
129
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Software Patterns,
Organizational Learning and

Software Process Improvement

Riikka Ahlgren

JYVÄSKYLÄ STUDIES IN COMPUTING 129

Riikka Ahlgren

UNIVERSITY OF

JYVÄSKYLÄ 2011

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2

tammikuun 21. päivänä 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the Agora building, Auditorium 2, on January 21, 2011 at 12 o'clock noon.

JYVÄSKYLÄ

and Software Process Improvement
Software Patterns, Organizational Learning

Software Patterns, Organizational Learning
and Software Process Improvement

JYVÄSKYLÄ STUDIES IN COMPUTING 129

JYVÄSKYLÄ 2011

Software Patterns, Organizational Learning

UNIVERSITY OF JYVÄSKYLÄ

Riikka Ahlgren

and Software Process Improvement

Copyright © , by University of Jyväskylä

URN:ISBN:978-951-39-4185-7
ISBN 978-951-39-4185-7 (PDF)

ISBN 978-951-39-4173-4 (nid.)
ISSN 1456-5390

2011

Jyväskylä University Printing House, Jyväskylä 2011

Editor
Seppo Puuronen
Department of Computer Science and Information Systems, University of Jyväskylä
Pekka Olsbo, Sini Tuikka
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Ahlgren, Riikka
Software patterns, organizational learning and software process improvement
Jyväskylä: University of Jyväskylä, 2011, 70 p. (+ included articles)
(Jyväskylä Studies of Computing,
ISSN 1456-5390; 129)
ISBN 978-951-39-4185-7 (PDF), 978-951-39-4173-4 (nid.)
Finnish summary
Diss.

Software process improvement is a necessity in any software organization. This
thesis approaches software process improvement from an organizational
learning perspective. Process improvements require both learning individuals
(i.e. individuals who are learning) and embedding the knowledge into
organizational practices and structures. Hence, in this thesis knowledge
management and particularly knowledge sharing are investigated in order to
find practical means to reach process improvement. Software patterns are
analyzed as a concrete tool to support sharing of software design knowledge.
This thesis comprises five independent articles. Each article approaches the
research topic from different point of view. Consequently, learning and
knowledge sharing are examined from individuals’, groups’ and organizational
viewpoints. Multiple case studies were used as a research method and obtained
data was both quantitative and qualitative. As a result the research indicates
that organizational learning can be supported in software organizations at
several organizational levels. Results further indicate that software patterns can
be exploited in multiple ways to facilitate knowledge sharing. Patterns can be
used as boundary objects to mediate information between individuals and
groups. Further, patterns can provide explicit and measurable goals for process
improvements in different organizational levels.

Keywords: Software process improvement, organizational learning, knowledge
sharing, software patterns

Author’s address Riikka Ahlgren
 University of Jyväskylä
 Dept. of Computer Science And Information Systems
 P.O. BOX 35 (Agora)
 riikka.ahlgren@gmail.com

Supervisors Professor Samuli Pekkola, Ph.D.
 Institute of Business Information Management

Tampere University of Technology

Assistant Professor Eleni Berki, Ph.D
Department of Computer Sciences
University of Tampere

Reviewers Professor Franz Lehner
 University of Passau, Germany

Professor Markku Tukiainen, Ph.D
University of Eastern Finland

Opponent Professor Jan Pries-Heje
 Roskilde University, Denmark

PREFACE

This thesis summarizes the research that I have conducted in the University of
Jyväskylä between 2004 and 2010. The focus of the research has evolved during
the research process, starting purely from design patterns and ending up with
process improvement and organizational learning.

The research presented in this dissertation begun in 2004 when the Mobile
Design Patterns and Architectures project (MODPA) was started at the Univer-
sity of Jyväskylä. The project aimed at improving and rationalizing the deve-
lopment of mobile applications and services with the help of design patterns. In
the very beginning of the project it was clear that an organizational view was
needed to enable the efficient introduction and adoption of patterns. During the
research, knowledge management, learning and knowledge sharing were iden-
tified as central research topics. All articles included in this thesis, except the
first one, were produced as part of the MODPA –project.

I want to thank all the people in MODPA-project that have given me valu-
able feedback and food for thought, particularly Jouni Markkula for giving me
the opportunity to start the research. Also the MODPA partner companies have
been crucial for the research.

I also thank the reviewers Markku Tukiainen and Franz Lehner for the
constructive feedback. Thanks also to Pekka Abrahamsson for his commentary
on the work. Furthermore I wish to thank Jan Pries-Heje, who volunteered to
act as an opponent at the public defense. Special merits go to my supervisor
Samuli Pekkola for the can-do attitude, feedback and support that I received. I
am also grateful to my second supervisor Eleni Berki for the valuable discus-
sions we had. Both of my supervisors also co-authored some of the included
articles. I wish to thank the other co-authors of my papers, Mirja Pulkkinen,
Marko Forssell and Jari Penttilä. Thanks also to the rest of ITRI-personnel for
the refreshing discussions during coffee breaks.

The research reported in this dissertation has been financially supported
by the National Technology Agency of Finland (TEKES), the MODPA partner
companies Nokia, Yomi Software, SESCA Technologies and Tieturi and by the
Graduate School in Computing and Mathematical Sciences (COMAS).

I am grateful for the Department of Computer Science and Information
Systems for providing me the facilities for finalizing the dissertation. I also
thank the publishers of the original papers for giving me the permission to re-
print the articles as part of my thesis. I wish also to thank my colleagues at Vis-
ma for making me laugh. And thanks to all the other wonderful people who
have supported me during these years.

Jyväskylä 7.12.2010
Riikka Ahlgren

LIST OF FIGURES

FIGURE 1 Construction of the thesis. ... 14
FIGURE 2 Deming- cycle for process improvements .. 18
FIGURE 3 Knowledge in organizations ... 22
FIGURE 4 SECI-process ... 24
FIGURE 5 Observer pattern. .. 28
FIGURE 6 Structure of observer pattern .. 29
FIGURE 7 Strategy pattern: overview .. 32
FIGURE 8 Strategy pattern: hide details .. 35
FIGURE 9 Research constructions with related articles ... 38
FIGURE 10 Research objectives in relation to the research methods 40
FIGURE 11 Articles and topics of this thesis in the levels of knowledge
 creating entities. .. 42

LIST OF TABLES

TABLE 1 Maturity levels in CMMI –process model .. 19
TABLE 2 Patterns as communication tools .. 31
TABLE 3 Research findings in the levels of knowledge creation entities 50

CONTENTS

ABSTRACT
PREFACE
LISTS OF FIGURES AND TABLES
CONTENTS

1 INTRODUCTION .. 9

2 THEORETICAL BACKGROUND ... 15
2.1 Software process improvement as a learning process 15

2.1.1 Models for process improvement ... 17
2.1.2 Models summarized ... 19
2.1.3 Organizational needs in successful SPI .. 20

2.2 Organizational learning as a collective process 21
2.2.1 Organizational memory and types of knowledge 21
2.2.2 Knowledge sharing ... 23

2.3 Knowledge management in SPI ... 24
2.4 Patterns in software development ... 26

2.4.1 Patterns for complexity handling ... 27
2.4.2 Software analysis with patterns .. 29
2.4.3 Tool for communication ... 30
2.4.4 Tool for learning .. 34

2.5 Bridging the gap between SPI, organizational learning and software
patterns ... 36

3 RESEARCH PROBLEM AND METHODOLOGY ... 37
3.1 Research problem ... 37
3.2 Research approach and methodology ... 39
3.3 Relationship of the included articles .. 41

4 OVERVIEW OF THE PAPERS ... 43
Paper 1: Organizations Supporting Learning in Practice: Survey on

Finnish Software Organizations ... 43
Paper 2: Using Groupware to Facilitate Organizational Learning And

Software Process Improvement - A Case Study Facilitating learning
with groupware .. 44

Paper 3: Facilitating design knowledge management by tailoring software
patterns to organizational roles .. 45

Paper 4: Design Patterns and Organizational Memory in Mobile
Application Development ... 45

Paper 5: Applying Patterns for Improving Subcontracting Management . 46

5 CONCLUSIONS ... 47

5.1 Supporting organizational learning in software organization 47
5.2 Software patterns as tool for knowledge sharing 48
5.3 Closing remarks .. 49

6 CONTRIBUTIONS AND LIMITATIONS ... 52
6.1 Contributions ... 52
6.2 Limitations ... 54
6.3 Further studies .. 55

REFERENCES ... 57

YHTEENVETO (FINNISH SUMMARY) .. 57

ORIGINAL PAPERS

1 INTRODUCTION

In order to stay competitive in their business, software organizations constantly
search and adopt faster and cheaper ways to work. Process improvements in
daily work are crucial to gain savings (Rico, 2004; Zahran, 1998; van Solingen,
2009), which gives an initial motivation for this research. Motivation for this
study is visible also in statistics. In 2009 only 32% of IT projects were delivered
on time, on budget and with required features (Standish Group, 2009). These
results indicate that improvements in software projects and processes are defi-
nitely needed.

Turning improvement ideas into actual changes in development process
does not happen automatically but requires communication, coordination and
knowledge management (Alavi and Leidner, 2001; Niazi, Wilson & Zowghi,
2006; Dybå, 2005; Heikkilä, 2009). This applies particularly in knowledge inten-
sive software industry, where employee turnover can have severe consequences
(Seleim, Ashour & Bontis, 2007). Consequences of losing key personnel can be
decreased with business processes that preserve valuable knowledge in the
company, even if personnel changes. However, reality in software organiza-
tions does not always support these processes: project schedule pressure can
limit the time for learning (Nan & Harter, 2009), structures for knowledge shar-
ing often are inadequate (Mathiassen & Pedersen, 2005) and individuals do not
participate in the change (Abrahamsson, Salo, Ronkainen & Warsta, 2002; Nasir,
Ahmad & Hassan,2008). This motivates a closer study of the organizational
practices and tools that can facilitate learning and knowledge sharing at indi-
vidual, team or organizational levels.

Generally, business processes guide organizational tasks and activities in a
common direction. They collect multiple practices into coordinated chains of
actions (Wenger, 2003). In software organization, software development process
describes the sequence of steps required to develop or maintain software
(Humphrey, 1995). A software development process is generally composed of
specification, implementation, validation and evolution phases (Sommerville,
2001). Actual tasks and relations of the phases vary according to specific proc-
ess models. Commonly used models are, for example, the waterfall and spiral

10

models (Boehm, 1988; Pressman, 2000). In recent years particularly agile process
models have gained increasing interest both in research and in the software in-
dustry (e.g. Abrahamsson et al., 2002; Suscheck & Ford, 2008; Wirfs-Brock, 2009).

Regardless of the process model, continuous process improvement is a ne-
cessity in the swiftly evolving software business (Niazi, 2006; Oktaba & Piattini,
2008; Trienekens, Kusters, van Genuchten & Aerts, 2008). Software processes im-
provement (SPI) is a constant effort that aims at producing quality products in an
efficient manner by utilizing the best practices of the field (Humphrey, Over,
Konrad & Peterson, 2007). The reasoning of software process improvement is
based on the assumed relationship between software process maturity and
product quality (Humphrey, 1989; Schönström, 2005). In a mature software
process, the involved people, various development methods and technologies
are combined into an effective and efficient collection of practices (Humphrey,
Kitson & Kasse, 1989).

In business terms, a mature process and a consequent high product qual-
ity is expected to lead to a higher return on investment (ROI) (Krasner, 2001;
van Solingen, 2004). Furthermore, fewer errors in products, i.e. a higher product
quality, should lead to a positive impact on customer satisfaction (Zahran, 1998).
In addition, mature processes enable removing some of the rework and facili-
tate the introduction of new technologies (Harter, Krishnan & Slaughter, 2000;
Zahran, 1998). Thus, mature processes are expected to shorten the product’s
time to market. Several research results support these expectations (Diaz &
Sligo, 1997; Haley, 1996; Harter et al., 2000; Hollenbach, Young, Pflugrad &
Smith, 1997; Niazi, Wilson & Zowghi, 2005).

However, there are also evident problems with SPI initiatives. These often
relate to SPI costs (Leung, 1999; van Solingen, 2004). Other critical barriers in
SPI are time pressure, inexperienced staff, poor planning, lack of SPI awareness
and lack of support and resources (Brietzke & Rabelo, 2006; Nasir et al., 2008;
Niazi, 2009; Staples, Niazi, Jeffery, Abrahams, Byatt & Murphy, 2007). In addi-
tion to SPI related problems, failures related to learning are also well known in
the software business. Learning obstacles can include the developers’ lack of
business understanding, inadequate encouragement for learning, unsuitable
organizational design and overly high expectations (Lyytinen & Robey, 1999;
Mathiassen & Pedersen, 2005). To overcome these barriers, systematic learning
is required from all people involved (Ravichandran & Rai, 2003).

In the past, learning has been studied in many contexts. Previous research
has focused for example on individual learning, experiential learning (e.g. Kolb,
1984; Turner, Keegan & Crawford, 2000) and situational learning (Collin, 2005;
Kim, 1993). Since the focus of this research lies in organizations and their prac-
tices, here we concentrate on organizational learning and its implications in
software development. Organizational learning (OL) is an umbrella concept that
covers knowledge adoption, knowledge sharing and creation of new knowl-
edge (Argote, 1999; Huber, 1991). It has been defined as “the process of change
in individual and shared thought and action, which is affected by and embed-
ded in the institutions of the organization” (Vera & Crossan, 2003). However,

11

organizational learning does not equate with the cumulative learning of an or-
ganization’s members (Huysman, 2000), although individual learning is a pre-
requisite for organizational learning (Kim, 1993; Nonaka, 1994). In individual
learning, the individuals not only need to grasp the contents (know-how), but
also to understand and apply the reasoning (know-why) (Kim, 1993).

Many other disciplines are also related to organizational learning
(Easterby-Smith, 1997). To distinguish between these related concepts, organ-
izational learning can be considered as focusing on learning processes (Huber,
1991). Moreover, organizational learning views the organization as a complex
and living system (Robey, Wishart & Rodriquez-Diaz, 1995) and links both
knowledge and action into same processes (Crossan, Lane & White, 1999).
Learning organization, in turn, forms an ideal entity that has the capability to
adopt those learning processes in practice (Easterby-Smith & Lyles, 2005). Or-
ganizational knowledge describes the form and nature of the knowledge that is
possessed by the organizations (Easterby-Smith, Crossan &Nicolini, 2000).

A crucial part of organizational learning is the collection of past informa-
tion and knowledge, which is exploited for future actions (Walsh & Ungson,
1991). This collection, which is interpreted for example in organizational proc-
esses and structures, forms organizational memory (OM) (Perez Lopez, Montes
Peon & Vasquez Ordas, 2005; Walsh & Ungson, 1991). To emphasize the dy-
namic nature of organizational memory, here we adopt a definition according
to which organizational memory is a process consisting of four sub-processes.
The processes of knowledge acquisition, retention, maintenance and retrieval
are on constant interaction with the organization’s structures, practices and
tools (Stein, 1995). To collect and utilise the knowledge that is stored with the
organizational memory requires knowledge management (KM).

Knowledge management relies on the differentiation between data, infor-
mation, and knowledge. They can be distinguished by the base of the knowledge
(Bhatt, 2001). Data is a set of discrete, objective facts about events, often de-
scribed in an organizational context as structured records of transactions (Dav-
enport & Prusak, 1998). Information is often characterised as a “message”, usu-
ally in the form of document or another visible or audible format (Alavi &
Leidner, 2001; Davenport & Prusak, 1998). Knowledge then derives from infor-
mation. Information is descriptive by nature, while knowledge is associative
(Kock, 1999; Mathiassen & Pedersen, 2005).

In the past, research of knowledge management has been versatile and
even controversial (see e.g. Jennex & Olfman, 2004; Prusak, 2001). Many schol-
arships exist; some approach KM from technology-related perspectives (e.g.
Kankanhalli, Tan & Wei, 2005; Lindvall, Rus & Sinha, 2003) while others are
interested in organizational aspects (Davenport & Prusak, 1998; Easterby-Smith
& Lyles, 2005; Kakabadse, Kakabadse & Kouzmin, 2003; Nonaka & Takeuchi,
1995). From an organizational perspective, KM is defined as “a method that
simplifies the process of sharing, distributing, creating, capturing and under-
standing of a company’s knowledge” (Davenport & Prusak, 1998).

12

Regarding the organizational aspects of knowledge management, three
approaches are commonly adopted. Firstly, there is the knowledge capturing
approach that focuses on the distribution and efficient use of personalized
knowledge (Hansen, Nohria & Tierney, 1999). Secondly, there is the commu-
nity-based approach that regards knowledge as socially constructed. This em-
phasises interaction and dialogue as a means to share knowledge, and high-
lights the importance of social ties and trust as success factors (Mathiassen &
Pourkomeylian, 2003). A third, the cognitive approach, concentrates on the
codification of experiences, storing resulting artefacts and their efficient reuse
(Mathiassen & Pourkomeylian, 2003; Ravichandran & Rai, 2003). This thesis
adopts the first approach and thus focuses on efficient distribution and sharing
of codified knowledge. In particular, patterns are studied as a format of codified
knowledge.

A central process in knowledge management is knowledge sharing. It in-
cludes both giving and receiving information in a certain context (Sharrat &
Usoro, 2003). Sharing can be done on an ad-hoc basis, such as during coffee
breaks, but it is more efficient when organized (Lindvall et al., 2003). Boland
and Tenkasi (1995) use term “perspective making” to describe knowledge shar-
ing and particularly how knowledge is developed and strengthened in a com-
munity. Respectively, the term “perspective taking” is then used to explain the
communication required to acknowledge other communities’ knowledge
(Boland & Tenkasi, 1995). Davenport and Prusak (1998) in turn use the term
“knowledge transfer” to describe any kind of communication, whether it is
managed or not (Davenport & Prusak, 1998). This thesis emphasizes communi-
cations in knowledge sharing and hence uses the definition by Davenport and
Prusak (1998). To better depict the two sides of the activity, i.e. giving and re-
ceiving, we use the term knowledge sharing.

In software organizations the central knowledge to have and to exploit is
business knowledge, technical skills and design knowledge (Ketola, 2002;
Terveen, Selfridge & Long, 1993; see also Curtis, Krasner & Iscoe, 1988). In this
thesis design knowledge is knowledge that combines business visions and techni-
cal solutions into a purposeful entity, adding value to a single solution by giv-
ing it a context and purpose. The major characteristic of this kind of intellectual
capital is that it can only “run” as fast as the people who carry it and hence, or-
ganizations become vulnerable unless this knowledge is not efficiently man-
aged. Failure to manage design knowledge can result in low-quality designs,
late and costly error detection, late deliveries and personnel frustration
(Terveen et al., 1993). Therefore, capturing and adopting design knowledge is
essential for any software organization. In the software development commu-
nity, software patterns have been adopted as a format for capturing the design
knowledge.

The concept of patterns was originated in architecture (Alexander, Ishika-
wa, Silverstein, Jakobson, Fiksdahl-King & Angel, 1977) and was brought to
software development when the book “Design Patterns” was published in 1995
(Gamma, Helm, Johnson & Vlissides, 1995). A classical definition for a pattern is

13

“a three-part rule, which expresses the relation between a certain context, prob-
lem and solution” (Alexander, 1979). Hence, software patterns are pieces of
software design that have worked well in the past, that have been documented
in a certain manner and that can be used in similar situations in the future. They
exist in a particular format that enables exact communication of the subject
(May & Taylor, 2003).

This thesis studies patterns from the perspectives of organizational learn-
ing and process improvement. A basic precondition for process improvement is
that people are able to understand why and how they do the things that they do
during the development, so that the actions can be intentionally repeated when
new problems emerge (Dybå, 2001; Slaughter & Kirsch, 2006). If an activity is
performed without understanding, such as by slavishly following guidelines,
improvements can be hard to identify. In consequence, a tentative research
question for this thesis is composed as

“How can organizational learning be supported in software organization?”

This question is approached from both individual and organizational
perspectives. First, software developers’ typical working activities are
characterized. Based on those the thesis then suggests improvements for
organizational practices. As a main contribution, an analysis of organizational
learning in software development is produced. This analysis is needed in order
to actually improve the software development process. Further, to embed the
improved processes into daily development work, the understanding of good
and efficient development practices must be shared in software organization.
Sharing of software design knowledge highlights the need of knowledge
management and hence, raises interest in software patterns. Consequently, the
second tentative research question for this thesis is

“Can software patterns serve as a tool for knowledge sharing in software devel-
opment?”

To find the answer to this second question, the characteristics and use of
software patterns are examined. Case studies are conducted to reveal the
concurrent and possible use of software patterns as a tool for communication,
learning and knowledge sharing. The main contribution to the second research
question is an analysis of software patterns as a tool for communication,
learning and knowledge sharing.

Taking together the concepts presented above it is arguable that SPI, orga-
nizational learning and knowledge management are tightly connected. Fur-
thermore, in order to succeed, SPI requires investments in organizational learn-
ing. Organizations must be able to capture, share and adopt the knowledge of
their employees. Organizational memory is required to enable the organization
to learn. In software organization, this means that design knowledge must be
preserved in such place and in such format that it can be found, understood and

14

used in daily development work. In turn, the building and use of organizational
memory is dependent on knowledge management and particularly on know-
ledge sharing. Here, software developers are in key positions. Knowledge shar-
ing requires organizational support in order to realize within organizations.
This, in turn, is a task for company management. This chain of concepts and
their assumed dependencies forms the skeleton for this thesis, illustrated in fig-
ure 1.

FIGURE 1 Construction of the thesis

Figure 1 will be analyzed and validated in the following chapters. The
validation is based on literature analyzing characteristics and major
mechanisms of both SPI and organizational learning. Furthermore, examples
are given of contents of organizational memory and the sharing of that
knowledge. This will then lead to software patterns, which are examined with
case studies as a particular tool for knowledge sharing.

2 THEORETICAL BACKGROUND

The following sub-sections present the theoretical background and relevant lite-
rature for this research. Aims, processes and models for software process im-
provement are first outlined. Next, main characteristics and components of or-
ganizational learning in software development are presented. There follows an
analysis of knowledge management and knowledge sharing in particular, in
connection to SPI. Finally, software patterns and their use as a communication
tool are investigated.

2.1 Software process improvement as a learning process

No organization stays competitive by endlessly repeating the same tasks and
activities in the same way (Niazi, 2009; van Solingen, 2009). In order for soft-
ware organizations to be able to deliver larger and more complex software sys-
tems, their business processes need to be refined and continuously improved
(Niazi, 2009; Trienekens et al., 2008). The aim of process improvements is to
make the processes more efficient and, eventually, to raise the product quality
(Zahran, 1998). Since process improvement requires time and money, it is fo-
cused on the most central business processes. In software organization, the
main target of the improvement initiatives is hence software development proc-
esses.

The three key elements in efficient process improvement are planning,
implementation and communication (Humphrey, 1989). For efficient implemen-
tation, resourcing and correct roles are crucial (Johansen & Pries-Heje, 2007).
There must be enough time for the SPI team to do their work and they need to
have the skills and authority to perform their jobs. Aligning improvement goals
with business goals is also central (Dybå, 2005; Conradi & Fuggetta, 2002). This
ensures that SPI is economically profitable for the company. In turn, communi-
cation is needed to inform about the improvements, targets and practices, to
involve the people in the actions and to gain feedback on the process. Mentor-

16

ing and training are particularly important communication practices (Rainer &
Hall, 2002). These enable close interaction between people, which further facili-
tates knowledge adoption and understanding.

Efficient and useful processes require shared visions and practices. Hence,
communication of the concrete, shared vision is central in SPI (O’Hara, 2000).
The involved people in the organization must identify and acknowledge a
common conception about their working environment and the work processes.
In other words, the main idea of an SPI initiative is to create and share knowl-
edge between individuals, teams and departments, i.e. across organizational
boundaries (Mathiassen & Pourkomeylian, 2003; Wenger, 2003). These organ-
izational boundaries are formed by groups of individuals, teams or depart-
ments who create a community by engaging in a common process, by having a
common knowledge base or other shared interest (Wenger, 2003). It is impor-
tant to note that the communities do not necessarily follow the official organiza-
tional groups, but are merely defined by the shared knowledge (Star &
Ruhleder, 1996; Wenger, 2003). Specific artefacts, i.e. boundary objects, can then
be used to facilitate the boundary crossing (Wenger, 2003). The boundary ob-
jects are artefacts that reach several communities and satisfy their information
requirements (Bowker & Star, 1999; Star & Griesemer, 1989).

An efficient process requires that the people have a mutual understanding
and agreement on the process targets, the required actions and the way the ac-
tions should be performed (Akgün, Lynn & Reilly, 2002). To create this shared
understanding, process descriptions and routines need to be explicitly de-
scribed (Akgün et al., 2002; Senge, 1990). The explicit procedures can function
as boundary objects and enable people to communicate and coordinate their
actions across processes (Wenger, 2003). Crossing processes and other organiza-
tional boundaries requires knowledge sharing; hence, boundaries create oppor-
tunities for learning.

Opportunities for learning are essential when developing complicated
software systems, where many different expertises are needed. In software de-
velopment, the need for knowledge and need for communication are constant,
whether it is for complexity handling, problem solving or design decisions.
Thus, software development is a highly knowledge-intensive activity. Therefore,
approaches to knowledge management are essential in SPI initiatives (see e.g.
Mathiassen & Pourkomeylian, 2003; Ravichandran & Rai, 2003). In fact, SPI can
be seen as a special form of knowledge creation, sharing and management
(Mathiassen & Pourkomeylian, 2003). Further, knowledge management pro-
vides a systematic approach to various collaboration, communication and coor-
dination needs that are present or emergent in software development (Mathias-
sen & Pourkomeylian, 2003). Indeed, knowledge management has gained a vast
research interest as an approach to SPI. The KM perspective has covered, for
example, the reuse of components (Kucza, Nättinen & Parviainen, 2001),
knowledge processes (Schönström, 2005) and knowledge transfer portfolios
(Slaughter & Kirsch, 2006). This thesis aims to build on the knowledge man-
agement perspective on SPI, focusing particularly on organizational learning

17

during the software development. Software patterns provide one way to start
the SPI efforts “bottom-up”, for they can be used as boundary objects to medi-
ate development knowledge. Further, they can provide a concrete initiative that
is claimed for successful SPI, since they provide support for expertise reuse, and
hence can facilitate organizational learning (Conradi & Fuggetta, 2002).

2.1.1 Models for process improvement

Successful SPI initiatives need goals. These goals need to be aligned with the
particular organization and its business strategy (Dybå, 2005). Apart from the
specific SPI goals, efficient software processes have other common features.
These include

1. controlling development costs and schedule predictability,
2. responding to changing needs,
3. minimizing development costs and schedules,
4. scaling from small to very large systems and
5. predictable production of quality products (Humphrey et al., 2007).

To gain these goals, a number of process models have been presented. Process
models provide frameworks and plans for producing software, while at the
same time improving developers’ capabilities to produce better products
(Humphrey et al., 1989; Lindvall & Rus, 2000). Some models stress the
improvement cycle while some are merely collections of the best practices in
software development. A well-known model for continuous process
improvement is the Deming cycle illustrated in figure 2. This plan-do-check-act
(PDCA) cycle consists of four activities that are repeated to achieve ever-higher
levels of quality (Deming, 1994). In the PDCA cycle, a change is first planned
and then implemented. Afterwards the results are checked and lessons learned
are analyzed. Finally, the change is applied or abandoned, depending on the
results and their analysis.

In general, process models and frameworks can be used to assess an or-
ganization’s maturity, and to identify and prioritize the areas for improvement
(Saiedian & Chennupati, 1999). Models and frameworks rely on process struc-
tures; by breaking down processes into sub-processes and separating practices,
they make processes more manageable and measurable. Commonly known
frameworks for SPI are for example IDEALSM, SPICE -standard (Software Proc-
ess Improvement and Capability Determination, also known as ISO/IEC 15504)
and CMMI (Capability Maturity Model Integrated) (Dorling,1993; McFeeley,
1996; Zahran, 1998). Both SPICE and CMMI are used in many types of software
organizations (Zahran, 1998), though CMMI has been more popular in America
while SPICE has been favoured in Europe (Stelzer & Mellis, 1998).

IDEALSM is based on CMM. It describes a complete path for software
process improvement, comprising steps for planning, conducting and manag-
ing SPI (McFeeley, 1996). Intention of the IDEAL model is to give guidance on
how to execute an improvement program and how to turn the assessment re-

18

sults into actions. The model consists of initiating, diagnosing, establishing, act-
ing and learning phases, all of which include different activities for guiding the
improvements.

FIGURE 2 Deming- cycle for process improvements (Deming, 1994)

Another widely used SPI framework is SPICE (Software Process Improvement
and Capability dEtermination), officially ISO15504 (El Emam, Drouin, & Melo,
1998). It was developed in mid 1990s with the purpose to collect the best
features of existing software assessment methods (Dorling, 1993). SPICE is
composed of two dimensions: process dimension and capability dimension. The
process dimension divides the processes into five categories: customer-supplier,
engineering, project, support and organization. Capability dimension then in
turn comprises of six capability levels ranging from zero to five, which describe
the process overall potential. The levels are described as ad hoc (level 0),
performed, repeatable, defined, managed and optimized (level 5). (Dorling,
1993; El Emam et al., 1998)

A third commonly-used approach for SPI is CMMI (Capability Maturity
Model Integrated). CMMI is a collection of best practices and objectives that are
used for assessing the maturity of software processes in a company. In CMMI,
all development related processes are divided into 22 process areas. A process

19

area is a cluster of practices, which are fundamental for making improvement in
that specific area. The process areas are, for example, project planning, re-
quirements management and configuration management. Process areas are
then further grouped into four categories: process management, project man-
agement, engineering and support. To assess the software organization’s matur-
ity according to the CMMI, all the organizational software processes are ranked
according to five maturity levels. These maturity levels are listed in the follow-
ing table 1. With CMMI, software organizations can progressively improve
their processes, first by achieving control at the project level and then continu-
ing to the organization-wide process improvement (CMMI for Development,
2006; Zahran, 1998).

TABLE 1 Maturity levels in CMMI –process model (Kulpa & Johnson, 2008).

Maturity level Description
1 Initial Ad-hoc development, no defined process structures.
2 Managed Basic project management in place and followed.
3 Defined Organizational way of doing business. A set of standardized,

tailored processes is in use.
4 Quantitatively
managed

Processes are controlled by statistical and other quantitative
techniques.

5 Optimizing Processes are continuously improved based on common causes
of variation.

In this thesis, CMMI is adopted as a reference model in selected cases because
the model is commonly adopted in software organizations (e.g. Carnegie
Mellon University, 2009; Ngwenyama & Nielsen, 2003; Saiedian & Chennupati,
1999), it has a clear structure and wording and thus its goals are easy to
understand and adopt, and because it is easily accessible in the internet1.

2.1.2 Models summarized

Regardless of SPI model or framework, all have a common concern for software
quality and process management. A great advantage of the models is that they
define the targets and practices that need to be accomplished in order to reach
certain improvements. Thus, a model provides a shared vision for the process
improvement. They do not, however, say exactly how the practices are to be
implemented, on what level they should be implemented to add value to the
company, or how the required changes are introduced into the organization.
These are often the particular topics where software managers need guidance
(Herbsleb, Zubrow, Goldenson, Hayes & Paulk, 1997; Wilkie, McFall & McCaf-
fery, 2005). Furthermore, a major drawback of the models is a lack of considera-
tion of the impact of various contextual factors, e.g. reward systems and organ-
izational commitment (Abrahamsson et al. 2002; Ravichandran & Rai, 2003).

1 www.sei.org

20

From the business success perspective it is important to find a balance be-
tween the discipline represented by the process models and product innovation
rising from the development team’s expertise (Conradi & Fuggetta, 2002). Since
the essence of process development is to identify both the process steps where
rigor is needed and the places where creativity can flourish (Conradi & Fug-
getta, 2002), it is important for an organization to first identify and define its
business needs and goals, and only then select the SPI model that best fits the
situation (Pries-Heje & Johansen, 2010; Saiedian & Chennupati, 1999). Further-
more, since individuals and teams are the ones who make the SPI happen,
merely breaking down the processes into a process model will not immediately
bring the business benefits of SPI (Humphrey, 1989; Niazi, 2009; Trienekens et
al., 2008). Therefore, whatever the chosen model, developers, testers, project
managers and, eventually, the software organization must start doing things
differently.

2.1.3 Organizational needs in successful SPI

The role and importance of organizational issues in SPI has been studied by
many researchers within different research settings (e.g. Abrahamsson et al.,
2002; Gasston & Halloran, 1999; Johansen & Pries-Heje, 2007). This has further
raised the overall interest and importance of the non-technical factors in SPI
(Dybå, 2001). It has been reported that SPI initiatives can be supported, particu-
larly with employee participation at the SPI-actions, an organization’s overall
concern of SPI measurements and with the ability to implement the measure-
ments (Dybå, 2001). Thus, these and also other research results (Kock, 1999;
Pries-Heje & Johansen, 2010; Robey et al., 1995; Segal, 2001) heavily emphasize
organizational factors in planning and implementing SPI-initiatives.

To enable the continuous software process improvement, systematic learn-
ing in the organization is a necessity (Mathiassen, Nielsen & Pries-Heje, 2002;
Ravichandran & Rai, 2003; Seigerroth & Lind, 2006). Research results indicate
that SPI can benefit from the organizational learning paradigm. Essential factors
in successful SPI are, for example, providing a context for learning through pro-
cedure implementation and management initiatives, having a method to exam-
ine learning capabilities and establishment of norms, and having a culture that
encourages learning (Gasston & Halloran, 1999). Taken together, organizational
learning is needed in order to gather, package and share the lessons among
employees. Furthermore, organizational learning is required to embed the im-
proved working practices and high-quality software solutions as organizational
practices. Hence, by making knowledge available for the organization, the
learning processes also allow the software processes to improve.

21

2.2 Organizational learning as a collective process

As stated above, learning processes and software processes improvements are
necessities in order to increase software product quality (Niazi, 2009; Perez Lo-
pez et al., 2005). Nevertheless, in software development, quality is heavily de-
pendent on developers’ skills (Cockburn, 2001; Humphrey, 1989; Koc, 2007). In
addition, the best people are always a scarce resource, and not even the best
people can manage everything on their own. Furthermore, even the best people
can leave and take their talents with them. Thus, learning from each other and
learning from one’s own experiences are crucial in producing high quality
software (Collin, 2005; Holden, Smith & Devins, 2003; Lyytinen & Robey, 1999).
However, this requires that individuals become aware of efficient practices and
know-how, and that they consequently apply these to their daily working prac-
tices. The adopted knowledge then constructs mental models, i.e. assumptions,
habits, attitudes and visions of how things are (Senge, 1990). These mental
models are combinations of explicit knowledge and implicit skills, i.e. tools that
allow the individuals to perform the necessary actions (Senge, 1990).

Sharing of individually constructed mental models and visions is essential
when transforming individual learning into organizational learning (Kim, 1993;
Senge, 1990; Huysman, 2000; Bennet & Bennet, 2008). Further, as noted earlier,
organizational learning requires more than a group of learning individuals. In
order to create organizational knowledge and to enable organizational learning,
the individual learning results need to be shared and adopted into organiza-
tional values, processes and practices. This is referred to as organizational dou-
ble-loop learning (Argyris and Schön, 1978; Kim, 1993). In summary, since
knowledge sharing depends on both organizational and individual factors, the
connection between organizational learning and actual changes in working
processes, i.e. SPI, is not evident (see. e.g. Alavi & Leidner, 2001; Huysman,
2000; Irani, Sharif & Love, 2009), but deserves closer attention.

2.2.1 Organizational memory and types of knowledge

For the organization to be able to exploit the knowledge they have, the knowl-
edge must be stored and organized in an appropriate manner. To describe the
different characteristics and sources of knowledge in organizational communi-
cations, it is often divided into tacit and explicit knowledge (e.g. DeSouza, 2003;
Mathiassen & Pedersen, 2005; Nonaka & Takeuchi, 1995). Knowledge can be
held by individuals or it can be embedded in the organizational structures (see
eg. Mathiassen & Pedersen, 2005). To further clarify this versatility of knowl-
edge, figure 3 gives examples of knowledge types in organizational context.

In the upper left corner of the figure there is explicit knowledge held by
individuals, i.e. proprietary knowledge or codified experience (Dybå, 2001;
Mathiassen & Pedersen, 2005). This “embrained” knowledge could be for ex-
ample software patents and Post-it notes of application details. The upper right
corner represents explicit knowledge held collectively by the organization, and

22

includes models, prototypes, process descriptions, or other formal routines and
shared pieces of encoded knowledge (Dybå, 2001).

FIGURE 3 Knowledge in organizations (Dybå, 2001)

In software organizations, for example, this type of knowledge includes
software mock-ups or design diagrams. Tacit knowledge possessed by
individuals (i.e. embodied knowledge) is situated in the lower part of the figure.
That includes mental models and attitudes and various individual skills.
Moving to the right, internal routines and organizational practices represent
collective but tacit knowledge, i.e. embedded knowledge. For example,
unspoken rules about development practices belong to this category. (Dybå,
2001; Mathiassen & Pedersen, 2005)

The storing, organizing and retrieving of organizational knowledge is of-
ten called organizational memory (Stein, 1995; Walsh & Ungson, 1991). Organ-
izational memory can be seen from a functional process perspective (Alavi &
Leidner, 1999) or from technical perspective, where IT systems are central (Jen-
nex & Olfman, 2002). Regardless of the perspective, the core issue is that the
knowledge can exist in various formats – e.g. databases and e-mails – and it can
be explicit or tacit. Consequently, for knowledge-intensive work like software
development, a well managed organizational memory is a necessity. The organ-
izational activities that are used to manage organizational memory can include
decision-making, problem solving, coordinating, controlling and planning
(Alavi & Leidner, 1999). In software development, lack of explicit knowledge
can slow down new employees’ learning (Akgün, Lynn & Reilly, 2002). For ex-
ample, if a release procedure or instructions for a packaging tool are only in
tacit format, the old developers know by heart what has to be done in order to
release a product, but a new developer has nothing with which to start. Sup-
porting material, e.g. process description or a user manual for the tool, can sig-
nificantly facilitate learning (Zhong & Majchrzak, 2004). Hence, the need for a
different kind of knowledge is also evident in a software development context.

23

2.2.2 Knowledge sharing

Knowledge acquisition, knowledge sharing and knowledge integration are sig-
nificant and time-consuming activities in software development (Korkala &
Abrahamsson, 2007; Walz, Elam & Curtis, 1993). The issues to be handled are
complex, and activities for knowledge management are needed on a daily basis
(Korpela, Mursu & Soriyan, 2002). Therefore, specific organizational structures,
or “experience factories”, have been suggested to support knowledge reuse
(Basili & Caldiera, 1995). They were to facilitate collective learning by analyzing
and packing the lessons learned for the rest of the organization. However, not
even experience factories can work without the individuals who process the
relevant knowledge.

Sharing knowledge creates new knowledge. This, in turn, is a prerequisite
for innovation and learning (Alavi & Leidner, 2001; Calantone, Cavusgil &
Zhao, 2002; Nonaka & Takeuchi, 1995). Nonaka & Takeuchi introduced a
theory of organizational knowledge creation to describe the processes that are
central in knowledge sharing (Nonaka, 1994; Nonaka & Takeuchi, 1995). It is
widely used in information systems science (e.g. DeSouza, 2003; Komi-Sirviö,
Mäntyniemi & Seppänen, 2002; Ravichandran & Rai, 2003; Schönström, 2005)
and hence it is also adopted in this thesis. The continuous and dynamic
interaction between tacit and explicit knowledge, where knowledge is created
and shared, is called SECI-process (illustrated in figure 4). It consists of
Socialisation, Externalization, Combination and Internalization (Nonaka &
Takeuchi, 1995).

An individual’s tacit knowledge is the basis of organizational knowledge
creation. Tacit knowledge is hard to communicate because of its personal,
experiential nature. During socialization, these experiences and mental models
are shared in discussions and dialogue (Nonaka & Takeuchi, 1995; Senge, 1990).

Socialization is often enabled by routines and shared experiences (Nonaka
& Toyama, 2003). In the externalization process, tacit knowledge is made
explicit. In particular, cooperative dialogue that includes both dialogue and
discussion is crucial, since it fosters conceptualization of the knowledge
(Nonaka, 1994; Nonaka & Takeuchi, 1995; Senge, 1990). In the combination
process in turn, explicit knowledge is gathered, edited, integrated and diffused
in the organization. This process is central in order to make the knowledge
understandable, structured and conceptualized (Nonaka & Takeuchi, 1995). In
the internalization process, the explicit knowledge, which is shared throughout
the organization, is then converted back into tacit knowledge. This is needed for
the individuals to get practical use of the knowledge. In summary, in the
process of knowledge sharing the organizational knowledge is shared between
people as tacit knowledge, made explicit in dialogue, shared in an explicit
format by conceptualizing it and then transformed again into tacit knowledge
when adopted in individuals’ work tasks. Hence, these four processes are
interdependent and intertwined to a large extent. This means that the processes
rely on, contribute to, and benefit from other processes (Alavi & Leidner, 2001).

24

Therefore, sharing of both tacit and explicit knowledge is critical in
organizational knowledge creation and further to enable organizational
learning (Nonaka, 1994; Nonaka & Takeuchi, 1995; Nonaka & Toyama, 2003;
Sharratt & Usoro, 2003).

FIGURE 4 SECI-process (Nonaka & Takeuchi, 1995)

2.3 Knowledge management in SPI

Software organizations generally possess different types of knowledge that are
represented in various ways. This diversity of knowledge makes sharing it a
challenging task. However, as it has been described above, knowledge and
knowledge sharing is crucial in software development (Zdrahal, Mulholland,
Domingue & Hatala, 2000; Walz et al., 1993). Typically, building large programs
involves handling and coordinating multiple sources of knowledge (Kettunen,
2003). The knowledge may relate for example to the intended application do-
main of the program, or to technical issues, such as the use of software engi-
neering tools or techniques (Rus & Lindvall, 2002; Waterson, Clegg, Axtell,
1997). Furthermore, the size of many large applications and distributed devel-
opment projects contributes to the fragmentation of related knowledge (Kotlar-
sky & Oshri, 2005; Waterson et al., 1997). In addition, due to the vast size of the
software, often there are not many people (if any) who can master the whole
system. Hence, knowledge management and particularly knowledge sharing,
learning and crossing knowledge boundaries become essential for successful
software development.

Past research presents success factors for knowledge management and
knowledge management systems (e.g. Alavi & Leidner, 2001; Jennex & Olfman,
2004; Wong, 2005). Among other factors, the prevailing organizational culture
has an impact on knowledge management and particularly on knowledge

25

sharing (Iivari & Huysman, 2007; Jennex & Olfman, 2004). Collaborative
organizational culture and knowledge socialization, externalization and
internalization are positively related (Lee & Choi, 2003). Hence, explicit and
shared organizational attitudes and efficient practices are fundamental in order
to avoid the various knowledge sharing problems (Aurum, Daneshgar & Ward
2008; DeSouza, 2003; Calantone et al., 2002). A typical knowledge management
problem in software development relates to expertise and its consequences.
Being acknowledged as an expert of a particular tool, technology or of a certain
part of the software is not always a positive thing for a software engineer, as it
can be seen limiting the developers’ future tasks and career instead of
advancing them (DeSouza, 2003). Therefore, this forms a major barrier for
effective knowledge sharing. Another challenge is the perceived difficulty in
categorizing and explaining tacit development knowledge (Alavi & Leidner,
2001; DeSouza, 2003), as developers often find it troublesome to explain what
they do and how they solve particular problems in their work (Aurum et al.,
2008). Also, people possessing other roles in the development team, e.g. quality
assurers, can have great difficulties in communicating specific task-related
knowledge that is not explicitly described, but which, for example, has been
learned by experience (Aurum et al., 2008).

In addition to organizational culture, the available tools and techniques
can be inadequate in addressing effective knowledge management (Aurum et.
al, 2008; Jennex & Olfman, 2004). For example, many alternative communication
channels (e.g. knowledge system, e-mail, peer-to-peer discussions. etc.) can
complicate knowledge sharing instead of simplifying it (Alavi & Leidner, 2001;
DeSouza, 2003). Further, when standard development processes leave only little
room for experimentation, tailoring the processes to the current limitations and
realities is challenged (Kulpa & Johnson, 2008). Acknowledging the barriers of
knowledge sharing, it is not surprising that a recent study indicates that
knowledge management in software organizations is quite immature and that
often the preferred development approach is simply “learning by doing”
(Aurum et al., 2008). However, since software development is extremely
knowledge dependent, efficient knowledge management can bring great
benefits not only to individuals, but also development teams and the whole
software organization.

The benefits of knowledge management which profit the entire software
organization are, first of all, commercial. These include, for example, savings in
development costs and shortened development time (Rus & Lindvall, 2002).
The development team in turn, can avoid repeating their previous mistakes,
and even mistakes made by other teams and individuals. Additionally, efficient
knowledge management enables the development teams to better exploit past
successes. Creating process models in turn facilitates mutual communication
within and between teams (Alavi & Leidner, 1999; Rus & Lindvall, 2002). A
well-organized knowledge management can also benefit software development
processes, thus increasing product quality (e.g. Jennex & Olfman, 2002; Montoni,
Zanetti & da Rocha, 2008; Rus & Lindvall 2002). Staff participation and

26

communication are increased, which can further reduce problem-solving time
(Alavi & Leidner, 1999). Furthermore, knowledge management supports the
creation and utilization of product and project memory, for example with
version control or with explicit change management practices (Rus & Lindvall,
2002). This in turn can further increase productivity (Jennex & Olfman, 2002).
Process improvement and individuals’ learning in turn can be supported by
capturing and maintaining knowledge. Central activities can include collecting
project data or lessons learned from previous projects, enabling them to be used
for future predictions. (Rus & Lindvall, 2002)

Taken together, an efficient knowledge management provides a vast
selection of improvement targets in software development. But to gain the
benefits, the knowledge gathered needs to be processed in a relevant context.
Processing the knowledge is about transforming the knowledge format and
type in order to assimilate, adopt, share and finally embed it into the
organization. Enabling and emphasizing knowledge creation in the
organization is one of the key topics for successful SPI (Mathiassen et al., 2002).
Hence, experiences, good practices and other development knowledge need to
be captured and evaluated in order to make them useful in SPI. In a software
engineering community, software patterns have been adopted as an efficient
way for knowledge capture, retention and retrieval (Coplien, 2000). Thus, this
thesis studies patterns more closely as a tool to share and exploit design
information, and further, as an enabler for organizational learning.

2.4 Patterns in software development

Software patterns are proven solutions to recurring design problems. They pro-
vide a tool to effectively communicate complex software engineering concepts
and they can be used to record and foster reuse of proven solutions. Patterns
capture essential parts of a design in a compact form, e.g. for a documentation
of the software architecture (Beck, Crocker, Meszaros, Coplien, Dominick, Pau-
lisch & Vlissides, 1996). Patterns are commonly listed in catalogues, either in
pattern books or web pages, where patterns are often presented without explicit
pattern relations. For example the book of Gamma et al. (1995) and Yahoo! pat-
tern library2 (see also Malone, Leacock & Wheeler, 2005) are both pattern cata-
logues. In pattern catalogues, patterns are mostly described in an informal way
in natural language. This is an advantage of patterns, since understanding most
part of a pattern does not require knowledge of notation semantics or of certain
syntax (Hagen, 2002). Typical pattern presentation includes text that describes
the pattern problem. Context and solution is then accompanied with graphical
descriptions such as pictures, UML-diagrams or other notations. These nota-
tions further explain the desired design solution, its structure and consequences.
Patterns can be used by programmers, designers and architects who are build-

2 http://developer. yahoo.com/ypatterns

27

ing applications and want to improve either their understanding of architectur-
al issues or their communication of them. Patterns are simultaneously seen to
be precise enough to preserve the domain-specific knowledge but still "loose"
enough to allow the systems’ future reimplementation in related areas (Dixon,
2009; Olson, 1998).

Patterns as reusable components have gained research interest (e.g. Fach,
2001; Jacobson, Griss & Jonsson, 1997; Sodhi & Sodhi, 1998). Shortly put,
patterns are reusable objects, but despite their similarities with software
components, patterns are not components (Sodhi & Sodhi, 1998). Like
components, patterns have interfaces, which enable them to communicate with
other parts of the software and which hide the details inside the pattern. But,
patterns are not independent; they can seldom work alone. Frequently, a
number of patterns is needed to solve one design problem, and they interrelate
with each other and work together like a network. Then again, context is
present in patterns as well as in components. The three parts of patterns –
namely problem, context and solution – reminds us that context is essential for
a pattern to work. A pattern in the wrong context is called an anti-pattern
(Buschmann et al., 1996). Patterns cannot be integrated into a system as such,
but existing components can be arranged as described by a pattern. The result
of using patterns, the software design, is not a pattern in itself. (Sametinger,
1997)

Software patterns and pattern books are commonly used both in the
industry and in university curricula (Buschmann, Henney, & Schmidt 2007).
Patterns bring systematization to the software development process, and they
can be used in several ways to facilitate development work. Patterns can be
used for example as

• means for handling complexity,
• analysis and description tool,
• means for communication and information exchange and
• means for learning and teaching.

2.4.1 Patterns for complexity handling

Complexity handling and the ability to make abstractions are central skills in
software engineering (Kramer & Hazzan, 2006; Kramer, 2007; Wing, 2006). Pat-
terns facilitate understanding of complex software compositions by promoting
use of cognitive schemas (Robillard, 1999). Cognitive schemas are cognitive
links to known terms. For example “text editor” is linked in our minds to a spe-
cific application, e.g. MS Word or emacs. In a software development context,
the name of a pattern is linked to the specific problem and its solution. Conse-
quently, this helps the developer to comprehend the complicated software
structure and dynamics.

28

In abstraction, details are ignored at the expense of essential features. In
computer science, abstraction is defined as a cognitive means that is used to
overcome complexity in problem solving (Kramer & Hazzan, 2006). Presenta-
tion format of a software pattern containing details, graphical modeling and
overview pictures, can greatly support abstraction. Patterns also support mov-
ing between different levels of abstraction. Hence, patterns can help to cope
with the accidental complexity of software development and facilitate the learn-
ing and adoption of object oriented techniques (Astrachan, Berry, Cox, & Mit-
chener, 1998; Babar, Gorton & Jeffery, 2005). To explain this, the figure 5 gives
an overview of Observer pattern. With the accompanying text, the picture al-
lows the reader to grasp the main point: Defining a one-to-many dependency
between objects so that when one object changes state, all its dependents are
notified and updated automatically.

FIGURE 5 Observer pattern3

On this highest abstraction level no programming skills or UML knowledge is
needed to understand the idea of the pattern. Then, a more detailed view on the
same pattern is provided by the structure diagram, illustrated in figure 6.
Accompanied with programming example3, the reader gets more advice on
implementing the pattern.

3 http://sourcemaking.com/de-sign_patterns/observer

29

FIGURE 6 Structure of observer pattern3

2.4.2 Software analysis with patterns

A second use for patterns is in the analysis and description of software architec-
ture. In this context, patterns are often divided into three groups: architectural
patterns, design patterns and idioms (Buschmann, Meunier, Rohnert, Sommer-
lad & Stal, 1996). Each of the groups represents a different abstraction level.
Architectural patterns are the most general level solutions, which express a
fundamental structural organizational schema for software systems. They are
templates for concrete software architectures. The architectural decisions are
fundamental in nature and may have straight connection to the quality of the
application and further to the time and costs needed (Babar et al., 2005). Design
patterns are medium scale patterns, which describe relations between the sub-
systems in the software architecture. They facilitate the refining of the subsys-
tems or components and hence, these patterns are interesting primarily to de-
signers and programmers. The third group, idioms, deals with implementation
of a particular design issue. Most of the idioms are language-specific. Idioms
are smaller than components or patterns; they are straight coding examples and
needed only by programmers. (Buschmann et al., 1996)

With a growing body of pattern literature, it has become obvious that
there are numerous links between different patterns, and that patterns seldom
appear in isolation (Marquardt, 2002). In addition, it is easier to understand and
also to explain individual patterns when other patterns are cross-referenced

30

(Alexander, 1979; Porter & Clader, 2004). When patterns are organized in a sys-
tematic manner and their relations are made explicit, they form a pattern lan-
guage (Alexander, 1979; Dixon, 2009). A pattern language explicitly relates one
pattern to another in a hierarchical manner. Thus, a pattern language shows
how the patterns build a larger entity, complementing each other in a way that
they together solve a larger problem (Dixon, 2009). Pattern languages aim to
provide holistic support to develop software for specific domains, such as e-
commerce or communication middleware (Buschmann et al., 2007). Further-
more, a pattern language can be used to help the software engineers and do-
main experts to communicate their expertise to each other more explicitly and
more precisely (Borchers, 2000).

The motivation behind pattern languages is also to strive for completeness
within the tackled context or topic (Marquardt, 2002). Organizing patterns ac-
cording to predefined principles allows them to form a living language, which
can be used complementary to other languages in organization (Erickson, 2000;
Dixon, 2009). When linked patterns and the linking principles are known, it
may further facilitate selection of an appropriate pattern (Schmidt & Cleeland,
2000; Dixon, 2009). And like any other language, also pattern language changes
and evolves according to its users’ needs (Alexander, 1979; Dixon, 2009; Erick-
son, 2000; Schmidt & Cleeland, 2000). This allows the patterns themselves to
change in compliance the changing environmental requirements, e.g. technolo-
gies. A further point in using a pattern language is, that it results in a design, in
a sequence of patterns, not to a single solution in program code (Porter & Clad-
er, 2004). Pattern languages support larger-scale reuse of software architecture
and design than individual patterns (Buschmann et al., 2007). A pattern lan-
guage can also be a part of organizational memory that handles design prob-
lems (Schmidt, Fayad, Johnson and guest editors, 1996; see also Booch, 2008b).
A comprehensive pattern language is seen to provide the greatest payoff for
pattern-based software development, even though developing one is challeng-
ing and time consuming (Schmidt et al., 1996).

Some researchers argue that having a common language may not facilitate,
but will hinder communications in organizations (Erickson, 2000). The reason-
ing says that when using rich concepts of several disciplines, instead of limited
vocabulary, it is more likely that a new and innovative design can be reached.
However, a common language may encourage the participants to contribute to
the design and to be heard in the discussions (Dixon, 2009). Common language
can also lead the discussion into concrete issues and hence useless disputes may
be avoided. For example, experts of different programming languages (e.g. Vis-
ual Basic, Java, C++) can share their design expertise without being caught in a
“language wars” where mainly differences in syntax and semantics are dis-
cussed (Schmidt, 1995).

2.4.3 Tool for communication

In addition to the technical, another perspective on patterns is an organizational
one. This perspective considers patterns as means to facilitate communication

31

and as a tool to learn. An organizational approach has been utilized, for exam-
ple, in the study of designers’ decision making (Wright, 2007) and in knowledge
management (May & Taylor, 2003). Patterns have also been extended to cover
organizational practices as process patterns (Coplien and Schmidt, 1995) and
software inspection processes (Harjumaa, 2005). This thesis views patterns pre-
valently as tools to both collect and share expertise about design solutions, and
for communication.

In software development, communication is required when sharing design
information, in decision-making and in coordinating the design tasks (Chiu,
2002). Particularly large software projects often involve multiple people with
different backgrounds (Korpela et al., 2002), who are possibly in different coun-
tries and have different mother tongues. Hence, communication of the software
design becomes critical (Sarkkinen, 2006). In this communication, both visual
representations, such as charts and prototypes, and verbal representations are
important (Sarkkinen, 2006). A combination of these is needed for efficient col-
laboration (Hendry, 2004). Further, previous studies indicate that groups who
define their terminology earlier in the design process, and groups who have a
rich set of terms in use in their communication perform better than others in
software projects (Subrahmanian, Monarch, Konda, Granger, Milliken, Wester-
berg & the N-DIM Group, 2003). Taken together, communication in software
development is essential, time consuming and diversified in both topics and
mediums. The different uses of patterns as communication tools and respective
pattern characteristics are summarized in table 2. The leftmost column lists
communication aspects that patterns can address; in the middle are the key cha-
racteristics of software patterns that address the identified communication as-
pects and in the right are examples of organizational communication needs
where communication aspects and patterns can be present.

TABLE 2 Patterns as communication tools

Communication
aspect

Software pattern key
characteristics

Examples of
organizational need

Common
language

Pattern names and structure
provide vocabulary for
complex topics

Multi-site development, team
communication

Knowledge
capture

Packaged entity and structured
presentation format

Innovation creation, message
encoding

Boundary
objects

Multiple perspectives on same
topic

Stakeholder communication,
communication in subcontracting

Documentation
tool

Standard template Project-based development, where
developers change projects

In large companies in particular, communication can span teams, departments
and products (Kettunen, 2003). Communication and coordination is required
e.g. for enforcing software quality. The following figure 7 demonstrates
patterns as communication tools with a commonly used strategy pattern. The

32

purpose of strategy pattern is to define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it. In the figure, the strategy pattern is
exemplified with three different transportation methods. From a common
language perspective, all the teams implementing different transportations
would share similar view on the other parts of the system. In a subcontracting
setting this could mean, that even if each transportation method is built by
different supplier, the subcontractor does not need to reveal too many details.

FIGURE 7 Strategy pattern: overview4

However, due to different perspectives on the topic at hand, cross-
organizational communication can be extremely challenging (Korpela et al.,
2002). Crossing the organizational boundaries can be facilitated by boundary
objects, as noted earlier. Patterns and pattern languages could be used as
boundary objects because of their flexibility. They are flexible enough to adapt
to local needs and to the constraints of the groups using and adopting them,
and yet they are robust enough to maintain a common identity across the
groups (May & Taylor, 2003; Star & Griesemer, 1989). Considering software
design, patterns and pattern languages can act as boundary objects since they
grasp multiple perspectives on a single topic, containing information in
different formats available for audiences with different skills (see Dixon, 2009).
Considering boundary objects, the above picture demonstrates how a non-
programmer can understand technical design. In other words, patterns can
establish a shared language for the individuals, thus facilitating them to present
their knowledge (compare Carlile, 2002). This kind of use can also push
organizational boundaries (Lee, 2007), when people in different groups start to

4 http://sourcemaking.com/design_patterns

33

adopt pattern vocabulary in their communication and hence can widen their
own territory.

In addition to the correct vocabulary, communication as a rule requires
two kinds of skills, namely the decoding and encoding of messages. Communi-
cation decoding means ability to listen, being attentive and responding quickly,
while communication encoding is an ability to express one’s ideas clearly, have
a good command of the language, and be easily understood (Monge, Bachman,
Dillard & Eisenberg, 1982). For software developers, communication about
complex issues is crucial (Korkala & Abrahamsson, 2007), but not always sim-
ple. Patterns can facilitate developers’ communication since they capture a de-
sign solution to a packaged knowledge entity (Beck et al., 1996; Babar et al.,
2005; Cline, 1996). Using design patterns as a means of communication, the is-
sues discussed will become easier to understand and easier to refer. Patterns
can also provide a list of things to look for, e.g. during a review (Cline, 1996).
This kind of common vocabulary can facilitate communication both between
team members and between different teams (Borchers, 2000; Schmidt, 1995).

However, software patterns are not merely for communicating and find-
ing design solutions; they are also for balancing the system under examination
(Dixon, 2009). As a standard format, patterns provide a concrete means to spec-
ify and learn about the differences and dependencies between design alterna-
tives. Consequences of each pattern are visible in the presentation, which allows
the developers to negotiate the candidate solution and its trade-offs. Also the
context of the patterns is explicitly described, which has been noted to be cru-
cial for boundary objects (Lee, 2007). In summary, these characteristics indicate
that patterns indeed can work well as boundary objects in software design (Car-
lile, 2002), assuming that the negotiating parties are familiar with patterns.

Furthermore, patterns are a means to document the knowledge that has
been acquired, presented and used by different developers during several
projects and maybe in different organizations. Using a common pattern tem-
plate in documentation transfers the implicit knowledge to explicit and enables
the expertise to be shared and preserved (Schmidt, 1995). In addition, when pat-
terns have been used in the software design, their documentation enables the
maintainer or other reader of the code to easily understand the design trade-
offs that have been adopted in the design (Babar et al., 2005; Cline, 1996;). Fur-
ther, new ideas about appropriate solutions can be made explicit by using spe-
cific kinds of documentation. The documentation can help the decision makers
and end-users of the system to discuss the features in advance in the course of
design process and the developers get valuable feedback of their efforts in pre-
vious phases. This gives the developers a chance to benefit from the experience
of others and to avoid mistakes in the later phases of the development process.
(Herrmann, Hoffmann, Jahnke, Kienle, Kunau, Loser & Menold, 2003; Schmidt,
1995)

34

2.4.4 Tool for learning

In addition to communication, software patterns can also serve many learning
purposes. Their structure can benefit both the learner and the teacher in ex-
pressing and grasping the information and turning it into knowledge (Busch-
mann et al., 2007). In this context, patterns can be used

• as information sources,
• to create collective understanding,
• for training new developers and
• in teaching object-oriented thinking.

Generally developers use pattern catalogues as information sources (e.g. Booch,
2007; Gamma et al., 1995). Often, particularly trustworthy information sources
are valued above others; hence information source quality becomes an
important aspect to evaluate (Herzum, 2002). Furthermore, many developers
favor personal and interpersonal information sources and internally published
technical reports over externally published documents (Tenopir & King, 2004).
Thus, software patterns, particularly in-house patterns, can serve both as an
information source and as a communication mediator in oral communication,
for both their quality as a design solution and their reliability can be rated
(Agerbo & Cornils, 1998) by the software development community in general
and also by the particular developers.

However, books and other information sources are not enough to do bril-
liant software design. Learning at both individual and organizational levels in-
volves the transformation of data, i.e. un-interpreted information, into know-
ledge, that is interpreted information (Popper & Lipshitz, 2000). Patterns with
complete structures that explain all problems, contexts and solutions, can serve
as a tool in this transformation. Furthermore, creating innovative and high-
quality design solutions requires collaborative developers who value collective
understanding as a development practice (Wirfs-Brock, 2009). Building such
collective understanding is not always easy, but it can be facilitated by means of
cognitive elaboration and model building (Zhong & Majchrzak, 2004). Thus in
practice, learning can be fostered by mediating the message with many differ-
ent means: by using pictures, graphs, text, concrete models and possibly other
tools to explain the same contents (Sarkkinen, 2006). This allows the learners to
gain a multi-sided view of the topic and encourages the creation of collective
understanding. Since patterns contain information with many presentation
formats, they can be valuable in fostering learning within various roles in soft-
ware development.

In a training context, software patterns have been considered as means for
mentoring a novice programmer (Beck et al., 1996). Patterns help less expe-
rienced designers apprehend the collective wisdom of other designers in a way
that can be immediately used (Buschmann et al., 2007). Furthermore, expe-
rienced developers already have solutions to many recurring design problems,

35

but a pattern catalogue can help a less experienced programmer to learn about
those techniques. For example, the strategy pattern illustrated in figure 8 teach-
es a fundamental principle of object-oriented thinking, namely the “open-closed
principle”. According to this principle, the details of the interface are encapsu-
lated into the base class, while implementation details are hidden into derived
classes. This structure lets the algorithms vary independently from clients that
use them. Presenting the lesson with several graphical pictures and explanatory
text lets the novel programmer to understand the principle and its importance.
Programming code example then allows the adoption of the principle directly
to one’s work.

FIGURE 8 Strategy pattern: hide details5

In addition, a pattern catalogue can help both experienced and novice
developers to recognize situations where reuse could or should occur (Beck et
al., 1996). Also, when recruiting new members to the development team,
patterns can be used to teach the product design to the new arrivals (Cline,
1996). For those who already are familiar with the pattern techniques, a pattern
catalogue can help to communicate them to others (e.g. Fowler, 2003). Thus, for
novice programmers, it can help greatly to have design patterns present, for in
traditional education methods much time is spent learning the language syntax,
while overall picture of what is essential and how the pieces fit together is lost
(Proulx, 2000). Further, patterns can be used as a part of more complicated
software that could not be implemented completely by the trainees themselves.
Also, when trainees have experience only on structured software engineering

5 http://sourcemaking.com/design_patterns

36

paradigm, design patterns can facilitate transition to object-oriented
programming and way of thinking (Astrachan et al., 1998).

However, it is worth noticing that patterns are not learnt merely by read-
ing a pattern catalogue, but learning patterns requires their active implementa-
tion. This enables the learners to become familiar with the pattern way of think-
ing and to master the pattern’s use. However, the problem domain where pat-
terns are implemented must be familiar to the learners beforehand. When the
example problems are kept simple enough, the learners can better concentrate
on each pattern’s purpose rather than trying to make all the patterns fit into one
single example. (Goldfedder & Rising, 1996)

2.5 Bridging the gap between SPI, organizational learning and
software patterns

In the previous chapters, relevant research on SPI, organizational learning and
software patterns has been presented. It was noted that systematic organiza-
tional learning is a prerequisite for SPI. Further it was pointed out that knowl-
edge management provides central improvement targets in order to increase
process efficiency and hence also product quality. Patterns were presented as a
knowledge management tool that can be used to capture and share design
knowledge.

Current research on these topics is dispersed, although organizational
learning is widely studied in connection to software process improvement (e.g.
Heikkilä, 2009; Seigerroth & Lind, 2006). Patterns have been applied in process
modeling (e.g. Gschwind, Koehler &Wong, 2008), in groupware development
(Schummer & Lukosch, 2007) and they have garnered interest as a software de-
velopment tool (e.g. Buschmann et al. 2007; Dixon, 2009; Soundarajan,
Hallstrom, Shu & Delibas, 2008). However, research on software patterns and
organizational topics seems to be more limited (Booch, 2008; May & Taylor,
2003; Vesiluoma, 2009). This dissertation aims to bridge the gap between these
research topics and contribute to knowledge on methods for software im-
provement.

Software patterns and continuous learning are key issues also in agile de-
velopment (Buschmann et al., 2007; Salo & Abrahamsson, 2008;). Hence, the
importance of this research is further emphasized by the mushrooming of vari-
ous agile methods in both academia and software industry (e.g. Dybå & Ding-
soyr, 2008; Salo & Abrahamsson, 2008). In addition, the increasing use of open
source software and other technological advancements bringing challenges to
software development (Buschmann et al. 2007) call for this research.

3 RESEARCH PROBLEM AND METHODOLOGY

The following subsections outline the research problem and methodology. First
the research problem is presented. After that the research methodology and
data collection methods are described. Finally, the relationships of the research
topics and the included articles are depicted.

3.1 Research problem

Software processes are complex by nature, partly because of rapidly evolving
technological environments and partly because of the intangibility of the pro-
duced artifact. At the same time software organizations face heavy competition
and thus need constantly reassess their working procedures. SPI provides mod-
els and methods for process assessment and process tuning. To identify, plan
and embed the improvements, responsive and active individuals are needed. In
addition, organizational learning is required in order to make the improved
practices last. Furthermore, as indicated in the previous sections, organizational
learning does not happen automatically. Instead, to enable the individuals to
learn in the hectic software development environment, organizational support
for such learning is a necessity. Since organizational performance, and thus SPI,
often depends on ability to turn knowledge into effective action (Alavi &
Leidner, 2001), efficient knowledge management is also required. Therefore
knowledge sharing is also essential. Consequently, in this thesis knowledge
sharing in software development is studied with software patterns. This thesis
examines software patterns as tool to manage software design knowledge and
particularly as tool for communication and learning. In summary, this thesis
aims at:

• providing an analysis of needed organizational learning in software

process improvement
• providing guidelines for software patterns’ use as a learning enabler.

38

Patterns have existed in the software community for years. However, both
research and industrial practices have concentrated on technical pattern topics,
i.e. on improving software design, instead of the necessary learning effects (e.g.
Buschmann et al., 2007; Fowler, 2003; Gamma et al., 1995; Schmidt, Stal, Rohnert
& Buschmann, 2000; Yacoub & Ammar, 2004;). In order to better exploit
patterns’ full capabilities, further investigation on patterns and particularly
their properties as a communication and learning tool is highlighted. Hence,
relating this to the tentative research questions, the second research question is
reformulated to better cover the versatility of patterns. As a result, the two
research questions of this thesis are

• How can organizational learning be supported in software organization?
• How can software patterns serve as a tool for knowledge sharing in soft-

ware development?

In this dissertation the above research questions are analyzed with five articles.
Figure 9 depicts the articles with the central research concepts. In the first article,
the need for organizational support to enable learning in software organizations
is investigated. This study forms the basis for the following articles.
Improvements for both knowledge sharing and organizational learning are then
suggested in the second article. In the third paper, research focus is shifted to
software patterns in organizational communication. Patterns as a part of
organizational memory are then examined in the fourth paper. Finally, the fifth
article approaches software process improvement and the required knowledge
management from inter-organizational perspective.

FIGURE 9 Research constructions with related articles

39

As a main result, this thesis provides ideas and guidelines on how process
improvement can be enabled through the promotion of organizational learning
in software companies. As discussed in the introduction, this study uses a
knowledge codification approach by incorporating and assimilating previous
knowledge and further by creating new knowledge in the form of a dissertation.
As a result it is noted, for example, that an organization can support
individuals’ learning by having structured practices for receiving feedback and
for setting individuals’ goals. Other results indicate that creating a supportive
climate for process improvements can be facilitated by using groupware and
that the communication within a team, such as goal setting, can be improved
with software patterns. Development of organizational memory and further
knowledge accumulation to an organizational level can be promoted by
regarding the software patterns’ use as a dynamic process. Finally, research
results indicate, that organizational learning in an inter-organizational setting,
particularly in subcontracting, can be structured by using software patterns.

3.2 Research approach and methodology

Generally, research method selection should be based on the research setting
and the problem. Not only the researcher’s experiences and views, but also the
discipline, and the location of the research have an influence on the approach.
For example, information systems (IS) and software engineering (SE) can be
seen to study similar phenomena with different approaches. SE approaches
software development from an engineering perspective, i.e. technical and ma-
thematical, while IS brings in managerial and social aspects. This dissertation
exploits concepts from both disciplines, since the central research topic, soft-
ware patterns, is traditionally a research object for SE research. In this study
however, the concepts mainly studied in the IS field, namely process improve-
ment, organizational learning and knowledge management, are used to de-
scribe software patterns’ use.

This thesis approaches software process improvement and organizational
learning by describing and explaining the current company practices in soft-
ware development. Organizational perspective was selected to ensure that the
results are directly applicable in SPI initiatives. However, since SPI often com-
prises small steps in individual and team practices, which are then distributed
and embedded in company level, this study also needed to study individual
and group levels of organizational learning. These were particularly necessary
in accomplishing a holistic view of the topic and to keep the study in practical,
applicable level. The selected organizational perspective further affected on the
selection of the background theory of the research. Organizational theories on
learning and knowledge management were used to define the research focus
and they were used to interpret the collected data.

Considering data collection, both quantitative and qualitative methods
were included. This was to gain both an overview and a deep insight into the

40

topic. Quantitative methods were chosen to provide the overview and to serve
as a motivation for the study. With qualitative methods the research aimed to
deepen the understanding of the revealed issues and to allow further analysis
of the research topics. The relation of the research methods to the research ob-
jectives is illustrated in figure 10.

FIGURE 10 Research objectives in relation to the research methods

To create motivation and to gain understanding of the of the research area, an
overview of organizational support for individuals’ learning was needed.
Survey research was chosen to serve best as a method, for the topic was well
defined beforehand and the aim was to reach large number of respondents
(Järvinen & Järvinen, 2000). Case studies in general are suitable to deepen the
researcher’s understanding of the specific issues (Stake, 2000). In this thesis,
multiple case studies were selected to provide deep but varied information on
the daily practices in the organizations. To differentiate between multiple case
studies and survey sampling, the replication logic is of utmost importance (Yin,
2003). Following this logic, in this research each company is handled as its own
case, and thus the particular research topics related to the particular cases are
defined. However, the business field of the companies is common to all the case
companies, namely the mobile phone business, which thus forms a congruence
to the research. The aim of this research approach is to enable a varied view to

41

the actual research problem and simultaneously to have a positive impact on
the generalization of the results.

Data collection in the companies was carried out through interviews and
document analysis. These methods were selected to allow interaction with the
people and thus served as a gateway to the actual organizational practices. In
case work reflection of the cases is crucial and it can be conducted in several
ways, as Stake (2000) suggests. In this thesis the reflection was carried out by
analyzing previous research, the theory of organizational memory, and the
model of software process improvement (CMMI). These were then related to
the organizational environments of the case companies. This approach was se-
lected to produce generalized descriptions for alternative solutions and im-
provements of the existing company practices.

Research validity refers to the degree of accuracy with which the research
reflects or assesses the specific research object. According to Yin (2003) the four
important aspects of validity are construct validity, internal and external validi-
ty, and reliability. Construct validity refers to the degree to which the research
design is able to capture the reality. In this research construct validity is central,
particularly in describing the current company practices, for absent construct
validity can give a totally false starting point for the rest of the research; hence,
the suggested improvements would also be ineffective. In this research, con-
struct validity is addressed by having multiple companies as case organizations.
Further, the drafts of case study reports were distributed to the key intervie-
wees for comments, as suggested by Yin (2003).

External validity refers to the potential for generalizing the research re-
sults, while internal validity referring to causal relationships is not relevant to
descriptive studies (Yin, 2003). In this research, external validity is important
since the case companies were all Finnish companies developing mobile phone
applications. Hence, external validity facilitates the general application of the
results to other software companies in other countries. External validity of this
research is addressed by using varying research methods, i.e. method triangula-
tion, as suggested by Stake (2000). The fourth component of research validity,
reliability, refers to repeatability of the research operations. In this research it is
merely addressed separately in each of the included articles by describing the
used research processes and data collection methods.

3.3 Relationship of the included articles

This thesis consists of five articles that approach the topic of software process
improvement and organizational learning from different viewpoints. Nonaka’s
(1994) theory of knowledge creation utilizes four levels of knowledge creation
entities, i.e. individual, group, organizational and inter-organizational level.
New knowledge is created on these levels and happens on interactions between
the levels. The five articles constituting this thesis touch all the levels, as illu-

42

strated in figure 11. This figure associates the research topics with the included
articles and finally also the research results.

FIGURE 11 Articles and topics of this thesis in the levels of knowledge creating entities

The individual level of knowledge creation entities is researched in the first
article by studying the individuals’ experiences on learning and organizational
support for learning. The second article touches the group level by having team
communication as one of the focus areas, but concentrates merely on the
organizational level by studying the creation of supportive organizational
environment. The third article concentrates on team level by studying patterns
as a tool in communication between roles. The fourth article then focuses again
on the organizational level, by researching software patterns in relation to
knowledge accumulation and organizational memory. Finally, the fifth article
touches upon the inter-organizational level, when pattern benefits are studied
in subcontracting relationships. In summary, the five articles constitute research
that analyses and evaluates organizational learning practices in SPI. The
research proceeds from individuals to teams and organizations and includes
findings from both literature and industry.

4 OVERVIEW OF THE PAPERS

This chapter briefly summarizes the five articles included in this thesis. In the
case of co-authored papers, the authors’ contribution to each paper is also de-
scribed. The contributions of each article are described in greater detail in the
last section of this dissertation.

Paper 1: How Organizations Support Learning in Practice:
A Survey on Finnish Software Organizations

The first article approaches software process improvement and design know-
ledge sharing from the point of view of an individual’s learning. In order that
processes may be improved, the individuals first need to learn new ways of
working and new skills to perform their work more effectively. In Nonaka’s
knowledge creation theory, the internalization process describes how individu-
als must first internalize and learn before he can share his skills to his peers. To
enable the individuals to learn, an encouraging and supportive organizational
environment is required. In the first article, learning enablers (van Solingen,
Berghout & Trienekens, 2000) are used as a measurement for the organizational
support.

The research was conducted as an internet survey, targeted at people
working in software development or information system development. The fi-
nal data comprised 195 respondents. The exact research areas included in the
survey included the climate of openness, scanning for knowledge, getting in-
formation on context and the current state of the system, team learning, model-
ing of the system under control, possibilities for control, involved leadership,
explicit goal definition and monitoring the performance gap. Based on these
learning enablers and their adoption in the organizations, the article describes
the organizational support for learning in Finnish software organizations. As a
result it is concluded that, in particular, the goal setting for the work and feed-
back practices need improvement to enable the software engineers’ learning.

44

The paper was written collaboratively with Samuli Pekkola. Anne Pirinen par-
ticipated in research planning. Riikka Ahlgren was responsible for gathering
the data and analysis of the results.

Paper 2: Using Groupware to Facilitate Organizational Learning
And Software Process Improvement - A Case Study

The second article approaches software process improvement and organiza-
tional learning from a communications perspective. As highlighted in article 1,
communication is essential in creating a supportive organizational environ-
ment suitable for learning and process improvements. The case study investi-
gated how groupware can support this communication. In the article commu-
nication quality within a team is described with four attributes: communication
openness, formalisation, frequency and structure (Hoegland & Gemuenden,
2001). These attributes contribute to efficient information exchange by different
means. Communication openness promotes team integration and thus serves
for collective learning; changing formality allows concentration on the contents
and not on the communication itself; frequency lessens possibilities for misun-
derstanding; and appropriate communication structures improve team mem-
bers’ equality and further facilitates the co-operation.

In the case study, several groupware technologies and their use were re-
searched. The results were analyzed from both individual and organizational
perspectives. The results indicate that various groupware tools can be used for
sharing daily development information, but they can also serve as information
channels on organizational topics and thus facilitate organizational support for
both learning and software process improvement. In one case, organization in-
dividual learning was supported by groupware. In particular, chat software
allows developers to freely discuss open issues and solve possible problems
together, without formal meetings. In another case, communication of organ-
izational visions was supported through blogs and email. This was further seen
to support the creation of an organizational policy. This communication was
found to improve the software development when developers were allowed to
concentrate on their own tasks without need to ponder managerial decisions.
The study was planned and conducted together with Mirja Pulkkinen. Results
were analysed by Riikka Ahlgren and the theoretical implications were pro-
vided by Eleni Berki and Mirja Pulkkinen. The paper was written collabora-
tively by all authors.

45

Paper 3: Facilitating design knowledge management by tailoring
software patterns to organizational roles

The third article elaborates the requirements and problems of knowledge shar-
ing in software development. The article concentrates on design knowledge
management between different roles within a software development team. Dif-
fering skills and backgrounds often cause misunderstandings and can thus en-
danger work estimates and goal setting in the team. The article focuses on us-
ing software patterns as a communication tool between different roles. The re-
search was motivated by a case study that was conducted in a software organi-
zation interested in promoting patterns. The results of the study indicate that
there is often a communications gap between technical and business staff. This
can make goal setting difficult in software development teams, if the project
managers do not have enough knowledge on technical aspects of the software
engineers' work. The communication problem raised by the case study was
then addressed by creating a theoretical model, where patterns are tailored ac-
cording to different roles. The structure of patterns was analysed and different
pattern parts and their properties were studied. The results indicate that pat-
terns can support structured communication between different roles. Thus,
both technical and business-oriented staff can benefit from patterns as means of
communication.

Paper 4: Design Patterns and Organizational Memory in Mobile
Application Development

The fourth article focuses on the problem of preserving and accumulating
knowledge in mobile application development. Complicated and rapidly
evolving technological environment highlights the need to accumulate indi-
viduals’ knowledge at the organizational level. To gain the benefits of existing
design solutions, and to be able to create new innovative solutions, the accumu-
lation of knowledge is essential. The accumulation however is not obvious,
since the knowledge lies in individuals’ heads and can leave the company
when the people do. To address this problem the article concentrates on soft-
ware patterns in relation to the theory of organizational memory.

Organizational memory is defined as a dynamic process comprising four
processes, namely knowledge acquisition, retention, maintenance and retrieval,
which are in constant interaction with the organization’s structures, practices
and tools (Stein, 1995). In the article, the utilisation of design patterns is ana-
lyzed in comparison to these four phases. Based on theoretical research analysis,
it is suggested that the patterns’ properties allow them to be used as knowledge
entities constituting organizational memory. As a result a framework is built,
where pattern acquisition, retention, maintenance and retrieval are depicted

46

within the organizational structure, practices and tools. The developed frame-
work provides a new view to software patterns and it can be used to facilitate a
pattern’s adoption to daily development work. This article was co-authored
with Jouni Markkula. Research planning and conduction was carried out by
Riikka Ahlgren.

Paper 5: Applying Patterns for Improving Subcontracting
Management

The fifth article of this thesis considers organizational learning and knowledge
sharing at the inter-organizational level. The motivation for the article is raised
by the changing business environment in software development. Subcontract-
ing and subcontracting management is used in software business to quickly
and efficiently respond to business changes. Thus, it has become one of the key
success factors for software companies (Herbsleb, Mockus, Finholt & Grinter,
2001). However, several problems have been encountered in such collabora-
tions. The problems in software subcontracting can range from the contracting
itself, requirements engineering, project management, to overall quality of the
subcontracted component and foremost to the communication that is needed in
the different phases of the subcontracting process (Assmann and Punter, 2004;
Paasivaara, 2003; Smite, 2005).

A well-known problem in software subcontracting is defining the work
contents at an adequate level. In this article, software patterns are analyzed
through specific CMMI goals of establishing and satisfying supplier agree-
ments. The analysis concludes that patterns’ key property in subcontracting
management is to deliver information about the system design without reveal-
ing the implementation details. As a result of the article it is suggested, that
software patterns can be used as a tool in process improvements related to sub-
contracting management. Particular benefits are suggested in the practices of
selecting suppliers and in establishing supplier agreements. This article was co-
authored with Jari Penttilä and Jouni Markkula. Research was planned by
Riikka Ahlgren and Jouni Markkula, and the final article was written collabora-
tively by all authors.

5 CONCLUSIONS

Software process improvement is largely about standards and models. The re-
search and case studies both suggest that improving knowledge management
can provide major improvements for the development process. However, case
studies indicate that in software organizations SPI is small things on a small
scale. For example, in these organizations SPI means minor changes to docu-
ment templates or sharing information with communication tools. Only when
these small steps succeed can the scale be enlarged. Hence, to succeed in the
first place, improvement initiatives first need skilled people: skilled at perform-
ing development tasks, skilled in learning and questioning the current practices
and skilled in sharing their competence. The aim of this thesis was to give some
practical guidelines on how such small process improvements could be sup-
ported. This aim was approached from an organizational learning perspective,
as it is a prerequisite for the process improvement. Furthermore, the diversity of
knowledge sharing in software organization is highlighted, as it is crucial both
in the daily design work and also in the actions of management. Hence, know-
ledge sharing is essential for the whole software organization to learn. The par-
ticular research questions of this research were “How can organizational learning
be supported in software organization?” and “How can software patterns serve as a
tool for knowledge sharing in software development?” The following sections offer
findings on these research questions.

5.1 Supporting organizational learning in software organization

Organizational learning is a necessity for a software company to successfully
improve its processes. Both the literature review and case studies indicate that
even though organizational learning can happen unintentionally (Bennet &
Bennet, 2008; Huysman, 2000), it is more efficient and can be better exploited
when it is intentional (e.g. Huysman, 2000; Yang, 2007). Organizational learning
is enabled only if individuals are capable of learning and actually understand-

48

ing the learned topics. Furthermore, they will need to share their knowledge
with their peers. The shared knowledge must then be embedded within the or-
ganizational processes and practices. Only then can the employees decode and
adopt this knowledge in their daily development tasks. And only then can the
software practices and processes improve.

Regarding the first research question of this dissertation “How can organi-
zational learning be supported in software organization?”, support for organization-
al learning was presented in all five articles. The results of the survey question-
naire in the first article indicate that organizational support is often lacking
from software organizations. It was noted that there are communication prob-
lems between management and developers, and that an open climate is crucial
when fostering learning. Communication problems between management and
developers were also identified in the third paper. Tailoring a software pattern
presentation format to business roles was suggested to increase managers’ un-
derstanding of development work. This can bring two perspectives, namely
business and technological, closer to each other and hence, can foster creation of
a shared vision and supportive organizational climate.

An open organizational climate can also be fostered with technologies.
Groupware tools and their benefits were analyzed in the case study reported in
the second article. It was suggested that managerial communication and atti-
tude towards communication tools can have a great effect on both experienced
climate and on developers’ learning at work. In practice, management’s suppor-
tive attitude and open communication on organizational level can foster devel-
opers’ mutual communication, which further encourages learning and can even
enable innovation. The fourth article provided other examples of required or-
ganizational support. In that study, the concepts of organizational memory
were connected to the use of software patterns. It was noted that in an organiza-
tion there are several organizational factors that can have effect on patterns’ use
and on effective knowledge sharing. These factors include: allocated time for
pattern learning, general quality attitude and quality awareness, and organiza-
tional structures such as experts’ meetings. The fifth article suggests that orga-
nizational support for learning is also needed in inter-organizational settings.
However, in the subcontracting setting that was studied, the support is needed
merely from the client for the subcontractor. It was found that client organiza-
tion can support their subcontractors’ learning and hence their process im-
provement activities by providing guidance in adopting new working methods.

5.2 Software patterns as tool for knowledge sharing

The second research question “How can software patterns serve as a tool for know-
ledge sharing in software development?” was examined by analyzing pattern struc-
tures, properties, and their use and potential uses within different knowledge
sharing settings in software development. Sharing of various types of know-
ledge, particularly design knowledge, is a constant activity during software de-

49

velopment. Knowledge exists in different formats, is situated in different loca-
tions and it also varies by nature. The knowledge sharing purposes also vary: a
need for both detailed analysis and complexity handling is constant; new solu-
tions to old and new problems must be searched and adopted; design decisions
need to be made. Work must be divided between developers, and novices need
expert opinions to help them out. Furthermore, communication requires vari-
ous skills. Recognized skills include the ability to listen and a good command of
language. Consequently, communication takes increasing amounts of time for
developers and other team members.

Patterns were found to possess several characteristics that support com-
munication in software engineering. Patterns have a structured, yet flexible
template that enables effective design knowledge capture, communication and
retention. The template includes information on several abstraction levels,
which support both software analysis and complexity handling and supple-
ment developers’ communication of the issue. Furthermore, different abstrac-
tion levels and various presentation formats in a pattern template facilitate
communication between communities of practice. Hence, patterns can work as
boundary objects, facilitating understanding between groups with different
backgrounds. In this regard, patterns’ flexibility to different audiences is partic-
ularly valuable, since many design processes depend on the participants inter-
preting boundary objects, not in the same way but in compatible ways (Eckert
& Boujout, 2003).

In addition, patterns can form a common vocabulary for software engi-
neers of different domains and with different backgrounds. In particular, a pat-
tern’s name can serve as a reference to be used in communication. This enables
discussion to flow smoothly, when the participants need not explain every little
detail, but can refer to the pattern simply by its name. This is essential, especial-
ly in a project organization, where developers can switch teams in few months’
intervals, and hence need to communicate software design with new people. In
summary, patterns seem to have many beneficial characteristics, which encour-
age their systematic use in software development. In particular, pattern struc-
ture and presentation format enable them to serve as tools for knowledge shar-
ing in software development. Connected to explicit SPI goals, patterns’ benefits
can be escalated even in inter-organizational use (e.g. subcontracting). In that
context, patterns can be exploited in making explicit work agreements, in con-
trolling and monitoring project and possibly also in protecting strategic busi-
ness information.

5.3 Closing remarks

This dissertation has studied knowledge sharing on all the levels of knowledge
creation entities. In the following table 3 these levels and research findings are
summarized. As stated in chapter 3.3, new knowledge is created on these levels
and in interactions between the levels. Hence, this makes them important points

50

of analysis in this context. In the first column on the left, the levels of know-
ledge creation are listed. In the middle, the organizational support for learning
relevant at these levels, i.e. findings from the first research question, are charac-
terized. In the column on the right, the second research question is summarized
with the pattern characteristics and uses in knowledge sharing on each level.

TABLE 3 Research findings in the levels of knowledge creation entities

Level of
knowledge
creation entity

Organizational support for
learning

Software patterns in
knowledge sharing

Inter-organizational
level

Adopting work methods Standardized knowledge,
structured template

Organizational
level

Organizational structures,
quality attitude and awareness

Knowledge entities

Group level Communication tools,
organizational structures

Boundary object,
common vocabulary

Individual level Open climate, feedback, clear
objectives

Structured template

Concerning the organizational support for learning at the individual level of
knowledge creation, it was concluded that open climate, feedback and clear
objectives are the three most essential factors that enable developers’ learning.
The open climate can best be created on a group level or at an organizational
level of knowledge creation, since it requires communication tools,
organizational structures and general quality attitude. At the inter-
organizational level organizational support for learning was studied in a
subcontracting setting. It was found that new knowledge can be created in
many phases of the subcontracting relationship. The client can support their
subcontractor’s learning for example by providing support in adoption of new
work methods.

To sum up the findings of the second research question concerning pat-
terns in knowledge sharing, it was found that software patterns can be used in
different ways at the different level of knowledge creation entities. At the indi-
vidual level, the greatest benefit was the structured template that can help the
developer to express and classify its thinking and knowledge on complex issues.
At a group level, software patterns form a common vocabulary that facilitates
communication on design issues in a development team or between teams. Fur-
thermore, software patterns can be used as a boundary object between groups
from different fields, as their presentation format supports abstraction and un-
derstanding by different audiences. This was demonstrated in figures 5 and 6 of
this thesis. At the organizational level of knowledge creation, patterns represent
pieces of organizational memory that can be acquired, stored, maintained and
retrieved. This enables the captured knowledge to accumulate and be accessible
for the whole organization. At the inter-organizational level of knowledge crea-
tion, patterns represent standardized pieces of design knowledge, which allows

51

them to be used as work objects or quality measures. For example patterns
“Remote proxy” and “Synchronization”, presented in paper 3, can demonstrate
this use.

6 CONTRIBUTIONS AND LIMITATIONS

Competitiveness in the software business largely depends on high-quality
products and efficient development processes. This brings process improve-
ment into the very heart of a software organization’s competency kit. The main
contribution of this thesis is to analyze software process improvement in terms
of organizational learning and knowledge management. It cannot be overstated
that software process improvement means learning. It is learning at several le-
vels of the organization, all of which are equally important for the SPI to suc-
ceed. This thesis highlights the need for communication in knowledge man-
agement, learning and in software process improvement. Communication is an
essential part of all development phases and it is a central task for all the roles
participating in development processes. For software organizations this study
suggests concrete means to improve communication during development, and
gives practical ideas on improving design knowledge management. The main
contributions of this dissertation are presented below. Research limitations are
then noted and finally, further research topics are pondered.

6.1 Contributions

This thesis suggests that patterns can be small steps on a small scale, the ones
that are necessary for the individuals, teams and organizations to learn, and the
ones that are needed for successful SPI. Hence, this dissertation provides a use-
ful and an interesting perspective to SPI, where knowledge sharing plays a crit-
ical role. In the study, the software patterns were investigated as communica-
tion tools in software development and their use was connected to organiza-
tional learning. From an academic perspective, this view brings the two ap-
proaches, software engineering and knowledge management, closer to each
other and thus provides new and fruitful insights on both perspectives. In par-
ticular, the study on software patterns as part of organizational memory dem-

53

onstrated how the theories of two different fields can be exploited in order to
gain a better understanding on both topics.

In this study, software patterns were found to have capabilities for versa-
tile uses in varying communication settings. Pattern characteristics were com-
bined with organizational communication needs that hence provide a practical
listing of their use-cases. These use-cases can be adopted in both academic re-
search and in industrial settings. Furthermore, it was suggested that patterns
can work as boundary objects that can facilitate learning and communication in
software development. This can further foster improvement of software
processes. Considering the commonality and significance of communication
problems in software development, these contributions are truly important.

Further contributions were achieved by expanding the patterns’ use in an
inter-organizational context, namely subcontracting. Patterns were seen to pro-
vide control over a supplier’s development process. This idea can be escalated
even to in-house projects, where integrations are crucial between a common
platform and various applications. This kind of development setting is similar
to subcontracting, where one team builds the platform, i.e. basic structures and
services, on top of which other teams then build their applications. In both
types of projects well-documented, flexible and high-quality design solutions
together with fluent communication and coordination between the teams are
crucial for success. In both cases, whether it is a subcontracting or in-house set-
ting, patterns can provide models for both technical design and communication
facilitation.

The contributions of this thesis are valuable both in academia and indus-
try. The areas for improvement span general business competency to specified
software development practices. At the most general level, the business compe-
titiveness of a software organization can be increased by acknowledging the
learning aspects of process improvement. Such a systematic development of
selected organizational skills can be a great advantage in a rapidly evolving
software business environment. This thesis suggests knowledge management
and, in particular, the sharing of design knowledge are central skills to develop
in a software organization. These skills are required especially in performing
specified development methods and practices in an efficient manner.

In addition to systematic learning of organizational skills, further value to
a software organization can be added by efficient software development me-
thods and practices. In the presented research, the efficiency of methods and
practices is particularly examined through software patterns. The research indi-
cates that the practices that can be improved with patterns of, for example, de-
veloper training, project coordination and product documentation. Considering
developer training, patterns were suggested as information sources or as quali-
ty standards from which to learn. Project coordination in turn, both for in-house
projects and for subcontracting, can be improved through the increased visibili-
ty and control that patterns provide to the development. Further, product do-
cumentation can be improved by referring to the patterns used, or by using a
pattern as a documentation template.

54

Besides business benefits gained through learning and efficient practices, a
central contribution of this thesis lays on the fact that innovation is born in inte-
ractions (Alavi & Leidner, 2001; Calantone et al., 2002; Nonaka & Takeuchi,
1995). Hence, fostering practices and tools that enable interactions between
people and teams can also spur innovation. This is particularly important in the
software business, where development teams are an important source of inno-
vation (Conradi & Fuggetta, 2002) and where innovations have a crucial role in
the business success. Hence, this research further highlights the value of pat-
terns as communication facilitators, and particularly emphasizes their possibili-
ties as boundary objects. For academia, this perspective provides an encourag-
ing topic for further empirical studies.

Taken together, software organizations can exploit these results in several
ways when planning their future SPI initiatives. By identifying pattern charac-
teristics and applying them to specific development practices, this thesis gives
software organizations ideas for intensifying and rationalizing their pattern use.
Furthermore, software organizations can use the results in order to improve
software processes and in preserving these improvements. In academia, this
research builds on knowledge of SPI, organizational learning and software pat-
terns. SPI was described in organizational terms, where communication and
knowledge sharing is in central role. Particularly, knowledge of software pat-
terns is increased with the perspective taken in this dissertation, as software
patterns were suggested as a tool to embed the learning into organizational use.

6.2 Limitations

Certain limitations need to be considered when assessing the results of this re-
search. First, the selected research approach was based on and limited to an or-
ganizational viewpoint and utilized organizational theories. Furthermore, the
focus on this study was merely on organizations, and individual viewpoint was
used only to complement an organizational perspective. This selection hence
ignored literature presented in other relevant research areas, for example in
psychology or in human resource development. These research areas could
have enlightened the individual side of the SPI – i.e. personal improvement –
more closely and could have brought more detailed knowledge on communica-
tion in software development. Considering the research focus, patterns as
communication tools, the study was chosen to concentrate on particularly de-
sign patterns and not for example on architectural patterns or software compo-
nents in general. This has further narrowed the scope of research. All of these
premises on research theory, viewpoint and research focus were also reflected
on data analysis.

Second, considering the conduct of the research, other limitations need to
be acknowledged. The case companies of the research were all developing mo-
bile phone applications. This was initially because of their own interest towards
design patterns as development tools. Furthermore, their business environment

55

was evaluated as providing a narrow enough context for suggesting the prac-
tical benefits of design patterns. Also, the value chain and the specific characte-
ristics of the business, as explained in the fourth and fifth articles, provided an
interesting area for the research. This selection of these companies as case stu-
dies can also be seen as a limitation for the research, narrowing down the likely
application of the research results. However, similar problem areas are still re-
levant in many other software organizations, as the results of the first article
indicate. Additionally, this research setting provides an interesting topic for
further research to be performed in a different business field.

Furthermore, selected research methods may have an effect on the re-
search results. The results might have been significantly different, if, for exam-
ple, only quantitative methods were used. Use of a qualitative approach and
particularly the multiple case studies were selected to gain a rich view of the
problem area, which could not have been reached with a different research ap-
proach. Also, the available resources have affected the research methods, par-
ticularly regarding data collection. Many interviews were carried out in groups,
which might have affected the acquired information. For example, observation
or involved action research might have supplied even richer data on the case
companies. However, due to the limited time of both interviewers and particu-
larly interviewees, this was not possible.

6.3 Further studies

Both the research process and results call for future studies. The difficulties that
were encountered during this research often related specifically to the empirical
evaluation of the research results. The companies can be slow to adopt process
improvements and there is a delay before the actual benefits become visible. In
addition, the companies generally consider specific practices as classified in-
formation, and thus they are not willing to share their plans or the results of
improvements. Hence, an in-depth empirical evaluation of the research results
remains for later research projects. Definitely, it would be interesting to do a
follow-up on the case companies to measure the real business benefits that the
initiated process improvements have provided.

In addition to empirical evaluations, also the case studies highlighted tool
support for patterns. This topic was first raised in the study on tailoring pat-
terns to organizational roles, where tool support was needed to format the
presentation formats of patterns. Secondly, it seems that tool support is definite-
ly needed in creation, maintaining and retrieving patters from the repository.
And as it often is with software development, features and usability of the
available tools (in addition to their price) can greatly affect the work practices
themselves. Hence, this topic seems to be of utmost importance and further re-
search is needed.

Furthermore, an interesting research area arose during this study regard-
ing patterns as boundary objects in software development context. The benefit

56

of patterns is that they provide a vocabulary for difficult and complex topics.
Concurrently, a well-written pattern provides different perspectives to a topic
and uses a variety of presentation formats (e.g. diagrams, code, pictures and
text). These pattern properties indicate that they could be even further exploited
as boundary objects between different communities of practice in software or-
ganization. This evidently calls for further research on patterns’ use in design
collaboration, as is highlighted also in other studies (Lee, 2007).

57

YHTEENVETO (FINNISH SUMMARY)

Prosessien parantaminen on välttämätöntä kaikissa ohjelmistoyrityksissä. Pa-
rannukset edellyttävät yksilöiden oppimista ja opitun tiedon sisäistämistä osa-
na organisaation toimintatapoja ja rakenteita, eli organisaation oppimista.

Tässä opinnäytetyössä ohjelmistoprosessien parantamista tutkitaan orga-
nisaation oppimisen näkökulmasta. Tarkoituksena on löytää käytännön keinoja
prosessien parantamiseen, joten tutkimuskohteena on erityisesti tietämyksen
hallinta ja tietämyksen jakaminen. Tutkimuksessa analysoidaan suunnittelu-
malleja eli patterneja ohjelmistojen suunnittelussa tarvittavan tiedon jakamisvä-
lineenä.

Tutkimus sisältää viisi itsenäistä artikkelia ja kukin artikkeli lähestyy tut-
kimusaihetta eri näkökulmasta. Käytetyt tutkimusmenetelmät ovat sekä mää-
rällisiä että laadullisia. Ensimmäisessä artikkelissa tutkittiin oppimista suoma-
laisissa ohjelmistotaloissa kyselymenetelmän ja tilastollisen analysoinnin avulla.
Neljässä muussa artikkelissa käytettiin menetelminä tapaustutkimuksia ja kir-
jallisuustutkimusta.

Tutkimuksen tulokset osoittavat, että organisaation oppimista voidaan tu-
kea tehokkaalla tiedon hallinnalla. Suunnittelumallit ovat yksi tapa dokumen-
toida, tallentaa ja jakaa ohjelmistojen suunnittelussa tarvittavaa osaamista. Li-
säksi suunnittelumallit tarjoavat selkeät ja mitattavat tavoitteet prosessin paran-
tamiseen organisaation eri tasoilla. Jotta suunnittelumalleja voitaisiin organisaa-
tioissa hyödyntää mahdollisimman paljon, niiden käyttö on suunniteltava etu-
käteen ja sen tulee olla kiinteä osa päivittäistä ohjelmistojen kehitystyötä.

Tutkimuksen tuloksia voidaan hyödyntää ohjelmistoyrityksissä, kun mie-
titään keinoja ohjelmistokehittäjien oppimisen ja kommunikoinnin tukemiseen.
Tiedeyhteisössä tutkimus täydentää patterneista jo tehtyä tutkimusta yhdistäen
patternit uudella tavalla organisaation oppimiseen ja prosessien parantamiseen
ja näin ollen tarjoaa uusia mielenkiintoisia ja hyödyllisiä tutkimuskohteita alu-
eelta.

58

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. 2002. Agile software
development and methods - review and analysis. VTT publications 478,
Espoo.

Agerbo, E. and Cornils, A. 1998. How to preserve the benefits of Design
Patterns. In 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages and applications. Oregon, USA, ACM,
134-143.

Akgün, A.E., Lynn, G.S., and Reilly, R. 2002. Multi-dimensionality of learning in
new product development teams, European Journal of Innovation
Management 5(2), 57-72.

Alavi, M. and Leidner, D. E. 1999. Knowledge management systems: issues,
challenges and benefits. Communications of the AIS, 1 (2).

Alavi, M. and Leidner, D. E. 2001. Review: Knowledge Management and
Knowledge Management Systems: Conceptual Foundations and Research
Issues. MIS Quarterly 25 (1), 107-136.

Alexander, C. 1979. The Timeless Way of Building, New York: Oxford
University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jakobson, M., Fiksdahl-King, I., and
Angel, S. 1977. A Pattern Language. (Volume 2). New York: Oxford
University press.

Argote, L. 1999. Organizational learning: creating, retaining, and transferring
knowledge. 1999. USA: Kluwer Academic Publishers.

Argyris, C. and Schön, D. 1978. Organizational Learning: A Theory of Action
Perspective. Massachusetts: Addison-Wesley.

Assmann, D. and Punter, T. 2004. Towards partnership in software
subcontracting, Computers in Industry 54, 137-150.

Astrachan, O., Berry, G., Cox, L. and Mitchener, G. 1998. Design Patterns: an
essential component of CS Curricula. In 29th SIGCSE technical
symposium on Computer science education 26.2. - 1.3.1998, Atlanta,
Georgia, USA, ACM, 153-160.

Aurum, A., Daneshgar, F. and Ward, J. 2008. Investigating knowledge
management practices in software development organizations - An
Australian experience. Information and Software Technology 50, 511-533.

Babar, M. A., Gorton, I. and Jeffery, R. 2005. Capturing and Using Software
Architecture Knowledge for Architecture-Based Software Development. In
Proceedings of the 5th International Conference on Quality Software. IEEE,
169 - 176.

Basili, V. R. and Caldiera, G. 1995. Improve Software Quality by Reusing
Knowledge and Experience. Sloan management review 37(1), 55–64.

Bhatt, G. D. 2001. Knowledge management in organizations: examining the
interaction between technologies, techniques and people. Journal of
Knowledge Management 5(1), 68-75.

59

Beck, K., Crocker, R., Meszaros, G., Coplien, J.O., Dominick, L., Paulisch, F., and

Vlissides, J. 1996. Industrial experience with design patterns. In 18th
International Conference on Software Engineering, Berlin, Germany, IEEE,
103-114.

Bennet, D. and Bennet, A. 2008. Engaging tacit knowledge in support of
organizational learning. VINE: The journal of information and knowledge
management systems 1(38) , 72-94.

Boehm, B. W. 1988. A Spiral Model of Software Development and Enhancement.
Computer 21 (5), 61-72.

Booch, G. 2007. Object oriented analysis and design with applications. Third
edition. Addison-Wesley: California.

Booch, G. 2008a. Architectural Organizational Patterns. IEEE Software 25(3), 18
- 19.

Booch, G. 2008b. Tribal Memory. IEEE Software 25(2), 16 - 17.
Boland, R. J. Jr. and Tenkasi R. V. 1995. Perspective Making and Perspective

Taking in Communities of Knowing. Organization Science 6(4), 350-372.
Borchers, J. O. 2000. A Pattern approach to interaction design. In Conference on

Designing interactive systems: processes, practices, methods, and
techniques. USA: ACM Press, 369-378

Bowker, G. C. and Star, S. L. 1999. Sorting things out. Cambridge, MA: MIT
Press.

Brietzke, J. and Rabelo, A. 2006. Resistance factors in software process
improvement. Clei Electronic Journal 9 (1).

Buschmann, F., Henney, K. and Schmidt, D.C. 2007. Past, Present, and Future
Trends in Software Patterns, IEEE Software 24(4), 31 - 37.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. 1996.
Pattern-oriented software architecture - A system of patterns. Chicester,
West Sussex, England: John Wiley & Sons ltd.

Calantone, R. J., Cavusgil, S. T., and Zhao, Y. 2002. Learning orientation, firm
innovation capability, and firm performance. Industrial Marketing
Management, 31, 515–524.

Carlile, P. R. 2002. A Pragmatic View of Knowledge and Boundaries,
Organization Science 13(4), 442-455.

Carnegie Mellon University, 2009. CMMI Process Maturity Profile March 2009
Report. [Online] Retrieved 10th January 2010 from:
http://www.sei.cmu.edu/appraisal-
program/profile/pdf/CMMI/2009MarCMMI.pdf

Chiu, M.-L. 2002. An Organizational View of Design Communication in Design
Collaboration. Design Studies (23), 187-210.

Cline, M.P. 1996. The pros and cons of adopting and applying design patterns
in the real world. Communications of the ACM 39 (10), 47-49.

CMMI for Development. 2006.Version 1.2. Technical Report. CMU/SEI-2006-
TR-008. Software Engineering Institute (SEI), Pittsburgh. [Online]
Retrieved 27th September 2009 from:
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

60

Cockburn, A. 2001. Agile software development, the people factor. Computer

34(11), 131-133.
Collin, K. 2005. Experience and Shared Practice - Design Engineers' Learning at

work. University of Jyväskylä, Doctoral Dissertation.
Conradi, R. and Fuggetta, A. 2002. Improving Software Process Improvement.

IEEE Software 19(4), 92-100.
Coplien, J. O. 2000. Software Patterns, New York: SIGS Books & Multimedia.
Coplien, J. O. and Schmidt, D. C. (Eds.). 1995. Pattern languages of program

design. New York: ACM Press/Addison-Wesley.
Crossan, M. M., Lane, H. W. and White, R. E. 1999. An organizational learning

framework: from intuition to institution. Academy of management review
24 (3), 522-537.

Curtis, B., Krasner, H. and Iscoe, N. 1988. A field study of the software design
process for large systems. Communications of the ACM 31 (11), 1268-1287.

Davenport, T. H. and Prusak, L. 1998. Working knowledge: How Organizations
Manage What They Know. Boston, Massachusetts, USA: Harvard Business
School Press.

Deming, W. E. 1994. Out of the Crisis: quality, productivity and competitive
position. England, Cambridge University Press.

DeSouza, K. C. 2003. Barriers to Effective Use of Knowledge Management
Systems in Software Engineering. Communications of the ACM 46 (1), 99-
101.

Diaz, M. and Sligo, J. 1997. How software process improvement helped
Motorola. IEEE Software 14 (5), 75-81.

Dixon, D. 2009. Pattern Languages for CMC Design. In B. Whitworth, and B. de
Moor, (Eds.) Handbook of Research on Socio-Technical Design and Social
Networking Systems. Information Science Reference, USA.

Dorling, A. 1993. SPICE: Software Process Improvement and Capability
dEtermination. Software Quality Journal 2, 209-224.

Dybå, T. 2001. Enabling Software Process Improvement: An Investigation of the
Importance of Organizational Issues. Department of Computer and
Information Science, Faculty of Physics, Informatics and Mathematics.
Norwegian University of Science and Technology, Doctoral dissertation,

Dybå, T. 2005. An Empirical Investigation of the Key Factors for Success in
Software Process Improvement. IEEE Transactions on Software
Engineering 31 (5), 410 - 424.

Dybå, T and Dingsoyr, T. 2008. Empirical studies of agile software development:
A systematic review. Information and Software Technology 50(9-10), 833-
859.

Easterby-Smith, M. 1997. Disciplines of organizational learning: contributions
and critiques. Human Relations 50 (9), 1085-1113.

Easterby-Smith, M. and Lyles, M. A. 2005. The Blackwell Handbook of
Organizational Learning and Knowledge Management. Blackwell
Publishing, USA.

61

Easterby-Smith, M., Crossan, M. and Nicolini, D. 2000. Organizational learning:

debates past, present and future. Journal of management studies 37 (6),
783–796.

Eckert, C and Boujout, J-F. 2003.The Role of Objects in Design Co-Operation:
Communication through Physical or Virtual Objects. Computer Supported
Cooperative Work 12, 145–151.

El Emam, K., Drouin, J-N. and Melo, W. 1998. Spice: The Theory and Practice of
Software Process Improvement and Capability Determination. IEEE
Computer Society Press: California.

Erickson, T. 2000. Lingua Francas for Design: Sacred Places and Pattern
Languages. In the proceedings of Designing interactive systems:
processes, practices, methods and techniques. New York: ACM Press.

Fach, P.W. 2001. Design reuse through frameworks and patterns. IEEE Software
18(5), 9-10.

Fowler, M. 2003. Patterns of Enterprise Application Architecture, Boston:
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns:
Elements of reusable object oriented software, Boston, USA: Addison-
Wesley.

Gasston, J. and Halloran, P. 1999. Continuous Software Process Improvement
Requires Organizational Learning: An Australian Case Study. Software
Quality Journal (8), 37-51.

Goldfedder, B. and Rising, L. 1996. A Training Experience with Patterns.
Communications of the ACM 39 (10), 60-64.

Gschwind, T., Koehler, J. and Wong, J. 2008. Applying Patterns during Business
Process Modeling. In M. Dumas, M. Reichert and M.-C. Shan (Eds.): BPM
2008, LNCS 5240, Berlin Heidelberg, Springer-Verlag, 4–19.

Hagen, M. 2002. Support for the definition and usage of process patterns. In
Seventh European Conference on Pattern Languages of Programs.
Position paper. [Online] Retrieved 27th August 2010 from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.5462&rep=r
ep1&type=pdf

Haley, T.J. 1996. Software process improvement at Raytheon. IEEE Software 13
(6), 33 – 41.

Hansen, M. T., Nohria, N. and Tierney, T. 1999. What's Your Strategy for
Managing Knowledge? Harvard Business Review 77 (2), 16-16.

Harjumaa, L. 2005. Improving the software inspection process with patterns.
University of Oulu, Academic dissertation.

Harter, D. E., Krishnan, M. S. and Slaughter, S. A. 2000. Effects of Process
Maturity on Quality, Cycle Time, and Effort in Software Product
Development. Management Science 46 (4), 451-466.

Heikkilä, M. 2009. Learning and Organizational Change in SPI Initiatives. In F.
Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, Berlin Heidelberg,
Springer-Verlag, 216–230.

62

Hendry, D. G. 2004. Communication functions and the adaptation of design

representations in interdisciplinary teams. In D. Benyon & P. Moody (Eds.)
Proceedings of DIS2004. New York: ACM Press, 123-132.

Herbsleb, J., Mockus, A., Finholt, T. A and Grinter, R. E. 2001. An empirical
study of global software development: distance and speed. In Proceedings
of the 23rd International Conference on Software Engineering. USA: IEEE
Computer Society, 81 - 90.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W. and Paulk, M. 1997.
Software quality and the Capability Maturity Model. Communications of
the ACM 40 (6), 30-40.

Herrmann, T., Hoffmann, M., Jahnke, I., Kienle, A., Kunau, G., Loser, K. and
Menold, N. 2003. Knowledge management II: Concepts for usable patterns
of groupware applications. In International ACM SIGGROUP Conference
on Supporting Group Work, Sanibel Island, Florida, USA, ACM Press.

Herzum, M. 2002. The importance of trust in software engineers' assessment
and choice of information sources. Information and organization 12, 1-18.

Hoegland, M. and Gemuenden, G. 2001. Teamwork Quality and the Success of
Innovative Projects. Organization Science 12 (4), 435-449.

Holden, R., Smith, V. and Devins, D. 2003. Using 'emloyee-led development' to
promote lifelong learning in SMEs: a research note. Human Resource
Development International 6 (1), 125-132.

Hollenbach, C., Young, R., Pflugrad, A. and Smith, D. 1997. Combining quality
and software improvement. Communications of the ACM 40 (6), 41-45.

Huber, G.P. 1991. Organizational learning: The contributing processes and the
literatures. Organization science 2 (1), 71-87.

Humphrey, W.S. 1989. Managing the software process. SEI series in software
engineering. Massachusetts, USA: Addison-Wesley.

Humphrey, W.S. 1995. A discipline for software engineering. Reading (MA):
Addison-Wesley.

Humphrey, W.S., Kitson, D. and Kasse, T. 1989. The state of software
engineering practice: A preliminary report. In Proceedings of the 11th
International Conference on Software Engineering (ICSE). USA: ACM,
277-288.

Humphrey, W.S., Over, J. W., Konrad, M. C. and Peterson, W. C. 2007. Future
Directions in Process Improvement. Crosstalk - The journal of defense
software engineering, 20 (2), 17-22.

Huysman, M. 2000. Rethinking the organizational learning: analyzing learning
processes of information system designers. Accounting, Management and
Information Technology 10, 81-99.

Iivari, J. and Huisman, M. 2007. The Relationship Between Organizational
Culture and the Deployment of Systems Development Methodologies.
MIS Quarterly 31(1), 35-58.

Irani, Z., Sharif, A. M. and Love P.E.D. 2009. Mapping knowledge management
and organizational learning in support of organizational memory.
International Journal of Production Economics 122, 200–215.

63

Jacobson, I., Griss, M. and Jonsson, P. 1997. Software Reuse: Architecture,

Process and Organization for Business Success, New York: ACM Press.
Jennex, M. E. and Olfman, L. 2002. Organizational memory/ knowledge effects

on productivity - A longitudinal study. In Proceedings of the 35th Hawaii
International Conference on System Sciences, IEEE, 1029 - 1038.

Jennex, M. E. and Olfman, L. 2004. Assessing Knowledge Management
Success/Effectiveness Models. In Proceedings of the 37th Hawaii
International Conference on System Sciences, IEEE Computer Society.

Johansen, J. and Pries-Heje, J. 2007. Success with Improvement - Requires the
Right Roles to be Enacted - in Symbiosis. Software Process Improvement
and Practice 12, 529-539.

Järvinen, P. and Järvinen, A. 2000. Tutkimustyön metodeista. Tampere:
Opinpajan kirja.

Kakabadse, N. K., Kakabadse, A. and Kouzmin, A. 2003. Reviewing the
Knowledge Management Literature: Towards a Taxonomy. Journal of
Knowledge Management 7 (4), 75-91.

Kankanhalli, A., Tan, B.C.Y. and Wei, K-K. 2005. Contributing Knowledge To
Electronic Knowledge Repositories: An Empirical Investigation, MIS
Quarterly 29 (1), 113-143.

Ketola, P. 2002. Integrating Usability with Concurrent Engineering in Mobile
Phone Development. Department of Computer and Information Sciences:
University of Tampere, Tampere. Academic Dissertation.

Kettunen, P. 2003. Managing embedded software project team knowledge. IEEE
Proceedings Software 150 (6), 359–366.

Kim, D.H. 1993. The link between individual and organizational learning. Sloan
management review 35(1), 37–50.

Koc, T. 2007. Organizational determinants of innovation capacity in software
companies. Computers & Industrial Engineering 53, 373–385.

Kock, N. 1999. Process Improvement and Organizational Learning: The Role of
Collaboration Technology, London: Idea group Publishing.

Kolb, D. A. 1984. Experiential learning. Experience as the source of learning and
development. New Jersey: Prentice-Hall.

Komi-Sirviö, S., Mäntyniemi, A. and Seppänen, V. 2002. Toward A Practical
Solution for Capturing knowledge for Software Projects. IEEE Software
19(3), 60-62.

Korkala, M. and Abrahamsson, P. 2007. Communication in Distributed Agile
Development: A Case Study. In Proceedings of the 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications, USA:
IEEE Computer Society, 203 - 210.

Korpela, M., Mursu, A. and Soriyan, H.A. 2002. Information Systems
Development as an Activity. Computer Supported Cooperative Work 11,
111-128.

Kotlarsky, J. and Oshri, I. 2005. Social ties, knowledge sharing and successful
collaboration in globally distributed system development porjects.
European Journal on Information Systems 14, 37-48.

64

Kramer, J. 2007. Is abstraction the key to computing? Communications of ACM

50 (4), 37-42.
Kramer, J. and Hazzan, O. 2006. The role of abstraction in software engineering.

In Proceedings of the 28th international conference on Software
engineering. USA: ACM, 1017 – 1018.

Krasner, H. 2001. Accumulating the Body of Evidence for The Payoff of
Software Process Improvement. Software Process Improvement, IEEE
Computer Society Press, 519-539.

Kucza, T., Nättinen, M., and Parviainen, P. 2001. Improving knowledge
management in software reuse process. In F. Bomarius, S. Komi-Sirviö
(Eds.) Product Focused Software Process Improvement. Berlin: Springer,
141-152.

Kulpa, M. K. and Johnson, K. A. 2008. Interpreting the CMMI: A Process
Improvement Approach. Second edition. USA: Auerbach Publications.

Lee, C. P. 2007. Boundary Negotiating Artifacts: Unbinding the Routine of
Boundary Objects and Embracing Chaos in Collaborative Work.
Computer Supported Cooperative Work 16, 307-339.

Lee, H. and Choi, B. 2003. Knowledge Management Enablers, Processes, and
Organizational Performance: An Integrative View and Empirical
Examination. Journal of Management Information Systems 20(1), 179-228.

Leung, H. K. N. 1999. Slow change of information system development practice.
Software Quality Journal 8(3), 197-210.

Lindvall, M. and Rus, I. 2000. Process Diversity in Software Development. IEEE
Software 17(4), 14-18.

Lindvall, M., Rus, I. and Sinha, S.S. 2003. Software systems support for
knowledge management. Journal of knowledge management 7(5), 137-150.

Lyytinen, K. and Robey, D. 1999. Learning failure in information systems
development. Information Systems Journal (9), 85-101.

Malone, E., Leacock, M. and Wheeler, C. 2005. Implementing a pattern library
in the real world. A Yahoo! case study. [Online]. Retrieved 15th February
2010 from http://leacock.com/patterns/leacock_malone_wheeler.pdf

Marquardt, K. 2002. What Makes Pattern Languages Work Well. Position paper
in Seventh European Conference on Pattern Languages of Programs.
[Online]. Retrieved 17th June 2010 from http://www.haase-
consulting.com/workshops/FgEuroplop02/WhatMakesPatternLanguage
sWork_KlausMarquardt.pdf

Mathiassen, L., Nielsen, P.A., Pries-Heje, J. 2002. Learning SPI in practice. In L.
Mathiassen, J. Pries-Heje, and O. Ngwenyuma (Eds): Improving Software
Organizations: From Principles to Practice, USA: Addison-Wesley, 3-21.

Mathiassen, L. and Pedersen, K. 2005. The dynamics of knowledge in systems
development practice. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences. IEEE, 233a - 233a.

Mathiassen, L. and Pourkomeylian, P. 2003. Managing knowledge in a software
organization. Journal of Knowledge Management 7 (2), 63-80.

65

May, D. and Taylor, P. 2003. Knowledge management with patterns.

Communications of the ACM 43 (7), 94-99.
McFeeley, B. 1996. IDEAL: A User's Guide for Software Process Improvement.

CM/SEI-96-HB-001, Software Engineering Institute, USA.
Monge, P.R., Bachman, S.G., Dillard, J.R. and Eisenberg, E.M. 1982.

Communication competence in the workplace: model testing and scale
development. In M. Burgoon (Ed.) Communication yearbook, vol. 5. USA:
Transaction Books, 505-528.

Montoni, M. A., Cerdeiral, C., Zanetti, D. and da Rocha, A. R. C. 2008. A
Knowledge Management Approach to Support Software Process
Improvement Implementation Initiatives. In R. V. Connor, N. Baddoo, K.
Smolander and R. Messnarz (Eds.) Proceedings of 15th European
Conference on Software Process Improvement. Berlin: Springer, 164-175.

Nan, N. and Harter, D. E. 2009. Impact of Budget and Schedule Pressure on
Software Development Cycle Time and Effort. IEEE Transactions on
Software Engineering 35 (5), 624-637.

Nasir, M.H.N.M., Ahmad, R. and Hassan, N.H. 2008. An empirical study of
barriers in the implementation of software process improvement project in
Malaysia. Journal of Applied Sciences 8 (23), 4362-4368.

Ngwenyama, O. and Nielsen, P. A. 2003. Competing Values in Software Process
Improvement: An Assumption Analysis of CMM From an Organizational
Culture Perspective. IEEE Transactions on Engineering Management 50 (1),
100-112.

Niazi, M. 2006. Software Process Improvement: A Road to Success. In J. Münch,
and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034. Berlin: Springer-Verlag,
395 – 401

Niazi, M. 2009. Software process improvement implementation: avoiding
critical barriers. Crosstalk - the journal of defense software engineering,
22(1), 24-27.

Niazi, M., Wilson, D. and Zowghi, D. 2005. A maturity model for the
implementation of software process improvement: an empirical study. The
Journal of Systems and Software 74 (2), 155-172.

Niazi M., Wilson, D., Zowghi, D. 2006. Critical success factors for software
process improvement implementation: an empirical study. Software
Process: Improvement and Practice. Special Issue on Free or Open Source
Software Development (F/OSSD) Projects 11(2), 193 - 211.

Nonaka, I. 1994. A Dynamic Theory of Organizational Knowledge Creation.
Organization science 5 (1), 14-37.

Nonaka, I. and Takeuchi, H. 1995. The Knowledge creating company. Oxford:
Oxford University Press.

Nonaka, I. and Toyama, R. 2003. The Knowledge-creating theory revisited:
knowledge creation as a syntehisizing process. Knowldge Management
Research & Practice 1, 2-10.

66

O'Hara, F. 2000. European Experiences with Software Process Improvement. In

Proceedings of the 22nd international conference on Software engineering.
USA: ACM, 635 – 640.

Oktaba, H. and Piattini, M. (Eds.) 2008. Software process improvement for small
and medium enterprises - Techniques and Case studies. USA: Information
Science Reference.

Olson, D. 1998. FAQ from Bruce Anderson's group at ChiliPLoP'98.
Wickenburg AZ, 17-20 March 1998. [Online] Retrieved 23th April 2006
from http://c2.com/cgi/wiki?SomePatternsQuestionsAnswered

Paasivaara, M. 2003. Communication Needs, Practices and Supporting
structures in Global Inter-Organizational Software Development Projects.
In ICSE '03 International Workshop on global Software Development,
IEEE Computer Society.

Perez Lopez, S., Montes Peon, J. M. and Vasquez Ordas, C. J. 2005.
Organizational learning as a determining factor in business performance.
The Learning Organization 12 (3), 227-245.

Popper, M. and Lipshitz, R. 2000. Organizational Learning: Mechanisms,
Culture, and Feasibility. Management Learning 31, 181-196.

Porter, R. and Clader, P. 2004. Patterns in Learning to Program - An Experiment?
In Sixth conference on Australian computing education. Australia:
Australian Computer Society, 241 – 246.

Pressman, R.S. 2000. Software Engineering - A Practitioner's Approach.
European Adaptation. Berkshire, England: McGraw-Hill Publishing
Company.

Pries-Heje, J. and Johansen, J. (Eds.) 2010: Software Process Improvement
Manifesto. Version A.1.2.2010.

Proulx, V.K. 2000. Programming Patterns and Design Patterns in the
introductory computer science course. In 31st SIGCSE Technical
Symposium on Computer Science Education. USA: ACM, 80-84.

Prusak, L. 2001. Where did knowledge management come from? IBM Systems
Journal, 40(4), 1002 - 1007.

Rainer, A. and Hall, T. 2002. Key success factors for implementing software
process improvement: a maturity-based analysis. The Journal of Systems
and Software 62, 71–84.

Ravichandran, T. and Rai, A. 2003. Structural analysis of the impact of
knowledge creation and knowledge embedding on software process
capability. IEEE Transactions on Engineering Management 50(3), 270-284.

Rico, D. F. 2004. ROI of Software Process Improvement : For Project Portfolio
Managers and PMO's. USA: J. Ross Publishing Inc.

Robey, D., Wishart, N.A. and Rodriquez-Diaz, A.G. 1995. Merging the
metaphors for organizational improvement: Business process
reengineering as a component of organizational learning. Accounting,
Management & Information Technology 5 (1), 23-39.

Robillard, P. N. 1999. The role of knowledge in software development.
Communications of the ACM 42(1), 87-92.

67

Rus, I. and Lindvall, M. 2002. Knowledge Management in Software Engineering.

IEEE Software 19 (3), 26-38.
Saiedian, H. and Chennupati, K. 1999. Towards an evaluative framework for

software process improvement models. The Journal of Systems and
Software 47, 139-148.

Salo, O. and Abrahamsson, P. 2008. Agile methods in European embedded
software development organisations: a survey on the actual use and
usefulness of Extreme Programming and Scrum. IEE Software 2(1), 58–64.

Sametinger, J. 1997. Software engineering with reusable components, Berlin:
Springer-Verlag.

Sarkkinen, J. 2006. Design as discourse. Representation, representational
practice and social practice. Jyväskylä Studies in Computing 62.
Department of Information Science, University of Jyväskylä. Doctoral
dissertation

Schmidt, D.C. 1995. Using Design Patterns to Develop Reusable Object Oriented
Communication Software. Communications of the ACM, 38(10), 65-74.

Schmidt, D.C. and Cleeland, C. 2000. Applying a Pattern Language to develop
Extensible ORB Middleware. In L. Rising (Ed.): Design patterns in
communications software. England: Cambridge University Press, 393-438.

Schmidt, D.C., Fayad, M., Johnson, R.E. and Guest Editors 1996. Software
Patterns. Communications of the ACM 39 (10), 37-39.

Schmidt, D.C., Stal, M., Rohnert, H., and Buschmann, F. 2000. Pattern-oriented
software architecture - Patterns for concurrent and networked objects,
Chichester, England: John Wiley and Sons.

Schummer, T. and Lukosch, S. 2007. Patterns for Computer Mediated
Interaction. Wiley Software Patterns Series. West Sussex, England: Wiley.

Schönström, M. 2005. A knowledge process perspective on the Improvement of
Software Process. Department of Informatics, Lund University. Academic
dissertation.

Segal, J. 2001. Organizational Learning and Software Process Improvement: A
case study.In 3rd International Workshop on Learning Software
Organizations. Germany, Springer-Verlag, 68-82.

Seigerroth, U. and Lind, M. 2006. Facilitating Learning in SPI through Co-
design. In G.A. Nilsson, R. Gustas, W. Wojtkowski, W.G. Wojtkowski, S.
Wrycza, and J. Zupancic (Eds.): Advances in Information Systems
Development. Bridging the gap between academia and industry. USA:
Springer, 119-130.

Seleim, A., Ashour, A. and Bontis, N. 2007. Human capital and organizational
performance: a study of Egyptian software companies. Management
Decision 45(4), 789-801.

Senge, P.M. 1990. The fifth discipline: the art and practice of the learning
organization, New York: Doubleday Currency.

Sharratt, M. and Usoro, A. 2003. Understanding Knowledge-Sharing in Online
Communities of Practice. Electronic Journal on Knowledge Management 1
(2), 187-196.

68

Slaughter, S. A. and Kirsch, L. J. 2006. The Effectiveness of Knowledge Transfer

Portfolios in Software Process Improvement: A Field Study. Information
Systems Research 17(3), 310-320.

Smite, D. 2005. A Case Study: Coordination Practices in Global Software
Development, Product Focused Software Process Improvement. In 6th
International Conference, Berlin, Springer

Sodhi, J. and Sodhi, P. 1998. Software Reuse: Domain Analysis and Design
Process, New York: McGraw-Hill.

Sommerville, I. 2001. Software engineering. 6th edition. Harlow: Addison-
Wesley.

Soundarajan, N., Hallstrom, J.O., Shu, G. and Delibas, A. 2008. Patterns: from
system design to software testing. Innovations System Software
Engineering 4, 71-85.

Stake, R. E. 2000. Case studies. In N. K. Denzin and Y. S. Lincoln (Eds.)
Handbook of Qualitative Research. California: Sage Publications, 443-466.

Standish Group. 2009. Chaos Report.
Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P. and Murphy, R. 2007.

An exploratory study of why organizations do not adopt CMMI. The
Journal of Systems and Software 80, 883–895.

Star, S.L. and Griesemer, J.R. 1989. Institutional Ecology, 'Translations' and
Boundary Objects: Amateurs and Professionals in Berkeley's Museum of
Vertebrate Zoology, 1907-39. Social Studies of Science 19 (3), 387-420.

Star, S. L. and Ruhleder, K. 1996 In J. Yates and van J. Maanen, (Eds.) 2001.
Information technology and organizational transformation: History,
rhetoric and practice. Usa: Sage Publications.

Stein, E.W. 1995. Organizational Memory: Review of Concepts and
Recommendations for Management. International Journal of Information
Management 15 (1), 17-32.

Stelzer, D. and Mellis, W. 1998. Success Factors of Organizational Change in
Software Process Improvement. Software Process Improvement and
Practice 4, 227–250.

Subrahmanian, E., Monarch, I., Konda, S., Granger, H., Milliken, R., Westerberg,
A. and the N-DIM Group. 2003. Boundary objects and prototypes at the
interfaces of engineering design. Computer Supported Cooperative Work
12, 185-203.

Suscheck, C. A. and Ford, R. 2008. Jazz improvisation as a learning metaphor
for the scrum software development methodology. Software Process
Improvement and Practice 13 (5), 439–450.

Tenopir, C. and King, D.W. 2004. Communication Patterns of Engineers.
Hoboken, NJ, USA: John Wiley & Sons.

Terveen, L.G., Selfridge, P.G., and Long, M.D. 1993. From "Folklore" to "Living
Design Memory". In SIGCHI conference on Human factors in computing
systems. Amsterdam: ACM Press, 15 - 22.

Trienekens, J. J. M., Kusters, R. J., van Genuchten, M. J. I. M. and Aerts, H. 2008.
Targets, drivers and metrics in software process improvement: Results of a

69

survey in a multinational organization. Software Quality Journal 16, 237–
261.

Turner, J. R., Keegan, A. and Crawford, L. 2000. Learning by experience in the
project-based organization. Report series Research in Management. ERS-
2000-58-ORG. University of Rotterdam.

van Solingen, R. 2004. Measuring the ROI of Software Process Improvement.
IEEE Software 21 (3), 32 - 38.

van Solingen, R. 2009. A Follow-Up Reflection on Software Process
Improvement ROI. IEEE Software 26(5), 77-79.

van Solingen, R., Berghout, E., and Trienekens, J. 2000. From process
improvement to people improvement: enabling learning in software
development. Information and Software Technology 42, 965-971.

Vera, D. and Crossan, M. 2003. Organizational learning and knowledge
management: Toward an integrative framework. In M. Easterby-Smith,
and M. Lyles, (Eds.) The Blackwell Handbook of Knowledge Management
and Organizational Kearning. Oxford, UK: Blackwell Publishing, 122-141.

Vesiluoma, S. 2009. Understanding and supporting knowledge sharing in
software engineering. Tampere University of Technology, Publication 843.
Doctoral disseration,

Walsh, J.P., and Ungson, G.R. 1991. Organizational memory. Academy of
management review 16(1), 57-91.

Walz, D.B., Elam, J.J., and Curtis, B. 1993. Inside Software Design Team:
Knowledge Acquisition, Sharing and Integration. Communications of the
ACM 36 (10), 63-77.

Waterson, P. E., Clegg, C. W., Axtell, C.M. 1997. The dynamics of work
organization, knowledge and technology during software development.
International Journal of Human-Computer Studies 46 (1), 79-101.

Wenger, E. 2003. Communities of Practice and Social Learning systems. In D.
Nicolini, S. Gherardi and D., Yanow (Eds.) Knowing in Organizations.
New York: M.E.Sharpe, 225-246.

Wilkie, F., McFall, D., McCaffery, F., 2005. An evaluation of CMMI process
areas for small- to medium-sized software development organisations.
Software Process Improvement and Practice 10 (2), 189–201.

Wing, J. M. 2006. Computational thinking. Communications of the ACM 49(3),
33-35.

Wirfs-Brock, R. J. 2009. Designing with an agile attitude. IEEE Software 26 (2),
68-69.

Wong, K. Y. 2005. Critical success factors for implementing knowledge
management in small and medium enterprises. Industrial Management &
Data Systems 105(3), 261-279.

Wright, D. R. 2007. The Decision Pattern: Capturing and Communicating
Design Intent. In Proceedings of the 25th Annual ACM International
Conference on Design of Communication, USA

Yacoub, S.M. and Ammar, H.H. 2004. Pattern-Oriented Analysis and Design.
Composing Patterns to Design Software Systems. Boston: Addison-Wesley.

70

Yang, J. 2007. The impact of knowledge sharing on organizational learning and

effectiveness. Journal of Knowledge Management 11 (2), 83-90.
Yin, R. K. Case Study Research - Design and methods.3rd edition. Newbury

Park: Sage Publications, 2003.
Zahran, S. 1998. Software Process Improvement. Practical guidelines for

business success. Harlow: Addison-Wesley.
Zdrahal, Z., Mulholland, P., Domingue, J. and Hatala, M. 2000. Sharing

engineering design knowledge in a distributed environment. Behaviour &
Information Technology 19(3), 189-200.

Zhong, J. and Majchrzak, A. 2004. An Exploration of Impact of Cognitive
Elaboration on Learning in ISD Projects. Information Technology and
Management 5, 143-159.

ORIGINAL PAPERS

I

HOW ORGANIZATIONS SUPPORT LEARNING IN PRACTICE:
A SURVEY ON FINNISH SOFTWARE ORGANIZATIONS

by

Riikka Ahlgren & Samuli Pekkola, 20.8 2010

Submitted to Journal of Information and Knowledge Management.

II

USING GROUPWARE TO FACILITATE ORGANIZATIONAL
LEARNING AND SOFTWARE PROCESS IMPROVEMENT –

A CASE STUDY

by

Riikka Ahlgren, Mirja Pulkkinen, Eleni Berki & Marko Forsell, 11.10.2006

Proceedings of European Systems & Software Process Improvement and Inno-
vation (EuroSPI), pages 2.1-2.7

Reproduced with kind permission by John Wiley and Sons Ltd.

III

FACILITATING DESIGN KNOWLEDGE MANAGEMENT BY
TAILORING SOFTWARE PATTERNS TO ORGANIZATIONAL

ROLES

by

Riikka Ahlgren, 9.8.2007

Proceedings of 13th Americas Conference on Information Systems
(AMCIS 2007), paper 463.

Reproduced with kind permission by AIS Electronic Library.

FACILITATING DESIGN KNOWLEDGE
MANAGEMENT BY TAILORING SOFTWARE

PATTERNS TO ORGANIZATIONAL ROLES

Riikka Ahlgren
Information Technology Research Institute, University of Jyväskylä

P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
ahlgren@titu.jyu.fi

Abstract
This paper considers knowledge management in software development
from organizational roles’ viewpoint. The focus is on software patterns,
which are seen as means to facilitate the design knowledge management.
In this paper, patterns are promoted by tailoring their presentation ac-
cording to the specific needs of each role. Roles’ needs are justified by a
case study made in a Finnish software organization. Pattern presenta-
tion formats are analyzed considering different skills of roles. The analy-
sis reveals that different roles can best utilize different parts of pattern
descriptions. As a result, a tentative model is built where relationships
between roles and pattern parts are depicted. The result can be used to
promote patterns as means for managing the design knowledge in organ-
izations.

Keywords: Software patterns, Knowledge management, Organizational Roles

Introduction

Software organizations possess a vast amount of knowledge about their business and the tech-
nologies they use. Design knowledge, together with business knowledge and technical skills,
form the core of a software organization’s knowledge to have and to exploit (Stein 1995). Sever-
al knowledge management activities have been identified, which support the software devel-
opment process (Rus et al. 2002). Suggested activities include for example document manage-
ment, competence management, and software reuse (Rus et al. 2002). This paper utilizes and
builds on the reuse perspective by considering patterns and their reuse as a knowledge man-
agement problem, as suggested by Highsmith (2003).

The contents of design knowledge are composed of the design trade-offs between the
various software qualities, which are due to particular structural or behavioral aspects of the
system (Gross et al. 2001). The difference between the terms design knowledge management
and design reuse can be clarified by defining the knowledge management as reusing know-
ledge including both explicit and tacit knowledge, while the concept of reuse is merely focused
on reusing explicit components (Kucza et al. 2001). Approaching the knowledge management
with Nonaka’s terms (Nonaka 1994), the focus of this research lays on the knowledge combina-

tion phase of the knowledge creation cycle, where design knowledge is being shared between
the roles participating the development process.

Recent literature identifies several problems related to sharing of knowledge in software
development (DeSouza 2003; Rus et al. 2002; Selfridge et al. 1992). The problems can be catego-
rized as technological, organizational and individual problems (Rus et al. 2002). A general or-
ganizational problem is the lack of common language of developers and other roles (Busch-
mann et al. 1996; Walz et al. 1993), which is due to their different backgrounds, skills and inter-
ests. This problem becomes visible for example, when estimating the amounts of work for each
project task. The developers should be able to present their work estimations in an understand-
able way for the project manager. Since the project manager does not necessarily have deep
enough technical knowledge, the common vocabulary may be difficult to find.

However, the management of design knowledge is more often focused on tools (DeSouza
2003; Gomes et al. 2006; Kucza et al. 2001) than on the people and process perspective (Kucza et
al. 2001). Hence, to get a broader view on the people perspective on knowledge management,
we focus on organizational roles and particularly on project managers. This focus is motivated
by the organizational setting, where software is built, namely project business. Project managers
are the key in deciding how much time the developers can use to each of the project tasks. Thus,
to enable better management of design knowledge, and further to be able to allocate time for the
pattern related activities, the project managers must be aware of the design issues at least in
general level.

Software patterns have been suggested to facilitate management of design knowledge
and software reuse, since they capture both the design decisions made but also the decision
rationale in a compact, easily-available and structured format (Buschmann et al. 1996). Further,
previous research provides empirical evidence on patterns’ benefits regarding design quality
and communication improvement inside the development team (Beck et al. 1996; Cline 1996)
and hence, this paper focuses on patterns as means for design knowledge management.

The research question addressed in this paper is “How to make the patterns more unders-
tandable to the business-oriented roles of software development?” The paper analyses pattern descrip-
tions according to the skills needed for understanding and learning of each part of the descrip-
tion. The aim is to enable different roles better to exploit the patterns, and thus to facilitate the
management of design knowledge during the software development. The tasks and the skills
that are needed for various roles are considered, the presentation formats of patterns are ana-
lyzed, and the skills needed to understand different pattern parts are identified.

The paper is organized as follows. The following section describes the case setting and
the research method. Software patterns as knowledge entities are presented after that, which is
then followed by the organizational roles and their tasks. Pattern presentation formats are dem-
onstrated and the pattern parts analyzed. Finally, tentative framework combining roles and
different parts of patterns are presented and conclusions to the paper are provided.

Case Description and Research Method

The studied case organization is a large Finnish software company specialising in integrated
ICT solutions and mobile products and services. The company stresses quality and efficient
working habits, thus processes, quality assurance and time management are effectively imple-
mented. Software processes as well as related practices are comprehensively documented.

Design knowledge management has been one of the company’s improvement targets and
during the past years several improvement efforts have been implemented. However, in daily
development work the use of software patterns has merely been up to individual developers
more than a common practice. As a result, the management of design knowledge has not consi-
derably improved. Studying the patterns on free-time, as suggested by previous research (Cline
1996), neither improved the management of design knowledge.

In the case company, the unrealization of some improvements was mainly due the insuf-
ficient organizational support. For example, the time management system did not recognize the
design knowledge management activities as tasks to be tracked. Furthermore, templates for
project planning did not support those activities in adequate manner, thus project managers did
not allocate time to the work efforts needed.

To make the management of design knowledge more efficient and common, and further
to enable reuse of software artifacts, the company desired to raise the abstraction level of reuse
and became interested in software patterns. The abstractness of the design information was
supposed to make it more understandable for more roles and thus to increase the organization-
al support for design knowledge management.

However, presenting patterns did not solve the original problems: the patterns use was
not supported by project management and by time allocation. Project managers and responsi-
bles of time management system did not recognize patterns or their benefits. Thus, there was a
need to convince project managers and others in non-technical roles on the advantages of pat-
terns. This motivates the research reported in this paper.

The case study was made during winter 2005/2006. Our research method comprised
semi-structured interviews, meeting discussions and an extensive document analysis. The ana-
lyzed documents included a quality handbook, process descriptions and templates for different
purposes. Semi-structured interview method was chosen to keep the interview informal and
conversational, and thus to encourage the interviewees to talk about also the difficulties en-
countered. In all sessions the researcher led the discussion into the topic with a short introduc-
tion.

Designers, architects and managers were interviewed in three separate sessions. First, the
quality manager, who also worked as a project manager, was interviewed in order to identify
the company’s objectives of the pattern promotion. Then an extensive documentation analysis
was made to identify the roles to be interviewed and the skills needed by different roles in their
tasks. The aim of the second and third interviews was to verify the needs of the roles and the
required skills, which had been identified from the documentation. The interviews lasted 30
and 45 minutes with eight programmers, designers or architects present in both sessions. There
were 12 interviewees in total, for some persons attended both sessions.

In addition to the interviews, notes were taken in three other meetings, where patterns
were presented and discussed. In the first meeting there were 6 designers and the technology
manager. The last two meetings were only for company management. In addition to the tech-
nology manager of the case company, from four other companies there attended managers in-
terested in promoting patterns.

Patterns as Knowledge Entities

Software patterns are reusable knowledge entities, more concrete than components but less
concrete than frameworks (Fayad et al. 1999). A classical definition for a pattern is “a three part
rule, which expresses the relation between a certain context, problem and solution” (Alexander
1979). They can be classified to idioms, design patterns and architectural patterns (Gamma et al.
1995) and are recognized tool to learn, document and to share experimental design knowledge
(Buschmann et al. 1996; Gamma et al. 1995). In software development the patterns are expe-
rienced as precise enough to preserve the domain-specific knowledge but still flexible enough
allowing the systems’ future modifications (Olson 1998). This two-fold abstractness is one of the
key characteristics of patterns in organizational context, for it enables the patterns to be used for
different purposes by different roles.

Different pattern presentation formats are suggested in literature (Alexander et al. 1977;
Buschmann et al. 1996; Coplien 2000; Gamma et al. 1995) indicating that different formats can be
useful also in practical software development: more extensive descriptions for technical roles
and particular for novices, and brief overview for non-technical roles and experts, who already
know the pattern but need support for their memory. In the literature, however, patterns are

mainly discussed from the developer’s point of view,thus forgetting the different backgrounds,
skills and needs of other roles in the software development team.

Various skills are required for understanding the pattern descriptions. Traditionally the
patterns are targeted at people skilled with programming and UML-notation (Buschmann et al.
1996; Gamma et al. 1995). A basic assumption is that the principles of object-oriented design are
known, although even a brilliant OO programmer may not understand OO design (Holub 2004).
This makes studying patterns burdensome to someone unskilled in programming. However, as
the previously described case study and literature indicates (Cline 1996), also other roles can
benefit for patterns, for example project managers.

Different Roles and Their Languages

Organisations are composed of actors performing their roles. In order to have efficient software
development teams, the software development teams are composed of roles with different skills
(Curtis et al. 1988). The development projects typically include tasks where actors with non-
technical skills are needed. In this paper, we will use the term non-technical role to indicate an
actor whose primary tasks are business-oriented, not code-centered.

In order to ensure flexible and efficient software development, the communication be-
tween the roles must be fluent (Walz et al. 1993). Problems arise when roles have different
viewpoints and vocabularies about the software under development. Software patterns are
proposed to facilitate the creation of common language (Buschmann et al. 1996; Gamma et al.
1995), and thus to facilitate the knowledge transfer between the roles. Considering design
knowledge management, communication between technical and non-technical roles is particu-
larly needed to assure that enough time is allocated for the pattern related tasks. As we present
in this paper, the approach to patterns may vary from role to role, according to their needs,
interests and skills.

Considering software projects in the case company, we identified five key roles, which
typically formed a development team. The roles are architect, designer, programmer, project
manager and product manager. The three first are seen as technical roles and two latter as non-
technical ones. In the figure 1 the development team is illustrated in the context of their task
technicality.

Figure 1. Roles and task orientation in development team.

The case company has several architects, who are responsible for the software architecture,
including definitions of central design patterns. As a technical role, the architect often has the
best knowledge of the possible system restrictions to the software. Architect is able to read and
draw specifications using graphical notation.

Designers and programmers are often called as software engineers or developers. A de-
signer has a responsibility of designing entire modules, and he specifies the detailed key tech-
nical issues of the source and test code. Programmer, in turn, creates the source code of the
software. In the case company the practices set very few requirements on source code, hence an
effective technical implementation is dependent on the developers’ personal skills. Designer is
able to read and draw graphical specifications and has programming skills. Programmer is able

to read the given specifications and his responsibility is to implement the product with given
instructions. Although in practice the roles of designer and programmer are often performed by
one actor, we prefer to handle them as separate roles, in order to clarify the different tasks and
responsibilities of these roles and to clarify the different skills that are needed in their tasks.

Project managers’ tasks in the company are to create and update the project plan. Skills in
resource management and risk management are central. He is familiar with the business do-
main and can read graphical specifications, but is not interested in technical details or latest
programming practices. In the case company, evert product has a product manager with a
business approach. The tasks include executing and controlling the planned product activities.
Technical issues can be rather uninteresting to this role and skills concerning for example read-
ing UML notations can be limited.

The interests of the roles may vary greatly. Non-technical roles, meaning product and
project managers, are mainly interested in if the product fills the requirements, how it is used in
real life and when it can be delivered. The technical role, in turn, is interested for example in
technologies that can be used and the trade-offs of each alternative design.

Differences in roles’ skills and their varying interests have a significant effect on roles’ ab-
ilities and willingness to understand and exploit patterns as design knowledge management
means. Hence, pattern presentation formats can be tailored to be more suitable for a wider au-
dience, thus making the patterns more understandable and more useful for the non-technical
roles as well.

Formats of Pattern Presentation

There are three pattern presentation formats commonly used in literature: Alexandrian, GoF
and Buschmann’s formats (Alexander et al. 1977; Buschmann et al. 1996; Gamma et al. 1995),
illustrated in figure 2. Most pattern presentation formats include three basic parts: the problem,
its context and the proposed solution, although some other groupings exist as well (Cechich et
al. 1999; Coplien 2000; Soundarajan et al. 2004).

Figure 2. Common pattern presentation formats.

Regardless of the presentation format, pattern Name is the most important section (Coplien
2000). Names distinct patterns from each other and enable pattern comparisons. By name the
whole pattern content can be discussed without explaining the details, thus pattern names can
be a part of design vocabulary. One pattern can have several names, presented in Also known
as -section.

The Motivation provides a practical example of patterns context, problem and solution.
The purpose is to give an overview of the area that pattern concerns. It usually is followed by
an explanatory text. An example of descriptive picture is illustrated in figure 3, where the Ob-
server –pattern is described as a single picture. The text then describes how the information in
different objects can be updated by using an observer to mediate the changes (Gamma et al.
1995).

Figure 3. Observer -pattern in motivation –section (Gamma et al. 1995).

The Intent summarizes the general problem and introduces the solution in brief form, while the
context of the problem addressed by the pattern is presented in the Context or Motivation sec-
tions. The context describes the factors that must be present for the pattern to work, for example
programming language, size or scope. The Applicability describes situations where the pattern
may be adopted; in a same manner the problem declares the details in the problem area. A con-
cise problem statement helps the problem solver to decide whether to keep on reading this par-
ticular pattern description (Coplien 2000). Participants are the classes or objects that play key
roles in implementing the function that the pattern describes. The Structure, in turn, includes
the collaborations of the participants and presents them in graphical notation, as illustrated in
the following figure 4.

Figure 4. The structure of Observer -pattern illustrated with UML –notation
(Gamma et al. 1995).

 In the Dynamics or Collaborations sections, the participants’ behavior is described in

 more detail, emphasizing the interactions of the pattern. Sequence charts are commonly used to

describe the behavior and timely interactions of each object, as illustrated in the following fig-
ure 5.

Figure 5. The dynamics of observer -pattern in collaboration –section (Gamma et al.

1995).

The Implementation section facilitates implementing the pattern in practice. Separate code ex-
amples are given in the Sample code or Example resolved sections. The Consequences section
descibes the benefits and trade-offs which the pattern adoption brings along. The Known uses
section, in turn, describes previous successful adoptions, thus facilitating the evaluation of the
appropriateness of the pattern. The Related patterns and See also sections introduce other simi-
lar patterns, which can be used for the current problem. Browsing through other possible pat-
terns may provide information about the pattern context and applicability, and suggest suitable
pattern combinations.

The GoF pattern presentation format is particularly intended to help users in creating so-
lutions to problems (Beck et al. 1994). The users focus less on when to apply the pattern and
more on the actual structure and dynamics of the pattern itself. Thus, this pattern format is
more descriptive rather than generative (Beck et al. 1994). Therefore, the GoF format is selected
for analyzing the contents of the presentation format.

Analysis of Pattern Presentations

The purpose of each section in the pattern description is not always unambiguous. This is illu-
strated in figure 6 where the sections of GoF presentation format are depicted according to the
Alexandrian view of pattern as a three part rule, including the context, the problem and the
solution.

Figure 6. GoF presentation format as a three part rule.

The pattern sections Applicability, Intent and Motivation are present in more than one part,
which enables logical connections between the parts. The applicability section is used both in
finding the right context of the pattern, as well as in identifying the similarity between the prob-
lem areas of the current situation and the one described in the pattern description. Correspon-
dingly, the intent section is used to identify the suitable problem area, but it simultaneously
connects the problem area with possible solution by summarizing the purpose of the pattern.
This connection is provided also by motivation section, but in a more structural way. Together
the applicability, intent and motivation sections provide a consistent path from context to solu-
tion, which is essential particularly when learning the pattern for the first time.

The related patterns section is placed to the context part, for related patterns give the
adopter hints about the environment where the pattern can be used. On the other hand, it could
be placed to the solution part, for related patterns are links to the pattern system, thus facilitat-
ing the navigation in the pattern system and helping to understand the entity of patterns. These
links between patterns describe specific pattern combinations which may serve as a solution.
The pattern name is even more problematic, for there are no rules of how to give a name to a
new (in-house) pattern, since the name’s main purpose is to be informative and descriptive.

Pattern Parts in Design Knowledge Management

The results of the case study reflected that indeed reuse was a knowledge management problem,
which could not be solved only by raising the abstraction level. This is indicated also by
Highsmith (2003). Considering the role of project managers, the case findings indicated that
design knowledge management was not supported by the processes, which is reflected also by
the findings of Komi-Sirviö et. al (2002).

Considering pattern presentation from the design knowledge management perspective,
the likely use of patterns depends on the roles in the development team. The relationships be-
tween the roles and the pattern use are illustrated in figure 8. The intensity of the arrow indi-
cates the significance of different pattern parts to each role. The intention is to present the most
essential patterns parts regarding to the tasks of the roles, without excluding others.

Figure 7. Essential pattern parts and development team roles

Some of the sections in pattern descriptions rely heavily on code, thus programming skills in
appropriate language are needed for learning and adopting the pattern in a design. Particularly
the sections, which are meant to facilitate the pattern adoption and making the right modifica-
tions, for example sections “implementation” and “sample code”, often heavily employ source
code in a specific programming language.

Many designers and programmers prefer software-centric visual aids such as class mod-
els and interaction graphs (Schmidt et al. 1996). Therefore, many pattern description formats
use popular notations (such as Booch models and OMT) to express the structure and dynamic
behavior concisely (Schmidt et al. 1996). This highlights the importance of graphical designing
language knowledge.

The technically oriented roles need to understand the structure, participants and the col-
laborations most profoundly, and thus the solution part seems to be the most valuable in their
work. The solution part is often described with programming language and graphical notation
which are familiar and useful for these roles. For this particular reason, the business oriented
roles may not be able to interpret the solution part. It should be mentioned that, while the con-
text and the problem parts are of little (if any) interest to the programmer role, they are impor-
tant for the designer and especially for the architect.

The non-technical roles need merely the problem part and the pattern name in their work.
The motivation section gives managers a good overview of the proposed pattern, without going
too much into details. Additionally, the motivation is often described with plain text and ex-
plaining pictures (Gamma et al. 1995), instead of graphical notations or programming languag-
es, which facilitates the understanding.

It should be noted that, considering the roles in general level, the managers often are not
interested on problems, but on solutions (Kolb 1996). However, in the case of patterns the aim is
not to make the managers learn the pattern contents in detail, but to facilitate their understand-
ing and communication about the design issues. The problem –part of pattern descriptions
gives the best overview of the pattern, and therefore it seems to best suit for the non-technical
roles. Furthermore, as indicated in (Curtis et al. 1988), gaining better understanding of design
issues facilitates the project managers’ actual task as well, namely estimating the needed time
for development tasks.

As well technical as non-technical roles are able to use the context part, in order to sup-
port their thinking and decision making. Particularly the motivation section can be exploited by
all roles, for it explains the pattern core in layman’s terms, thus being both informative and
abstract enough.

Thus, when creating an in-house pattern presentation format, the skills of the different
roles should be acknowledged, and different parts of patterns should be described in an unders-
tandable way, not only for the technical people but also to the business oriented roles.

Concluding Remarks

In this paper the management of design knowledge is studied through software pattern presen-
tation formats. The patterns are a tool to disseminate the design knowledge inside a company
and a tool to facilitate the communication during software development. Furthermore, the pat-
tern presentation formats can enable different readers to manage and exploit the knowledge
captured in pattern format. The patterns described and analyzed in this paper were design pat-
terns, but the principle of tailoring the pattern presentation formats can be adapted to the archi-
tectural patterns as well.

In software development, communication problems are likely to occur when managers
have different viewpoint and vocabulary than the actual users of patterns, namely program-
mers, designers and architects. In order to facilitate the design knowledge management and to
facilitate the communication of design issues, patterns should be understood by different roles,
despite the differences of their skills. Meanwhile, pattern catalogues usually present patterns in
a single format, not adjusted to different roles. Therefore, the proposed approach emphasizes
dialogue between the individuals, as encouraged by DeSouza (2003).

A case study was made to motivate the research. The case revealed organizational factors
related to patterns and their use, which should be acknowledged when patterns are introduced
in an organization. Based on the case, the research question for this paper was stated as “How to
make the patterns more understandable for the business-oriented roles of software development?” To
address this question, pattern presentation was analyzed considering the possessed skills of
different roles in software development. It was concluded that different roles can utilize differ-
ent parts of pattern descriptions. Non-technical roles get best understanding of the design is-
sues by using the problem part of the pattern description, while technical roles can better ex-
ploit the solution part.

However, the presentation format used in a company does not have to follow the formats
that are present in the literature; rather, patterns can be formatted according to the organiza-
tion’s own needs and practices. It is up to the organization to decide what are seen important
and which not, although some basic information, pattern name for example, should always be
included, because of its functionality.

The role of a mentor can not be forgotten when promoting patterns in organizations
(Beck et al. 1996). However, this role is hard to fulfill, unless the developers have no time to
learn the patterns. We suggest that project managers can facilitate mentors’ work by acknowl-
edging the patterns and further by allocating time for the developers to study them.

Taken together, patterns’ use needs organizational support as any other knowledge man-
agement activities. The support is hard to grant and implement, if the supported matter or its
benefits are too burdensome to understand for the roles that make the actual decisions. Hence,
to ensure patterns’ organizational support, their use must be motivated for project managers
and other managers as well.

Therefore, when introducing patterns as design knowledge management means for the
managers, problem part can be emphasized to ensure the best understanding of the contents.
Furthermore, a pattern presentation format employed in an organization can be adapted to the
needs of a particular role to ensure a wider audience for the patterns. Technical tools can be
utilized to automatically produce different views of a same pattern.

References

Alexander, C. The Timeless Way of Building, New York: Oxford University Press, 1979.

Alexander, C., Ishikawa, S., Silverstein, M., Jakobson, M., Fiksdahl-King, I., and Angel, S. A Pattern
Language (Volume 2). New York: Oxford University press, 1977.

Beck, K., Crocker, R., Meszaros, G., Coplien, J.O., Dominick, L., Paulisch, F., and Vlissides, J. " Indus-
trial experience with design patterns," 18th International Conference on Software Engineering, IEEE,
Berlin, Germany, 1996, pp. 103-114.

Beck, K., and Johnson, R. "Patterns Generate Architectures," 8th European Conference of Object-
Oriented Programming, Bologna, Italy, 1994.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. Pattern-oriented software architec-
ture - A system of patterns, Chicester, West Sussex, England: John Wiley & Sons ltd., 1996.

Cechich, A., and Moore, R. "A Formal specification of GoF Design Patterns," The United Nations Uni-
versity, International Institute for Software Technology, 1999.

Cline, M.P. "The pros and cons of adopting and applying design patterns in the real world," Communica-
tions of the ACM (39:10), 1996, pp. 47-49.

Coplien, J. Software Patterns, New York: SIGS Books & Multimedia, 2000.

Curtis, B., Krasner, H., and Iscoe, N. "A field study of the software design process for large systems,"
Communications of the ACM (31:11), 1988, pp. 1268-1287.

DeSouza, K.C. "Barriers to Effective Use of Knowledge Management Systems in Software Engineering,"
Communications of the ACM (46:1), 2003, pp. 99-101.

Fayad, M., Schmidt, D.C., and Johnson, R. Building Application Frameworks, New York: John Wiley &
Sons Inc., 1999.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of reusable object
oriented software, Boston, USA: Addison-Wesley, 1995.

Gomes, P., and Leitão, A. (eds.) A Tool for Management and Reuse of Software Design Knowledge,
Berlin -Heidelberg: Springer Verlag, 2006.

Gross, D., and Yu, E. "From Non-Functional Requirements to Design through Patterns," Requirements
Engineering (6), 2001.

Holub, A. Holub on Patterns: Learning design patterns by looking at code, USA: aPress, 2004.

Kolb, D.A. "Management and the learning process," in: How Organizations Learn, K. Starkey (ed.): In-
ternational Thomson Publishing Company, London, 1996, pp. 270-287.

Komi-Sirviö, S., Mäntyniemi, A., and Seppänen, V. "Toward A Practical Solution for Capturing know-
ledge for Software Projects," IEEE Software (May/June), 2002, pp. 60-62.

Kucza, T., Nättinen, M. and Parviainen, P., "Improving knowledge management in software reuse
process," PROFES, Springer-Verlag, Kaiserslautern, Germany, 2001, pp. 141-152.

Nonaka, I. "A Dynamic Theory of Organizational Knowledge Creation," Organization science (5:1),
1994.

Olson, D. "FAQ from Bruce Anderson's group at ChiliPLoP'98," Wickenburg AZ, 17-20 March 1998,
1998.

Rus, I., and Lindvall, M. "Knowledge Management in Software Engineering," IEEE Software (19:3),
2002, pp. 26-38.

Schmidt, D.C., Fayad, M., Johnson, R.E., and Guest Editors "Software Patterns," Communications of the
ACM (39:10), 1996.

Selfridge, P.G., Terveen, L.G., and Long, M.D. " Managing design knowledge to provide assistance to
large-scalesoftware development," Knowledge-Based Software Engineering Conference, IEEE, McLean,
VA, USA, 1992, pp. 163-170.

Soundarajan, N., and Hallstrom, J.O. "Responsibilities and Rewards: Specifying Design Patterns," 26th
International Conference on Software Engineering, IEEE Computer Society, Edinburgh, Scotland, 2004.

Stein, E.W. "Organizational Memory: Review of Concepts and Recommendations for Management,"
International Journal of Information Management (15:1), 1995, pp. 17-32.

Walz, D.B., Elam, J.J., and Curtis, B. "Inside Software Design Team: Knowledge Acquisition, Sharing
and Integration," Communications of the ACM (36:10), 1993, pp. 63-77.

IV

DESIGN PATTERNS AND ORGANIZATIONAL MEMORY IN
MOBILE APPLICATION DEVELOPMENT

by

Riikka Ahlgren & Jouni Markkula, 13.6.2005

Product Focused Software Engineering. Lecture Notes in Computer Science,
Vol. 3547/2005, 143-156

Reproduced with kind permission by Springer-Verlag GmbH

V

APPLYING PATTERNS FOR IMPROVING SUBCONTRACT-
ING MANAGEMENT

by

Riikka Ahlgren, Jari Penttilä & Jouni Markkula, 31.10.2005

On the Move to Meaningful Internet Systems 2005: OTM Workshops
Lecture Notes in Computer Science, 2005, Volume 3762/2005, 572-581

Reproduced with kind permission by Springer.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

1 ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.

2 KUZMIN, DMITRI, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

3 KARSTEN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto
3 p. 2000.

4 KOSKINEN, JUSSI, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.

5 RISTANIEMI, TAPANI, Synchronization and blind
signal processing in CDMA systems. -
Synkronointi ja sokea signaalinkäsittely
CDMA järjestelmässä. 112 p. Yhteenveto 1 p.
2000.

6 LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.
(108 p.) Yhteenveto 1 p. 2000.

7 KOSKINEN, MINNA, Process metamodelling.
Conceptual foundations and application. 213
p. Yhteenveto 1 p. 2000.

8 SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

9 NAHAR, NAZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

10 FOMIN, VLADISLAV V., The process of standard
making. The case of cellular mobile telephony.
- Standardin kehittämisen prosessi. Tapaus-
tutkimus solukkoverkkoon perustuvasta
matkapuhelintekniikasta. 107 p. (208 p.)
Yhteenveto 1 p. 2001.

11 PÄIVÄRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

12 HÄKKINEN, ERKKI, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.

13 HIRVONEN, KULLERVO, Towards better
employment using adaptive control of labour
costs of an enterprise. 118 p. Yhteenveto 4 p.
2001.

14 MAJAVA, KIRSI, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

15 SAARINEN, KARI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.

16 FORSELL, MARKO, Improving component reuse
in software development. 169 p. Yhteenveto
1 p. 2002.

17 VIRTANEN, PAULI, Neuro-fuzzy expert systems
in financial and control engineering.
245 p. Yhteenveto 1 p. 2002.

18 KOVALAINEN, MIKKO, Computer mediated
organizational memory for process control.

Moving CSCW research from an idea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.

19 HÄMÄLÄINEN, TIMO, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

20 MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

21 MURSU, ANJA, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

22 SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.

23 LENSU, ANSSI, Computationally intelligent
methods for qualitative data analysis. 57 p.
(180 p.) Yhteenveto 1 p. 2002.

24 RYABOV, VLADIMIR, Handling imperfect
temporal relations. 75 p. (145 p.) Yhteenveto
2 p. 2002.

25 TSYMBAL, ALEXEY, Dynamic integration of data
mining methods in knowledge discovery
systems. 69 p. (170 p.) Yhteenveto 2 p. 2002.

26 AKIMOV, VLADIMIR, Domain decomposition
methods for the problems with boundary
layers. 30 p. (84 p.). Yhteenveto 1 p. 2002.

27 SEYUKOVA-RIVKIND, LUDMILA, Mathematical and
numerical analysis of boundary value
problems for fluid flow. 30 p. (126 p.) Yhteen-
veto 1 p. 2002.

28 HÄMÄLÄINEN, SEPPO, WCDMA Radio network
performance. 235 p. Yhteenveto 2 p. 2003.

29 PEKKOLA, SAMULI, Multiple media in group
work. Emphasising individual users in
distributed and real-time CSCW systems.
210 p. Yhteenveto 2 p. 2003.

30 MARKKULA, JOUNI, Geographic personal data,
its privacy protection and prospects in a
location-based service environment. 109 p.
Yhteenveto 2 p. 2003.

31 HONKARANTA, ANNE, From genres to content
analysis. Experiences from four case
organizations. 90 p. (154 p.) Yhteenveto 1 p.
2003.

32 RAITAMÄKI, JOUNI, An approach to linguistic
pattern recognition using fuzzy systems.
169 p. Yhteenveto 1 p. 2003.

33 SAALASTI, SAMI, Neural networks for heart rate
time series analysis. 192 p. Yhteenveto 5 p.
2003.

34 NIEMELÄ, MARKETTA, Visual search in
graphical interfaces: a user psychological
approach. 61 p. (148 p.) Yhteenveto 1 p. 2003.

35 YOU, YU, Situation Awareness on the world
wide web. 171 p. Yhteenveto 2 p. 2004.

36 TAATILA, VESA, The concept of organizational
competence – A foundational analysis.
- Perusteanalyysi organisaation
kompetenssin käsitteestä. 111 p. Yhteenveto 2
p. 2004.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

37 LYYTIKÄINEN, VIRPI, Contextual and structural
metadata in enterprise document
management. - Konteksti- ja rakennemetatieto
organisaation dokumenttien hallinnassa.
73 p. (143 p.) Yhteenveto 1 p. 2004.

38 KAARIO, KIMMO, Resource allocation and load
balancing mechanisms for providing quality
of service in the Internet. 171 p. Yhteenveto
1 p. 2004.

39 ZHANG, ZHEYING, Model component reuse.
Conceptual foundations and application in
the metamodeling-based systems analysis
and design environment. 76 p. (214 p.) Yh-
teenveto 1 p. 2004.

40 HAARALA, MARJO, Large-scale nonsmooth
optimization variable metric bundle method
with limited memory. 107 p. Yhteenveto 1 p.
2004.

41 KALVINE, VIKTOR, Scattering and point spectra
for elliptic systems in domains with
cylindrical ends. 82 p. 2004.

42 DEMENTIEVA, MARIA, Regularization in
multistage cooperative games. 78 p. 2004.

43 MAARANEN, HEIKKI, On heuristic hybrid
methods and structured point sets in global
continuous optimization. 42 p. (168 p.)
Yhteenveto 1 p. 2004.

44 FROLOV, MAXIM, Reliable control over
approximation errors by functional type a
posteriori estimates. 39 p. (112 p.) 2004.

45 ZHANG, JIAN, Qos- and revenue-aware resource
allocation mechanisms in multiclass IP
networks. 85 p. (224 p.) 2004.

46 KUJALA, JANNE, On computation in statistical
models with a psychophysical application. 40
p. (104 p.) 2004.,

47 SOLBAKOV, VIATCHESLAV, Application of
mathematical modeling for water
environment problems. 66 p. (118 p.) 2004.

48 HIRVONEN, ARI P., Enterprise architecture
planning in practice. The Perspectives of
information and communication technology
service provider and end-user. 44 p. (135 p.)
Yhteenveto 2 p. 2005.

49 VARTIAINEN, TERO, Moral conflicts in a project
course in information systems education.
320 p. Yhteenveto 1p. 2005.

50 HUOTARI, JOUNI, Integrating graphical
information system models with visualization
techniques. - Graafisten tietojärjestelmäku-
vausten integrointi visualisointitekniikoilla.
56 p. (157 p.) Yhteenveto 1p. 2005.

51 WALLENIUS, EERO R., Control and management
of multi-access wireless networks. 91 p.
(192 p.) Yhteenveto 3 p. 2005.

52 LEPPÄNEN, MAURI, An ontological framework
and a methodical skeleton for method
engineering – A contextual approach. 702 p.
Yhteenveto 2 p. 2005.

53 MATYUKEVICH, SERGEY, The nonstationary
Maxwell system in domains with edges and
conical points. 131 p. Yhteenveto 1 p. 2005.

54 SAYENKO, ALEXANDER, Adaptive scheduling for
the QoS supported networks. 120 p. (217 p.)
2005.

55 KURJENNIEMI, JANNE, A study of TD-CDMA and
WCDMA radio network enhancements. 144 p.
(230 p.) Yhteenveto 1 p. 2005.

56 PECHENIZKIY, MYKOLA, Feature extraction for
supervised learning in knowledge discovery
systems. 86 p. (174 p.) Yhteenveto 2 p. 2005.

57 IKONEN, SAMULI, Efficient numerical methods
for pricing American options. 43 p. (155 p.)
Yhteenveto 1 p. 2005.

58 KÄRKKÄINEN, KARI, Shape sensitivity analysis
for numerical solution of free boundary
problems. 83 p. (119 p.) Yhteenveto 1 p. 2005.

59 HELFENSTEIN, SACHA, Transfer. Review,
reconstruction, and resolution. 114 p. (206 p.)
Yhteenveto 2 p. 2005.

60 NEVALA, KALEVI, Content-based design
engineering thinking. In the search for
approach. 64 p. (126 p.) Yhteenveto 1 p. 2005.

61 KATASONOV, ARTEM, Dependability aspects in
the development and provision of location-
based services. 157 p. Yhteenveto 1 p. 2006.

62 SARKKINEN, JARMO, Design as discourse:
Representation, representational practice, and
social practice. 86 p. (189 p.) Yhteenveto 1 p.
2006.

63 ÄYRÄMÖ, SAMI, Knowledge mining using
robust clustering. 296 p. Yhteenveto 1 p. 2006.

64 IFINEDO, PRINCELY EMILI, Enterprise resource
planning systems success assessment: An
integrative framework. 133 p. (366 p.) Yhteen-
veto 3 p. 2006.

65 VIINIKAINEN, ARI, Quality of service and
pricingin future multiple service class
networks. 61 p. (196 p.) Yhteenveto 1 p. 2006.

66 WU, RUI, Methods for space-time parameter
estimation in DS-CDMA arrays. 73 p. (121 p.)
2006.

67 PARKKOLA, HANNA, Designing ICT for mothers.
User psychological approach. – Tieto- ja
viestintätekniikoiden suunnittelu äideille.
Käyttäjäpsykologinen näkökulma. 77 p.
(173 p.) Yhteenveto 3 p. 2006.

68 HAKANEN, JUSSI, On potential of interactive
multiobjective optimization in chemical
process design. 75 p. (160 p.) Yhteenveto 2 p.
2006.

69 PUTTONEN, JANI, Mobility management in
wireless networks. 112 p. (215 p.)
Yhteenveto 1 p. 2006.

70 LUOSTARINEN, KARI, Resource , management
methods for QoS supported networks. 60 p.
(131 p.) 2006.

71 TURCHYN, PAVLO, Adaptive meshes in computer
graphics and model-based simulation. 27 p.
(79 p.) Yhteenveto 1 p.

72 ZHOVTOBRYUKH, DMYTRO, Context-aware web
service composition. 290 p. Yhteenveto 2 p.
2006.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

73 KOHVAKKO, NATALIYA, Context modeling and
utilization in heterogeneous networks.
154 p. Yhteenveto 1 p. 2006.

74 MAZHELIS, OLEKSIY, Masquerader detection in
mobile context based on behaviour and
environment monitoring. 74 p. (179 p). Yh-
teenveto 1 p. 2007.

75 SILTANEN, JARMO, Quality of service and
dynamic scheduling for traffic engineering in
next generation networks. 88 p. (155 p.) 2007.

76 KUUVA, SARI, Content-based approach to
experiencing visual art. - Sisältöperustainen
lähestymistapa visuaalisen taiteen kokemi-
seen. 203 p. Yhteenveto 3 p. 2007.

77 RUOHONEN, TONI, Improving the operation of an
emergency department by using a simulation
model. 164 p. 2007.

78 NAUMENKO, ANTON, Semantics-based access
control in business networks. 72 p. (215 p.)
Yhteenveto 1 p. 2007.

79 WAHLSTEDT, ARI, Stakeholders’ conceptions of
learning in learning management systems
development. - Osallistujien käsitykset
oppimisesta oppimisympäristöjen kehittämi-
sessä. 83 p. (130 p.) Yhteenveto 1 p. 2007.

80 ALANEN, OLLI, Quality of service for triple play
services in heterogeneous networks. 88 p.
(180 p.) Yhteenveto 1 p. 2007.

81 NERI, FERRANTE, Fitness diversity adaptation in
memetic algorithms. 80 p. (185 p.) Yhteenveto
1 p. 2007.

82 KURHINEN, JANI, Information delivery in mobile
peer-to-peer networks. 46 p. (106 p.) Yhteenve-
to 1 p. 2007.

83 KILPELÄINEN, TURO, Genre and ontology based
business information architecture framework
(GOBIAF). 74 p. (153 p.) Yhteenveto 1 p. 2007.

84 YEVSEYEVA, IRYNA, Solving classification
problems with multicriteria decision aiding
approaches. 182 p. Yhteenveto 1 p. 2007.

85 KANNISTO, ISTO, Optimized pricing, QoS and
segmentation of managed ICT services. 45 p.
(111 p.) Yhteenveto 1 p. 2007.

86 GORSHKOVA, ELENA, A posteriori error estimates
and adaptive methods for incompressible
viscous flow problems. 72 p. (129 p.) Yhteen-
veto 1 p. 2007.

87 LEGRAND, STEVE, Use of background real-world
knowledge in ontologies for word sense
disambiguation in the semantic web. 73 p.
(144 p.) Yhteenveto 1 p. 2008.

88 HÄMÄLÄINEN, NIINA, Evaluation and
measurement in enterprise and software
architecture management. - Arviointi ja
mittaaminen kokonais- ja ohjelmistoarkki-
tehtuurien hallinnassa. 91 p. (175 p.) Yhteen-
veto 1 p. 2008.

89 OJALA, ARTO, Internationalization of software
firms: Finnish small and medium-sized
software firms in Japan. 57 p. (180 p.) Yhteen-
veto 2 p. 2008.

90 LAITILA, ERKKI, Symbolic Analysis and
Atomistic Model as a Basis for a Program
Comprehension Methodology. 321 p.
Yhteenveto 3 p. 2008.

91 NIHTILÄ, TIMO, Performance of Advanced
Transmission and Reception Algorithms for
High Speed Downlink Packet Access. 93 p.
(186 p.) Yhteenveto 1 p. 2008.

92 SETÄMAA-KÄRKKÄINEN, ANNE, Network
connection selection-solving a new
multiobjective optimization problem. 52 p.
(111p.) Yhteenveto 1 p. 2008.

93 PULKKINEN, MIRJA, Enterprise architecture as
a collaboration tool. Discursive process for
enterprise architecture management,
planning and development. 130 p. (215 p.)
Yhteenveto 2 p. 2008.

94 PAVLOVA, YULIA, Multistage coalition
formation game of a self-enforcing
international environmental agreement.
127 p. Yhteenveto 1 p. 2008.

95 NOUSIAINEN, TUULA, Children’s involvement in
the design of game-based learning
environments. 297 p. Yhteenveto 2 p. 2008.

96 KUZNETSOV, NIKOLAY V., Stability and
oscillations of dynamical systems. Theory
and applications. 116 p. Yhteenveto 1 p. 2008.

97 KHRIYENKO, OLEKSIY, Adaptive semantic Web
based environment for web resources. 193 p.
Yhteenveto 1 p. 2008.

98 TIRRONEN, VILLE, Global optimization using
memetic differential evolution with
applications to low level machine vision.
98 p. (248 p.) Yhteenveto 1 p. 2008.

99 VALKONEN, TUOMO, Diff-convex combinations
of Euclidean distances: A search for optima.
148 p. Yhteenveto 1 p. 2008.

100 SARAFANOV, OLEG, Asymptotic theory of
resonant tunneling in quantum waveguides
of variable cross-section. 69 p. Yhteenveto 1 p.
2008.

101 POZHARSKIY, ALEXEY, On the electron and
phonon transport in locally periodical
waveguides. 81 p. Yhteenveto 1 p. 2008.

102 AITTOKOSKI, TIMO, On challenges of simulation-
based globaland multiobjective optimization.
80 p. (204 p.) Yhteenveto 1 p. 2009.

103 YALAHO, ANICET, Managing offshore
outsourcing of software development using
the ICT-supported unified process model: A
cross-case analysis. 91 p. (307 p.)
Yhteenveto 4 p. 2009.

104 K OLLANUS, SAMI, Tarkastuskäytänteiden
kehittäminen ohjelmistoja tuottavissa organi-
saatioissa. - Improvement of inspection
practices in software organizations. 179 p.
Summary 4 p. 2009.

105 LEIKAS, JAANA, Life-Based Design. ‘Form of life’
as a foundation for ICT design for older
adults. - Elämälähtöinen suunnittelu. Elä-
mänmuoto ikääntyville tarkoitettujen ICT
tuotteiden ja palvelujen suunnittelun lähtö-
kohtana. 218 p. (318 p.) Yhteenveto 4 p. 2009.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

106 VASILYEVA, EKATERINA, Tailoring of feedback in
web-based learning systems: Certitude-based
assessment with online multiple choice
questions. 124 p. (184 p.) Yhteenveto 2 p.
2009.

107 KUDRYASHOVA, ELENAV., Cycles in continuous
and discrete dynamical systems.
Computations, computer assisted proofs, and
computer experiments. 79 p. (152 p.) Yhteen-
veto 1 p. 2009.

108 BLACKLEDGE, JONATHAN, Electromagnetic
scattering and inverse scattering solutions for
the analysis and processing of digital signals
and images. 297 p. Yhteenveto 1 p. 2009.

109 IVANNIKOV, ANDRIY, Extraction of event-related
potentials from electroencephalography data.
- Herätepotentiaalien laskennallinen eristämi-
nen EEG-havaintoaineistosta. 108 p. (150 p.)
Yhteenveto 1 p. 2009.

110 KALYAKIN, IGOR, Extraction of mismatch
negativity from electroencephalography data.
- Poikkeavuusnegatiivisuuden erottaminen
EEG-signaalista. 47 p. (156 p.) Yhteenveto 1 p.
2010.

111 HEIKKILÄ, MARIKKA, Coordination of complex
operations over organisational boundaries.
265 p. Yhteenveto 3 p. 2010.

112 FEKETE, GÁBOR, Network interface
management in mobile and multihomed
nodes. 94 p. (175 p.) Yhteenveto 1 p. 2010.

113 KUJALA, TUOMO, Capacity, workload and
mental contents - Exploring the foundations
of driver distraction. 146 p. (253 p.) Yhteenve-
to 2 p. 2010.

114 LUGANO, GIUSEPPE, Digital community design -
Exploring the role of mobile social software in
the process of digital convergence. 253 p.
(316 p.) Yhteenveto 4 p. 2010.

115 KAMPYLIS, PANAGIOTIS, Fostering creative
thinking. The role of primary teachers. -
Luovaa ajattelua kehittämässä. Alakoulun
opettajien rooli. 136 p. (268 p.) Yhteenveto 2 p.
2010.

116 TOIVANEN, JUKKA, Shape optimization utilizing
consistent sensitivities. - Muodon optimointi
käyttäen konsistentteja herkkyyksiä. 55 p.
(130p.) Yhteenveto 1 p. 2010.

117 MATTILA, KEIJO, Implementation techniques for
the lattice Boltzmann method. -
Virtausdynamiikan tietokonesimulaatioita
Hila-Boltzmann -menetelmällä:
implementointi ja reunaehdot. 177 p. (233 p.)
Yhteenveto 1 p. 2010.

118 CONG, FENGYU, Evaluation and extraction of
mismatch negativity through exploiting
temporal, spectral, time-frequency, and
spatial features. - Poikkeavuusnegatiivisuu-
den (MMN) erottaminen aivosähkönauhoi-
tuksista käyttäen ajallisia, spektraalisia, aika-
taajuus - ja tilapiirteitä. 57 p. (173 p.) Yhteen-
veto 1 p. 2010.

119 LIU, SHENGHUA, Interacting with intelligent
agents. Key issues in agent-based decision
support system design. 90 p. (143 p.) Yhteen-
veto 2 p. 2010.

120 AIRAKSINEN, TUOMAS, Numerical methods for
acoustics and noise control. - Laskennallisia
menetelmiä akustisiin ongelmiin ja
melunvaimennukseen. 58 p. (133 p.) Yhteen-
veto 2 p. 2010.

121 WEBER, MATTHIEU, Parallel global optimization
Structuring populations in differential
evolution. - Rinnakkainen globaalioptimointi.
Populaation rakenteen määrittäminen
differentiaalievoluutiossa. 70 p. (185 p.)
Yhteenveto 2 p. 2010.

122 VÄÄRÄMÄKI, TAPIO, Next generation networks,
mobility management and appliances in
intelligent transport systems. - Seuraavan
sukupolven tietoverkot, liikkuvuuden hallinta
ja sovellutukset älykkäässä liikenteessä. 50 p.
(111 p.) Yhteenveto 1 p. 2010.

123 VIUKARI, LEENA, Tieto- ja viestintätekniikka-
välitteisen palvelun kehittämisen kolme
diskurssia. - Three discourses for an ICT-
service development . 304 p. Summary 5 p.
2010.

124 PUURTINEN, TUOMAS, Numerical simulation of
low temperature thermal conductance of
corrugated nanofibers. - Poimutettujen
nanokuitujen lämmönjohtavuuden numeeri-
nen simulointi matalissa lämpötiloissa .
114 p. Yhteenveto 1 p. 2010.

125 HILTUNEN, LEENA, Enhancing web course
design using action research . - Verkko-
opetuksen suunnittelun kehittäminen
toimintatutkimuksen keinoin .
192 p. Yhteenveto 2 p. 2010.

126 AHO, KARI, Enhancing system level
performance of third generation cellular
networks through VoIP and MBMS services.
121 p. (221 p.). Yhteenveto 2 p. 2010.

127 HÄKKINEN, MARKKU, Why alarms fail. A
cognitive explanatory model.
102 p. (210 p.). Yhteenveto 1 p. 2010.

128 PENNANEN, ANSSI, A graph-based multigrid
with applications. - Graafipohjainen
monihilamenetelmä sovelluksineen.
52 p. (128 p.). Yhteenveto 2 p. 2010.

129 AHLGREN, RIIKKA, Software patterns,
organizational learning and software process
improvement. 70 p. (137 p.). Yhteenveto 1 p.
2011.

	ABSTRACT
	PREFACE
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1 Software process improvement as a learning process
	2.2 Organizational learning as a collective process
	2.3 Knowledge management in SPI
	2.4 Patterns in software development
	2.5 Bridging the gap between SPI, organizational learning and software patterns

	3 RESEARCH PROBLEM AND METHODOLOGY
	3.1 Research problem
	3.2 Research approach and methodology
	3.3 Relationship of the included articles

	4 OVERVIEW OF THE PAPERS
	5 CONCLUSIONS
	5.1 Supporting organizational learning in software organization
	5.2 Software patterns as tool for knowledge sharing
	5.3 Closing remarks

	6 CONTRIBUTIONS AND LIMITATIONS
	6.1 Contributions
	6.2 Limitations
	6.3 Further studies

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

