but not quite independent of) the rede-
finability of operations is their visibility. One language that gives a good
control of operation (and attribute) visibility is Trellis/Owl. Likewise,
current C++ [Stro2] has the alternatives: private, visible only within the
class itself; protected, visible to subclasses also; public, visible every-
where in the programme. In the special case of incidental inheritance,
however, we suggest that even protected operations of Di should not be
invocable in C — since C is not a subtype of Di. C++ originally had only
the alternatives private and public. Some others, including Eiffel, have
only protected and public, which I consider a worse selection. Unfortu-
nately all operations are public in some OOPL’s, including Smalltalk.

Incidental inheritance provokes the question about the visibility of
classes [BKri&al, BuhZa]. The Law of Demeter also restricts the accessibil-
ity of classes to each other, but rather with ‘‘need to know’’ principles, not
on the basis of nesting. If a class Di is designed only to support C and
perhaps some further class E, then the very existence of Di could well be
hidden from the clients of C and E.

7. Modelling essential inheritance

After the completely incidental inheritance in the previous section, we
will now examine the other extreme. This is essential inheritance with the
very strong requirement of complete compatibility [WegZd]:

A subtype is completely compatible with its supertype if it has the same do-
main as the supertype and, for all operations of the supertype, correspond-
ing arguments yield corresponding results.

(‘‘The same domain’’ here does not preclude the subtype from possessing

100

additional attributes and operations besides the inherited ones.) As
shown in [WegZd], this implies the principle of substitutability:

An instance of a subtype can always be used in any context in which an in-
stance of a supertype was expected.

Because we have wanted to encapsulate attributes, we could omit the
‘‘same domain’’ requirement from the first definition; this obviously
would not disturb the principle of substitutability. If we were more inter-
ested in specifications than implementations, the definition could even
better be expressed in terms of traces [McLe].

Let C be a subclass of Di, as in the previous sections, but now with
complete compatibility (CC). That requires every public operation f of Di
to be available also in C. Let again O be an instance of C and Pi the corre-
sponding instance of Di. If any call of O.f is just directed to the Di compo-
nent as a call to Pi.f with the same argument list, we trivially obtain CC.
Are there any simple rules that could ensure CC in non-trivial situations?
We propose the following sufficient but not necessary condition:
(1) The subclass operation O.f must invoke the superclass operation Pi.f

and return the result given by Pi.f. Other actions of O.f must not
modify Pi.

If there are subclass-visible (protected) operations, we need an addi-
tional rule (again sufficient but not necessary):
(2) No subclass operation must directly invoke any modifying protected

operation of the superclass.
This is because such protected operations might leave the superclass
object in a state that could not result from applying only public opera-
tions. It is also logical to require that all protected operations of the
superclass remain protected operations of the subclass. We may allow
them to be redefined subject to condition (1); condition (2) then implies
that this is only possible with non-modifying protected operations.

If some subclass operations do not obey the rules (1) and (2), it
might still be possible to prove complete compatibility e.g. along the lines
of [Lamb], using traces. A method that employs traditional pre- and post-
conditions together with abstraction functions to prove behavioural com-
patibility is presented in [Amer2].

The complex object structure required by essential inheritance can
be a little different from the pure tree structure suggested in the previous
section. In an extreme case, the root object O- and thus also the class C-

can be omitted entirely: if O is merely a ‘‘sum’’ of P1, ..., Pn and no two
distinct ancestor objects have any common public or protected operation.
(The next section will present situations in which one ancestor object can
be reached by different inheritance paths.) This means that we can add
‘‘orthogonal’’ classes to existing classes in essential inheritance without

101

adding levels to subobject trees, i.e. without introducing more levels of
abstraction. Normally, the subclass C redefines and adds some opera-
tions, of course; a tree structure is then needed. However, all other opera-
tions of the parent classes remain as visible in the context of C as they
originally were.

We have seen that complete compatibility requires the opposite on
the visibility of inherited operations, when compared to incidental inheri-
tance. (Obviously, we must not prohibit late binding of superclass opera-
tions, as we did in the previous section: all operations must be searched
from the complex object level.) In our aggregation model we seem to get
a conflict with the Law of Demeter by looking more than one level deep
into the subobject tree. We can resolve the conflict by specifically allow-
ing this exception to the law; but the need to make an exception should
make us cautious about essential (visible) inheritance.

In typical cases of essential inheritance, the CC property cannot be
required. This means that public operations of a descendant class may
return different results than those of an ancestor class, and not all public
operations of an ancestor are even offered by a descendant. This again
implies that run-time checks may be necessary even in strongly typed
languages. An important case is read-only substitutability, defined in
[WegZd] as follows:

An instance of a subtype can always be used in read-only mode in any con-
text in which an instance of a supertype was expected.

The difference to CC is that updating operations of an ancestor may work
incompatibly with a descendant (as long as they preserve any invariants
that the ancestor class may have) or need not be applicable at all: the
extreme case is a constant object. ‘Read-only’ can be interpreted as ‘hav-
ing benign side effects’ [Lamb].

Repeated essential inheritance of a parent class is not straightfor-
ward. Although I do not know of any other language than Eiffel allowing
direct repeated inheritance, it can easily arise indirectly in any language
that permits multiple inheritance (cf. next section). If C inherits D m
times, we cannot say that C is-a D; instead, C is-a set of D, although a set
with a fixed number of elements. Handling such a situation in an orderly
way would require intrinsic set operations, which most OOPL’s have not
got. Practically all languages impose some conditions, e.g. on explicit
renaming or implicit operation lookup, that effectively leave at most one
path of inheritance essential in our sense.

102

8. Fork-join inheritance

Explaining essential inheritance by aggregation gets tough when a class
inherits a non-immediate ancestor over more than one path. For lack of a
generally agreed term, we will call this situation ‘fork-join inheritance’.
The most simple example possible is sufficient to show the difficulties: let
D and E be parents of C, and F a parent of both D and E. We will look at
how it is handled in Eiffel ([Meye2] §11.6.2), in the coming (?) version of
C++ with multiple inheritance ([Stro2] §3), and in the theoretical paper
[LKnu]. The last paper does not discuss operations, which are for our
purposes both more important and more difficult than attributes.

Note that we get no new kind of problem if one or more of the
four inheritance links involved is totally incidental: C cannot then ‘‘see’’ F
over two paths. Otherwise, if the situation we want to model is such that
the D and E subobjects of C should each have its own private F subobject,
we have repeated inheritance (see end of previous section), just indirectly.
The new, interesting case arises when we require a shared F subobject,
thus a fork-join relationship on the instance level, too.

Stroustrup’s model allows every class to declare any or all of its
parents virtual. If F is declared virtual in both D and E, it means that the
D and E parts of a C object share a common F part; otherwise each has its
own. (In the example of [Stro2], C declares F also as a (direct) virtual par-
ent, but this can hardly be necessary in general.) The approach is clean
and understandable; most importantly, it preserves the integrity of the F
subobject. It fits the model of §5 perfectly. Nevertheless, as discussed in
[Stro2], programming the operations in fork-join inheritance is somewhat
tricky: each class will typically need, for each public operation, an accom-
panying protected operation (with a different name) that does only ‘‘the
own stuff’’ of the particular class. The public operations of each class
must then explicitly call the appropriate protected operations of all ances-
tor classes. — Built-in modes of operation combination in Flavors [Moon]
and CLOS [Bobr&al] probably eliminate such programming chores in
most situations.

Meyer presents a ‘‘transcontinental drivers’’ example that cannot
be simply and naturally reduced into object aggregation. Part of the
attributes inherited from F by D and E are shared, part replicated. Those
that are replicated are renamed in C so that there are no name conflicts:
the repeated inheritance rule of Eiffel says that exactly those inherited
attributes and operations shall be shared that have not been renamed
along any of the inheritance paths. The problem is that the F part gets
effectively split into two. The integrity of subobjects is thus violated,
somewhat like in Flavors (§5).

103

Lindskov Knudsen suggests the responsibility for sharing or repli-
cating to be divided between C and F: just the opposite of the C++
approach. Every (non-inherited) attribute of every class must be declared
either singular or plural; singular attributes will always be shared in a
fork-join inheritance. Every class must declare whether its inheritance
method is unification or intersection. If it is unification, then any plural
attribute inherited along several paths from a common ancestor is repli-
cated. If it is intersection, then even such plural attributes are shared.
Clearly, the integrity of subobjects can get violated in this approach, too, if
we try to reduce inheritance to aggregation.

I claim that these latter two inheritance models allow anomalies
that make them not generally recommendable. Obviously, the approach
of [Meye2] is strictly more general (or less disciplined) than that of
[LKnu]. The same kind of anomaly still creeps up in both models. The
really fatal defect is that any operation of F, D, or E, public, protected, or
private, that both updates shared attributes and accesses replicated
attributes, may cause unwanted side effects between the D and E parts of
a C object. All operations of F, D, and E must therefore be checked, and
the code-sharing advantage of inheritance is lost.

Another argument is that the examples given to illustrate these
two inheritance models look like patches to bad class design in the ances-
tor class. A relational database expert would probably identify the heart
of the problem as F not being in second normal form. We look at the
example of [Meye2], which is smaller. The ‘‘root’’ class (F) is called
Driver: it contains attributes such as Age and Number-of-violations. The
intermediate classes are called French-driver and US-driver: both inherit
all attributes of Driver and have some of their own. The lowermost class
is called French-US-driver: it inherits all attributes of both French-driver
and US-driver. Some Driver attributes are shared, e.g. Age, some are
renamed and thus replicated, e.g. Number-of-French-violations,
Number-of-US-violations.

We note that French-US-driver is not a subtype of any of its ances-
tor classes, because it has not all their attributes. It would be a subtype of
two of them if all replicated Driver attributes were renamed only on one
path; but then French-driver and US-driver would not be in an equal
position. The whole class seems to have very little purpose other than to
coerce the splitting of Driver. The approach begins to look futile indeed
when we consider that every combination of two or more countries that is
needed to model some multinational driver in the system requires a simi-
lar class of its own.

I propose that the Driver class should be explicitly divided into
two classes in the first place: Person (containing Age and the other
attributes that are now shared) and Only-driver (= Driver � Person, con-
taining Number-of-violations and the other replicated attributes), such

104

that Person is a shared (virtual) parent of Only-driver. French-driver and
US-driver would inherit (without sharing) from Only-driver. In fact, it
could be better not to regard the relationship of Person and Only-driver
as inheritance at all, but merely to declare an attribute of type ‘[reference
to] Person’ in Only-driver. That way, we need not necessarily delete a
person from the system just because he loses his driving licence. — In the
model of [LKnu], every class that has both singular and plural attributes
should similarly be split into two classes. Both unification and intersec-
tion can then be handled within our model.

9. Topics to be pursued

There are some aspects connected to the theme of this contribution that I
already have ideas about or that should be taken into account before the
model of inheritance as aggregation is completed. Some thoughts sur-
faced too late to be developed, when finishing this paper for publication.
Besides, the paper is too long already, so a short listing shall suffice.

In multiple inheritance, some ancestors of a class may be inciden-
tal and some others essential. The discussion of sections 6 and 7 is easily
applicable to this case. A problem that we have not treated is a partly
incidental, partly essential inheritance relationship between a subclass
and one parent class: for instance, only part of the parent’s public opera-
tions are public in the child as well. We have not spoken much even
about essential inheritance weaker than completely compatible. Errors
and misunderstandings in programming may most easily happen in this
‘‘gray area’’. I feel that it could perhaps be possible to ‘‘normalise’’ classes
into difference classes (very analogously to database normalisation) such
that inheritance could be factored into purely incidental relationships and
CC essential relationships. (Cf. ‘‘consistent subsets’’ and ‘‘inheritance
packages’’ in [Amer1] §3.3.)

In contrast to the above, the boundary between incidental inheri-
tance and ordinary aggregation does not look problematic at all. Any or
all of the restrictions (1-3) in §5 can be relaxed or removed without caus-
ing obvious inconsistency. For instance, the composite objects of ORION
[Kim&al] need not obey rules (2) and (3) nor the ‘‘only when’’ part of rule
(1).

In my opinion, any self-respecting framework of multiple inheri-
tance must offer an elegant and consistent treatment of ‘‘multi-methods’’
[Bobr&al, Øste]. This can be difficult, e.g. because the ‘‘specificity’’ order

105

of class combinations is only partial.
It seems that the current approach can solve ‘‘the self problem’’ as

presented in [Lieb1] §6. I think it can be worthwhile for some purposes to
introduce at least two further reflexive pseudo-variables (‘‘reflexive pro-
nouns’’), both usually denoting a smaller complex object than self, but
mostly larger than super. The first one would denote the subobject to
which the current operation belongs (my-node in CommonObjects
[Snyd1]). The other one would denote the subobject whose operation has
been originally called from outside the complex object; it would be inter-
esting only if restriction (3) of §5 is omitted.

The importance of names (identifiers invented by the programmer)
in identifying operations (also attributes and classes) can and should be
diminished. We hinted at this in §4; many name clashes are simply false
friends that can be thus avoided. The use of titles (roles) instead looks
promising; titles can also be employed to create objects that are an inter-
mediate of class and instance [Sakk4].

Acknowledgements

This work has been supported by the Academy of Finland (initially) and
the Ministry of Education (doctoral programme in information technol-
ogy). Correspondence with the Demeter group of Northeastern Univer-
sity (Karl Lieberherr, Ian Holland, and others) has partially inspired me to
this particular line of research.

I am much indebted to Ian Holland for a thorough commentary
on the first version of this paper; it has caused many revisions. The con-
ference reviewers’ comments were useful, too. I also thank Alan Snyder
(Hewlett-Packard Laboratories) for clarifying some points, and Pierre
America (Philips Laboratories) for providing some relevant papers.

106

References

[AghHe] Gul Agha and Carl Hewitt, Actors: A Conceptual Foundation
for Concurrent Object-Oriented Programming, [ShrWe] 49-74.

[Amer1] Pierre America, Inheritance and subtyping in a parallel object-ori-
ented language, [Bézi&al] 234-242.

[Amer2] Pierre America, A Behavioural Approach to Subtyping in Object-
Oriented Programming Languages, Philips Research Laborato-
ries, Eindhoven (The Netherlands) 1989.

[AnPoWa] M. S. Anderson, R. D. Pose, and C. S. Wallace, A Password
Capability System, Comp. J. 29:1 (1986) 1-8.

[Bézi&al] Jean Bézivin, Jean-Marie Hullot, Pierre Cointe, and Henry
Lieberman (Ed.), ECOOP ’87 European Conference on Object
Oriented Programming (Paris, June 1987) Proceedings, Lecture
Notes in Computer Science 276, Springer-Verlag 1987.

[Blac&al] Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy, Object Structure in the Emerald System, [Meyr1] 78-86.

[Bobr&al] Daniel G. Bobrow et al., Common Lisp Object System Specifica-
tion, ACM SIGPLAN Notices 23: special issue (September
1988).

[Born] Alan Borning, The Programming Language Aspects of ThingLab,
a Constraint-Oriented Simulation Laboratory, ACM ToPLaS 3:4
(October 1981) 353-387.

[BKri&al] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger
Møller-Pedersen, and Kristen Nygaard, The BETA Program-
ming Language, [ShrWe] 7-48.

[BuhZa] P. A. Buhr and C. R. Zarnke, Nesting in an Object-Oriented
Language is NOT for the Birds, [GjeNy] 128-145.

[CaDeWa] Michael J. Carey, David J. DeWitt, and Scott L. Vandenberg, A
Data Model and Query Language for EXODUS, [SI88] 413-423.

[ChiD’A] E. Chiricozzi and A. D’Amico (Ed.), International Conference
on Parallel Processing and Applications (L’Aquila, Italy, Septem-
ber 1987) Proceedings, North-Holland 1988.

[CorLe] Antonio Corradi and Letizia Leonardi, How to embed concur-
rency within an object environment: Parallel Objects, [ChiD’A]
79-84.

[DaMyNy] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard, SIM-
ULA 67 Common Base Language, Norwegian Computing Cen-
ter 1968 (No. S-2).

[GjeNy] S. Gjessing and K. Nygaard (Ed.), ECOOP ’88 European Con-
ference on Object Oriented Programming (Oslo, August 1988)
Proceedings, Lecture Notes in Computer Science 322,

107

Springer-Verlag 1988.
[GolRo] Adele Goldberg and David Robson, Smalltalk-80: The Lan-

guage and its Implementation, Addison-Wesley 1983.
[HaiNg] Brent Hailpern and Van Nguyen, A Model for Object-Based

Inheritance, [ShrWe] 147-164.
[JohFo] Ralph E. Johnson and Brian Foote, Designing Reusable Classes,

Journal of Object-Oriented Programming 1:2 (June/July
1988) 22-30,35.

[Kim&al] Won Kim et al., Composite Object Support in an Object-Oriented
Database System, [Meyr2] 118-125.

[LaThPu] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh, An
Exemplar Based Smalltalk, [Meyr1] 322-330.

[Lamb] David Alex Lamb, Benign Side Effects, Inf. Proc. Lett. 29:6
(December 1988) 301-305.

[Lieb&al] Karl Lieberherr, Ian Holland, Gar-lin Lee, and Arthur J. Riel,
An objective sense of style, Computer (IEEE) 21:6 (June 1988)
79-81 (The Open Channel).

[LiHoRi] K. Lieberherr, I. Holland, and A. Riel, Object-Oriented Pro-
gramming: An Objective Sense of Style, [Meyr3] 323-334.

[LieHo] Karl J. Lieberherr and Ian Holland, Formulations and Benefits
of the Law of Demeter, submitted paper (1988).

[Lieb1] Henry Lieberman, Using Prototypical Objects to Implement
Shared Behavior in Object Oriented Systems, [Meyr1] 214-223.

[Lieb2] Henry Lieberman, Concurrent Object-Oriented Programming in
Act 1, [YonTo] 9-36.

[LKnu] Jørgen Lindskov Knudsen, Name Collision in Multiple Classifi-
cation Hierarchies, [GjeNy] 93-109.

[Lisk&al] Barbara Liskov et al., CLU Reference Manual, Lecture Notes in
Computer Science 114, Springer-Verlag 1981.

[McLe] John McLean, A Formal Method for the Abstract Specification of
Software, JACM 31:3 (July 1984) 600-627.

[Meye1] Bertrand Meyer, Genericity versus Inheritance, [Meyr1]
391-405.

[Meye2] Bertrand Meyer, Object-oriented Software Construction, Pren-
tice-Hall 1988.

[Meyr1] Norman Meyrowitz (Ed.), OOPSLA ’86 Conference Proceedings
(Portland, Oregon, 1986), ACM SIGPLAN Notices 21:11
(November 1986).

[Meyr2] Norman Meyrowitz (Ed.), OOPSLA ’87 Conference Proceedings
(Orlando, Florida, 1987), ACM SIGPLAN Notices 22:12
(December 1987).

[Meyr3] Norman Meyrowitz (Ed.), OOPSLA ’88 Conference Proceedings
(San Diego, California, 1988), ACM SIGPLAN Notices 23:11
(November 1988).

108

[MinRo] Naftaly H. Minsky and David Rozenshtein, A Law-Based
Approach to Object-Oriented Programming, [Meyr2] 482-493.

[Moon] David A. Moon, Object-Oriented Programming with Flavors,
[Meyr1] 1-8.

[Øste] Kasper Østerbye, Abstract Data Types with Shared Operations,
ACM SIGPLAN Notices 23:6 (June 1988) 91-96.

[Sakk1] Markku Sakkinen, On the darker side of C++, [GjeNy] 162-176.
[Sakk2] Markku Sakkinen, Comments on ‘‘the Law of Demeter’’ and C++,

ACM SIGPLAN Notices 23:12 (December 1988) 38-44.
[Sakk3] Markku Sakkinen, Objects, non-objects, and existential depen-

dences, submitted paper (1988).
[Sakk4] Markku Sakkinen, Between classes and instances, aided by titles,

submitted paper (1989).
[Scha&al] Craig Schaffert et al., An Introduction to Trellis/Owl, [Meyr1]

9-16.
[ShrWe] Bruce Shriver and Peter Wegner (Ed.), Research Directions in

Object-Oriented Programming, The MIT Press 1987.
[SI88] SIGMOD ’88 Conference (Chicago, June 1988) Proceedings, ACM

SIGMOD Record 17:3 (September 1988).
[SkaZd] Andrea H. Skarra and Stanley B. Zdonik, Type Evolution in an

Object-Oriented Database, [ShrWe] 393-415.
[Snyd1] Alan Snyder, CommonObjects: An Overview, ACM SIGPLAN

Notices 21:10 (October 1986) 19-28.
[Snyd2] Alan Snyder, Encapsulation and Inheritance in Object-Oriented

Programming Languages, [Meyr1] 38-45.
[Snyd3] Alan Snyder, Inheritance and the Development of Encapsulated

Software Systems, [ShrWe] 165-188.
[Stei1] Lynn Andrea Stein, Delegation Is Inheritance, [Meyr2] 138-146.
[Stei2] Lynn Andrea Stein, Compound Type Expressions: Flexible Types

in Object Oriented Programming, [Meyr3] 360-361.
[Stro1] Bjarne Stroustrup, The C++ Programming Language, Addison-

Wesley 1986.
[Stro2] Bjarne Stroustrup, The Evolution of C++ : 1985 to 1987,

USENIX C++ Workshop (Santa Fe, New Mexico, November
1987) Proceedings.

[UngSm] David Ungar and Randall B. Smith, Self: The Power of Simplic-
ity, [Meyr2] 227-242.

[Viha] Juha Vihavainen, The Programming Language Mode Language
Definition and User Guide, Report C-1987-50, University of
Helsinki (Finland), Department of Computer Science 1987.

[WegZd] Peter Wegner and Stanley B. Zdonik, Inheritance as an Incre-
mental Modification Mechanism or What Like Is and Isn’t Like,
[GjeNy] 55-77.

109

[YokTo] Yasuhiko Yokote and Mario Tokoro, Concurrent Programming
in ConcurrentSmalltalk, [YonTo] 129-158.

[YonTo] Akinori Yonezawa and Mario Tokoro (Ed.), Object-Oriented
Concurrent Programming, The MIT Press 1987.

111

CHAPTER 5

A CRITIQUE OF THE INHERITANCE PRINCI-
PLES OF C++

First published (except Corrigendum) in Computing Systems Vol. 5 No. 1
(Winter 1992), p. 69 - 110. © University of California Press and USENIX
Association 1992. — Reprinted with the permission of the Regents of the
University of California. The journal version contains a few small edito-
rial changes not found in this chapter. Corrigendum to appear in Com-
puting Systems; published in parallel with permission.

112

A CRITIQUE OF THE INHERITANCE PRINCI-
PLES OF C++

Abstract

Although multiple inheritance (MI) is already a feature of the C++ lan-
guage, there is a debate going on about its good and bad sides. In this
paper, I am defending MI. At the same time, many of the rules and prin-
ciples of inheritance in current C++ seem to me to need improvements,
The suggested modifications are relatively simple, do not introduce many
new reserved words, and should not affect other parts of the language.

I do not find the current rules totally adequate even for single
inheritance (SI). The problems lie in the meaning of access levels and in
the redefinability of virtual functions. Additional inconsistencies in C++
virtual functions appear in so-called independent multiple inheritance
(IMI), which is in principle the easy case of MI. The most difficult prob-
lems are caused by so-called fork-join inheritance (FJI), which is the most
complicated kind of inheritance.

One essential cause of complexity is private inheritance because of
its intransitive nature. The main idea suggested here is that, simply put,
private inheritance should be implicitly ‘‘non-virtual’’ and public inheri-
tance ‘‘virtual’’. This is actually a simplification of the language, at least
from the programmer ’s if not from the implementor’s point of view. The
main rule has also been generalised to arbitrary combinations of private
and public inheritance, with some restrictions on legal combinations. I

113

sincerely think that the current C++ rules will be very harmful if pro-
grammers start developing complex class hierarchies in which FJI is
applied. On the opposite, the new rules suggested here should behave
consistently even in complex situations — but demonstration is so far
missing, of course. The same principles should be applicable to other
object-oriented languages beside C++.

MI increases the complexity of the language in any case; Cargill
[1991a] has therefore required good examples of its advantages to make it
worthwhile. I think that Waldo’s [1991a] example is convincing enough
for IMI, but I join in the quest for equally good examples using FJI.

1. Introduction

This article is aimed at an audience that has some previous understand-
ing of both object-oriented programming (OOP) and the C++ language
(some parts will require even a quite detailed knowledge of C++). A
reader who thinks that the two are almost synonyms, or that OOP and
Smalltalk-80™ are almost synonyms, should probably first read one of
the good tutorials and books on OOP that are available today.

Be warned first that the author is a convinced opponent of C and
all C-based languages, for general-purpose programming [Sakkinen 1988,
1991]. In spite of that, there will be several constructive suggestions for
improvements to C++ in the article (of course I would prefer the funda-
mental ideas to be adopted into inherently better languages). Secondly, I
am currently a rather pure theoretician, not having really programmed in
any language for quite some time. I had some experience of C++ prior to
Release 2.0, and while finishing the paper, have been able to test some
questionable things on a Release 2.1 compiler (Hewlett-Packard). Thirdly,
try to bear with my British spelling if it has not been Americanised by the
editorial staff.

The initial motivation for this article was to examine multiple
inheritance (MI). There is still a debate on whether MI is at all necessary
in object-oriented systems, and whether its true advantages outweigh the
complexity that it introduces into a language, particularly C++. I do
believe in MI, especially from a theoretical standpoint. It was therefore
surprising to me that among the 30 or so participants of the ECOOP’911

114

workshop on ‘‘Types, inheritance and assignments’’, a majority answered
‘‘No’’ when asked if they would include MI in their next object-oriented
language. Perhaps the answer was motivated mainly by implementation
considerations — I forgot to ask about that.

In C++, multiple inheritance has already been defined and imple-
mented; although every independent new implementer must suffer the
tedium of MI. As there is no official standard for the language yet, Tom
Cargill has been campaigning in [1991a] and elsewhere at least for a
moratorium against MI. He has recently been countered by Jim Waldo
[1991a]. Here I will try to give some further arguments in favour of MI.

Unless we agree with the verdict that multiple inheritance should
be banished from C++, the next important question is how it should be
defined. Is the current approach adequate? Originally I really liked it
[Sakkinen 1989]. However, there have appeared some problems
[Baclawski 1990; Snyder 1991]. I will try to elaborate on these problems
in the larger part of this paper. They proved to be more numerous and
more complex than I had thought at the start of writing. Another sur-
prise was that some problems pertain already to single inheritance (SI).

The plot of the rest of this article is as follows. I will try to sum-
marise shortly the most relevant points of Cargill and Waldo on MI in
Section 2, with some references to other literature. Section 6 draws some
conclusions, finishing in optimism on the feasibility of multiple inheri-
tance. At the end we have the obligatory acknowledgements and refer-
ence list. The beef of the hamburger is in the middle.

Section 3 treats issues that are relevant even to SI, especially ideas
and problems of inheritance-related access control. Some of the points
will not be too familiar to most readers; also, the distinction between pri-
vate and public inheritance will be essential in the ensuing analysis of MI.
Some language modification proposals will appear already here.

Section 4 treats the simpler form of MI, so-called independent
multiple inheritance. I will claim that the current C++ rules have a severe
defect that affects already this case. Section 5 discusses the more compli-
cated case of MI, so-called fork-join inheritance. It is essentially more
complex than would appear from the typical literature examples contain-
ing four or five classes. Not surprisingly, here I will present the largest
number of defects, problems, and solutions.

The most important points will be emphasised in the form of six
theses and one rule in boldface. In fact, a hasty reader may look up just
these points and perhaps the conclusions. The rule, which I believe to be
the most significant single contribution of this paper, will be found in

1 Fifth European Conference on Object-Oriented Programming, Geneva, Switzerland,
July 15�19, 1991.

115

Subsection 5.4. It is accompanied a little later by two restrictions.
The paper tries to be as self-contained as possible in its reasoning.

However, there are more numerous and more detailed references to exist-
ing literature than may be conventional in this journal. Those readers
who are not interested to compare the various papers in detail can safely
ignore the references.

2. The if and the how of multiple inheritance

2.1. If: the main points of Cargill and Waldo

Cargill [1991a §4] describes the complexity of current C++ inheritance:
[There are] six variants of inheritance: a choice of three access levels for each
inheritance relationship (public, protected or private), and another choice of
whether or not each base class is virtual. The real expressive power of in-
heritance is delivered by just one of the six variants: public inheritance from
a non-virtual base.

I disagree with the last statement, and will argue against it in a later sec-
tion. I agree about the complexity (see §3.2 about protected base classes),
and so did Waldo.

Cargill goes on to show how multiple inheritance further
increases the complexity of the language. We have no argument here:
Bjarne Stroustrup himself has been the first to admit and explain the basic
complications. Note that already the choice between ‘‘virtual’’ and ‘‘non-
virtual’’ base class mentioned above was introduced because of MI.

The other main argument of Cargill [1991a] is that no convincing
examples of MI had been published. I had wondered a little about that
myself, but reasoned that such examples would tend to be too long for
typical journal and conference papers. However, I had heard people com-
plain how impossible it was to utilise two independent, extensive class
libraries such as OOPS (currently NIHCL) [Gorlen 1987] for ‘‘foundation
classes’’ and InterViews [Linton & Calder 1987] for the user interface,
within the same software system using C++ without MI.

Waldo [1991a] suggests that the MI examples cited by Cargill are
unconvincing mainly because they are based on implementation inheri-
tance. This is a very noteworthy point in my opinion. He presents an
example with interface inheritance and ‘‘data inheritance’’, in outline. He
convinces at least me that

116

(1) the example is not artificial, but programmers can often be confronted
with similar situations, and

(2) the problem could be solved only in very contorted ways if MI were
not available.

The true usefulness of multiple inheritance (in C++) has thus been
demonstrated. However, to a sceptic this only means that MI cannot be
dismissed off-hand; the tradeoff between its advantages and disadvan-
tages still remains a matter of judgement.

Cargill’s paper nevertheless makes a lot of sense, especially from
its chosen viewpoint of practical programming. At several places it really
does not criticise so much multiple inheritance, as the common tendency
in OOP to apply inheritance even where simple aggregation would be
more appropriate; I could not agree more.

2.2. How: the different cases

Waldo [1991a] seems to perceive Cargill as quite adamant against multi-
ple inheritance; I have a more open-minded impression. Cargill [1991a
§6] actually sketches a class structure from which MI could not be elimi-
nated without serious distortion, and says:

If MI were widely used in this manner in real programs, my thesis would
collapse.

The main idea is that at least some virtual function of each base class is
redefined in the derived class so that it calls a virtual function of another
base class. Interestingly, Waldo’s example is totally different from this
structure.

We can distinguish between two main forms of MI. By ‘‘indepen-
dent multiple inheritance’’ (IMI) we mean that parallel superclasses have no
common ancestors, or that there is only one derivation path connecting a
class to an non-immediate base class2. The opposite case we will call
‘‘fork-join inheritance’’ (FJI), as coined in Sakkinen [1989] in analogy with
the forking and joining of parallel processes. I have not seen any other
compact term for this phenomenon in the literature.

Cargill [1991a §8] briefly admits the need for IMI, motivated by
multiple independent class libraries (cf. §2.1):

We may discover that MI is indeed useful, but that virtual base classes are
unnecessary.

2 This term is obviously used in a slightly more general meaning in Stroustrup [1989b].

117

He has later [1991b] paraphrased this unambiguously:
FJI is not useful and therefore the virtual base question is moot.

Waldo does not take a stand on this issue in the article [1991a], but he has
later [1991b] clarified his position to be rather opposite to Cargill:

[...] my point might show that virtual base classes are the only candidates
for multiple inheritance.

In IMI there is no difference between virtual and non-virtual base
classes. Therefore, Cargill’s original statement could have been inter-
preted thus:

FJI is useful, but only with non-virtual base classes;

at least out of context. This was certainly not the intention. Cargill does
not give any semantic reasons against virtual base classes; his goal is to
reduce the complexity mentioned in the previous section. We have here a
similar tradeoff situation as with MI in general. Neither Cargill’s nor
Waldo’s example contains fork-join inheritance; thus the ‘‘no supporting
evidence’’ argument remains valid. I will later try to suggest some rea-
sons in favour of FJI, but they will not be very decisive.

Baclawski [1990] calls MI with non-virtual base classes ‘multiple
independent inheritance’. This includes both IMI as defined above and
non-virtual FJI. Baclawski regards this as a peculiar variation of MI.

Another recent paper with some highly interesting points on MI
— although I will not agree on all of them — is Snyder [1991]. It has been
written with the purpose of describing the most essential properties of
C++ in terms of a supposedly language-independent model. Snyder
regards non-virtual FJI as an unusual corner case of the language; he did
not bother to make his general model so complex that it could account for
this situation. FJI with virtual base classes is not treated specifically in his
article.

3. Inheritance and accessibility

3.1. Access levels of class members

There were originally only two alternative accessibility levels for both
class members and base classes, public and private (and actually no
explicit specifier yet for private accessibility). The intermediate level,
protected, was added for members only in C++ Release 1.2 from AT&T.

118

C++ checks for name clashes between inherited and non-inherited
members (and between members inherited from different base classes)
before applying access controls. I think that this is the wrong choice, the
rationale in Ellis & Stroustrup [1990 §11.3c] notwithstanding:

Making a name public or private will not quietly change the meaning of a
program from one legal interpretation to another.

The flaw in this reasoning is that changing the access level of a class
member is a modification of the class’s interface, which should always be
expected to affect the clients of the class and should not be done too
lightly.

On the opposite, adding or renaming a private member is only a
matter of the class’s implementation and therefore should not concern
clients at all. As things are in C++, private members of a class cannot be
of any benefit to derived classes (and outside clients) but can cause harm
to them. The same holds for members of private base classes. The special
case of virtual private functions will be discussed in §3.4.

When protected class members were first introduced, their defi-
nition was simple and sensible [AT&T 1986]. A protected member m
defined in a class A was accessible both to class A itself and to any class B
directly derived from A; unless the derivation was private, the accessibil-
ity of m in B was the same as if m had been a protected member of B itself.

With Release 2.0, the meaning was subtly changed. Even if a pro-
tected member m of class A is accessible to some descendant class C, mem-
ber functions of C are now allowed to access the m part of an object only if
that object is statically known to belong to class C or a descendant of C.

The rationale in Ellis & Stroustrup [1991 p. 254] says:
[The original rule] would allow a class to access the base class part of an un-
related class (as if it were its own) without the use of an explicit cast. This
would be the only place where the language allowed that.

‘Unrelated’ in the quote seems queer since the classes have a common
ancestor and only the common part would be accessed. Otherwise this
argument makes some sense — I assume that mentioning explicit casts is
not meant to imply that they could be used to bypass the new restriction.

The example on p. 255 has a class Account with derived classes
checking_account and AutoLoan_account, and it is argued:

[Account] has information common to all kinds of accounts, including the
account balance, so a friend of Account can walk the list of all Accounts
and tell [the balances]. [...] The member functions of checking_ac-
counts, however, should not be able to access the balance in an Au-
toLoan_account. The restriction prevents that.

This also makes some sense, but not completely. If a friend function is
supposed to be able to treat the balance in all possible classes derived
from Account correctly, why should a member function of a derived

119

class be unable to do the same? I would much more want to prevent
other people’s account instances from accessing the balances of my
accounts (of whatever kind), but that is not possible in C++.

In my opinion, this complication is a display of paternalism con-
trary to the general philosophy of C++3 (cf. §3.7). It can prevent some
obscure programming errors, but also makes a potentially much larger
number of perfectly sound and useful pieces of code illegal.

3.2. Modes (access levels) of inheritance

There is an uncertainty on whether protected base classes should be
possible in current C++. Ellis & Stroustrup [1990] is inconsistent on this
point, with most clues leading to a negative answer. At least the Hewlett-
Packard C++ translator/compiler does not accept protected base
classes. On the contrary, Stroustrup [1991] makes it clear that protected
base classes are indeed meant to be possible (in some future version?),
and also describes their semantics.

Bjarne Stroustrup’s books and articles try to make a clear concep-
tual distinction between public and private inheritance (derivation). For
a long time, I was in doubt about how protected inheritance could logi-
cally fit into this picture. Now I think that one can regard protected
inheritance as a restricted case of public inheritance, in that both these
modes are transitive: any class in an inheritance hierarchy can access all its
non-immediate base classes. For the purposes of this paper, it suffices to
speak of public inheritance, and the results should be applicable to pro-
tected inheritance as well.

Private inheritance, in contrast, is intransitive: every class can
access only its immediate base classes. This is the kind of inheritance that
has been recommended in earlier work of Alan Snyder [1987]. It is akin
to ‘‘incidental inheritance’’ in Sakkinen [1989], while the public inheri-
tance of C++ corresponds to ‘‘essential inheritance’’.

Public inheritance is supposed to imply more or less an is-a rela-
tionship, which must be transitive. Already because of its intransitivity,
private inheritance does not imply any is-a relationship. In private (sin-
gle) inheritance, the role of the base class can be very similar to the role of
a representation in CLU [Liskov et al. 1981].

3 I would still prefer a more paternalistic general philosophy!

120

C++ differs from the majority of object-oriented languages in that
the data members of an object are directly contained in the object, inde-
pendently of their type. In most other languages, an object can contain
only pointers to other objects; this is called ‘‘reference semantics’’.
Because of this property, private inheritance is much less different from
aggregation (i.e., a private base class from a data member) in C++ than in
those other languages. One might suggest that private (and protected)
inheritance be eliminated: that would simplify the language quite a bit.

I can agree with Baclawski [1990]4 and Cargill [1991a] that public
inheritance is the more important case and should preferably have been
the default. However, I cannot totally agree that private inheritance is
only aggregation with some syntactic sugar, although I had suggested in
Sakkinen [1989] that incidental inheritance could be replaced by aggrega-
tion and three simple constraints. Baclawski is wrong in claiming that
private inheritance in C++ does not support late binding; I had not quite
realised that earlier, either. In reality, a virtual function of a base class can
be redefined even in a privately derived class — with less restrictions
than I would like (§3.4) — and its invocations from other functions of the
base class and the derived class will be late-bound.

Because private derivation does conserve this essential property
of object-oriented inheritance, late-bound self-reference, I am at the end
not willing to have it removed from C++, in spite of the complications. It
is also such a traditional feature that its elimination would break too
many pieces of existing software. Protected derivation could easily be
omitted now as it is just being introduced. On the other hand, it adds
only little complexity, and can probably be useful in some situations. It is
also more orthogonal that the sets of possible access levels are the same
for members and for base classes.

3.3. Some definitions

We will now define some terms that will be needed a little later. The
more generally used term ‘inheritance’ has already been used as a syn-
onym of ‘derivation’, which is more common in C++ literature. The
words ‘ancestor ’ and ‘superclass’ will be used to mean immediate or non-
immediate base class, and likewise the words ‘descendant’ and ‘subclass’ to
mean immediate or non-immediate derived class. (These meanings

4 Baclawski [1991] says that this assessment was originally made by Stroustrup himself.

121

correspond to ‘proper ancestor’ and ‘proper descendant’ in Meyer
[1988].)

The accessibility of ancestors to descendants is probably intu-
itively clear to those readers who know enough about C++ to have both-
ered to read this far. The following definitions will make our concepts
precise enough. For the purposes of MI we need to think about the acces-
sibility of paths, while the accessibility of (ancestor) classes would be suffi-
cient for SI.

Let us regard the inheritance graph of a ‘‘closed’’5 collection of C++
classes as a labelled directed graph, where each edge is directed from
derived class to base class and labelled with its access mode and sharabil-
ity (virtual or non-virtual). An inheritance graph is always a directed
acyclic graph (DAG), but not in general a lattice, contrarily to what is
often incorrectly claimed in the object-oriented literature. We will call any
path (sequence of nodes and adjoining edges) in this labelled DAG a
derivation path.

A derivation path will be called transitively accessible if it contains
no edge labelled private (which includes the special case of a zero-length
path), intransitively accessible if only the first edge is labelled private, and
inaccessible otherwise. A class A is called accessible to a class B if there is at
least one accessible path from B to A (note the direction: B is either A itself
or a descendant of A), and inaccessible otherwise. When there is a danger
of ambiguity, we can use the longer word ‘inheritance-accessible’ about
classes.

What does this mean in practice? To any class B, B itself and its
public (and protected) ancestors are transitively accessible. The direct
private base classes of B and their public (and protected) ancestors are
intransitively accessible to B (unless also transitively accessible by
another path). The private ancestors of any ancestor class are inaccessible
to B (unless accessible by another path). — The distinction between acces-
sible and inaccessible ancestor classes will be crucial in the sequel. The
distinction between transitive and intransitive accessibility will be also be
needed, but much less often.

The reader should convince him/herself that the accessibility
gained by a descendant due to inheritance in C++ indeed corresponds to
the above definition. We expressly exclude friend accessibility (which
is intransitive like private inheritance) from these definitions, for instance
because friend relationships do not affect late binding. The fact that a
descendant may gain better access to an ancestor by being declared also a
friend should just be remembered.

5 For every class in the collection, all its ancestors must also be in the collection.

122

For every single class C we define the inheritance graph of C as
consisting of all derivation paths whose first node is C. For every
instance of C there is a subobject graph corresponding to the inheritance
graph, where each subobject node is labelled with the name of its class.
Each subobject contains the non-inherited non-static members of its class.
All the graphs in Ellis & Stroustrup [1990 §10] are subobject graphs: the
nodes are subobjects and not classes.

The correspondence between paths in the two graphs is one-to-
one. However, a class in the inheritance graph may correspond to more
than one node in the subobject graph, depending on the sharabilities.
That is one of the main issues of §5. For that discussion we will need one
more definition: the complete subobject corresponding to a node N in the
subobject graph shall be the subgraph reachable from N, i.e. consisting of
all paths whose first node is N.

3.4. Problems of private inheritance

There is a flaw in the access control principles that only affects virtual
functions. Namely, a derived class can redefine any virtual function of any
ancestor class, even those that it cannot invoke. We illustrate this with an
example:

class Top {
public: /* or protected: */

virtual void work();
...

};
class Middle: private Top {

...
};
class Bottom: /* any mode */ Middle {

...
virtual void work();
...

};

Example 1.

All calls of work in member functions of Top without explicit class quali-
fication will invoke Bottom::f, within a Bottom object. Private deriva-
tion thus does not isolate the classes Top and Bottom from each other.

I propose in a little oversimplified way:

123

Thesis 1: A descendant class must not be able to redefine a virtual
function of an inaccessible ancestor class.

In the next subsection I will suggest the possibility of purely static over-
riding, however. It may seem that we have here only a question of taste
instead of a true anomaly in the current C++ rules. Stroustrup [1991b]
says that he did not want to be paternalistic. However, without this
restriction it is not possible to avoid the ‘‘exponential yoyo problem’’
(§5.6).

There is an interesting consequence of Thesis 1. It obviously
makes Example 1 illegal, or at least prevents late binding from Top to
Bottom::work. That does not change if a redefinition of work is added
to class Middle. Therefore, Middle::work cannot be virtually rede-
fined further. according to the basic principle expressed in Ellis & Strous-
trup [1990 p. 205]:

For virtual functions, [...] the same function is called independently of the
static type of the pointer, reference, or name of the object for which it is
called.

Corollary 1: A virtual function of class C whose original definition is
inherited from an intransitively accessible ancestor class, must not be
further redefined in descendants of C.

Thesis 1 was originally formulated thus: ‘‘A descendant class must
not be able to redefine a virtual function that it cannot access.’’ Under
this rule it would not make sense to declare a member function private
virtual. Bjarne Stroustrup convinced me that there can be a scenario in
which the virtuality of a private function is useful, and that virtuality
should be independent of the access level. He could not convince me that
virtuality should be independent of derivation modes.

We thus split the accessibility of a virtual function into invokability
and redefinability. The former is initially defined by the access level and
the latter by the virtuality; for an inherited function, both are affected by
the mode of derivation.

The usefulness of a private (instead of protected) virtual function
is rather marginal. Let us examine a simple example, enhanced from
Stroustrup’s [1991b] by the addition of the intervening class B:

124

class A {
private:

virtual void f();
public:

virtual void g() { ... f(); ... }
...

};
class B: public A {

// no redefinition of f
...

};
class C: public B {

...
virtual void f();
...

};

Example 2.

Obviously the member functions of class B cannot invoke f; this
restriction can be desired in some situations. There is no declaration in
current C++, however, that would prevent class C from invoking f. On
the other hand, C::f cannot invoke A::f, nor can a redefinition of g in
class B invoke f, both of which would typically be wanted. The code of
A::f should then instead be duplicated in C::f or B::g, which is
against the object-oriented reuse principle.

3.5. A proposed solution

We must search deeper in the foundations for a totally consistent solu-
tion. It appears that C++ has no mechanism nor even term for handling a
‘‘family‘‘ of virtual functions, i.e. the ‘‘most base’’ function together with
its all redefinitions. This is one of the most important concepts in Sny-
der ’s [1991] object model: he uses the term ‘operation’ in this specific
meaning. One of the most difficult questions in that paper indeed is:
‘‘What are the operations?’’ Pointers to member functions are a partial
answer (see §4.1, §4.2).

In current C++, every member6 of a virtual function family is

6 Here ‘member ’ is in its ordinary meaning, not in the somewhat confusing C++ mean-
ing (component).

125

considered a completely independent function, except for late binding.
Therefore also the invokability of a redefined function may be different
from that of the original one. I suggest that a redefinition should never
change the invokability of a virtual function. Of course, the mode of
derivation may lower the invokability.

Thesis 2: The invokability of a redefinition of a virtual function in the
redefining class should always be the same as that of the inherited
function.

Note that according to Thesis 2, the function f in Example 2
would not be invokable even from class C, even though it is redefined
there. This may sound surprising, but is in a way more consistent than
the existing situation, where class B cannot invoke f although both its
superclass and subclass can. Further, I really think that the cases in which
a virtual function should be private are very rare.

There appears to be a nice way to satisfy the thesis while solving
another, related problem. The meaning of virtual function declarations is
currently quite context-dependent. An explicit virtual specifier can
mean either that a new virtual function family is being defined or that an
inherited virtual function is being redefined (this ambiguity was not
allowed originally). The omission of virtual can mean either that an
inherited virtual function is being redefined, an inherited non-virtual
function is being statically overloaded, or a new non-virtual function is
being defined. It would be much better to have a distinct keyword for the
redefinition, as e.g. in Eiffel (cf. §4.2).

According to Thesis 2, the invokability of a virtual function redefi-
nition would not be affected by the member access specifiers; this is simi-
lar to friend declarations. A syntactically distinguished virtual function
redefinition would be elegant also from this viewpoint. In Example 1, the
following could be added to the definition of class Middle:

redefine void work();

Allowing the static (non-virtual) overriding of an inaccessible vir-
tual function could be possible as an extension to the current C++ rules; it
only makes sense because of the other suggestions. The function Bot-
tom::work in Example 1 would then be legal, but only a static overload-
ing of Top::work and would not belong to the same family, although
itself virtual. In contrast, it will be lightly suggested in §3.7 that the non-
virtual overriding of accessible members should not be allowed — a
restriction to the current rules.

It has been conceded in §3.4 that the scope of virtual redefinability
of a member function can sometimes be larger than that of invokability.
Probably more often one would like to restrict the scope of redefinability
to be smaller, i.e. to prevent further redefinitions from some class down-
ward but retain invokability. BETA [Madsen 1987] is one language that

126

offers such a possibility. Let us modify Example 1 again a little, with
some tentative syntax:

class Middle: public Top {
...
freeze void work();
...

};

Note that the derivation from Top was changed to public. Class Bottom
would then be able to invoke but not to redefine work.

Adding new keywords to C++ is always a bit dubious, or at least
requires very good reasons. This is a general problem in languages in
which keywords are in the same space as programmer-invented names.
One could manage without new keywords by replacing virtual, rede-
fine, and freeze in the suggestion by, say, virtual >, virtual =,
and virtual <, respectively. Unfortunately, one reviewer was afraid
that this alternative could cause trouble for parsing.

3.6. Virtual base classes

Although the problems of virtual base classes would logically belong
to the section on fork-join multiple inheritance, they are so central in the
discussion that we may note some points already here. To begin, I think
it has been an unfortunate choice to overload the term ‘virtual’ with this
meaning, remotely related to the original one; for instance ‘shared’ would
have been a better word. Recall that the meaning is [Ellis & Stroustrup
1990 p. 200]:

A single sub-object of the virtual base class is shared by every [derived]7

class that specified the base class to be virtual.

As explained by Stroustrup [1987, 1989] and Ellis & Stroustrup
[1990 §10], virtual base classes are a little more difficult and more costly to
implement than non-virtual ones. Even then they are subject to the addi-
tional restriction that a pointer to a virtual base class cannot be cast into a
pointer to a derived class. Casts from base to derived class are, however,
extremely risky in C++ even in the cases where they are allowed, and
should be avoided. The reason is the lack of run-time type information in
objects — in my opinion, insufficient object orientation.

7 It actually reads ‘base’ in the book, but that must be a simple clerical mistake.

127

Stroustrup admits that writing virtual functions can be trickier in
the presence of virtual base classes. The example in e.g. Ellis & Strous-
trup [1990 p. 201�202] shows that one must often write another, protected
and non-virtual function for descendant classes to call; otherwise the
function in some base classes may get invoked more than once. Cargill
[1991a] dislikes the complexity caused by possible ‘‘sideways’’ redefini-
tions of virtual functions with virtual base classes. We will treat this
question in §5.5�5.6 and find that FJI with non-virtual base classes can
actually lead to much more anomalous situations.

The virtuality of base classes must be considered in object con-
struction, too. It is written in Ellis & Stroustrup [1990 §12.6.2]:

A complete object is an object that is not a sub-object representing a base class.
Its class is said to be the most derived class for the object. All sub-objects for
virtual base classes are initialized by the constructor of the most derived
class.

This is obviously necessary in some situations, but in this formulation it is
a too sweeping requirement, which may cause the effects of virtual
derivation to propagate too far. It should be refined.

Consider this example:

class A {
public:

A(int);
...

};
class B : public virtual A {
public:

B(int i) : A(i) { ... }
...

};

Example 3.

Now all constructors of every class derived from B directly or indirectly,
even by single inheritance, must explicitly invoke the constructor of A!
The rule also requires an ugly exception to the accessibility rules of class
members: the constructors of a virtual base class are accessible both to the
virtually derived class and all its descendants, ignoring all access speci-
fiers.

The effect of declaring a base class virtual is too global also in the
sense that there is only one subobject within a complete object that corre-
sponds to all occurrences of the same class as a virtual base. Although
this seems simple and logical at first, it is less logical in some more com-
plicated inheritance graphs. I will suggest an essential modification to
this principle in §5.4.

128

Thesis 3: The effects of declaring a derivation virtual should
not propagate too far in the subobject graph.

3.7. Non-virtual overriding and overloading

The philosophy of name scoping between superclasses and subclasses in
C++ is the same as in Simula™: the scopes are regarded as if they were
lexically nested. Variables and functions of the derived class can thus
non-virtually override (hide) those of the base class.

This philosophy originated when there was yet no mechanism
similar to the access modes of C++, and was then a sensible way to
decrease unnecessary interference between super- and subclasses. How-
ever, now that the different access modes exits, it would be more natural
to regard the accessible members of a base class to be in the same scope as
the members of the subclass itself.

In consequence, I suggest that the overriding of accessible non-vir-
tual base class members should not be allowed in a derived class; it is not
very useful but can cause treacherous errors. Especially the difference
between virtually and non-virtually overridden member functions is
quite subtle. The overloading of non-virtual member functions would of
course not be forbidden if the types of the explicit arguments are differ-
ent.

The previous suggestion is more or less tentative; the following
one is more serious. The hiding rule has been extended (I suppose in
Release 2.0) so that defining or redefining a member function in a class
also hides any inherited, overloaded member functions with the same
name. This is another paternalistic rule (cf. §3.1) that should be retracted.
It tries to prevent some errors but causes much more nuisance to perfectly
good programming.

Ellis & Stroustrup [1990] give two examples as a rationale for the
rule (§13.1, p. 310�312). The first example is based on the thinking that a
client of a derived class should not need to be aware of the public func-
tions of public base classes. In my opinion, this is contrary to the very
idea of public inheritance. A work-around for accessing a hidden inher-
ited function is presented:

129

class X1 {
public:

void f(int);
};

// chain of derivations X2 .. X8

class X9 : public X8 {
public:

void f(double);
void f(int i) { X8::f(i); }

};

Example 4.

Having to write a lot of such auxiliary functions can be an unnec-
essary pain in the neck for programmers. If the hiding rule were kept as
the default, at least one should have some more convenient means to
escape it, such as:

reveal void f (int);
reveal f;

The latter declaration would reveal all overloaded, inherited variants of
f. Even better, the hiding rule should not be the default, but applicable
by explicit hide declarations analogous to the above reveal declara-
tions.

The second example of Ellis & Stroustrup [1990 p. 312] is based on
an assignment operator:

struct B {
void operator= (int i)
...

};

If this operator were not automatically hidden in subclasses of B by the
default assignment operator (if nothing else), it would probably cause an
incomplete assignment when applied to a subclass object. — Here the
hiding rule tries to protect against sloppy programming, but succeeds
only half way: an invocation through a pointer of type B* will cause the
‘‘incomplete’’ operation to be performed anyway. The operator should
absolutely be declared virtual in the first place and redefined in the
appropriate derived classes.

The above kind of reveal declaration would also be a better way
than the existing one [Ellis & Stroustrup 1990 §11.3] for restoring the orig-
inal accessibility of selected members of private (or protected) base
classes. A small but admitted defect of the current method is that over-
loaded member functions with the same name cannot be treated

130

separately. To take the book’s example:

class X {
private:

f(int);
public:

f();
};
class Y : private X {
public:

X::f; // error
};

Example 5.

There is no way to restore the accessibility of X::f() to public in Y
because X::f(int) is private.

4. Independent multiple inheritance

4.1. Problems in current C++

Simplifying things a little, we can say that the prime conceptual problem
of multiple inheritance are horizontal name clashes, i.e. those between par-
allel superclasses (base classes). Independent MI is a simple and unprob-
lematic case in principle: any such name clashes can be regarded as purely
accidental and resolved by explicit class qualification.

Name clashes between data members indeed cause no big trouble
in C++: one must just explicitly qualify the member name with the
appropriate class name when referring to it in a derived class. Unfortu-
nately, name clashes between function members cannot always be handled
adequately. Let us consider an example from Stroustrup [1991 §13.8]: the
two totally unrelated classes Window and Cowboy both happen to have a
function called draw, but their meanings are obviously quite different.

131

class Window {
// ...
virtual void draw();

};
class Cowboy {

// ...
virtual void draw();

};
class CowboyWindow : public Window, public Cowboy {

// ...
};

Example 6.

There is a similar example in Snyder [1991 Fig. 8b]. Snyder sees
here an anomaly in C++: that there is no way to denote either Window’s
or Cowboy’s draw in the lexical context of CowboyWindow, in a way that
would not suppress virtuality and would be resilient to a later evolution
of the class hierarchy. Indeed, a simple class qualification (Cow-
boy::draw or Window::draw) may need to be changed if draw is later
redefined in CowboyWindow, or if some new class redefining draw is
interposed in the inheritance graph between Cowboy and CowboyWin-
dow (or Window and CowboyWindow).

Actually there is a solution to this problem, by using ‘‘pointers to
members’’8 — a difficult new feature which happens to be discussed in
Snyder [1991] as well. Specifically, if cw is an instance of CowboyWindow,
one could use

(cw.*(&Cowboy::draw)) ()

to invoke the first function, and

(cw.*(&Window::draw)) ()

to invoke the second function. As Ellis & Stroustrup [1990, p. 157] con-
fess, ‘‘the syntax isn’t the most readable one can imagine’’, but it should
work exactly as Snyder wanted. — Even this solution does not work for
non-virtual functions. However, if the suggestion of §3.7 to forbid non-
virtual overriding were accepted, ordinary class qualification would suf-
fice for them.

This whole example would have been illegal C++ and therefore
moot according to the rules of Stroustrup [1989 p. 379]: a horizontal name
conflict between virtual functions was required to be resolved by a redefi-
nition in the derived class. This rule has obviously been lifted, sensibly

8 Again a term that I do not really like, because those are offsets rather than pointers.

132

enough.
In my opinion, the real conceptual fault appears first when one

would like to redefine one of the inherited draw functions. Namely, it is
impossible to redefine Cowboy::draw and Window::draw separately in
CowboyWindow: a redefinition will unify the functions. The situation is
the same whether the functions are virtual or not. This is absolutely
wrong if we assume that name clashes between independent superclasses
really are accidental. In Example 6 it is impossible to imagine a function
that could be a sensible common specialisation of the two draw functions.
An analogous situation in Snyder [1991 Fig. 8a] is only called ‘‘challeng-
ing’’ there, in the sense of its modelling being non-obvious.

Thesis 4: The language must not force functions inherited from mutu-
ally unrelated ancestors to be unified in a common descendant class.

It is interesting to note that Ellis & Stroustrup [1990 §10.11c] recog-
nise this problem, but do not seem to consider it important. They actually
write:

The semantics of this concept are simple, and the implementation is trivial;
the problem seems to be to find a suitable syntax.

Syntax concerns seem a poor excuse for leaving the problem unsolved,
especially as the syntax of C++ is not so wonderful anyway.

The anomaly of the above becomes still more obvious if we think
of cases in which the two draw functions are not of exactly the same type.
If they differ only in their return type, then it is not possible to redefine
either of them in CowboyWindow, as far as I can infer from Ellis & Strous-
trup [1990]! If they differ in the types of arguments, then they remain
separate even in C, but if only one is redefined the other becomes hidden
(§3.7).

4.2. Different solutions

Stroustrup [1991 §13.8] presents a work-around for redefining the draw
functions in Example 6. CowboyWindow cannot be derived directly from
Cowboy and Window, but auxiliary intermediate classes and functions are
needed. This is Stroustrup’s solution, with trivial type errors corrected:

133

// ...
class WWindow : public Window {

virtual void win_draw() = 0;
void draw() { win_draw(); }

};
class CCowboy : public Cowboy {

virtual void cow_draw() = 0;
void draw() { cow_draw(); }

};
class CowboyWindow : public Window, public Cowboy {

// ...
void win_draw();
void cow_draw();

};

Example 7.

This method would work just as well even if the two draw func-
tions had different result types. However, it looks a little awkward,
adding complexity to the class structure. The awkwardness becomes
worse if we suppose that the classes WWindow and CCowboy should be
reusable, and that there may be more than one pair of colliding functions
that could be redefined. In order not to require every derived class to
redefine every function, win_draw and cow_draw should actually not be
defined as pure virtual (= 0), but rather like this:

virtual void win_draw() { Window::draw(); }

More importantly, programming tools such as class browsers probably
cannot tell the programmer that in order to get a redefinition of Win-
dow::draw in classes derived from CowboyWindow, it is the function
win_draw that must be redefined.

One way to avoid the problem of mixing up unrelated functions
would be the mechanism of ‘‘titles’’ [Sakkinen 1990]. I had originally
thought it out earlier, and noted when the ‘‘pointer to function member’’
concept was added to C++ that there was a strong similarity. A bit para-
doxically, although families of virtual functions are not well defined in
C++ (§3.5), pointers to them now exist. As Snyder [1991 p. 13] puts it:

Pointers to class function members correspond exactly to operations in our
model of C++: such pointers cannot distinguish between individual methods
for the same operation [...]

Simplifying to the most essential for this case, a title would have a
meaning lying between a class qualification and a pointer to function
member. To try some concrete syntax, A..f would mean ‘‘the most spe-
cific overriding of function A::f’’. The most important difference to
*(&A::f) would be that this construct could be used also in redefini-
tions. In the above case, one would use just A..f if redefining the

134

function lexically within the definition of a derived class C, and C::A..f
outside class definitions.

Using the title could automatically take into account even non-vir-
tual overridings (previous subsection). If all the suggestions in §3.5 were
realised, titles could be needed for the opposite purpose: to disambiguate
vertical name clashes between virtual functions already in single inheri-
tance. Member function pointers are also adequate for that task, though,
because the need would appear only in invocations, not definitions. —
Neither of these two uses would be relevant if non-virtual overriding of
accessible members were forbidden (§3.7).

Finally, in spite of what was said above, in some cases one might
want to unify two functions inherited from different superclasses. This
could be done by equating their titles (possible syntax is left to the
reader ’s imagination), even if the original names were different. Of
course, the argument and result types of both functions should be identi-
cal.

Note that in Eiffel™ [Meyer 1988 §11.2], inherited features (Eiffel
terminology, equivalent to ‘members’ in C++ terms) with identical names
can be redefined separately:

class Cowboy feature draw ... end
class Window feature draw ... end
class CowboyWindow inherit

Cowboy rename draw as cow_draw redefine cow_draw;
Window rename draw as win_draw redefine win_draw;

... end

Example 8.

The suggestion for C++ mentioned in Ellis & Stroustrup [1990 §10.11c] is
totally analogous to this. The advantage of my ‘‘title’’ solution is that it
would not be necessary to invent new names for the overriding functions;
although even in Examples 7 and 8, both were renamed only for the sake
of symmetry.

4.3. Private multiple inheritance

The following section will present quite a lot of complications that are
caused by the presence of private inheritance in C++, in contrast to most
other object-oriented languages. Before that, let us have one more argu-
ment in favour of private inheritance.

As explained in Stroustrup [1991 §12.2.5], a typical simple use of
IMI is to have one public base class and one private base class which

135

serves as the implementation. The very first example of multiple inheri-
tance in Meyer [1988 §10.4.1], already entitled ‘‘The marriage of conve-
nience’’, is like this. If we disregard genericity, the example defines the
class FIXED_STACK by inheriting both the deferred (Eiffel term for
‘abstract’) class STACK, which defines the interface, and the ordinary
class ARRAY, which is used for the implementation. All features of
STACK are exported by FIXED_STACK, corresponding to public deriva-
tion in C++, while no features of ARRAY are exported, corresponding to
private derivation.

This example has often been frowned upon, but actually there is
only one defect in it: in Eiffel nothing prevents an object of type
FIXED_STACK from being assigned to a variable of type ARRAY, after
which all ARRAY routines can be directly invoked. Here the private
derivation of C++ has an advantage over Eiffel: in C++ it would not be
possible for clients to implicitly convert a pointer to FIXED_STACK into a
pointer to ARRAY. Unfortunately, an explicit cast is always possible; but
explicit casts can cause even catastrophic effects in C++, so a wise pro-
grammer writes them only when necessary and reads them in existing
code as warning signs.

5. Fork-join inheritance

5.1. The positive side

I tend to believe that many situations really demand FJI (with virtual base
classes). On a conceptual level, such situations arise whenever we have
several mutually independent classifications of the same domain. For
instance: A vehicle is either a land, water, air, or amphibious vehicle; in
another classification it is either private or public (not in the C++ sense!);
in a third one it is powered by wind, man, animal, or engine. Any
instance of a vehicle is nevertheless one vehicle, thus vehicle as a non-
virtual base class would make no sense. — This example is perhaps not
absolutely convincing, as it might be modelled adequately without using
inheritance at all.

An interesting programming style has been suggested by Paul
Johnson [1990] as fine grain inheritance, although I have not seen examples
clearly showing its advantages. Very briefly, it means that every class
should define a minimal coherent set of features, and a typical,

136

conventionally designed class should be broken into a number of smaller
classes related by (multiple) inheritance. Fine grain inheritance obviously
requires a high degree of FJI with virtual public base classes.

One very simple example of public fork-join inheritance is pre-
sented by Stroustrup [1991 §6.5.1]:

class link { ... };
class task: public link { ... };
class displayed: public link { ... };
class satellite: public task, public displayed { ... };

Example 9.

With this definition there will be two separate link subobjects in each
satellite object. If link were declared a virtual base class of task
and displayed, there would be only one link subobject.

In Sakkinen [1989], I criticised Eiffel because, contrarily to C++, its
rules would not guarantee the integrity of link subobjects in the above
case. Depending on how the class satellite were defined, part of the
components of link might well be shared and the rest duplicated. This
happens on purpose in the ‘‘intercontinental drivers’’ example of Meyer
[1988 §11.6.2]. The same danger seems to exist in several other languages
that support MI.

Bertrand Meyer [1990] in turn has criticised the C++ principles on
an issue slightly different from subobject integrity. According to his rea-
soning, there is no sense in having task and displayed decide about
the sharing or duplication of link, since it does not affect them but only
satellite. I continue to disagree with Meyer even on this point: it can
be very important for the class task to know whether it has a link part
to itself or is prepared to share it with any other, unknown class derived
from link.

The question that I had forgotten to pose in admiring the MI prin-
ciples of C++ [Sakkinen 1989] was: While C++ is in this respect more dis-
ciplined than e.g. Eiffel, does even the choice between virtual and non-
virtual derivation independently of access mode, as allowed by C++,
make sense conceptually and semantically? We will investigate this ques-
tion, based in part on the analysis of Baclawski [1990].

In the following subsections, we suppose that a most derived class
C is derived from several base classes by FJI. We examine how the subob-
ject graph of C (§3.3) is related to its inheritance graph in various situa-
tions, and what restrictions are needed to guarantee the consistency and
semantic feasibility of the inheritance structure.

137

5.2. Accessible base classes

Let us examine Example 9 further. The base class link is supposed to
implement lists of objects: here a scheduler list of tasks and a display list.
The derivations from link are therefore non-virtual, resulting in two dis-
tinct link subobjects in a satellite.

The inheritance in the example is public, which should imply tran-
sitive is-a relationships (§3.2). Since a satellite is a task and a task is a link,
a satellite should also be a link. However, there are two distinct links in a
satellite, thus one cannot say that a satellite is-a link. Indeed the rules of
C++ will not allow us to convert a pointer of type satellite* directly
to type link*, although such conversions are always possible in public
single inheritance.

There will hopefully be no argument that one of the ubiquitous FJI
examples in the literature of semantic databases is correctly modelled in
C++ as follows.

class Person { ... };
class Student: public virtual Person { ... };
class Employee: public virtual Person { ... };
class StudentEmployee: public virtual Student,

public virtual Employee { ... };

Example 10.

Of course the virtuality or non-virtuality of the immediate bases of Stu-
dentEmployee does not matter unless further classes are derived from
it. The important thing to note is that the subobject structure from the
viewpoint of StudentEmployee would not become different if its direct
bases were made private. The ancestors would only become hidden
from clients.

On these grounds I postulate a little imprecisely the following

Thesis 5: Accessible fork-join inheritance should always be virtual.

Note the more general qualification ‘accessible’ instead of ‘public or pro-
tected’. In the pure case (i.e., no private derivations in the inheritance
hierarchy) the thesis is sufficient and means that the subobject graph shall
be isomorphic to the inheritance graph. In particular, an object shall con-
tain exactly one subobject corresponding to each ancestor class. A precise
formulation that is valid also for mixed derivations can be based on the
definitions of §3.3: If class A is accessible to class B over more than one
derivation path, an instance of B shall contain one complete subobject of
class A that is common to all those derivation paths. (An instance can be
either a complete object or a complete subobject.)

Now we have gotten into a conflict with Stroustrup’s example,
which looked perfectly natural at first sight. At least link simply cannot

138

be a virtual base class there, according to the intended semantics. The
only way to both preserve the inheritance graph and conform to the rule
is to make link a private base class (of at least one of its immediate
descendants). In fact, that would be reasonable also because otherwise it
would be much too easy e.g. to put tasks on the display list.

Pondering Example 9 a little more, we note that it is questionable
to make link a base class at all, instead of a data member. If a task, for
example, should happen to need more than one link, it would not be pos-
sible to use inheritance. Declaring data members of type link in task
and displayed would cause different problems: there would be no way
for the link objects to refer to the objects in which they are contained. A
suggested new feature of C++ that was obviously designed especially for
cases like this, is template class [Ellis & Stroustrup 1990 §14; Stroustrup
1991 §8]. The class link could be declared as a template class taking a
type name (here task, displayed) as its template argument.

One unconventional property of Eiffel is that direct repeated inheri-
tance [Meyer 1988 §11.6.1] is allowed: one class may appear more than
once in the immediate ancestor list of another class. This property is
often regarded as suspicious, but the possibility of public FJI with non-
virtual bases conceptually contains it as a special case, except for the sub-
object integrity problem in Eiffel (§5.1). To see that, simply imagine that
the classes task and displayed in Example 9 declare no new members,
but act simply as naming aids for the two satellite subobjects.
Because of the renaming facility, such auxiliary classes are not necessary
in Eiffel.

5.3. Inaccessible base classes

The special case of FJI where all derivations are either public or protected
proved to be relatively simple in the previous subsection. The opposite
pure case where all derivations are private is also simple. Private inheri-
tance is intransitive, i.e. derived classes can access only their immediate
bases. I postulate the counterpart to the thesis of the previous subsection,
again as an imprecise slogan:

Thesis 6: Inaccessible fork-join inheritance should never be virtual.

In the pure case, this means that if A is an ancestor of B, an
instance of class B shall contain a separate subobject of class A for each
derivation path from B to A. In other words, the subobject graph shall be
a tree. Obviously, totally private non-virtual FJI is no more complicated
to understand and implement than private IMI. It would therefore need

139

no very ambitious example of its utility in order to escape ‘‘Cargill’s
razor ’’.

In the mixed case, Thesis 6 needs more adjustment than Thesis 5,
because even a private path is accessible if its length is one. The complete
formulation will be deferred to the following subsection but we refine the
statement a bit here. As mentioned in §3.6, the virtuality of base classes is
too strong or too global in current C++. What I want to achieve is that
two separate subobjects cannot have a ‘‘hidden’’ common sub-subobject.
Thus: If there is an inaccessible derivation path from class B to class A, the
A subobject of an instance of B corresponding to that path shall be totally
disjoint from all other A subobjects of that instance.

Combining the theses 5 and 6 we conclude that an explicit vir-
tual declaration of a base class becomes superfluous. We could thus
simplify C++ by omitting the virtual specifier for base classes. How-
ever, this holds only in principle; pragmatic needs will be suggested in
§5.7.

5.4. Mixed cases

How do we get from the inheritance graph of a class C to the correspond-
ing subobject graph in the general case, in which virtual (public or pro-
tected) and non-virtual (private) derivations can be arbitrarily combined?
The non-transitivity of private inheritance makes the problem difficult.

I present a general rule, however, which I believe to result in con-
sistent and understandable object structures even in very large and com-
plicated class hierarchies.

Rule: Let P and Q be two derivation paths from class B to class A, hav-
ing no common nodes except the end points. The paths P and Q will
correspond to the same complete A subobject in an instance ofB if and
only if both are accessible. Otherwise the paths will give rise to two
disjoint complete subobjects.

One consequence of the rule is that no class can access more than
one subobject corresponding to each ancestor class. Multiple class quali-
fications (like B::A::x) will therefore never be necessary in order to
uniquely denote inherited members. Stroustrup [1989] noted that such
multiple qualifications would be useful under the current C++ rules, but
they have not been introduced into the language in this purpose. Instead,
when the nesting of class definitions was made meaningful (causing
nested scopes) in Release 2.1 [Ellis & Stroustrup §9.7], this syntax was
employed to refer to such nested definitions from outside.

140

In current C++ there are no restrictions on the legal inheritance
graph of a class, except acyclicity. There can be at most one edge directly
connecting any two nodes (classes), but that is a normal requirement for
proper graphs. It appears that with the new rules as presented so far we
can manage without additional restrictions on the basic graph structure.
However, we will need further restrictions on the labelling (access modes)
to assure consistency. The previous subsections already effectively
removed the virtuality labels.

A problem point in the rule is revealed by the following anoma-
lous example.

class A {};
class B : public virtual A {};
class C : private B, public virtual A {};
class D : public virtual C {};

Example 11.

The classes A and C are accessible to class D; even according to Thesis 1,
virtual functions of A can be redefined in D, and such redefinitions are
effective also for the C subobject of an instance of D. Because B is accessi-
ble to C, the redefinitions propagate also to the B subobject. On the other
hand, class B is inaccessible to D; by Thesis 1 D should not be able to affect
the virtual functions effective for its B subobject.

The contradiction is solved by the following

Restriction 1: If a class C has both a transitively accessible and an
intransitively accessible derivation path to the same ancestor class, no
further classes must be derived from C.

5.5. Virtual functions with virtual base classes

The late binding of virtual functions, often called ‘‘method lookup’’ in
object-oriented literature, becomes complicated in the fork-join case. Let
us first consider the case with virtual base classes, since according to my
suggestions late binding would be relevant only there.

The little difficulty that was mentioned in §3.6 can be illustrated
by augmenting Example 10 a little. This is equivalent to the example in
Ellis & Stroustrup [1990 p. 201�202]:

141

class Person {
public:

virtual void earn();
...

};
class Student: public virtual Person {
public:

virtual void earn();
...

};
class Employee: public virtual Person {
public:

virtual void earn();
...

};
class StudentEmployee: public virtual Student,

public virtual Employee {
public:

virtual void earn();
...

};

Example 12.

Suppose that each version of earn has to call the inherited version(s) in
addition to doing its ‘‘own job’’, as is very common. At least the classes
Student and Employee must then define a separate, non-virtual pro-
tected function, say own_earn, that does the ‘‘own job’’, and every vir-
tual function must call all relevant non-virtual functions:

void Student::earn() {Person::earn(); own_earn();}
void Employee::earn() {Person::earn(); own_earn();}
void StudentEmployee::earn() {

Person::earn(); Student::own_earn();
Employee::own_earn(); own_earn();
}

For functions with a non-void result type (virtual int earn()), there
is the additional problem of how to combine the results of all the different
functions.

There is a slightly erroneous rule in Ellis & Stroustrup [1990 p.
235]:

To avoid ambiguous function definitions, all redefinitions of a virtual func-
tion from a virtual base class must occur on a single path through the inheri-
tance structure.

The rule could actually make sense, but it does not seem to describe cur-
rent C++ correctly. Taken literally, it would make even Example 12

142

illegal. The intent evidently was:
[...], if a virtual function from a virtual base class is redefined on more than
one path through the inheritance structure, there must be one redefinition
that dominates all others.

An advantage of the unlimited scope of redefinability of virtual
functions in current C++ is that there is always a class where such a domi-
nating redefinition can be done if an ambiguity must be resolved: at least
the most derived class. Obeying Thesis 1, there could well be cases in
which there is no single most derived class in which the virtual functions
of a given ancestor class can be redefined. That would happen in Exam-
ple 12 if the base classes of StudentEmployee were private. To avoid
that, we must make an explicit

Restriction 2: In the inheritance graph of a class C, for any ancestor class
A that is accessible to several descendants, there must be one among
them to which all others are accessible.

The principle of dominance leads to the ‘‘sideways’’ inheritance
mentioned in §3.6. Suppose that the redefinitions of earn are removed
from Student and StudentEmployee in Example 12. Calls of earn in
an instance of StudentEmployee will then always be resolved to
Employee::earn, even when they are issued from functions of Stu-
dent or by clients using a pointer of type Student*. Ellis & Stroustrup
[1990 §10.10c] says:

A call to a virtual function through one path in an inheritance structure may
result in the invocation of a function redefined on another path. This is an
elegant way for a base class to act as a means of communication between
sibling classes [...]

Cargill [1991a §4] sees the disadvantages as more important (refer-
ring to a similar example):

To understand the behavior of [Student::earn()] we must examine the
entire DAG reachable by traversing from any class derived from [Student]
to any virtual base class of [Student].

I must admit that both the advantages and the disadvantages of this
method lookup scheme look important. However, since a complete object
(§3.6) is primarily regarded as one single object, it seems logical that
method lookup always begins this way, from the most derived class (i.e.,
the root of the complete object).

143

5.6. Virtual functions with non-virtual base classes

It has appeared to me that the method lookup in current C++ is in some
ways more problematic in FJI with non-virtual base classes. In fact, I have
not succeeded to find this case explicitly described in Ellis & Stroustrup
[1990], nor in other books and papers! It is in most respects like indepen-
dent multiple inheritance. Note that this situation can occur only in exist-
ing C++, not with my new rules.

Consider Example 12, modified so that all derivations are non-vir-
tual. Let us pretend that this could be sensible, ignoring the too obvious
real-world situation that a student employee is only one person. If earn
were not redefined in Student and StudentEmployee, no direct ‘‘side-
ways inheritance’’ as with virtual derivation could occur. On the other
hand, any invocation of StudentEmployee::earn would be a compile-
time error; either Student::earn or Employee::earn would have to
be selected statically.

Suppose again from now on that the redefinitions of earn are
there. With non-virtual derivation we do not need the non-virtual auxil-
iary functions in every class, and StudentEmployee::earn need not
worry about Person::earn. The situation thus looks much simpler:

void Student::earn()
{Person::earn(); /* then the own stuff */ }

void Employee::earn()
{Person::earn(); /* then the own stuff */ }

void StudentEmployee::earn()
{Student::earn(); Employee::earn();
/* then the own stuff */ }

Of course, if the result type of earn were non-void, there would still be
the problem of result combination, as in the virtual case.

However, think about the case that earn is invoked by a member
function of Person. This call then comes from the Person sub-subobject
of either the Student or the Employee subobject, but it will cause Per-
son::earn to be invoked on both Person parts! This is much more
insidious sideways inheritance than in virtual derivation.

The effects can get even more interesting. Suppose that Per-
son::earn calls another virtual function work of Person, and work
gets redefined similarly to earn. It is easy to see that one call of earn
from Person will cause work to be invoked twice on both Person sub-
objects! We might call this anomaly ‘‘the exponential yoyo problem’’ — the
explanation follows.

The suggestive name ‘yoyo problem’ was coined by Taenzer et al.
[1989] to describe the following situation, translated from the terminology
of Objective-C® into that of C++: Whenever virtual functions invoke

144

other virtual functions of the same object (*this), the method lookup
starts from the most specific class of the actual instance and proceeds
upward in the inheritance hierarchy until a definition is found. The flow
of control can therefore oscillate arbitrarily up and down and be difficult
to follow if the hierarchy is deep.

The yoyo problem was identified in an environment with single
inheritance. It obviously becomes more complex with multiple inheri-
tance, as explained in the quote from Cargill in §5.5. Our new problem is
clearly similar to the yoyo problem; it is exponential in the sense that the
number of invocations gets multiplied by the number of inheritance
branches on each down-and-up trip. However, the new case is clearly
erroneous, whereas the original yoyo problem means only difficulties in
understanding and debugging software.

The exponential yoyo problem does not appear naturally with vir-
tual base classes. To see that, let us return to Example 12, including all
function redefinitions. Let there be another virtual function work in class
StudentEmployee, which is again redefined in all the other classes just
like earn. If Person::earn invokes work, the invocation will be late-
bound to StudentEmployee::work. That in turn will cause Per-
son::work and each own_work to be called exactly once; no surprises.
In order to cause multiple invocations, at least one of the own_earn func-
tions must be expressly written to call work.

5.7. Further considerations

It was noted already in §3.6 that the liability of invoking the constructor
for a virtual base class should not extend farther down in the inheritance
graph than is logically necessary. Within the rules proposed so far in this
paper, the following would be adequate: For every class B from which
there are at least two disjoint accessible paths to an ancestor A, the accessi-
ble A subobject must be initialised directly by the constructor(s) of B; any
initialisation of A specified by classes between A and B on the derivation
paths will be ignored.

Alternatively, we could do this even simpler and specify that the
initialisation caused by that immediate base class shall prevail which is
mentioned first in the base list of B. This rule could be accompanied by a
general ability of descendants to redefine the initialisation of any accessi-
ble non-immediate ancestor.

There are important exceptions to Thesis 5. First, there can some-
times be semantic reasons for public or protected inheritance with guar-
anteedly unshared subobjects. Second, the pragmatic viewpoint should

145

not be ignored either. Presumably even in large inheritance graphs
designed by programmers who know how to exploit the advantages of
MI, there will be relatively few accessibly derived fork-join structures.
Therefore one would not like to have the overhead of virtuality in all
derivations.

Taking into account these factors and the tradition of the lan-
guage, it is probably wisest to keep the virtual keyword but enhance
its implications so that the rules prescribed in this paper will not be vio-
lated. Primarily, if class A is an immediate non-virtual base of B, it shall
be illegal for any descendant class of A (including B itself!) to have an
accessible path to A both over B and over some other immediate descen-
dant. Even a private virtual declaration can then make sense, to
assure that B remains a descendant of A independently of changes in its
other inheritance relationships.

As a somewhat different situation, one might like to assure that a
certain set of classes derived from a common abstract base class form a
taxonomy, i.e. that they are both exhaustive and mutually exclusive on
every derivation level. Baclawski [1990] says about the mutual exclusion
of subclasses:

Such a constraint cannot normally be enforced by a programming language
[...] It is curious that taxonomies are often cited as a motivation for inheri-
tance, yet few systems offer the means of constraining a set of types to be a
taxonomy.

In the class dictionaries of the Demeter™ framework [Lieberherr et al.
1991], inheritance hierarchies are forced to be taxonomies.

A taxonomy does not completely prevent later fork-join inheri-
tance, if multiple independent taxonomies of the same base class are
allowed, as in the very rudimentary vehicle example of §5.1. The C++
Demeter system, contrarily to the Flavors Demeter system, at the time of
writing does not allow such multiple taxonomies, nor FJI in general
[Lieberherr 1991].

Frameworks such as Demeter that require the whole class struc-
ture to be defined before compilation may evidently cause additional
overhead for the incremental addition of new derived classes. On the
other hand, they can allow a much higher degree of customisation [Lea 90]
and consequent run-time efficiency than more conventional ways of
object-oriented software development. In particular, in such a framework
it would not be necessary for programmers to specify non-virtual deriva-
tion for merely pragmatic reasons. Another advantage of Demeter is the
automatic generation and propagation of member functions for classes.
This could probably be extended to generate such typical virtual function
patterns as presented in §5.5 for FJI.

146

6. Summary and conclusions

The discussion that this article is continuing began from the question
whether C++ should support multiple inheritance or not. I now think that
there is sufficient evidence to answer ‘‘Yes’’ to this question, at least for
independent multiple inheritance. Therefore it appeared more important
for me to study how MI should work.

During this work it became apparent to me that private inheri-
tance, rather a speciality of C++, is a major cause of complexity. It also
became apparent that private inheritance is semantically such an impor-
tant and powerful tool that the complexity should be tolerated.

I found that there are some subtle inconsistencies in the current
inheritance principles of C++ that affect already single inheritance. The
most important flaws could be summarised by saying that private inheri-
tance is not private enough. Independent multiple inheritance exposes at
least one further defect: the unpreventable unification of member func-
tions because of accidental name equality. Fortunately, all these flaws can
be corrected by a small modification to the language.

Fork-join multiple inheritance was known to be the really complex
case: it had caused the distinction between virtual and non-virtual base
classes that was one of the main targets of Cargill’s critique. I believe
having made plausible enough that, on conceptual grounds, public (more
precisely: accessible) inheritance should implicitly be ‘‘virtual’’ and pri-
vate (more precisely: inaccessible) inheritance ‘‘non-virtual’’, and the lan-
guage could therefore be simplified. Implementation reasons may make
this principle too expensive for public inheritance in the cases when it is
not actually needed. However, I suggested some possibilities for optimi-
sation.

The ‘‘exponential yoyo problem’’ is presented in §5.6 as a reductio
ad absurdum to show that at least the combination of non-virtual (dupli-
cating) FJI with unrestricted redefinability of virtual functions, allowed
by the current C++ principles, is unsound.

Although the suggestions of this paper would make FJI simpler
and more logical, it still remains a complicated thing for both implemen-
tors and users of the language. The main suggestions should be applica-
ble to several other object-oriented languages as well. We still need good
examples of FJI to convince Tom Cargill and many others that it is worth
the trouble. A major reason for the lack of good published examples of
MI is that such examples tend to be large and complicated.

Very similarly, most of the problems and defects in the inheritance
principles of C++ only become apparent when one considers inheritance
graphs essentially more complex than those in the textbooks and

147

reference manuals. Such complex situations have obviously not been suf-
ficiently considered when the language has been designed. I also suspect
that the design of multiple inheritance as well as several other feature has
been too much driven by implementation considerations. In my opinion
C++ is not sufficiently object-oriented; I hope to expound that in Sakkinen
[1991].

I am now more optimistic about multiple inheritance than ever: it
is a good thing in principle, and it can be done right; it just is not so sim-
ple as many of us have often thought. The current rules of C++ must
urgently be revised, although a programmer who is convinced about the
theses and other suggestions of this article can realise part of them by
programming discipline. This holds for Thesis 1, Thesis 2 in most cases
and Thesis 5 in simple cases; thesis 4 can be achieved by Stroustrup’s
work-around. However, C++ programmers should for the time being
probably avoid MI as far as possible in order to avoid later trouble. Com-
plex combinations of public and private, virtual and non-virtual fork-join
inheritance are especially dangerous.

Acknowledgements

This research has been funded by the Academy of Finland, project
1061120 (Object-oriented languages and methods).

Several persons have helped me in discussions and correspon-
dence, and by sending literature that I would not have had available oth-
erwise. These include at least Bjarne Stroustrup (in spite of everything!),
Kenneth Baclawski, Douglas Lea, Peter Grogono, Juha Vihavainen, Timo-
thy Budd, Ian Holland, Antero Taivalsaari, Karl Lieberherr, Daniel Edel-
son, Alan Snyder, Tom Cargill, Peter Salus, Jim Waldo, and Jorma Kyppö.
The comments of the anonymous reviewers were helpful, and have been
taken into account.

The discussions in some Usenet newsgroups have been very stim-
ulating and useful. The most important groups have been, of course,
‘comp.lang.c++’ and ‘comp.std.c++’ (although I have not had the time to
follow these regularly any more), as well as ‘comp.object’. The occasions
to give a guest lecture largely about the theme of this paper both at the
University of Tartu (Estonia) and at the University of Kuopio further
helped me to clarify my thinking and expression.

Demeter is a trademark of Northeastern University. Eiffel is a
trademark of NICE (the Non-profit International Consortium for Eiffel).

148

Objective-C is a registered trademark of the Stepstone Corporation. Sim-
ula is a trademark of Simula a/s. Smalltalk-80 is a trademark of Parc-
Place Systems.

References

AT&T C++ Translator Release 1.2 Addendum to the Release Notes, Mur-
ray Hill, NJ: AT&T Bell Laboratories, 1986.

K. Baclawski, The Structural Semantics of Inheritance, manuscript (sub-
mitted for publication), Boston, MA: Northeastern University, 1990.

K. Baclawski, private communication, 1991.

T. Cargill, Controversy: The Case Against Multiple Inheritance in C++,
Computing Systems, 4(1): 69�82, Winter 1991a.

T. Cargill, private communication, 1991b.

M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Read-
ing, MA: Addison-Wesley, 1990.

K. E. Gorlen, An Object-Oriented Class Library for C++ Programs, Soft-
ware — Practice and Experience, 17(8): 503�512, August 1987.

P. Johnson, Fine Grain Inheritance and the Sibling-Supertype Rule,
manuscript, Great Baddow, England: GEC-Marconi, 1990.

D. Lea, Customization in C++, Proceedings of the 1990 USENIX C++ Confer-
ence, pages 301�314, 1990.

K. J. Lieberherr, private communication, 1991.

K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe, From objects to classes:
algorithms for optimal object-oriented design, Software Engineering Jour-
nal, 6(4): 205�228, July 1991.

M. A. Linton and P. Calder, The Design and Implementation of Inter-
Views, USENIX C++ Workshop Proceedings and Additional Papers, pages
256�268, 1987.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, and
A. Snyder, CLU Reference Manual, New York, NY: Springer-Verlag, 1981.

O. L. Madsen, Block Structure and Object Oriented Languages, Research
Directions in Object-Oriented Programming (B. Shriver and P. Wegner, Eds.),
pages 113�128, Cambridge, MA: MIT Press, 1987.

149

B. Meyer, Object-Oriented Software Construction, Hemel Hempstead, Eng-
land: Prentice Hall, 1988.

B. Meyer, postings on Usenet (comp.lang.eiffel and comp.object), 1990.

M. Sakkinen, On the darker side of C++, ECOOP ’88 Proceedings (S. Gjess-
ing and K. Nygaard, Eds.), pages 162�176, Berlin and Heidelberg:
Springer-Verlag, 1988.

M. Sakkinen, Disciplined inheritance, ECOOP ’89 Proceedings (S. Cook,
Ed.), pages 39�56, Cambridge, England: Cambridge University Press,
1989.

M. Sakkinen, Between classes and instances, aided by titles, manuscript,
Jyväskylä, Finland: University of Jyväskylä, 1990.

M. Sakkinen, The darker side of C++ revisited, manuscript in preparation,
1991.

A. Snyder, Inheritance and the Development of Encapsulated Software
Systems, Research Directions in Object-Oriented Programming (B. Shriver
and P. Wegner, Eds.), pages 165�188, Cambridge, MA: MIT Press, 1987.

A. Snyder, Modeling the C++ Object Model: An Application of an
Abstract Object Model, ECOOP ’91 Proceedings (P. America, Ed.), pages
1�20, Berlin and Heidelberg: Springer-Verlag 1991.

B. Stroustrup, The C++ Programming Language, Reading, MA: Addison-
Wesley, 1986.

B. Stroustrup, Multiple Inheritance for C++, EUUG Spring ’87 Conference
Proceedings, pages 189�207, 1987.

B. Stroustrup, Multiple Inheritance for C++, Computing Systems, 2(4):
367�395, Fall 1989.

B. Stroustrup, The C++ Programming Language, Second Edition, Reading,
MA: Addison-Wesley, 1991a.

B. Stroustrup, private communication, 1991b.

D. Taenzer, M. Ganti, and S. Podar, Problems in Object-Oriented Software
Reuse, ECOOP ’89 Proceedings (S. Cook, Ed.), pages 25�38, Cambridge,
England: Cambridge University Press, 1989.

J. Waldo, The Case For Multiple Inheritance in C++, Computing Systems,
4(2): 157-171, Spring 1991a.

J. Waldo, private communication, 1991b.

150

Corrigendum

I have afterwards noted some errors in the above paper. One of them is
so significant that submitting a corrigendum seemed necessary; I am
grateful to the editors (of Computing Systems) for agreeing to publish it.
At the same time it is convenient to point out and correct the smaller mis-
takes. Most of these corrections had already been sent in, but by accident
did no more get into the published version. John Skaller and other partic-
ipants of the Usenet group ‘comp.std.c++’ must be acknowledged for
pointing out one of the minor errors recently (see below); this lead me
indirectly to discover the major one.

The significant change is that Restriction 2 in §5.5 — which I had
felt as an unwelcome necessity — should be removed. Indeed, the argu-
ment about Example 12 that precedes the restriction is invalid, and the
restriction would completely forbid inaccessible fork-join inheritance!

Think about a case in which the restriction is violated: a non-
immediate ancestor A of class C is accessible to two intermediate classes D
and E in the inheritance graph, but there is no class in the inheritance
graph to which both D and E are accessible. The paths from C to A
through D and E cannot then both be accessible, thus by the main Rule in
§5.4 itself, they correspond to two disjoint A subobjects. Therefore it is
fully feasible to have different redefinitions of A’s virtual functions in D
and E: the restriction is not needed.

The reference given for the BETA language at the end of §3.5,
[Madsen 1987], is not the most appropriate one. Another article from the
same book should have been referred to: [Kristensen et al. 1987].

There is a slight misunderstanding about the accessibility of con-
structors of virtual base classes in §3.6. I supposed that the constructors
of a virtual base class would be automatically visible to all descendants,
ignoring access specifiers. This is not true, but instead, non-immediate
descendants may need to declare that class also as a direct base class only
in order to be able to invoke its constructor(s). A class may therefore be
non-instantiable (abstract) also because it has no access to necessary base
class constructors, and not only because of pure virtual functions [Skaller
1992].

It is an open question whether such an additional direct base dec-
laration is always needed in current C++ in order to use explicit initialis-
ers, even if the constructors of the indirect virtual base classes are accessi-
ble to the most derived class. On the one hand, it is said in Ellis & Strous-
trup [1990 §12.6.2, p. 290]:

Initializers for immediate base classes [...] may be specified in the definition
of a constructor.

151

Also in the example on p. 294 there is no other reason for such a redun-
dant-looking declaration. On the other hand, the rationale given for the
above rule is that multiple initialisations of the same base class subobject
are prevented; but for virtual base classes this is already guaranteed by
their special rules. Also, the HP compiler (Release 2.1) available to me
did allow the constructor of a non-immediate virtual base class to be
invoked.

There is a small but irritating clerical error in Example 7 (§4.2).
Class CowboyWindow should be derived from WWindow and CCowboy
instead of Window and Cowboy. Readers may have guessed that, because
the example makes no sense otherwise.

The availability of the new book by Bertrand Meyer [1992] causes
modifications to a couple of comparisons between C++ and Eiffel. Cur-
rent Eiffel seems to allow, by renaming, the possibility that is desired in
§4.2, in the second-last paragraph. It is called ‘joining’ in Meyer [1992
§10]. The types of the inherited routines (functions) that are joined in a
subclass do not even need to be identical.

In §4.3, the last line of the second paragraph contains an incorrect
comparison: inheriting a class without exporting any features in Eiffel
corresponds to protected rather than private derivation in C++. The dis-
advantage of Eiffel described in the last paragraph has been corrected in
the newest version of Eiffel. The following paragraph should be added to
the end of §4.3.

So-called system-level validity checking in current Eiffel [Meyer
1992 §22] will detect this kind of attempted misuse of a FIXED_STACK
object: not the assignment, but any invocation of an ARRAY routine.
Thus Eiffel can now better than C++ enforce the protection of non-public
features toward outside clients. However, Eiffel does not offer any pro-
tection toward descendant classes: there is nothing corresponding to pri-
vate derivation (nor private members). The designer of class
FIXED_STACK cannot therefore easily cancel the original decision to use
ARRAY in the implementation, because some descendant classes may
already depend on it. Also, Eiffel’s system-level checking is pessimistic: it
can reject even programs that would actually be type safe.

References

B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard, The
BETA Programming Language, Research Directions in Object-Oriented Pro-
gramming (B. Shriver and P. Wegner, Eds.), pages 7�48, Cambridge, MA:
MIT Press, 1987.

152

B. Meyer, Eiffel: the Language, Hemel Hempstead, England: Prentice Hall,
1992.

J. Skaller, postings on Usenet (comp.std.c++), 1992.

153

CHAPTER 6

THE DARKER SIDE OF C++ REVISITED

To appear in Structured Programming Vol. 13 (1992), © Springer Interna-
tional 1992. — Published in parallel with the permission of Springer
International. The journal version contains some editorial changes not
found in this chapter, and the references are numeric. The reference given
here as [Joyner 92] may be missing.

154

THE DARKER SIDE OF C++ REVISITED

Abstract

The C++ language is to a high degr ee a faithful follower of Simula as an
object-oriented language geared more toward software engineering than
exploratory programming. I highlight several of its noteworthy good
ideas. Like Simula, C++ is designed to be a general-purpose pr ocedural
language and not ‘‘purely’’ object-oriented; this is not counted as a mortal
sin here. However, taking the weakly typed and weakly str uctured lan-
guage C as a base has become an irr emediable handicap. Low-level con-
cerns have caused at least one cr ucial flaw also in the object-oriented
properties of C++. These basic defects have not changed since I first
explored the darker side four years ago. Most, although not all, of the
numerous features and facilities that have later been added to the lan-
guage are obvious improvements. At the same time, they have incr eased
the complexity of C++ so that it is now well comparable to Ada. (Some
new features are suggested even her e, nevertheless.) It is r egrettable
indeed if C++ becomes the de facto standard of object-oriented program-
ming, but this danger looks imminent today.

155

1. Preliminaries

1.1. Introduction

The C++ pr ogramming language has become very popular during the
last few years: there are many commercial implementations, new books of
varying quality are coming out every month, conferences and journals are
dedicated exclusively to C++, and an active discussion is going on in the
Usenet newsgroups ‘‘comp.lang.c++’’ and ‘‘comp.std.c++’’ (the latter
about the emer ging standard). There is clearly a bandwagon ef fect, so
common in the history of pr ogramming languages and of computing
more generally. None the less is it relevant to examine what intrinsic mer-
its and dismerits C++ has.

After my first critique of C++ [Sakkinen 88a] was written, the lan-
guage has changed significantly . Release 2.0 of A T&T’s C++ Translator,
which brought many major changes as had been somewhat pr ematurely
advertised in [Str oustrup 87a], was at long last r eleased in June 1989.
Even Release 2.1 in 1990 contained several new modifications. Release 2.1
is important because it has been defined mor e exactly than any earlier
version of C++ [Ellis &c 90] and this definition has been accepted as the
base document for the C++ standardisation committee founded by ANSI.
Several other implementers beside A T&T (UNIX™ System Laboratories)
now support largely the same features. Since C++ is a moving tar get, no
article about it can claim to be absolutely up to date on all details,
although the evolution will be slower than in the past. Release 3.0 is
already being distributed from AT&T.

The paper [Sakkinen 88a] was to a lar ge part based on personal
experience with the C++ T ranslator, Releases 1.1 and 1.2 [Str oustrup 86,
AT&T 85]. A while later, there appeared an article [Edelson &c 89] that
takes into account some of the newer capabilities of C++ (e.g. multiple
inheritance [Stroustrup 89b] is briefly mentioned), but clearly bases itself
mostly on the published literatur e. It is a kind of follow-up to an earlier
paper by the same authors on C [Pohl &c 88]. They have not been aware
of [Sakkinen 88a], so these assessments ar e mutually independent. A
more recent analysis, concerning exclusively the object-oriented aspects
of C++, is [Snyder 91]. An extensive critique of C++ [Joyner 92] has been
electronically published during the last r evision of this paper . It was no
more feasible to compare its findings and viewpoints to those of the ear -
lier articles.

The discussion of C++ in the sequel is based on [Ellis &c 90] wher -
ever no explicit r eference is given. When it comes to r eally tricky

156

combinations of details, pr obably even that r emarkable manual cannot
always give unambiguous answers, but the language r emains opera-
tionally defined. I have some experience with Release 2.1, but not very
much. Appendix A of [Hansen 90] was a practical checklist of the fea-
tures that were new in Release 2.0. I have gained much more insight into
object-oriented programming during the last few years, and ther efore
some judgements have changed from the old paper.

The evolution of C++, I am glad to acknowledge, has corr ected
several flaws pointed out in [Sakkinen 88a] and br ought on substantial
progress in many other areas. However, there have been also some small
changes to the worse, in my opinion; and major new featur es have neces-
sarily caused also some completely new pr oblems. Further [Meyer 92 p.
500]:

[...] the idea of orthogonality, popularized by Algol 68, does not live up to its
promises: apparently unrelated aspects will pr oduce strange combinations,
which the language specification must cover explicitly.

The interactions between different aspects make it difficult also to write a
paper on a programming language, if it is not focussed on one particular
aspect. The current paper has in fact been in the making since the spring
of 1990.

Two important new features will deliberately be left out of the dis-
cussion; they can be better assessed a year or two later . These are tem-
plates1 (parameterised or generic classes) [Str oustrup 89a] and exceptions
[Koenig &c 90; Sakkinen 91a]. Both are presented as ‘ ‘experimental’’ in
[Ellis &c 90] and as fully existing featur es in [Stroustrup 91]. They were
mentioned as futur e possibilities already in [Str oustrup 87b], which
makes interesting reading in comparison to how the language has actu-
ally evolved during r ecent years. Templates are now implemented in
C++ Release 3.0; their definition seems to be so macr o-like that it causes a
lot of problems [Cargill 92].

Some knowledge of object-oriented pr ogramming languages is a
prerequisite for understanding this paper. It is also useful to know some-
thing about C++ or C, but I have seriously tried not to pr esuppose a thor-
ough understanding — one of my purposes is to warn people about C++
and induce them to consider even other alternatives befor e committing
themselves. Verbal argumentation will therefore be used much more than
actual code examples; the latter would pr obably be more convenient to
those readers who are already familiar with C++.

1 The term ‘template’ seems to have a long tradition in this meaning: it is used alr eady
in [Conradi &c 74].

157

Unfortunately I cannot give a ready prescription what language to
choose for the future. I would rather think that the pr evailing object-ori-
ented languages of 2000 ar e yet to be invented. However, people choos-
ing a language for curr ent needs should seriously evaluate at least Eif-
fel™ and one other language instead of automatically jumping on the
C++ bandwagon.

I have not been able to grade all positive and negative items in
this paper by importance, although some ar e clearly labelled as either
very important or less important. Different aspects are significant for dif-
ferent people. This was recently illustrated by a long Usenet discussion
about whether C++ should have an exponentiation operator . Very strong
opinions were aired on both sides.

1.2. My angle of view

Before really starting to examine C++ itself, it is appr opriate to state some
of my basic beliefs and attitudes. Some of my pr ejudices are in fact
favourable to the C++ approach, as opposed to Smalltalk™ [Goldber g &c
83] and its followers. C++ is a direct descendant of Simula [Dahl &c 68],
which in turn antedated even the buzzwor d ‘object oriented’ by a good
many years.

(1) I do not subscribe to the ‘ ‘everything is an object’ ’ philosophy.
For instance, I do not like to r egard integer values as first-class objects;
integer variables are another story [MacLennan 82]. (2) I find it artificial
that no function or pr ocedure should be callable otherwise than as a
‘‘method’’ of some object2. (3) I do not like the r equirement of a unique
root class that is the common super class of all other classes — but even
this requirement can be satisfied in a trivial way . (4) I dislike the r efer-
ence semantics that most other object-oriented languages except C++
force on object variables.

One great divide in pr ogramming languages goes between
‘‘exploratory programming’’ languages that aim at gr eat dynamism and
run-time flexibility, and ‘‘software engineering’’ languages that have
static typing and other featur es that aid verifiability and/or ef ficiency.
While both kinds have their applications, I am mor e interested in the

2 Of course it is always possible to ‘ ‘repackage’’ software that has ordinary (free-stand-
ing) procedures: define one class that contains them all as methods, or make a separate
‘‘wrapper ’’ class around each single procedure.

158

latter group, to which C++ belongs. Smalltalk is the best-known r epre-
sentative of the former gr oup. On points (1) thr ough (3) above, it is
Smalltalk that has deviated from the example of Simula; only on point (4)
is C++ the more deviating language (although Simula objects can contain
arrays, not only atomic components).

C++ in its curr ent state is a rather lar ge and complex language,
and suggested additions ar e making it even mor e so. While excess com-
plexity is certainly harmful, I suspect that some r ecent entrants in the
camp of statically-typed object-oriented languages ar e already too Spar-
tan to be convenient for general-purpose pr ogramming. I am in doubt
about Modula-3 [Nelson &c 91], but rather sur e about Oberon [Wirth 88],
as partially explained in [Sakkinen 91b].

What is then unfavourable to C++ fr om the onset? Already in
[Sakkinen 88a] I wrote:

[...] when someone sets out to enrich an existing language with object-ori-
ented or other higher-level features, trying to keep totally upward compatible
with the base language can be pr oblematic. Obviously, it is easier to extend
a language that seems too restricted (e.g. Pascal) than one that has very gen-
eral, powerful, and accordingly error-prone facilities (e.g. C).

Bertrand Meyer is mor e negative toward hybrid languages in
[Meyer 89]:

The search for compatibility at any cost is also the r eason behind the cen-
taurs sporting an object-oriented head on top of a C body , such as C++.
Imagine this: on the one hand, inheritance, on the other hand, pointer arith-
metic!

Of course, the creator of the Eiffel language has an axe to grind here, but I
must mostly agr ee. Although C++ is in many ways a seamless whole,
almost all its higher-level constructs and protections can be corrupted and
circumvented at will by low-level manipulations (§2).

Today I take, with gr eat conviction, a str ong position on C exten-
sions in general. The C language is so unsafe that striving to a total or
almost total upward compatibility from C cannot result in a good general-
purpose object-oriented language.3 What can be had is an object-oriented lan-
guage mostly suited for low-level systems pr ogramming. There certainly
is need for such languages: they will boost pr oductivity and quality
where the current principal language is C or even assembler.

In the systems pr ogramming field Modula-3, mentioned above,
looks like a strong contender. Two important features that Modula-3 sup-
ports but C++ does not ar e concurrency and garbage collection; but

3 Therefore I cannot believe even Objective-C™ to be ‘ ‘the solution’’, although I know
that it has evolved considerably from the version presented in [Cox 86].

159

unlike in most object-oriented languages, garbage collection can be used
selectively in Modula-3 (including not at all if it is not desir ed). Another
advantage of Modula-3 is that unsafe features, agreedly sometimes neces-
sary for systems programming, can be isolated to a few unsafe modules.

In [Sakkinen 88a] I suggested the following as an advantage of
C++:

[...] previous C users can quite well upgrade gradually to programming in
C++, in the first step just feeding their existing C code thr ough the C++
translator and checking if some small modifications would be necessary.

Many people consider this rather a disadvantage. They claim that an
abrupt change of paradigm is almost necessary to make pr ogrammers
think in an object-oriented fashion. Therefore, it would be better to start
with a language that requires object-oriented programming (e.g. Smalltalk
or Eiffel), instead of one that merely allows it (e.g. Simula or C++).

Today I think that good object-oriented pr ogramming (OOP) is
more a matter of restraint and moderation than of very powerful featur es
and extremism. The distinctive properties of OOP seem to be rather
tempting to be over used. The most distinctive feature of object orienta-
tion is certainly inheritance; anybody who has r ead some amount of
recent OOP literatur e — not to mention object-oriented sour ce code —
must have encountered interesting misuses of inheritance.

1.3. An endemic culture

An often irritating feature in the writings of some developers of program-
ming languages is that they contain very little references, especially to the
work of r esearchers outside their own teams. This self-sufficiency is
probably one reason why Oberon — as mentioned above — does not look
to me on a par with the best object-oriented languages. The C++ commu-
nity clearly suffers from this problem: you can easily see it when r eading
books and articles.

Other symptoms of self-suf ficiency might be the following: The
C++ literature uses some peculiar terminology , which can easily cause
misunderstanding to other OOP people (cf. §3.1). Many seminars and
tutorials even on topics like object-oriented design have the clause ‘ ‘with
C++’’ in their names or advertisements, to assur e potential attendees of
staying safely in familiar territory.

The designers and supporters of some other object-oriented lan-
guages seem to have mor e interest in developments outside their own
respective fraternities. They tend to advertise what they think to have
done better than their contestants (including C++), and these

160

advertisements may often appear over driven, not so seldom even con-
taining some clear misunderstandings about other languages. But they
also look out for things that are better in other languages, and think about
similar improvements to their own.

It is naturally cosier for C++ r esearchers and practitioners to
restrict their conversations lar gely to those people who like C++ and C.
However, it is very useful and educative to listen to what other people,
even staunch adversaries, have to say . Perhaps the object-oriented com-
munity as a whole is in some danger to r emain or become too endemic,
but it is so large and diversified that the danger is less sever e than within
a single language.

The above may be a bit exaggerated. In reality, e.g. the highly crit-
ical article [Sakkinen 92a] was warmly welcomed and quickly accepted to
Computing Systems. It is to a lar ge part a continuation of an active dis-
cussion about multiple inheritance [Car gill 91; Waldo 91]. The current
paper, on the other hand, may too much serve to ‘ ‘convert the converted’’
in Structured Programming; maybe we would better need a paper on the
averse side of Modula-2, Modula-3, or Oberon here.

2. C++ as a conventional language

2.1. Syntax

Let us now start the detailed examination with syntax, the most obvious
facet of a pr ogramming language, although it is — especially in modern
programming environments — among the least important facets. 4 Super-
ficial syntactic differences may still divert a newcomer fr om the fact that
C++ is an Algol-like language at the root. By ’syntax’ we will understand
also context-dependent syntax rules. The common usage of regarding all
of them as ‘ ‘static semantics’’ and not part of syntax is well criticised in
[Meek 90a], but drawing an exact line between syntax and semantics is a
matter of taste.

On the lowest lexical level almost all curr ent languages have
regressed from Algol 60: the reserved words of each language ar e in no

4 Pure syntax issues were not treated at all in [Sakkinen 88a].

161

way distinguished lexically (nor unambiguously by context) fr om pro-
grammer-defined identifiers but must compete in a common name space.
This is especially harmful for the evolution and extension of existing lan-
guages: conflicts with new keywor ds can make pr eviously correct code
invalid. To avoid this, C++ has added r emarkably few new r eserved
words into C, which in turn has aggravated the next problem.

I agree with the most common complaint about the syntax of C
that it is overly terse. This shortcoming is listed in [Edelson &c 89], of
course. In fact the paper claims C++ to be even worse than C, because

C, however, is also transparent; C++ is not.

It is probably meant that several things such as object initialisations hap-
pen implicitly ‘‘behind the programmer ’s back’’ (§2.7). A remark that has
often been seen elsewher e is that C++ stretches the syntactic framework
of C near, if not beyond, the br eaking point. For instance, the keywor d
‘static’ has a lot of dif ferent meanings that must be distinguished by sub-
tle differences in the context.

As [Edelson &c 89] notes, the type declaration syntax is confusing
and error prone already in C, and becomes even mor e difficult with the
additional type modifiers of C++. C++ also adds some confusion
between the tags (allowed for compatibility with C) and names of struc-
tures, classes, unions, and enumerations. The antimathematical way to
distinguish octal literals fr om decimal ones only by a leading zer o was
mentioned in [Pohl &c 88], and it persists in C++ too.

Like in Algol 60 and Pascal, in contrast to Algol 68 and Ada, the
compound statement constr ucts of C and C++ have no end markers of
their own, so pr ogrammers must r emember to make blocks (i.e. add
braces) at appropriate places. This is a minor nuisance; a minor conve-
nience is that, unlike Algol and Pascal but like Ada and PL/1, the semi-
colon acts as a statement terminator, not a statement separator.

It is sometimes practical that C and C++ have a sequencing opera-
tor available within an expression, although it might have been mor e ele-
gant to have an expr ession and not statement language in the first place,
like Algol 68. The choice of comma for that operator is somewhat unfor -
tunate because it can have a totally dif ferent meaning, in the ar gument
list of a function call, depending on the number of enclosing par entheses.
In array indexing it can be tr eacherous to people who ar e used to other
languages: Suppose that ‘matrix’ is a two-dimensional array . An expres-
sion such as ‘matrix[j,k]’ is then fully legal, but it means r ow ‘k’ of
‘matrix’ (‘j’ is simply discarded). A single element must be denoted by an
expression like ‘matrix[j][k]’.

The paper [Pohl &c 88] complains about the dif ficult visibility and
scoping rules, and about the lack of function nesting as a separate item.
The latter point is made also in [Edelson &c 89]. The additional con-
structs of C++ make visibility and scoping even more complicated than in

162

C. Prohibiting nested functions becomes a clear unorthogonality in C++,
which it is not yet in C: see §3.2.

2.2. Conventional data types

As [Pohl &c 88] says, C has no Boolean or logical data type, nor has C++.
The desirability of a distinct Boolean type in pr ogramming languages has
been recently elaborated on in [Sakkinen 90] and [Meek 90b]. Among
usual type constructors, there is no set constructor [Pohl &c 88]. In Ada
there are no set types either, but small sets can be adequately and ef fi-
ciently represented as Boolean arrays — this is not possible in C++.

All researchers of programming languages do not appreciate enu-
merated types, at least in object-oriented languages, but I certainly do if
they are well defined [Sakkinen 91]. The approach to enumerations has
fluctuated in C and, to a lesser extent, in C++. In [Pohl &c 88] bad incon-
sistency between different C implementations was found; [Edelson &c 89]
notes that C++ and ANSI C defined enumerations to be identical to the
int type and there was thus no more inconsistency. In my opinion [Sakki-
nen 88a], enumerations wer e completely superfluous under this defini-
tion, especially in C++ which alr eady had a general means to define
named constants.

Currently C++ regards every enumeration as a distinct type, and
direct assignments between such types ar e not allowed. Unfortunately,
enumerations are seen as integral types and thus any enumeration value
can be automatically (i.e. without an explicit cast) converted to an integer .
Arithmetic operators may therefore be freely applied to enumeration val-
ues, which does not make much sense.

As mentioned in the pr eceding subsection, the nesting of defini-
tions within classes did not af fect their scope in earlier versions of C++,
but does in Release 2.1. This holds also for enumerations defined in a
class, but they are accessible from outside the class by using explicit class
qualification. These principles look very sensible.

The automatic promotion to double that made float into a kind of
second-rate type was noted in [Pohl &c 88]; [Edelson &c 89] said that C++
and ANSI C define float into its own type, but this was actually imple-
mented only in Release 2.0. I complained in [Sakkinen 88a]:

For instance, char and short are something between full-fledged types and
int crammed into a smaller space.

This was particularly harmful for function overloading. Now every dif-
ferent integral type, including the unsigned variants, is a first-rate type
also with respect to overloading. As a related improvement, an explicit

163

signed char type has been introduced.
In current C++, the const and volatile declarators (modifiers) have

subtle effects on types. As an example, for function overloading based on
argument types, we have the type equalities int = const int, int = int&
(reference type, see §2.5), const int = const int&, but int& ≠ const int&
[Ellis &c 90 p. 307−308]. The reason is mainly that these modifiers do not
affect values, only variables (objects).

Except for bit fields, which can be components of str uctures and
are packed somehow in all implementations, C++ of fers no means for a
programmer to specify the alignment or packing of variables in storage,
not even of the components of a str ucture or array. For low-level systems
programming where software must sometimes adapt to queer har dware
layouts, this is a surprising omission. Problems may arise also in interfac-
ing to other programming languages, which is a r elatively common need
today. There is not even an equivalent of Pascal’s ‘packed’ attribute.

Union types can be useful even in an object-oriented language in
my opinion, although not everybody agr ees. Only discriminated (tagged)
unions are acceptable from the viewpoint of type safety; also undiscrimi-
nated unions of pointer types if the type of the referent object is checked at
run time. C and C++ unfortunately have undiscriminated unions only ,
and run-time type checking is not supported. The union types of C++ are
thus extremely unsafe.

2.3. Array problems

I still maintain the opinion that the worst common featur e of C and C++
is the handling of arrays, if the criterion is ‘ ‘degree of badness weighted
by importance’’ [Sakkinen 88a]. Newer versions of C++ have not been
and will not be able to bring any impr ovements, because they would
break compatibility with older versions and C.

Array types are not first-rate types, either syntactically or semanti-
cally; they are subtly mixed up with pointer types. Once an array A has
been defined, the name ‘A’ stands everywhere only for a pointer to its
first element. There are no operations that tr eat an array as a whole
[Sakkinen 88a]. One special case of this (mentioned also in [Pohl &c 88]
and [Edelson &c 89]) is the paradox that an array cannot be r eturned as
the value of a function as such, but can if it is wrapped in a one-element
structure. Similarly, arrays cannot be passed by value as ar guments to
functions, unlike all other datatypes [Sakkinen 88a] (cf. §5.1).

It is difficult or impossible to implement array bounds checking,
at least without making a lot of existing C and C++ code invalid

164

[Sakkinen 88a, Pohl &c 88] — see later paragraphs in this section. Strings
are a special case that illustrate well the pitfalls [Sakkinen 88a,89a, Abra-
hams 88]. In both array and string operations, Fortran 77 is a mor e
sophisticated language than C++.

The lack of true multi-dimensional and dynamic arrays is noted in
[Pohl &c 88], however claiming that

C is admirably more convenient for dealing with generic array pr ocessing
than Pascal.

This holds only for ancient, ‘ ‘Jensen and Wirth’’ Pascal. If we consider
ISO standard Pascal, rather the opposite is tr ue: C and C++ have no fea-
ture comparable to its conformant arrays. Even more dynamic and versa-
tile are the arrays of Algol 60 [Pohl &c 88] (‘‘an improvement over most of
its successors’’, as Hoare said) and Ada, not to speak of APL.

It is true that, by virtue of the object-oriented extensibility of C++,
a programmer can create as versatile array-like classes as he or she likes
[Edelson &c 89]. Yet, even if such classes wer e available in a somewhat
‘‘standard’’ library, in many cases a pr ogrammer would face a dilemma:
should I use the fancy array class or could I manage with the second-rate,
built-in arrays — the latter will probably be more efficient and more com-
patible with existing code? The book [Ellis &c 90 p. 212] also concedes:

[...] the C array concept is weak and beyond r epair. The way to avoid this
problem is to use a pr oper array object type such as the one pr esented in
§14.2.

The section referred to presents a vector class using templates.
The article [Pohl &c 88] noted that initialisation was not possible

for automatic arrays (and structures) in C. A similar problem in C++ was
that one could not specify initialisers for an array of class objects [Sakki-
nen 88a]. These problems have been in part corrected in C++ Release 2.0,
but it is still not possible to give initialisers for arrays cr eated by the new
operator.

Polymorphic or heterogeneous arrays are ones in which dif ferent
elements may be of dif ferent types; all arrays ar e heterogeneous e.g. in
Smalltalk. It is remarked in [Edelson &c 89] in one place that polymor -
phic arrays are not directly available in the C++ language or its standar d
libraries, but a pr ogrammer must spend time writing them if needed; in
another place it is said that polymorphic arrays can be cr eated using the
inheritance mechanism or void*. These seemingly conflicting statements
are both true. Unlike ordinary arrays, polymorphic arrays can be con-
structed only out of pointers. Ordinarily one would define a class around
them to achieve a clean interface and exactly the desir ed semantics. The
general problems of polymorphic variables will be discussed in §3.6.

165

2.4. Drawbacks of pointer arithmetic

The rules of legal pointer arithmetic [Ellis &c 90 §5.7], and hence the r ules
of array subscripting, ar e such that enfor cing them would be pr o-
hibitively expensive at r un time. For that purpose, the r un-time system
would need to keep a dir ectory of all objects of all types and storage
classes. This seems inevitable because pointer values can be cr eated even
‘‘out of the blue’’, e.g. by converting fr om integers5. Of course, the legal-
ity or illegality of many pointer-arithmetic and dereferencing operations
could be inferred already at compile time.

Let A be an array of N elements of some type T . The legal pointer
expressions derived from A then range fr om A to A+N (i.e. one element
past the end of the array), but the r esult of trying to der eference A+N is
undefined. Checks would therefore be needed both when pointer arith-
metic is done and when a pointer is der eferenced — the worst of both
worlds. For instance, every pointer should contain a ‘ ‘past the end’’ flag
bit to signal the ‘A+N’ situation; this would cause a lot of over head on
typical machine ar chitectures, where a hardware address takes a full
word. The much-advertised efficiency of C and C++ would suf fer badly
from such checking; but that ef ficiency indeed comes mainly fr om
neglecting safety.

To see the necessity of the ‘ ‘past the end’ ’ flag, suppose that
another object B of the same type T as above happens to lie just after the
last element of A at addr ess A+N. The pointer expr essions ‘&B’ and
‘A+N’ will then corr espond to the same machine addr ess, but only the
former may be dereferenced to access B. Additionally, the run-time object
table should distinguish between one-element arrays with element type T,
and non-array objects of type T. Incrementing a pointer of type T* by one
is legal when it points to the former , and illegal when it points to the lat-
ter.

In my opinion, it is completely superfluous trickery in C and C++
that subscripting can be inverted, i.e. ‘A[i]’ is equal to ‘i[A]’. It has been
justified by the commutativity of pointer addition: both of the above ar e
equal to ‘*(A+i)’ and ‘*(i+A)’; but of fering many different syntactic forms
for one purpose can only make code less compr ehensible. This is cer-
tainly a minor pr oblem in comparison with the serious semantic defects
mentioned above. However, it is aggravated in C++ by the fact that all

5 A C++ implementation that did not allow any legal non-null pointer value to be ob-
tained by conversion from any integer type, would not strictly br eak the rules of [Ellis
&c 90 p. 67 − 68], but would be clearly contrary to the spirit, and would probably crash
a lot of existing C++ software.

166

these forms can be overloaded independently of each other if A is not an
ordinary array but a class object (§4.2).

The final irony comes from the following observation. The typical
C idiom of traversing arrays by incr ementing or decr ementing pointers
instead of subscripting was motivated by ef ficiency. Now it seems that
on some new computer architectures, already this piece of code:

a[i] += b[i]; i++;
is not only easier to understand, but also more efficient than

*ap++ += *bp++;

2.5. Reference types and argument passing

Reference types [Ellis &c 90 §8.4.3], not found in C, ar e mainly syntactic
sugar over constant pointers. The prime r eason for their intr oduction
must have been the r equirements of overloaded operators (§4.3). It may
also be dif ficult for pr ogrammers to r emember the cases when they
should pass the address of a variable as an actual ar gument to a function,
instead of its value; references can help here.

This is best illustrated with an example. The function declaration
− call pair,

void stuff1 (int *const p);
stuff1 (&number);

where ‘int *const’ means that the formal argument is a constant pointer to
integer, can be equivalently replaced by

void stuff2 (int& p);
stuff2 (number);

Thus we have essentially a second way to accomplish the same thing but
with a slightly dif ferent syntax. This is against generally accepted lan-
guage design principles.

A second use of a reference type is as the return type of a function;
a function call can then appear on the left side of an assignment. Here,
the syntactic advantage of replacing

int *const treat1 (int n);
*(treat1 (number)) += n;

with the equivalent
int& treat2 (int n);
treat2 (number) += n;

is a little greater than with a reference argument.

167

A third use of references is as aliases to variable names: after the
definitions,

int x = 1234, &y = x;
‘y’ will be an alias for ‘x’. This possibility is certainly mor e harmful than
useful, but it is a necessary consequence of the definition of r eferences.
Note further that the syntax of r eference declarations deviates fr om the
logic of all other C and C++ declarations: the above indeed does not mean
that the type of ‘&y’ is int.

Reference types ar e clearly second-rate datatypes [Ellis &c 90
§8.4.3]. For instance, structures with reference components are allowed,
but arrays of r eferences are not. In many simple aliasing cases like the
last example above, no actual r eference variable need be allocated; but a
formal argument or a structure component of a reference type does need
storage. We cannot discuss all aspects of r eferences here; they seem to
add a lot of complexity to the language. C++ books have to explain their
interactions with other language features in quite a number of places, and
I suspect that many programmers still remain perplexed.

It would have been better to intr oduce references just as an ar gu-
ment-passing (and r esult-passing) mode as in most other languages.
Indeed the array pr oblems discussed in §2.3 could have been avoided if
call by reference had been originally included in C. The C logic, which
C++ has been more or less bound to follow, seems to have gone like this:
(1) All arguments shall be passed by value; that is clean and simple. (2)
We cannot afford to pass arrays by value; that is much too inef ficient. (3)
Let us invent a trick to reconcile (1) and (2): the name of an array shall not
denote the array but only the address of its first element.

In fact, the whole principle of pass-by-value as it exists in many
current programming languages is a r emnant from the days of Algol 60
when only small entities such as integers wer e considered really values.
That was the case also in C originally: structures were added to the lan-
guage later, and arrays are not considered values even today. When the
alternatives are variable and value ar guments as in Pascal, semantic and
pragmatic issues tend to conflict: to avoid costly copying, one often
declares large formal arguments as variable even when they should by no
means be modified within the pr ocedure. A good set of alternatives
would be: constant (in in Ada), variable (by reference, not exactly like in
out in Ada), and possibly also r esult (out in Ada). Whether a constant
argument is passed by value or by r eference would then only be a prag-
matic or implementation question.

168

2.6. Statements and expressions

A well-known misfeature in C and C++ escaped r egistering in all thr ee
previous papers, perhaps by being too obvious: it is completely legal to
jump into any ‘ ‘structured programming’’ construct from the outside. A
restriction in C++ is that one cannot jump into the scope of a variable,
bypassing its initialisation. That prevents some unstructured jumps, but
rather randomly. Relatedly, [Pohl &c 88] says that ther e are too many
ways to jump out of a structured construct (or into another statement
within it): goto, break, continue, return.

A defect in both break and continue is that they allow the pr o-
grammer to exit or continue only the smallest enclosing loop or (break
only) switch construct. No equivalent of Ada’s loop naming is available;
on the other hand Ada has no equivalent to the continue statement.
Especially badly designed is the switch statement. As [Pohl &c 88]
remarks, every arm must be terminated by a break statement, or control
falls through to the code for the following alternative. Even loop con-
structs may cross switch cases.

The for statement is criticised in [Pohl &c 88] for being too power -
ful and err or prone. The power and generality has also advantages, of
course. For instance, the very common need to traverse two data str uc-
tures in parallel can be programmed nicely and symmetrically.

Both [Pohl &c 88] and [Edelson &c 89] r egard the side-effect style
of C and C++ as contrary to modern tr ends in programming languages.
One factor in this style is that there is no assignment statement, although C
and C++ are statement languages (§ 2.1). There are only various assign-
ment operators whose chief purpose is their side ef fect, although their
result value can also be used to build more complex expressions.

In addition to or dinary assignment ther e is, corresponding to
almost every binary operator , a ‘‘modifying assignment operator ’’ in
Algol 68 style. As special cases ther e are additionally the unary incr e-
ment and decrement operators, ‘++’ and ‘--’. In [Pohl &c 88] under the
slogan, ‘‘Operator Set is T oo Rich’’, it is ar gued that all these operators
(except ordinary assignment) may be superfluous because modern com-
pilers can optimise conventional expressions and assignments to yield the
same object code.

The effect of modifying assignment operators is not only optimisa-
tion: actually more important is that using them one can often avoid writ-
ing a complicated access expr ession twice, or cr eating temporary vari-
ables if the access expr ession has side ef fects. Therefore it is strange that
there are no such operators formed fr om ordinary unary operators: the
relative savings would be even gr eater. The increment and decr ement
operators in turn have no corr esponding ordinary operators (‘succ’ and

169

‘pred’ in Pascal).
The example of Mode [Vihavainen 87] shows that at least the same

benefits can be obtained with only one additional operator (or actually
pseudo-variable) as with a lar ge number of assignment operators. In an
assignment in Mode, the symbol ‘*’ may be fr eely used on the right-hand
side to r efer to the entity denoted by the left-hand side (its old value).
This facility is indeed much mor e general than the operators of Algol 68,
C, and C++. As an example:

bucket.value (element) := */n + 1 - p/*;
Both [Sakkinen 88a], [Pohl &c 88] and [Edelson &c 89] complain

that the or der of evaluation of subexpr essions is too implementation
dependent. At least some improvement has happened in Release 2.0; we
read in [Ellis &c 90] that

... the usual mathematical rules for associativity and commutativity of oper -
ators may be applied only wher e the operators r eally are associative and
commutative.

Incidentally, the excuse given in [Edelson &c 89] for the old state of
affairs:

C++ could not rigorously define subexpression evaluation order without di-
minishing compatibility with existing code.

is misleading: changing a language definition in the opposite direction
would break compatibility.

2.7. Miscellaneous

The PL/1 language, initiated by IBM in the mid-sixties, was not nearly as
bad as current folklore portrays it; mainly too ambitious and all-embrac-
ing for its time. One of the lessons that most later language designers
learnt from PL/1 (and Algol 68) is that very liberal automatic type con-
versions, designed for the convenience of pr ogrammers, weaken static
typing. They tend to cause a lot of harm by concealing pr ogramming
errors. This lesson has been largely ignored in C++: it offers several auto-
matic conversions, some of which can be user-defined (§5.1).

Explicit type conversions or casts are on one hand less danger ous
than implicit conversions because they can be noted in the sour ce code.
They are probably needed much less often in C++ than in C [Str oustrup
91 §3.2.5], so they may be scar ce enough in good C++ sour ce code to
remain conspicuous even when the ‘ ‘functional’’ notation recommended
by Stroustrup is used. On the other hand they ar e more dangerous
because they can be used for punning just as well as for semantically

170

sensible conversions. Punning means that the same bit pattern is mer ely
interpreted as if the value wer e of another type than it originally was;
typical examples are conversions between pointers and integral types. A
more subtle example of the dangers of explicit type conversion will be
given in §3.3.

Taking the above points and §2.2 thr ough §2.4 into account, we
can fairly say that C++ is a weakly typed language if Pascal is str ongly
typed. We can similarly, based on the observations of §2.6, classify it as
weakly structured if Pascal is structured. There is one aspect on which C++
is more structured than Pascal and many other languages: non-local
jumps (i.e. from one function to another) are not possible. However, even
Pascal allows such jumps only fr om a nested pr ocedure or function to a
containing one, a situation that does not occur in C++ except in the rar e
case of a local class (§3.2).

In many cases, C++ causes the automatic cr eation of temporary
objects of which the pr ogrammer may not easily be awar e. The use of
temporaries is indeed left to the discr etion of implementers [Ellis &c 90
§12.2] — very good implementations will pr obably introduce temporary
objects in fewer situations than mediocr e ones. With traditional
datatypes (pure values) this is only a pragmatic matter that should not
bother the programmer at all. On the opposite, with complex and sophis-
ticated classes the creation of a new instance may well have semantic side
effects that cannot be completely undone when the instance is deleted.

The preprocessor facility of C++ is inherited from C, and feels like a
relict from the sixties. Preprocessing directives are rather foreign to the
language proper, and they operate only on the lexical level. Compared to
any reasonable macro assembler, they are rudimentary. Fortunately, there
is less need to use pr eprocessor directives in C++ than in C (especially
pre-ANSI C). The designers of almost all new high-level languages not
based on C have omitted facilities like macr os or conditional compilation,
although they were more fashionable still in the seventies6. Such features
can sometimes be very practical, but they can be obtained by using a fr ee-
standing macro processor.

The preprocessor directive ‘#include’ is the only means in C++ for
defining export-import relationships between modules. It is a poor sub-
stitute for the facilities of most other object-oriented languages or e.g.
Modula-2. Even the modest Dee language [Gr ogono 91] has a very nice
modularisation, where there is one canonical document for each class, and
interface files needed to transfer information to the descendants and

6 ‘‘All programming languages (not only assembly languages!) should support
macroes.’’ [Conradi &c 74].

171

clients of the class ar e automatically taken care of. — For instance, it is
only a convention in C++ that class declarations and similar items ar e
usually grouped into separate ‘‘header ’’ or ‘‘interface’’ files. Although the
language itself has no support for orderly modularisation, today there are
many comprehensive programming environments that can help. This
problem is therefore lessening in importance.

On the other hand, the typical OOPL practice that only a single
class can be a unit of sour ce code modularisation is often a disadvantage,
e.g. when ther e are several classes with intimate inter dependences. In
this respect, C++ (like Modula-3, Oberon, BETA, etc.) is more convenient.

3. Classes and objects

3.1. Terminology

A few terms that C++ literature uses about class-related things can in my
opinion be somewhat misleading, and certainly conflicting with ‘ ‘main-
stream’’ object-oriented terms; this applies a little less to [Ellis &c 90] and
other newer books and papers than [Str oustrup 86]. Therefore, I will use
the word ‘class’ in the conventional meaning, comprising mainly: a tem-
plate for creating objects, a collection of functions and common data, and,
in C++ only conceptually, also the set of its existing instances. The words
‘object’ and ‘instance’ (instead of ‘class’ or ‘class object’) will be used to
mean ‘an instance of a class’.

I especially dislike the usage of the wor d ‘member ’ — a synonym
of ‘element’ in set theory — in the meaning of ‘component’. Because the
word ‘static’ is so overloaded (§2.1), I will use ‘common’ instead in the
specific meaning of ‘shared among all instances of a class’. When needed,
I will use ‘instance’ as an adjective meaning the opposite of ‘common’.

The new meaning of ‘virtual’ intr oduced with multiple inheri-
tance [Sakkinen 92a] is also confusingly different from what ‘virtual func-
tion’ means, so I will use the distinct terms, ‘sharable’ for ‘virtual’ and
‘duplicatable’ for ‘non-virtual’. Shared or duplicated subobjects (§3.8) of a
class C appear only in ‘ ‘fork-join inheritance’’ [Sakkinen 89b], in which a
non-immediate subclass inherits C over more than one path.

The use of ‘derived class’ and ‘base class’ instead of ‘subclass’ and
‘superclass’ does not sound too unnatural to me; both pairs of terms will
be used, as well as ‘descendant’ and ‘ancestor ’. These relationships will

172

not be supposed to be direct or immediate unless explicitly so stated.
In my opinion, some other terms used in connexion with C++ ar e

more appropriate than their equivalents favour ed by the Smalltalk com-
munity. For instance, it is misleading to speak about ‘ ‘message passing’’
instead of ‘late binding’ in Smalltalk. According to the normal practice of
scientific nomenclature, concepts originating fr om Simula should r etain
their original names. Such reserved words in C++ as ‘virtual’ (in the orig-
inal meaning: §3.4) and ‘this’ (instead of ‘self ’) are faithful to the Simula
tradition.

We get the following translation table (Table 1):

Table 1. Some different terms for similar meanings.
‘[...]’ denotes an optional part

C++ literature Smalltalk literature This paper
class class class
class [object] instance [class] object, instance
[non-static] data member instance variable [instance] data component
[non-static] function member instance method [instance] function component, instan
static data member class variable common data component
static function member class method common function [component]
base class superclass both, ancestor
derived class subclass both, descendant
virtual (base class) — sharable
non-virtual (base class) — duplicatable
this self this
In C++ literatur e, ‘member function’ actually appears mor e frequently
than ‘function member’.

Common functions are a novelty of Release 2.0. Their main differ-
ence from instance functions is that they need not be invoked as compo-
nents of any object. Therefore the variable this, which is automatically
defined for every instance function to point to the object for which the
function is called (the ‘receiver ’ object in Smalltalk parlance), is not avail-
able to common functions. They cannot be virtual, either; that appears
reasonable although not inevitable.

173

3.2. Class declarations (definitions)

C++ class declarations need not follow the str ucture of e.g. Smalltalk,
where the main division is: common functions, common data compo-
nents, instance functions, instance data components. Fortunately, a pro-
grammer can use this grouping to make the structure of each instance and
of the class’s common data clearly visible; every common component
must just be separately declar ed static. A class declaration can contain
still other things beyond those four categories: type definitions (includ-
ing nested class definitions) and friend declarations. Normally, the actual
definition (code) of each function is somewher e outside the class defini-
tion; if it is inside, the function will automatically be treated as inline.

The supported structuring of a class declaration is by access lev-
els: public, protected, and private; there can be more than one section of
the same level. This is also a sensible division, because it str esses the dif-
ferent interfaces of the class. The friend declarations ar e the only ones
that do not fit well into this division, because the access levels do no affect
them. When multiple inheritance was added to C++, it would have been
consistent to impose the same division on the list of immediate super -
classes. Instead, the access level must be given for each super class indi-
vidually (‘private’ being the default).

Already in C, a structure can have components of type pointer -to-
function. This is one major factor in the suitability of C for an intermedi-
ate language in the implementation of OOPLs. In C++, such components
are data parts, but the difference between them and function components
is subtle. One of the implicit conversions of C++ even allows the der efer-
encing operator to be elided in invocations thr ough a function pointer, so
there need not be any syntactic dif ference between the call of a function
component and a call through a function pointer component.

C++ allows class definitions to be nested, but nesting originally
had no significance for scoping or visibility — a pr omising source of con-
fusion. This has been changed in Release 2.1 so that scopes nest in the
natural manner [Ellis &c 90 §9.7]; the incompatibility does not cause
much harm, because hardly anybody would have nested class definitions
earlier. It would have been a much mor e elegant choice from the begin-
ning to allow a general nesting of all constructs (including functions) with
consistent scope rules, i.e. to follow the example of Simula.

The unorthogonality mentioned in §2.1 comes about as follows.
Functions consist of blocks, blocks may be nested and types defined
within them (already in C). A class defined within a block is called a local
class. Such a class definition can contain function definitions, not only of
function components but also of friend functions. Thus, a function defini-
tion can be indir ectly nested within another one; but it has no access to

174

the automatic (stack-allocated) variables of the enclosing function [Ellis
&c 90 §9.8].

A local class must be an exceptional case in r eal programming.
For instance, all functions of the class must then be written completely
within the class definition, because there is no other place where the class
is visible and function definitions are allowed. There is no such constraint
on a class declaration nested within another class, because multiple class
qualifications such as ‘Outer::Inner::some_function()’ can be used to
denote components of nested classes.

3.3. Inheritance

I have treated the inheritance principles of C++ in gr eat detail in [Sakki-
nen 92a, 92b]. Contrarily to my pr evious positive view [Sakkinen 89b], I
now found several rules that should be amended, especially to make mul-
tiple inheritance semantically mor e consistent. The prime suggestion is
that the sharing or duplication of multiply inherited super classes should
be implied by the inheritance modes (public, pr otected, or private),
instead of being declar ed explicitly and independently . The modifica-
tions look rather harmless to other parts of the language, but it is very
unlikely that the C++ community (most importantly the ANSI commit-
tee) would adopt any of them.

With the current C++ rules, one can easily constr uct classes with
perhaps more obvious anomalies still than in the examples of [Sakkinen
92a]. For instance, let us define:

class A { ... };
class B: public virtual A { ... };
class C: public B { ... };
class D: public B { ... };
class E: public B, public C, public D { ... };

Every E object will then have thr ee distinct B subobjects, but these will
share a common A subobject. This is badly inconsistent with the notion
of B being a subclass of A.

It is worth acknowledging even her e that private inheritance is a
semantically and conceptually valuable capability, although it also makes
the language more complex. It has been a feature of C++ from the begin-
ning, but very few other languages support anything similar , although
the possibility of private components is quite common. Dee [Grogono 91]
is one language that has followed the example but not completely: ‘inher -
its’ corresponds to public, ‘extends’ to protected (not private) inheritance.

175

One observation about the access levels of class components and
superclasses is missing even fr om [Sakkinen 92a]. Already in early ver -
sions of C++ wher e only the access levels ‘private’ and ‘public’ existed,
access to private components (and superclasses) could be granted to some
other class or function by a friend declaration. When the ‘protected’
access level was added, no analogy of ‘friend’ (‘comrade’?) was intr o-
duced for allowing access to protected components. After the access rules
of protected components were strengthened [Sakkinen 92a §3.1], a class
could need to declare even its own subclasses additionally as comrades!

The above proposal would fit well with one suggestion made for
the Law of Demeter [Sakkinen 88b]: an explicit ‘acquaintance’ declaration
would be required for a class or function to access even public compo-
nents of another class, unless it has access rights accor ding to the basic
Law of Demeter [Lieber herr &c 88]. (This was a r elaxation of the Law ,
although it would be a restriction if added to C++ as such.)

A pointer to a subclass can be implicitly converted to a pointer to
a superclass under proper conditions, for instance when the inheritance is
public and the superclass is not duplicated. On the other hand, arbitrary
conversions between pointer types ar e possible by explicit casts. Obvi-
ously, an explicit conversion is again more dangerous than an implicit one
(§2.7). There could be a need for ‘ ‘safe casts’’ in some circumstances.
Consider this example:

class A { ... };
class B { ... };
class C { ... };
void do_something (A*);
void do_something (B*);
void do_something (C*);
class D : public A, public B { ... };
D *pointer;

If we want to invoke one version of the overloaded function ‘do_some-
thing’ on ‘pointer ’, an explicit cast to type A* or B* is needed because the
call would otherwise be ambiguous. However, using a cast allows us just
as well to do the following:

do_something ((C*)pointer);
which would typically lead to disaster at run time.

176

3.4. Virtual functions

An instance function can be declared virtual in C++ with the same mean-
ing as in Simula. If a virtual function is r edefined in any subclass, its
invocations will be bound at r un time to the appr opriate version of the
function, based on the actual class of the object as whose component the
function is invoked — late binding. In Smalltalk and many other OOPLs,
all operations ar e automatically late-bound; this is sometimes even put
forward as a requirement of true object orientation, but I do not agree.

C++ has the essential difference to Simula that late binding can be
prevented by class qualification (‘Myclass::clobber(thing)’). This feature
allows e.g. a function r edefinition to call the super class function to be
overridden (as by using ‘super ’ in Smalltalk), and thus corr ects an obvi-
ous defect of Simula. Unfortunately, it can also be misused. It is written
in [Ellis &c 90 p. 210]:

As a rule of thumb, explicit qualification should be used only to access base
class members from a member of a derived class.

I consider it sometimes fully r easonable also to early-bind virtual func-
tions of the invoking class itself [Sakkinen 89b]. The questionable case is
explicit qualification used by external clients; even that is allowed by the
language, although discouraged in the above quote.

A useful new facility for classes in Release 2.0 are pure virtual com-
ponent functions — equivalent to deferred routines in Eif fel [Meyer 88].
Formerly, unlike Simula, C++ r equired every virtual function to be
defined (i.e. code and not only the function header to be written) in the
first class where it was declared. Now it can be left explicitly undefined
there, syntactically by adding ‘= 0’ after the function header; this makes
sense if the name of the function is consider ed to denote a pointer to the
actual function. Any class that has some pure virtual function component
is considered an abstract class: no direct instances of it can be cr eated, it is
meant only to serve as a superclass for inheritance. Those subclasses (not
necessarily immediate) that pr ovide code for all inherited pur e virtual
functions are ordinary, concrete classes. It is in general better to inherit
from an abstract than from a concrete class [Johnson &c 88].

Actually, it is possible to define a function even in a class in which
it is declar ed as pur e virtual, but it can then be invoked only by using
explicit class qualification. This possibility looks like an unnecessary
complication to me. It would also be better if a class were to be declared
abstract in the first place, and only after that could some functions be
pure virtual, like in Eiffel.

There seems to be curr ently some confusion about pur e virtual
functions in multiple inheritance, exhibited by some compilers [Skaller
92]: Suppose that classes B and C inherit class A, and D further inherits

177

both B and C (a simple fork-join structure). If a pure virtual function of A
is defined in B but not in C nor D, then those compilers make the function
pure virtual again in D, causing D to become an abstract class. This con-
flicts with the dominance rule for virtual function definitions. The reason
of this surprising behaviour is said to be one single sentence in [Ellis &c
90 §10.3]:

Pure virtual functions are inherited as pure virtual functions.

Reading the whole context, it is evident to me that the implications of this
sentence have been interpreted erroneously.

3.5. The fundamental defect: type loss

I wrote in [Sakkinen 88a §5]:
Classes in C++ are defined in such a way that a struct becomes just a special
case of a class, which is nice economy of concept.

In contrast, [Edelson &c 89] says:
Having both struct and class is redundant. A struct is the same as a class
that has by default public components. The struct keyword could not be
eliminated without losing compatibility, but the class keyword is unneces-
sary.

Today I would agr ee more with the latter view , but both quotes
miss one essential point. I venture to claim that herein lies the fundamental
defect that renders C++ insufficiently object-oriented, even disregarding C-
level tricks (cf. §1.2). Structures could have been left as they ar e in C, and
classes should not be mer e generalisations of str ucture types. This was
suggested in [Sakkinen 88a §9], but it is worth r estating a little more thor-
oughly.

Every object should have at its beginning some kind of descriptor,
as is the case in practically all object-oriented languages ever since Sim-
ula. The descriptor should at a minimum indicate the class of the object.
It would help maintain the identity and integrity of the object. Obviously,
there should also exist some kind of r un-time descriptor for each class.
This does not imply that classes should be first-rate objects themselves
(except possibly constant objects); that would not be desirable in a com-
piled, statically typed language.

One reason for omitting object descriptors must have been an
overemphasis on ‘‘efficiency’’. Indeed, in degenerate cases C++ gives no
time or space penalty for declaring and using a class instead of a C str uc-
ture. The situation changes when a class has at least one virtual function.
There must be a run-time virtual function table (or vector) corresponding to

178

the class, and each instance of the class must contain a pointer to it, thus a
kind of descriptor. Unfortunately, at least in those older implementations
that I am familiar with, this descriptor is not at the beginning of the
object. If you have an untyped pointer (void*) to an object in C++, you
therefore cannot get any information about its class or size.

The fundamental defect is often called ‘ type loss’ for obvious rea-
sons: any knowledge about the type of an object that we do not maintain
statically cannot be safely r ecovered. Type loss happens whenever a
pointer to a subclasss is assigned to a pointer to a super class (see example
in §3.8). We will call that a ‘type loss of the first kind’. Another kind
occurs when an object of a subclass is assigned to an object of a super class
(§5.1). Type loss of the second kind is absolutely irr ecoverable; Lea’s sug-
gestion (§3.7) would prevent it.

It is admitted in [Ellis &c 90 p. 212−213] that the lack of run-time
type information makes some pr ogramming tasks difficult. Two reasons
are given for not including such information in objects. First:

This requirement would compromise object layout compatibility with lan-
guages such as C and Fortran, which is too high a price to pay [...].

Low-level considerations seem to take pr ecedence over object orientation
here7. If objects were distinguished from structures as suggested above,
this argument would not count: it would be sufficient for structures to be
compatible with other languages. Such compatibility may often be
impossible anyway, because C and C++ do not allow the pr ogrammer to
specify the alignment and packing of structure components (§2.2).

Second:
... would enable a style of pr ogramming that relies on switching on a type
field rather than using virtual functions. [...] in Simula pr ograms this style
has lead to messy, non modular code ...

This in turn is the attitude of which the C and C++ community often
accuses more strongly typed and structured languages: ‘‘the programmer
must not be tr usted’’8. Inheritance and virtual functions ar e not a
panacea, and they can be misused as well. I will elaborate further on this
point in the sequel.

7 Incidentally, Fortran has not even had any r ecord types before the new Fortran90
standard.
8 The very good index of [Str oustrup 91] has only two subentries under ‘misuse’: ‘of
C++’ and ‘of run-time type information’!

179

3.6. Polymorphic variables and ‘‘typecase’’ programming

Variables that can only hold values of exactly one type ar e often called
monomorphic, and those that can at different times hold values of different
types are called polymorphic. I would like to further divide the latter into
freely and restrictedly polymorphic variables. In languages without static
typing, whether object-oriented (Smalltalk) or not (LISP), all variables ar e
freely polymorphic. In statically typed non-OO languages, all variables
are monomorphic9. It is conventional and useful to distinguish between
the static (declared) type and the dynamic (run-time) type of a polymor -
phic variable.

In statically typed OO languages, usually all variables ar e restrict-
edly polymorphic in a special way which is called inheritance polymor-
phism: a variable can hold an object of either its declar ed class or any sub-
class of that. Freely polymorphic variables can be declar ed in many such
languages as a special case of inheritance polymorphism because ther e is
a unique class (e.g. ‘Object’) that is a super class of all other classes. Sim-
ula has a special untyped (universal) pointer type, in addition to statically
typed pointers, which are inheritance-polymorphic.

In C++, only pointers and r eferences to class objects ar e inheri-
tance-polymorphic, all other variables ar e monomorphic — but see §3.7
for a suggested language extension. Additionally, there exists the univer-
sal (freely polymorphic) pointer type void*. This corresponds to untyped
pointers in Simula, but void* is not restricted to point to class instances;
remember that not all datatypes in Simula and C++ are classes.

Freely polymorphic pointers ar e necessary in C++ in the linkage
to such low-level routines as memory allocators and deallocators. Other-
wise they are almost useless due to the ‘ ‘fundamental defect’’: if we only
know the address of an object and nothing about its type or even size, we
can hardly do anything sensible with it. Exceptional cases ar e those in
which the type of the object is somehow r epresented somewhere else, e.g.
in the argument list of the ‘scanf ’ function from the C standard library10.
Such usage is rather the antithesis of object orientation, however.

Inheritance-polymorphic pointers ar e, of course, those that ar e
most often required. All features of the static class of such a pointer can
be used without violating type safety , and late binding takes car e of the
dynamic class of the r eferenced object. There are, however, situations in

9 Except for unions: see §2.2
10 Standard C input and output functions ar e ‘‘officially’’ callable from C++, although
the genuinely C++ streams library is preferred.

180

which freely polymorphic variables are useful in languages with r un-time
type checking and type inquiry. Such situations cannot be handled natu-
rally in C++ (but see [Str oustrup 91 §3.5]: Run-time Type Information). It
is symptomatic that lar ge general-purpose class libraries for C++ mostly
have built an additional, ‘‘more object-oriented’’ layer of their own. They
typically have one r oot class fr om which almost all other classes in the
library are derived, and type inquiry is supported in that hierarchy.

When talking about arrays, sets, and other collections or contain-
ers, the customary terms ar e ‘heterogeneous’ and ‘homogeneous’ instead
of ‘polymorphic’ and ‘monomorphic’, r espectively. It should be noted
that genericity or parametrised classes (templates in C++) mainly help pro-
grammers to declar e open-ended sets of homogeneous collection classes;
they do not give any new facilities for coping with heterogeneity.

I think that there is a conceptual flaw in Str oustrup’s aversion to
‘‘typecase programming’’ (§3.5). The following simple inheritance-poly-
morphic example should serve as an illustration.

class Animal { ... }; // abstract class
class Fish: public Animal { ... };
class Bird: public Animal { ... };
class Mammal: public Animal { ... };
class Nature_watcher { ...

virtual observe (Animal *target);
... };

class Cook { ...
virtual prepare_meal (Animal *ingredient);
... };

Both ‘observe’ and ‘pr epare_meal’ would probably be highly dependent
on the dynamic class of their ar gument, but ther e is no natural way to
take it into account in C++.

If C++ supported multiple dispatching (§4.1), it would be possible
to make the late binding of the above functions depend on the classes of
both the ‘‘owner ’’ object and the argument. The functions would thus be
virtual in both Animal, Natur e_watcher, and Cook. But it is not intrinsic
to animals how somebody observes them or makes food out of them. To
avoid excessive coupling between classes, the designer of the Animal
class should not need to know anything about the classes Nature_watcher
or Cook.

The only reasonable way to implement the above example would
be by typecase pr ogramming. Judiciously used, it can be advantageous
for code management as well, in comparison to multiple dispatching: The
number of different functions to be maintained is smaller if one does not
define a different virtual ‘observe’ for each subclass of Animal. If most of
the code of ‘observe’ is common for all subclasses, the solution by virtual
functions would also cause a lot of code duplication — a pr oblem that

181

object-oriented programming is supposed to prevent.

3.7. Storage classes and garbage collection

The great majority of object-oriented pr ogramming languages, as well as
LISP and CLU [Liskov &c 81], ar e based on reference semantics: variables
cannot contain objects (except some atomic values) but only pointers to
them. This means in practice that all objects ar e allocated on the heap.
C++ is among the exceptions that support value semantics: objects may
belong to any storage class (in the C sense) and may directly contain other
objects. I regard this as an advantage of C++, and at least it makes C++
clearly more homogeneous than many other object-oriented extensions of
conventional languages, e.g. Simula and Objective-C [Cox 86]. BETA
[Kristensen &c 87] is another established language that allows value
semantics. In recent versions of Eif fel, one can define ‘ ‘expanded types’’
[Meyer 92 §12.2] for such behaviour.

A consequence of r eference semantics in the other languages is
that automatic garbage collection (GC) is both highly desirable and rather
easy to implement. It is noted as a disadvantage of C++ in [Edelson &c
89] that ther e is no GC but programmers must take car e to explicitly
delete objects that ar e no more needed. However, this problem does not
concern at all those objects that are allocated on the stack or statically; the
need for garbage collection is not so gr eat in C++ as in Smalltalk, LISP , or
CLU. The danger of dangling pointers in C and C++ is, on the other hand,
even greater than in Pascal: pointers are not limited to point to heap-allo-
cated objects only , they can point to parts in the middle of allocated
objects, and above all there is pointer arithmetic.

The article [Boehm &c 88] r eports on an appr oach that succeeded
remarkably well in adding GC to existing C (not even C++) softwar e by
replacing the standard dynamic memory allocator with a garbage-collect-
ing one. However, the success was in part due to the fact that the code in
question made no clever tricks with pointers, such as:

Person *p = new Person;
long j = long(p) / 100;
long k = long(p) % 100;
p = new Person;

// Any garbage collector would now regard
// the first Person object as unreachable.

Person *q = (Person*) (100 * j + k); // But here we get at it again!
Very obviously, completely safe garbage collection cannot be added to full
C or C++, i.e. without restricting pointer operations. This holds even for

182

so-called conservative GC.
It is suggested in [Edelson &c 89]:

Given the fact that garbage collection is not in the language it should be
possible to design a class which causes instances of classes derived from it
to be garbage collected. Such a class if implemented robustly and distribut-
ed in a standard library could be quite useful.

Unfortunately, even this is not so straightforwar d as might appear from
the quote, because the designer of a C++ class cannot contr ol where and
how pointers to instances of the class ar e manipulated11. Both the
approach of [Bartlett 89] and that of [Edelson 90] need several r ules that
must be obeyed in order to make specific classes garbage-collectable. If a
class should both be amenable to these copying GC methods and have a
destructor (§5.2), additional tricks must be defined to get the destr uctor
invoked [Wachowitz 91].

One less desirable consequence of the C++ appr oach is that an
object-valued variable (in contrast to a pointer -valued one) is always
monomorphic, as mentioned in the pr evious subsection. This is contrary
to what people expect from object-oriented programming, and means that
one is after all forced to use pointer variables or separate ‘‘handle classes’’
[Stroustrup 91 §13.9], and heap allocation of the actual objects if one
wants to exploit e.g. late binding.

The paper [Lea 90] points out the above pr oblem and suggests the
addition of inheritance-polymorphic object-valued variables to the lan-
guage to solve it, concretely by overloading the keyword ‘template’. The
suggestion could be implemented by variables with value semantics but
‘‘pointer pragmatics’’: essentially, the compiler would automatically cr e-
ate handle classes and pr ogrammers would not have to car e about them.
Reciprocally, Lea proposes that it should be possible by declar e
monomorphic pointers and and r eferences by using the new keywor d
‘exact’. Both ideas look sensible.

There is yet another point in favour of C++. Most other object-ori-
ented languages do not of fer any explicit deletion operation for objects
(§5.2); the removal of unneeded object happens only by means of garbage
collection. Since objects are created explicitly, this is asymmetric (con-
versely, in C++ some object creations are rather implicit). Indeed one can
think that all cr eated objects conceptually live for ever; but at least for
modelling many r eal-world objects, a meaningful destr uction at a well-
defined point in time would be desir ed. Garbage collection is in a sense
better suited to value-oriented than object-oriented languages.

11 By overloading the address-of operator — although I am opposing that possibility in
§4.2 — and declaring it private, some degree of control is possible.

183

3.8. Object identity

The crucial concept of object identity [Khoshafian &c 86] is not as strong in
C++ as it could and should be. The language knows only addr esses
(pointers and references), with some automatic adjustments necessitated
by multiple inheritance. To see the problems, we start by dividing objects
into three categories: complete (fr ee-standing) objects, superclass subob-
jects, and component subobjects. In the more typical OOPLs with r efer-
ence semantics only, there are no truly contained component subobjects:
instance variables are references to other complete objects.

The paper [Snyder 91] r egards component subobjects as objects
with identities of their own even in C++, and this is certainly the right
choice. If we have a r eference to an object O, we have no possibility to
know whether O is a component subobject or not. If we have also a refer-
ence to another object P, we can check whether O is a component subob-
ject of P or not, but only by writing code specific to the class of P . How-
ever, most other OOPLs are no better than C++ in this r espect. In object-
oriented database systems it is more common to have support for compos-
ite objects, such that it is possible to get fr om the parts to the whole. A
good example is ORION [Kim &c 89].

As for superclass subobjects, Snyder presents two alternatives, the
multi-object model and the monolithic object model. He writes:

We prefer the monolithic object model, both because it is simpler , and be-
cause it is more consistent with the ‘‘mainstream’’ concept of object.

In most other languages, superclass subobjects really have no identities of
their own and cannot be addr essed. For instance, the pseudo-variable
‘super ’ in Smalltalk refers to the same object as ‘self ’; it only implies a
specific class for the method search.

Snyder admits that the monolithic model cannot account for those
C++ inheritance str uctures in which an object visibly contains several
subobjects of the same super class. The rules proposed in [Sakkinen 92]
would indeed pr event such class hierar chies. Unfortunately, the mono-
lithic object model is still incorr ect under that restriction because a super-
class subobject in C++ does have an identity of its own, almost like a com-
ponent subobject. As an example:

class A { ... };
class B { ... };
class C : public Z, public A { ...

B part
... };

C *Cpointer; B *Bpointer; A *Apointer;
The variable Cpointer is thus of type ‘pointer to C’, and so on. When

184

Cpointer is r eferring to an instance of C, we can get the addr ess of its
‘part’ (subobject) component by

Bpointer = &(Cpointer->part);
and the address of its A (superclass) component by

Apointer = Cpointer;
Note that ther e is an automatic conversion in the latter assignment; no
explicit cast is needed.

For the monolithic object model to be adequate, ther e should also
be a way to get from an A* to a C*. At first sight, there seems to be a way
through a ‘‘reverse’’ pointer cast:

Cpointer = (C*)Apointer;
Unfortunately, this cast is extr emely unsafe due to the ‘ ‘fundamental
defect’’: it cannot be checked whether the A object that Apointer r efers to
is really a subobject of a C object or not. (The equivalent operation is
checked at run time in Simula and Eif fel.) Further, such a cast is totally
disallowed (for implementation reasons) if A is a sharable (virtual) super-
class of C [Ellis &c 90 §10.6c]. The monolithic model actually r equires all
superclasses to be sharable!

The situation is essentially similar as with component subobjects:
If we have a pointer to an object O of class A, we have no possibility to
know whether O is a super class subobject or not. If we have also a
pointer to another object P of class C, we can check whether O is a super -
class subobject of P or not, but only by writing code specific to C. Only if
both pointers ar e statically typed, C* and A* and not of the generic
pointer type void*, and if there is only one superclass component of type
A in P, will simple pointer comparison suf fice (with an explicit type cast
possibly required).

4. Overloading

4.1. Overloading versus multiple dispatching

As in most literatur e, by overloading we mean that several entities in the
same scope can have the same name, and the corr ect entity is selected at
compilation time based on the context wher e the name occurs. In C++,
functions can be overloaded if they have different argument signatures.

185

The main principle of function overloading in C++ is very sound.
First, different return types are not yet a suf ficient difference. Otherwise
the determination of the type yielded by a function invocation would be
problematic; with this rule, the determination of the type stays strictly
bottom-up. Second, invocations with type combinations of actual ar gu-
ments such that no unique overloaded function matches all argument
types best, are rejected as ambiguous at compile time [Ellis &c 90 §13.2].
This conforms better to the spirit of softwar e engineering than would the
arbitrary choice of one among several ‘‘best’’ alternatives.

One difficulty with overloading is that pr ogrammers can easily
confuse it with late binding (virtual functions) in some situations. If an
instance function of a class C is r edefined in a subclass D, the dif ference
between a virtual and non-virtual function, i.e. between late binding and
overloading, appears only when the function is invoked on an instance of
D via a pointer of type C*. In [Sakkinen 92] I pr oposed that subclasses
should not be allowed to r edefine accessible non-virtual instance func-
tions.

A second difficulty is that C++ only supports single dispatching, i.e.
that late binding takes only the type of the ‘ ‘owner ’’ object of an instance
function into account. Since overloading does consider the types of all
arguments, I suspect that pr ogrammers not so seldom make subtle mis-
takes on this point. Certainly the best-known language that supports
multiple dispatching or ‘‘multi-methods’’ is CLOS [Keene 89].

As an example of the desirability of multiple dispatching, mixed
arithmetic with several classes of numbers is often pr esented. The built-
in numeric types are not classes in C++, but suppose that we have defined
some classes like this:

class Number { ... }; // probably an abstract class
class Large_integer : public Number { ... };
class Rational : public Number { ... };
class Decimal_float : public Number { ... };

Evidently, it would be most straightforward to define the ordinary binary
operators if multiple dispatching were available. Accounting for the class
of the second operand by typecase pr ogramming would be a less elegant
solution. Since even this is not possible in C++ (§3.6), one must, e.g.,
write extraneous virtual functions by which the first operand can inquir e
the type of the second one, in order to select the correct alternative for the
actual operation.

I cannot blame C++ strongly for not supporting multiple dispatch-
ing, because most other OOPLs have not got it either, and because it is not
simple to implement. Ambiguities should be treated in the same way as
in static overloading to get be a consistent extension to C++. That raises a
problem that does not exist in single dispatching: ambiguity detection at
run time, which should pr obably cause an exception. To assure at

186

compile time that this fault cannot happen would in many causes r equire
a lot of extraneous functions to be defined — even for ar gument type
combinations that would never occur in practice.

Two recently published approaches of multiple dispatching look
well compatible with the static overloading principles of C++, although
both are designed into languages very dif ferent from C++. Kea
[Mugridge &c 91] is better than CLOS because it r espects encapsulation
and allows static checking. Although the language is applicative (func-
tional) instead of r eally object oriented, its multiple-dispatch principles
would appear suitable for true object-oriented languages as well.

Cecil [Chambers 92] in turn is a classless (pr ototype-based)12 and
highly dynamic object-oriented language. The greatest difference in mul-
tiple dispatching is the following: In Kea, even multiply-dispatched func-
tions are ‘‘within the encapsulation’’ of only their first argument (owner),
in the conventional way. In Cecil, a method has access to the private fea-
tures of all the arguments on which it is dispatched, thus can ‘ ‘belong’’ to
several objects. In C++ one could use friend declarations to achieve that.

4.2. Overloadable operators

C++ allows almost all operators to be overloaded for cases in which at
least one operand is of a class type (even unions ar e considered classes).
The number of operands, pr ecedence, and grouping (left or right) cannot
be changed, r easonably enough. Neither can totally new operators be
defined: the rationale for this in [Ellis &c 90 p. 331] is sound except for the
alleged syntax clashes, which look like a bogus problem to me.

To overload some operator X for some operand type(s) one must
define a function with the name ‘operator X’ and with one or two ar gu-
ments13. The operator notation is then only optional syntactic sugar:
function call syntax with this peculiar function name can be used just as
well. Here we have another case of two dif ferent syntaxes to accomplish
exactly the same thing.

12 A person who likes to think in terms of classes can see classes in rather thin disguise
even in Cecil.
13 If it is defined as an instance function of some class, the first operand will be an im-
plicit argument to which ‘this’ points. The conditional expression operator, which is
the only ternary one in the language, cannot be overloaded.

187

As operator overloading is only a notational convenience, the lan-
guage should try to pr event its misleading use. It is indeed said in [Ellis
&c 90 p. 330]:

[...] the meaning of operators applied to nonclass types cannot be r edefined.
The intent is to make C++ extensible, but not mutable.

Hence the main reason why operators cannot be overloaded for enumera-
tions, although that would sometimes be desirable and fully sensible,
must be that enumerations are regarded as integral types (§2.2).

Unfortunately, new possibilities for truly misleading overloadings
have been added in C++ Release 2.0. There are at least two standar d
operators in C and C++ that ar e fully polymorphic, i.e. applicable to
operands of all types with the same semantics: the unary address-of oper-
ator ‘&’ and the binary sequencing operator ‘,’. I consider it a bad mis-
take that even these can now be overloaded. Similarly, it is unfortunate
that the indirect member access operator ‘->’ can be overloaded indepen-
dently; it would be better if its meaning wer e always derived fr om the
indirection operator ‘*’ (which can also be overloaded).

It depends totally on the pr ogrammer whether any customary
semantic relationships between different operators on the same type hold
when they are overloaded. Suggestions to preserve some such r elation-
ships automatically wer e presented already in [Sakkinen 88a]. For
instance, in Ada it is possible to overload the ‘=’ operator (equal to), but
the meaning of the ‘/=’ operator (inequal to) is always automatically
derived from that.

It was noted as a defect in [Sakkinen 88a] that while the prefix and
postfix applications of the incr ement and decrement operators have dif-
ferent semantics for built-in types, ther e was no way to distinguish
between them for user-defined types. This has been corrected in Release
2.1, but in an ugly way: the postfix operators must be defined as binary . I
still regard my own suggestion in [Sakkinen 88a] as superior , especially
since it would maintain the conventional semantic r elationship between
the prefix and postfix uses of the same operator.

Being only syntactically sugar ed functions, overloaded operators
are less powerful and versatile than built-in ones on two aspects. The
first aspect is that all operands of an overloaded operator ar e evaluated
before the operator function is invoked. Therefore, while the built-in logi-
cal operators ‘&&’ (and) and ‘||’ (or) guarantee that their second
operand is evaluated after the first one and only if necessary , no over-
loaded operator can do the same 14. The same problem would affect the

188

conditional expression operator if it were made overloadable. This is also
a further objection against the overloadability of the sequencing operator .

The second aspect is that dif ferences in the ‘ ‘modes’’ of operands
and results — modifiable object, non-modifiable object, value — cannot
be automatically taken care of by the compiler. This can be illustrated by
subscripting, which is r egarded as an overloadable binary operator . If T
is an ordinary array, then T[i] is an object (l-value), which is modifiable if
and only in T is modifiable. If the subscripting operator (bracket pair) is
defined for a class, two separate operator functions ar e needed for the
same effect. The latter one is a constant instance function (§5.3).

class Element { ... };
class Smart_array { ...

Element& operator[] (int);
const Element& operator[] (int) const;
... };

There would be means to r ectify the first aspect, i.e. to pass
unevaluated operands to some operators. The advantage would har dly
be worth the extra complication, however . For the sake of consistent
semantics, it would be an easier solution to forbid the overloading of
‘&&’ and ‘||’. The second aspect is mor e interesting, and will be dis-
cussed in the following subsection.

4.3. Operators and references

Both the first (passing arguments) and second (returning the result) use of
references in §2.5 ar e important for overloaded operators. If references
were not regarded as datatypes, it could even be sensible to allow r efer-
ence arguments and results only for operators, not for ordinary functions.
When an overloaded operator is defined as an instance function, the first
operand is automatically passed by address (‘this’).

The majority of the built-in operators of C++ ar e purely applica-
tive: they take one or two values as operands, r eturn one value as the
result, and have no side ef fects. Their overloadings should preferably act
similarly. If an operand of a class type is passed simply by value, side
effects on the actual ar gument are prevented but a new object is always
created for the formal ar gument and initialised with a copy constr uctor.
This can be avoided, except in special situations, if the ar gument is

14 This is why the equivalent short-cir cuit forms ‘ and then’ and ‘or else’ in Ada are
technically not classified as operators.

189

specified as a r eference (to constant). Extraneous temporary objects and
copying cannot be so easily avoided in r eturning the result [Ellis &c 90
§12.1.1c]. Return by reference could be a good way if C++ had garbage
collection.

Some standard operators: the modifying assignment operators
and the increment and decrement operators, require their first (or only)
operand to be a modifiable object (non-constant l-value). Most of them
return the same object (a r eference to it) after modification; the postfix
increment and decrement operators return a value. To achieve the same
effect with the same expr ession syntax, the overloaded operators need to
pass both the first argument and the result by reference.

A few operators r eturn a l-value, which is modifiable or not
depending on the type of the first operand. These are subscripting (§4.2)
and the dereferencing operators. If subscripting is inverted (§2.4), the sec-
ond operand determines the modifiability of the r esult. Overloaded ver-
sions should pass both the ar gument and the result by reference, and the
modifiability should be propagated automatically.

The ordinary assignment operator is a very special case for over -
loading. The rules of C++ allow it to be defined only as an instance func-
tion, but it is never inherited by subclasses [Ellis &c 90 §13.4.3]. In the
most common case, the r esult and the second operand ar e of the same
class as the first operand, like

Gadget& Gadget:: operator= (const Gadget&)
It would not even be possible to pass either of them by value, because
that would imply a recursive invocation of the assignment operator itself!

The two special r estrictions on the assignment operator , at least
that it should be an instance function, ar e quite unnecessary when the
second operand is of a dif ferent type than the first one. Assigning to a
class object a value of another type can have confusingly many dif ferent
meanings, which we will expound in §5.1.

5. Some further subtleties

5.1. Assignment and copying

Perhaps the most complex interplay between dif ferent implicit conver -
sions and other C++ featur es happens when an instance X of class A is
assigned to an instance Y of another class B. The alternatives seem to be

190

the following: (1) The appr opriate overloaded assignment operator (fr om
A to B) is invoked. (2) If class A has a conversion operator to B, it is
invoked first and ordinary B assignment second. (3) If class B has a con-
structor with a single argument of type A, it is invoked first and or dinary
B assignment second. (4) If A is a subclass of B, only the B part of X is
assigned to Y (type loss of the second kind: §3.5). — Furthermore, in
most cases it is important to distinguish between assignment and initiali-
sation.

Default copy constructors and assignment operators have always
been automatically generated when needed for a class, if they have not
been explicitly defined by the class designer. Their working principle has
been changed from bitwise to memberwise (component-wise) copying in
Release 2.0. This means that if the class has any data component that
itself belongs to a class with a copy constr uctor or assignment operator ,
respectively, this constructor or operator will be invoked.

The above principle is an obvious impr ovement: the default can
be semantically adequate for many mor e non-trivial classes than pr evi-
ously. However, it sharpens the paradox with array copying mentioned
in §2.3. Suppose that an array appears as a class component, e.g.

class Trifle { ... };
class Combo {

Trifle misc[100];
... }

The default assignment operator of Combo must automatically copy
‘misc’ element by element (i.e. not by simple bitwise copy), at least if the
elements’ class T rifle has an assignment operator itself. The compiler
must therefore implement such a whole-array copying operation, but it is
not available to pr ogrammers. For instance, if an assignment operator
must be written for Combo because the default operator is not suf ficient,
the programmer must code explicit loops to handle ‘misc’.

If we compar e C++ assignments to languages with r eference
semantics, we should note that those languages typically of fer no opera-
tions similar to object assignment. A ‘‘copy’’ operation yields a new object,
and is therefore the equivalent of a copy constr uctor in C++. Further, the
automatically available operations ar e ‘‘shallow copy’’ and ‘‘deep copy’’
[Goldberg &c 83; Khoshafian &c 86]. Unless the class is very simple, nei-
ther of these will pr obably be sensible: the former is too shallow, the lat-
ter too deep.

The default functions in C++ have a much better chance of being
meaningful, so that the class designer need not always write his/her own.
However, there is a conceptual problem that tends to be overlooked.
When we come to large application objects, copying them in any way may
no more make sense. Take a model of the computer industry as an exam-
ple: making a copy of a whole company simply has no counterpart in the

191

real world. Neither can we sensibly make a copy of a ‘ ‘person’’ object in
any system that handles persons as individuals. It would be nice if the
class designer could specify that copying is not applicable to a certain
class. The closest thing that can be done in C++ is to declar e the copy
constructor and assignment operator as private.

5.2. Constructors and destructors

The importance of constructors and destructors as they exist in C++ was
duly recognised in [Sakkinen 88a]. I have noted afterwards, with some
surprise, that equivalent facilities ar e missing from most other object-ori-
ented languages. The class body and class parameters in Simula together
are equivalent to one constructor for each class. Usually there is nothing
even remotely similar to destr uctors, and initialisation cannot be defined
as strictly as with constr uctors. For example in Smalltalk-80, if the new
method of a class needs to do some non-default initialisation of the cr e-
ated instance, the only possibility is to define a suitable instance method;
nothing protects that method later from being invoked again.

Note that the possibility of explicit deletion of objects (§3.7) is dis-
tinct from the destructor facility. A destructor guarantees that whatever
finalisation the class designer has deemed necessary will be performed
before the object is reclaimed, no matter what is the cause of the deletion.
However, the execution of a destructor makes even the garbage collection
of an object into a semantic event: the object does not live for ever even
conceptually.

Release 2.0 has added two facilities that may be very desirable for
some sophisticated special purposes, but ar e unwelcome for general pro-
gramming. The probably more dangerous facility is that destr uctors can
be explicitly invoked: any object can thus inadvertently be finalised
many times (but ‘ ‘new fashion’’ destructors don’t r elease the storage
space). The other facility makes it possible to initialise an object (invoke a
constructor on it) many times as well; but it r equires a new operator to be
suitably defined for the class. It is therefore less prone to be used by pure
mistake.

In Simula, the possibilities of a class body ar e actually not
restricted to object initialisation: the language supports a quasi-parallel
execution of object bodies as cor outines. Most later OOPLs, including
C++, do not of fer this facility. However, there is a library of classes to
support coroutine-style programming, which is traditionally distributed
with the AT&T C++ translator [AT&T 85].

192

5.3. Constant objects

One anomaly noted in [Sakkinen 88a §1 1] was that declaring a class
instance constant did not pr otect it against being modified by its own
instance functions. The problem has now been corr ected as follows.
Instance functions can be declar ed const; the compiler then declar es the
self-reference ‘this’ to be of pointer -to-constant type in those functions.
Only const instance functions can be invoked on const objects: see the
example at the end of §4.2. — This looks like the most cautious possible
policy on first sight; it ensur es that constant objects can even be placed in
read-only memory (if they can be initialised there).

In some other appr oaches, the definition of an operation as non-
modifying does not absolutely pr event modifications of the object; it is
the programmer ’s responsibility that any side effects are ‘‘benign’’, i.e. do
not change the visible semantics of the object [Meyer 1988 §7.7]. This can
actually be achieved in C++ too, because a pointer to constant can always
be cast to an ordinary pointer [Stroustrup 91 p. 149]. The security is thus
not absolute.

5.4. No instance-level protection

A difference between C++ and Smalltalk that often r emains unmentioned
even in comparative surveys is that the unit of protection is a class in C++
(and Simula), but an object in Smalltalk. Both approaches have their
good and bad points: see the rationale in [Ellis &c 90 §1 1.2c]. At the cost
of additional language complexity , it would even be possible to have
both. Eiffel does that to a certain extent: only those features of a class that
are exported to the class itself can be r eferred to between dif ferent
instances of the class; dir ect assignment to instance variables of other
objects is impossible even then. Most other statically typed languages are
content with purely class-level protection.

This property of C++ is not bad in itself; but combined with the
many devious ways in which one can get the addr ess of an object, it can
be surprising. The article [Liu 91] presents an interesting example on this,
although I disagr ee with many of the paper ’s conclusions. It must be
admitted that the instance function in the example is rather pathologic.

The idea of Liu’s example is that within an array of class
instances, any element may fully legally access any other element (includ-
ing its private part); no restrictions against this can be declar ed in C++.
We see that pointer arithmetic is in a way mor e harmful still in C++ than

193

in C: the automatically defined pointer ‘this’ is the base fr om which an
object can attack its neighbours. Meyer ’s strong opinion quoted in §1.2
hereby gets more backing.

Of course, illegal uses of address arithmetic can cause much worse
effects, such as haphazar dly overwriting data or even executable code.
As argued in §2.4, it looks impr obable that many C++ implementations
would try to check for illegal uses of pointers.

5.5. Pointers to components (members)

A problem with function pointers r emained a little open in earlier ver -
sions of C++. It is said in [Stroustrup 86 p. 153]:

Taking the address of a member function is often useful [...] However, there
is currently a defect in the language: it is not possible to expr ess the type of
the pointer obtained from this operation.

The cause was that member functions have a hidden ar gument (the con-
stant pointer ‘this’) in addition to any explicit ar guments. An implemen-
tation-dependent trick around the problem was suggested.

What I would have expected as the solution was a means to
denote the types of function components, which would have been a sim-
ple matter. Instead, something much mor e elaborate has been intr o-
duced: there are ‘pointers to members’ and a couple of new operators to
handle them. The chosen term is actually misleading: those ar e rather
component selectors than pointers.

A ‘‘pointer to member ’’ can be defined for both data and function
components. It can be used to select between several components of the
same type. It offers the same kind of dynamic component selection for
objects (records) as indexing does for arrays. In the case of instance func-
tions, there is a subtlety when a virtual function is selected: the pointer
does not point to a fixed function, but late binding is applied when the
function is invoked through it.

This concept looks suspiciously like overkill to me: it significantly
increases the complexity of C++ and has very limited utility. One surpris-
ing use of pointers to virtual function components has been pointed out
in [Sakkinen 92 §4.1], however. — Now we have absolutely no means to
get the addr ess of an instance function. Therefore, it is impossible to
inquire e.g. whether two objects (known to have a common ancestor
class) have the same binding for a given virtual function.

A pointer-to-component variable cannot be made to point to a
common component [Ellis &c 90 §8.2.3]. Although not unreasonable, this
is a little surprising, considering e.g. that common components ar e not

194

separated in class declarations (§3.2). Of course, ordinary pointers can be
used to refer to common components, but they can also r efer to instance
data components. The original problem affected instance functions only.

There are some further unorthogonalities yet. Although an ordi-
nary pointer of any non-function type T* can point to an array element of
type T, a component pointer of type ‘T C::*’ cannot point to an element of
any array component of class C. Pointer arithmetic does not apply to
component pointers, either (consistently with the pr evious restriction).
Finally, there are no references to components.

6. Conclusion

Earlier versions of this paper have been criticised of being exhausting to
read, and of lacking a clear focus and an estimation of the r elative impor-
tances of the numerous observations and opinions. I am afraid that these
problems have largely persisted in the r evisions, and thus many r eaders
may have skipped smaller or lar ger parts of the pr eceding text. I try to
sum up the essence very compactly here.

Welsh, Sneeringer, and Hoare ended their criticism of Pascal with
the following noble sentence [Welsh &c 77 p. 695]:

It is grossly unfair to judge an engineering pr oject by standards which have
been attainable only by the success of the pr oject itself, but in the inter est of
progress, such criticism must be made.

I feel that even sharp attacks on C need no such disclaimer . That lan-
guage does not contain enough significant new inventions or novel com-
binations of old featur es to serve as an excuse for bad design. However,
there is another excuse: C was originally designed with modest goals and
for restricted purposes; the r ecent trend to make it into a universal pr o-
gramming language is harmful both to the computing world and to C
itself.

A similar unfortunate development has been happening with
C++. On the other hand, C++ has essentially gr eater merits of novelty
than C in my opinion. As pointed out earlier (§3.7), C++ is an exceptional
object-oriented language in allowing value semantics and dir ect contain-
ment for objects; some would say that it is highly datatype complete.
Another distinguishing feature, valuable although causing a lot of com-
plexity, is private inheritance (§3.3). A third contribution are constructors
and destructors (§5.2), which pr otect a common heel of Achilles in
OOPLs.

195

In the original version of [Sakkinen 88a], I bluntly punned on the
name of language:

Incrementing C by 1 is not enough to make a good object-oriented language.

That really offended Bjarne Stroustrup, and so I softened it a little in the
final version. As is evident from §2, offence or no offence, today I firmly
believe in the original statement: I would sharpen it further by omitting
‘by 1’ (although that spoils the pun). Since C supports both str uctured
programming and str ong typing only half-way , we might say that the
kind of half-way object orientation that C++ offers suits the style well.

In the kind of systems pr ogramming tasks in which the low-level
capabilities afforded by C++ ar e essential, C++ is almost as gr eat a leap
forward from C as C itself was in comparison to good macr o assemblers.
For this purpose, the possibility for mor e fine-grained programmer con-
trol over such things as structure alignment would be desirable, however;
it is missing from ANSI standard C as well. C++ and other C derivatives
are not necessarily the best choices available today even for systems pr o-
gramming, and certainly not the only choices (§1.2).

Another niche for which C++ looks very suitable is as an interme-
diate language: even her e it is an improvement over C, which is now
most commonly used. Higher-level frameworks such as Demeter [Lieber-
herr &c 90] can impose a lot of discipline that is missing fr om the pro-
gramming language proper. In such environments programmers would
probably not write very much ‘‘raw’’ C++ code, and the disadvantages of
the language are less important than in traditional programming.

To a large proportion of people inter ested in C, C++, and also
object-oriented programming, ‘Ada’ seems to be a str ong curse, perhaps
second only to ‘PL/1’ (§2.7) or ‘COBOL ’. One common reason for this
adversity is that ‘ ‘Ada is too lar ge and complicated’ ’. However, C++ is
complex as well; as noted in [Edelson &c 89]:

C is an elegant language; it is small and simple. The syntax of C++ is simi-
lar to that of C, but its semantics are neither small nor simple.

Everybody does not agree that even current ANSI C is small and simple.
We must keep in mind that the complexity of Ada comes about lar gely
because it tackles several important and dif ficult problems that C++
ignores, concurrency foremost15. On the other hand, Ada lacks such
object-oriented features as inheritance and late binding, which ar e central
to C++. These seem to be among the highest-priority additions suggested
for the upcoming first official revision of Ada.

15 It remains to be seen how well the new genericity featur es (templates) and exception
handling work in practice with the r est of C++. Ada has had both facilities fr om the
beginning.

196

The complexity of C++ may well have caused some err oneous
interpretations of its details in this article; and some other details may
already have changed in the newest versions. However, such details have
little effect on the overall pictur e. A more serious risk is that by pr esent-
ing a lot of concr ete details I have made it har d for readers to see any
overall picture.

For ordinary applications programming, more consistent and reg-
ular object-oriented languages like Eif fel look clearly pr eferable to C++.
Not that curr ent Eiffel can r eally be characterised as a simple language,
either. I will be deeply disappointed if the bandwagon ef fect (§1.1)
indeed makes C++ the object-oriented language of the 1990’s. During the
time of work on this article, the danger has gr own quickly, and it is one
reason for the harsh language that I have used.

All the above notwithstanding, C++ incorporates many fine ideas
and features. Generally, those aspects of the language that ar e the least
constrained by backwar d compatibility with C look the best designed.
No other existing object-oriented language is perfect, either . It is to be
hoped that the designers of the next generation of languages can adopt
the best properties of C++ into their creations and avoid the worst ones. I
am hoping above all that ther e will be a new generation of influential
object-oriented languages within a few years. None of the current ones is
near perfection.

Acknowledgements

Part of this work has been performed under the r esearch project 1061120
(Object-oriented languages and techniques) of the Academy of Finland,
led by Kai Koskimies (University of T ampere). The paper will be printed
also as a part of my forthcoming doctor’s thesis [Sakkinen 92c].

Bjarne Stroustrup (AT&T Bell Laboratories) has been helpful and
communicative during the last few years, among other things by sending
me copies of some r eferences that would otherwise have been omitted.
That is significant courtesy toward a clear adversary of his language. On
the other hand, I have been told by one person that after r eading [Sakki-
nen 88a] he could decide to select C++ for his applications. He had been
uncertain for some time, but mine was the first critical article on C++ that
he had seen, and he judged that the disadvantages pr esented there were
not too severe for his organisation.

197

More recently, correspondence with Douglas Lea (SUNY at
Oswego and NY CASE Center) has given me better insight into some
aspects of C++. Commenting on the manuscript of the textbook [Budd
91] of Timothy Budd (Oregon State University) has helped in sharpening
my own understanding and knowledge about C++ and its r elationship to
other object-oriented languages. I also thank several people at Northeast-
ern University (at least Kenneth Baclawski, Ian Holland, and Karl Lieber -
herr), Peter Grogono (Concordia University), Antero Taivalsaari (Univer-
sity of Jyväskylä), Daniel Edelson (University of California at Santa Cruz),
Tom Cargill (private consultant), Ian Joyner (Australian Centre for Unisys
Software), and John Skaller (Maxtal P/L) for stimulating discussions,
mostly by electronic mail.

An earlier draft of this paper has been scr utinised by Juha
Vihavainen (University of Helsinki), and some useful comments have
been given by Peter W egner (Brown University). At the last stage, the
anonymous reviewers made very r elevant remarks about both the con-
tents and the presentation. The occasions to give guest lectures about my
ideas, e.g. at Concor dia and Northeastern and at the University of T artu
(Estonia) have aided their development and formulation. Participants of
the Usenet newsgr oup ‘‘comp.lang.c++’’ and of the mor e recent
‘‘comp.object’’ and ‘‘comp.std.c++’’ deserve a collective acknowledge-
ment for many good postings and interesting word battles.

Demeter is a trademark of Northeastern University . Eiffel is a
trademark of The Non-pr ofit International Consortium for Eif fel (NICE).
Objective-C is a trademark of Stepstone Corporation. Simula is a trade-
mark of Simula a.s. Smalltalk-80 is a trademark of Par cPlace Systems,
Inc. UNIX is a trademark of AT&T.

References

[Abrahams 88] Paul W. Abrahams. ‘‘Some Sad Remarks About String
Handling in C’ ’. ACM SIGPLAN Notices Vol. 23 No. 10 (October
1988), 61−68.

[AT&T 85] UNIX System V AT&T C++ Translator Release Notes. AT&T
1985 (307-175 Issue 1).

[Bartlett 89] Joel F. Bartlett. ‘‘Mostly-Copying Garbage Collection Picks
Up Generations and C++’ ’. Technical Note TN-12, DEC W estern
Research Laboratory, October 1989.

198

[Boehm &c 88] Hans-Juergen Boehm and Mark W eiser. ‘‘Garbage Col-
lection in an Uncooperative Envir onment’’. Software — Practice and
Experience Vol. 18 No. 9 (September 1988), 807−820.

[Budd 91] Timothy A. Budd. An Introduction to Object-Oriented Program-
ming. Addison-Wesley 1991.

[Cargill 91] Tom Cargill. ‘‘Controversy: The Case Against Multiple
Inheritance in C++’’. Computing Systems Vol. 4 No. 2 (Spring 1991),
69−82.

[Cargill 92] Tom Cargill. Private communication, 1992.
[Chambers 92] Craig Chambers. ‘‘Object-Oriented Multi-Methods in

Cecil’’. ECOOP ’92 Proceedings (Ole Lehrmann Madsen, Ed.).
Springer-Verlag 1992 (LNCS 615), 33-56.

[Conradi &c 74] Reidar Conradi, Per Holager . MARY Textbook. RUNIT
(Trondheim, Norway) 1974.

[Cox 86] Brad J. Cox. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley 1986.

[Dahl &c 68] Ole-Johan Dahl, Bjørn Myhr haug, Kristen Nygaard. SIM-
ULA 67 Common Base Language. Norwegian Computing Center 1968
(No. S-2).

[Edelson 90] Daniel Edelson. ‘‘Dynamic Storage Reclamation in C++’ ’.
Technical Report UCSC-CRL-90-19, University of California at Santa
Cruz, June 1990.

[Edelson &c 89] Daniel Edelson, Ira Pohl. ‘‘C++: Solving C’s Shortcom-
ings?’’. Computer Languages Vol. 14 No. 3 (September 1989), 137−152.

[Ellis &c 90] Margaret A. Ellis, Bjarne Stroustrup. The Annotated C++ Ref-
erence Manual. Addison-Wesley 1990.

[Goldberg &c 83] Adele Goldberg, David Robson. Smalltalk-80: The Lan-
guage and its Implementation. Addison-Wesley 1983.

[Grogono 90] Peter Grogono. ‘‘Issues in the Design of an Object Ori-
ented Programming Language’’. Structured Programming Vol. 12 No.
1 (1991), 1−15.

[Hansen 90] Tony L. Hansen. The C++ Answer Book. Addison-Wesley
1990.

[Johnson &c 88] Ralph E. Johnson, Brian Foote. ‘‘Designing Reusable
Classes’’. Journal of Object-Oriented Programming Vol. 1 No. 2
(June/July 1988), 22−30, 35.

[Joyner 92] Ian Joyner. ‘‘A Critique of C++’ ’. Electronically distributed
report (from ian@syacus.acus.oz.au). Australian Centre for Unisys
Software 1992.

[Keene 89] Sonya E. Keene. Object-Oriented Programming in Common Lisp.
Addison-Wesley 1989.

[Khoshafian &c 86] Setrag N. Khoshafian, Geor ge P. Copeland. ‘‘Object
Identity’’. OOPSLA ’86 Proceedings (Norman Meyrowitz, Ed.), ACM
SIGPLAN Notices Vol. 21 No. 11 (November 1986), 406−416.

199

[Kim &c 89] Won Kim, Elisa Bertino, Jorge F. Garza. ‘‘Composite Objects
Revisited’’. ACM SIGMOD ’89 Proceedings (James Clifford, Bruce
Lindsay, David Maier, Eds.), ACM SIGMOD Record Vol. 18 No. 2
(June 1989), 337−347.

[Koenig &c 90] Andrew Koenig, Bjarne Str oustrup. ‘‘Exception Han-
dling for C++’ ’. Proceedings of the 1990 Usenix C++ Conference, San
Francisco.

[Kristensen &c 87] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, K.
Nygaard. ‘‘The BETA Programming Language’’. Research Directions
in Object-Oriented Programming (B. Shriver and P. Wegner, Eds.), 7−48.
MIT Press 1987.

[Lea 90] Douglas Lea. ‘‘Customization in C++’’. Proceedings of the 1990
Usenix C++ Conference, San Francisco, 301−314.

[Lieberherr &c 88] Karl J. Lieber herr, Ian Holland, Arthur M. Riel.
‘‘Object-Oriented Programming: an Objective Sense of Style’ ’. OOP-
SLA ’88 Proceedings (Norman Meyrowitz, Ed.), ACM SIGPLAN
Notices Vol. 23 No. 11 (November 1988), 323−334.

[Lieberherr &c 91] Karl J. Lieberherr, Paul Bergstein, Ignacio Silva-Lepe.
‘‘From objects to classes: algorithms for optimal object-oriented
design’’. Software Engineering Journal Vol. 6 No. 4 (July 1991),
205−228.

[Liskov &c 81] Barbara Liskov, Russell Atkinson, T oby Bloom, Eliot
Moss, J. Craig Schaffert, Robert Scheifler, Alan Snyder. CLU Reference
Manual. Springer-Verlag 1981 (LNCS 114).

[Liu 91] Chung-Shyan Liu. ‘‘On The Object-Orientedness of C++’ ’.
ACM SIGPLAN Notices Vol. 26 No. 3 (March 1991), 63−69.

[MacLennan 82] B.J. MacLennan. ‘‘Values and objects in pr ogramming
languages’’. ACM SIGPLAN Notices Vol. 17 No. 12 (December 1982),
70−79.

[Meek 90a] Brian Meek. ‘‘The Static Semantics File’ ’. ACM SIGPLAN
Notices Vol. 25 No. 4 (April 1990), 33−42.

[Meek 90b] Brian Meek. ‘‘Two-valued Datatypes’’. ACM SIGPLAN
Notices Vol. 25 No. 8 (August 1990), 72−74.

[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Pren-
tice Hall 1988.

[Meyer 89] Bertrand Meyer. ‘‘From Structured Programming to Object-
Oriented Design’’. Structured Programming Vol. 10 No. 1 (1989),
19−39.

[Meyer 92] Bertrand Meyer. Eiffel: the language. Prentice Hall 1992.
[Mugridge &c 91] Warwick B. Mugridge, John Hamer, John G. Hosking.

‘‘Multi-Methods in a Statically-T yped Programming Language’’.
ECOOP’91 Proceedings (Pierre America, Ed.). Springer-Verlag 1991
(LNCS 512), 307−324.

200

[Nelson &c 91] Greg Nelson (Ed.). Systems Programming in Modula-3.
Prentice Hall 1991.

[Pohl &c 88] Ira Pohl, Daniel Edelson. ‘‘A to Z: C Language Shortcom-
ings’’. Computer Languages Vol. 13 No. 2 (July 1988), 51−64.

[Sakkinen 88a] Markku Sakkinen. ‘‘On the darker side of C++’ ’.
ECOOP’88 Proceedings (S. Gjessing and K. Nygaar d, Eds.). Springer-
Verlag 1988 (LNCS 322), 162−176.

[Sakkinen 88b] Markku Sakkinen. ‘‘Comments on "the Law of Demeter"
and C++’’. ACM SIGPLAN Notices Vol. 23 No. 12 (December 1988),
38−44.

[Sakkinen 89a] Markku Sakkinen. Letter to the Editor . ACM SIGPLAN
Notices Vol. 24 No. 3 (March 1989), 15.

[Sakkinen 89b] Markku Sakkinen. ‘‘Disciplined inheritance’’.
ECOOP’89 Proceedings (Stephen Cook, Ed.). Cambridge University
Press 1989, 39−56.

[Sakkinen 90] Markku Sakkinen. ‘‘On embedding Boolean as a subtype
of Integer’’. ACM SIGPLAN Notices Vol. 25 No. 7 (July 1990), 95−96.

[Sakkinen 91a] Markku Sakkinen. ‘‘A paper comparison of Eif fel and
C++ (and Modula-3) exceptions’ ’. workshop paper at ECOOP’91,
Geneva 1991.

[Sakkinen 91b] Markku Sakkinen. ‘‘Another defence of enumerated
types’’. ACM SIGPLAN Notices Vol. 26 No. 8 (August 1991), 37−41.

[Sakkinen 92a] Markku Sakkinen. ‘‘A Critique of the Inheritance Princi-
ples of C++’’. Computing Systems Vol. 5 No. 1 (Winter 1992), 69−110.

[Sakkinen 92b] Markku Sakkinen. ‘‘Corrigenda to "A Critique of the
Inheritance Principles of C++"’’. Computing Systems, to appear.

[Sakkinen 92c] Markku Sakkinen. Inheritance and other main principles of
C++ and other object-oriented languages. Dissertation manuscript, Uni-
versity of Jyväskylä 1992.

[Skaller 92] John Skaller. Private communication, 1992.
[Snyder 86] Alan Snyder. ‘‘Encapsulation and Inheritance in Object-Ori-

ented Programming Languages’’. OOPSLA ’86 Proceedings (Norman
Meyrowitz, Ed.), ACM SIGPLAN Notices Vol. 21 No. 1 1 (November
1986), 38-45.

[Snyder 91] Alan Snyder. ‘‘Modeling the C++ Object Model: An Appli-
cation of an Abstract Object Model’ ’. ECOOP’91 Proceedings (Pierre
America, Ed.). Springer-Verlag 1991 (LNCS 512), 1−20.

[Stroustrup 86] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley 1986.

[Stroustrup 87a] Bjarne Stroustrup. ‘‘The Evolution of C++ : 1985 to
1987’’. Proceedings of the USENIX C++ Workshop. Santa Fe, New Mex-
ico, U.S.A. (November 1987).

[Stroustrup 87b] Bjarne Stroustrup. ‘‘Possible Directions for C++’’. Pro-
ceedings of the USENIX C++ Workshop. Santa Fe, New Mexico, U.S.A.

201

(November 1987).
[Stroustrup 89a] Bjarne Stroustrup. ‘‘Parameterized Types for C++’ ’.

Computing Systems, Vol. 2 No. 1 (Winter 1989), 55−85.
[Stroustrup 89b] Bjarne Stroustrup. ‘‘Multiple Inheritance for C++’ ’.

Computing Systems Vol. 2 No. 4 (Fall 1989), 367−395.
[Stroustrup 91] Bjarne Stroustrup. The C++ Programming Language, Sec-

ond Edition. Addison-Wesley 1991.
[Vihavainen 87] Juha Vihavainen. The Programming Language Mode : Lan-

guage Definition and User Guide. University of Helsinki 1987.
[Wachowitz 91] Marc Wachowitz. Private communication, 1991.
[Waldo 91] Jim Waldo. ‘‘Controversy: The Case For Multiple Inheritance

in C++’’. Computing Systems Vol. 4 No. 2 (Spring 1991), 157−171.
[Welsh &c 77] J. Welsh, W.J. Sneeringer, C.A.R. Hoare. ‘‘Ambiguities and

Insecurities in Pascal’’. Software - Practice and Experience Vol. 7 No. 6
(November/December 1977), 685−696.

[Wirth 88] Niklaus Wirth. ‘‘The Programming Language Oberon’’. Soft-
ware - Practice and Experience Vol. 18 No. 7 (July 1988), 671−690.

203

YHTEENVETO (FINNISH SUMMARY)

Tämä tutkimus on artikkeliväitöskirja, jonka luvut 2 � 6 ovat eri yhteyk-
sissä ilmestyneitä tai ilmestyviä konferenssi- ja aikakauslehtiartikkeleita
(2 ja 3 vuonna 1988, 4 vuonna 1989, 5 ja 6 vuonna 1992). Pidin lukijoiden
kannalta tärkeänä saada ne mukaan itse väitöskirjaan, ja kiitän alkuperäi-
siä kustantajia uudelleenjulkaisuluvista, samoin Jyväskylän yliopiston
julkaisutoimikuntaa ja sarjan toimittajaa Airi Salmista suostumisesta tä-
hän ratkaisuun. Luku 1 sisältää sekä johdannon tutkimusaiheeseen, mui-
ta lukuja koskevia jälkihuomautuksia (kohta 2) että viitteitä tutkimuksen
mahdollisiin lupaaviin jatkoaiheisiin.

Tutkimusalueen suomenkielinen sanasto on vielä vakiintumatonta
(monia englantilaisiakin termejä käytetään kirjallisuudessa hieman vaih-
televissa merkityksissä). Ainoa tuntemani pätevä suomenkielinen joh-
danto olio-ohjelmointiin [Vihavainen 89] on varsin suppea, ja tietoteknii-
kan arvovaltaisin sanastoteos [Atk 90] sisältää vain muutamia oliokeskei-
syyden erikoistermejä. Object on kuitenkin saanut tässä erikoismerkityk-
sessä täysin vakiintuneen vastineen ‘olio’. Termin object oriented suomen-
noksena käytän tässä sanaa ‘oliokeskeinen’ (koska ‘olioperustainen’ [Atk
90] toisi mieleen englanninkielisen termin object based, jolle usein halutaan
antaa oma merkitysvivahteensa). Class on luonnollisesti ‘luokka’ ja inheri-
tance ‘periytyminen’ tai ‘perintä’.

Luvun 1 kohdassa 1 esittelen ja arvioin muutamia tunnettuja olio-
keskeisyyden määritelmiä (ks. lukua 4). Erityisesti perustelen, miksi en
pidä ‘sanomanlähetykseen’ liittyvää terminologiaa onnistuneena. Esitän
sitten hyvin väljän määritelmän: Oliokeskeinen ohjelmointikieli tukee tie-
don ja käyttäytymisen kapselointia1 olioiksi, joilla on vahva identiteetti ja
eheys ja joissa on tiedonkätkemisen mahdollisuus. Normaalisti se sallii
periytymisen ja siihen liittyvän operaatioiden dynaamisen sidonnan; pe-
riytyminen voi olla joko olioiden tai olioluokkien välistä. Normaalisti
kieli sallii myös olioiden luomisen, muuntamisen ja tuhoamisen.

Luvun 1 kohdassa 3 mainitsen muutamia periytymisen mielen-
kiintoisia aspekteja, joita ei juuri käsitellä muissa luvuissa. Erityisesti an-
kara periytyminen (perittyjen ominaisuuksien muuttaminen ei ole sallit-
tua) ja ns. ‘‘sekoitusperiytyminen’’ (mix-in inheritance) vaikuttavat lupaa-
vilta. Totean normaalin (ei ankaran) periytymisen perusdilemman: jotta jon-
kin operaation (rutiinin, ‘‘menetelmän’’) toiminta olisi ymmärrettävissä ja
hallittavissa sen luokan yhteydessä, jossa se määritellään, sen pitäisi pe-

1 Kapseloinnilla en vielä sinänsä tarkoita tiedonkätkemistä tai tietoabstraktiota.

204

riytymisen yhteydessä muuttua mahdollisimman vähän; jotta se sopisi
hyvin aliluokkiin, sen pitäisi muuttua huomattavan paljon automaattises-
ti. Luvussa 3 korostetaan lähes pelkästään edellistä puolta mutta monesti
kirjallisuudessa (esim. William Cookin ansiokkaassa väitöskirjassa, johon
luvussa 1 viitataan) yhtä vahvasti jälkimmäistä.

Luvun 1 kohdassa 4 mainitsen muutamia mielenkiintoisia aiheita,
joiden suuntaan tutkimusta voisi jatkaa tästä väitöskirjasta: olioiden ole-
massaoloriippuvuudet, operaatioiden paikallisuuden takaaminen, luok-
ka- ja prototyyppilähestymistavan yhteensovittaminen ym. Useimpia
näistä aiheista olen jo alustavasti käsitellyt, pääasiassa julkaisemattomissa
käsikirjoituksissa.

Luvussa 2 analysoidaan C++-kieltä osittain sellaisena, kuin se oli
käytettävissä vuoden 1988 alussa (versio 1.2), osittain ottaen huomioon
tärkeitä muutoksia ja uusia ominaisuuksia, joita oli jo silloin esitelty artik-
keleissa; uusi versio 2.0 julkistettiin kuitenkin vasta kesällä 1989. Suurim-
malta osalta tämän luvun sisältö on edelleenkin ajankohtaista, vaikka
useita siinä mainittuja virheitä ja ongelmia on myöhemmin korjattu, osit-
tain jopa suurin piirtein ehdottamallani tavalla.

Näkemykseni mukaan C++:n perusvika on sama kuin sen perus-
vahvuus: lähes täydellinen yhteensopivuus C:n kanssa. Luvussa 2 (koh-
dissa 2 ja 4) esitän muutamia syitä, miksi C on sopimaton korkeatasoisen
oliokeskeisen kielen peruskieleksi. Keskeisin syy on liian hallitsematon
osoittimien ja taulukoiden käsittely; se on niin oleellinen osa C:tä ja tyy-
pillistä C-ohjelmointia, että yhteensopivuuteen pyrkivässä kielessä sitä ei
voisi ajatella muutettavan ratkaisevasti.

Luvussa 2 mainitaan myös useita C++:n olio-ominaisuuksien
puutteita. Tärkeimmät niistä liittyvät dynaamisen muistin käsittelyyn
(kohdat 6 � 8). Versiossa 2.0 käyttöönotetut periaatteet toisaalta muistin
varaamisen ja olion rakentajan (constructor), toisaalta muistin vapautta-
misen ja olion tuhoajan (destructor) välisestä yhteydestä ovat korjanneet
tilannetta oleellisesti. Silti edelleenkään ei ole mahdollista määritellä
luokkia, joiden ilmentymät (oliot) olisivat keskenään erikokoisia. Luvun
2 kohdassa 12 annettu ohje tällaisten tarpeiden toteuttamiseksi on siis yhä
hyödyllinen.

Luvussa 2 ehdotetaan keinoja, joilla luokkaoperandeille uudel-
leenmääriteltyjen eri operaattorien merkitysten välillä saataisiin auto-
maattisesti säilymään samanlaisia yhteyksiä, kuin niiden välillä vallitsee
normaalisti, esim. ‘+’, ‘+=’, ‘++’. Tässä suhteessa C++:n uusimmissa ver-
sioissa on päin vastoin menty huonompaan suuntaan: jopa joitakin sellai-
sia operaattoreita, joilla luonnostaan olisi täysin yleinen merkitys, voi-
daan luokkien yhteydessä määritellä mielivaltaisesti uudestaan (luku 6).

Luvussa 3 tutkitaan Karl Lieberherrin ja muiden Northeas-
tern-yliopiston tutkijoiden vuonna 1988 julkaisemaa olio-ohjelmoinnin
tyylisääntöä, Demeterin lakia. Sen alkuperäinen muotoilu oli hyvin ylei-

205

nen mutta ensi sijassa Flavors-kielen tyypitettyyn laajennokseen sopiva.
Tässä pyrin ottamaan huomioon C++:n erikoisominaisuudet, mm. sen, et-
tä kaikki C++:n ‘‘oliot’’ eivät ole luokkaolioita (koska C++ on hybridikie-
li).

Tutkin Demeterin lakia kriittisesti (osittain liioitellunkin kriittises-
ti) myös muista näkökulmista. Laki estää kunkin luokan operaatioita nä-
kemästä tai ainakin hyödyntämästä minkään muun luokan rakennetta ja
omankin luokkansa osien rakennetta. Lisäksi laki rajoittaa vahvasti sitä,
minkä muiden luokkien operaatioita kukin operaatio ylipäänsä saa kut-
sua. Jälkimmäiseen osaan ehdotin sellaista lievennystä, että luokka voi-
taisiin tarvittaessa julistaa toisen luokan ‘‘tuttavaksi’’. Tämä ehdotukseni
onkin otettu huomioon Demeterin lain myöhemmissä versioissa.

Luku 3 oli alun perin ilmestyessään (lehtiartikkelina) minulle tär-
keä siksi, että se aloitti edelleen jatkuvan hedelmällisen yhteyden Lieber-
herrin Demeter-ryhmään. Heidän avoin asenteensa kärkeväänkin raken-
tavaan kritiikkiin oli yhteistyön oleellinen edellytys, ja siitä olen yrittänyt
ottaa oppia.

Luvussa 4 esitetään lievästi provokatiivinen luettelo olioiden ja si-
tä kautta oliokeskeisten ohjelmointikielten tärkeimmistä ja vähemmän
tärkeistä ominaisuuksista: periytyminen luetaan vähemmän tärkeiden
joukkoon. Tarkoituksena on korostaa sitä, että monia oleellisia seikkoja ei
kirjallisuudessa tavallisesti mainita eksplisiittisesti, mutta silti periytymis-
tä ei saisi määritellä eikä toteuttaa niin, että esim. olioiden identiteetti ja
eheys kärsivät (ks. tiivistelmän alkupäässä olevaa määritelmää).

Tässä luvussa jaetaan periytyminen oleelliseen (essential) ja satun-
naiseen (incidental) lajiin, joista jälkimmäinen vastaa pelkän toteutuksen
perimistä tai koodin uudelleenkäyttöä. Oleellisen perimisen äärimmäi-
nen tapaus on ali- ja yliluokan välinen täydellinen yhteensopivuus, joka oli
jo aikaisemmassa kirjallisuudessa osoitettu erittäin tiukaksi, tyypillisissä
luokissa harvoin toteutuvaksi vaatimukseksi.

Luvussa 4 pyritään periytyminen selittämään ja mallintamaan
mahdollisimman suurelta osin koostamisena. Varsinkin satunnaisen pe-
riytymisen ja tavallisen koostamisen välinen ero osoitetaan asteittaiseksi
(kohta 6). Tosin tällöin vaaditaan, että satunnaisessa periytymisessä ei si-
dota virtuaalisia operaatioita dynaamisesti. Dynaaminen sidonta tapah-
tuu kuitenkin esim. C++:n yksityisessä periytymisessä. Nykyisin katsoi-
sinkin sen mahdollisuuden periytymisen ja pelkän koostamisen erotta-
vaksi tunnusmerkiksi. — Myös toisen ääripään, täydellisesti yhteensopi-
van periytymisen, selittäminen koostamisen avulla onnistuu hyvin (kohta
7). Välialue jätetään suurelta osin myöhemmän tutkimuksen kohteeksi.

Luvun 4 kohdassa 8 tutkitaan erityisesti haarautuvaa (‘‘fork-join’’)
moniperintää. Siinä osoitetaan, että oliokielissä tyypillisesti noudatetut
moniperinnän periaatteet (esimerkkinä Eiffel-kieli) eivät tällaisessa ta-
pauksessa takaa yliluokka-osaolioiden eheyttä, jota pidän hyvin tärkeänä

206

asiana. Sen sijaan C++:n moniperintä, joka tätä lukua kirjoitettaessa oli
uutuus, säilyttää osaolioiden eheyden.

Luvussa 5 sitten löydän runsaasti vikoja myös C++:n periytymis-
periaatteista. Ne esitetään lyhyesti kuutena teesinä, joista yhteen liittyy
myös korollaari. Useimmat ongelmat voidaan johtaa kahteen perusvir-
heeseen. Ensimmäinen perusvirhe koskee myös yksittäisperintää: vir-
tuaalioperaatioiden uudelleenmääriteltävyys on liian rajoittamaton. Toi-
nen perusvirhe liittyy haarautuvaan moniperintään: yliluokkaosien jaetta-
vuus (‘‘virtuaalisuus’’) on liian globaali.

Toisen perusvirheen täydelliseksi korjaamiseksi esitän luvun 5
kohdassa 5.4 säännön, joka on koko luvun tärkein anti. Tämän säännön
perusteella yliluokkaosien erityinen määritteleminen jaettaviksi tai monis-
tettaviksi on periaatteessa tarpeetonta — jakaminen tai monistuminen
määräytyy sen mukaan, mitkä periytymissuhteet ovat julkisia ja mitkä yk-
sityisiä. Sääntöön liittyy kaksi hyväksyttävien periytymisrakenteiden ra-
joitusta; korjauksissa (luvun lopussa) sitten jälkimmäinen rajoitus näyte-
tään tarpeettomaksi, mutta ensimmäinen on oleellinen.

Luku 5 on hyvin konstruktiivinen: havaittujen virheiden korjaa-
miseksi siinä ehdotetaan täydellisiä uusia periytymissääntöjä, jotka poik-
keavat nykyisistä mahdollisimman vähän. Ne eivät luultavasti haittaisi
olemassa olevia ohjelmia kovin paljon. Pidän selvänä, että monimutkai-
sia moniperintäverkkoja ei voida käyttää mielekkäästi, jos C++:n nykyiset
säännöt pysyvät voimassa. Osa ehdotuksista voidaan kuitenkin toteuttaa
ohjelmointikurin avulla muuttamatta itse kieltä. — Edellä mainittujen
ensimmäisen ja toisen perusvirheen yhteisvaikutuksena esitetään kohdas-
sa 5.6 yllättävän patologinen tilanne, jota kutsun ‘‘eksponentiaaliseksi jo-
joilmiöksi’’.

Yksi C++:ssa esiintyvien ongelmien aiheuttaja on se, että kielen
suunnittelussa ja kehityksessä toteutusnäkökohtia on painotettu liikaa se-
mantiikan ja käsitteellisen mallintamisen kustannuksella. Luvun 5 käsit-
telemissä periytymisongelmissa tämä näkyy siinä, ettei yksityisen periyty-
misen merkitystä ole mietitty loppuun asti. Useimpia ongelmia ei ollen-
kaan syntyisi, jos kielessä olisi vain julkinen periytyminen. Sinänsä yksi-
tyinen periytyminen kuuluu C++:n huomionarvoisiin erikoisominaisuuk-
siin, vaikka se lisää kielen monimutkaisuutta. Vastaavaa mahdollisuutta
ei juuri missään muussa oliokielessä ole.

Luku 6 pyrkii tutkimaan C++:n nykyisiä epäkohtia hyvin laajalti;
pelkästään periytymiseen liittyvät seikat on erotettu edelliseen lukuun,
joka on huomattavasti yksityiskohtaisempi ja enemmän C++:n tuntemus-
ta edellyttävä kuin tämä. Luku 6 on selvästi asenteellinen, vaikka siinä
mainitaan useita C++:n hyviäkin ominaisuuksia. Syynä on se, että C++
on viime vuosina ollut nousemassa olio-ohjelmoinnin kansainväliseksi
standardikieleksi; siinä on kuitenkin niin paljon vikoja, että tällainen ke-
hitys on erittäin haitallista.

207

Tärkein tässä luvussa korostettu asia, joka oli vielä luvussa 2 jää-
nyt vähälle huomiolle, on C++:n oliokeskeisyyden perusvika (kohta 3.5):
oliot eivät sisällä riittävää ajonaikaista tyyppitietoa, päin vastoin kuin
käytännöllisesti katsoen kaikissa muissa oliokielissä. Tämä puute on eri-
tyisen vaarallinen yhdessä osoittimien hallitsemattomuuden kanssa, jota
käsitellään tässä luvussa vielä lisää (vrt. lukuun 2). Toteankin sarkastises-
ti (kohdassa 6), että koska C++ on C:n perintönä sekä heikosti tyypitetty
että heikosti rakenteinen (kohta 2.7), niin heikko oliokeskeisyys sopii hy-
vin tyyliin.

Ajonaikaisen tyyppitiedon puuttumisesta seuraa mm., että olioi-
den tyyppi ei voi vaikuttaa ohjelman valintoihin muuten kuin virtuaalio-
peraatioiden myöhäisen sidonnan kautta. Ns. ‘‘typecase’’-ohjelmointi on
siten mahdotonta; vaikka sen liikakäyttö on houkuttelevaa ja haitallista,
joissakin tilanteissa se olisi erittäin tarpeellista (kohta 3.6). — Läheisesti
tyyppitiedon puuttumisen liittyy myös se, että kompleksiolioiden identi-
teetti (esim. moniperiytymisen yhteydessä) on heikko (kohta 3.8).

Tässä luvussa käsitellään myös C++:n viitetyyppejä, jotka ovat hie-
man eri asia kuin osoitintyypit (kohdat 2.5, 4.3). Arvioin ne puolinaisiksi
tietotyypeiksi, joilla pyritään korvaamaan viiteparametrien puuttuminen.
Ne lisäävät osaltaan kielen vaikeutta ja monimutkaisuutta. C++:aa mut-
kistavat tuntuvasti myös monet uusissa versioissa lisätyt ominaisuudet.
Jotkin niistä, kuten moniperintä, ovat tärkeitä ja hyödyllisiä. Jotkin taas
ovat tarpeellisuudeltaan kyseenalaisia: esim. osoittimet komponentteihin
(kohta 5.5).

Yksi osoitinaritmetiikan ja olio-ominaisuuksien yhteisvaikutukse-
na syntyvä ongelma olisi vielä ansainnut maininnan tässä luvussa: luok-
katyyppiin määritelty osoitin voi osoittaa myös aliluokan oliota, mutta
tällöin osoitinaritmetiikka ei olekaan laillista (luvun 1 kohta 2.6).

Luvun lopuksi (kohdassa 6) väitän, että atk-maailma tarvitsee
pian uusia, selvästi nykyistä sukupolvea parempia olio-ohjelmointikieliä.
Muutkaan nykyiset kielet kuin C++ eivät näytä olevan vielä tarpeeksi hy-
viä kelvatakseen pitkäaikaisiksi standardivälineiksi. Ohjelmointikielten
tähänastisen historiankaan perusteella en uskalla kuitenkaan olla kovin
optimistinen.

208

Viitteet

[Atk 90] Atk-sanakirja — Finnish Dictionary of Information Processing, vii-
des korjattu painos. Suomen Atk-kustannus Oy 1990.

[Vihavainen 89] Juha Vihavainen. ‘‘Olio-ohjelmointi’’. Osa I: ‘‘Oliot ja
luokat’’. Dimensio 53:7 (1989), 29 � 36. Osa II: ‘‘Oliokielten mekanis-
mit’’. Dimensio 53:8 (1989), 29 � 36. Osa III: ‘‘Oliokielten vertailua’’.
Dimensio 53:9 (1989), 29 � 36.

	ABSTRACT
	PREFACE
	CONTENTS
	CHAPTER 1
	OVERVIEW AND OUTLOOK
	1. Definitions of object orientation
	1.1. Introduction
	1.2. Some well-known characterisations
	1.3. The Object-Oriented Database System Manifesto
	1.4. My own view

	2. An overview of the constituent papers — with hindsight
	2.1. General
	2.2. On the darker side of C++
	2.3. Comments on ‘‘the Law of Demeter’’ and C++
	2.4. Disciplined inheritance
	2.5. A critique of the inheritance principles of C++
	2.6. The darker side of C++ revisited

	3. More about inheritance
	3.1. Class inheritance
	3.2. Strict inheritance
	3.3. Deferred (abstract) classes
	3.4. Mix-in inheritance
	3.5. Some related research

	4. Other topics of further research
	References
	CHAPTER 2
	ON THE DARKER SIDE OF C++
	1. Introduction
	2. About object orientation and language extensions
	3. Miscellaneous problems inherited from C
	4. Array problems
	5. Classes
	6. Problems with constructors and destructors
	7. Mistakes with derived classes
	8. A problem with virtual functions
	9. Some suggestions to cope with the problems
	10. Operator overloading
	11. Constants and pointers to constants
	12. Some practical difficulties and hints
	13. Conclusion
	Acknowledgements
	References

