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Abstract

A physical damping is considered as a preconditioning technique for acoustic and
elastic wave scattering. The earlier preconditioners for the Helmholtz equation
are generalized for elastic materials and three-dimensional domains. An algebraic
multigrid method is used in approximating the inverse of damped operators. Sev-
eral numerical experiments demonstrate the behavior of the method in compli-
cated two-dimensional and three-dimensional domains.

Key words: Helmholtz equation, Navier equation, Algebraic multigrid method,
GMRES, Preconditioning, Finite Element Method.

1 Introduction

Developing efficient methods to solve acoustic and elastic scattering prob-
lems has proved to be challenging by mathematical and computational
means. These problems have a wide range of applications in different dis-
ciplines, and therefore there is a big interest to find efficient methods to
solve these problems numerically. Modeling is done by acoustic or elastic
wave equation, depending on the material, and it is often sufficient to con-
sider only time-harmonic solutions. For incompressible fluids, the reduced
wave equation is the Helmholtz equation. For linearly elastic material, the
Navier equation can be applied. An approximate solution can be obtained
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by discretizing these equations using, for example, a finite difference or fi-
nite element method.

Finite element methods have become a popular technique to discretize par-
tial differential equations in complex geometries. It has successfully been
used for interior scattering problems like acoustic scattering in a car cabin
[1] as well as for exterior problems. A review [2] gives an overview of recent
research on finite element methods for acoustic problems. Since the paper
[3] the research on the construction of absorbing boundary conditions and
absorbing layers at the truncation boundary of the exterior domain has been
active; see [2] and references therein. The size of the scattering problems is
often limited in high frequency problems because the methods become in-
effective as the frequency grows. Particularly the finite element phase shift
(pollution) error necessitates finer discretizations for high-frequency prob-
lems [4] and thus an increasing memory and computational requirements.

The resulting systems of linear equations from the discretization of the
Helmholtz equation and the Navier equation are non-Hermitian and in-
definite, and for mid-frequency and high-frequency problems, they can be
extremely large. These properties make them a challenge for the current
solvers. For two-dimensional problems, it is often feasible to use direct
methods for solving these systems, but three-dimensional problems lead
to systems that can not be solved by these methods with an affordable com-
puting effort. Hence, it is necessary to use iterative methods such as the
GMRES method [5] or the Bi-CGSTAB method [6]. However, these meth-
ods require a good preconditioner for the discretized equations in order to
have reasonably fast convergence.

Several preconditioners and iterative solution techniques have been pro-
posed for the discrete Helmholtz and Navier equations. Domain decompo-
sition methods have been proposed for Helmholtz problems in [7,8,9,10,11,12],
and for elastic problems in [13,14,15,16]. Controllability methods have been
proposed for both Helmholtz and Navier problems in [17,18]. Multigrid
methods have been considered for acoustic and elastic problems in [19,20,21,22].
With multigrid methods, it is difficult to define a stable and sufficiently ac-
curate coarse grid problem and smoother for it. For acoustic and elastic
problems in homogenous medium, domain imbedding/fictitious domain
methods in [23,24,25,26] have been fairly effective, but these methods are
pretty restrictive and not well-suited in general, complicated domains. An
incomplete factorization preconditioner has been considered in [27], for ex-
ample, and in [28] a tensor product preconditioner is used.

So called natural preconditioning techniques are applicable for many prob-
lems including time-harmonic wave equations [29]. The class of precondi-
tioners based on damped operators that are considered here, is an example



of this approach. A shifted-Laplacian preconditioner with a complex shift,
which is called here a damped Helmholtz preconditioner, was first consid-
ered in [30] for the Helmholtz equation. This was a development over the
shifted-Laplacian preconditioner with a real shift previously described in
[31]. Already in [32,33] a complex shift was employed, but for a completely
different way and purpose: it was used to transform a singular problem
into a non singular one. Here the purpose to introduce a complex shift into
a preconditioner for a non singular problem is to enable the effecient use of
multigrid methods.

A damped Helmholtz preconditioner with geometric multigrid was consid-
ered in [21]. There, the scattering problems were posed in a rectangular do-
main and they were discretized using low-order finite differences. Our ear-
lier study [34] extended this approach to general shaped two dimensional
domains using linear, quadratic, and cubic finite element discretizations by
applying an algebraic multigrid (AMG) instead of the geometric multigrid
to approximate the inversion of the damped Helmholtz operator. In [35],
this method was compared with the previously mentioned controllability
method.

In this paper, a generalization will be proposed to the preconditioner de-
scribed in [34], an AMG-based damped preconditioner for time-harmonic
wave propagation problems in elastic media, i.e. the Navier equation. This
preconditioner will be called a damped Navier preconditioner. Results con-
sidering the eigenvalue spectrum of the shifted-Laplacian preconditioned
discretized Helmholtz equation were given in [36] and some of these will
be generalized to the Navier equation. Simulations are carried out in two-
dimensional and three-dimensional computational domains including com-
plicated geometries for both Helmholtz and Navier problems.

This paper is organized as follows. In Section 2 acoustic and elastic wave
scattering models and their discretizations are described. The iterative so-
lution and preconditioning are discussed in Section 3 and mathematical
results on the eigenvalue spectrum are given in Section 4. The algebraic
multigrid method employed in the preconditioning is described in Section
5. Then numerical results are presented in Section 6 and finally, conclusions
are given in Section 7.



2 Mathematical formulation

2.1 Wave scattering in fluids

For a time-harmonic pressure of the form p (x,t) = p (x) e ! with an an-
gular frequency w and imaginary unit i = /—1, the wave scattering in a

fluid domain Qf can be described by a Helmholtz equation

1 k?
—V--Vp——p=Tf, 1)
AL ff

where k (x) = w/c (x) is the wave number, ff (x) is a time-harmonic sound
source and p (x) is fluid density. In inhomogeneous medium, the wave
number k varies depending on location as the sound speed c varies. The
boundary of the fluid domain Qf is decomposed into a Dirichlet boundary

Tf; and an impedance boundary T{ . The associated boundary conditions are
given by

p=g; onl 2
and
op _ .. f
e ivkp onI7, 3)

where g¢(x) describes a sound source and n(x) is the outer normal vec-
tor. Choosing the absorbency coefficient 7y to be zero leads to the Neumann
boundary condition and y = 1 gives a low-order absorbing boundary con-
dition.

2.2 Wave scattering in elastic materials

For time-harmonic displacements u (x,t) = ¢ *“! (x) in a domain Q° con-

sisting of elastic materials, the scattering of time-harmonic waves can be
described by a Navier equation

—w?pst — V -0 () =f, (4)
where 0 is the stress tensor, f; is a force term, and p; (x) is the density of the

material. Hooke’s law gives a relation between displacements, and stress
and strain forces, thus describing strain tensor € and stress tensor ¢

e(u) = % (Vat (Vo)) o =A(V w)+2ec(m). ©



Here Lamé parameters A and y are defined as follows:
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A(x) = (6)

These depend on Young modulus E (x) and the Poisson ratio v (x) that char-
acterize the elastic behaviour of the material. The speed of pressure wave,
cp, and shear wave, c;, can be expressed as functions of Lamé parameters:

A+ 2pu U
Ccp = , Cs = 4] —. 7
: \/ Ps ’ Ps @)

Wavelengths and wave numbers for pressure and shear waves are

21 w
/\p,s = Cp,sZ/ kp,s = —. (8)

For elastic material in the domain ()°, the following boundary conditions
are applied: a Dirichlet boundary condition on I and an impedance bound-
ary condition on I'}. As with the fluid domain, the boundary of elastic ma-
terial I* = 0()° is decomposed into two non-overlapping parts I = I'; U7
such that either boundary set can be empty. The Dirichlet boundary condi-
tion on I'} is described by

=g, onlj, )

where g; (x) describes the vibration source. The impedance boundary con-
dition on I'} is approximated by the equation

iywpsBa+ o (d)n =0 onlI3, (10)

where 7 is the absorbency coefficient, i = v/—1, Bis a2 x 2 matrix for two-
dimensional problems (D =2) and a 3 x 3 matrix for three-dimensional
problems (D = 3). Choosing the absorbency coefficient y = 0 leads to nat-
ural boundary condition and 7y = 1 gives an absorbing boundary condition.
In component form B has expressions

Bij = cpninj + cstitj, for D = 2 and
ij p'tilty stilj (11)
Bi]' = CpNinj + Cstitj + CsSiS; for D =3,

where ¢, and cs are the speeds of pressure and shear waves given by (7)
andn = (ny,---,n D)T is the normal vector pointing out of elastic domain,

and t = (t1,---,tp)  and s = (s1,--- ,sp)’ are tangential vectors on the
boundary.



2.3 Weak formulation and finite element discretization

For the weak formulation of the Helmholtz equation, we define a test func-
tion space Vdi and a solution space ng as

ng:{(jEHl (Qf> pq=gr(x) onrg}. (12)

The weak form of (1) reads: Find p € Vg such that
L5 (Vo vi-pa)dx— [ = (igkpiyds = [ frdax ()
ofp r/ p of

forall § € V({ . Similarly, for the Navier equation, we define a test function
space Vj and a solution space V5 as

Vg = {‘7 € [Hl (QS)} g 1V =gs(x) on I”Z} . (14)

Now, the weak form of (4) reads: Find 4 € V; such that

/QS (—pswzﬁ V+o(a):e (5)) dx — /r§ ivwpsBl - ¥ds = o f - Vdx
(15)

forall v € VOS.

For a finite element discretization, a mesh K}, is defined such that (), =
Uzek, T- The mesh consists of triangles 7 in two-dimensional and of tetra-
hedra in three-dimensional problems. Here /i denotes the diameter of the

largest triangle or tetrahedron and Qi’s is an approximation of Q. For the
finite elements of order m discrete test function spaces are

vi=  {aeH (Of) : GuleeP"VTEK, : g=0onT}, | and (16)

D
V= {o € [Hl (Q;)} 9 e [P"P VT €Ky, : ¥ =0o0n rg/h}, (17)

where P denotes polynomials of order m. Discrete solution spaces V(s{ hs are
the same except the zero boundary value on F{;’Z is replaced by approxima-
tions of ¢¢ and gs. In this paper, linear, quadratic, and cubic finite elements
are employed, i.e. m = 1, 2, or 3. For the spaces Vj, and V, ;, Lagrangian
polynomials are used as basis functions.



For the analytical study of eigenvalue spectra in Section 4, it is practical to
define the following matrices based on the integrals in (13) and (15):

2 . = _
M/ = fQ{ %Ph%dx/ M°® = fQZ pswzﬁh - Vpdx,
U= [y bVPu-Viidx, L= [po(@)ie@)dy, (18
Ccf = - rfh%('yk;ﬁho?h)ds, C = — Jps, TwpsBsty - Vs,

where p;, € ng,h’ a, € Vgs,h, dn € V}{, and v, € V. Furthermore, let z; =
«1 + B1i. Similarly to [36], the discretized Helmholtz and Navier operators
have matrix forms

F=L'+iCf —z;M/ and S =zL°+/ziC°— M, (19)
respectively.

Now, let the vector w contain the nodal values of p or 4, so that for the

Helmholtz problem it has formw = [p1, - - -, pn] T ,and for the two-dimensional
Navier problem it has form w = [a3,4],- -+, 0%, ilj] " By replacing the

spaces, domains, and boundaries in (13) or (15) by their discrete counter-
parts, the system of linear equations

Aw = f (20)

is obtained. The complex-value sparse matrix A is given by F or S in (18)
and f is a vector resulting from an inhomogeneous Dirichlet boundary value
and/or a non-zero fy in (13) or f; in (15).

The approximation properties of such finite element discretizations for the
Helmholtz equation have been studied in [4]. Due to the pollution (phase
shift) error, a non-optimal L? error estimate

en = ||y — u|| < Cik(kh)*™ + C, (kh)™ (21)

is obtained, where C; and C; are constants. Based on this estimate, larger
mesh step sizes can be used when higher order finite elements are being
used, in order to reach the same accuracy level.

3 [Iterative solution and damped preconditioner

The matrix A in (20) is indefinite and symmetric, but not Hermitian. For
example, the generalized minimal residual (GMRES) method [5] and the
Bi-CGSTAB method [6] are suitable iterative methods for these equations.



These and other applicable iterative methods are described in [37]. The GM-
RES method minimizes the 2-norm of the residual on Krylov subspaces.
This is a desirable property leading to a monotonic reduction of the norm
of the residual over iterations, but a disadvantage is that all basis vectors
for the Krylov subspace needs to be stored. This makes the computational
cost of the GMRES methods grow quadratically with iterations and also
causes linear growth in memory requirement. The computational cost of
the Bi-CGSTAB method grows linearly with the iterations and the memory
requirement is constant, but the convergence can be erratic and slower than
with the GMRES method. In the numerical experiments, the full GMRES
method is used without restarts.

The convergence of Krylov subspace methods for the system (20) is very
slow for medium- and large-scale scattering problems due to the ill condi-
tioning of A. To improve the conditioning and the speed of convergence, a
right preconditioner denoted by B is introduced. This leads to a precondi-
tioned system

AB la =f. (22)

Once ii is solved from this system, the solution u is obtained as u = B~ lii.
The goal is to find such a preconditioner B that the matrix AB~! is well con-
ditioned and that vectors can be multiplied by B~1, i.e. solve systems with
B with a small computational effort. These properties would lead to a fast
convergence of the iterative method and to a small overall computational
cost.

A shifted-Laplacian
1
Fi= —V-EV—ZZ—, (23)

with a complex shift zp = ap + Boi was suggested in [30] as a preconditioner
tfor the Helmholtz equation. By choosing ay = 1 and 8, to be negative, F;
is the Helmholtz operator in (1) with some additional damping. Using the
matrices defined in (18), the discretization of F,; leads to a matrix

F;, =L/ +iCf —z,M/. (24)

With sufficient damping, systems with F; can be solved much more easily
than with F and the conditioning of FF;l can still be good. The use of dif-

ferent approximations for Fd_1 have been studied in [30,21,38,34]. Here an
algebraic multigrid approximation described in Section 5 is considered.

Our hypotesis is that a similar physical damping can be employed to con-
struct an efficient preconditioner for the Navier equations. Damping in elas-
tic materials can be modelled by using a complex Young modulus. Multi-
plying the original Young modulus E(x) by a complex z; leads to a precon-



ditioning operator
S = —w?psti — 2,V -0 (4). (25)

The coefficient z, appears also in the impedance boundary condition (10)
as follows

iYwps+/zoBl + zp0 (1) ng =0 on I7F. (26)

Using the matrices in (18), the discretization of S; leads to the damped
Navier preconditioner

S; = 2zL° + \/Z_ziCs — M°. (27)

4 Spectral analysis for the preconditioned Navier equation

Studying the eigenvalue spectrum of the preconditioned matrix AB~! is an
usual way to estimate the convergence of an iterative method like GMRES.
In [36], Theorems 3.1-3.6 give useful information of the eigenvalue spec-
trum of the preconditioned Helmholtz operator. Some of these results can
be generalized to the Navier equation, as will be shown in the following.

As defined in (19), the matrix of the discretized Navier equation is
S = z1L° + /z1iC° — M°. (28)

Here matrices L° and C° are symmetric positive semi-definite and M°® is
symmetric positive definite, and z; is a complex number. The case that there
are only natural and/or Dirichlet boundary conditions, i.e. C* = 0, and the
material is not absorbing, is analyzed first. Thus, the matrix S simplifies to

S =z;L° — M"°. (29)
The eigenvalue problem AB~'jj = i is equivalent to
Ay = (z1L° —M°)y = 7 (L° — M°) y = 1By, (30)
where y = B~ 14j. From this, the eigenvalue problem

1—-71
S _ S —
L'y =AMy, A= P—— (31)

can be derived.

As the matrix L® is positive semi-definite and M?® is symmetric positive def-
inite, the eigenvalues A are real. The eigenvalue T is a function of A given



1

i A—z
= T (32)
By the change of variable A’ = A~1, the form
z1 — N
=Y 2

is obtained. This is the same equation of a circle in the complex plane that
was found in [36] for the eigenvalue spectrum of the preconditioned Helmholtz
equation. Due to this, the following corollary of Theorems 3.1-3.3 in [36] can

be formulated.

Corollary 1 For the eigenvalues T = 1" + iT' of the generalized eigenvalue prob-
lem Sy = ©S,y, the following statements hold:

o If B = 0, the eigenvalues are located on straight line in the complex
plane given by the equation

—B1T + (a1 —a) T + B = 0. (34)

o If By # 0, the eigenvalues are located in complex plane on the circle given
by

, Batpr) i m—m\ (B—B) (- )
(r 2%, ) +(r T2, ) = TG . (35)

The center of the circleis at c = %% and the radiusis R =

22
212 = a1 + P10
o If 3182 > 0, the origin is not enclosed by the circle defined by (35).

22—21

| where

The case of impedance boundary conditions with 7y # 0 in (10), i.e. C° # 0,
is considered next. It is not evident that the results presented in [36] for
the Helmholtz equation with Cf # 0 are applicable for the Navier equa-
tion. However, numerical experiments in Section 6 suggest that similar be-
haviour to the one described by Theorems 3.4-3.6 in [36] holds also here.
The following states this as a conjecture.

Conjecture 2 For the eigenvalues T = T’ + it of the generalized eigenvalue
problem Sy = TS;y, the following statements hold:

o If B» = 0, the eigenvalues are located in the half-plane

—B1T + (@1 —a2) T + By > 0. (36)

10



o If B> > 0 the eigenvalues are inside or on the circle with the center at

¢ = 22 and the radius R =
Zp—2p

outside or on the same circle.

22—71

22—22

.If B < 0, the eigenvalues are

5 Algebraic multigrid based damped preconditioners

The approximation of the inverse of the damped operator B~! given by a
multigrid method is denoted by BX/}G In [21], Erlangga, Oosterlee, and Vuik
used one cycle of a geometric multigrid method for this. For low-frequency
problems the conditioning of ABX/}G is good. For high-frequency problems
the conditioning deteriorates so that the number of Bi-CGSTAB iterations
appeares to grow linearly with frequency in [21]. They also showed that this
preconditioner is well-suited for problems with a varying speed of sound.
In [34], the geometric multigrid method was replaced by a more generic and
more flexible algebraic multigrid method (AMG). In this paper, an AMG
based on [39] is utilized, using the implementation that is described in [34],
with modifications that make it suitable for vector valued problems, like
the Navier equation.

The employed AMG method uses a graph to construct coarse spaces. Here
the graph is based on the discretization mesh. Alternative approach would
be to build the graph based on the matrix B. When using linear elements in
a scalar problem, both approaches result in the same graph. For an elastic
solid modelled by the Navier equation, the graph is formed without con-
nections (edges) between displacement components. This choice is made
for two reasons: Adding these connections would cause too rapid coars-
ening process. Secondly, the error behaves smoothly for each component
separately and the AMG method is especially efficient at reducing smooth
error components. The graph therefore consists of separate disconnected
graphs, one for each displacement component.

For linear finite elements, the initial graph Gy is the graph defined by the
triangulation. For quadratic and cubic elements, the graph is defined by a
refined mesh. In two-dimensional domains, quadratic triangle elements are
divided into four triangles by connecting the midpoints of the edges, and
cubic triangle elements are divided into nine triangles. In three-dimensional
domains, quadratic tetrahedron elements are divided into eight and cu-
bic tetrahedra into 26 tetrahedra. If the graph defined by B was used di-
rectly with high-order elements, the coarsening procedure would coarsen
the graph too rapidly, leading to an impaired conditioning of ABX/}G and a
slower convergence of the GMRES method.

11



The nodes onto a coarser graph Gy are chosen from the nodes of G as
follows. Find the node in Gy which has the smallest degree, i.e. the smallest
number of edges associated to it. If there are several such nodes, choose the
first one according to the node numbering. This node is included onto the
graph G, 1. Eliminate this node and all its neighbors from the graph G.
Repeat this procedure until there are no nodes left in Gy. After choosing the
nodes on Gi, 1, they are numbered following their order in the numbering
of the nodes on G;.

On coarse levels, different displacement components are chosen to be dis-
connected. Thus, the restriction matrix is defined blockwise as

R; = . (37)

The elements of the diagonal blocks of the restriction matrix are defined by
the rule

1 for a fine node j which is a coarse node i,
(Rl ) B % for a fine node j which is a neighbor of coarse
i node i and has n neighboring coarse nodes,
0 otherwise,

where fine and coarse refers to the graphs Gy and Gy 1, respectively. The
edges of the coarse graph Gy, are formed using the restriction matrix
Ry. Each coarse graph node corresponds to a row in the restriction matrix.
There is an edge between two nodes if and only if the corresponding rows
of the restriction matrix have a non-zero element in the same column.

The coarse level matrices are now defined as follows

11 1D
Bk e Bk
Bii1 = RyBi (Ry)", whereBy=| : . 1 |. (38)

D1 DD
BP! ... Bl

The usual multigrid W-cycle is used with the AMG method. For precondi-
tioning, the initial approximate solution is zero in the multigrid algorithm.
At each level, presmoothing and postsmoothing is performed by one un-
derrelaxed Jacobi iteration. At the coarsest level, a direct solver is used in-
stead of an iterative method.

12



6 Numerical results

Numerical simulations were carried out on selected example problems. In
Subsection 6.1, the eigenvalues of two-dimensional Navier problems are
studied and compared with the results presented in Section 4. In Subsection
6.2, the performance of the method is considered for two-dimensional and
three-dimensional Helmholtz and Navier problems by measuring iteration
counts required to satisfy a convergence criterion.

The following material parameters are used in tests unless specified other-
wise. The Helmholtz problems have domain ()f consisting of air, with the
density py = 1.2kg/ m? and the speed of sound ¢ = 344 m/s. The Navier
problems are posed in a domain )° consisting of aluminum with the den-
sity ps = 2700kg/m?, Young modulus E = 7.00 - 10!° Pa, and Poisson ratio
v = 0.33. Meshes were generated using Comsol Multiphysics 3.3 in such
a way that the maximum element size is h = A/10, where A is the wave-
length of slowest wave mode. In the Helmholtz problems, A is the length of
acoustic waves, and in the Navier problems, it is the length of shear waves.

6.1 Eigenvalues

In [34], the eigenvalue spectra of the preconditioned system matrices were
examined for several two-dimensional Helmholtz example problems. Here
the eigenvalue spectra will be studied, when the system is preconditioned
by a damped preconditioner for two-dimensional and three-dimensional
Helmholtz and Navier problems. Two-dimensional problems are studied
in the unit square domain like in [21,34] for the Helmholtz problem. A
three-dimensional cube domain will also be considered for both Helmholtz
and Navier problems. Estimates for the eigenvalue spectra of the precondi-
tioned Navier equation, when Dirichlet or absorbing boundary conditions
are posed on boundaries were presented in Section 4. These estimates will
be compared to the numerically obtained eigenvalues.

First, the unit square problem will be considered for the Navier equation.
The frequency 2.2kHz is used in the eigenvalue study. The eigenvalues of
AB™! for the unit square problem with the Dirichlet and absorbing bound-
ary conditions are presented in Figure 1. Also the eigenvalues of ABX/}G
are plotted for the same problem, where B;/}G is the algebraic multigrid ap-
proximation of B~!. The eigenvalue spectrum for the Navier problem with
Dirichlet boundary conditions is distributed exactly on the circle as (35)
describes. It is also seen that the algebraic multigrid does not spread the
spectrum much. Most of eigenvalues seem to move slightly closer to the

13



center of the circle.
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Figure 1. Eigenvalue plots for the Navier problem in the unit square. The upper
plots are for Dirichlet boundary value problems and on the lower plots, the ab-
sorbing boundary conditions are posed. On the left plots, the eigenvalues of AB™"
are shown. On the right plots, the eigenvalues of ABX/FG are shown. The circle is
defined by (35). The damping parameters are z; = 1.0 and z, = 1.3 4- 0.71.

For the eigenvalue spectra of the problems with the absorbing boundary
conditions, it will be shown that the inequality (36) holds in numerical ex-
amples. Similar inequality was proven in [36] to hold for Helmholtz prob-
lems. According to the inequality (36), the eigenvalues should lie inside or
outside of the circle depending on the sign of ;. For better conditioning, 5,
is always chosen positive. Thus, according to (36), the eigenvalues should
lie inside the circle. For the unit square problem with the absorbing bound-
ary conditions, the conjecture seems to be valid, as can be seen in Figure
1. The algebraic multigrid approximation changes the spectrum, but the
eigenvalues seem to still lie inside the circle.

For three-dimensional experiments, the cube (0.3 m)3 is discretized by us-
ing linear finite elements for both Helmholtz and Navier problems. For the
Navier problem, the frequency f is 5kHz and for the Helmholtz problem,
the frequency f is 500 Hz. In Figure 2, the eigenvalues of AB~! are plotted
and in Figure 3, the eigenvalues of the system with the AMG approxima-
tion of the inverse of the damped operator, ABX/}G, are plotted. Also the
circle (35) is drawn in these figures. It is clearly seen in Figure 2, that both

14



Corollary 1 and Conjecture 2 holds for this problem.
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Figure 2. The eigenvalues of AB~!. The upper plots are for the Helmholtz problems
and the lower ones are for the Navier problems. The left plots are for the Dirich-
let boundary value problems and the right ones are for problems with absorbing
boundary conditions. The damping parameters are z; = 1.0 and z> = 1.0 + 0.5i for
the Helmholtz problems, and they are z; = 1.0 and z, = 1.0 + 0.8i for the Navier
problems.

6.2  Performance of the preconditioner

The performance of the damped preconditioner with the algebraic multi-
grid will be reported for several different test problems. First, a two-dimen-
sional Navier problem is studied in the unit square and three-dimension-
al Helmholtz and Navier problems are studied in a cube domain. Then,
the method is tested on complicated three-dimensional problems: For the
Helmholtz equation, a three-dimensional car cabin domain and a layered
wedge domain with a varying speed of sound are considered. For the Navier
equation, a crankshaft geometry defined by a Comsol Multiphysics 3.3 ex-
ample problem is considered. The iteration counts give the number of iter-
ations needed to reduce the relative residual to 10~°.

In all performance studies with the unit square problems, the absorbing
boundary condition given by (10) with v = 1 was posed on the boundaries.
For the Navier equation, the best value for 8, was determined as follows.
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Figure 3. The eigenvalues of AB,;.. The upper plots are for the Helmholtz
problems and the lower ones are for the Navier problems. The left plots are
for the Dirichlet boundary value problems and the right ones are for problems
with absorbing boundary conditions. The damping parameters are z; = 1.0
and zo = 1.0 + 0.5i for the Helmholtz problems, and they are z; = 1.0 and
zo = 1.0 4 0.8i for the Navier problems.

With several different frequencies and test problems, solutions were com-
puted using the values 0.1,0.2,...,1.0. The value B, = 0.8 was selected as
it gave the best convergence among the values which lead to a reliable pre-
conditioner. The value appeared to be rather problem independent within
the selected test problems and frequencies. The Jacobi relaxation parameter
w = 0.5 was determined similarly. For the Helmholtz equation, the param-
eter values B, = 0.5 and w = 0.5 given in [34] were used, unless specified
otherwise. The same parameter values were used for all element types.

6.2.1 Unit square

The first benchmark for the Navier equation is performed in the unit square
domain with a point source in the middle. The solution was obtained at five
different frequencies given in Table 1. The Navier equation was solved with
linear and quadratic finite element discretizations. In Figure 4, the solution
is shown for the four lowest frequencies.
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Table 1

The results for the unit square elasticity problem. Iteration counts are given for
linear and quadratic finite elements.

element order

flkHz] 1 2

49 26 21
9.8 40 30
19.6 92 60
39.2 213 141
784 417 415

Figure 4. The solution of the unit square elasticity problem at frequencies 4.9 kHz,
9.8 kHz, 19.6 kHz, and 39.2 kHz. The absorbing boundary conditions are posed on
the boundaries.

6.2.2  Cube problem

The Helmholtz and Navier problems were solved in the cube (0.3 m)3 with
a point source in the middle. The performance of the damped precondi-
tioner was compared to a modified incomplete Cholesky factorization (MIC)
preconditioner [27]. The algorithm presented in [40] is used for the MIC(/)
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approximation of A~!, where the parameter ! describes the level of fill-
in in the factorization. The values | = 0 and 1 have been used as bigger
Is were uncompetitive as forming incomplete factorization required much
more computation. The performance was measured by the number of GM-
RES iterations and the total number of floating point operations (FLOPs) re-
quired by the preconditioning. The number of FLOPs is a good measure, as
it includes the initialization process in addition to GMRES iteration. The
results are presented in Tables 2 and 3.

MIC(1) seems to require fewer iterations than AMG, whereas MIC(0) re-
quires more iterations. Especially with linear finite elements, the conver-
gence with MIC(1) is faster than with AMG and MIC(0), as can be seen in
Table 2. However, Table 3 shows that the number of FLOPs with the MIC(1)
preconditioner is about twice the number with AMG. This is mainly due
to expensive factorization process before the iteration. With quadratic ele-
ments the MIC preconditioner seems to perform much worse than AMG,
both in iteration counts as well as FLOPs. This is true for both Navier and
Helmholtz problems. MIC(1) is also using more memory than AMG, al-
though the difference is not substantial.

Table 2
The iteration counts for the cube problem for the Helmholtz and Navier equations.
Some counts are missing as the computations were too demanding.

Helmholtz
f [kHz]| AMG MIC(0) | MIC(1)
order— | 1 2 3 |1 2 1 2
0.5 10 13 1613 17 | 8 11
1.0 12 15 18|18 41 |11 17
2.0 19 21 24|31 126 |16 28
4.0 35 42 55|50 29

Navier
f [kHz]] | AMG MIC(0) | MIC(1)
order— | 1 2 1 2 1 2

5 20 5|24 70 |11 16
10 22 10| 38 196 |15 25
20 33 20| 67 24 48
40 66 107 40
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Table 3

The number of millions of floating point operations (MFLOPs) for the Helmholtz
and Navier equations. Some numbers are missing as the computations were too
demanding.

Helmholtz
f [kHz]| AMG MIC(0) MIC(1)
order— 1 2 3 1 2 1 2
0.5 05 74 43 | 04 13| 0.5 35
1.0 2.1 31 170 | 22 110 | 29 270

2.0 17 210 1100 | 24 1800 | 32 3600
4.0 170 2000 12000 | 260 390
Navier
f [kHz]| AMG MIC(0) MIC(1)
order— 1 2 1 2 1 2
5 6.8 130 | 7.1 390 | 89 870
10 29 490 47 3700 63 7000
20 230 3500 | 530 88000 | 760 93000
40 2400 5900 9400

6.2.3 Three-dimensional car cabin problem

Figure 5. The solution of the Helmholtz equation at the frequency f = 880Hz in
the three-dimensional car cabin.

The car cabin problem is a three-dimensional generalization of the two-
dimensional car cabin problem in [34]. The sound source is modelled as
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the Dirichlet boundary condition p = 1 posed on the wall behind pedals.
The impedance boundary condition (3) with v = 0.2 is posed on the other
boundaries. The height of the car cabin is 1.5 meters, the width is 1.5 me-
ters, and the length is 3 meters. An example solution is plotted in Figure 5.
Iteration counts are reported in Table 4. For this problem also, the number
of iterations grow roughly linearly with respect to the frequency.

Table 4
The number of iterations for the three-dimensional car cabin problem for the
Helmholtz equation.

element order
f[Hz] 1 2 3
110 14 17 22
220 17 23 29
440 26 34 46
80 51 72 97

6.2.4 Three-dimensional wedge problem for the Helmholtz equation

Figure 6. The solution of the Helmholtz equation at f = 2.5Hz for the three-di-
mensional wedge problem.

The three-dimensional wedge problem [41] in the unit cube [0, 1]? is a gener-
alization of a two-dimensional problem studied in [28,21,34]. In this acous-
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tic scattering problem, the material is inhomogeneous leading to a piece-
wise constant speed of sound. The domain has three layers separated by
two planes defined by the equations z = 0.1x +- 0.2y + 0.6 and z = —0.2x —
0.15y + 0.4. The speeds of sound from the top layer to the bottom layer are
c1=1,¢ = %, andc; = 2. A point source is placed at (0.5,0,0.5) and the
absorbing boundary conditions are posed on the boundaries. In the AMG
method, the Jacobi relaxation parameter is w = 0.3.

The solution of the Helmholtz equation at f = 2.5 Hz is shown in Figure 6.
The iteration counts are reported in Table 5. The same linear growth can be
observed as in the previous problems.

Table 5
The iteration counts for the three-dimensional wedge acoustic scattering problem.

element order
flkHz] 1 2 3
125 23 26 30
2.5 40 53 88

6.2.5 Crankshaft vibration problem

Figure 7. The propagation of elastic waves in a crankshaft at f = 3kHz. The
color scale indicates the amplitude of the displacement, with blue corresponding
to small displacement and red corresponding to large displacement.

The Navier equation is solved in a complicated three-dimensional domain
defined by the crankshaft model from Comsol Multiphysics 3.3. The length
of the crankshaft is 1.0 meter and it is made of structural steel defined by:
the density p = 7850kg/m?, Young modulus E = 2 - 10!! Pa, and Poisson
ratio v = 0.33. A tangential vibration source on the left end is given by the
Dirichlet boundary condition u = (1,0,1). The right end is rigid, i.e. the
Dirichlet boundary condition u = (0,0,0) is posed on there. Other bound-
aries have natural boundary conditions, i.e. the impedance boundary con-
dition (10) with o = 0. The mesh is made of quadratic finite elements and
300, 000 nodes.

The GMRES iteration counts on a range of frequencies are given in Table
6. As there is no absorption, the problem is singular at some frequencies.
Due to this the iteration counts do not behave linearly with respect to the
frequency. The solution at f = 3kHz is illustrated in Figure 7.
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Table 6
The GMRES iteration counts for the crankshaft vibration problem.

f [kHz] ‘ 3 6 9 12 15
iterations ‘ 231 263 223 187 347

7 Conclusions

A damped Navier preconditioner based on an algebraic multigrid method
was introduced for time-harmonic elasticity problems. This is a general-
ization of a shifted-Laplacian preconditioner for the Helmholtz equation.
These preconditioners are efficient for Helmholtz and Navier problems in
complicated two-dimensional and three-dimensional domains. Higher-order
finite elements can be used for the discretization and Helmholtz problems
can have variable coefficients. The proposed approach is especially well-
suited for low-frequency and mid-frequency problems. For high frequen-
cies, iteration counts grow roughly linearly with respect to the frequency.
The same behavior was also observed in [34,21].

The performance was compared to a modified incomplete Cholesky (MIC)
preconditioner. The AMG based damped preconditioner was more efficient
as its initialization requires much less computations than the expensive in-
complete factorization procedure. Especially with quadratic finite elements,
the AMG preconditioner was clearly faster.

The eigenvalues of the preconditioned system were also studied. The earlier
results for the Helmholtz equation in [36] were generalized for the Navier
equation. It was shown that the eigenvalues of the preconditioned system
with the damped Navier preconditioner are on a circle in the complex plane
for Dirichlet and Neumann boundary value problems. When one algebraic
multigrid cycle is used instead of the exact inverse of the damped Navier
operator, the eigenvalues are spread to some extent, but the conditioning is
still fairly good.
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