

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

An Information Systems Design Theory for Integrated Requirements and Release
Management Systems

Käkölä, Timo; Koivulahti-Ojala, Mervi; Liimatainen, Jani

Käkölä, T.; Koivulahti-Ojala, M.; Liimatainen, J., "An Information Systems Design
Theory for Integrated Requirements and Release Management Systems," System
Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on , vol., no., pp.1-
10, 5-8 Jan. 2009. doi: 10.1109/HICSS.2009.66

2009

An Information Systems Design Theory for Integrated Requirements and Release

Management Systems

 Timo Käkölä & Mervi Koivulahti-Ojala Jani Liimatainen
University of Jyväskylä Accenture

40014 Jyväskylä 00101 Helsinki
Finland Finland

 {timokk, meelheko}@jyu.fi jani.liimatainen@accenture.com

Abstract: High-tech companies need to collect and analy-
ze requirements and allocate them to appropriate product
releases in market-driven product development. Develop-
ment activities are typically scattered across multiple sites
and involve multiple partners in different countries,
complicating requirements and release management. Fle-
xible, scalable, and secure groupware-based support for
the activities provides substantial payoffs. Yet, the extant
literature provides little theoretical guidance for designing
and using requirements and release management systems
in multi-site, multi-partner environments. This article de-
velops the meta-requirements and a meta-design of an
Information Systems Design Theory for the class of Re-
quirements and Release Management Systems based on a
case study in a global company and a literature review.
The theory is scalable to meet the needs of global compa-
nies but simple enough so small and medium sized com-
panies can also leverage it to implement requirements and
release management solutions.
Keywords: Global software development, Information
systems design theory, Knowledge management, Release
management, Requirements management, Software
process improvement

1. Introduction

To succeed in the global markets of software-intensive
products, high-tech companies need to shorten the cycle
time of new product development (NPD) while improving
product quality and service delivery and maintaining or
reducing the total resources required [7;40].

This concern can be dealt with (1) internally through
strategies such as global software development, where de-
velopment resources are distributed globally to reap cost
benefits and address specific needs of geographically-de-
fined markets [10;44], and software product line enginee-
ring and management, that is, the strategic acquisition,
creation, and reuse of software assets [32; 36; 43] or (2)
externally by acquiring commercial off-the-shelf compo-
nents and outsourcing software development, maintenan-
ce, and related services to best-in-class international
outsourcing service providers (IOSPs) [11, 31]. A viable
third strategy is to enact both strategies in parallel.

All the strategies require companies to effectively col-
lect, analyze, and utilize requirements in their market-dri-
ven product development [1;22;23;26;45;48]. This is par-
ticularly true during the earliest phases of NPD in which
different stakeholders need to integrate their knowledge
into product concepts that direct the internal personnel
and the IOSPs during the downstream phases of NPD
[2;8;21]. A well-defined product concept is necessary to
establish a viable product line architecture that can be
shared across the products within the product line to enab-
le strategic reuse. Well-defined requirements, architectu-
ral interfaces, and product structures are prerequisites for
assigning appropriately scoped projects to IOSPs for imp-
lementation [11; 31].

The achievement of such integration is complicated by
several factors [13]. Large amount of requirements ran-
ging from abstract wishes to detailed technical solution
proposals are created continuously. Development activi-
ties are scattered across many sites and partners in diffe-
rent countries, limiting possibilities for setting up face-to-
face meetings [26]. Organizational changes, differences in
organizational cultures, and divergent perceptions about
the prospective product�s mission may make it difficult to
reach an agreement about the product definition [12].

A commonly enacted software product line governance
model and a strategic product line roadmapping process
need to be instituted to ensure the organization is ready
for multi-site development [36;52]. All sites should use as
compatible processes, methodologies, tools, and termino-
logy as possible to enact the governance model [24]. The
roadmaps detail the planned evolutions of the product li-
nes and products by explicating common and variable
features and allocating the features to scheduled product
releases and responsible development organizations [43].

A critical component of the governance model is that all
requirements are (1) captured in a repository to ensure
they are neither missed nor overlooked and (2) subjected
to effective filtering in order to prevent information over-
load [34;48;49]. The remaining requirements are then re-
fined, specified, estimated in terms of cost and resource
implications, prioritized, and allocated to product releases
and development units. Flexible, scalable, and secure
communication, coordination, and collaboration support

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

for these activities poses a significant challenge with
substantial payoffs.

Design theories, unlike other theories, support the achie-
vement of goals [4;25;37;50;51]. Walls, Widmeyer, and
El Sawy [50, p. 37] argue that the information systems
(IS) �field has now matured to the point where there is a
need for theory development based on paradigms endoge-
nous to the area itself� and call for information system
design theories (ISDT) to fulfill that need. An ISDT is �a
prescriptive theory based on theoretical underpinnings
which says how a design process can be carried out in a
way which is both effective and feasible� (ibid, p. 37).

Salo and Käkölä [48] found that groupware-based
requirements management systems (RMS) need to be
designed and used to redesign and enact the earliest
phases of product development effectively in multi-site,
cross-functional organizations. They developed an ISDT
for RMS in order (1) to facilitate endogenous theory
development in the context of RMS research, (2) to help
RMS designers build successful RM systems, and (3) to
guide organizations in evaluating and deploying RMS.

Salo and Käkölä [48] found that the benefits afforded by
RMS were hampered if the RMS instances prescribed by
the ISDT were not integrated with systems used in the
downstream phases in order to provide transparent end-to-
end support throughout the product development lifecyc-
le. For example, customer representatives responsible for
entering requirements could not use RMS to follow-up if
and when the requirements would be implemented,
lowering their interests in entering the requirements. The
scope of the ISDT should thus be broadened to design
systems that support the lifecycle more comprehensively.

This research focuses on integrating requirements
management with release management. Release manage-
ment is concerned with the identification, packaging, and
delivery of product�s elements [27]. It mirrors re-
quirements management in the other end of the NPD life-
cycle ensuring that internal and external releases meet the
(specified and managed subset of) requirements identified
in the front end of NPD and agreed upon during release
planning and product line roadmapping. Based on our
extensive industrial experience and review of academic
literature, we hypothesize that the theoretical validity and
practical relevance of the ISDT for RMS can be enhanced
most effectively by extending the ISDT to provide integ-
rated support for requirements and release management.

Release planning must be conducted carefully and sys-
tematically and the release plans must be communicated
clearly and in time upstream to the stakeholders respon-
sible for the requirements and the product strategy and
downstream to the internal and external service providers
[34]. Otherwise, it is difficult for the providers to
schedule and synchronize their production activities to
meet the requirements specified in the release plans. For
example, requirements are unlikely to be measurable and
the functional sizes of software releases cannot be esti-

mated [17;28] if the requirements are not linked to
releases implementing them. The extant literature provi-
des little guidance for designing and deploying integrated
Requirements and Release Management systems.

This article develops the product aspects of the ISDT
for the class of Requirements and Release Management
Systems (RRMS). It addresses the following research
question: What are the necessary and sufficient properties
of RRMS in a multi-site, multi-partner environment? The
main contributions of the article are the meta-require-
ments of the ISDT and a meta-design that partially meets
the meta-requirements. They are crystallized and valida-
ted based on (1) a case study in a global organization that
deploys a RRMS instance (hereafter, RRMS) for effective
requirements and release management and (2) a literature
review in the areas of requirements management, release
management, and process integration. The ISDT has been
created based on the experiences in the global organiza-
tion to ensure the meta-design is scalable. However, we
have made every effort to simplify the meta-design so
even small and medium sized organizations can leverage
it to implement RRMS solutions.

2. Research Method

A literature review was performed to develop prelimina-
ry meta-requirements and meta-design elements before
the case study started. The review was essential to reduce
bias induced by the single case study and ensure
generalizability of the meta-requirements and the meta-
design to maximum possible extent [54]. Potential meta-
design elements that according to the review were
peculiar to the organization were eliminated.

RRMS was a proprietary Lotus Domino based applica-
tion developed in the organization. It had been producti-
zed, that is, one RRMS design was used. Business units
had been closely involved in designing the system from
the beginning and become committed to using and further
developing it. They considered RRMS highly malleable
to changing business needs partly because the organiza-
tion controlled RRMS and business units did not need to
negotiate with external vendors when changes were nee-
ded. RRMS had been institutionalized across the organi-
zation by the time the study was started. It was used by all
development projects and updated by more than 10 000
people. RRMS enabled the projects quickly to locate
existing reusable assets, substantially increasing producti-
vity. Details concerning the organization and RRMS are
beyond the scope of the paper.

While there were many reasons why RRMS was suc-
cessful in the organization, one reason is crucial from the
viewpoint of creating the ISDT for RRMS: RRMS enab-
led the real-time transparency and management of NPD
efforts organization-wide but it was well scoped, did not
impose more control and order than was necessary, and
enabled people to use other information systems they we-

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

re familiar with. For example, RRMS did not replace
existing project and portfolio management and product
line roadmapping systems, which require advanced algo-
rithmic models (e.g., what if-analyses, cost and effort esti-
mation, optimization of inter-dependent releases) and vi-
sualization techniques. Software development processes
and systems were not significantly affected either because
software development was beyond the scope of RRMS.
Projects increasingly leveraged agile development practi-
ces. RRMS thus could not impose unnecessarily stringent
control mechanisms on them. Only the inputs to and the
deliverables of management and software development
processes and systems were dealt with by RRMS. For
example, if requirements in RRMS needed specific pro-
duct or organizational models to make them understan-
dable, the models in the modeling environments were
linked directly to RRMS or, sometimes, imported to
RRMS. The analysis of RRMS has helped us to scope the
partial ISDT for RRMS appropriately.

Two authors, a doctoral student and a master�s student
in information systems research, worked full time in the
organization during a 6 month study period. RRMS had
become increasingly complex over the years when its de-
signers had tried to meet the ongoing influx of new
requirements. While its functionality had been documen-
ted well, the organization was keen to further develop it.
A current state analysis of RRMS was thus deemed neces-
sary to better understand the limitations and possibilities.
Major RRMS design changes were not realized during the
study. Authors had access to all relevant information and
could interact with all people who had been involved with
the RRMS design. They observed the use of RRMS,
analyzed documentation, and conducted six semi-
structured interviews with middle-level managers who
had been involved with both process improvement and
the design and use of RRMS. After interviews were
completed, interviewees were provided with interview
transcripts and summaries. Interviewees reviewed the
meta-requirements and proposed new ones that were
added to the original set if all interviewees considered the
proposed meta-requirements critical for RRMS. The
proposed meta-requirements and meta-design were used
in the organization for further development of the RRMS.

Interestingly, the people authors interviewed or otherwi-
se interacted with could not specify academic papers in-
fluential during the RRMS design. They were experts
with long organizational tenures and relied on theories-in-
use [3] developed primarily through social interactions
(c.f., [42]), experiences from earlier projects, and agile
development practices instead of academic papers or
design theories. Authors thus became increasingly
intrigued with how to build such a simple but scalable and
effective ISDT for RRMS based on the case study that
designers and managers in other organizations would be
willing to use such a theory in addition to trial and error
mechanisms and long-reinforced theories-in-use.

3. Meta-Requirements of the ISDT for RRMS

This section presents the meta-requirements for the
ISDT for RRMS. They are introduced by revising a fra-
mework of Salo and Käkölä [48]. The framework consi-
dered meta-requirements in relation to three categories of
services that RMS have to offer: (1) communication, (2)
control and (3) change. Communication refers to the abili-
ty of RMS to disseminate requirements information wit-
hin organization, including information about the rationa-
le for RM and its relationships to external environment.
Support for control ensures that requirements are dealt
with in accordance with approved principles and procedu-
res. Support for change is needed because products, tech-
nologies and customers change and RMS must remain
amenable to adjustments at all levels of RM activity.

Table 1. A framework for categorizing the meta-
requirements of the ISDT for RRMS.
Communication Control Change Platform de-

velopment
Process
Integration

 Prioritization
and valuation
of requirements
and the
allocation of
requirements
into releases
 Traceability
 Single

capture of
information

 Content ow-
nership and
accountability
 Management

and coordi-
nation
 Creating and

sharing of
metrics
information
 Access

rights and
information
security

 Version
management
of
requirement
documents
 Release re-

planning
 Change

management
and impact
analysis
 Defining

and main-
taining the
requirements
baseline

 Creation
and reuse of
reusable
assets
 Knowledge

creating
capacity

 Process
transparency
 Providing

information
at the right
level of
detail
 Providing

high quality
information

The three categories are valid for RRMS but two new

ones are needed: (4) Platform-based product development
and (5) Process integration. Platform is the physical imp-
lementation of the baseline entity that contains the com-
mon business requirements for all the derivative products
the platform has been designed to support (c.f., [6;38;39;
40;43]). All customer specific product development oc-
curs on top of the platform. Table 1 classifies all RRMS
meta-requirements.

3.1 Meta-Requirements in Support of Communication

Prioritization and valuation of requirements and the
allocation of requirements into releases

Requirements must be allocated into releases using re-
quirement prioritization and valuation methods that enab-
le the most crucial requirements to be implemented and
released first [9; 47]. The methods are typically based on
trade-off analysis between the (economic) values and
implementation costs and resource constraints associated
with the requirements [9,p.140;19;52]. They need to take

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

into consideration that all stakeholders do not have the sa-
me relative importance and that each stakeholder may va-
luate each requirement very differently [20;47].

According to interviews, customer involvement in
valuation, prioritization and selection adds value to these
processes: �Requirements can be prioritized to releases
by communicating with customers and agreeing on what
functionalities are wanted and on what timetable.�
Traceability

The purpose of requirement management is to achieve
complete traceability from customers via the organizatio-
nal departments to delivery [22,p.69]. Traceability impro-
ves risk assessment, project scheduling and change cont-
rol [23,p.12]. All interviewees agreed that traceability
from requirements elicitation to product delivery is criti-
cal for RRMS success. Interviewees also suggested other
needs for traceability (e.g., linking components, errors,
and use cases). But it is expensive to collect and manage
traceability information [30,p.129]. The following trace-
ability meta-requirements should always be implemented:

 Ability to trace forward from requirement sources to
requirements and from requirements to subsequent
features and corresponding design elements and
designs [15]
 Ability to forward trace from design elements to
subsequent designs and backward from corresponding
features to requirements [15]
 Ability to trace from requirements directly to design
entities and backward [30]
 Ability to trace requirements dependencies [18;30]

Single capture of information
RRMS instances should be the single capture points for

requirements, ensuring that there is no redundant and
inconsistent requirement information in the organization
and that all requirements are handled appropriately in a
single effective and transparent process reducing the risks
of missing or forgetting requirements. RRMS should thus
be (1) easy to use for occasional users in order to ensure
that they enter the information and (2) interfaced to
partners� systems to ensure that partners can create,
update, and review information as necessary.

3.2 Meta-Requirements in Support of Control

Content ownership

Requirements and release management activities should
have appropriate owners. The main obstacles to success-
ful requirements management are the lack of norms for
project and requirements management [22,p.70]. Content
ownership can be enhanced by assigning roles with clear-
ly defined responsibilities to persons. For example, a set
of requirements could be allocated to a requirement ma-
nager while particular releases could be assigned to a re-
lease manager. The role definitions and assignments im-
prove accountability, enable evaluations of people with
respect to their role expectations (e.g., release managers

may be evaluated based on the quality of releases they are
responsible for), and can ensure that all agreed upon deli-
verables are delivered in time and meet the defined quali-
ty criteria. Role based management also facilitates organi-
zational (e.g., people may continue their work in their old
roles in a new organization) and individual level changes
(e.g., a new person takes responsibility of a role) [33; 34].
This meta-requirement can thus be used in personnel
evaluation, process development, and quality control.
Management and coordination

Flows of requirements are coordinated and requirements
are allocated to releases through managerial activities and
decisions. For example, decisions need to be taken con-
cerning the acceptance of particular requirements to the
development process and the maturity levels of the requi-
rements. To allocate requirements to specific releases and
implementation teams and track their progress, require-
ments are assigned different statuses. Interviewees com-
mented this meta-requirement: �It should be possible to
see from the tool who is responsible for certain parts of
the process, who makes decisions concerning those parts,
what the timetables are, and what kind of documentation
should be available.�
Creating and sharing of metrics information

Measurement is an essential part of process manage-
ment [14;29;33]). Defined and measurable objectives are
needed to evaluate the current status and develop the pro-
cess. Metrics information enables comparison of process
effectiveness across projects and products over time (e.g.,
project portfolio and product line management).
Access rights and information security

Access rights and information security policies are im-
portant in high-technology companies. Products are typi-
cally designed and implemented in complex networks of
companies where competitors are also involved. RRMS
must help ensure that partners do not access each other�s
sensitive information. Multiple partners can build compe-
ting products on top of a shared platform and thus need to
share information about the platform but they should
know nothing about each other�s products and objectives.

3.3 Meta-Requirements in Support of Change

Version management of requirement and release
documents

Versions of individual requirements and requirements
specifications need to be controlled [53, p.268]. Change
management and document version management proces-
ses must be in place to create and maintain requirement
baselines. Requirement document version management is
related to the general workflow management. However,
one interviewee emphasized that it is most useful in requi-
rement development phase, not in later phases when the
documents are relatively stable. Change management and
version management processes should be aligned and ag-
reed upon: �If the change is large, a new requirement can

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

be created or the old one can be changed via the change
management process. In practice, we could use version
management for small revisions. But if the changes are
too large, change management needs to be used.�
Release re-planning

When software development is market-driven [45],
release planning and requirement prioritization are parts
of strategic product planning [9]. Release re-planning is
needed when, for example, the product strategy is
changed. Release re-planning may be related to planning
the release cycles and the scope, role and timing of each
individual release project or to release project
management (i.e., the length, scope, and the number of
iteration cycles of a project) when individual release
projects develop the product versions [46].
Change management and impact analysis

A clearly defined change management process is needed
to estimate impacts of possible changes and to control the
changes made to the requirements and releases [34].
Change management and impact analysis enable
organizations to be aware of the influences of requirement
changes on the resources and market situation.
Defining and maintaining the requirements baseline

Baselining refers to the freezing of current agreed upon
requirements. When the baseline decision has been made,
subsequent requirements are treated as change requests
and compared to the baseline. If the requests are accepted,
they will enter product development through the change
management process [34].

3.4 Meta-Requirements for Platform Development

Creation and reuse of reusable assets

Platforms are strategic organizational assets designed to
be reusable and afford common features and predefined
variation mechanisms through which mass-customized
products can be created quickly and cost effectively [43].
Platforms consist of assets such as requirements, design
elements, components, and user interfaces that are often
also reusable. RRMS should provide a comprehensive
information model to describe the assets adequately and
advanced search functionalities to help projects easily
find assets suitable for their needs.
Knowledge creating capacity

Knowledge creating capacity [16] of RRMS refers to a
functionality which helps users to leverage information
and the platform assets in novel and possibly unforeseen
ways. The following quote clarifies the matter:
�Requirement management involves the identification

and management of baselines and products [for strategic
reuse]. For example, we could see from the tool that this
baseline is good for our purposes and we just have to
change it from there and there in order to have a right
configuration for our needs.�

Ideally, users should not have to manually check the
suitability of baselines or products for strategic reuse.

RRMS should suggest alternative baselines and automati-
cally rank them by taking the parameters and constraints
imposed by the context of reuse into account. This is
possible when a mature platform has been created.

3.5 Meta-Requirements in Support of Process
Integration

Process transparency

RRMS should help make integrated requirements and
release management processes transparent, that is, the sta-
keholders involved should be able to understand the re-
sults of their RRMS-mediated actions and deal with unex-
pected errors or coordination breakdowns quickly before
expensive disruptions in routines and flaws in deliverab-
les occur [33;34]. Transparency can be facilitated by stan-
dardizing the terms and forms of information transfer.
One interviewee stated: �Process transparency is espe-
cially important in decision making situations. Another
important situation is when someone cannot implement,
for example, a requirement in a given timetable.�
High quality information

Organizations have to be able to base their requirements
and release decisions on high quality (i.e., accurate, speci-
fic, relevant, reliable, timely, and accessible) information
[41]. Transparent RRMS-mediated processes and com-
mitted and skillful people are crucial to ensure high quali-
ty. RRMS should also help users to identify which pieces
of information are the most critical in each phase of the
process, for example, by sending reminders and
highlighting the required fields in the different phases.
Providing information at the right level of detail

Appropriate granularity of information facilitates deci-
sion making and eliminates extraneous activities required
to decompose or summarize information [5]. The right
level of detail depends on the situation. For example,
highly mature requirements and release management
processes can leverage much more detailed (quantitative)
information than immature processes. RRMS must
incorporate and represent requirement- and release-related
information in granularity levels that are useful for
different process contexts and roles [48].

4. A Meta-Design of the ISDT for RRMS

This section first outlines a generic meta-design for
RRMS based on the analyses of interview transcripts,
RRMS, and the literature review. It covers a subset of the
meta-requirements specified in the previous section. The
section concludes by explicating the linkages between the
meta-requirements and the meta-design to validate the
meta-design and to justify its scope.

4.1 Information Model for Integrated Requirement
Management and Release Management Process

To design an effective requirement management and
release management process, the information model for

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

the process must be defined. We have synthesized a
simple but scalable model based on the literature review
and a detailed examination of RRMS. The experts of the
organization have reviewed and accepted the model. It
consists of four entities used in the integrated process and
links between and within the entities to enable
traceability, hierarchical composition (i.e., each entity can
consist of any number of the same type of entities), and
appropriate granularity of information (Figure 1):
Customer Requirement, Requirement, Feature and
Release. Requirement and Release are the base entities.
The other two are derivatives of Requirement.

Customer Requirement is used for requirements from
the external environment. Internal and external
requirements are separated to meet the meta-requirements
related to platform-based product development and
information security. For example, customer requirements
are business critical and can provide competitive
advantage by enabling organizations to focus efforts on
implementing the differentiating and high-value adding
requirements. Access rights for them and for requirements
have to be defined and enacted differently.

Requirement is used for internal requirements develo-
ped by internal product creation processes within an
organization or a network of companies collaborating to
create a joint platform for effective product development.
Requirement can thus be used for platform requirements
related to the platform offering. In the platform context,
customer requirements are used as the basis for
developing derivative products on top of the platform.
Separation of Customer Requirement and Requirement
also facilitates change management. Requirements can be
changed only through negotiations with their originators.
Negotiations with external requirement suppliers are more
challenging than with suppliers of internal requirements.

Figure 1. Information model of the meta-design of the

ISDT for RRMS

Features denote intended behaviors or properties of soft-

ware-intensive systems. They are usually created and ma-
naged as hierarchical solutions to the problems Require-
ments identify [55]. The solutions may reflect, for examp-
le, business processes, organizational structures, or pro-
duct architectures. Feature is the largest entity in the in-

formation model containing the technical specification,
workflow planning, and implementation. By using Featu-
re as a basis of implementation and technical specifica-
tion, requirements become more manageable and there
are clear traceability links to the origins of Feature instan-
ces and to implementation phases, that is, specifications,
responsible teams, and realized pieces of software code.

Release is used to group the implemented features into
manageable entities that are released. Releases can also be
organized hierarchically into, for example, platform and
product releases.

The relationships between entities are explained next.
Customer requirements are allocated to one or more re-
quirements, which, in turn, are allocated to features. Hig-
hest level requirements are typically large scale system-
level definitions of business problems. Dividing them into
sub-problems enables more accurate project cost, schedu-
le, and effort estimation and better workflow manage-
ment. For example, one feature can be implemented by
one team. Features describe implementable partial solu-
tions to the business problems. Releases are comprehen-
sive, valuable solutions consisting of releases and features

4.2 Generic Structures of Entities

This section introduces generic structures and attributes
of the entities presented in the information model.
According to the ISDT, RRMS instances should include
at least these structures and attributes to be effective.

Requirement and Customer Requirement

Table 3 presents the generic structure of Requirement
and Customer Requirement by revising and elaborating
on the work of Salo & Käkölä [48]. Next, each class
within the structure is presented.

Description describes the intent of and justification for a
requirement and a customer Requirement. Version indica-
tes the version number of the document. Name and ID are
used for identification and traceability.

Origin describes where the requirement comes from and
when. For customer requirements the sources are external
organizations. For requirements, sources are customer
requirements and internal organizational units.

Categorization describes the parts (i.e., platform, pro-
duct, and responsible person) of the product and the deve-
lopment organization the requirement or customer requi-
rement is related to. Product platform works as the base
architecture for derivative products. Requirements and
customer requirements will be linked to appropriate
platforms and final products. Responsible persons further
develop requirements and customer requirements.

Analysis is used to probe the implications of the require-
ment. Priority and customer value can be handled as one
attribute, but organizations needing sophisticated valua-
tion processes should divide them in two. Customer need
is used to describe the detailed business case, which the
requirement or customer requirement is trying to solve. If

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

there is a firm deadline by which the requirement needs to
be implemented and released for use of customer(s) (e.g.,
in their products), the deadline must be made explicit. The
total cost and effort need to be estimated [29] to determi-
ne whether the requirement is feasible from economic and
schedule viewpoints. Risks associated with the (customer)
requirement need to be assessed. Examples of require-
ment statuses include: New - Categorized � Analyzed �
For Review � Approved / Rejected / Postponed [48].

Workflow describes what should be done next to this
requirement or customer requirement and by whom.
Customer requirements and requirements are allocated,
respectively, to requirements and features and responsible
persons are assigned.

History is used to provide information about all prior
changes and editors of requirements documents [48]. It
enables traceability and the development of organizatio-
nal memory that is especially useful when routines break
down unexpectedly and the reasons for the breakdowns
must be found and eliminated to continue the effective
execution of routines [33].

Table 3. Generic Structure of Requirement and
Customer Requirement
Class Question Attributes
Description

What is the requirement
about?

Name
ID
Description
Rationale
Version

Origin

Where does the
requirement come from?

Author
Source
Date of creation

Catego-
rization

What parts of the
product and the
development organi-
zation is the require-
ment related to?

Platform
Product
Responsible Person

Analysis What are the
implications of the
requirement?

Status
Priority
Customer need
Deadline for the customer

need
Customer value
Risks
Required effort

Workflow What should be done to
this requirement next?
By whom?

Allocation to Require-
ments/Features
Assignment to Require-
ment/Feature responsible

History What has been done to
the requirement? When?

Information about all prior
edits, editors, and changes

Feature

Each class within the Feature-entity (Table 4) is presen-
ted in this section.

Description tells the intent of and justification for the
Feature. Origin indicates the author, date of creation, and

Requirements from which the Feature is allocated.
Categorization links Features to products and/or product

platforms and identifies the person having the feature res-
ponsibility. Because Feature is an entity for managing de-
tailed implementation, it has an attribute containing trace-
ability links to technical specifications, documentations
and code. Features tend to have complex dependencies
[55]. For example, a feature may be incorporated into a
product only if its parent feature is also included.

Analysis contains the other attributes that Requirement
and Customer Requirement have, with the exception of
Customer value-attribute used to decide whether require-
ments or customer requirements should be implemented
or not. The required work effort needs to be estimated to
help teams in their work allocation and scheduling.

Workflow consists of detailed task descriptions together
with traceability links to provide the guidelines for imple-
mentation work and to enable organizational learning
through, for example, post-mortem analysis (i.e., what
was planned vs. realized). When starting the work,
Features are assigned to responsible teams or persons.

History tells what has been done to Feature, when and
by whom.

Table 4. Generic Structure of Feature
Class Question Attributes
Description

What is the feature
about?

Name
ID
Description
Rationale
Version

Origin

Where does the
feature come from?

Author
Source Requirements
Date of creation

Catego-
rization

What parts of the
product and the
development
organization is the
feature related to?

Platform
Product
Responsible Person
Traceability links (e.g.

documentation, code)
Analysis What are the

implications of the
feature?

Status
Priority
Customer need
Risks
Required work effort

Workflow What should be done
to this feature next?
By whom?

Task description
Assignment to

teams/persons
Assignment to Release
Date when Feature is ready

for Release
History What has been done

to the feature? When?
Information about all prior
edits, editors, and changes

Release

Classes within the Release-entity (Table 5) that need
elaboration are explained in this section.

Description describes what the release is about. For
example, a release may fix some specific quality

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

problems without providing new functionality.
In Origin, Source Features attribute indicates which

features are included in a release.
In Categorization, a release is related to specific product

platforms and/or products and has a responsible person.
Analysis describes the statuses of a release such as.

Planned � Ready to be Released (i.e., all features
belonging to a release are ready) � Released.

Because releases constitute manageable and releasable
entities, the only Workflow related attribute tells the esti-
mated release date. This information together with Histo-
ry is adequate for organizational learning and performan-
ce monitoring (e.g., planned vs. actual release date).

Table 5. Generic Structure of Release
Class Question Attributes
Description

What is the release about? Name
ID
Description
Version

Origin

Where does the release
come from?

Author
Source Features
Date of creation

Catego-
rization

What parts of the product
and the development orga-
nization is the release
related to?

Platform
Product
Responsible Person

Analysis What are the implications
of the release?

Status
Priority

Workflow What should be done to this
release next? By whom?

Release date

History What has been done to the
release? When?

Information about all
prior edits, editors,
and changes

4.3 Validating and Scoping the Meta-Design by
Analyzing how it Meets the Meta-Requirements

Prioritization and valuation of requirements and the
allocation of requirements into releases

Prioritization and valuation of requirements is enabled
by the entities Requirement and Customer Requirement.
Their attributes Priority and Customer Value are used to
store and access the prioritization and valuation informa-
tion in RRMS. The prioritization and valuation methods
are not included in the meta-design for two reasons. First,
the literature provides hardly any methods that are gene-
ralizable and scalable to meet the needs of complex in-
dustrial environments where multiple interdependent re-
leases of interdependent products and platforms are plan-
ned simultaneously [35]. Second, the product programs of
the case organization used different prioritization methods
and tools because they differed in size, duration, and
product maturity. The meta-design ensures that RRMS
can provide the information for using the methods and
store and share the results organization-wide.

Allocation of requirements into releases is enabled
transitively through features, that is, requirements and

customer requirements are allocated to features, which are
linked to releases. Releases provide implemented
functionality and are thus linked to features directly.
Traceability

The information model enables bi-directional traceabili-
ty between entities through Origin- and Workflow-clas-
ses. In Customer Requirement and Requirement, Source-
attribute is used for backward traceability and Allocation
to Features-attribute enables forward traceability to featu-
res. Source Requirement- and Assignment to Release-
attributes of Feature enable, respectively, backward and
forward traceability from features. Traceability links-attri-
bute enables the traceability from Features to implementa-
tion specific documentation and software code.
Change management and impact analysis

Change management is facilitated by the History-class
in all entities. Change requests can be considered as
normal (customer) requirements, analyzed, linked to the
respective existing requirements in RRMS that are within
the scope of change, and implemented and released
following the integrated requirement and release
management process. Impact analysis is enabled by
Categorization- and Analysis-classes. Platform- and
Product-attributes show the organizational entities
affected by each requirement and release. Customer
value- and Required effort-attributes are used to decide
the feasibility of implementing a (customer) requirement.
Content ownership

Content ownership is determined through the
Categorization-class. The attribute Responsible Person
explicitly defines the content ownership.
Accountability of experts responsible for release
planning tasks

All entities have Responsible Person-attributes
facilitating the accountability of experts. Each release
thus has to specify who is responsible for planning, which
features are released in which release. The meta-design
does not detail the metrics that could be used for
measuring performance. However, it can be used as a
baseline for sophisticated measurement systems.
Management and coordination

The meta-design supports management and coordina-
tion, for example, by explicating the schedules imposed
on various entities, the products and organizational units
the entities are related to, and the workflows the entities
are subjected to.
Version management of requirement documents

Description- and History-classes enable the version
management of requirements (and other entities) by,
respectively, numbering versions and showing the actors
involved with each version and the actions taken.
Release re-planning

The individuals responsible for particular features and
releases decide about release re-planning (e.g., features
belonging to a release cannot be released because they are
unexpectedly delayed). Feature and release documents

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

and bidirectional traceability links between them (stored
in Assignment to Release- and Source Features-attributes)
facilitate the implementation of the meta-requirement.

When there are numerous interdependencies between
releases, between features, and between features and re-
leases, the appropriate data stored in RRMS can be trans-
ferred into a release re-planning and optimization system
(c.f., [9;47]) for analysis. Prescribing the features of such
systems is beyond the scope of the ISDT for RRMS
because the systems are algorithmically complex, enable
cost, effort and schedule estimation based on historical
data [17], and operate on a higher level of analysis than
RRMS where strategic and operational decisions (e.g.,
about the common features within and across the product
lines) are taken based on information in RRMS and other
systems. Another IS design theory needs to be built for
such systems and interfaced with the ISDT for RRMS.

5. Conclusions and Future Research

This research focused on the RRMS-enabled multi-site
and platform-based product development. It synthesized
the meta-requirements and a partial meta-design of a
simple but comprehensive and scalable ISDT for RRMS
to help practitioners in both small and large organizations
implement and evaluate RRMS solutions. The validity of
the partial ISDT was enhanced by using methods such as
the analysis of a RRMS instance in a case organization
and by explicating the meta-requirements met by the me-
ta-design. Due to space limitations, the design product ef-
fectiveness hypotheses of the ISDT (clarifying the expec-
ted organizational benefits from using a RRMS instance
derived from the class of RRMS) have been beyond the
scope of this article. The hypotheses are needed for the
empirical validation of the theory in future research.
RRMS is expected to reduce resources needed in product
development, shorten time-to-market by ensuring right-
information is available at the right time for right people,
improve customer satisfaction by ensuring that requi-
rements are transformed efficiently to product features,
and improve quality by minimizing the number of errors
during development and easing up error tracking.

Future research is necessary to devise extensions to the
ISDT. Possible extensions include (1) strategic release
management [46] that takes a more strategic and long-
term view than release project management the ISDT
deals with and (2) the inclusion of a Component entity in
the information model of the meta-design to help projects
better find and reuse implementation level assets that
meet their needs. Such a solution further improves the
generalizability of the ISDT because platform organiza-
tions often combine both software and hardware in their
assets. Our preliminary industrial experiences show that
Component is useful especially if it describes how and
when Component instances have been tested.

The single case study methodology may not provide a

sound basis for generalization [54]. Therefore, new case
studies and action research projects are necessary to make
the ISDT more credible for IS designers and researchers.
Design science research leveraging the methods of action
research [25] helps examine the applicability of the ISDT
by finding out to what extent organizations that want to
acquire or design and implement RRMS systems can
utilize the ISDT for those purposes. The ISDT can then be
revised as necessary.

6. References

1. Adelson, B. and Soloway, E. (1985). The Role of Domain
Experience in Software Design. IEEE Transactions on Software
Engineering, 11(11), 1351-1360.
2. Akao, Y. (1990). An Introduction to Quality Function
Deployment. In Akao, Y. (ed.), Quality Function Deployment.
Integrating Customer Requirements into Product Design,
Productivity Press, 3-24.
3. Argyris, C. and Schon, D.A. (1995). Organizational
Learning II: Theory, Method, and Practice. Prentice Hall.
4. Van Aken, J. E. (2004). Management Research Based on
the Paradigm of the Design Sciences: The Quest for Field-
Tested and Grounded Technological Rules. Journal of
Management Studies, 41(2), 219-246.
5. Aubert B. A., Vandenbosch B. and Mignerat M. (2003).
Towards the Measurement of Process Integration. Proceedings
of the Annual Conference of the Administrative Sciences
Association of Canada. Halifax, Nova Scotia
6. Bosch, J. (2002). Maturity and Evolution in Software Pro-
duct Lines:Approaches, Artefacts and Organization. Proceedings
of the Second Software Product Line Conference (SPLC2).
Springer Lecture Notes in Computer Science, 257-271.
7. Brown, S. L. and Eisenhardt, K.M. (1995). Product
Development: Past Research, Present Findings, and Future
Directions. Academy of Management Review, 20(2), 343-378.
8. Burchill, G. and Fine, C.H. (1997). Time versus Market
Orientation in Product Concept Development: Empirically-
based Theory Generation. Management Science, 43(4), 465-478.
9. Carlshamre P. (2002). Release Planning in Market-Driven
Software Product Development: Provoking an Understanding.
Requirements Engineering, 7, 139-151.
10. Carmel, E. and Agarwal, R. (2001). Tactical Approaches
for Alleviating Distance in Global Software Development. IEEE
Software, March/April, 22-29.
11. Carmel, E. and Agarwal, R. (2002). The Maturation of
Offshore Sourcing of Information Technology Work. MIS
Quarterly Executive, 1(2), 65-78.
12. Ciborra, C. (1996). The Platform Organization: Recombi-
ning Strategies, Structures, and Surprises. Organization Science,
7(2), 103-118.
13. Curtis, B., Krasner, H. and Iscoe, N. (1988). A Field Study
of the Software Design Process for Large Scale Systems.
Communications of the ACM, 31(11), 1268-1287.
14. Daskalantonakis, M.K. (1992). A Practical View of Soft-
ware Measurement and Implementation Experiences within
Motorola. IEEE Transactions on Software Engineering, 18(11),
998-1010.
15. Davis, A. (1992). Software Requirements: Objects,
Functions, and States. Prentice Hall, Eaglewood Cliffs, NJ.
16. El Sawy, O. (1998). Minding Your Own Business

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

Processes: The BPR Learning Book. New York: McGraw-Hill.
17. Forselius, P. and Käkölä, T. (2009). An Information
Systems Design Product Theory for Software Project Estimation
and Measurement Systems. Proceedings of HICSS-42. IEEE.
18. Forsgren, P. and Daugulis, A. (1998). Requirements
Engineering In Control Center Procurement Projects: Practical
Experiences from the Power Industry. Proceedings of the 3rd
International Conference on Requirements Engineering. IEEE.
19. Gilb, T. (1998). Principles of Software Engineering
Management. Addison-Wesley, Reading, MA.
20. Greer, D. and Ruhe, G. (2004). Software Release Planning:
an Evolutionary and Iterative Approach. Information and
Software Technology, 46, 243-253.
21. Griffin, A.J. and Hauser, J.R. (1992). Patterns of
Communication among Marketing, Engineering and
Manufacturing, - a Comparison between Two New Product
Teams. Management Science, 38(3), 360-372.
22. Grynberg, A. and Goldin, L. (2003). Product Management
in Telecom Industry � Using Requirements Management
Process. Proceedings of IEEE International Conference on
Software: Science, Technology and Engineering (SwSTE '03).
23. Halbleib, H. (2004). Requirements Management. Informa-
tion Systems Management 21(1), 8-14.
24. Herbsleb, J.D., Moitra, D. (2001). Guest Editors' Introduc-
tion:Global Software Development. IEEE Software,18(2),16-20.
25. Hevner, A.R., March, S.T., Park, J. and Ram, S. (2004).
Design Science in Information Systems Research. MIS
Quarterly, 28(1), 75-105.
26. Hrones, J.A. Jr., Jedrey, B.C. Jr. and Zaaf, D. (1992).
Defining global requirements with distributed QFD. Digital
Technical Journal, 5(4), 36-46.
http://www.hpl.hp.com/hpjournal/dtj/vol5num4/vol5num4art3.pdf.
27. ISO (2005). ISO/IEC TR 19759. Software Engineering --
Guide to the Software Engineering Body of Knowledge
(SWEBOK). International Organization for Standardization,
http://www.iso.org.
28. ISO (2006). ISO/IEC 14143 Information technology --
Software measurement -- Functional size measurement-Part 6.
International Organization for Standardization,
http://www.iso.org.
29. Jones, C. (2008). Applied Software Measurement, Third
Edition. McGraw-Hill.
30. Kotonya, G. and Sommerville, I. (1998). Requirement
Engineering: Processes and Techniques. John Wiley & Sons
Ltd, England.
31. Käkölä, T. (2008). Best Practices for International
eSourcing of Software Products and Services. Proceedings of
HICSS-41. IEEE.
32. Käkölä, T., Dueñas, J. (Eds.) (2006). Software Product Li-
nes: Research Issues in Engineering and Management. Springer.
33. Käkölä, T. and Koota, K. (1999). Dual Information Sys-
tems: Supporting Organizational Working and Learning by Ma-
king Organizational Memory Transparent. Journal of Organiza-
tional Computing and Electronic Commerce, 9(2&3), 205-232.
34. Käkölä, T. and Taalas, A. (2008). Validating the
Information Systems Design Theory for Dual Information
Systems. Proceedings of the 29th International Conference on
Information Systems, Paris (in press).
35. Lehtola, L. and Kauppinen, M. (2006). Suitability of
Requirements Prioritization Methods for Market-driven
Software Product Development. Software Process Improvement
and Practise, 11(1), 7-19.

36. Van der Linden, F., Schmid, K. and Rommes, E. (2007).
Software Product Lines in Action: The Best Industrial Practice
in Product Line Engineering. Springer.
37. Markus, M. L., Majchrzak, A., and Gasser, L. (2002). A
Design Theory for Systems That Support Emergent Knowledge
Processes. MIS Quarterly, 26(3), 179-212.
38. McGrath, M.E. (2001). Product Strategy for High-
Technology Companies: How to Achieve Growth, Competitive
Advantage, and Increased Profits. Second Edition, New York,
NY: McGraw-Hill.
39. Meyer, M.H. and Lopez, L. (1995). Technology Strategy in
Software Products Company. The Journal of Product Innovation
Management, 12(4), 294-306.
40. Meyer, M.H. and Selinger, R. (1998). Product Platforms in
Software Development.Sloan Management Review,40(1),61-74.
41. O�Reilly, C.A. (1982). Variations in decision makers� use
of information sources:The impact of quality and accessibility of
information. Academy of Management Journal, 25(4), 756-771.
42. Perry, D.E., Staudenmayer, N.A. and Votta, L.G. (1994).
People, Organizations, and Process Improvement. IEEE
Software, 11(4), 36-45.
43. Pohl, K., Böckle, G. and Van der Linden, F. (2005).
Software Product Line Engineering. Springer.
44. Ramasubbu, N., Krishnan, M. S., Kompalli, P. (2005). Le-
veraging Global Resources: A Process Maturity Framework for
Managing Distributed Development.IEEE Software,22(3),80-86.
45. Regnell, B., Höst, M., Natt och Dag, J., Beremark, P. and
Hjelm, T. (2001). An Industrial Case Study on Distributed
Prioritization in Market-Driven Requirement Engineering for
Packaged Software. Requirements Engineering, 6(1), 51-62.
46. Rautiainen, K., Lassenius, C., Vähäniitty, J, Pyhäjärvi, M.
and Vanhanen, J. (2002). A Tentative Framework for Managing
Software Product Development in Small Companies.
Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS), 3409-3417.
47. Ruhe, G. and Saliu, M. O. (2005). The Art and Science of
Software Release Planning. IEEE Software, 22(6), 47-53
48. Salo, A. and Käkölä, T. (2005). Groupware Support for Re-
quirements Management in New Product Development. Journal
of Organizational Computing and Electronic Commerce, 15(4),
253-284.
49. Van De Ven, A.H. (1986). Central Problems in the Mana-
gement of Innovation. Management Science, 32, 590-607.
50. Walls, J. G., Widmeyer, G. R. and El Sawy, O. (1992).
Building an Information System Design Theory for Vigilant
EIS. Information Systems Research, 3(1), 36-59.
51. Walls, J.G., Widmayer, G.R. and El Sawy, O. (2004).
Assessing Information System Design Theory in Perspective:
How Useful was our 1992 Initial Rendition? Journal of
Information Technology Theory and Application, 6(2), 44-58.
52. Wesselius, J. (2006). Strategic Scenario-Based Valuation of
Product Line Roadmaps. In T. Käkölä & J.C. Dueñas (Eds.),
Software Product Lines: Research Issues in Engineering and
Management, Springer, 53-89.
53. Wiegers, K.E. (2003). Software Requirements: Practical
Techniques for Gathering and Managing Requirements, 2nd
edition. Microsoft Press, Washington.
54. Yin, R.K. (2003). Case Study Research: Design and
Methods, third edition. Sage Publications.
55. Zhang, W., Mei, H. and Zhao, H. (2006). Feature-driven
Requirement Dependency Analysis and High-level Software
Design. Requirements Engineering, 11,:205�220.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

