

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

An Information Systems Design Product Theory for Software Project Estimation and
Measurement Systems

Forselius, Pekka; Käkölä, Timo

Forselius, P.; Kakola, T., "An Information Systems Design Product Theory for Software
Project Estimation and Measurement Systems," System Sciences, 2009. HICSS '09.
42nd Hawaii International Conference on , vol., no., pp.1-10, 5-8 Jan. 2009. doi:
10.1109/HICSS.2009.65

2009

An Information Systems Design Product Theory for Software Project Estimation

and Measurement Systems

 Pekka Forselius Timo Käkölä
 4SUM Partners Claremont Graduate University &
 Tekniikantie 14, Espoo University of Jyväskylä
 02150 Finland 40014 University of Jyväskylä, Finland
 Pekka.Forselius@4sumpartners.com timokk@jyu.fi

Abstract: There is relatively little research on software
Project Estimation and Measurement Systems (PEMS).
Commercial PEMS vary in functionality and effective-
ness. Their intended users thus do not know what to ex-
pect from PEMS and how to evaluate them. This paper
creates an information system design product theory for
the class of PEMS that prescribes the meta-requirements,
the meta-design, and applicable theories for all products
within the class. Meta-requirements and the meta-design
are derived from the project estimation and measurement
literature, experiences obtained during more than ten
years of empirical work in Finnish Software Measurement
Association, and a commercially available PEMS.

Keywords: Functional size measurement, Knowledge
management, Organizational learning, Outsourcing, Soft-
ware process improvement, Software project estimation
and benchmarking

1. Introduction

Software project estimation and measurement (PEM)
has been researched extensively due to negative organiza-
tional and financial consequences of projects that fail to
deliver desired functionalities and to meet nonfunctional
quality requirements and that run late and out of budget.
PEM aims at predicting the size, productivity, total effort
and/or cost, and schedule of a project any time and as of-
ten as necessary before the end of the project. PEM is cri-
tical in complex software business networks where consu-
mers acquire and integrate software from numerous provi-
ders through eSourcing, a business practice of looking for
domestic or foreign providers capable of performing or
subcontracting services previously performed in-house.
PEM is deployed during six phases of the seven-phased
eSourcing process [26].

There are numerous software estimation approaches
[24; 44]. The most important ones rely on parametric esti-
mation models [20; 43] that predict effort and/or cost ba-
sed on historical project data and parameters such as the
estimated size of software typically measured in lines of
code or function points (fp) (e.g., COCOMO II [2], SLIM
[36]). Measurement processes are crucial for managing
system and software life cycle activities, assessing the

feasibility of project plans, monitoring the adherence of
project activities to those plans, and improving processes
and products [18]. Estimation and measurement need to
be closely linked to bridge project planning and execution
throughout the project life-cycles. Yet, concepts combi-
ning both estimation and measurement process areas are
scarcely available in the literature [29].

A comprehensive PEM concept and a commercially
available software product supporting the concept have
been developed by the Finnish Software Measurement
Association (FiSMA). Several member organizations of
FiSMA have been able to leverage the concept and the
product in order to deliver their all projects consistently in
time and in budget with the agreed upon functionality
over the period of several years. In one member organiza-
tion, the actual cost, time, and delivered functionality ha-
ve systematically varied less than three per cent from the
original estimates for several years. To our knowledge, si-
milar results have not been obtained before.

The PEM concept consists of functional size measure-
ment, delivery rate analysis, situation analysis, and reuse
analysis. Functional sizes of the pieces of software to be
produced are measured in function points by using stan-
dardized functional size measurement methods. Function
points express the amount of business functionality an
information system provides to users, independent of the
technology used to implement the information system
[17; 19]. The delivery rate is assessed in terms of the ave-
rage number of development hours required in similar
past development projects to deliver a function point.
Situation analysis makes the estimates more precise by
analyzing the factors that affect the development pro-
ductivity or characterize the development circumstances.
Reuse analysis further perfects the estimates by determi-
ning the rate of reuse of available domain artifacts and the
reusability requirements of the pieces of software to be
developed. The higher the rate of reuse, the lower the
total effort needed in software development. The higher
the reusability requirements of the software to be develo-
ped, the higher the total effort needed.

PEM is a set of knowledge-intensive business processes
and thus critically dependent on effective information
systems support. For example, internal project databases
are needed to calculate the internal delivery rates.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

International software project benchmarking and
estimation systems and databases [12; 32; 33; 38] can
then be used cost-effectively to benchmark the internal
delivery rates with those of best-in-class local and
international eSourcing service providers and see whether
the development can be done most cost effectively in-
house or by the local or international providers [26].

There is relatively little research on software Project Es-
timation and Measurement Systems (PEMS) and how to
design and use PEMS effectively for redesigning and
enacting the PEM and eSourcing processes. Commercial
PEMS [4; 5; 10; 12; 34; 37; 41; 42] vary greatly in func-
tionality and effectiveness. The intended users for such
systems thus do not know what to expect from the sys-
tems and how to evaluate them.

This paper creates an information system design product
theory (hereafter, design product theory) for the class of
PEMS. A complete information system design theory
(ISDT) prescribes both the product and process aspects of
a class of IS, that is, what are the meta-requirements, the
meta-design, and applicable theories for all products wit-
hin the class and how the products should be built [45;
46]. The paper focuses on prescribing the product aspects
for the class of PEMS because the existing literature does
not provide such a theory. Yet, the theory must be an
integral part of the PEM concept because the PEM busi-
ness process cannot be enacted effectively without using a
PEMS instance. Meta-requirements and a meta-design are
derived from the relevant literature, the PEM process, ex-
periences obtained during more than ten years of empiri-
cal work in FiSMA, and a commercially available PEMS.
It is beyond the scope of this paper to study the class of
project management systems used for coordinating and
scheduling projects with numerous partially overlapping
and interdependent tasks.

2. Research background and method

The first author started the development of the PEM
concept in early 1990s. Software industry was growing
and the number, size, and complexity of projects were in-
creasing in Finland. The industry needed better ways of
scoping and estimating projects. Commercially available
estimation systems and existing models for functional size
(e.g., IFPUG 3.0) and cost estimation (e.g., COCOMO
and SLIM) were studied but found inadequate. For
example, the cost models required extensive calibration to
suit the Finnish context which was not possible because
historical project data was missing. The development of
new estimation models and systems together with syste-
matic but light-weight data collection and analysis met-
hods to establish and continually grow the project data set
were thus deemed necessary.

For this purpose, LATURI project was started in 1990
with 16 industrial partners, including the major banks, in-
surance companies, a nationwide trader and retailer, and

an oil company, all of which had large internal software
development departments. In addition, two large software
providers were involved. Laturi followed the principles of
design science [11], aiming at maximum practical utility
for both consumers and providers while leveraging rigo-
rous research methods to construct and validate the Laturi
software and its key artifacts for functional size measure-
ment, situation analysis, reuse analysis, and delivery rate
determination.

In 1991, the first author initiated the development of a
new FiSMA FSM method for functional size measure-
ment (FSM) in a permanent work group of FiSMA. Ver-
sions of the method have been used in numerous organi-
zations and further developed based on the lessons learnt.
The first author has participated in the global standardiza-
tion of FSM methods since late 1990s, enabling FiSMA
to crystallize FiSMA FSM 1.1 into an international stan-
dard [19] that combines the best practices of the other
leading methods COSMIC [13], IFPUG [14], Mk II [15],
and NESMA [16] while eliminating their weaknesses.
FiSMA FSM also benefited from the ideas of Capers
Jones [21, pp. 118-124] who recognized the need to mea-
sure the complexity of mathematical algorithms in order
to accurately determine functional size in computationally
intensive application domains. FiSMA FSM 1.1 repre-
sents the most comprehensive, widely applicable (across
business sectors and application domains), easy-to-use,
and accurate FSM method internationally.

Initial productivity factors for situation analysis were
created in 1991 through a Delphi study where each of the
16 partners identified ten most important productivity
factors. As a result, 55 factors were identified. The part-
ners then voted about the factors, resulting in 15 factors
[3]. By 1996, a total of 40 consumers and providers had
actively participated in research; a total of 182 projects
with a median size of 521 function points had been
collected to the Laturi database, and extensive statistical
analysis of the project database had been conducted. The
analysis revealed that the use of only 15 factors lead the
situation analysis model to become too sensitive for
mistakes in interpretations and/or valuations of the
factors. As a result, the most sensitive factors related to
functional and non-functional requirements and the skills
of project team members were split in several new factors
and the important pressure on schedule factor (i.e., the
higher the pressure on schedule, the longer the project is
estimated to last) from COCOMO was incorporated,
resulting in 21 factors [6].

The Laturi software was instrumental for establishing
the initial database and creating and validating the asso-
ciated methods. However, it was too cumbersome for
large-scale industrial use. Therefore, the first author led
two productization projects in 1997 and 2000 further de-
veloping the concepts of Laturi into an easy-to-use com-
mercial product called Experience®. A new project has
been launched in 2008 to further improve the product.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

Organizations buy the product incorporating the project
database and pay an annual maintenance fee to receive
new product versions and updated data sets. They can add
their own data to the database and receive reduced main-
tenance fees for each project contributed when they dona-
te their data to the shared database. Organizations collect
data using the same product, the value of every project
variable is precisely defined, and the algorithms and rules
codified into the product are transparent to users and
publicly known, ensuring the validity and comparability
of the data. The first author has also contacted the organi-
zations providing the data regularly over the years to
verify and check their submissions and to understand the
evolutions of their needs and work contexts holistically
and longitudinally.

The rapidly growing project database enabled the use of
analogy-based estimation for determining delivery rates
by identifying the most similar completed projects to the
project being estimated. The first author participated acti-
vely in developing the estimating algorithms based on the
database together with international research collaborators
[3; 22; 23; 25; 31; 32; 33; 40; 47].

3. Meta-requirements of the Design Product
Theory for Software Project Estimation and
Measurement Systems

The PEM concept involves project-, organizational-,
and inter-organizational (network) level of learning (c.f.,
[1]). Figure 1 identifies the main parties and defines the
tasks involved in PEM. Top management, project office,
and project management are parties from the provider or-
ganization responsible for facilitating project-level and
organizational learning. The measurement network con-
sists of (1) member companies, government organiza-
tions, and universities; (2) stable and long-term working
groups developing and maintaining the methods and
PEMS; and (3) administration supporting the utilization
of PEMS and enabling communication, remembering, and
learning at the inter-organizational level.

The process structure of the project level of the PEM
Concept (Figure 3) is aligned with the process model for
managing project scope defined by the Guide to the Pro-
ject Management Body of Knowledge (PMBOK) [35].
The Guide has defined five groups of project management
processes (Figure 2) including five scope management
processes and 34 other project management processes.
The project scope management processes of PMBOK
within their respective process groups are explained next:

• Initiation process (Initiating process group) specifies
the preliminary project scope statement, that is, the
high-level product requirements, project boundaries,
acceptance criteria, and methods for controlling pro-
ject scope that are commonly understood and agreed
upon by all stakeholders.

• Scope planning process (Planning process group) de-
velops the project scope management plan that states
partly based on the preliminary project scope sta-
tement how the scope will be specified, controlled,
and verified throughout the project life-cycle.

• Scope definition process (Planning process group) re-
fines the preliminary project scope statement into a
detailed one enabling the project team to decompose
the statement into smaller, manageable work packa-
ges that can be reliably estimated in terms of required
resources and duration.

• Scope verification (Controlling process group)
obtains the stakeholders� formal acceptance of the
project scope and associated deliverables throughout
the project life-cycle.

• Scope change control process (Controlling process
group) deals with factors that create project scope
changes (e.g., deliverables unacceptable during scope
verification) and controls the impacts of the changes.

Figure 1. Project-, organizational-, and inter-organiza-
tional (network) levels of learning of the PEM concept

The project level of the PEM concept consists of five
processes covered in more detail in Chapter 4:

• Initiating the project and the software to be
developed. This process corresponds to the initiation
process of PMBOK.

• Estimating Cost and Duration. This process corres-
ponds to the scope planning and definition processes.

• Progress Controlling. This process corresponds to the
scope verification process.

• Managing Changes. This process corresponds to the
scope change control process.

• Closing the Development Project documents, analy-
zes, and measures the project, releases its results, and
suggests actions that may improve the success of fu-
ture projects. It not only measures the realized total
effort, time, cost, and number of defects but links the

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

measures with the realized software size of the
project in function points, enabling productivity
evaluation, benchmarking, and the different levels of
learning involved in PEM. There is no corresponding
scope management process in PMBOK.

Figures 1, 2, and 3 pay little attention to information
systems needed to institutionalize the PEM concept wit-
hin the inter-organizational networks. Yet, PEMS are cri-
tical in all the levels of working and learning. To study
the extant literature relevant to designing and using
PEMS and to crystallize prescriptive meta-requirements
for the class of PEMS on the bases of the review and ex-
tensive experiences obtained in FiSMA, the authors co-
advised the M.Sc. thesis project of Matti Matikainen. In
the following, a summary of the meta-requirements (MR)
is presented mostly based on the FiSMA experiences. Ma-
tikainen [30] provides a review of the literature related to
the meta-requirements.

Figure 2. The PMBOK process groups (ovals) and
their mapping against the scope management oriented
processes (squares) of the PEM concept

Figure 3. The PEM concept: scope management orien-
ted project estimation and measurement processes

MR 1: PEMS shall support the project manager and
acquisition management in effort estimation through

• functional size measurement of software

• reuse analysis
• situation analysis
• determining the delivery rate based on an experience

database
• retrieving methodical knowledge from the experience

database to enable functional size measurement,
reuse analysis, and situation analysis

• performing the estimations and analyses and
• storing the estimates and other results of the analyses

in the experience database.
MR 2: PEMS shall support the project manager in

• automated project-level macro-estimating (i.e., rapid
and easy estimation of the entire project on a coarse
level) and

• task-level micro-estimating (i.e., time consuming and
laborious but accurate estimation of each activity and
deliverable of the project).

MR 3: PEMS artifacts (i.e., methods and models codified
in PEMS) shall support the initiation of the project and
the storing of project data in a standard format by
enabling the project manager to

• select the most relevant methods and models for
functional size measurement, reuse analysis, situation
analysis, and delivery rate determination

• utilize classification questions that enable the
determination of delivery rates

• adjust available methods and
• define the target software.

MR 4: PEMS artifacts shall support project manager in
cost and duration estimation by

• storing and collecting data related to project size, cost
and duration in a standardized format

• identifying the characteristics of the development
environment

• collecting functional user requirements
• determining non-functional requirements
• estimating reusability requirements
• calculating the estimated size, cost and duration, and
• determining the target delivery rate based on similar

internal or external projects.
MR 5: PEMS artifacts shall support delivery rate determi-
nation through internal and external experience databases.
MR 6: PEMS artifacts shall support acquisition manage-
ment, project manager, and project office in progress
controlling through

• change control and estimate version control
• defining a readiness rate of the project deliverables

and calculating a new readiness rate
• calculating a new project estimate
• comparing the previous and the new versions of the

estimate
• storing updated measurement data, and
• providing comparison reports about progress.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

MR 7: PEMS artifacts shall support change management
and its linkage to the estimation process by

• analyzing the impacts of changed or new
requirements on the project

• calculating a new version of the estimate based on
changed functional size, situation multiplier, reuse
rate, and delivery rate

• comparing previous and changed versions of the
estimate, and

• providing comparison reports.
MR 8: PEMS artifacts shall support development closure
by

• enabling the project manager to close the realized
functionality and to define the final version of the
project data including the actual duration and effort

• determining the actual productivity (e.g., function
points/h) and delivery rate (e.g., h/fp) of the project

• providing and delivering the final reports to project
manager, project office, and acquisition management.

MR 9: PEMS artifacts shall support new development,
enhancement, maintenance, and modification projects.
MR 10: PEMS artifacts shall require

• effective requirements process throughout the project
life-cycle (specifically during initial scoping and
analysis and whenever new change requirements or
constraints require change management and impact
analysis) to yield high quality specifications for
calculating functional size of the software

• evaluation of reusability requirements
• evaluation of resources and non-functional

requirements
• information about changes
• information about project deliverables, and
• identification of target delivery rate.

MR 11: PEMS artifacts shall support the benchmarking
of software and systems development and maintenance
processes with the help of different databases
MR 12: PEMS artifacts shall support top-management
decision-making, new goal setting and project steering
through

• benchmarking and
• deriving product and process development goals from

the business goals.
MR 13: PEMS artifacts shall support software process
and organizational improvement by enabling the project
manager, project office, and acquisition management to

• control progress and manage changes during the
development project by continuously analyzing the
project, process, product and people related
situational factors

• benchmark the current situation to past performance
within the organization and the measurement
network

• analyze the productivity implications of IT tools and
software engineering environments used in the

projects
• improve development methodologies and tools and
• develop the competencies of the people involved and

reassign responsibilities respectively.
MR 14: PEMS artifacts shall support data quality
assurance to ensure excellent data quality and reliable
support for decision-making and organizational learning.
MR 15: PEMS artifacts shall support classification,
categorization, and sample selection of project data (e.g.,
business sector, project type) for

• delivery rate determination and
• benchmarking.

MR 16: PEMS artifacts shall support domain-specific and
organization-specific benchmarking.

4. Meta-design of the Design Product Theory
for Software Project Estimation and
Measurement Systems

Participants and Systems Involved in Scope
Management Processes at Project Level

Several actors are needed to make the scope manage-
ment processes reliable and fluent. This chapter introdu-
ces all different groups and systems involved in the five
processes of the PEM concept. Three main actors partici-
pating in all processes are acquisition management inclu-
ding both provider and consumer representatives, the pro-
ject manager, and PEMS. Other actors are project team
members, the project office of the organization, the mea-
surement network (FiSMA), and project databases and ot-
her project management systems interfacing with PEMS.

Consumers are responsible for acquisition management
and broader scope, business management, and develop-
ment program steering. When a software product line pro-
vider is developing assets for strategic reuse across the
product line, consumers typically include the top manage-
ment and other internal stakeholders within the provider
organization.

Initiating the Project and the Software to be
Developed (MR 1, 2, 3, 9, 10, 15)

The purpose of initiating the project is to ensure that the
project and software to be developed are manageable and
measurable. The active participants of initiating process
are acquisition management, project manager, and PEMS.
Complementary information may be needed from project
team members, project office, and sometimes from the
measurement network.

The initiating process starts when the acquisition mana-
gement asks the project manager to estimate the cost and
duration of a new software development project. Project
manager gathers all background information needed from
the requirements and other documents and by intervie-
wing stakeholders as necessary. Then he or she uses the
PEMS to establish basic information about the project

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

(e.g., expected deliverables) and one or more pieces of
software to be developed in the PEMS. The experience
database contains several different classifiers (e.g., busi-
ness sector of the customer, development type, and deve-
lopment tools and programming languages used) needed
for project and software classifications. Project manager
answers all questions asked by the software and then se-
lects the appropriate estimation methods. The PEMS con-
sists of several alternative methods that may be needed
during estimating. Project manager makes her or his se-
lection depending on the project type (e.g., new develop-
ment or corrective maintenance) and recommendations of
project office. Finally, the experience database is updated
if there is new data available. Project manager may ask
for the most recent data from the company project office
or with its help from the measurement network. There are
several project databases available for FiSMA members
using PEMS.

The initiating process is usually immediately followed
by the estimating process. Acquisition management typi-
cally doesn�t need to formally accept the initiation. But
the project manager may ask for advice from the manage-
ment whenever there is substantial uncertainty about the
measurability of the software or the manageability of the
project.

Figure 4. Initiating software development

The initiating process has become an increasingly im-

portant part of the PEM concept during this decade. It
used to be the first part of the estimating process but this
design lowered its perceived importance, particularly
hampering the estimation and measurement of large pro-
jects. Too large projects need to be divided into multiple

sub-projects preferably by the initiation phase and an app-
ropriate work-breakdown-structure and project life-cycle
model need to be selected to reduce project risk. Project
initiation has thus been made an independent process. The
process grouping of PMBOK [35] also helped to make
this decision: the only process in the initiating processes
group involves scope management.

Estimating Cost and Duration (MR 1, 4, 5, 10, 12, 15)

Estimating starts when acquisition management asks the
project manager to estimate the effort and duration of the
initiated project. The purpose of estimating is to collect
and analyze all information affecting the effort and dura-
tion of the project. The deliverables of the process will be
appendixes of the project contract and the project plan.

Project manager starts estimating by collecting informa-
tion of all functional user requirements and entering data
of functional components and their characteristics to the
PEMS. The PEMS supports several alternative functional
size measurement methods. The exact list of questions as-
ked during this step depends on the FSM method selected,
but the information needed is based solely on functional
user requirements. Again, the project manager may find
the information from requirements specifications or by in-
terviewing the user representatives pointed by the acquisi-
tion management. The result of this step is the functional
size of the software expressed in function points.

The second step of estimating is reuse analysis [7]. Reu-
se may remarkably increase or decrease the effort needed.
If there are lots of reusable components available for the
project, the effort estimate is reduced from the average le-
vel. If new reusable components need to be developed du-
ring the project, the total effort estimate will increase. Re-
sult of this step is the coefficient of different types of reu-
se, varying on both sides of 1. The PEMS calculates both
the coefficient multiplier and reuse rate of the project.

The third step of estimating is situation analysis. Project
manager collects information about circumstances of the
project. There are two different sets of productivity fac-
tors implemented in the PEMS. The method selection is
made based on the development project type, that is, new
development and enhancement [6] or maintenance. In
both sets there are questions about the organization, the
development process maturity, the quality requirements of
the target software and the skills and experience of the
development project team. The result of situation analysis
is a situation multiplier. The better the circumstances are
the smaller is the multiplier. If everything is average, the
value of the multiplier is 1.

Next, the project manager shall determine the delivery
rate (expressed in hours per functional size unit, h/fp) to
be applied in the estimate. The database of PEMS con-
tains data from several project databases organized to
support the searching of past projects analogous to the
current project. Projects have been categorized by deve-
lopment type, business sector, target platform, and dep-

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

loyed software development tool. If the project manager�s
organization has systematically collected data from pro-
jects similar to the current project by all four criteria, the
delivery rate is determined on this basis because the data
best reflects the organization specific engineering and bu-
siness practices likely to be applied to the project (c.f.,
[22; 23]).

When own applicable data is not available for finding
analogies to determine the delivery rate, other databases
need to be used. For the FiSMA network, the Experien-
ce® database (almost 900 projects from Finland by 2008)
and the international ISBSG [12] database (more than
4000 projects from 28 countries in 2008) are available.
Almost 10 per cent of all projects in ISBSG are Finnish
projects, thus partially overlapping with Experience®
database but the ISBSG database has a set of attributes
slightly different from Experience®.

Figure 5. Estimating software development cost and

duration

The fifth step of estimating is risk analysis. However, it

is not a part of the design product theory. Based on the
analysis of accumulated project data in the experience da-
tabase of FiSMA, risk analysis does not affect the accura-
cy and other quality properties of cost and duration esti-
mates. Moreover, there are no validated kernel theories
for refining software project estimates based on risk ana-
lysis. It has been included in the estimating process be-
cause (1) members of the FiSMA network have explicitly
required it to meet their practical needs and (2) it is pos-
sible that risk analysis can be developed in future research
to enhance estimation and measurement to the extent that
it can be incorporated in the design product theory.

Progress Controlling Process (MR 6, 13)
PEMS supports periodical controlling of the progress of

the project. Acquisition management typically wants the
progress reports bimonthly or monthly. In agile develop-
ment projects, progress can be assessed after every sprint
(i.e., weekly or even daily). Project manager retrieves the
most recent estimate from PEMS, consults the project
team as necessary to evaluate the minor changes in func-
tional and reusability requirements and reuse of compo-
nents that have occurred after the previous estimate was
created, and updates the changes in PEMS. PEMS then
calculates the functional size, reuse rate and multiplier,
and situation multiplier (referred to as �variables� in Fi-
gure 6). Delivery rate can also be refined if it has proven
unrealistic. PEMS then produces new versions of the ef-
fort and cost estimates. Next, project manager updates in-
formation about progressed deliverables (e.g., functional
user requirements that have changed status from initiation
to specified, designed, constructed, tested, or ready for
installation). PEMS then calculates the readiness rate of
the project in percentage (100 * the total functional size
of the finished deliverables divided by the total functional
size of all expected deliverables of the project). Readiness
rate is similar to the concept of earned value, but earned
value is typically expressed in Dollars or Euros rather
than function points or percentages. The functions and
phases matrix refers to a table, where the rows and co-
lumns represent, respectively, all functional user require-
ments and the phases of the applied work breakdown st-
ructure. Each phase has been allocated a certain percenta-
ge of the total effort during the initiating and estimating
processes. For example, if specification accounts for 30
per cent of the effort and the size of a report is 5 fp, the
specified report deliverable accounts for 1.5 fp in readi-
ness rate calculation. The matrix is a crucial artefact of
the design product theory because functional user require-
ments must be developed and tracked following a com-
mon life-cycle model, that is, each requirement must be
specified, designed, constructed, tested, and prepared for
installation. Finally, the project manager analyzes and
delivers appropriate progress reports provided by PEMS
to the project team, acquisition management, and project
office and, when needed, has the possible changes in the
project plan approved by acquisition management.

Change Management Process (MR 1, 7, 9, 10, 13, 15)

The desired outcomes change during the progress of the
project. Existing requirements are clarified and new ones
are introduced as the work progresses, and particularly
when the first results are implemented, in both custom
software development projects and in projects that result
in software products. Changes in functional and nonfunc-
tional user requirements affect project scope and thus
need to be systematically managed from the early require-
ments elicitation phase throughout planning and execu-
ting [28; 39].

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

Figure 6. Process of controlling software development
progress

Figure 7. Process of managing software development

changes

Change management process is started when acquisition
management has a set of significant needs (referred to as
idea in Figure 7) that have not been anticipated before
and that will substantially change the scope if accepted
for development. Such needs should be collected in the
form of explicit change requests and analyzed throughout
the project life-cycle [28]. Whenever possible, related re-

quests (e.g., all requests related to security requirements)
should be prioritized and batched together instead of
dealing with them individually [27], their scope impact
should be analyzed in a single instantiation of the change
management process, and subprojects should be establis-
hed to deal with the batches in order to improve efficien-
cy and effectiveness of analysis and development work. If
such a background process is not in place, numerous hete-
rogeneous requirements may make change management
very complex for the project manager.

The project manager collects the new functional
requirements and uses PEMS to estimate their functional
sizes and the total functional size of the software. PEMS
typically helps the project manager refine and improve
the quality of the requirements in collaboration with
acquisition management because the functional sizing
methods afforded by PEMS do not work well when
requirements are unclear. Next, changes in non-functional
requirements and other consequences of the changed
scope (that is, reusability requirements, project situation,
and delivery rate) are assessed and updated in the
experience database and a new version of the effort
estimate is calculated and stored in the database. Finally,
a comprehensive report about the results of the impact
analysis is presented to acquisition management who then
makes the decision about the possible scope change.

Closing the Development Project (MR 8, 11, 13, 14, 16)

Normally, a project is closed when acquisition manage-
ment decides that the desired results have been realized
and the project tasks have been completed. In this case,
the project manager (1) creates and stores the final ver-
sion of the project information in PEMS, including the
realized size of software, the effort spent in every phase
of the project life-cycle, the duration of each phase, and
the methods and tools used, (2) delivers the project re-
ports provided by PEMS for acquisition management and
project office, and (3) extracts project data for project of-
fice who may forward (parts of) it for use in external
benchmark databases. PEMS calculates the realized deli-
very rate for use in estimating analogical projects in the
future. To facilitate organizational and inter-organizatio-
nal learning, project office is very active in analyzing and
benchmarking the results internally with other projects,
documenting the lessons learnt, and preparing and
delivering data to external benchmark databases.

When the project does not reach the desired results but
has to be ended anyway, the process is usually followed
normally. For example, the realized functional size will
simply be lower than anticipated. However, in the rare
case of a complete project failure where there is no
meaningful software deliverable to measure, no updates
will be made to the project database to ensure high data
quality.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

Figure 8. Process of closing software development

5. Conclusions and Future Research

The contributions of this paper are the holistic presen-

tation of the PEM concept and the meta-requirements and
meta-design of the design product theory for PEMS. They
help practitioners develop their estimation and measure-
ment processes and develop or acquire systems and asso-
ciated databases to enable the processes. The referenced
FiSMA sources facilitate detailed implementation of
PEMS instances because even the detailed algorithms are
available. The PEM concept has been registered in 2008
and published with the name northernSCOPE on the
FiSMA web-site [8].

Due to space limitations, the design product effective-
ness hypotheses of the theory (clarifying the expected or-
ganizational benefits from using a PEMS instance derived
from the class of PEMS) and the data model of the expe-
rience database have been beyond the scope of the paper.
The hypotheses are needed for the empirical validation of
the theory in future research. The data model is a crucial
part of the design product theory. Software providers typi-
cally need their own experience databases and those of
the software measurement network and even other exter-
nal service providers to yield reliable estimates and
benchmark their development practices against best-in-
class providers. Currently the databases are incompatible
and relatively small with respect to the number of projects
partly because no international standard based on a vali-
dated design product theory exists for the data model and
partly because no standardized policies and procedures
exist for data collection and analysis of the databases and
for calibration and validation of the estimation models.
Future research and international standardization efforts

are thus needed to establish effective and agreed upon da-
ta collection and analysis practices and a data model for
the databases associated with PEMS. Such a standardiza-
tion project has been initiated in 2008 by International
Organization for Standardization and both authors of this
paper are involved in it.

To further validate the theory, our future research will
conduct well-representative case studies in a few member
organizations of FiSMA. The studies will analyze how
and why the PEM concept and the commercially available
PEMS aligned with the theory have helped (1) a few con-
sumer organizations systematically acquire software suc-
cessfully through domestic eSourcing and (2) a few soft-
ware vendors systematically deliver what the consumers
had wanted in time and in budget. We will also investiga-
te a new job role of a professional Scope Manager, who
can assist and advise project management groups in scope
management throughout the development lifecycle. That
role has recently been suggested to be instrumental in
further improving the effectiveness of the PEM concept
[9]. To increase the generalizability of the design product
theory, we will analyze during the validation and refine-
ment process to what extent the PEM concept and the de-
sign product theory are applicable in the U.S. context.
The validated theory helps (1) system vendors to develop
productized PEM systems and (2) the markets to know
what to expect from the systems and how to evaluate
them.

6. References

1 Basili, V.R., Caldiera, G. and Rombach, H.D. (1994). The
Experience Factory. Encyclopedia of Software Engineering,
Volume 1, John Wiley & Sons.
2 Boehm, B.W., Abts, C., Winsor Brown, A., Chulani, S.,
Clark, B.K., Horowitz, E., Madachy, R., Reifer, D., and Steece,
B. (2000). Software Cost Estimation with COCOMO II,
Prentice-Hall.
3 Briand, L.C., El Emam, K., Surmann, D., Wieczorek, I.,
and Maxwell, K.D. (1999). An Assessment and Comparison of
Common Software Cost Estimation Modeling Techniques.
Proceedings of the 21st International Conference on Software
Engineering, Los Angeles, CA, United States, 313-322.
4 Cost Xpert (2008). Cost Xpert Suite.
http://www.costxpert.com/en/index.html.
5 DCG, David Consulting Group (2008). The DCG Industry
Benchmark Database Query Tool.
http://www.davidconsultinggroup.com/resource/industry/.
6 FiSMA (2001). Experience ND21 Situation Analysis Met-
hod. http://www.fisma.fi/wp-
content/uploads/2006/09/fisma_situation_analysis_method_nd2
1.pdf.
7 FiSMA 2002. FiSMA Reuse Measurement Method,
FiSMA RMM version 2002. http://www.fisma.fi/wp-
content/uploads/2006/09/fisma_reuse_analysis_method_10.pdf.
8. FiSMA (2008). www.fisma.fi.
9 Forselius, P., Dekkers, C., Karvinen, M., and Kosonen, M.,
(2008). Program Management Toolkit for Software and Systems
Development, Talentum Media, Helsinki, Finland.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

10 Galorath (2008). SEER Project Management Tool.
http://www.galorath.com/index.php/products/.
11 Hevner, A. R., March, S. T., Park J., and Ram S. (2004).
Design Science in Information Systems Research. MIS
Quarterly, 28(1), 75-105.
12 ISBSG (2008). International Software Benchmarking
Standards Group, http://www.isbsg.org/.
13 ISO (2003a). ISO/IEC 19761: Software Engineering --
COSMIC-FFP -- A Functional Size Measurement Method.
International Organization for Standardization,
http://www.iso.org.
14 ISO (2003b). ISO/IEC 20926: Software Engineering --
IFPUG 4.1 Unadjusted Functional Size Measurement Method --
Counting Practices Manual. International Organization for
Standardization, http://www.iso.org.
15 ISO (2003c). ISO/IEC 20968: Software Engineering -- Mk
II Function Point Analysis -- Counting Practices Manual. Inter-
national Organization for Standardization, http://www.iso.org.
16 ISO (2005). ISO/IEC 24570: Software Engineering --
NESMA Functional Size Measurement Method, version 2.1 --
Definitions and Counting Guidelines for the Application of
Function Point Analysis. International Organization for
Standardization, http://www.iso.org.
17 ISO (2006). ISO/IEC 14143 Information Technology --
Software Measurement -- Functional Size Measurement-Part 6.
International Organization for Standardization,
http://www.iso.org.
18 ISO (2007). ISO/IEC 15939, Information Technology --
Software and Systems Engineering � Measurement Process.
International Organization for Standardization,
http://www.iso.org.
19 ISO (2008). ISO/IEC 29881, Information Technology --
Software and Systems Engineering -- FiSMA 1.1 Functional
Size Measurement Method. International Organization for
Standardization, http://www.iso.org.
20 ISPA (2008). Parametric Estimating Handbook.
International Society of Parametric Analysts. http://www.ispa-
cost.org/ISPA_PEH_4th_ed_Final.pdf.
21 Jones, C. (2008). Applied Software Measurement, Third
Edition. McGraw-Hill.
22 Jeffery, R., Ruhe, M., and Wieczorek, I. (2000). A
Comparative Study of two Software Development Cost
Modeling Techniques Using Multi-organizational and
Company-specific Data. Information and Software Technology
42, 1009-1016.
23 Jeffery, R., Ruhe, M., and Wieczorek, I. (2001). Using
Public Domain Metrics to Estimate Software Development
Effort. Proceedings.of METRICS 2001: Seventh International
Software Metrics Symposium.
24 Jørgensen, M. and Shepperd, M. (2007). A Systematic
Review of Software Development Cost Estimation Studies.
IEEE Transactions on Software Engineering, 33(1), 33-53.
25 Kitchenham, B.A. (1992). Empirical Studies of
Assumptions that Underlie Software Cost-estimation Models.
Information and Software Technology, 34(4), 211-218.
26 Käkölä, T. (2008). Best Practices for International
eSourcing of Software Products and Services. Proceedings of
HICSS-41. IEEE.
27 Käkölä, T., Koivulahti-Ojala, M., and Liimatainen, J.
(2009). An Information Systems Design Theory for Integrated
Requirements and Release Management Systems. Proceedings
of HICSS-42. IEEE.

28 Käkölä, T. and Taalas, A. (2008). Validating the
Information Systems Design Theory for Dual Information
Systems. Proceedings of the 29th International Conference on
Information Systems, Paris (in press).
29 Laird, L.M. and Brennan, M.C. (2006). Software
Measurement and Estimation: A Practical Approach. Wiley-
IEEE Computer Society Press.
30 Matikainen, M. (2006). Information System Supported
Project Estimation and Measurement. M.Sc. thesis. University
of Jyväskylä, Finland.
31 Maxwell, K.D. (2002). Applied Statistics for Software
Managers. Software Quality Institute Series, Prentice-Hall.
32 Maxwell, K.D. and Forselius, P. (2000). Benchmarking
Software Development Productivity. IEEE Software, 17(1), 80-
88.
33 Premraj, R., Shepperd, M.J., Kitchenham, B.A., and
Forselius, P. (2005). An Empirical Analysis of Software
Productivity over Time. 11th IEEE International Symposium on
Software Metrics, IEEE Computer Society.
34 PRICE Systems (2008). True S: Software Acquisition and
Development.http://www.pricesystems.com/products/true_s.asp.
35 Project Management Institute (2000). A Guide to the
Project Management Body of Knowledge (PMBOK).
36 Putnam, L.H. and Myers, W. (1991). Measures for Excel-
lence: Reliable Software on Time, within Budget. Prentice Hall.
37 QSM, Quantitative Software Management (2008). Slim
Tools: a Total Life-cycle Solution.
http://www.qsm.com/products.html.
38 Rollo, A., Morris, P., Wasylkowski, E., Dekkers, C., and
Forselius, P. (2008). ISBSG Benchmarking Standard, Version
1.0. http://www.isbsg.org/.
39. Salo, A. and Käkölä, T. (2005). Groupware Support for Re-
quirements Management in New Product Development. Journal
of Organizational Computing and Electronic Commerce, 15(4),
253-284.
40 Shepperd, M. and Schofield, C. (1997). Estimating
Software Project Effort Using Analogies, IEEE Transactions on
Software Engineering, 23(11), 736-743.
41 Softstar (2008). Costar 7.0 Software Estimation Tool.
http://www.softstarsystems.com/.
42 SPR, Software Productivity Research (2008). SPR
KnowledgePlan. http://www.spr.com/products/knowledge.shtm.
43 STSC (2003). Guidelines for Successful Acquisition and
Management of Software-Intensive Systems: Weapon Systems,
Command and Control Systems, Management Information Sys-
tems - Condensed Version 4.0. Software Technology Support
Center, the U.S. Air Force.
http://www.stsc.hill.af.mil/resources/tech_docs/.
44 Stutzke, R. D. (2005). Estimating Software-Intensive
Systems: Projects, Products, and Processes. Addison-Wesley.
45 Walls, J.G., Widmeyer, G.R., and El Sawy, O. (1992).
Building an Information System Design Theory for Vigilant
EIS. Information Systems Research, 3(1), 36-59.
46 Walls, J.G., Widmayer, G.R., and El Sawy, O. (2004).
Assessing Information System Design Theory in Perspective:
How Useful was our 1992 Initial Rendition? Journal of
Information Technology Theory and Application, 6(2), 44-58.
47 Wieczorek, I. (2001). Improved Software Cost Estimation:
A Robust and Interpretable Modelling Method and a
Comprehensive Empirical Investigation. Ph.D. Theses in
Experimental Software Engineering, vol.7. Fraunhofer IRB
Verlag.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

