
130
J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

Dynamic Aspects of Industrial
Middleware Architectures

Sergiy Nikitin



JYVÄSKYLÄ STUDIES IN COMPUTING 130

Sergiy Nikitin

UNIVERSITY OF

JYVÄSKYLÄ 2011

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Villa Ranan Blomstedt-salissa

maaliskuun 25. päivänä 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Villa Rana, Blomstedt hall, on March 25, 2011 at 12 o'clock noon.

JYVÄSKYLÄ

Middleware Architectures
Dynamic Aspects of Industrial



Dynamic Aspects of Industrial
Middleware Architectures



JYVÄSKYLÄ STUDIES IN COMPUTING 130

JYVÄSKYLÄ 2011

Dynamic Aspects of Industrial

UNIVERSITY OF JYVÄSKYLÄ

Sergiy Nikitin

Middleware Architectures



Copyright ©       , by University of Jyväskylä

URN:ISBN:978-951-39-4251-9
ISBN 978-951-39-4251-9 (PDF)

ISBN 978-951-39-4230-4 (nid.)
ISSN 1456-5390

2011

Jyväskylä University Printing House, Jyväskylä 2011

Editor 
Timo Männikkö 
Department of Mathematical Information Technology, University of Jyväskylä 
Pekka Olsbo, Sini Tuikka 
Publishing Unit, University Library of Jyväskylä



 
 
ABSTRACT 

Nikitin, Sergiy 
Dynamic Aspects of Industrial Middleware Architectures 
Jyväskylä: University of Jyväskylä, 2011, 52 p. (+included articles) 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 130) 
ISBN 978-951-39-4230-4 (nid.), 978-951-39-4251-9 (PDF) 
Finnish Summary 
Diss. 
 
 
Design and development of industrial ICT systems is becoming more and more 
demanding and complex task. Business requirements call for optimization of 
the IT-expenses seeking at the same time for long-lasting, extensible and robust 
solutions that would be working during the whole product lifecycle.  

The continuous growth of information volumes and interdependency of 
systems invites the IT-practitioners to look for innovative approaches to IT-
systems design and development.  

The information technology will undergo drastic changes when trying to 
resolve the new challenges put by businesses. We have chosen the visions of 
Global Understanding Environment (GUN) and Autonomic Computing as key 
paradigms for the change and look for enabling technologies of these. 

More specifically, through analysis of several industrial use cases we have 
identified several aspects that we deem critical for future industrial ICT systems. 
The key aspects are adaptation (of heterogeneous resources present in the in-
dustrial ecosystem), servicing (use of services in an open environment) and 
domain model sharing between different application areas. It is essential that all 
these aspects are tackled in a dynamic setting as unpredictable changes in the 
environment are characteristic for long living industrial systems. To meet the 
requirements of the industrial cases, we combine three separate technologies – 
Semantic Web, Agent Technology and Web Services as a unified engine or 
middleware. The developed innovative middleware platform called UBIWARE 
offers a language called S-APL that incorporates semantic reasoning, agent 
messaging and thus, servicing. In particular we introduce semantic componen-
tization of the functionality possessed by agents and planning on top of the se-
mantic components. With several potential industry-driven use case scenarios 
of the platform we demonstrate both implementability and extendibility of the 
approach up to augmenting the emerging cloud computing stack with semantic 
agent-driven middleware.  
 
Keywords: Semantic Web, Agent Technology, Web Service, Ontology, 
Middleware, Adaptation, Industrial Applications, Dynamics, Cloud Computing 



 
 
Author’s address Sergiy Nikitin 
  Dept. of Mathematical Information Technology 
  University of Jyväskylä 
  P.O. Box 35 
  FIN-40014 Jyväskylä, Finland 
  sergiy.nikitin@jyu.fi 
 
 
Supervisors Prof. Dr. Vagan Terziyan 
  Dept. of Mathematical Information Technology 
  University of Jyväskylä, Finland 
 
  Prof. Dr. Timo Tiihonen 
  Dept. of Mathematical Information Technology 
  University of Jyväskylä, Finland 
 
  Prof. Dr. Pekka Neittaanmäki 
  Dept. of Mathematical Information Technology 
  University of Jyväskylä, Finland 
 
Reviewers  Prof. Tatiana Gavrilova 
   Graduate School of Management 
   St.Petersburg State University  
   Russia  
 
  Dr. Valérie Monfort 
  Maître de conférences 
  Université de Paris1 Panthéon Sorbonne, France 
  ISIG Kairouan, Tunisia 
 
 
Opponent   Dr. Evgeny Osipov 

 Department of Computer Science, Electrical and Space  
 Engineering 

   Luleå University of Technology 
  Sweden 
 

 



 
 
ACKNOWLEDGEMENTS 

I would like to start this section with words of gratefulness to Prof. Vagan Ter-
ziyan. Without his supervision and patience this thesis would not have existed. 
Next I would like to thank to Dr. Olena Kaykova for her outstanding efforts in 
organizing the exchange program between Kharkiv National University of Ra-
dioelectronics and University of Jyväskylä and then being a supervisor and a 
colleague for all this time. I am grateful to Prof. Timo Tiihonen for his care and 
support in all means, up to the last line of this thesis. 

I am also thankful to Prof. Pekka Neittaanmäki and Dr. Päivi Fadjukoff for 
building a great working environment and a creative atmosphere in Agora Cen-
ter. I would like to thank to the department of the Mathematical Information 
Technology of the University of Jyväskylä as well as to the Intelligent Decision 
Support Systems department of the Kharkiv National University of Radioelec-
tronics for great inspiration to study and to enjoy science. 

Next I would like to thank all the “industry people” who have been our 
partners in various research projects, in particular Dr. Jouni Pyötsiä (Metso Au-
tomation), Dr. Henry Palonen (Inno-W oy), Veli-Jukka Pyötsiä (Fingrid Oyj) 
and others. Without the industrial input, this research would have never existed. 
I am also thankful to Dr. Oleksiy Khriyenko, for being a colleague and a friend 
for all this time. Someone said that “Truth is born in an argument”, so with 
Oleksiy we have produced a lot of “truths” during these years�. 

I would like to thank to all the members of the Industrial Ontologies 
Group, and in particular, to Dr. Anton Naumenko and Yaroslav Tsaruk, for 
great scientific discussions and interesting work. I am also thankful to Dr. Ar-
tem Katasonov, Michal Nagy, Michael Cochez and Joonas Kesäniemi for their 
team spirit and great motivation to innovate and create something new. 

I would like to express my words of gratefulness to Helen Vershinina, 
head of the XOBFIZIT Kharkiv charity fund for her invaluable support and care 
in my hardest times. 
 
 
Jyväskylä-Kharkiv 
February 2011 
 
Sergiy Nikitin 



 
 
LIST OF FIGURES 

FIGURE 1 Alarm message integration tool .............................................................. 18 
FIGURE 2 Data integration using Ontonuts ............................................................ 19 
FIGURE 3 SOFIA platform architecture ................................................................... 21 
FIGURE 4 Ubiware Agent architecture .................................................................... 22 
FIGURE 5 UBIWARE platform architecture ............................................................ 23 
FIGURE 6 Aspects of the abstract system architecture .......................................... 26 
FIGURE 7 Abstract architecture of Semantic Web Service Platform ................... 28 
FIGURE 8 Service delivery process (adopted from (ASG, 2004)) ......................... 29 
FIGURE 9 Foundation Models for Semantic Web Services ................................... 30 
FIGURE 10 Mathematical function as a capability ................................................. 31 
FIGURE 11 Dynamics as a component control channel ........................................ 32 
 

 
LIST OF TABLES 

TABLE 1 Amount of alarm messages processed .................................................... 18 



 
 
CONTENTS 

ABSTRACT 

ACKNOWLEDGEMENTS 

LIST OF FIGURES 

LIST OF TABLES 

CONTENTS 

LIST OF ORIGINAL ARTICLES 

1 INTRODUCTION .............................................................................................. 11 
1.1 Semantic Web ............................................................................................ 13 
1.2 Agent Technology ..................................................................................... 13 
1.3 Service-Oriented Architectures ............................................................... 13 
1.4 Research objectives and research approach .......................................... 14 
1.5 Thesis outline ............................................................................................. 16 

2 INDUSTRIAL PROTOTYPING ........................................................................ 17 
2.1 Metso case study ....................................................................................... 17 

2.1.1 A Tool for Alarm Messages Integration ....................................... 17 
2.1.2 Ontonuts: Dynamic data integration for Metso .......................... 19 

2.2 A case study for Forest Industry ............................................................ 20 
2.3 A middleware platform ........................................................................... 21 
2.4 A middleware for cloud computing ...................................................... 23 
2.5 Chapter Summary..................................................................................... 24 

3 DYNAMIC ASPECTS OF INDUSTRIAL MIDDLEWARE 
ARCHITECTURES ............................................................................................. 25 
3.1 Dynamic Adaptation Aspect ................................................................... 26 
3.2 Dynamic Servicing Aspect ...................................................................... 27 
3.3 Dynamic Model Sharing Aspect ............................................................. 30 
3.4 Dynamics in Common ............................................................................. 31 
3.5 Summary .................................................................................................... 32 

4 RELEVANCE TO OTHER RESEARCH .......................................................... 34 

5 OVERVIEW OF THE ORIGINAL ARTICLES ............................................... 37 
5.1 Article 1: Querying Dynamic and Context-Sensitive Metadata in 

Semantic Web ............................................................................................ 37 
5.2 Article 2: Service Matching in Agent Systems ...................................... 38 
5.3 Article 3: Data Integration Solution for Paper Industry - A Semantic 

Storing, Browsing and Annotation Mechanism for Online Fault Data
 ..................................................................................................................... 39 

5.4 Article 4: Ontonuts: Reusable Semantic Components for Multi-Agent 
Systems ....................................................................................................... 39 

5.5 Article 5: SOFIA: Agent Scenario for Forest Industry ......................... 40 



 
 

5.6 Article 6: Mastering Intelligent Clouds: Engineering Intelligent Data 
Processing Services in the Cloud ............................................................ 41 

6 CONCLUSIONS ................................................................................................. 42 
6.1 Answers to the research questions ......................................................... 43 
6.2 Concerns ..................................................................................................... 44 
6.3 Further Research ....................................................................................... 45 

YHTEENVETO (FINNISH SUMMARY) .................................................................. 46 

REFERENCES ............................................................................................................... 47 
 
 



 
 
LIST OF ORIGINAL ARTICLES 

I. Nikitin S., Terziyan V., Tsaruk Y., Zharko A., Querying Dynamic and 
Context-Sensitive Metadata in Semantic Web, In: V. Gorodetsky, J. Liu, 
and V.A. Skormin (Eds.): Autonomous Intelligent Systems: Agents and 
Data Mining, Proceedings of the AIS-ADM-05, June 6-8, 2005, St. Peters-
burg, Russia, Springer, LNAI 3505, pp. 200-214. 
 

II. Naumenko A., Nikitin S., Terziyan V., Service Matching in Agent Sys-
tems, In: International Journal of Applied Intelligence, In: M.S. Kwang 
(Ed.), Special Issue on Agent-Based Grid Computing, Vol. 25, No. 2, 2006, 
ISSN: 0924-669X, pp.  223-237. 
 

III. Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper In-
dustry - A Semantic Storing, Browsing and Annotation Mechanism for 
Online Fault Data, In: Proceedings of the 4th International Conference on 
Informatics in Control, Automation and Robotics (ICINCO), May 9-12, 
2007, Angers, France,  INSTICC Press, ISBN: 978-972-8865-87-0, pp. 191-
194. 
 

IV. Nikitin S., Katasonov A., Terziyan V., Ontonuts: Reusable Semantic 
Components for Multi-Agent Systems, In: R. Calinescu et al. (Eds.), Pro-
ceedings of the Fifth International Conference on Autonomic and Au-
tonomous Systems (ICAS 2009), April 21-25, 2009, Valencia, Spain, IEEE 
CS Press, pp. 200-207. 
 

V. Nikitin S., Terziyan V., Lappalainen M., SOFIA: Agent Scenario for For-
est Industry, In: Proceedings of the 12th International Conference on En-
terprise Information Systems (ICEIS-2010), Funchal, Madeira, Portugal, 
8-12 June, 2010, pp. 15-22. 
 

VI. Nikitin S., Terziyan V., Nagy M., Mastering Intelligent Clouds: Engineer-
ing Intelligent Data Processing Services in the Cloud, In: Proceedings of 
the 7th International Conference on Informatics in Control, Automation 
and Robotics (ICINCO-2010), Funchal, Madeira, Portugal, 15-18 June, 
2010, pp. 174-181. 

 



1 INTRODUCTION 

It would seem that perfection is attained not when no more can be added, but when 
no more can be removed.1 

The informatization of the society has been going at a high pace for several dec-
ades. The Moore’s law, stated in 60’s, still holds true, despite of the technologi-
cal challenges faced by the research community. We experience an unprece-
dented growth of the amounts of information held and processed by individu-
als. The volumes of the information transmitted over the internet as well as per-
sistent storage devices owned by individuals nowadays pose new challenges to 
the information science. The traditional informational boundaries are vanishing 
being substituted by Ubiquitous Computing (Weiser, 1993) trends. Efficient and 
exhaustive information search in the internet is getting more and more compli-
cated every year. Even the domain of intra-organizational information man-
agement already calls for novel solutions that improve information search, shar-
ing and reuse. 

The challenge of information management is complemented by another 
challenge: growth of complexity of information systems. The software systems 
being designed nowadays have become very complex and hence very expen-
sive to maintain (Kephart and Chess, 2003). This economical factor drives the 
research towards new software design and development paradigms, which 
would tackle the above mentioned challenges. One of such paradigms is Auto-
nomic Computing (Kephart and Chess, 2003) envisaged by IBM. The paradigm 
states that the complexity of information systems management can be de-
creased by introducing autonomy (i.e. a certain degree of freedom and self-
awareness) to system components. When a component becomes autonomous, it 
can observe its own state and act to maintain it or take actions to change it. Such 
components would take the burden off the software developers by solving the 
routine tasks themselves. Furthermore, such components, when orchestrated 
into complex processes, would keep those processes running in a more robust 
way because of the self-awareness, and, hence self-management capabilities.  

                                                 
1 Antoine de Saint-Exupery, Wind, Sand and Stars, 1939 



12 
 

At the same time, the Information Technology infrastructure of the indus-
trial sector is experiencing regular changes, modifications and updates. The 
scale of the changes may vary from maintenance and support of the existing 
applications, up to the revolutionary transfer to a completely new infrastructure. 
Industrial businesses make significant investments into the IT-tools and solu-
tions, and expect those tools to be long-lasting and reliable. Surprisingly, the 
solutions they get can fulfill their expectations. However, the technological pro-
gress of both the IT-sector and the industrial sector brings new competitive pos-
sibilities and advantages. To keep the leading market position, the industrial 
company simply must offer an up-to-date innovative IT-infrastructure and 
support. In other words, the company should invest into the subsequent chang-
es in the IT-solutions that have already been developed. Nevertheless, market 
economy dictates its own rules – in order to be competitive, any company must 
offer a competitive price. IT-solutions, therefore, should not be a price burden 
for industrial products, but at the same time, should be modern and reliable. 
When choosing an IT-solutions provider company, an industrial enterprise will 
consider the integral price of the required solution with respect to the expected 
updates in the product lifecycle. The architecture of such IT solution should be 
robust and scalable, yet easy to configure, update and even extend. The natural 
question here is – how to architect systems in order to meet the expectations of 
customers by keeping the reasonable price? In other words, what will be the 
optimal IT-architecture for industrial solutions in the future? 

In order to design an optimal architecture we need to have an insight into 
the industrial problems and then draw a hypothetic system that would meet 
these problems. In this work we rely on the vision of Global Understanding En-
vironment (GUN) (Terziyan, 2003) that contemplates the future information 
medium in three key aspects: Adaptation, Proactivity and Networking. The vi-
sion postulates that future information systems, networks and other resources 
in order to achieve a highest degree of interoperability will utilize a unified ap-
proach to information and knowledge exchange. At the same time, the re-
sources being heterogeneous by nature, will be equipped with the software 
adapters to bridge the resource-specific conceptualization with the shared con-
ceptualization of the environment. Next to the adapter, each resource is sup-
plied with an intelligent agent - a software representative that acts on behalf of 
the resource in the environment. GUN is an abstraction beyond the Autonomic 
Computing vision that already puts requirements, restrictions and design prin-
ciples for the medium as well as its components. GUN environment is an Auto-
nomic Computing environment that follows the design pattern of GUN. 

However, any vision requires the implementation ground to become true, 
as well as any theory becomes a good theory, when it has passed the experi-
mental validation. When a theory needs to be practically tested, the first ques-
tion we need to answer is: “Do we have a technology to support this theory?” 
We believe that the ambitious challenges stated by the Autonomic Computing 
and GUN visions could be fulfilled with the wise combination of already exist-
ing technologies. We list those technologies below. 



13 
 
1.1 Semantic Web 

By the Semantic Web (Berners-Lee et al., 2001) we understand development 
towards semantic machine-processable information on the web. The Semantic 
Web comprises a set of formal specifications, such as RDF (Resource Descrip-
tion Framework) and its notations – RDF/XML, N3, N-triples, etc. for unified 
information representation. At the same time, Semantic Web uses RDF-Schema 
and OWL to formalize the knowledge domain with concepts, terms and rela-
tionships. The expressiveness of Semantic Web specifications when combined 
with shared domain ontologies (conceptualizations) constitutes the ground for 
automated machine-to-machine communication and information exchange. 
Within the vision of GUN, the role of Semantic Web is to guarantee the disam-
biguation and expressivity (explicitness) of knowledge and information. 

1.2 Agent Technology 

We understand Agent technology (Jennings & Wooldridge, 1998, Odell, 2000) 
as a set of tools, methods and techniques used for design and development of 
Software Agents (Jennings, 1996) and Agent Systems (Genesereth, 1994, Nwana, 
1996). The Agent Technology is a subset of Software Technology, where soft-
ware design and development utilizes the notion of Software Agent as a key 
building block of the Software Architecture.  The Software Agent possesses a 
subset of following properties: Autonomous, Interactive, Adaptive, Proactive, 
Intelligent, Rational, Coordinative, Cooperative, Competitive, etc. Agent as a 
software component differs from the traditional software object by the addi-
tional abstraction level – called self-awareness, i.e. Software Agent is able to 
observe itself and act to a certain degree autonomously. Being still a software 
entity, agent can be understood as a software pattern with autonomy as a re-
quired characteristic. We consider Agent Technology as an engine for the Auto-
nomic Computing vision. At the same time, we believe that true potential of 
Agent Technology lies in intelligence (Wooldridge, 1995). 

1.3 Service-Oriented Architectures 

Service-Oriented architecture (SOA) is a set of software design principles, pat-
terns and tools used to support the development of reusable distributed soft-
ware components that are loosely coupled and web-accessible via well-defined 
interfaces. We understand well-defined interface as a specification, sufficient 
enough to provide the required input and receive the expected output from the 
component. The specification may include the list of functions with their inputs 
and outputs as well as service choreography description. The terminology used 



14 
 
in the specification may refer to standards and schemas which makes it more 
precise. SOA brings the interoperability to the Autonomic Computing, i.e. 
makes the components universally accessible. 

1.4 Research objectives and research approach 

In short, the aim of this research is to demonstrate the applicability of the GUN 
vision (Terziyan, 2003) to the industrial problems via construction of industrial 
tools and methods that follow this vision. Within the construction we combine 
existing technologies (Semantic Web, Agent Technology and Service-Oriented 
Architectures) to prove the viability of those within the industrial settings as 
well as to see their limitations. Next we analyze the outcomes of the design and 
development and try to generalize the common principles that should be ad-
dressed in the construction of industrial applications. 

 The following research questions have emerged during the studies per-
formed within various industry-driven research projects:  
 
Q1: Does GUN vision apply for future industrial ICT-architectures? 
 
Q2: Do the candidate enabling technologies meet the needs of industrial appli-
cations in the nearest future? 
 
Q3: What are the key architectural features of tools for construction of industrial 
applications? 
 

As we aimed to tackle questions addressing both long time visions and 
technical feasibility in the near future, we used a combination of the exploratory 
and the constructive research approaches that correspond to the natural and 
design sciences respectively. Within the research framework described in 
(March and Smith, 1995) the authors distinguish between the research outputs 
and research activities and claim that both the natural and design research ac-
tivities should be applied to the IT research. The research framework presented 
in (Hevner et al., 2004) has elaborated a more rigor approach towards the un-
derstanding, description and evaluation of the research in IT. We align our out-
come with the framework, however, in addition we refer to the notion of a vi-
sion (we may also consider it as a hypothesis), which was not included into the 
original framework guidelines, yet affected this research drastically. 

The initial work on this thesis has already started within the scope of the 
GUN vision. At that time it was introduced as a concept, however, the abstrac-
tion level of it corresponds to the “vision” term. The vision was based on, and 
derived from the industrial problems by generalizing and specifying an “ideal” 
environment, where components of “different nature” can easily interact to 
achieve their goals. Within the research framework (Hevner et al., 2004) the vi-
sion was a design artifact with the problem relevance in the area of web services 



15 
 
and industrial applications. However, the evaluation of the vision was difficult 
as, the instantiation (application) of the vision was not yet addressed. Neverthe-
less, the vision had a research contribution in a set of design artifacts that were 
based on such emerging, yet already viability-proven instruments as web ser-
vices and software agents, and, therefore could have been considered as rigor-
ous. The research communication of the vision was rather clear, as it did not 
target a narrow expert group, but covered a domain of service- and agent-
enabled industrial systems. 

The next phase (iteration) of the research has aimed at the development of 
models and methods as design artifacts that would further conceptualize the 
GUN vision through the instantiation of models, methods and subsequent soft-
ware prototypes. The SmartResource (Terziyan, 2007), Adaptive Services Grid 
(ASG, 2004) and SCOMA (SCOMA, 2005) projects were a testbed for software 
implementation and testing of different aspects of the GUN. Whereas the Smar-
tResoruce was a mainstream project of GUN-related development, the ASG has 
allowed us to investigate deeper the semantic servicing and SCOMA helped to 
explore the semantic domain modeling problems. As a result, the GUN vision 
has populated into a set of frameworks, one of which is GAF (General Adapta-
tion Framework) that constitutes a crucial basis for this work. Another instanti-
ation of the vision was a SmartResource platform that within its development 
cycle has undergone three iterations and has provided an experimental basis for 
further models’ and methods’ development. 

Within the SmartResource project the results of the Articles I, II and III of 
this thesis were achieved. As design artifacts, all of them have provided both 
methods and their practical validation via prototype implementations. 

The next qualitatively new iteration of the research has started with the 
UBIWARE project (Katasonov, 2008) – the project has set an ambitious goal – to 
develop a middleware platform for industrial applications. The work presented 
in this thesis derives from, and contributes to the UBIWARE platform devel-
opment. The artifacts presented in this thesis (Articles IV, V, and VI) are based 
on the UBIWARE platform implementations and extensions. The validity of the 
methods presented in Article IV has been tested and implemented in the indus-
trial prototypes based on the industrial data- and system samples. The UBI-
WARE platform itself as an artifact has undergone 3 iterative cycles of design 
and development. The viability of the platform has been tested in a set of indus-
trial implementations from different problem domains.  

When considering the contribution of the Articles V and VI, the design ar-
tifacts provided are based on a well-grounded problem domain exploration. 
The models presented in the articles were not implemented in prototypes, yet 
the prototyping of those would become a natural continuation of this research. 

When considering this thesis as a whole within the guidelines addressed 
in the framework (Hevner et al., 2004), the problem relevance of this work is sup-
ported by the amount of relevant topics in industrial IT as well as project-driven 
case studies and industry-driven implementation tasks. The research rigor can be 
justified by aligning the work with the theoretical foundations of Semantic Web, 



16 
 
Agent Systems as well as standards referred to and used. The design as a search 
process has covered a wide area of semantic web services, business processes, 
agent systems and the semantic approaches to integration of different resources. 
In this work we address the design as an artifact not only by tools implemented, 
but also by a key set of interweaving aspects, that were decoupled and identi-
fied from the implementation and then generalized into guidelines for design of 
industrial architectures. The design evaluation seems to be hard to perform, at 
least in quantitative sense, since no equivalent platform tools that would com-
bine all the characteristics, exist at the moment. On the other hand the ability to 
produce unique outcomes is a strong qualitative indicator of the design. The 
lack of practical application within the long industrial lifecycle is another issue 
that hinders the evaluation. As we have utilized and extended an innovative 
prototype middleware platform, the evaluation has been performed from the 
point of view of the usability. We have also identified limitations of our plat-
form and tools but due to the limitations we have better realized the scope and 
the position of these tools in the industrial applications design. 

The research contribution of this thesis is addressed by the combination of 
the innovative design principles and the application of those in the prototype 
implementation of tools (e.g. Ontonuts engine). The aspects derived from the 
applications design may be considered as a hypothesis for future work on de-
velopment of industrial architectures. The research communication is supported 
by technical articles published in refereed journals and conference proceedings 
that target the technical audience. The business and managerial audience is 
more addressed by the introductory part of this manuscript, as it describes the 
broad problem area and presents the essence, or features that future industrial 
middleware architecture would need to have. 

1.5 Thesis outline 

This work is organized as follows: in the next Chapter we present the industrial 
prototype tools and case studies we have performed. We highlight the key 
points of the design and implementation that are challenging, yet common for 
different problem domains. In Chapter 3 we derive the common aspects that 
should be addressed by the software architectures to meet the industrial prob-
lems. Chapter 4 presents the related work on the relevant research topics. A 
brief overview of the articles included in this thesis is provided in Chapter 5. 
We conclude and discuss future work in Chapter 6. 



17 
 

2 INDUSTRIAL PROTOTYPING 

In this chapter we present practical outcomes of the research activities conduct-
ed within the projects inspired by the GUN vision. We show how different ar-
chitectural solutions have incrementally led us to the identification of key archi-
tectural aspects within the industrial problem domain. 

2.1 Metso case study 

Metso Automation is a provider of IT-solutions for paper production lines and 
factories. The cooperation with Metso Automation has been mostly related to 
data integration solutions utilizing different tools and technologies. 

2.1.1 A Tool for Alarm Messages Integration 

The first industrial application we refer to in this thesis, was a web service-
based alarm message integration tool (see Figure 1). The alarms, coming from 
the paper machine are processed by the adapter component with the web ser-
vice interface that transforms the alarm SOAP-messages into the RDF-format in 
accordance with the ontology elaborated for the paper industry alarms domain. 
It also provides a web-based interface for the dynamic alarm data management 
where a user defines an RDF-query via simple web interface that does not re-
quire any special semantics-related knowledge from the user except the paper 
industry domain. 

The tool has been launched as a test pilot in the year 2006 and it has been 
successfully running for full four years already. At the moment of writing this 
thesis the real data flow from one of the partner factories of Metso Automation 
is still being forwarded to the university server and the tool successfully per-
forms the tasks that were set. The amount of data we have collected is given in 
Table 1. Although the amount of data is quite modest, still the stable utilization 



18 
 
of Semantic Web and Web Service technologies and tools has brought a confi-
dence in the potential of the technologies and their combinations. 

TABLE 1 Amount of alarm messages processed 

Year Amount of messages 
2006 2083 
2007 1770 
2008 1977 
2009 2646 
2010 (up to 01.10) 320 
Total: 8796 

Each incoming SOAP-message is transformed into a set of RDF-statements that 
are put into the RDFS-reasoning enabled Sesame storage (www.openrdf.org). 
The storage is then accessed by the MessageBrowser component via adapters. 
 

 

FIGURE 1 Alarm message integration tool 

The performance of the whole system has proven to be stable and responsive. 
We have experienced the delays in query answering only when a database-
backend was used for the Sesame. After shifting to the in-memory repository 
mode, the problem was resolved. More details about the implementation can be 
found in the Article III of this thesis. 



19 
 
2.1.2 Ontonuts: Dynamic data integration for Metso 

The reality of industrial IT-infrastructure has inspired us to develop a new inte-
gration solution that would be capable to retrieve data from different data 
sources at the same time being dynamic. We have generalized the problem and 
have designed a tool and an engine that allows us to develop and reconfigure 
adapters to different resources through the web interface (at the moment the 
relational databases support is implemented). The engine incorporates a dy-
namic planning mechanism that resolves arbitrary goal-based requests that 
arise in the runtime. We named such type of adapters and the underlying tech-
nology as Ontonuts – reusable semantic components for multi-agent systems. 
The technology utilizes several principles that simplify the understanding and 
the implementation of Ontonuts. First of all any operation with the resource can 
be performed via capability that is defined for it. Even a database is represented 
by a capability (or a set of capabilities) that act as data services (see Figure 2), i.e. 
a user of the capability may discover it by specifying a goal request. If the goal 
is matched against the capability (or a set of capabilities) then the appropriate 
engine-supported invocation takes place.  

 

FIGURE 2 Data integration using Ontonuts 

The capability specification is fairly simple and is defined in terms of inputs 
and outputs, e.g. database engine may perform queries and provide query re-
sults based on the request received, a service may book a flight ticket and pro-
vide a confirmation with the booking reference as an output, or software com-
ponent may calculate certain mathematical function value and return it based 
on the input data provided. We approach all types of sources from the same 
perspective: what is the input required to address the source and what is the 
output produced by the source. We define inputs and outputs semantically, 
using domain ontology as a reference data model and specifying the patterns of 
the input/output data. The unified approach to component annotation allows 



20 
 
us to abstract from source types and concentrate on agent-driven component 
matchmaking and composition. The resource-specific extension to the capabil-
ity allows declarative adapter specification that can be reconfigured later on the 
fly. When such a capability is published, it becomes a service.  

With respect to the architectural requirements discussed in the Introduc-
tion of this thesis, we have developed a gluing technology that lays the ground 
for dynamic planning and component matching. At the same time, Ontonuts 
address the adaptation to external sources – which may be superseded by 
agent-driven adaptation services in the future. Nevertheless the General Adap-
tation Framework (GAF) (Kaykova et al., 2005) principles and techniques are 
adopted in the technology and design of the agent middleware-supported ad-
aptation. 

2.2 A case study for Forest Industry 

This case study has been inspired by the economic situation in Finnish forest 
industry that desperately calls for higher degree of efficiency in all stages of the 
production chain. Recent research conducted in 2005-2008 has shown an ex-
tremely high degree of inefficiency in logistic operations amongst logging and 
transportation companies. Some of them have already realized the need for co-
operative optimization, which calls for cross-company integration of existing 
information and control systems; but at the same time privacy and trust issues 
prohibit those companies from taking the open environment solutions. In 
(Vesterinen, 2005, Väätäinen et al., 2008, Lappalainen, 2009) new mediator-
based business models were suggested that leverage the utilization and pre-
serve current state of affairs at the same time.  

We have performed a feasibility study and have designed an architecture 
of the IT-platform (called SOFIA) for logging and transportation subcontractors 
that would serve as an integrator of information systems provided from differ-
ent order makers (wood buyers and forest owner associations), the orders com-
ing from different systems would be gathered into one integrated view allow-
ing the contractors to apply logistics optimization tools and decrease useless 
overheads in operation (see Figure 3). 

The platform has not been implemented as a prototype; however the re-
quirements to the architecture, that were detected in this case study, are similar 
to the paper industry ones: adaptation, servicing and domain modeling in dy-
namics. For details of this study we refer to Article V of this thesis. 



21 
 

 

FIGURE 3 SOFIA platform architecture 

2.3 A middleware platform 

The GUN vision, supported by the industrial studies, has resulted in under-
standing of a need for such a middleware solution that would facilitate the im-
plementation of industrial distributed systems. The research towards a mid-
dleware platform has started in 2003 and resulted in a SmartResource agent 
platform that was mostly utilizing a combination of existing tools and libraries. 
The lessons learned from the SmartResource platform have led to the complete 
rethinking of the platform architecture and specification of new requirements. 
In 2007 started the UBIWARE project (Katasonov, 2008) that aimed at the new 
generation middleware platform that would possess the required characteristics 
regardless of the limitations in the existing tools and applications. The platform 
architecture consists of two main parts: the architecture of a UbiwareAgent (see 
Figure 4), and the architecture of the platform itself.  

The UbiwareAgent is a main component and a building block of the plat-
form whereas the platform is a self-sufficient middleware, ready to run user-
defined applications. 



22 
 

 

FIGURE 4 Ubiware Agent architecture 

The uniqueness of the platform is grounded on the three-tier architecture of the 
UbiwareAgent. The topmost layer is a Live – behavior of the agent – it imple-
ments an endless cycle of agent’s live activities. The lowest layer of the agent 
provides a set of reusable hardcoded Java-components, so called Reusable 
Atomic Behaviors (RABs) that an agent can use to sense and affect the environ-
ment. The middle layer is a scripting layer – where all “brain activities” of an 
agent take place. The script is defined using S-APL language (Katasonov, 2007, 
Katasonov and Terziyan, 2008), which is a unique finding of the UBIWARE pro-
ject. The language is semantic and rule-based. Thus combining the features of 
descriptive languages like RDF (we use N3 notation as well) and programming 
capabilities of rule-based languages where if-then constructs can be specified. 
The script layer can call the layer of hardcoded components and thus interact 
with the “real world”, e.g. another agent, web service or a device driver. How-
ever, the most interesting feature of the S-APL language with respect to the in-
dustrial challenges discussed above is the ability to produce script out of script 
and modify the behavior of an agent on the fly.  

From the micro-world of an agent we will go to the macro-world of the 
platform itself. The platform architecture (see Figure 5) introduces a self-
sufficient runtime environment which is supported by a set of so-called “Infra-



23 
 
structure Agents” – platform agents that have a high priority and act to keep 
the platform running. 
 

 

FIGURE 5 UBIWARE platform architecture 

The infrastructure provides facilities for applications which are in turn driven 
by application agents (more details at (Terziyan, Nikitin et al, 2010)).  

The key platform elements that refer to the issues of domain model shar-
ing and servicing are the Ontology agent and the DirectoryFacilitator agent. 
Whereas the former takes care of the common platform-wide shared ontology 
of concepts and roles, the latter keeps the registry of agent-to-role bindings. 

We include this section into the description of case studies because UBI-
WARE platform itself is an example of a complex dynamic ecosystem of simple 
applications that is managed by software entities (infrastructure agents) that are 
designed using the same principles and approaches as industrial applications 
being run on it.  

2.4 A middleware for cloud computing 

IT-world is experiencing high demand for so-called cloud computing platforms 
and cloud-based solutions. The cloud infrastructure is becoming more and 
more advanced and tailored to different user groups. The management of such 
infrastructure at some point will require an automated solution that would in-
teroperate with the client applications and optimize or automatically manage 
the configuration of the cloud stack. In Article VI of this thesis we present an 
architecture that extends the cloud services stack with intelligent platform ser-



24 
 
vices, at the same time providing middleware-based cloud management infra-
structure. The key principles of the architecture however stay the same – the 
adaptation is provided as a platform service. The domain model sharing is used 
to guarantee successful interoperability of the in-cloud components and ser-
vices, whereas the dynamics is handled by agent-enabled middleware, which 
provides means for the cloud stack management taking into account the user 
applications within it. 
This case study has been important for positioning the middleware platform 
within the cloud computing trend and understanding the needs of cloud-based 
middleware solutions. 

2.5 Chapter Summary 

In this chapter we have presented a set of industrial prototype implementations 
as well as conceptual architectural solutions that aim to resolve present-day 
problems of industry and give an insight to potential industrial architectures of 
the future respectively. We utilize an innovative UBIWARE platform in imple-
mentation of test prototypes and at the same time enrich the platform itself with 
the generic tools that we derive and generalize from the case studies. It is im-
portant to highlight that the architecture of the platform, and especially the lan-
guage used, have given us a possibility to achieve the highest degree of reusa-
bility in implementation. We develop generic hardcoded components that be-
come a part of the platform and, therefore, incrementally enrich and speed-up 
the applications development. The applications, that were already developed, 
can address future changes caused by industrial needs by reconfiguring the 
flexible S-APL script layer. Moreover, the current version of UBIWARE plat-
form lives as it preaches – an essential part of its inner functionality is provided 
by agents via semantically described services. 

Although the UBIWARE platform has undergone three iterative develop-
ment cycles and has been tested and practically used in industrial settings for 2 
years already we still realize that other solutions and platforms from influential 
software vendors will populate the industrial software market. We can already 
see this tendency in the Cloud Computing area, where competitive cloud facili-
ty providers offer a rich PaaS (Platform-as-a-Service) layer to their customers. 
We believe that new emerging industry-oriented solutions and platforms will 
possess common characteristics. In the following chapter we generalize the de-
sign issues of the UBIWARE-driven development and derive key common fea-
tures that will pervasively cross-cut future middleware architectures. 



25 
 

3 DYNAMIC ASPECTS OF INDUSTRIAL MIDDLE-
WARE ARCHITECTURES 

When we consider the industrial IT-infrastructure, several architectural re-
quirements take place. First of all, the architecture should offer easy connectivi-
ty to the existing systems through different API’s and provide flexible mecha-
nisms for data model mappings. Next, it should support sharing of component 
functionalities through well-defined, easily accessible and standardized inter-
faces. And at last it should provide a common ground for all system compo-
nents by specifying the shared vocabulary of terms and definitions of the prob-
lem domain. All the features mentioned above, should also be considered as 
dynamic or, in other words, the architecture should take into account the evolu-
tionary aspect of the system, when changes are inevitably expected but can 
hardly be predicted at the moment of the system startup. 

We identify following aspects of the architecture in question, that need to 
be fulfilled in order to meet the requirements stated above: 

- Dynamic adaptation 
- Dynamic servicing 
- Dynamic domain model sharing 

All three aspects cross-cut the architecture and have one feature in common – 
they all are dynamic (see Figure 6). By “dynamic” we mean the capability to 
change the component or system characteristics not by reprogramming, but 
rather by reconfiguring them through a well-defined interface. At the same time, 
the component itself may initiate changes, e.g. triggered by changes in other 
components or the system environment. 

By harnessing the above mentioned architectural principles, we can build 
system components that would seamlessly integrate with already existing tools 
and solutions, at the same time being ready to change their behavior in the fu-
ture. The interoperability amongst those components is guaranteed by a well-
defined shared domain model that may also grow upon the need of the envi-
ronment, where the system operates. 



26 
 

 

FIGURE 6 Aspects of the abstract system architecture 

3.1 Dynamic Adaptation Aspect 

The problem of adaptation arises from a variety of models and/or implementa-
tions constructed for the same problem domain. The models may differ in struc-
ture or in syntax. Domain models may introduce standards, or just internal sys-
tem-specific data models, but nevertheless, they are described using certain 
metamodel. In (Naumenko, Nikitin, 2005) we discuss the advantages of the se-
mantic metamodels compared to XML-oriented ones applied to the paper in-
dustry standardization effort. 

Already existing applications and components may adapt their internal 
models to a shared domain model. Common binding to a shared model allows 
easy inclusion of the components into new interoperability scenarios.  

General Adaptation Framework (GAF) (Kaykova et al., 2005) introduces 
several principles and concepts that are common for semantic adaptation pro-
cess – the notion of the semantic adapter, the differentiation between syntactic 
and semantic transformation, canonical data forms, pattern-based mapping, etc. 
The authors differentiate three major classes of resources for adaptation, those 
are: humans, devices and services. 

In Article I of this work we introduce a pattern-based approach to data 
querying, which is a particular case of data source adaptation. We build an 
adapter that uses query patterns to extract data from context-reach RDF graph. 
The idea is similar to the XSLT sheets for extracting the data from XML docu-
ments and producing the arbitrary document from the XML input given. 

To simplify the adaptation, GAF introduces a two-stage transformation 
approach, where a notion of canonical native form is used. A canonical form 
can be defined, for example as XML schema. The semantic adapter develop-
ment in this case can be as simple as XML-to-XML transformation, whereas the 
semantic transformation from the canonical XML to RDF or other semantic 
format may be predefined beforehand and done by domain experts. Thus the 
adaptation from other XML-formats would require only transforming an arbi-
trary XML to an XML canonical form. 



27 
 

Next, GAF introduces adaptation ontology – a model for semantic specifi-
cation of the transformation logic. The ontology may refer to transformation 
patterns, their variables and thus allow dynamic configuration of the adapter. 

From the industrial perspective the importance to have dynamic adaptation 
aspect in the architecture also arises from the need to tweak the systems and 
components during their lifecycle. Such tweaking of the components may, 
however, affect the business process chains, therefore building a proper dynam-
ically adjustable adapter to the component may decrease the effort towards the 
process chain rearrangement, or even preserve the existing process chain by 
hiding the internal component changes behind the adapter. 

3.2 Dynamic Servicing Aspect 

Nowadays industry is actively using web services technology in distributed 
scenarios. Web services have brought several important advantages to the in-
dustrial world – they have decoupled the implementation of the components 
from their usage. The standardized method to access advertised component 
functionality through a message-based interface has become extremely popular 
in recent years as it provides common “glue” for different programming lan-
guage worlds and communities. Service-oriented architecture targets the prob-
lem of interoperability amongst distributed applications and introduces stand-
ard languages for information exchange and interfaces’ specification. Ease of 
the interoperability amongst services reduces the efforts needed for service 
composition and integration. However, the de-facto standards for service speci-
fication (WSDL, SOAP, etc.) are still far away from automated service discovery, 
composition and enactment. They rather solve the problem on the syntactic lev-
el, thus allowing everyone to speak to each other, but not to understand.  

The simplicity of service creation does not imply the simplicity and ease of 
service consumption. On the API level “poor usability” means non-
understandable interface, which may arise from poor interface specification 
(implicit or no description) or language incompatibility (different standard is 
used). The web services world have stumbled in the automated service match-
ing challenge. We need to construct adapters in order to make external service 
API compliant with the shared domain model of an industrial environment, 
where an automated service matching and discovery would become possible. In 
terms of Semantic Web Services we need to provide an explicit semantic service 
annotation and, if needed, perform certain transformations. 

As far as the majority of web service interfaces is defined using XML mes-
saging, all the principles and techniques of GAF can be applied to construct 
adapters to web services. 

Semantic Web Services have appeared as a technology which is expected 
to provide a new level of automation to the web services world. The automated 
composition of services has been discussed for several years already and a 
number of research projects were completed aiming at the development of a 



28 
 
sufficient infrastructure and algorithms for automated service discovery, com-
position and even creation (ASG, 2004, DIP, 2004, Abhijit, 2004). The idea of dy-
namic linking of services in order to achieve complex functionality is inspired 
by fast growth of the web service infrastructure, which tends to provide new 
flexible solutions for customers. 

Below we present an abstract architecture of a software platform for se-
mantic web services provisioning, which is aimed at fulfilling a user-defined 
goal. The architecture contains user interface elements and APIs for user agents 
(Terziyan, 2005, Veijalainen, Nikitin, 2006). The abstract platform incorporates 
the functionality sufficient for: discovery of services, their composition and in-
vocation (see Figure 7). This architecture is important as it addresses the generic 
problem of dynamic composition starting from the goal specification, up to the 
process re-planning in the runtime. 

Here, Goal specification assistant – an ontology-driven GUI-tool that helps 
the user to specify his/her goal explicitly. The goal is then passed to the Seman-
tic Web service Platform. 

Semantic Web Service Platform –provides dynamic automated goal-driven 
search, composition and invocation of web services. It embodies a Dynamic 
Composition component. 

Dynamic composition – Performs semantic service composition; requires 
reasoning functionality. 

 

FIGURE 7 Abstract architecture of Semantic Web Service Platform 

Workflow enactment –a “service player” component. This component exe-
cutes composed services and achieves actual service output. 



29 
 

Platform Registry - A persistent storage of semantic and other service-
related data 

According to (ASG, 2004) the process of the service delivery consists of 
three main steps (see Figure 8). After user has defined his/her goal in a form of 
a semantic service request, the platform launches the first sub-cycle (Planning). 
The aim of planning is to discover suitable service(s) that reach user’s goal, or to 
compose available services into the complex process which can fulfill the goal 
(the platform deals only with abstract semantic service descriptions at this 
point). On the second sub-cycle (Binding), the platform starts contracting and 
negotiation process with the service provider(s) in order to fit user preferences 
stated in the goal. The negotiation is done concerning QoS parameters and re-
sults in a Service-Level Agreements (SLA). The third sub-cycle (Enactment) 
handles the invocation of services which have signed the SLAs. It also monitors 
the execution process and resolves errors and failures which may occur in exe-
cution time.  

In order not to run all the cycles every time a service is requested, the plat-
form stores service compositions. Changes in service’s annotation, will force the 
platform to reconsider all the compositions once again which might be time 
consuming due to renegotiation of the contracts already signed. 

 

FIGURE 8 Service delivery process (adopted from (ASG, 2004)) 

To make a service delivery process work, we need to have: 
- A semantic web service platform 
- A domain ontology 
- A set of services 
- A set of user-defined goals 



30 
 

In terms of the model-driven approach, the Semantic Web Service con-
struction requires a Service Metamodel (Service Ontology) and an Application 
Domain Ontology that models the domain of the discourse. The Application 
Domain Ontology, in turn, is a formalization of the Domain of Discourse given 
with the Formal Ontology Language (Jones, 1998, Rector, 2003). The Service 
Metamodel formalizes a Service Concept by means of Formal Ontology Lan-
guage (Figure 9). 

Application 
Domain 
Ontology

Domain of 
discourse

Formal 
Ontology 
Language

Service 
Concept

Service 
Ontology
(service 

metamodel)
Semantic

Web Service

 

FIGURE 9 Foundation Models for Semantic Web Services 

Article II of this work presents an approach for semantic service matching in 
agent systems and provides several hands-on methods for practical usage in 
matchmaking of service descriptions. Agent-driven dynamic service matching 
and subsequent planning are key enabling agent autonomy mechanisms. We 
believe that planning is a most important capability of an autonomous goal-
driven component, as it allows the component to dynamically search and re-
solve means to achieve its goal. Following the semantic web services approach, 
we have developed a Ontonuts technology (Article IV of this thesis) that ex-
tends the UBIWARE platform with semantic components which are more spe-
cific compared to the semantic web services. Ontonuts combine both the inter-
nal (possessed by the agent) as well as the external (provided by other sources) 
capabilities and allow the agent to dynamically define goals and build execu-
tion plans to achieve these goals. In the idealistic case the reprogramming of an 
agent should be narrowed to changing the agent goal. 

3.3 Dynamic Model Sharing Aspect 

The aspect of a shared model within the abstract architecture plays a crucial 
role for the performance of the industrial system as a whole. The model should 
possess following characteristics as expressivity (ability to express domain 
knowledge without losses), explicitness (ability to define knowledge unambig-
uously) and granularity (ability to reuse knowledge definitions and exclude 
redundant or repeated knowledge). 

A shared model should respond to the needs of the application domain. 
For example, to specify a semantic capability description, we may need to in-
troduce concepts and domain-specific constructs that affect the model as a 



31 
 
whole. Let us consider a trivial example of a simplified capability model which 
implements simple mathematical function (see Figure 10). 

y=f(x)X input Youtput  

FIGURE 10 Mathematical function as a capability 

Where ��X  and ��Y . The Y as such doesn’t say anything about its prove-
nance. We only know that it is a real number. Now, if we look from the process 
modeler perspective, we definitely take into account the function that has pro-
duced this number. We treat Y as a resulting value of the service function. So, in 
order to annotate a capability or a web service, which calculates some mathe-
matical function in terms of Inputs and Outputs, we have to define an ontologi-
cal class to specify that Y was produced by some function. Otherwise we won’t 
be able to discover such service automatically on the planning stage. This trivial 
example gives a hint of what the explicit domain modeling is. The industrial 
domain model should be precise enough, to interpret the states and operations 
uniquely. The model should guarantee the possibility to formally reason and 
match capability inputs and outputs. In the long run, the model should allow 
extensions and introduction of new concepts and definitions yet keeping the 
whole model consistent. 

3.4 Dynamics in Common 

Although the industrial IT-systems in such domains as e.g. machinery, may be 
designed to work for several decades, still the industrial environment is becom-
ing more and more agile and the appearance of new business processes within 
it can hardly be predicted for a long term. The required changes in the compo-
nents are, therefore hard to predict as well. The easiest way to keep the compo-
nent change-tolerant is to preprogram a dynamic behavior. Dynamics of a com-
ponent can be introduced not as a characteristic of the component itself, but ra-
ther as a control channel over it (see Figure 11). The dynamic configuration of a 
component in a runtime may be performed by a controlling entity that is capa-
ble of using component interfaces, restarting it, or reversing to the previous 
state. This approach is opposed to the configuration through the component’s 
own interface. Using the controlling entity to configure a component is more 
robust. If the configuration change affects heavily further operation of the com-
ponent (for example the component becomes inaccessible), then the reverse 
changes may not be possible through the component interface. However, when 
defining an abstract control entity on top of the component, we may always 
observe the state of the component even if it is not functioning properly. A con-
trolling entity may have a right to restart the component if needed.  



32 
 

 

FIGURE 11 Dynamics as a component control channel 

We consider software agents as a most suitable technology to implement the 
dynamic control channel over three main types of components – adapters, ser-
vices and domain models. We derive the component types from the aspects we 
have defined above; however, the components may include all three aspects at 
the same time. As an example, there can be a semantic adapter to the social 
network that acts as a service within the system. The adapter uses web service 
interface to provide the functionality to other system components, at the same 
time, it uses the domain model to annotate the interface, and it also works as 
configurable adapter to the social network – i.e. it may modify the ontology-
driven adaptation logic on the fly if the social network API changes. 

3.5 Summary 

IT-world is experiencing constant changes through the appearance of new tech-
nologies, approaches and visions. The amount of different programming plat-
forms and languages has grown drastically in recent decade. If to seek for a rea-
son of the appearance of new languages, mostly these languages and platforms 
are designed to simplify the construction of domain-specific applications. 

In this chapter we briefly described three key aspects of abstract software 
architecture for industry – adaptation, servicing and domain model sharing. When 
these aspects are considered within a long timeframe, the fourth cross-cutting 
common aspect of dynamics is discussed. The aspects were derived from the 
prototyping and implementation work and repeated the theoretical foundations 
declared in the early age of agent technology establishment. The aspects, how-
ever, have undergone substantial reconsideration from the industrial applicabil-
ity perspective – we enriched the understanding of these through the prism of 
new technological cycle, when a web service technology is widely accepted in 
the industrial architectures and real Semantic Web tools have become mature 
and their pros’ and contras’ are well studied. The adaptation has become a nat-
ural concept of enterprise-level architectures (e.g. Java Connector Architecture). 



33 
 

We believe that a next technological loop will tie these aspects together in-
to a unified architectural model that will address industrial problems in a uni-
form way, offering complex solutions for development of enterprise industrial 
systems. In this work we offer one possible form of such integrated approach – 
a middleware-driven architecture that combines the above mentioned aspects 
in one technological platform. We have come to the conclusion that such a mid-
dleware platform will become an enabling technology, when qualitatively new 
tools and even supporting languages will be developed. We believe that S-APL 
language, despite of its immaturity is one of the hands-on examples of future 
programming paradigm shift towards semantics-enabled dynamic goal-driven 
programming. 
 



34 
 

4 RELEVANCE TO OTHER RESEARCH 

This work intersects with a variety of techniques, methods and frameworks that 
are being actively discussed in the IT-community. The attempts to introduce 
new flexible approaches to the software design and development vary from 
using ontologies as a supporting instrument for the development (Akerman 
and Tyree, 2006), up to the composition of the adaptive software (McKinley et 
al, 2004a). In this chapter we will dedicate our attention to the mainstream ap-
proaches that address similar issues and challenges. The key research dimen-
sions we will discuss below correspond to the key aspects we have presented, 
therefore we will address work on adaptation, servicing and shared domain model-
ing within the dynamic frame. 

The adaptation aspect may refer to a large field of research work from top-
ics of software product customization and configuration (Clements and 
Northrop, 2002), up to the runtime configuration of running software, e.g. 
(Keeney at al., 2003, Oreizy et al., 1999), generative programming (Czarnecki 
and Eisenecker, 1999) and compositional adaptation (McKinley et al., 2004a, 
McKinley et al., 2004b). In (McKinley et al., 2004a) the authors identify the main 
technologies that would enable the compositional adaptation, those are: separa-
tion of concerns, computational reflection and component-based design. The 
authors state the need for a middleware support (and we fully agree with this!) 
of the compositional adaptation. The research on the software adaptation is 
mainly built around the notion of Meta-Object Protocols (Kiczales et al., 1991) 
that enable reflection, Aspect-Oriented Programming (Kiczales et al., 1997, 
Walker et al., 1999), that allows the separation of concerns and Component-
based software engineering (Heineman and Councill, 2001, Aksit, 2001). Our 
approach reuses similar principles, but rather addresses semantic component 
introspection through the well-defined component descriptions, i.e. we bring 
same problems to the unified layer of a script-like language (S-APL) but operate 
with semantic language constructs. 

In this work, however, we mainly address the topics of semantic adapta-
tion of external resources, which are indirectly discussed e.g. in (Canal et al., 
2006). We consider resource adaptation from the perspective of the interface to 



35 
 
the environment, i.e. we adapt only what is needed from the resource, we do 
not dare (or have access) to analyze the internal resource structure, as we deal 
with the functional interface of the resource, and, hence the automatic interpre-
tation of the resource logic may never be reliable. 

Within the servicing aspect we address the related work in Semantic Web 
Services domain. In August, 2007 the working group of W3C consortium pub-
lished as a recommendation the SAWSDL specification (Semantic Annotations 
for WSDL and XML Schema) (SAWSDL, 2007). The working group had been 
considering four candidate specification submissions – (WSMO, 2005), (OWL-S, 
2004), (WSDL-S, 2005) and (SWSF, 2005). All the proposed approaches aimed at 
the semantic annotation which would simplify discovery and composition of 
services. SAWSDL specification is based on the WSDL-S approach (Verma, 2007, 
Abhijit, 2004) and has become an incremental step on top of the existing web 
services standard (WSDL, 2007) by providing an extension mechanism on top of 
it. SAWSDL enriches the web service component descriptions with references to 
semantic annotations. Those annotations can be specified using a suitable for-
mal language, i.e. SAWSDL itself does not determine the languages for seman-
tic specification, but rather bridges service descriptions with the formal model. 
For example, (Martin et al, 2007) align OWL-S with the SAWSDL specification. 
The candidate models that were submitted rather deeply address the semantic 
service specification and mainly consider Semantic Web Services within the 
business process context, which is absolutely reasonable assumption with re-
spect to the aim of Semantic Web Services technology as such – to enable auto-
mated services discovery, enactment and composition. Our work does not 
compete in any manner with the above mentioned approaches; it rather com-
plements the web service technology with the extensions, e.g. smart service 
managers (agents) that operate the service. We also consider services under the 
assumption of the common middleware, i.e. we exclude P2P service mappings 
from our scope because any external resource needs to be adapted only once 
within the environment. A lot of theoretical research has been conducted about 
the composition of the services, yet the models, tools and prototypes did not 
receive much of industry support, most probably due to complexity of model-
ing. We address similar problem of composition in Ontonuts approach (Article 
IV of this work), where we use backward chaining algorithm for internal agent 
plan composition. We keep the component annotation as simple as possible. 
The plan refers to components that represent external sources – databases, ser-
vices, etc. 

In (Clements, 1994) the author discusses how domain model affects sys-
tem architecture, thus showing the tight dependency between the domain and 
the system. Within the Semantic Web wave, the domain model sharing aspect is 
deeply questioned in (Shadbolt et al, 2006) from the applied perspective of the 
Semantic Web. The authors state that a new ways for semantic data querying 
and sharing are needed, that corresponds to our vision of understanding the 
data source as a service, thus unifying the approach to composition in general 



36 
 
and applying the unified planning scheme to different problems (and distribut-
ed querying in particular).  

An approach to configurable domain-specific service development and 
composition is presented in (Marin & Lalanda, 2007). The authors take into ac-
count the importance of the domain modeling and propose a model-driven de-
velopment environment for service compositions. The approach is somewhat 
similar to our middleware-based solution, as we address the low-level devel-
opment by platform tools and decouple the application logic into the S-APL 
level, which gives higher flexibility. 

Regarding the dynamics aspect, the area of discourse is really broad and 
has been partly addressed in the adaptation-related works mentioned above in 
this section. The dynamic web services adaptability using AOP-based approach 
is discussed in (Baligand and Monfort, 2004, Ben Hmida et al., 2006). A combi-
nation of the Web Services, AOP and Agent Programming is dicussed in (Balbo 
and Monfort, 2009). These approaches are based on the existing SOA-tools and 
standards and provide practical hands-on hints on the implementation of the 
dynamic service behavior. In the approaches mostly non-functional aspects 
such as security are addressed. Our work rather complements the work men-
tioned by targeting the functional part of the servicing components and address-
ing the dynamics in goal-oriented fashion. The Gaia methodology (Wooldridge, 
2000) for agent-oriented systems design, although giving a rigorous foundation 
for development of agent systems, still provides certain assumptions, that in 
our opinion, limit the applicability of agent up to such extent, that role of an 
agent is diminished and agent as a software design pattern becomes unneces-
sary. In our opinion, the true autonomy of an agent can be reached only by in-
troducing intelligence to the agent behavior. The agent as an entity becomes 
valuable, when it has a unique instance-specific configuration that may be e.g. a 
result of learning through the experiences collected, or a goal-driven dynamic 
plan construction and validation (dynamic composition), in other words, an 
agent should obtain unique characteristics that qualitatively raises it above the 
understanding of being just a software component. 
 



37 
 

5 OVERVIEW OF THE ORIGINAL ARTICLES 

This chapter provides a short overview of the articles included in this thesis. 
One of the articles was published in a journal, other five where published and 
presented on the international conferences. 

5.1 Article 1: Querying Dynamic and Context-Sensitive Metadata 
in Semantic Web 

Nikitin S., Terziyan V., Tsaruk Y., Zharko A., Querying Dynamic and Context-
Sensitive Metadata in Semantic Web, In: V. Gorodetsky, J. Liu, and V.A. Skor-
min (Eds.): Autonomous Intelligent Systems: Agents and Data Mining, Proceed-
ings of the AIS-ADM-05, June 6-8, 2005, St. Petersburg, Russia, Springer, LNAI 
3505, pp. 200-214. 
 
This article describes an approach to construction of complex semantic context-
rich structures. The approach can be beneficial in fast development of semantic 
adapters to various resources. The patterns allow rich, yet simple transfor-
mation from the original data format, to the extensive semantic description, 
which is further utilized in various agent-driven scenarios. The reference im-
plementation utilizes the RDF language as an output semantic format. The RDF 
being generated utilizes a state-condition extension to the standard model, i.e. 
the structure of the output document is not readable for a human, therefore 
mapping the structures of input and output format would become a challenge. 
The application of patterns has allowed us to concentrate on the functional part 
of the adapter and has appeared to be a most viable solution in the long run, 
with relatively simple support and easiness of processing. 

From the industrial perspective, the approach offers a simple solution to 
the developers of semantic adapters and follows an adapt-on-demand philoso-
phy in application design and development. The article mainly targets the adap-
tation and model sharing aspects, whereas the dynamics aspect can be addressed 



38 
 
by managing a configuration of the patterns and transformation logic of the 
adapters. 

This article was written by the SmartResource project team (Industrial On-
tologies Group). Yaroslav Tsaruk has contributed to the Sections 2.1, 2.2 and 3.1 
(Joseki RDF storage). Andriy Zharko and Vagan Terziyan have contributed to 
the introduction and the editing of the final draft. The Sections 2.3 (RDQL lan-
guage), 3.2 (Applying RDQL to RscDF querying), 3.3 (Querying patterns) where 
written by the author of this thesis. 

5.2 Article 2: Service Matching in Agent Systems 

Naumenko A., Nikitin S., Terziyan V., Service Matching in Agent Systems, In: 
International Journal of Applied Intelligence, In: M.S. Kwang (Ed.), Special Is-
sue on Agent-Based Grid Computing, Vol. 25, No. 2, 2006, ISSN: 0924-669X, pp.  
223-237. 
 
This work addresses several issues of the service matching problem. We ana-
lyze the service matching algorithm of a JADE agent system and prove that it 
does not work adequately. Next we target the problem of uncertain service 
matching as users of agent system may not always specify precisely the goal 
they would like to achieve. We demonstrate several approaches to the matching 
of semantic definitions that employ distance measure in finding a closest ser-
vice to the goal specified. The approaches address hierarchy-based and facet-
based distance measure methods and show hands-on examples of distance cal-
culation. 

This work refers to the aspects of servicing and domain model sharing. We 
also address dynamics by means of agent-driven service search and invocation. 
Within the scope of this thesis, this article explores practical aspects of search, 
advertisement and matching of capabilities possessed by an autonomous entity.  

The article was written within the SmartResource project. Anton Nau-
menko has contributed to the Sections 2 and 3 – the analysis of the FIPA 
matchmaking algorithm and the taxonomy-based distance measure. Vagan Ter-
ziyan has contributed to the classification of the semantic distance measure 
functions. Section 4 (distance measure for ontology with facets) was written 
solely by the author of this thesis. A minor contribution to the ontology design 
for Section 3 as well as the final editing of the article as a whole was also done. 



39 
 
5.3 Article 3: Data Integration Solution for Paper Industry - A 

Semantic Storing, Browsing and Annotation Mechanism for 
Online Fault Data 

Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry - 
A Semantic Storing, Browsing and Annotation Mechanism for Online Fault Da-
ta, In: Proceedings of the 4th International Conference on Informatics in Control, 
Automation and Robotics (ICINCO), May 9-12, 2007, Angers, France,  INSTICC 
Press, ISBN: 978-972-8865-87-0, pp. 191-194. 
 
The article presents architecture and a pilot solution that utilizes semantic web, 
web services and agent technology to build a web-based application for paper 
machine experts that deal with online alarm and fault data. The system we have 
built, decouples the data collection and management mechanism apart of the 
expert GUI-based tool. The importance of this contribution is in practical utili-
zation of Semantic Web tools in the construction of close-to-production proto-
types. The utilization of new technology and decoupling of the semantic infor-
mation storing from the user-oriented application has significantly changed our 
understanding of the semantics and the utilization of semantic content in gen-
eral. The possibility to incrementally enrich and extend the semantic content 
provides a huge potential to the modification and improvement of the applica-
tions in the long run. 

This work addresses all three aspects (adaptation, servicing and domain mod-
el sharing) as well as dynamics in the full scale. 

The article was written within the SmartResource project. Prof. Vagan 
Terziyan and Dr. Jouni Pyötsiä have supervised the writing from the scientific 
and industrial perspectives respectively. The author of this thesis is a principal 
contributor to this article. 

5.4 Article 4: Ontonuts: Reusable Semantic Components for Mul-
ti-Agent Systems 

Nikitin S., Katasonov A., Terziyan V., Ontonuts: Reusable Semantic Compo-
nents for Multi-Agent Systems, In: R. Calinescu et al. (Eds.), Proceedings of the 
Fifth International Conference on Autonomic and Autonomous Systems (ICAS 
2009), April 21-25, 2009, Valencia, Spain, IEEE CS Press, pp. 200-207. 
 
In this paper we introduce an engine that extends the UBIWARE platform with 
the possibility to define semantic components in a declarative way. Due to the 
specifics of the platform the focus and the engine support is put on the compo-
nents that connect to data sources. The declarative definition of a component 
allows us to define new components on the fly as well as reconfigure the exist-



40 
 
ing ones. In the example given we show how a distributed query can be dynam-
ically planned using the semantic capability definitions of data sources. The 
engine developed for the platform uses backward chaining reasoning algorithm 
and builds execution plans out of available components taking into account the 
specifics of the platform language – S-APL. The language extensively uses the 
notion of containers that makes matchmaking process more complicated. This 
work also uses pattern-based definition of the component inputs and outputs, 
thus allowing free-form triple-based semantic constructs. 

The paper contributes to all the aspects discussed in this thesis. In particu-
lar, the adaptation aspect is addressed by engine-supported declarative compo-
nent definition; the servicing aspect is addressed by the possibility to externalize 
a component, i.e. to make an agent service, the domain model sharing is intrinsic 
to this work as all component definitions are semantic, as well as the ontology 
of the engine itself. The dynamics is the most prominent aspect as the compo-
nents can be easily created and/or modified on the fly either through web-
based GUI, or even generated by the agent itself. 

The approach presented in this paper offers a key functionality for the de-
velopment of middleware-supported autonomic components – a possibility to 
dynamically plan goal-driven agent activities. 

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision. Dr. Artem Katasonov has contributed 
to the Section 3 (UBIWARE platform). The author of this thesis is a principal 
contributor to this article. 

5.5 Article 5: SOFIA: Agent Scenario for Forest Industry 

Nikitin S., Terziyan V., Lappalainen M., SOFIA: Agent Scenario for For-est In-
dustry, In: Proceedings of the 12th International Conference on Enterprise In-
formation Systems (ICEIS-2010), Funchal, Madeira, Portugal, 8-12 June, 2010, pp. 
15-22. 
 
This work presents a case study and an agent scenario for the Finnish Forrest 
Industry. The motivation of this research has originated from the in-depth 
business analysis and a simulation that has proven high inefficiency of logistics 
operations in Finnish forestry sector. We have performed a technical analysis of 
the current ICT-infrastructure of harvesting and transportation subcontractors 
and have suggested architecture of the IT-platform called SOFIA that would 
address the needs of the forestry SMEs in their planning and order manage-
ment. The main targets identified by this study are – integration of the existing 
IT-systems (adaptation and domain model sharing aspects), provision of a central-
ized web-based platform (servicing aspect) and a dynamic inclusion of new 
stakeholders and new software into the platform support (aspect of dynamics 
within the adaptation). 



41 
 

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision and Dr. Minna Lappalainen has con-
tributed to the business model analysis. The author of this thesis is a principal 
contributor to this article. 

5.6 Article 6: Mastering Intelligent Clouds: Engineering Intelli-
gent Data Processing Services in the Cloud 

Nikitin S., Terziyan V., Nagy M., Mastering Intelligent Clouds: Engineering In-
telligent Data Processing Services in the Cloud, In: Proceedings of the 7th Inter-
national Conference on Informatics in Control, Automation and Robotics 
(ICINCO-2010), Funchal, Madeira, Portugal, 15-18 June, 2010, pp. 174-181. 
 
This paper offers an innovative architecture of the cloud platforms. The agent 
middleware-supported adaptation and autonomy of components can be offered 
as platform-level services of the cloud infrastructure. The paper also demon-
strates how new type of mathematical computational services may support a 
declarative service definition and even configuration. 

The work addresses the aspect of servicing within the cloud infrastructure, 
at the same time the aspect of adaptation and domain model sharing is addressed 
by offering agent-driven adapters as platform services. The domain model sharing 
aspect is also used in the declarative mathematical service model specification 
that unambiguously defines the logic of the service, not only its inputs and out-
puts. The dynamics aspect is used within the whole architecture, as all the exten-
sions suggested are agent-enabled and therefore proactive. 

This paper ties together the ideas and efforts presented in the previous ar-
ticles and offers middleware-enabled extensible cloud architecture. 

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision. Michal Nagy has contributed to the 
Section 2 (State of the Art). The author of this thesis is a principal contributor to 
this article. 



42 
 

6 CONCLUSIONS 

The main contribution of this work is alignment of practical industry-driven 
problems with theoretical foundations declared in visions of Autonomic Com-
puting, Global Understanding Environment and Agent Technology. We start 
this work with implementation of pilot industrial applications and finalize it 
with the derivation of abstract architectural aspects that conform to the visions 
mentioned. This work provides an architectural and technological prism for an 
idea–to-practice transformation. We address industrial applications develop-
ment using Semantic Web and Agent technologies within the scope of the Web 
Services and Cloud Computing trends. 

As generalization of the design outcomes we derive three key aspects: ad-
aptation, servicing and domain model sharing. We crosscut these three aspects with 
the fourth common aspect of dynamics. In our opinion, future industrial archi-
tectures will incorporate various combinations of those. The most convenient 
form to support aspect-oriented software design and development will be mid-
dleware platform solutions. The crucial role in the middleware implementation 
will play a programming language as it will determine the foundations of the 
platform as a whole. We believe that S-APL language used in the implementa-
tion part of this thesis is a good sample to consider for instrumentation of en-
terprise-level middleware platforms and languages of the future. 

As a summary, we offer an innovative architecture that combines the 
technological solution (a middleware platform) with the cloud infrastructure to 
enable a qualitatively new class of cloud software applications. These applica-
tions are tied by the common environment, where the guaranteed level of in-
teroperability can be reached, at the same time the tools and means for such 
applications development are offered by the cloud provider infrastructure on 
different layers. In such cloud eco-system we also address the importance of 
component autonomy through the goal-driven behavior which can be enabled 
when the environment provides a consistent playground for safe (error-prone) 
implementation of semantic planning and composition. 



43 
 
6.1 Answers to the research questions 

Below we provide the answers to the research questions stated in Section 1.4. 
 
Q1: Does GUN vision apply for future industrial ICT-architectures? 
 
The future industrial applications will address the challenges of interoperability, 
complex systems management and servicing in a dynamic setting. The GUN 
vision suggests a set of high-level architectural design patterns to meet these 
challenges. In order to prove the viability of the vision, we have constructed a 
set of proof-of-concept prototypes that utilize various technologies in the im-
plementation of the GUN-inspired architectural blocks – adapters, resource 
agents and agent services. When we compare GUN with other visionary ap-
proaches, it is hard to judge which particular vision suits better for industry, as 
most of the visions discussed nowadays cover complementary parts of the 
problem domain (e.g. a new Smarter Planet2 initiative from IBM stating that 
intelligence is being infused into the various systems and processes that make 
the world work). In the nutshell these visions lead to the same aspects to be tak-
en into account when designing the applications. These aspects we discuss in 
answer to the Q3. We can conclude that GUN vision as such applies well to the 
industrial problems, yet it does not give a prescriptive methodology of how to 
resolve them. It rather tells from which perspective to approach the problem 
domain in a future-proof way. 
 
Q2: Do the candidate enabling technologies meet the needs of industrial appli-
cations in the nearest future? 
 
Amongst technologies and tools available on the market at present, SOA, Agent 
Technology and Semantic Web independently from each other have proven to 
be applicable to industrial problems. . Although only SOA is truly in the current 
mainstream of the industrial ICT development, still both the Agent Technology 
and Semantic Web have taken their niche on the ICT market. The amount of 
well-supported and stable tools (both commercial and open source) for all of 
the above mentioned technologies is available and is growing.  
In this thesis we state that a wise combination of these technologies will bring a 
synergetic add-value to the industrial ICT. We also think that the technologies 
chosen are the most viable ones as they provide rigorously explored and ana-
lyzed contributions to the topics of dynamics, self-awareness, intelligence, servic-
ing and domain modeling. Yet we believe that these technologies will become 
more beneficial when they are put to a common ground, e.g. a middleware and 
a language that combines these technologies, thus enabling their simultaneous 
use. In our case studies we use a sample of such language called S-APL. We also 
extend the platform and utilize S-APL language to combine domain modeling, 
                                                 
2 ibm.com/smarterplanet 



44 
 
servicing and dynamic adaptation in development of agent-driven semantic 
components (Ontonuts) that provide a ground for planning functionality and, 
hence, a basis for development of true dynamic goal-driven agent behavior. 
 
Q3: What are the key architectural features of tools for construction of industrial 
applications? 
 
The key architectural features of future industrial applications are discussed as 
an outcome of case studies conducted. Based on the pilot implementations and 
industrial applications design studies, we derive common aspects that should 
be addressed by both the enterprise level architectural principles as well as 
within the internal component design. Those are: adaptation, servicing and do-
main model sharing. All three are cross-cut by the fourth aspect of dynamics. We 
claim that these aspects can be addressed in a best way by a middleware plat-
form tool and a respective platform language that supports the implementation 
of platform-driven components and applications. The aspects are also consid-
ered in the context of cloud computing trend that poses additional architectural 
enhancements for the middleware platform. 

6.2 Concerns 

We propose to apply several technologies beyond their current domain of ap-
plication and moreover, to combine them in new types of scenarios. Hence sev-
eral concerns about the feasibility of the approach arise. So we have to address 
both the limits of performance of the individual technologies as well as the per-
formance of the complex scenarios.  

In the agent world the criticism mostly raises the problems of agent intel-
ligence and then arguably small benefit of software agents compared to other 
software development paradigms and principles. We think that a pragmatic 
utilization of a goal-driven behavior is possible within the industrial scope 
where the “universe” is limited to the union of a finite set of domain models. 

The Semantic Web has been criticized in the direction of utopia of having 
a common vocabulary for everybody. The concept has evolved into the new 
notion of Linked Data, at the same time trying to address the problems of mod-
el-to-model adaptation, thus putting the focus on the environment-specific do-
main models that are realistic to apply even nowadays (see Article III of this 
thesis). Semantic Web usage raises the problem of in-depth alignment of all sys-
tem tools to a one common model, which can be considered as a programming 
technique or pattern that is similar to the usage of domain-specific standards. 

The practical implementation of all types of scenarios may not be efficient 
and sometimes not even feasible using the Agent Technology and Semantic 
Web only, especially when high computational performance is needed. There-
fore we put the application scope of the technology to be rather a cost efficient 
gluing solution to manage the great diversity of interoperability challenges, but 



45 
 
not a panacea from all IT-problems. We address the problems of service-level 
integration, adaptation and business process management that correspond to 
the aspects derived. 

6.3 Further Research 

Within the research framework (Hevner et al, 2004) this work is mainly based 
on the instantiation of design artifacts and practical testing of the technologies 
driven by the industrial problems. Yet, the generalization of the common archi-
tectural aspects highlights the key issues that need to be addressed more deeply 
in the future development of the middleware architecture, in particular those 
are: 

- Inter-middleware adaptation and management. This issue addresses 
the incorporation of several domain-specific middleware solutions into 
the industrial architectures, e.g. RFID-middleware, VoIP-middleware, 
etc. We will direct our future research efforts towards an inter-
middleware management, especially in the context of cloud computing. 

- Addressing the ontology evolution within the organization. This issue 
needs to be researched to ensure that an Ontology as an instrument can 
safely evolve and incorporate changes during the organization’s life 
cycle, at the same time keeping the consistency and enabling the auto-
mated goal-driven behavior of software components 
- Intelligence-as-a-Service: This issue will address the automated 
learning and proactive goal-driven planning in the context of middle-
ware-supported semantic agent environment of an organization, or in-
dustry-specific cross-organizational eco-system 
 

The purpose of this work and future research that will derive from it is to direct 
the industrial-IT development towards the practical and feasible aspects of the 
innovative IT-visions that bring industrial IT-systems to the qualitatively new 
level. 

 



46 
 
YHTEENVETO (FINNISH SUMMARY) 

Dynaamiset piirteet teollisuuden väliohjelmistoarkkitehtuureissa 
 

Teolliseen käyttöön tarkoitettujen tietojärjestelmien suunnittelu ja kehittäminen 
on yhä haastavampaa ja monimutkaisempaa. Liiketoiminnallisesti kestävin 
kustannuksin tulisi rakentaa pitkäkestoisia, varmatoimisia ja laajennettavia 
järjestelmiä, jotka säilyttävät toimintakykynsä tuotteen koko elinkaaren ajan. 

Käsiteltävien tietojen määrän kasvu ja osajärjestelmien yhä tiiviimpi 
vuorovaikutus haastavat järjestelmäkehittäjiä innovatiivisiin suunnittelu- ja 
toteutusmenetelmiin.  

Voidakseen vastata liiketoiminnasta nouseviin haasteisiin 
tietojenkäsittelyteknologian on uudistuttava laadullisesti. Tässä työssä tutkitaan 
uusia globaalisti ymmärtävän ympäristön ja autonomisen laskennan 
paradigmoja ja niiden teknologista kypsyyttä mahdollisina ratkaisuina 
teollisuuden tulevaisuuden haasteisiin. 

Useita konkreettisia käyttötapauksia analysoimalla olemme tunnistaneet 
useita piirteitä, jotka ovat mielestämme kriittisiä tulevissa teollisuuden 
tietojärjestelmissä. Näitä ovat teollisessa toimintaympäristössä olevien 
heterogeenisten resurssien adaptaatio, palveluorientoituneet ohjelmistot 
avoimessa toimintaympäristössä ja paikallisten tietomallien jakaminen ja 
yhteensovittaminen eri sovellusalueiden kesken. Kaikkia näitä piirteitä on 
käsiteltävä dynaamisina, koska teollisilla sovelluksilla on pitkä elinkaari, jonka 
aikana ympäristö väistämättä muuttuu ennakoimattomalla tavalla. 

Vastataksemme teollisuuden vaateisiin olemme yhdistäneet kolme erillistä 
teknologiaa, semanttisen verkon, agenttiteknologian ja verkkopalvelut 
yhtenäiseksi väliohjelmistoksi. Kehitetty innovatiivinen alusta, UBIWARE, 
tukee S-APL kieltä, joka yhdistää semanttisen päättelyn, agenttien 
kommunikaation ja palveluarkkitehtuurin (SOA). Erityisesti agenttien 
toiminnalliset kyvykkyydet on kapseloitu semanttisiksi komponenteiksi, joiden 
avulla agenttiyhteisö voi suunnitella ja koordinoida toimintaansa.  

Valitun lähestymistavan toteutettavuutta ja laajennettavuutta on testattu 
kehitetyn alustan avulla usealle teollisuuden motivoimalle 
käyttötapausskenaariolle aina semanttisesti tuettuun pilvilaskenta-
arkkitehtuuriin saakka. 
 



47 
 
REFERENCES 

Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, Kunal Verma, Meteor-s 
web service annotation framework, Proceedings of the 13th international 
conference on World Wide Web, May 17-20, 2004, New York, NY, USA  
doi:10.1145/988672.988747 

 
Aksit, M. (ed.), Software Architectures and Component Technology: The State 

of the Art in Research and Practice, Kluwer Academic Publishers, 2001. 
 
Akerman, A., Tyree, J., Using ontology to support development of software 

architectures. IBM Systems Journal 45(4), 813–825 (2006) 
 
ASG - Adaptive Services Grid, 6th Framework Programme project funded by 

the European Commission, 2004-2007, http://asg-platform.org/ 
 
Balbo, F., Monfort, V., Improving Web Services Adaptability Thanks to a 

Synergy between Aspect Programming and a Multi-agent Middleware, In: 
IEEE/WIC/ACM International Joint Conference on Web Intelligence and 
Intelligent Agent Technology, vol. 1, pp. 422-425, 2009. 

 
Baligand, F., Monfort, V., A Concrete Solution for Web Services Adaptability 

using Policies and Aspects, In Proc. of the International Conference on 
Service-oriented Computing, 2004. 

 
Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The Semantic Web, Scientific 

American, Vol. 284, No. 5, pp. 34-43. 
 
Ben Hmida, M., Tomaz Feraz, R. and Monfort, V., Applying AOP concepts to 

increase Web Service Flexibility, in JDIM journal, ISSN 0972-7272, Vol.4 
Iss.1 (2006). 

 
Canal, C., Murillo, J. M. and Poizat, P., Software Adaptation, L’Objet., 12(1):9–31, 
2006. Special Issue on Software Adaptation. 
 
Clements, P., From Domain Models to Architectures, USC Center for 

Engineering, Focused Workshop on Software Architectures, June 1994. 
 
Clements, P., Northrop, L., Software Product Lines - Practices and Patterns, 

Addison-Wesley, 2002. 
 
Czarnecki, K. and Eisenecker, U., Generative Programming: Methods, 

Techniques and Applications, Addison-Wesley, 1999. 
 



48 
 
DIP-Data, Information, and Process Integration with Semantic Web Services, 

Integrated FP6 Project, EU's IST programme, 2004-2006, 
http://dip.semanticweb.org/ 

 
Genesereth, M.R., Ketchpel, S.P., Software Agents, Communications of the 

ACM 37(7), pp. 48-53., 1994. 
 
Heineman, G., and Councill, W., Component-based Software Engineering, 

Putting the Pieces Together. Addison Wesley, 2001 
 
Jennings, N., Wooldridge, M., Software agents, IEE Review , vol.42, no.1, pp.17-

20, 18 Jan 1996, doi: 10.1049/ir:19960101 
 
Jennings, N.R., Wooldridge, M., (Eds.), Agent Technology: Foundations, 

Applications and Markets, Springer, Berlin, 1998. 
 
Jones, D. M., Bench-Capon, T. J. M., Visser, P. R. S., Methodologies for Ontology 

Development., Proceedings IT&KNOWs, Budapest, 1998. 
 
Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V., Zharko, 

A., General Adaption Framework: Enabling Interoperability for Industrial 
Web Resources, In:  International Journal on Semantic Web and 
Information Systems, Idea Group, ISSN: 1552-6283, Vol. 1, No. 3, July-
September 2005, pp.31-63. 

 
Katasonov, A., Terziyan, V., SmartResource Platform and Semantic Agent 

Programming Language (S-APL), In: P. Petta et al. (Eds.), Proceedings of 
the 5-th German Conference on Multi-Agent System Technologies 
(MATES’07), 24-26 September, 2007, Leipzig, Germany, Springer, LNAI 
4687 pp. 25-36. 

 
Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V., Smart 

Semantic Middleware for the Internet of Things, In: Proceedings of the 5-
th International Conference on Informatics in Control, Automation and 
Robotics, 11-15 May, 2008, Funchal, Madeira, Portugal, ISBN: 978-989-
8111-30-2, Volume ICSO, pp. 169-178. 

 
Katasonov, A., Terziyan, V., Semantic Agent Programming Language (S-APL): 

A Middleware Platform for the Semantic Web, In: Proceedings of the 
Second IEEE International Conference on Semantic Computing (ICSC-
2008) / International Workshop on Middleware for the Semantic Web, 
August 4-7, 2008, Santa Clara, CA, USA, IEEE CS Press, pp. 504-511. 
doi:10.1109/ICSC.2008.82 

 



49 
 
Keeney, J. and Cahill, V., Chisel: A policy-driven, context-aware, dynamic 

adaptation framework, in Proceedings of IEEE 4th International 
Workshop on Policies for Distributed Systems and Networks, (Lake Como, 
Italy), p. 3, June 2003. 

 
Kephart, J. O. and Chess, D. M. (2003) The vision of autonomic computing, IEEE 

Computer, Vol. 36, No. 1, pp. 41-50 
 
Kiczales, G., des Rivi`eres, J. and Bobrow, D.G., The Art of Metaobject Protocols, 

MIT Press, 1991. 
 
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira, C., Lopes, J., 

Loingtier, M. and Irwin, J., Aspect-oriented programming, in Proceedings 
of the European Conference on Object-Oriented Programming (ECOOP), 
Springer-Verlag LNCS 1241, June 1997. 

 
Lappalainen, M. (2009) Kotimaisen puunhankinnan tulevaisuuden 

liiketoimintamallit –tutkimushanke. Loppuraportti., University of 
Jyväskylä, School of Business and Economics., Working paper No. 
355/2009. 

 
March, S. and Smith, G., Design and Natural Science Research on Information 

Technology, Decision Support Systems, 15 (1995), 251–266. 
 
Marin, C., Lalanda, P., Docosoc - domain configurable service-oriented 

computing, In: Proceedings of 5th IEEE International Conference on 
Services (SCC'07), July 2007, pp. 52–59 

 
Martin, D., Paolucci, M., and Wagner, M., Towards Semantic Annotations of 

Web Services: OWL-S from the SAWSDL Perspective. In OWL-S 
Experiences and Future Developments Workshop at ESWC 2007, June 
2007, Innsbruck, Austria 

 
McKinley, P. K., Sadjadi, S.M., Kasten, E. P., and Cheng, B. H. C., Composing 

adaptive software, IEEE Computer, vol. 37, no. 7, pp. 56-64, 2004. 
 
McKinley, P., Sadjadi, S., Kasten, E., Cheng, B., A Taxonomy of Compositional 

Adaptation, Technical Report, MSU-CSE-04-17, Department of Computer 
Science and Engineering, Michigan State University, East Lansing, 
Michigan, 2004. 

 
Naumenko, A., Nikitin, S., Terziyan, V., Zharko, A., Strategic Industrial 

Alliances in Paper Industry: XML- vs. Ontology-Based Integration 
Platforms, In: The Learning Organization, Special Issue on: Semantic and 



50 
 

Social Aspects of Learning in Organizations, Emerald Publishers, ISSN: 
0969-6474, 2005, Vol. 12, No. 5, pp. 492-514. 

 
Nwana, H. S., Software Agents: An Overview, Knowledge Engineering Review, 

11(3), 1996. 
 
Odell, J. ed., Agent Technology, OMG, green paper produced by the OMG 

Agent Working Group, 2000 
 
Oreizy, P., Gorlick, M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, 

N., Quilici, A., Rosenblum, D.S., Wolf, A.L., An Architecture-Based 
Approach to Self-Adaptive Software, IEEE Intelligent Systems, v.14 n.3, 
p.54-62, May 1999, doi:10.1109/5254.769885 

 
OWL-S: Semantic Markup for Web Services, W3C Member Submission, 22 

November 2004, http://www.w3.org/Submission/OWL-S/ 
 
Rector, A., Modularisation of Domain Ontologies Implemented in Description 

Logics and related formalisms including OWL, Proc. K-CAP (Knowledge 
Capture), 2003 

 
SAWSDL – Semantic Annotations for WSDL and XML Schema, W3C 

Recommendation, 28 August 2007, http://www.w3.org/TR/sawsdl/ 
 
SCOMA – Scientific Computing and Optimization in Multidisciplinary 

Applications , Tekes project, 2005-2009, http://www.mit.jyu.fi/scoma/ 
 
Shadbolt, N., Hall, W. and Berners-Lee, T., The Semantic Web revisited, IEEE 

Intelligent Systems, pp. 96–101, May-June 2006. 
 
SWSF: Semantic Web Services Framework Overview, W3C Member Submission 

9 September 2005, http://www.w3.org/Submission/SWSF/ 
 
Terziyan, V., Semantic Web Services for Smart Devices in a Global 

Understanding Environment, In: R. Meersman and Z. Tari (eds.), On the 
Move to Meaningful Internet Systems 2003: OTM 2003 Workshops, 
Lecture Notes in Computer Science, Vol. 2889, Springer-Verlag, 2003, 
pp.279-291. 

 
Terziyan, V., Semantic Web Services for Smart Devices Based on Mobile Agents, 

In: International Journal of Intelligent Information Technologies, Vol. 1, 
No. 2, Idea Group, pp. 43-55, 2005. 

 



51 
 
  Terziyan, V. (Ed.), SmartResource Project Final Report, Technical Report (final 

report), SmartResource Tekes Project, Agora Center, University of 
Jyvaskyla, 2007. 

 
Terziyan, V., Nikitin, S., Nagy, M., Khriyenko, O., Kesämiemi, J., Cochez, M., 

Pulkkis, A., UBIWARE Platform Prototype v. 3.0, Technical Report 
(Deliverable D3.3), UBIWARE Tekes Project, Agora Center, University of 
Jyvaskyla, August 2010, 45 pp. 

 
Veijalainen, J., Nikitin, S., Tormala, V., Ontology-based Semantic Web Service 

platform in Mobile Environments, pp. 83, 7th International Conference on 
Mobile Data Management (MDM'06), 2006  
DOI: http://doi.ieeecomputersociety.org/10.1109/MDM.2006.119 

 
Verma, K. and Sheth, A., Semantically Annotating a Web Service, IEEE Internet 

Computing 11, 2 (Mar. 2007), 83-85. 
DOI=http://dx.doi.org/10.1109/MIC.2007.48 

 
Vesterinen, M., Kotimaisen puunhankinnan tulevaisuuden liiketoimintamallit. 

In edition Niemelä, T. et al. Puheenvuoroja yrittäjyydestä maaseudulla., 
University of Jyväskylä, School of Business and Economics, Publications 
No: 152/2005, pp. 84-100, 2005. 

 
Väätäinen, K., Lappalainen, M., Asikainen, A. and Anttila, P., 2008, Kohti 

kustannustehokkaampaa puunkorjuuta – puunkorjuuyrittäjän uusien 
toimintamallien simulointi., Finnish Forest Research Institute. Working 
Papers No 73. 

 
Walker, R. J., Baniassad, E. L. A. and Murphy, G. C., An initial assessment of 

aspect-oriented programming, in International Conference on Software 
Engineering, pp. 120–130, 1999. 

 
Weiser, M., Ubiquitous computing, IEEE Computer, vol. 26, pp. 71–72, October 

1993. 
 
Wooldridge, M., Jennings, N. R., 1995, Intelligent agents: theory and practice. 

The Knowledge Engineering Review, 10, pp 115-152 
doi:10.1017/S0269888900008122 

 
Wooldridge, M., Jennings, N. R. and Kinny, D., 2000, The Gaia Methodology for 

Agent-Oriented Analysis and Design. Autonomous Agents and Multi-
Agent Systems 3, 3 (Sep. 2000), 285-312. 
DOI=http://dx.doi.org/10.1023/A:1010071910869 

 



52 
 
WSDL - Web Services Description Language, Version 2.0 Part 0: Primer, W3C 

Recommendation, 26 June 2007, http://www.w3.org/TR/wsdl20-primer 
 
WSDL-S - Web Service Semantics, W3C Member Submission, 7 November 2005, 

http://www.w3.org/Submission/WSDL-S/ 
 
WSMO - Web Service Modeling Ontology Primer, W3C Member Submission 3 

June 2005, http://www.w3.org/Submission/WSMO-primer/ 
 



 
 
 
 
 
 

IV   
 

       ONTONUTS: REUSABLE SEMANTIC 
         COMPONENTS FOR MULTI-AGENT SYSTEMS 

 
 

By 
 

Sergiy Nikitin, Artem Katasonov and Vagan Terziyan 2009 
R. Calinescu et al. (Eds.), 

Proceedings of the Fifth International Conference 
 on Autonomic and Autonomous Systems (ICAS 2009), April 21-25, 2009,  

Valencia, Spain, IEEE CS Press, pp. 200-207 
 
 

© 2009 IEEE. Reprinted with permission, from Proceedings of the Fifth In-
ternational Conference on Autonomic and Autonomous Systems (ICAS 2009), 
ONTONUTS: REUSABLE SEMANTIC COMPONENTS FOR MULTI-AGENT 

SYSTEMS, Sergiy Nikitin, Artem Katasonov and Vagan Terziyan 
 
 

This material is posted here with permission of the IEEE. Such permission of 
the IEEE does not in any way imply IEEE endorsement of any of the [University 

of Jyäskylä]'s products or services.  
Internal or personal  use of this material is permitted.  However, permission 

to reprint/republish this material for advertising or promotional purposes or 
for creating new collective works for resale or redistribution must be obtained 

from the IEEE by writing to pubs-permissions@ieee.org. 
By choosing to view this material, you agree to all provisions of the copyright 

laws protecting it. 



Ontonuts: Reusable semantic components for multi-agent systems 
 
 

Sergiy Nikitin, Artem Katasonov and Vagan Terziyan 
Industrial Ontologies Group, University of Jyväskylä 

{sergiy.nikitin , artem.katasonov , vagan.terziyan}@jyu.fi 
 

 
Abstract 

 
The volumes of data in information systems are 

growing drastically. The systems become increasingly 
complex in trying to handle heterogeneity of ubiquitous 
components, standards, data formats, etc. According to 
the vision of Autonomic Computing, the complexity can 
be handled by introducing self-manageable 
components able to “run themselves.” Agent 
Technology fits this vision, whereas interoperability 
among autonomic components can be tackled by 
Semantic Technologies. The problem of efficient 
heterogeneous data sharing, exchange and reuse 
within such systems plays a key role. We present an 
approach of constructing semantic capabilities (self-
descriptive functional components) for software agents 
and a mechanism for distributed data management that 
applies these capabilities to build various industrial 
business intelligence systems. 
 
1. Introduction 
 

The volumes of data in information systems are 
growing drastically. The systems become increasingly 
complex in trying to handle heterogeneity of ubiquitous 
components, standards, data formats, etc. According to 
the vision of Autonomic Computing [1], the complexity 
of information systems can be handled by introducing 
self-manageable components, able to “run themselves.” 
In our opinion, Agent Technology fits this vision very 
well. Whereas the interoperability among autonomic 
components (agents) can be tackled by Semantic 
Technologies, efficient data sharing, exchange and reuse 
within such systems still play key roles. Semantic agent-
driven systems cannot fully substitute e.g. high-
performance industrial data storage, nor can they avoid 
physical distribution of data and services. In attempt to 
resolve the challenges stated, we are developing an 
agent platform of a new generation – called UBIWARE 
[2], [3]. Efficient data sharing, exchange and reuse 
determine the usability of the UBIWARE platform and 
its technological success in industry. In this paper we 
introduce a mechanism for distributed data management 

within the UBIWARE platform that allows platform 
users to build distributed industrial business solutions. 

The paper is organized in the following way. In the 
next section, we present an industrial scenario for 
distributed querying and discuss problems that call for 
new ICT solutions. In Section 3, we briefly describe 
the UBIWARE platform. The fourth section presents a 
concept of semantic components called Ontonuts and 
shows how they are applied to the scenario of 
distributed querying. The discussion on related work is 
presented in Section 5. We conclude and propose 
future work in Section 6. 

 
2. Distributed Querying Scenario in Paper 
Industry 

 
The scenario we have selected is based on the real 

software infrastructure from process industry. There is 
a complex production line (e.g. paper producing 
machine) which is served by a number of control and 
diagnostic systems. The measurements taken from 
sensors are stored in the Alarm History Database. The 
Diary Database contains records about critical alarms 
and comments from maintenance workers. There are 
also comments on actions taken. The Scheduled 
Performance Monitoring database stores results of the 
analysis that is performed daily. The analysis includes 
all nodes with performance indices that indicate the 
condition of the node (Figure 1).  

As an example, suppose a serious fault happened in 
the paper machine that has led to the subsequent alarm 
and maintenance actions. All events are recorded in the 
respective databases. However, in order to analyze the 
preceding events, e.g. during the week before the fault, 
an expert may need to query portions of data from all 
the databases, then change filtering parameters and 
query databases again and again. An expert may have 
interfaces to all the databases separately; however, the 
expert’s decision will be stored (if it would be at all) to 
a separate file or database. 

2009 Fifth International Conference on Autonomic and Autonomous Systems

978-0-7695-3584-5/09 $25.00 © 2009 IEEE
DOI 10.1109/ICAS.2009.34

200



Experts’
diary

Scheduled 
Performance 
Monitoring

Alarm 
History DB

 
Figure 1. The IT-infrastructure of the paper 

machine 

Within the current IT infrastructure, it is hard to 
find previously made expert decisions on an immediate 
fault situation. Thus there is no integrated view on all 
the contents of the databases, nor on other sources of 
information about the paper machine operation. In the 
Semantic Web domain, it is called a proof when any 
knowledge is connected with the rules and facts that 
were used to infer it. The problem of an integrated 
view on the information is important in the industrial 
automation particularly because we perceive that many 
experienced experts in a majority of companies are 
going to retire during next 5-10 years without a proper 
knowledge transfer to new experts. On the other hand, 
semantic linking of the information will be in a great 
demand when the standardization efforts taken in 
companies will go beyond the companies’ boundaries 
and will call for a unified mechanism of distributed 
querying for knowledge and expertise exchange (see 
Figure 2). 

 

Experts’
diary

Scheduled 
Performance 
Monitoring

Alarm 
History DB

Standard-based
domain ontology

provider 1

Providers of
IT solutionsFactory 1

provider 2

provider n

Experts’
diary

Scheduled 
Performance 

Monitoring

Alarm 
History DB

Factory 2

Experts’
diary

Scheduled 
Performance 
Monitoring

Alarm 
History DB

Factory n

 
Figure 2. Inter-company standardization in 

paper industry 

In the ideal case, companies would be able to sell 
information and analytic services to each other 
seamlessly with little or no programming effort. The 
services sold would be easily integrated into the 
company environment with the guaranteed 
compatibility. Furthermore, service consumers 
(factories) could become service providers too. 
Industry might share data and use it as learning 

samples for analytic services. The role of providers of 
IT solutions would shift from the integration aspects to 
those of intelligence. We, therefore, foresee the need 
for tools and capabilities in the UBIWARE platform 
that will simplify distributed querying and information 
integration. 

 
3. UBIWARE platform 
 

In this section we briefly introduce the UBIWARE 
agent-driven middleware platform, its agent engine, 
and S-APL – a Semantic Agent Programming 
Language for programming of software agents within 
the platform. 
 
3.1. UBIWARE Platform Architecture 
 

Central to the core platform is the architecture of a 
UBIWARE agent, depicted in Figure 3.  

 
Figure 3. UBIWARE Agent 

There is a Live behavior engine implemented in 
Java, a declarative middle layer, and a set of Java 
components, known as Reusable Atomic Behaviors 
(RABs). RABs can be considered sensors and 
actuators, i.e. components sensing or affecting the 
agent’s environment, but are not restricted these. A 
RAB also can be a reasoner (data processor) if some of 
the logic needed is not efficient or possible to realize 
with the S-APL means, or if one wants to enable an 
agent to do some other kind of reasoning beyond the 
rule-based one. 

The UBIWARE agent architecture implies that a 
particular UBIWARE-based software application will 
consist of a set of S-APL documents (data and 

201



behavior models) and a set of specific atomic 
behaviors needed for this particular application. Since 
reusability is an important UBIWARE concern, it is 
reasonable that the UBIWARE platform provides some 
of those ready-made. Therefore, the UBIWARE 
platform, as such, can be seen as consisting of the 
following three elements: 

- The Live behavior engine 
- A set of “standard” S-APL models 
- A set of “standard” RABs 

The extensions to the platform are exactly some sets 
of such “standard” S-APL models and RABs that can 
be used by the developers to embed into their 
applications certain UBIWARE features. 

 
3.2. S-APL platform language 
 

In the UBIWARE Platform, behavior models are 
presented in a high-level, rule-based language, the 
Semantic Agent Programming Language (S-APL). S-
APL is based on the RDF (http://www.w3.org/TR/ 
1999/REC-rdf-syntax-19990222/) data model, i.e. the 
whole document can be seen as a set of subject-
predicate-object triples. A behavior model specifies the 
initial beliefs (including knowledge, goals, 
commitments, and behavioral rules) of the agent in the 
role. Commitments and behavioral rules normally lead 
to adding/removing beliefs and executing various 
RABs. The notation that is selected for use in S-APL is 
a subset of Notation3 (http://www.w3.org/Design 
Issues/Notation3.html). Notation3 was proposed by 
Tim Berners-Lee as an alternative to the dominant 
RDF/XML notation. There are namespaces in S-APL; 
in particular, the “sapl” namespace is used for the 
resources that are defined in the language’s ontology. 
The default namespace is used for all the other 
resources in this paper. 

In S-APL every statement is a belief of the agent. 
Simple belief would look like: 

:John :Loves :Mary 

Whereas a belief in a context is defined as: 
{:John :Loves :Mary}  
:since {:Year :Is 2005} 

The unconditional commitment to an action (e.g. 
calling an RAB) is defined as follows: 

{sapl:I sapl:do java:ubiware.shared.  
MessageSenderBehavior} 
sapl:configuredAs { 
   p:receiver sapl:is :John. 
   p:content sapl:is “bla bla”. 
   sapl:Success sapl:add { 

:John :was :notified }} 

When the agent’s engine finds a belief with the 
“java:” prefix in a general context G (active memory), 
it executes the specified action (RAB). 

The sequential plan can be defined as: 
{ sapl:I sapl:do ...} 

sapl:configuredAs{ ...  
  sapl:Success sapl:add { 
   { sapl:I sapl:do ...}  
    sapl:configuredAs {...} } } 

meaning that, upon successful execution of the first 
commitment, the enclosed one should be added. 

However, the central construct of the language is 
the conditional commitment: 

{:John :Loves :Mary} =>  
{{sapl:I sapl:do java:SendMail}  
sapl:configuredAs {...}} 

The interpretation is straightforward: Upon 
occurrence of a belief that satisfies the condition stated 
in the subject, the contents of the object are added to 
agent’s general context G. Another key construct is 
matching with variables (querying). The commitment 
for querying is defined as follows:  

{{:John :Loves ?x} :accordingTo ?y.  
 ?x sapl:is :Girl 
} => 
{sapl:I sapl:do java:SendMail}   
sapl:configuredAs { 
p:receiver sapl:is ?x ...} 

which can be interpreted, then, as “If John loves ?x, 
according to someone’s opinion, and ?x is a girl, then 
send an email to ?x”. 

Yet one more construct is a behavior rule: 
{{...} => {...}} sapl:is sapl:Rule 

The behavior rule differs from the commitment. 
Whereas a commitment is removed from the agent’s 
beliefs upon execution, the rule stays and executes in 
agent’s beliefs permanently. It must be removed 
explicitly. 

In this section we have briefly introduced the core 
concepts of the UBIWARE. In the next section, we 
present an extension done beyond the core that makes 
an important step towards practical applicability of the 
platform in industrial applications. 
 
4. Ontonuts Concept 
 

We introduce here the concept of Ontonut to 
facilitate the presentation of modular scripts and plans 
within the UBIWARE platform. Ontonut is a semantic 
software component. Instances of the Ontonut concept 
generally represent a capability with known input and 
expected output. We then extend Ontonuts to solve the 
problem of distributed querying discussed in Section 2 
of this paper. 

 
4.1. Ontonuts in a nutshell 

 
The Ontonuts technology is implemented as a 
combination of an S-APL script and RABs and, hence, 
can be dynamically added, removed or configured. 
Ontonuts allow componentization of S-APL code by 
introducing a semantic annotation to it. Such annotated 

202



pieces of code are called capabilities (analog of 
function in procedural programming). The capabilities 
have S-APL descriptions with explicitly defined 
preconditions and effects: 

Ontonut: {script, precondition, effect} 

The capabilities can be dynamically combined 
further into plans and put into execution by the 
Ontonuts engine, which allows us to automatically 
compose the agent’s actions to achieve a specified 
goal. The script part of the capability in general has an 
S-APL code that produces the effect once the 
precondition is satisfied. The whole data model of the 
UBIWARE platform is triple-based; therefore goals, 
preconditions and effects are defined as triple sets in S-
APL. For example, we have an initial data set {A A A}, 
a goal G1 defined as {C C C}, and we have two 
ontonuts O1 and O2, defined as: 

O1 rdf:type :Ontonut 
O1 ont:precondition {A A A} 
O1 ont:effect {B B B} 
O1 ont:script {{A A A}=>... =>{B B B}} 
O2 rdf:type :Ontonut 
O2 ont:precondition {B B B} 
O2 ont:effect {C C C} 
O2 ont:script {{B B B}=>...=>{C C C}} 

The appearance of the goal G1 will activate the 
Ontonuts engine that will match the G1 against 
available effects and then apply planning, which will 
result in an execution plan: O1=>O2=>G1. 

Ontonuts reuse available scripts and RABs without 
any modifications to the platform. Architecturally, the 
Ontonuts engine consists of three main components: 
the Triggering Rule, Action Planner and Plan Executor 
(Figure 4). The Ontonuts Triggering Rule is a starting 
point of the engine work. The Triggering Rule is a 
MetaRule, i.e. it runs before other rules and 
commitments. On each iteration of the Live behavior, 
the rule checks whether there are any Ontonut calls to 
be handled and passes the activity to the Action 
Planner, which provides an execution plan for the Plan 
Executor. 

Ontonut capabilities may include interaction with 
other agents or external resources, such as databases, 
files or web services. On the other hand, capabilities 
can perform local actions and do some computations 
on the data, e.g. statistical analysis. 
 
4.2. Invoking Ontonuts 

 
The Ontonuts engine supports three types of Ontonut 
calls: 

- Explicit 
- Goal-based 
- Pattern-based 

Web 
Service

CSV file

RDBMS

A
ge

nt
 B

el
ie

fs
(S

-A
P

L 
co

de
)

SQLReader
TextTableReader

ExcelReader
…

MessageSender
MessageReceiver

Ontonuts Role Script

Business Logic Script

R
eu

sa
bl

e 
A

to
m

ic
 

B
eh

av
io

rs
 

(J
av

a 
co

de
)

Excel 
sheet

…

Ontonut capability

GoalAnalyser
ActionPlanner

Action Planner

Ontonuts triggering rule

Plan Executor

Agent Services

External resources  
Figure 4. Architecture of Ontonuts 

The Explicit call to Ontonut is defined as: 
{sapl:I sapl:do <ontonutid>}  
  sapl:configuredAs  
{p:precondition sapl:is {<Input 
statements>}}. 

The result of the call is added to the G. 
The Goal-based call is initiated by adding the 

following goal definition to the G:  
sapl:I ont:haveGoal :id. 
:id ont:goalDef{<goal statements>} 
:id ont:initData {<initial data>}  

The Ontonuts engine runs the planner to check if 
the plan can be produced for the goal using the initial 
data provided. 

The third type – a Pattern-based call is triggered 
when the content of the active commitment in its left 
part matches the effect pattern of at least one Ontonut:  

{A A ?a} => {<some action with ?a>}. 

This call can be considered an abbreviated syntax 
for goal definition when the left part of the 
commitment is considered a goal. The Ontonuts engine 
intercepts such a commitment before it executes, 
removes it from G, and then uses the left part 
information to perform planning and execution. 
However, this type of call does not specify the initial 
data set as the second type of call does. Such goal 
definition is possible for those Ontonuts, for which 
precondition is always true within the goal specified. 
For example, an Ontonut can perform queries over a 
certain database and use a (sub)pattern of the goal to 
produce a query and execute it. After the goal is 

203



achieved, and, hence, the variable values in the left part 
of the commitment can be assigned, the Ontonuts 
engine produces the result (the right part) of the 
commitment using the variable values. This type of 
Ontonuts targets mainly the task of distributed 
querying that is discussed in Section 4.6. 

 
4.3. Planning the execution 

 
The planning is organized as a goal-driven process. 

We apply a backward chaining algorithm to build an 
action plan, which may involve other Ontonuts and 
Rules. The planner performs a semantic inference over 
the set of initial data before the actual plan generation 
starts. Therefore, the semantic annotations of Ontonuts, 
as well as the corresponding domain ontology, are key 
success factors of the Ontonuts-based applications. The 
planner acts in a straightforward way – it matches the 
goal against Ontonut annotations by subtracting 
(operation over sets) these annotations from the goal. If 
a goal can be fulfilled by the available initial data and 
Ontonuts, the planner starts to check whether the 
preconditions of these Ontonuts can be fulfilled. If the 
preconditions may need to use other Ontonuts, they are 
checked as well. In such an iterative manner, the 
planner builds a solution tree. The planner then 
chooses the preferable solution using different criteria, 
e.g. utility-based selection. 

 
4.4. Handling the execution 

 
The Ontonuts engine does not execute the plan as a 

whole; rather, it generates a plan that is run by the 
agent’s Live behavior engine. However, the plan is not 
straightforward: It includes additional handlers that 
allow the Ontonuts engine to observe the state of the 
execution and react if the execution cannot be 
successfully completed. The plan is sequential and 
therefore has steps or control points. At each control 
point, the plan produces the statements that represent 
the status of the execution. These statements are 
collected into a container that is attached to the plan: 

:planid ont:execStatus { 
 :01 ont:status ont:Success. 
 … 
 :nn ont:status ont:NoResponse.}. 

The engine then can use the status information for 
re-planning if the current plan did not succeed. 

There are two classes of Ontonuts executed in 
different ways: 

- Self-running 
- Engine-running 
The latter type has a built-in script that runs in the 

agent’s Live behavior as an independent code and 
returns the result to the G container. Meanwhile, the 

former is a description that is recognized and executed 
by the Ontonuts engine. The engine-running Ontonut 
calls are presented in the plan as explicit (see Section 
4.2). In the current version, the engine supports one 
type of engine-running Ontonuts that simplify access 
to the databases. 

 
4.5. Distributed querying with Ontonuts 

 
There are two main viewpoints towards distributed 

querying in the UBIWARE: adapter-based and service-
based. The former tackles the adaptation of the data 
sources that are external to the platform (databases, 
files, web services, etc.), while the latter deals with the 
agent-to-agent querying. Nevertheless, both target the 
same goal: to make distributed querying logic 
transparent (simple) to the UBIWARE agent (see 
Figure 5).  

 
Figure 5. Distributed querying in UBIWARE 

The agent-to-agent querying follows the servicing 
paradigm and, in particular, the data servicing 
discussed in [4]. The adaptation of external sources 
(e.g. RDF-based adaptation is discussed in [5]) 
resolves the problem of connectivity and interaction 
with those resources that are external to the platform, 
i.e. communicating with them in their native language. 

However, from the business logic developer’s point 
of view, any remote resource should be transparent in 
order to keep business logic script as modular and clear 
as possible. Ontonuts become the wrapper, adapter and 
connector in one place. 

In a distributed querying task, every Ontonut is an 
interface to the data source that has an associated data 
query pattern (effect) it replies to. The Ontonuts engine 
introduces an extension for the data source-based 
Ontonuts. The extension allows for the Ontonut 
developer to not implement all the RAB calls and S-
APL transformations from the scratch, but rather to 
define a description of the data source and 

204



transformation mappings. We call this subclass of 
Engine-running Ontonuts Donuts (Database Ontonuts). 
The engine distinguishes the Donuts and treats them in 
a different way. The user-defined query can match 
several Donuts; therefore, the Triggering Rule invokes 
Action Planner. The Action Planner distinguishes sub-
queries from the initial query and produces a 
distributed query plan. The plan is then passed to the 
Plan Executor. The executor handles the intermediate 
results of sub-queries and modifies subsequent sub-
queries accordingly. 

The structure of the Donuts is defined by Donuts 
Ontology (see Figure 6). 

precondition
Ontonut

effect

mapping

Donut

SQLQueryBase

s
hasURL

DataSource

hasDriver
RDBDataSource

hasUsername
hasPassword

s

script

dataSource

 
Figure 6. A fragment of Donuts ontology 

The fragment of the ontology above describes the 
root classes Ontonut and DataSource, as well as their 
extensions for connectivity with relational databases 
(Donut, RDBDataSource). Similarly, other types of 
extensions will include type-specific facets in their 
descriptions. 

The Plan Executor uses data source descriptions for 
fetching the sub-queries and applies mapping 
definitions to transform sub-query results into the 
semantic form. 

 
4.6. An illustrative example 

 
The example presented here is based on the usage 

scenario described in Section 2 of this paper. Suppose 
that a fault situation happened and the agent of the 
expert wants to extract the comment strings from the 
Expert’s Diary database and align them with the 
performance indices from the Performance Monitoring 
database. Then the alarm limits and alarm values are 
extracted from the Alarm History database, based on 
the node-to-tag mappings. The time interval used for 
filtering is 10 days before the fault. The agent prints 
the collected values to the command line. The 
resources involved in the query and their tables are 
shown in Figure 7. Each resource has an associated 
Ontonut in the agent’s beliefs. 

entryDate

diary.Entry

author

entryID

title
description
position

analysisDate

pmon.analysis

nodeID

analysisID

performanceIndex
isautomatic

alarmTime

ahist.alarm

tag

alarmID

alarmLimitHigh

value

Experts’
diary Scheduled 

Performance 
Monitoring

Alarm 
History DB

alarmLimitLow

 
Figure 7. Sample database tables 

The description of the Ontonut associated with the 
expert’s diary and the datasource object (an instance of 
RDBDataSource) are shown below: 

:DiaryEntryNut rdf:type ont:Donut. 
:DiaryEntryNut ont:dataSource :entrydb. 
 
:DiaryEntryNut ont:SQLQueryBase  
"SELECT entryID, entryDate, author, title, 
description, position FROM diary.Entry". 
 
:DiaryEntryNut ont:mapping { 
 ?entryId ont:mapsTo  

{ont:sqlentity sapl:is “entryID”}. 
?entryDate ont:mapsTo  
{ont:sqlentity sapl:is “entryDate”}. 

 ?author ont:mapsTo  
{ ont:sqlentity sapl:is “author”}. 

 ?title ont:mapsTo  
{ ont:sqlentity sapl:is “title”}. 
?description ont:mapsTo 
{ont:sqlentity sapl:is “description”}. 
?position ont:mapsTo  
{ont:sqlentity sapl:is “position”} 

}. 
 
:DiaryEntryNut ont:effect { 
 ?entry :entryId ?entryId. 
 ?entry :entryDate ?entrydate. 
 ?entry :author ?author. 
 ?entry :title ?title. 

?entry :description ?description. 
?entry :position ?position 

}. 
 

   :entrydb rdf:type ont:RDBDataSource. 
   :entrydb ont:hasURL http://host:80/diary. 
   :entrydb ont:hasDriver  

oracle.jdbc.OracleDriver. 
   :entrydb ont:hasUsername diaryuser. 
   :entrydb ont:hasPassword mypwd. 

The ont:SQLQueryBase defines the SQL query 
that extracts the data that is used to produce the 
Ontonut instances. The mapping definitions use the 
column names from the SQLQueryBase property. 

Other Ontonut descriptions are defined in a similar 
manner. The effect of the second Ontonut used in this 
example is defined as follows: 

:PMAnalysisNut ont:effect { 

205



   ?pmnode :analysisID ?aid. 
   ?pmnode :analysisDate ?adate. 
   ?pmnode :nodeID ?nodeid. 
   ?pmnode :performanceIndex ?pindex 
   ?pmnode :isautomatic ?isautom}. 

The effect of the Ontonut for the Alarm History 
database is defined as: 

:AHAlarmNut ont:effect { 
   ?alarm :alarmID ?alid. 
   ?alarm :alarmTime ?aldate. 
   ?alarm :tag ?altag. 
   ?alarm :alimitHigh ?ahigh 
   ?alarm :alimitLow ?alow 
   ?alarm :value ?avalue}. 

The commitment (query) in the agent’s beliefs is 
shown below: 

{?entry  :entryDate ?edate. 
 ?entry  :title ?ctitle. 
 ?entry  :position ?pos. 
 
 ?pos    :mapsTo_1 ?nodeid. 
 
 ?pmnode :nodeId ?nodeid. 
 ?pmnode :performanceIndex ?pindex. 
 ?pmnode :analysisDate ?adate. 
 
 ?pos    :mapsTo_2 ?tag. 
 
 ?alarm  :tag ?tag. 
 ?alarm  :alarmTime ?atime. 
 ?alarm  :alarmValue ?value. 
 ?alarm  :almLimitHigh ?ahigh. 
 ?alarm  :almLimitLow ?alow. 
  
 ?edate = “31.12.2008”. 
 ?adate < 31.12.2008. 
 ?adate > 21.12.2008. 
 ?atime < 23:59:59T31.12.2008. 
 ?atime > 23:59:59T21.12.2008. 
}=>  
{ {gb:I gb:do :Print} gb:configuredAs 
  {x:print gb:is "| ?ctitle | ?edate |  
   ?pos | ?adate | ?pindex | ?atime | 
   ?value | ?ahigh | ?alow | "}. } 

The commitment does not explicitly refer to the 
type of the Ontonut by the rdf:type property, which 
would simplify the implementation of the triggering 
procedure, but we apply pattern-based matching, i.e. 
use subtract operation over available Ontonut effect 
patterns and the query. 

In the particular query, the triple that matches the 
identifiers defined as:  

?pos :mapsTo_1 ?nodeid. 

It is a bridging property between the two property 
values of respective Ontonuts, which have physical 
data sources behind. It may belong to any of the 
Ontonuts it bridges or be an independent Ontonut: 
How it is modeled is domain-specific. 

As soon as the matching with available Ontonuts 
has succeeded, the matchmaking rule passes the 
control to the Query Planner. In this particular case, the 
work of Query Planner is straightforward – to decide 
which Ontonut is to be queried first and apply the 

query parameters for the SQL query generation. The 
order of execution may depend e.g. on the average 
expected number of records of each independent sub-
query. The methods of execution planning and 
optimization go beyond the scope of this paper. Further 
reading suggestions are in the next Section. 

The result of the first executed sub-query is then 
used to limit the range of the variables in the 
subsequent sub-query. When all the query results are 
collected, they are printed to the command line (see 
Figure 8). 

205015.404:03

30.12.2008

0.630.12
.2008

---

205017.914:37

30.12.2008

-----

205010.012:59

31.12.2008

--QT-
123

31.12. 
2008

Paper 
jam

205018.006:01

24.12.2008

0.724.12
.2008

---

205019.516:23

23.12.2008

-----

205019.316:30

25.12.2008

-----

205017.714:37

27.12.2008

0.627.12
.2008

---

205019.714:37

21.12.2008

0.821.12
.2008

---

205018.118:17

28.12.2008

-----

lo
w

hi
gh

va-
lue

atimepin
dex

adatepose-datecti-
tle

 
Figure 8. Query results 

The table of results is compressed (duplicate rows 
are removed and repeating values substituted with dash 
sign) and arranged in a chronological order for a 
purpose of readability. The table allows e.g. an expert 
to analyze how the actual parameter values and 
performance indices were behaving before the fault 
happened. 

 
5. Related work 

 
The notion of semantic component composition is 

discussed in [10] and [11], but the authors focus on 
improving the programming paradigm as such, not the 
autonomic computing and semantic agent 
programming. The execution planning and 
optimization of queries are thoroughly researched in 
[6] and are a rather complementary part for our work 
dealing with query planning. The approach in [7] 
proposes a solution for management of corporate 
histories using multi-agent system and semantic data, 

206



our work, in contrast, introduces an intra-agent feature, 
that simplifies the programming of an agent. A set of 
Semantic Web Service platforms and languages like 
OWL-S [8] and WSMF [9] externalize semantic 
components and allow planning and execution. 
However, the Ontonuts approach treats components as 
internal capabilities of an agent that can be 
externalized as semantic services. While the approach 
presented in [12] proposes an extension to the RDF 
language in order to allow modifications of the RDF 
content upon some triggered actions, we deal with the 
extension to the rule-based agent programming 
language, which allows componentization and data 
updates. Ontonuts allow semantic integration of both 
internal and external capabilities and stand for a 
semantic agent-driven workflow planning and 
execution engine. 

 
6. Conclusions and future work 
 

The approach presented in this work aims toward a 
quite specific target – to structure the S-APL code of 
the UBIWARE agent in order to simplify 
programming of the agent and allow automated goal-
driven planning. Although the paper mainly covers a 
quite narrow domain of distributed querying, it 
involves the generic problems of agent planning and 
semantic programming. The emphasis of this paper is 
on the automated planning of distributed queries and is 
related to the notion of distributed RDF queries and so-
called virtual graphs, when the graph being queried 
does not have RDF content beneath. The approach 
proposed uses patterns to define desired result and 
applies queries or any other code to fill the patterns 
requested. 

At the moment, the first prototype is nearing its 
completion. We plan to extend functionality of the 
Ontonuts engine by introducing more engine-running 
Ontonut types, e.g. for web services and agent services. 
Another important step to be taken is to perform 
scalability tests over large data volumes and compare 
the results with purely SQL-based implementation 
alternatives. The planning procedure should also be 
improved to keep alternative pathways on each stage of 
the execution. Furthermore, in theory, agents can share 
Ontonuts as self-containing executable modules. 

 
7. Acknowledgement 

 
This research has been performed in the UBIWARE 

project, funded by TEKES, and the industrial 
consortium of Metso Automation, Fingrid, Nokia and 
Inno-W. 

 
8. References 
 
[1] Kephart, J. O. and Chess, D. M. (2003). The vision of 
autonomic computing. IEEE Computer, 36(1):41–50. 
[2] Katasonov A., Terziyan, V., Semantic Agent 
Programming Language (S-APL): A Middleware Platform 
for the Semantic Web, In: Proceedings of the Second IEEE 
International Conference on Semantic Computing (ICSC-
2008) / International Workshop on Middleware for the 
Semantic Web, August 4-7, 2008, Santa Clara, CA, USA, 
IEEE CS Press, pp. 504-511. 
[3] Katasonov A., Kaykova O., Khriyenko O., Nikitin S., 
Terziyan, V., Smart Semantic Middleware for the Internet of 
Things, In: Proceedings of the 5-th International Conference 
on Informatics in Control, Automation and Robotics, 11-15 
May, 2008, Funchal, Madeira, Portugal, ISBN: 978-989-
8111-30-2, Volume ICSO, pp. 169-178. 
[4] Quilitz, B.; Leser, U., “Querying Distributed RDF Data 
Sources with SPARQL”, The Semantic Web: Research and 
Applications, 5th European Semantic Web Conference, 
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, 
pp.524-538. 
[5] Langegger, A.; Blochl, M.; Woss, W., "Sharing Data on 
the Grid using Ontologies and distributed SPARQL Queries", 
18th International Conference on Database and Expert 
Systems Applications, DEXA '07. Regensburg, Germany, 3-7 
Sept., 2007, pp.450-454. 
[6] Obermeier, P., Nixon, L., A Cost Model for Querying 
Distributed RDF Repositories, Advanced Reasoning on the 
Web workshop, European Semantic Web Conference 
(ESWC) 2008, Tenerife, Spain. 
[7] F. Gandon, L. Berthelot, R. Dieng-Kuntz., A Multi-Agent 
Platform for a Corporate Semantic Web, in: Proceedings of 
AAMAS'2002 (First International Joint Conference on 
Autonomous Agents and Multi-Agent Systems), Bologna, 
Italy, July 15-19 2002, p. 1025-1032. 
[8] D. Martin et al., "Bringing Semantics to Web Services: 
The OWL-S Approach." First International Workshop on 
Semantic Web Services and Web Process Composition 
(SWSWPC 2004) 6-9, 2004, San Diego, California, USA. 
[9] D. Fensel and C. Bussler., The web service modeling 
framework (WSMF), Electronic Commerce: Research and 
Applications, (1):113–137, 2002.  
[10] Sjachyn, M. and Beus-Dukic, L. 2006. Semantic 
Component Selection — SemaCS. In Proceedings of the 
Fifth international Conference on Commercial-off-the-Shelf 
(Cots)-Based Software Systems (February 13 - 16, 2006). 
ICCBSS. IEEE Computer Society, Washington, DC, 83. 
[11] Liu, X., Wang, B., and Kerridge, J. 2005. Achieving 
seamless component composition through scenario-based 
deep adaptation and generation. Sci. Comput. Program. 56, 
1-2 (Apr. 2005), 157-170. 
[12] G. Papamarkos, A. Poulovassilis, and P. T.Wood. 
RDFTL: An Event-Condition-Action Language for RDF. In 
Proc. 3rd Int.Workshop on Web Dynamics (in conjunction 
with WWW2004), 2004. 
 

 

207



J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

1 ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.

2 KUZMIN, DMITRI, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

3 KARSTEN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto
3 p. 2000.

4 KOSKINEN, JUSSI, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.

5 RISTANIEMI, TAPANI, Synchronization and blind
signal processing in CDMA systems.  -
Synkronointi ja sokea signaalinkäsittely
CDMA järjestelmässä. 112 p. Yhteenveto 1 p.
2000.

6 LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.
(108 p.) Yhteenveto 1 p. 2000.

7 KOSKINEN, MINNA, Process metamodelling.
Conceptual foundations and application. 213
p. Yhteenveto 1 p. 2000.

8 SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

9 NAHAR, NAZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

10 FOMIN, VLADISLAV V., The process of standard
making. The case of cellular mobile telephony.
- Standardin kehittämisen prosessi. Tapaus-
tutkimus solukkoverkkoon perustuvasta
matkapuhelintekniikasta. 107 p. (208 p.)
Yhteenveto 1 p. 2001.

11 PÄIVÄRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

12 HÄKKINEN, ERKKI, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.

13 HIRVONEN, KULLERVO, Towards better
employment using adaptive control of labour
costs of an enterprise. 118 p. Yhteenveto 4 p.
2001.

14 MAJAVA, KIRSI, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

15 SAARINEN, KARI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.

16 FORSELL, MARKO, Improving component reuse
in software development.  169 p.  Yhteenveto
1 p. 2002.

17 VIRTANEN, PAULI, Neuro-fuzzy expert systems
in financial and control engineering.
245 p. Yhteenveto 1 p. 2002.

18 KOVALAINEN, MIKKO, Computer mediated
organizational memory for process control.

Moving CSCW research from an idea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.

19 HÄMÄLÄINEN, TIMO, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

20 MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

21 MURSU, ANJA, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

22 SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.

23 LENSU, ANSSI, Computationally intelligent
methods for qualitative data analysis. 57 p.
(180 p.) Yhteenveto 1 p. 2002.

24 RYABOV, VLADIMIR,  Handling imperfect
temporal relations. 75 p. (145 p.) Yhteenveto
2 p. 2002.

25 TSYMBAL, ALEXEY,  Dynamic integration of data
mining methods in knowledge discovery
systems. 69 p. (170 p.) Yhteenveto 2 p. 2002.

26 AKIMOV, VLADIMIR,  Domain decomposition
methods for the problems with boundary
layers. 30 p. (84 p.). Yhteenveto 1 p. 2002.

27 SEYUKOVA-RIVKIND, LUDMILA, Mathematical and
numerical analysis of boundary value
problems for fluid flow. 30 p. (126 p.) Yhteen-
veto 1 p. 2002.

28 HÄMÄLÄINEN, SEPPO, WCDMA Radio network
performance. 235 p. Yhteenveto 2 p. 2003.

29 PEKKOLA, SAMULI, Multiple media in group
work. Emphasising individual users in
distributed and real-time CSCW systems.
210 p. Yhteenveto 2 p. 2003.

30 MARKKULA, JOUNI, Geographic personal data,
its privacy protection and prospects in a
location-based service environment. 109 p.
Yhteenveto 2 p. 2003.

31 HONKARANTA, ANNE, From genres to content
analysis. Experiences from four case
organizations. 90 p. (154 p.) Yhteenveto 1 p.
2003.

32 RAITAMÄKI, JOUNI, An approach to linguistic
pattern recognition using fuzzy systems.
169 p. Yhteenveto 1 p. 2003.

33 SAALASTI, SAMI, Neural networks for heart rate
time series analysis. 192 p. Yhteenveto 5 p.
2003.

34 NIEMELÄ, MARKETTA, Visual search in
graphical interfaces: a user psychological
approach. 61 p. (148 p.) Yhteenveto 1 p. 2003.

35 YOU, YU, Situation Awareness on the world
wide web. 171 p. Yhteenveto 2 p. 2004.

36 TAATILA, VESA, The concept of organizational
competence – A foundational analysis.
- Perusteanalyysi organisaation
kompetenssin käsitteestä. 111 p. Yhteenveto 2
p. 2004.



J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

37 LYYTIKÄINEN, VIRPI, Contextual and structural
metadata in enterprise document
management. - Konteksti-  ja rakennemetatieto
organisaation dokumenttien hallinnassa.
73 p. (143 p.) Yhteenveto 1 p. 2004.

38 KAARIO, KIMMO, Resource allocation and load
balancing mechanisms for providing quality
of service  in the Internet. 171 p. Yhteenveto
1 p. 2004.

39 ZHANG, ZHEYING, Model component reuse.
Conceptual foundations and application in
the metamodeling-based systems analysis
and design environment. 76 p. (214 p.) Yh-
teenveto 1 p. 2004.

40 HAARALA, MARJO, Large-scale nonsmooth
optimization variable metric bundle method
with limited memory. 107 p. Yhteenveto 1 p.
2004.

41 KALVINE, VIKTOR, Scattering and point spectra
for elliptic systems in domains with
cylindrical ends. 82 p. 2004.

42 DEMENTIEVA, MARIA, Regularization in
multistage cooperative games. 78 p. 2004.

43 MAARANEN, HEIKKI, On heuristic hybrid
methods and structured point sets in global
continuous optimization. 42 p. (168 p.)
Yhteenveto 1 p. 2004.

44 FROLOV, MAXIM, Reliable control over
approximation errors by functional type a
posteriori estimates. 39 p. (112 p.) 2004.

45 ZHANG, JIAN, Qos- and revenue-aware resource
allocation mechanisms in multiclass IP
networks. 85 p. (224 p.) 2004.

46 KUJALA, JANNE, On computation in statistical
models with a psychophysical application. 40
p. (104 p.) 2004.,

47 SOLBAKOV, VIATCHESLAV, Application of
mathematical modeling for water
environment problems. 66 p. (118 p.) 2004.

48 HIRVONEN, ARI P., Enterprise architecture
planning in practice. The Perspectives of
information and communication technology
service provider and end-user. 44 p. (135 p.)
Yhteenveto 2 p. 2005.

49 VARTIAINEN, TERO, Moral conflicts in a project
course in information systems education.
320 p. Yhteenveto 1p. 2005.

50 HUOTARI, JOUNI,  Integrating graphical
information system models with visualization
techniques. - Graafisten tietojärjestelmäku-
vausten integrointi visualisointitekniikoilla.
56 p. (157 p.) Yhteenveto 1p. 2005.

51 WALLENIUS, EERO R., Control and management
of multi-access wireless networks. 91 p.
(192 p.) Yhteenveto 3 p. 2005.

52 LEPPÄNEN, MAURI, An ontological framework
and a methodical skeleton for method
engineering – A contextual approach. 702 p.
Yhteenveto 2 p. 2005.

53 MATYUKEVICH, SERGEY, The nonstationary
Maxwell system in domains with edges and
conical points. 131 p. Yhteenveto 1 p. 2005.

54 SAYENKO, ALEXANDER, Adaptive scheduling for
the QoS supported networks. 120 p. (217 p.)
2005.

55 KURJENNIEMI, JANNE, A study of TD-CDMA and
WCDMA radio network enhancements. 144 p.
(230 p.) Yhteenveto 1 p. 2005.

56 PECHENIZKIY, MYKOLA, Feature extraction for
supervised learning in knowledge discovery
systems. 86 p. (174 p.) Yhteenveto 2 p. 2005.

57 IKONEN, SAMULI, Efficient numerical methods
for pricing American options. 43 p. (155 p.)
Yhteenveto 1 p. 2005.

58 KÄRKKÄINEN, KARI, Shape sensitivity analysis
for numerical solution of free boundary
problems. 83 p. (119 p.) Yhteenveto 1 p. 2005.

59 HELFENSTEIN, SACHA, Transfer. Review,
reconstruction, and resolution. 114 p. (206 p.)
Yhteenveto 2 p. 2005.

60 NEVALA, KALEVI, Content-based design
engineering thinking. In the search for
approach. 64 p. (126 p.) Yhteenveto 1 p. 2005.

61 KATASONOV, ARTEM, Dependability aspects in
the development and provision of location-
based services. 157 p. Yhteenveto 1 p. 2006.

62 SARKKINEN, JARMO, Design as discourse:
Representation, representational practice, and
social practice. 86 p. (189 p.) Yhteenveto 1 p.
2006.

63 ÄYRÄMÖ, SAMI, Knowledge mining using
robust clustering. 296 p. Yhteenveto 1 p. 2006.

64 IFINEDO, PRINCELY EMILI, Enterprise resource
planning systems success assessment: An
integrative framework. 133 p. (366 p.) Yhteen-
veto 3 p. 2006.

65 VIINIKAINEN, ARI, Quality of service and
pricingin future multiple service class
networks.  61 p. (196 p.) Yhteenveto 1 p. 2006.

66 WU, RUI, Methods for space-time parameter
estimation in DS-CDMA arrays. 73 p. (121 p.)
2006.

67 PARKKOLA, HANNA, Designing ICT for mothers.
User psychological approach. – Tieto- ja
viestintätekniikoiden suunnittelu äideille.
Käyttäjäpsykologinen näkökulma. 77 p.
(173 p.) Yhteenveto 3 p. 2006.

68 HAKANEN, JUSSI, On potential of interactive
multiobjective optimization in chemical
process design. 75 p. (160 p.) Yhteenveto 2 p.
2006.

69 PUTTONEN, JANI, Mobility management in
wireless networks. 112 p. (215 p.)
Yhteenveto 1 p. 2006.

70 LUOSTARINEN, KARI, Resource , management
methods for QoS supported networks. 60 p.
(131 p.) 2006.

71 TURCHYN, PAVLO, Adaptive meshes in computer
graphics and model-based simulation. 27 p.
(79 p.) Yhteenveto 1 p.

72 ZHOVTOBRYUKH, DMYTRO, Context-aware web
service composition. 290 p. Yhteenveto 2 p.
2006.



J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

73 KOHVAKKO, NATALIYA, Context modeling and
utilization in heterogeneous networks.
154 p. Yhteenveto 1 p. 2006.

74 MAZHELIS, OLEKSIY, Masquerader detection in
mobile context based on behaviour and
environment monitoring. 74 p. (179 p). Yh-
teenveto 1 p. 2007.

75 SILTANEN, JARMO, Quality of service and
dynamic scheduling for traffic engineering in
next generation networks. 88 p. (155 p.) 2007.

76 KUUVA, SARI, Content-based approach to
experiencing visual art. - Sisältöperustainen
lähestymistapa visuaalisen taiteen kokemi-
seen. 203 p. Yhteenveto 3 p. 2007.

77 RUOHONEN, TONI, Improving the operation of an
emergency department by using a simulation
model. 164 p. 2007.

78 NAUMENKO, ANTON, Semantics-based access
control in business networks. 72 p. (215 p.)
Yhteenveto 1 p. 2007.

79 WAHLSTEDT, ARI, Stakeholders’ conceptions of
learning in learning management systems
development. - Osallistujien käsitykset
oppimisesta oppimisympäristöjen kehittämi-
sessä. 83 p. (130 p.) Yhteenveto 1 p. 2007.

80 ALANEN, OLLI, Quality of  service for triple play
services in heterogeneous networks.  88 p.
(180 p.) Yhteenveto 1 p. 2007.

81 NERI, FERRANTE, Fitness diversity adaptation in
memetic algorithms.  80 p. (185 p.) Yhteenveto
1 p. 2007.

82 KURHINEN, JANI, Information delivery in mobile
peer-to-peer networks. 46 p. (106 p.) Yhteenve-
to 1 p. 2007.

83 KILPELÄINEN, TURO, Genre and ontology based
business information architecture framework
(GOBIAF). 74 p. (153 p.) Yhteenveto 1 p. 2007.

84 YEVSEYEVA, IRYNA, Solving classification
problems with multicriteria decision aiding
approaches. 182 p. Yhteenveto 1 p. 2007.

85 KANNISTO, ISTO, Optimized pricing, QoS and
segmentation of managed ICT services. 45 p.
(111 p.) Yhteenveto 1 p. 2007.

86 GORSHKOVA, ELENA, A posteriori error estimates
and adaptive methods for incompressible
viscous flow problems. 72 p. (129 p.) Yhteen-
veto 1 p. 2007.

87 LEGRAND, STEVE, Use of background real-world
knowledge in ontologies for word sense
disambiguation in the semantic web. 73 p.
(144 p.) Yhteenveto 1 p. 2008.

88 HÄMÄLÄINEN, NIINA, Evaluation and
measurement in enterprise and software
architecture management. - Arviointi ja
mittaaminen kokonais- ja ohjelmistoarkki-
tehtuurien hallinnassa. 91 p. (175 p.) Yhteen-
veto 1 p. 2008.

89 OJALA, ARTO, Internationalization of software
firms: Finnish small and medium-sized
software firms in Japan. 57 p. (180 p.) Yhteen-
veto 2 p. 2008.

90 LAITILA, ERKKI, Symbolic Analysis and
Atomistic Model as a Basis for a Program
Comprehension Methodology. 321 p.
Yhteenveto 3 p. 2008.

91 NIHTILÄ, TIMO, Performance of Advanced
Transmission and Reception Algorithms for
High Speed Downlink Packet Access. 93 p.
(186 p.) Yhteenveto 1 p. 2008.

92 SETÄMAA-KÄRKKÄINEN, ANNE, Network
connection selection-solving a new
multiobjective optimization problem. 52 p.
(111p.) Yhteenveto 1 p. 2008.

93 PULKKINEN, MIRJA, Enterprise architecture as
a collaboration tool. Discursive process for
enterprise architecture management,
planning and development. 130 p. (215 p.)
Yhteenveto 2 p. 2008.

94 PAVLOVA, YULIA, Multistage coalition
formation game of a self-enforcing
international environmental agreement.
127 p. Yhteenveto 1 p. 2008.

95 NOUSIAINEN, TUULA, Children’s involvement in
the design of game-based learning
environments.  297 p. Yhteenveto 2 p. 2008.

96 KUZNETSOV, NIKOLAY V., Stability and
oscillations of dynamical systems. Theory
and applications. 116 p. Yhteenveto 1 p. 2008.

97 KHRIYENKO, OLEKSIY, Adaptive semantic Web
based environment for web resources. 193 p.
Yhteenveto 1 p. 2008.

98 TIRRONEN, VILLE, Global optimization using
memetic differential evolution with
applications to low level machine vision.
98 p. (248 p.) Yhteenveto 1 p. 2008.

99 VALKONEN, TUOMO, Diff-convex combinations
of Euclidean distances: A search for optima.
148 p. Yhteenveto 1 p. 2008.

100 SARAFANOV, OLEG, Asymptotic theory of
resonant tunneling in quantum waveguides
of variable cross-section. 69 p. Yhteenveto 1 p.
2008.

101 POZHARSKIY, ALEXEY, On the electron and
phonon transport in locally periodical
waveguides. 81 p. Yhteenveto 1 p. 2008.

102 AITTOKOSKI, TIMO, On challenges of simulation-
based globaland multiobjective optimization.
80 p. (204 p.) Yhteenveto 1 p. 2009.

103 YALAHO, ANICET, Managing offshore
outsourcing of software development using
the ICT-supported unified process model: A
cross-case analysis. 91 p. (307 p.)
Yhteenveto 4 p. 2009.

104 K OLLANUS, SAMI, Tarkastuskäytänteiden
kehittäminen ohjelmistoja tuottavissa organi-
saatioissa. - Improvement of inspection
practices in software organizations. 179 p.
Summary 4 p. 2009.

105 LEIKAS, JAANA, Life-Based Design. ‘Form of life’
as a foundation for ICT design for older
adults. - Elämälähtöinen suunnittelu. Elä-
mänmuoto ikääntyville tarkoitettujen ICT
tuotteiden ja palvelujen suunnittelun lähtö-
kohtana. 218 p. (318 p.) Yhteenveto 4 p. 2009.



J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

106 VASILYEVA, EKATERINA, Tailoring of feedback in
web-based learning systems: Certitude-based
assessment with online multiple choice
questions.  124 p. (184 p.) Yhteenveto 2 p.
2009.

107 KUDRYASHOVA, ELENAV., Cycles in continuous
and discrete dynamical systems.
Computations, computer assisted proofs, and
computer experiments. 79 p. (152 p.) Yhteen-
veto 1 p. 2009.

108 BLACKLEDGE, JONATHAN,  Electromagnetic
scattering and inverse scattering solutions for
the analysis and processing of digital signals
and images. 297 p. Yhteenveto 1 p. 2009.

109 IVANNIKOV, ANDRIY,  Extraction of event-related
potentials from electroencephalography data.
- Herätepotentiaalien laskennallinen eristämi-
nen EEG-havaintoaineistosta. 108 p. (150 p.)
Yhteenveto 1 p. 2009.

110 KALYAKIN, IGOR,  Extraction of mismatch
negativity from electroencephalography data.
- Poikkeavuusnegatiivisuuden erottaminen
EEG-signaalista. 47 p. (156 p.) Yhteenveto 1 p.
2010.

111 HEIKKILÄ, MARIKKA,  Coordination of complex
operations over organisational boundaries.
265 p. Yhteenveto 3 p. 2010.

112 FEKETE, GÁBOR,  Network interface
management in mobile and multihomed
nodes.  94 p. (175 p.) Yhteenveto 1 p. 2010.

113 KUJALA, TUOMO,  Capacity, workload and
mental contents - Exploring the foundations
of driver distraction. 146 p. (253 p.) Yhteenve-
to 2 p. 2010.

114 LUGANO, GIUSEPPE,  Digital community design -
Exploring the role of mobile social software in
the process of digital convergence. 253 p.
(316 p.) Yhteenveto 4 p. 2010.

115 KAMPYLIS, PANAGIOTIS,  Fostering creative
thinking. The role of primary teachers. -
Luovaa ajattelua kehittämässä. Alakoulun
opettajien rooli. 136 p. (268 p.) Yhteenveto 2 p.
2010.

116 TOIVANEN, JUKKA,  Shape optimization utilizing
consistent sensitivities. - Muodon optimointi
käyttäen konsistentteja herkkyyksiä. 55 p.
(130p.) Yhteenveto 1 p. 2010.

117 MATTILA, KEIJO, Implementation techniques for
the lattice Boltzmann method. -
Virtausdynamiikan tietokonesimulaatioita
Hila-Boltzmann -menetelmällä:
implementointi ja reunaehdot. 177 p. (233 p.)
Yhteenveto 1 p. 2010.

118 CONG, FENGYU, Evaluation and extraction of
mismatch negativity through exploiting
temporal, spectral, time-frequency, and
spatial features. - Poikkeavuusnegatiivisuu-
den (MMN) erottaminen aivosähkönauhoi-
tuksista käyttäen ajallisia, spektraalisia, aika-
taajuus - ja tilapiirteitä. 57 p. (173 p.) Yhteen-
veto 1 p. 2010.

119 LIU, SHENGHUA, Interacting with intelligent
agents.  Key issues in agent-based decision
support system design. 90 p. (143 p.) Yhteen-
veto 2 p. 2010.

120 AIRAKSINEN, TUOMAS, Numerical methods for
acoustics and noise control. - Laskennallisia
menetelmiä akustisiin ongelmiin ja
melunvaimennukseen. 58 p. (133 p.) Yhteen-
veto 2 p. 2010.

121 WEBER, MATTHIEU, Parallel global optimization
Structuring populations in differential
evolution. - Rinnakkainen globaalioptimointi.
Populaation rakenteen määrittäminen
differentiaalievoluutiossa. 70 p. (185 p.)
Yhteenveto 2 p. 2010.

122 VÄÄRÄMÄKI, TAPIO, Next generation networks,
mobility management and appliances in
intelligent transport systems. - Seuraavan
sukupolven tietoverkot, liikkuvuuden hallinta
ja sovellutukset älykkäässä liikenteessä. 50 p.
(111 p.) Yhteenveto 1 p. 2010.

123 VIUKARI, LEENA, Tieto- ja viestintätekniikka-
välitteisen palvelun kehittämisen kolme
diskurssia. - Three discourses for an ICT-
service development . 304 p. Summary 5 p.
2010.

124 PUURTINEN, TUOMAS, Numerical simulation of
low temperature thermal conductance of
corrugated nanofibers. - Poimutettujen
nanokuitujen lämmönjohtavuuden numeeri-
nen simulointi matalissa lämpötiloissa .
114 p. Yhteenveto 1 p. 2010.

125 HILTUNEN, LEENA, Enhancing web course
design using action research . - Verkko-
opetuksen suunnittelun kehittäminen
toimintatutkimuksen keinoin .
192 p. Yhteenveto 2 p. 2010.

126 AHO, KARI, Enhancing system level
performance of third generation cellular
networks through VoIP and MBMS services.
121 p. (221 p.). Yhteenveto 2 p. 2010.

127 HÄKKINEN, MARKKU, Why alarms fail. A
cognitive explanatory model.
102 p. (210 p.). Yhteenveto 1 p. 2010.

128 PENNANEN, ANSSI, A graph-based multigrid
with applications. - Graafipohjainen
monihilamenetelmä sovelluksineen.
52 p. (128 p.). Yhteenveto 2 p. 2010.

129 AHLGREN, RIIKKA, Software patterns,
organizational learning and software process
improvement. 70 p. (137 p.). Yhteenveto 1 p.
2011.

130 NIKITIN, SERGIY, Dynamic aspects of industrial
middleware architectures 52 p. (114 p.).
Yhteenveto 1 p. 2011.


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF ORIGINAL ARTICLES
	1 INTRODUCTION
	1.1 Semantic Web
	1.2 Agent Technology
	1.3 Service-Oriented Architectures
	1.4 Research objectives and research approach
	1.5 Thesis outline

	2 INDUSTRIAL PROTOTYPING
	2.1 Metso case study
	2.2 A case study for Forest Industry
	2.3 A middleware platform
	2.4 A middleware for cloud computing
	2.5 Chapter Summary

	3 DYNAMIC ASPECTS OF INDUSTRIAL MIDDLEWARE ARCHITECTURES
	3.1 Dynamic Adaptation Aspect
	3.2 Dynamic Servicing Aspect
	3.3 Dynamic Model Sharing Aspect
	3.4 Dynamics in Common
	3.5 Summary

	4 RELEVANCE TO OTHER RESEARCH
	5 OVERVIEW OF THE ORIGINAL ARTICLES
	5.1 Article 1: Querying Dynamic and Context-Sensitive Metadata in Semantic Web
	5.2 Article 2: Service Matching in Agent Systems
	5.3 Article 3: Data Integration Solution for Paper Industry - A Semantic Storing, Browsing and Annotation Mechanism for Online Fault Data
	5.4 Article 4: Ontonuts: Reusable Semantic Components for Multi-Agent Systems
	5.5 Article 5: SOFIA: Agent Scenario for Forest Industry
	5.6 Article 6: Mastering Intelligent Clouds: Engineering Intelligent Data Processing Services in the Cloud

	6 CONCLUSIONS
	6.1 Answers to the research questions
	6.2 Concerns
	6.3 Further Research

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ONTONUTS: REUSABLE SEMANTICCOMPONENTS FOR MULTI-AGENT SYSTEMS


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




