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ABSTRACT

Puurtinen, Tuomas

Numerical simulation of low temperature thermal conductance of corrugated
nanofibers
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ISBN 978-951-39-4094-2 (nid.), 978-951-39-4144-4 (PDF)

Finnish summary

Diss.

In the present work the low temperature thermal conductance of dielectric elastic

nanofibers was numerically simulated. A special smooth cylindrical or elliptical
corrugation was shaped on the fiber boundary in order to lower the thermal con-
ductance by reflecting low energy phonons. On temperature range T = 0.1 — 10K
thermal energy is carried mainly by flexural, torsional and longitudinal waves,
which were simulated here with 1D and 3D models. Finite element method was
used to solve frequency spectrum of periodical fibers and scattering matrix for
the waves through a finite locally periodical fibers. Landauer formalism was then
used to calculate the thermal conductance. For numerical calculation there were
taken silicon nanofibers as typical examples. It was found that 3D frequency spec-
trum of axially symmetrical periodical corrugation can be approximated with 1D
frequency spectra obtained from certain simple differential equations. By simu-
lating numerous boundary shapes, suggestions were made about the parameter
range where 1D models give reliable results. It was concluded that 1D models
can be used to reliably calculate transmission probability curves for low energy
phonons. Finally, a special chirped circular-elliptical corrugation was designed
to decrease the thermal conductance by 90% on range T = 0.1 — 1K.

Keywords: corrugation, nanofiber, phonon transport, low temperature, thermal
conductance, frequency spectrum, scattering matrix, numerical simu-
lation, finite element method
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1 INTRODUCTION

The thesis is devoted to numerical studies of phonon transport in elastic dielec-
tric nanofibers. The investigation is stimulated by the possibility of using such
fibers for producing thermo-insulating structures in nano- and microelectronics.
In [1, 2] it was shown how to decrease the thermal conductivity of a fiber by cor-
rugating part of its boundary. A special shallow corrugation can sharply diminish
the fiber thermal conductivity without damaging its mechanical strength. In the
thesis we analyze numerically various mathematical models of elastic dielectric
nanofibers in order to justify and develop the method suggested in [1, 2].

Chapter 1 contains a short physical background, a description of mathemat-
ical models, and an outline of the main results. Having familiarized himself with
Introduction, the reader can understand the mathematical statement of problem,
the purpose and the results of the thesis. Chapters 2-4 are devoted to comparing
3D and 1D models of a nanofiber. These preparatory chapters justify numeri-
cally the change from 3D models to 1D models. The main results are exposed in
Chapters 5-7.

1.1 Physical background

Heat removal from electronic devices and heat insulation of such devices play
an important role in microelectronics. A number of new type devices operate
at temperature about 4.2K and less. For one example, low temperature operat-
ing conditions are essential for resonant transistors because only such conditions
provide a sufficiently large electron free path. Another example is presented by
detectors of infrared radiation known as bolometers that reveal an increase in
temperature of sensors caused by the radiation. Such detectors operate at tem-
perature T < 1K. Heat leaking through the sensor legs sharply diminishes the
device sensitivity. Therefore, elaboration of heat insulating facilities which oper-
ate at the mentioned low temperature region is of fundamental importance. The
surface area of a sensor can be approximately 1m?, the length of a sensor leg av-
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erages several pm while the leg cross-section has diameter of 10nm. Under such
conditions, the heat conductivity acquires a purely quantum character.

In an elastic dielectric nanofiber heat energy is transferred by elastic waves
(see e.g. [3, 4, 5]). From the quantum mechanical point of view, such a wave with
wave vector k and frequency w = w(k) can be represented as a flow of particles
called phonons. Every phonon possesses energy E = fiw and crystal momentum
p = hk. At temperature T < 1K the phonon mean free path exceeds the fiber
length and phonons propagate freely without collisions through the bolometer
leg. In other words, the flow is within the ballistic regime. Schematic picture is
given in Figure 1.

R2

&

Rq

FIGURE1 Schematic picture of a cylindrical bolometer support leg G carrying thermal
energy between reservoirs R and R, with temperatures Ty and T, respec-
tively, by flexural elastic motion with wavelength Ar.

The elastic waves can be of various types. For instance, in an isotropic bulk
crystal there exist a longitudinal wave and two independent transverse waves. In
a thin fiber at low frequencies, because of presence of the boundary, one can rec-
ognize a longitudinal, a torsional, and two independent transverse waves. Trans-
verse waves in beams are often also called flexural. The type of a wave will be
indicated by the index a. In what follows, E = hw, = hwy(k,) stands for the
phonon energy of type &, where « = F, T or L, signifying flexural, torsional or
longitudinal waves, respectively.

Let two reservoirs R; and R with temperatures T7 and T;, respectively,
be connected by a ballistic wire G. It means that the free path of the phonons
is supposed to be much greater than the length of G. The quantity of thermal
energy passing through G from R4 to R, in a unit time is

%—? = ;ﬂ;/hw[n(w, Ty) — n(w, T1)]pa(w) dw, 1)
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where n(w, T) stands for the phonon distribution function defined by
n(w, T) = ("M —1)7, )

which means that phonons obey Bose-Einstein statistics. Quantity p,(w) denotes
the probability for a phonon of mode a and frequency w to go through G, and kp
is the Boltzmann constant. Integration is over the whole spectrum of the phonon
frequencies. We suppose that the reservoirs R and R, are sustained at constant
temperature, so that 0Q /9t is time-independent.

Let us assume that |T, — Ty| is small in comparison with T; and T, and
change (1) for

BQ . T, — T1 on
TR v ;/FlwaT(w, T)pu(w) dw, 3)
where T is a number in [Ty, T5]. The value
_9Q
Q=-"/(-T)

is called the thermal conductance. Quantity () has a unit [W/K] and in low
temperatures it is independent of the fiber length. Throughout the text, when
necessary, we use a term conductivity in reference to length dependent thermal
conduction with unit [W/Km].

We take into account (2), substitute the expression for dn /9T into (3), and
obtain the Landauer formula [6] for phonons [7]

o Wa,min w? exp (Bhw)
Q= 2rtkpT? ;/(;Ja,max Pulew) (exp (Bhw) —1)2 dw, @

where B = 1/(kgT), T = T1 =~ T,, and Wy min (Wa,max) is the minimal (maximal)
phonon frequency of mode a.

Let us dwell on (4). Suppose that wymin = 0 and wymax = +co. More-
over, we assume that p,(w) = 1. Then the corresponding integral in (4) equals
m2k3 T3/ (3h%) and the contribution of such a term to Q) is Oy := (7/6)k3T/ 1.
This quantity is called the universal quantum of thermal conductance. This value
is independent of the properties of a dielectric and its geometry. If Bhicwy min > 1,
then the contribution of mode a to () is exponentially small and can be neglected.

In a cylindrical rod, there are four independent modes « for which w,(0) =
0: a longitudinal mode, a torsional mode, and two flexural modes. For the other
modes wy min ~ 1vy/ D, where v, is the characteristic propagation speed of elas-
tic wave « and D is the diameter of the rod cross-section with # being a positive
integer. At low temperature T < 1K and small D < 100nm the mentioned four
modes give the main contribution to (), so

k3 T
6h

Let us estimate the effect of the conductance of a bolometer suspending fiber
on the device sensitivity. For the sake of simplicity we assume that the bolometer

O~4
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is attached to a cooling system by only one leg. If energy of power W falls upon
the bolometer sensor then the temperature increase is equal to T, — T3 = W/Q.
Thus the bolometer sensitivity is inversely proportional to ().

It is known that at low temperature an unstructured surface roughness of a
wire diminishes the wire heat conductance due to the constructive interference of
scattered waves [8, 9]. As was shown in [1, 2], a roughness structured in a proper
way can sharply decrease the conductance of a wire. More precisely, it was de-
scribed there how to form the surface of a wire in order that the transmission
probabilities p,(w) would be small for the phonons in a sufficiently wide fre-
quency band. Let us outline the idea in more detail. Consider an infinite elastic
wire with periodically varying cross-section as a model. In such a wire a phonon
cannot propagate if its energy remains within some frequency intervals called
spectral gaps. There is a good reason to believe that in a finite cylindrical fiber
containing a sufficiently long periodically corrugated part the transmission prob-
abilities p,(w) are relatively small for the phonons with energy in a spectral gap
of the aforementioned model wire. To extend the energy interval correspond-
ing to the decay of transmission probabilities one can change the corrugated part
with periodically varying cross-section for a goffer with “perturbed period” lin-
early varying along the wire. Such a device is similar to that used for the Bragg
optical gratings to enlarge their operating range [10].

1.2 Mathematical model of scattering in an elastic wire

Let IT be the cylinder { x = (x1,%2,%3) € R® : (x1,x) € ©, —00 < x3 < 400}
whose cross-section © is a two-dimensional bounded and connected domain
with smooth boundary. Assume that an elastic homogeneous and isotropic wire
G coincides with IT for |x3| > R, R being a positive number, while

G(R)={xeG: |x3] <R}

is a perturbed part of G, see Figure 2. Later we also use G(S), S > R, where a
finitely long straight cylinders of length S — R are attached to both ends of G(R).
Choosing G(R), we shall try to make the transmission probabilities through the
wire as small as possible.

We consider the homogeneous boundary value problem in elasticity theory

Lu(x)=0, x€G, )
v-o(u)(x) =0, x€dG,
where 1 = (u1, Uy, uy) stands for displacements and
Lu = plu+ (A+p)Vdivu + pw?u. (6)

Lamé’s constants A and y which satisfy ¢ > 0 and 3A + 2y > 0, and density p
together with the frequency w are supposed to be constant. As usual dG denotes
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FIGURE 2 Example of a perturbed cylindrical domain which continues to infinity as a
straight cylinder. Part G(R) contains the perturbations and part G(S), S > R,
printed in red, contains in addition two cylinders of length S — R attached to
circular ends of G(R).

the boundary of G and v is the outward unit normal to dG. Finally, ¢ is the stress
tensor with Cartesian components

o(u) = (Aexxdij + 2ueij)j, )

where ¢;; = %(aiuj + ajui), i,j = 1,2,3. By setting the stress tensor zero one
considers so called free boundary problem, i.e. an elastic problem without outer
mechanical forces affecting on the boundary. A solution Y to problem (5) is called
a continuous spectrum eigenfunction corresponding to the frequency w, if Y sat-
isties the following conditions:

* Y is abounded function on G, |Y(-)| < C, C constant,

* Y does not converge to zero at infinity, |Y(x)| /4 0as |x| — co.

The continuous spectrum eigenfunctions play the role of phonon wave functions.
It is known that the total number of eigenfunctions below eigenfrequency w in-
creases like a staircase function as w increases. The step values w; of this function
are called "threshold” values. If a frequency band [w1, w;] contains no threshold
values then for any w € [w1, wy] there is known to exist the same even number
of linearly independent continuous spectrum eigenfunctions (CSE). We assume
here to consider only frequencies below the first threshold. In the elastic theory
threshold values w; are related to cut-off frequencies of higher elastic modes such
as shear modes or modes with higher transversal quantum number. Denote the
number of CSE by 2M. In the space of CSE’s corresponding to a frequency w,
there can be chosen a basis { Y1 (-, w), ..., Yap (-, w) } such that

M
Yi(x,w) = w]*(x,w) + kz sjk(w)w (x, w) + (’)(e*“"“'), (8)
—1
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where j = 1,...,2M, the functions w]+ (w;) can be explicitly described and are
called incoming (outgoing) waves, the matrix S(w) = (s ]k(w))]zﬁi , is unitary and
called the scattering matrix, v being a sufficiently small positive number. The
existence of such solutions was discussed e.g. in [11].

Let us turn to the solutions Y; in (8) for j = M +1,...,2M. The Y; de-
scribes the phonon incoming from —oo as the wave w]*, which scatters from the

perturbed part G(R) into 2M outgoing waves w, . The sum

M
pj(w) = kz Isjk(w)[? )
=1

is called the transmission coefficient while

2M

Yo Isi(w)f?

k=M+1

is the reflection coefficient. The p;(w) in (9) can be interpreted as the transmission
probability through the wire G from —oo to +oo for the phonon Y;.

We now explain the choice of distorted part G(R) (see Fig. 2). Let us con-
sider as a model an infinite waveguide Z whose cross-section

O)={x:x3=t}

periodically depends on t with period a, @(t 4+ a) = O(t). Introduce the auxiliary
problem

(10)

with the same £ and ¢ as in (6) and (7). We seek solutions to problem (10) of
the form exp(ikx3)U(x) with real number k and periodic function U # 0 such
that U (x1,x2, x3 +a) = U(x1,x2,x3). The ansatz is based on well known Bloch’s
theorem for periodic potentials. To find k and U, we obtain the problem

E(axl, axz, ax3 + k)U(X) -

v U(axl, ale ax3 + k) (U) (.X) = (11)

where S = {x € E : 0 <x3<a}, T ={x €0 :0 < x3 <a}. Notation
means that every d,, in definition of £ and ¢ is replaced with 9., + k with other
partial derivatives kept intact.

A number kj and a function Uy satisfying (11) are called an eigenvalue and
an eigenfunction of the problem. Given ko and Uy, the number ky + 271g/a and
the function exp(—i27tqx3/a)Up(x) are an eigenvalue and an eigenfunction as
well forg = £1,2,....

Recall that the operator £ depends on w (see (6)). If there is no solution of
the indicated form to problem (10) for some frequency wy, then wy is said to be in
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a spectral gap. In such a case the phonons with frequency wy cannot propagate
in the waveguide Z.

In order to reduce thermal conductance of wire G we have to reflect a con-
siderably wide frequency band of phonons. Suppose we decided to reflect pho-
nons with frequencies [wq,w>]. Let us assume we have found a collection of
waveguides E; with spectral gaps filling the band w1, w;]. Then we can construct
G(R) by combining finite parts of Z; with lengths J; into series. It is reasonable to
expect that transmission probability through the combined perturbation is decay-
ing with exponential rate as /;, R — +oco. There is also another way to extend the
frequency interval corresponding to diminished transmission probabilities. One
can construct a corrugated perturbation with periodically varying cross-section
where the length of period is changing linearly. We intend to examine the thermal
properties of such structures.

1.3 Computational method for scattering matrices

In order to find the scattering patterns for each incoming wave w;", we seek the

j-throw (sj1,...,s;2um) of the scattering matrix S. As an approxima]tion of the row
we take a vector that minimizes one particular quadratic functional [12]. To con-
struct the functional we introduce the boundary value problem in the truncated
domain G(S) = {(x,y) € G : |x| < S} with S > R so that the distorted part

G(R) of the waveguide G is contained in G(S) (see Figure 2):
LY?(x) =0, x€G(S),

(12)
v-o(Y?)(x) =0, x€aG(S)\I(S),

2M
(82, +i0)YF = (B, +i0) (] + ) agwy), x € 1(S), (13)
k=1

where I(S) = {x € G : x3 = %S} is the union of left and right trunca-
tion boundaries, { # 0 a real number, and ay,...,a) are arbitrary complex
numbers. Let Yjs be the solution to the above three equations depending on
ai,...,axpm. As approximation of the row (sjl, ... /Sj,ZM) we take the minimizer
a°(S) = (ad(S),...,a3,,(S)) of the functional

S S + & ’

>(a1,...,a = YP —w’ — aw, | dA 14
J (a1 2m) /1(5)/ I k;kk (14)
on the unit sphere {a® € R*M : |02+ ...+ [a9,,|> = 1} integrating over the
both truncation boundaries. Let us motivate the above choice of approximation
for (sjl, s 8j2 ). The function Y; in (8) satisfies (12). Since the asymptotic rela-
tion (8) can be differentiated we have

2M
(0x; + i@)Yj(x) = (O, + z@)(w]*(x) + kz agw, (x)) + (’)(6*7\963\)
=1
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for ay = sj, ie. the function Y; leaves an exponentially small discrepancy in
(13). Therefore one can expect that a)(S) — sjx with exponential rate as S — +o0
which was proved in [13].

To explain the algorithm in more detail we explicitly describe the depen-
dence of Y]S on the parameters ay, . .., ay. Therefore consider the auxiliary prob-
lems

LU (x) x € G(S),
v o(Uf)(x) x €9G(S)\ I(S),
(9x, +iQUE = (94, +iQ)wi5, x €1(S),

=0,
:O/

fork = 1,...,2M. Then Y]-S can be expressed in terms of the solutions llki =

U,fs to those problems with Yjs = U;’S + Y% akll,; s- We introduce the 2M x 2M-

matrices E° and F° with entries
S o i i — —
S — —
F; = ut — w;“,llj —w;)i(s),

where

(VW)= | o VWG A

is the complex inner product on the truncation boundaries. We also put

Now the functional (14) can be written in the form
JN(a) = (aE®,a) + 2Re(F}, a) + G;.

The minimizer a°(S) satisfies a’(S)E® + F]-S =0.
1.4 One dimensional models of scattering in an elastic wire

In various situations a 3D system can be approximately described by means of a
2D or 1D models. It happens when the size of a 3D system, in one or two direc-
tions, is essentially less than the rest of the parameters determining the behavior
of the system. Such a situation arises, for instance, for wave propagation in a
fiber provided that the fiber length as well as the wave length are much greater
than the cross-sectional diameter of the fiber. In this case the initial equations de-
scribing a 3D model can be approximately replaced by equations corresponding
to 1D or 2D models. The passage from a 3D model to a model of lesser dimen-
sion can be implemented in various ways (by rigorous asymptotic approach, or
by means of “physical” arguments, etc.), see [14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
Such approaches allow to get “qualitative” descriptions of the process which is
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adequate only over a limited range of the parameters. As a rule, the limits of the
range can be clarified with a reasonable accuracy for applications by numerical
experiments.

The low temperature thermal conductance of elastic dielectric fibers is main-
ly determined by waves of frequencies fiw ~ kgT, which have wavelengths A in
the range 100 — 1000nm at sub-Kelvin temperatures. Thus, for nanofibers one
can easily have the wavelength much larger than the fiber diameter. Therefore,
the passage is possible from 3D to 1D systems. One of the purpose of the work
is the clarification of the parameter range where the passage is justified e.g. in
dependence on the geometry of deformed fiber, the deformation amplitude of the
surface or the relation S/D of the fiber length S and the cross-sectional diameter
D.

In a cylinder each of the massless modes is mainly one dimensional on their
nature, i.e. each mode has major displacement component in only one direction
in some coordinate system. Flexural and longitudinal modes have major dis-
placement in x := x1, ¥ := x; or z := x3-directions and torsional to f-direction in
cylindrical coordinate system. Therefore one can expect a good agreement with
results from 1D and 3D models.

We have chosen three simple 1D ordinary differential equation models to
approximate different 3D waves. The equations are well known (e.g., see [18])
and can be easily derived from physical basis. Assume that the geometry of 3D
fiber G(S) can be defined by the graphs of two curves By = By(z) and B, = By (z)
so that

G(S)={(xyz2) € R3 : xz/Bx(z)z—i—yz/By(z)2 <1,z <S}.

The defining relation in the set is the one for ellipse so the cross-section of G(S)
for each |z| < S is an ellipse with semi-axes By (z) and By (z). If Bx(z) = By(z) the
cross-section is a circle.

To simulate flexural phonon modes with polarization in x-direction we use

2 2
52 (BB

) = PB(2)By()Pu(z), z€]-S;S[  (19)

where p is the density, E = p(3A +2u)/ (A + u) is Young modulus and w is the
angular frequency of the wave. For y-polarized flexural waves indices x and y in
the above equation are interchanged. For torsional modes we use equation

9 | Bi2)B)(z) duy(z)
0z Bi(z) + Bj(z) oz

= ﬁBx(Z)By(Z)(B,%(Z) + B2(2))wug(z),  (16)

forall z €] — S, S|, and for longitudinal modes equation

1 0 du(z)\ _p ,
A(z) oz (A(z) > > = gY@ u(z), ze€]—-S,5S|. (17)
In (17) notation A(z) = 7By (z)By(z) stands for the area of cross-section of the 3D

domain at z.
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The equations (15), (16) and (17) are used as a replacement for Lamé’s equa-
tion (6) on 1D domain. To calculate 1D spectrum for each phonon type in the
periodical domain the periodical boundary condition is set with

exp(ikl)u(—S) = u(S),

where k is a wave vector and [ is the periodicity length of the domain. To solve
transmission probabilities p,(w) with solving first the scattering matrix we use
similar boundary conditions as in 3D case except that x and y-directional partial
derivatives are excluded.

We also use a direct way to calculate transmission probabilities from 1D
models by comparing the amplitudes of incoming w™(z) = exp(i{z) and out-
going waves w~ (z) = exp(=+i{z) from scattering event. In Figure 3 is presented

—— Fiber shape
—Inc. wave ||
~Imag. part

— Real part

¥ ,

u(z), B(z) [om)

50 —40 -20 0 20 40 60

FIGURE 3  Scattering of 1D torsional left-incoming wave from finite periodical pertur-
bation. Boundary shape of 1D fiber is printed in green. Solid (dotted) blue
line is the real (imaginary) part of scattered displacement field in 6-direction
in cylindrical coordinate system, respectively. Red curve is the incoming
wave shape, which is plotted also to left side of the perturbation for compar-
ing the phase shift of field after scattering. Field amplitudes at boundaries,
which are solved by fitting sin-curves in the solution, are drawn with black.

a blue displacement field from scattering incident around a perturbation marked
with green. Real and imaginary amplitudes Ajet, Arignt at left and right of solu-
tion u are measured at the boundary by fitting sin-curves on the solution. Both
the real and imaginary part amplitudes must be solved because the incoming and
outgoing wave formulation was done in complex form. Finally, the transmission
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probability can be calculated with

1
Pa = ) ’Arightlzr

as is shown in Chapter 5.
1.5 Outline of the main results

In this section we represent the main results of the research:

1. The spectra of elastic waves in periodically perturbed 3D waveguides
were calculated numerically. In Figure 4 we show a typical frequency spec-
trum of periodical domain with perturbation strength 25.1%. We investigated

18 T
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FIGURE 4 Frequency spectrum of axi-symmetrical periodical 3D waveguide with har-
monically perturbed boundary. Length of periodicity cell in the perturbation
is | = 300nm with diameter D = 20nm. Perturbation strength is 25%. Ma-
terial parameters were chosen for silicon (Si). Black dashed line shows the
Brillouin zone edge.

the width of forbidden band gap for different elastic modes and its dependence
on the strength of deformation of the waveguide. We discovered that for tor-
sional and longitudinal modes a comparably wide spectral gap opened when a
periodical deformation of a form of cos-function was used with a small strength
of perturbation. For flexural waves such a deformation did not bring expected
results. We found out that certain elliptical balanced deformation with constant



22

cross-sectional area offered wider spectral gaps for flexural modes without much
effect on torsional of longitudinal modes.

2. We developed a method to distinguish the lowest energy elastic modes
in perturbed 3D waveguides. We constructed a numerical algorithm which char-
acterizes elastic modes by their similarity to flexural, torsional and longitudinal
in straight cylinder. In Figure 5 we show some of the elastic modes in slightly

(a) Flexural 5 (b) Flexural 6
10_
0. = r e e C
-10 A ,

21 247 i

= sy

-27 o S . -27 )

-2 0 2 2 0 2

(c) Torsional 2 (d) Longitudinal 2

FIGURE 5 Four eigenmodes of different types in almost cylindrical periodical fiber with
fixed wavenumber k. These modes passed the test which compares their
characteristics to ordinary flexural, torsional and longitudinal modes in a
cylinder. Coloring refers to the total displacement, i.e. absolute value | Re ii|
of real part of the displacement field.

perturbed periodical domain, which were identified as mainly flexural, mainly
torsional and mainly longitudinal by the algorithm.

3. We completed the analysis of three different 1D models for three types of
elastic waves in perturbed 3D waveguide. We compared the location and width
of the first band gaps calculated from 1D and 3D models. It was shown that
for infinite periodic elastic waveguides the results between 1D and 3D models
differed less than 1% for torsional and longitudinal modes and less than 5% for
flexural modes when deformation power was 25%. In Figure 6 we show the com-
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FIGURE 6 Comparison of spectral gap locations w (left) and widths Aw (right) from 1D
and 3D models. Period length [ (horizontal axis) changes from 8nm to 60nm.
Strength of harmonical perturbation is 25.1% on the fiber with unperturbed
diameter D = 2nm.

parison of 1D and 3D spectral gap locations and widths as a function of period
length I. We also compared how the strength of perturbation affected the ac-
curacy of approximation. There was a slight increase in error as perturbation
strength « — 50%. We also found out that the 1D model used for flexural waves
did not give a good approximation for frequencies above the first spectral gap.
The increase in error between 3D and 1D spectrum was found also for torsional
and longitudinal modes, but it was decided insignificant.

4. We numerically calculated transmission coefficients p (w) for longitudi-
nal waves in 3D waveguides with short goffer. We compared transmission co-
efficients calculated from longitudinal 1D and 3D models and by these results
we concluded that all three 1D models should give results with a good precision
in comparison to 3D model. In Figure 7 there are two examples calculated for
short axially symmetrical goffers containing two (left) and seven (right) periods
of perturbation. Furthermore, we compared locations of cliffs in 1D transmission
coefficient curves to spectra of infinite periodical fibers. We noticed that for fre-
quencies inside a spectral gap of an infinite fiber there appears a sharp decrease
in transmission probability in fibers with finite perturbations of same periodic-
ity. The decrease is proportional to number of periods used in goffer so that as
the number of periods increases, transmission coefficient functions approach the
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FIGURE 7 Comparison of transmission coefficients of longitudinal waves from 1D and
3D models. Left: two periods of harmonical perturbation of wavelength I =
90nm. Right: seven periods of harmonical type perturbation of wavelength
I = 45nm. Diameter of the waveguide is 10nm and perturbation strenght
& = 0.251. We can see that 1D and 3D models give similar results.

characteristic functions of spectra of different modes. It was found that for tor-
sional and longitudinal waves approximately 6 periods is enough while flexural
waves required approximately 20 periods to obtain a 90% reduced transmission
probability in the first spectral gap.

5. We calculated the thermal conductance of infinite periodical waveguides
by constructing characteristic functions of frequency spectra for different elastic
modes. Characteristic functions were also used to estimate how wide frequency
band of different phonons should be reflected in order to obtain 90% decrease in
thermal conductance at temperatures T = 0.1 — 1K. Reflected frequency band for
such a strong decrease was calculated 0.42 — 146GHz. By simulating single fiber
designs separately we managed to find shapes that resulted into 30 — 40% drop
in thermal conductance by longitudinal and torsional waves through infinite pe-
riodical fibers on this particular temperature interval. The conclusion was that it
is hard to design a single perturbation with such a wide reflection band without
help of shape optimization.

6. It was shown with 1D models that we can create a deformation of the

waveguide surface such a way that thermal conductance is reduced to 1/8" to
1/10" for all types of elastic waves at temperatures T = 0.1 — 1K. Two dif-
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ferent chirped deformations are designed to reflect phonons, axi-symmetrical to
reflect torsional and longitudinal waves and elliptical to reflect flexural waves.
A chirped deformation is locally periodical so that the length of period is mono-
tonically changing. In Figure 8 we show the results on thermal conductance.

! 1.5
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FIGURE 8 Thermal conductance by the lowest energy phonons. Left: Axi-symmetrical
chirped perturbation for reducing thermal conductance by torsional and lon-
gitudinal waves. Right: Elliptical balanced deformation with constant area
of cross-section for reducing thermal conductance by flexural waves. Shapes
of the respective boundary curves are shown in the inset pictures.

Thermal conductance is normalized by universal quantum of thermal conduc-
tance. On the left there is an axi-symmetrical fiber with cos-type perturbation
with changing period for reflecting longitudinal and torsional waves. Strength of
perturbation is 25.1%. This part is 107um long and the diameter is 10nm. On the
right is shown the boundary curve and flexural thermal conductance of elliptical
chirped deformation with constant cross-sectional area. This part is 4.3um long
and diameter at the ends is again 10nm. Strength of perturbation is 70%.

7. It was shown with 1D model for longitudinal waves that we can create the
chain consisting of different perturbed parts so that each part reflects its own fre-
quency range. Real transmission probability curve of the combined goffer can be
approximated by multiplying together the curves of individual parts. In Figure
9 we show transmission probabilities of 1D longitudinal waves in two different
goffers and compare their product to transmission probability through combined
goffer. We noticed that if forbidden bands in two goffers interlap then there can



26

15 1
0.8F 0.8
0.6 0.6
- -1
Q. o
0.4F 0.4
0.2+ : 0.2 :
puforG1 —poorG1uG2
— Py for Gz — Py P
0 L L L T O i L T T
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
®[0.2-10° 1/s] ®[0.2-10° 1/s]

FIGURE9 Left: Comparison of longitudinal transmission coefficients of two different
linearily chirped perturbations G; and G,. First period for Gy is L1, =
50nm, number of periods ng, = 10 and chirp ratio, i.e. the ratio of the
first and the last period, C;, = 3. Parameters for geometry for G, are
Ly, = 100nm, ng, = 6 and Cg, = 2. Perturbation strength is « = 0.251
and diameter D = 10nm. Right: Longitudinal transmission coefficients py,
of combined goffer which is formed by putting perturbations G; and G; in
series. We can see that it can be approximated by product curve pr1 - pro,
which is drawn with black.

appear resonances in the transmission probability curve of combined goffer.



2 THREE DIMENSIONAL MODEL OF AN ELASTIC
NANOFIBER

Due to the fact that it is the phonon propagation that primarily contributes to
low temperature thermal conductance in any insulating or semiconducting ma-
terial it is sufficient to examine physical behavior of phonons in order to gain
reliable knowledge of thermal conductance. [3, 5] In bulk materials where the di-
mensions are much greater than wavelength, acoustic phonons are plane waves
having different polarizations. There exist only two transversal and one longi-
tudinal acoustic modes. However if the sample is thin enough then the phonon
wavelength A can be greater than the cross-sectional diameter D of domain. We
call such a construction a waveguide. It can be imagined that the presence of
boundary of the waveguide allows many more than just three phonon types to
propagate. In fact, shape of the waveguide dictates the nature of the waves that
can propagate in the medium. If the cross-sectional shape of the waveguide is for
example circular, then there can exist other phonons such as shear or torsional
waves together with longitudinal and transversal ones.

When the temperature is low, T < 10K, phonon mean free path can become
large compared to dimensions of the nanosized waveguide. This means that a
phonon can propagate freely without much probability to scatter. For example
for bulk crystalline silicon slightly doped with phosphor the phonon mean free
path on temperature range 2K — 10K was measured to be greater than 300um
in [24]. It can be supposed that in pure prismatic samples the mean free path
is even greater because there are no defects or impurities in the atomic lattice
which can cause scattering. Because the mean free path is large, phonons cannot
either annihilate or create other phonons quantum mechanically and therefore it
is justifiable to use classical elastic theory to explain phonon propagation.

In order to achieve a reduced thermal conductance for a nanofiber to suit
the applications we have to utilize some technique to scatter phonons. One of
the possible techniques is to let the fiber cross-section approach nanoscale, and
utilize the random surface roughness appearing in the production to lower the
thermal conductance. This phenomenon was experimentally measured e.g. in
[25]. However, lowering the fiber diameter too much does not fit in our case,
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because certain structural properties are required from the fibers. Another pos-
sibility to reduce thermal conductance is to organize defects such as bubbles or
clumps of other material inside the fiber and use similar analysis as in [26] for 2D
models to study phonon scattering. However, changing the crystal structure in
molecular level in a deliberate way can be assumed to be hard in terms of actual
production of the fiber. We therefore end up to select possibly the easiest tech-
nique to manufacture, which is related to shaping the boundary of the fiber in a
certain way.

The main idea of this thesis is to introduce a specific perturbation on the
boundary of the fiber and examine its influence to thermal conductance with dif-
ferent models. The perturbation can be infinite periodical or finitely long with
basically any smooth shape. Firstly, we are going to use a 3D model to numer-
ically inspect the thermal conductance of deformed nanofibers. However, this
can be very inefficient in terms of computer time because the number of mesh
elements used in 3D FEM-model increases quickly when the length of domain
increases. Solution to this problem is found with a remark that in low tempera-
ture in long and thin nanofiber the phonon wavelengths A are A > D where D is
the cross-sectional diameter of the fiber. Effectively the phonons have only one
free dimension to propagate as the two transversal dimensions are quantized. Be-
cause of this, we can turn to investigate the use of different 1D models that take
into account the cross-sectional shape of waveguide in simulating the propaga-
tion of the simplest phonon types in corresponding perturbed 3D waveguide.

In this chapter we begin by building a mathematical 3D model of an elastic
straight fiber and examine it analytically and numerically. In the following chap-
ters we introduce the mentioned 1D models for different elastic phonon modes in
long and thin deformed fibers and calculate the effect of deformation to phonon
propagation. Later we will use this information to calculate the thermal conduc-
tance of deformed waveguides. Finally with knowledge gathered by examining
different deformations we give an explanation how to construct a form that has
a strongly decreased thermal conductance in temperature interval T = 0.1 — 1K,
and give some numerical values for it.

2.1 Elastic waves in straight cylinder

Phonons are by definition quantized lattice displacements of a solid. Because
in low temperatures the wavelength of phonons is much greater than the lattice
constant d of the material, A >> d, they are assumed to be the solutions of equation
describing elastic motion. This equation is called Lamé’s equation L. It can be
derived from the equations of motion and energy conservation considerations as
it was done for example in [17]. We intend to introduce the equation here and
use it to solve the lowest energy elastic waves in a straight infinite cylinder of
homogeneous material.

Let G be an infinite cylinder of radius r = 1 lying on z-axis in R3. By Lamé-
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operator we mean
7 Lii inG
v-o(if) ondG
where il = (uy, Uy, uz), uj : G — C describes the point-wise complex-valued
displacement fields in cartesian directions and where

(18)

Lii = pAii + (A + p)V divii + pw?ii (19)

with Lamé’s elastic constants A and p, and the density p depending on material
of the fiber. Some other constants, e.g. v and E, are generally used in literature
to describe bulk properties of material. Quantity E is called Young modulus and
v is Poisson ratio. These coefficients are interrelated. [17] We will be using both
sets of constants through-out the text. Real number w is the angular frequency of
the displacement. As usual, we have defined the stress tensor ¢ as

o(if) = (Aexxdij + 2pe;j)ij (20)

where in cartesian coordinates ¢;; = %(E)iu]- + E)J-ui). As an example, the corner
element 0;; at (i,j) = (x,x) is Oxx 1= (A + 2p4)0xUy + Adyuy + Adzu; according to
definition. In definition (18) letter v is the outward unit normal on the boundary
of G. [18].

To restrict ourselves in physically admissible waves we examine only the
periodical solutions of time-independent Lamé-operator (18) in G with right hand
side zero. This is the same as we would search for periodical eigensolutions (if, w)
for equation

—uNii — (A + p)Vdivii = pw?il (21)

in the infinite cylinder G with free boundary condition on dG. Periodical solu-
tions i/ have components of a form i; = U;(x,y,z) exp(ikz), j = x,y,z. Because
of the periodicity it is possible to solve only one period U = (UL, Uy, U;) of the
complete solution. This is done by introducing as a domain a new finite cylinder
IT of radius r = 1 and length [, and solve eigenvalue equation (21) in IT with
so called quasi-periodical boundary conditions at the circular ends C;, C; of the
cylinder:

exp(ik) U |c,=U |c, - (22)

Coefficient exp(ikl) is called a phase-factor with real number k and imaginary
unit i. Free eigensolutions to (21) with boundary condition (22) describe the ad-
missible displacement fields that have a longitudinal wavenumber k. We remark
that wavenumber k and eigenfrequencies w can be recalculated to any unit of
length a with k = ka, @ = w/a.

The eigenvalue equation (21) on a finite cylinder Il with quasi-periodic
boundary condition (22) at the ends and with free boundary condition given by
v-o(if) = 0 on the surface of cylinder can be easily solved numerically in order to
see which kind of displacement fields there exist. Numerical implementation was
done with MATLAB and COMSOL, and it will be described in more detail in the
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(a) Flexural 1 (b) Flexural 2

FIGURE 10 Flexural displacement modes of straight 3D cylinder. These modes are de-
generated, i.e. share the same eigenfrequency, because of the symmetry
of the domain. Coloring refers to the total displacement, i.e. absolute value
| Re if| of real part of the displacement field with dark blue designating zero.

final chapter of this text. In Figures 10 and 11 we represent numerical solutions
of some of the lowest displacement modes.

In Figure 10 there are two transversal modes which have their major dis-
placement components in orthogonal directions - these modes are called flexural.
Basic distinctive mark of them from the other modes is non-existent or small dis-
placement in z-direction. Because of the circular symmetry of the domain I these
modes are coupled so they share a common eigenfrequency w. In addition, they
can be mixed together resulting in rotating motion, which is also the case in the
figures. If the cylindrical domain is given even an almost non-existent ellipti-
cal deformation then the mixing of these modes disappears, because they do not
anymore share a common eigenfrequency.

In Figure 11 there are the other two types of displacement found at the
lowest frequency range: torsional at left and longitudinal at right. Torsional
modes are distinguished with rotational displacement along the cylinder bound-
ary with the z-axis nearly standing still. We recognize longitudinal modes basi-
cally by cross-sectionally uniform z-displacement that is dominant in the solu-
tion U. Color scale is the same in all of the figures. Dark blue color represents
displacement |Re U(x,y,z)| ~ 0.

2.2 On solving the Lamé’s equation analytically in a cylinder

We have now seen a hint what kind of elastic modes there are present in the
lowest energy level. These basic phonon modes can also be solved analytically
from Lamé equation with help of certain physical assumptions. It was done in
[18] and we will take a glance at it here.
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(a) Torsional

(b) Longitudinal

FIGURE 11 The other two lowest energy displacement modes in a straight cylinder.
Torsional mode (left) and longitudinal mode (right) are usually not degen-
erated, so they have a different frequencies and speeds. Coloring refers to
the total displacement, i.e. absolute value | Re if| of real part of the displace-
ment field with dark blue designating zero.

Because of the circular symmetry of the cross-sections of the domain an ap-
propriate coordinate system is cylindrical one. We first express the time-depen-
dent displacement if = ii(r,0, z, t) in terms of vector and scalar potential functions
H= (H,, Hy, H-) and @, so that

i=V®+VxH.

This well-known procedure is called Helmholtz decomposition. Recalling that
for cylindrical coordinates V = (9y, %89, d-) we conclude that components of i

are then given by

Uy =

Up =

Uz

o® 10H, 0H,

o Tr 90 oz’

100 oH. ol
r 00 0z or ’
o® 190 10H,
o trar ) — 50

(23)

In order to satisfy the equations of elastic motion we insert the potentials
into time-dependent Lamé’s equation (24):

P ot?

= uAii + (A +p)Vdivii (24)

With the use of vanishing of divergence of a rotor and the fact that mixed partial
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derivatives are equal we end up to

*(VO® +V x H)
o2

UA(V® +V x H) +
UA(VO +V x H) +
UA(V® +V x H) +

A+ )V div(VO + V x H)

(

(A4 u)V(divVO)
(A+u)VAD
V(uA®) + V [(A + u)AD] + V x (uAH)
V [(A42u)A®] + V x (uAH).

Rearraging of the terms gives us
V(A +2u) AP — aZcp +V x |uAH — 82H =0 (25)

Clearly the equation of motion for potentials is satisfied if we suppose the poten-
tials @ and H to satisfy wave equations

1% . 10°H
“gae MM gar 20

1 2
where ¢; = /(A +2u)/p and ¢; = /jt/p. These quantities ¢; and ¢, are some-
times called dilatational and rotational wave speeds, respectively. There might
exist other solutions to (25) but because solving the equations (26) results into
analytical forms of flexural, torsional and longitudinal modes it is enough in per-
spective of this research.

Expressing the wave equations in cylindrical coordinates the scalar and vec-

tor Laplacian A are given by

2d 190 1320 9*d

AD = — +-— + S— + —
o o Tree T
~ H, 20Hy Hy 20H,\ . _
AH_(AH"_TZ 2 89> +(AH9 2 + 2 89 ép + AHe..
The stress tensor ¢ must be also represented in cylindrical coordinates with
~ Ouy 19ug _ Oug
err = W' €po = F 90 + €zz = 5

B 10u, aug ug 1 /ou,  oJu,
0= 3 ( 0 o ) T2 Tz )
- dug 19du,
‘f@z—z(aﬁrae)
and the stress-free boundary condition is given by 0, = 0,9 = 03, = 0 at the
boundary of the cylinder r = 1.

Assume then that the potentials are separable coordinate-wise with z-depen-
dence explicitly given as exponent-function:

D = f(r)O4(0) exp(ikz — wt)), H, = hy(r)O,(0) exp(ikz — wt)),...
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If these solutions are substituted into wave-equations (26) we can divide out the
z-dependence and are left with just e.g.

1 1 w?
f"@p+ L f O+ 3 fOh —1CfO) = ——5 fO,
1

in terms of ®, where due to separability we end up solving

o f” f’ 2 w? 2 ®$ 2
P e kf——= |r"=———=n" (27)
fof cf Oy

Theta-dependence is therefore given by @ = A sinn6 + B cos nf. This form of a
solution of theta-dependence arises also for other potential components. Period-
icity of the functions ®;, i = ¢, 1, 8, z is forced in order them to be well-defined, i.e.
we must have ©;(71) = ©;(—) which implies n € Z. It can be also concluded
afterwards that for components ®; only either sine or cosine term is required
for describing basic elastic phonon modes: longitudinal, flexural and torsional.
Therefore we choose here

® = f(r) cos nf e!F==h),

H, = h(r) sinng elkz—wt),
Hy = hy(r) cos ng e kz—wt),
(

H, = h.(r) sinnf ¢/ k2=«h),

(28)

Radial dependence of the potential components can be solved with ordinary
differential equations which have Bessel’s J-functions as solutions. For example
starting with ® we can divide r? from equation (27) which results a Bessel’s equa-

tion of order n:
7’[2

f”+1f’+<zx2—r2>f:0,

where > = w?/c? — k2. The other solutions Y, (ar) have been discarded as non-
physical solutions because of their singularity at » = 0. Therefore we write

f(r) = AJu(ar). (29)

Because of the definition of vector Laplacian the solution for /; is similar to f(r),
except that a? would be replaced with 2 = w?/c2 — k2. So h, = B3], (Br).

Solving the remaining equations h,(r) and hy(r) will be little trickier because
they are coupled, as it will be seen. By inserting potential components H, and Hy
from (28) into vector Laplacian we end up to

2 2
dhy | 1dh lz(fnzhr+2nh97h) K+ h, =0,

dr? rdr 1 % (30)
d2h9 1 dhg 1 5 2
—(— +2 - — + =0.
+ = iy + rz( n“hg nhy — hg) — khg c% hg 0
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Solution to equations (30) may be obtained by adding and subtracting them to-
gether. Addition gives

¢ 1d  , (n-1)? B
<d72+rdr+ﬁ— > (hy 4+ hg) =0,

which is recognaised as Bessel’s equation of order n — 1 having a solution
hy + hg = 2B1]y—1(Pr).

The other solution Y;,_1 is again discarded because of the singularity. Subtraction
of equations (30) leads to Bessel’s equation of order n + 1:

2
(d 1dr+'82_(n—:21)2> (hr—he):(),

aztra

which has a solution i, — hy = 2B;],11(Br). Moreover, adding and subtracting
the solutions leads us to

hr = Bl]n—l(,Br) =+ BZ]n—i—l (lBr)/
hg = B1]u—1(Br) — BaJut1(Br)-

Now without loss of generality we can set one of the constants to zero, say B; = 0,
due to gauge invariance of Helmholtz decomposition [18]. This would result to
hy(r) = —hg(r). One more thing to do is to substitute the newly solved forms of
potential components (28) into displacement components (23). The results are

(31)

uy = {f' + (n/r)h; + kh,} cos nf !>~
ug = {—(n/r)f +khy — h.} sinnf !z, )
u, = {—kf —h. — (n+1)h,/r} cos nf e!kz=t),

2.3 First longitudinal phonon modes in a cylinder

Due to complexity of previous analysis we calculate only longitudinal 3D modes
here explicitly. Assume first that uyp = 0 and that all the derivatives d/96 in (23)
are zero. We are left only with

u = 9® _0oHy 0P  10(rH)

" or 9z’ 7T 9z r or
Analytic solutions for ® and Hy are given by (28) where n = 0. This setting
eliminates other potential functions. Recalling the solutions (29) and (31) for f(r)

and hy(r) we can write

® = Afg(ar) e*>9D, Hy = —ByJy (Br) ekz=b), (33)
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First longitudinal displacements are given by

ur = By {—ﬂéh(ﬂ”) +ik]1 (B } i(kz—et)
(34)

r)
Uy, = By {l?zk]o ar) — Blo(Br) } ikz—wt)

where

A_ (ﬁ>2ﬁ2—k2h<ﬁ>
Bz o 2k? ]1(06).

We note also that as before a? = w?/c? — k? and p* = w?/c5 — k*. For example
for Silicon, ¢; ~ 8382m/s and c; ~ 4705m/s, and we may choose for w and
k, w = 5331/s, k = 0.07109m L. The choice of these numbers can be justified
by solving the frequency equation for longitudinal waves or by calculating the
frequency spectrum numerically. We will examine frequency spectra in the next
chapter. We also note that by choosing macroscopic material constants does not
alter the results, because the model used is independent of the length scale.

In order to visualize the displacement field (34) we use COMSOL graphical
user face for plotting. The GUI is built on Cartesian coordinate system, hence in
order to view cylindrical deformations we have to make a coordinate transfor-
mation. For presenting the deformations graphically we use “PDE, Coefficient
Form (c)” setup in COMSOL with dependent variables ur, utheta and w. Static
PDE solver is then configured to solve an equation system of a form ur = u,,
utheta = 1y, w = u,, which can be obtained by setting the coefficient matrices c,
a, etc. correctly. To view the displacement fields we use “Postprocessing”-tool to
show deformations on a boundary plot. Parameters used are

2

Boundary: sqrt(ur2+(x"2+y~2)+utheta’"2+w”2)
Deformation:
x: ur=xcos(atan2(y,x)) —...
—sqrt(x"2+y”~2)+uthetassin(atan2(y,x))
y: ur+sin(atan2(y,x))+...
+sqrt (x"2+y~2)+uthetaxcos(atan2(y,x))
zZ: W
Function atan?2 refers to so called four quadrant inverse tangent. It can be defined
for example with

atan2 (y, x) = 2arctan NI —

VX2 +y?+x

In Figure 12 there is shown a displacement field defined by analytical solution for
longitudinal wave with given elastic parameters. We immediately see by com-
paring it to longitudinal numerically solved eigensolution in Figure 11 that they
are similar. Finally the displacement in radial direction seems to be almost non-
existent in the analytic solution. We will use this remark later.
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FIGURE 12 Displacement field plotted with COMSOL from analytical solution of lon-
gitudinal elastic displacement field in Silicon (5i) 3D cylinder with radius
r = 1m and length [ = 30m. Coloring refers to the total displacement, i.e.
absolute value | Re(u, ug, u)| of real part of the displacement field.



3 CLASSIFICATION OF ELASTIC WAVES IN
ALMOST CYLINDRICAL DOMAINS

Our intention is to affect the thermal conductance by distracting the propagation
of elastic waves by introducing a refined perturbation on the boundary. However,
we cannot say beforehand what exactly happens to the lowest energy phonon
modes if cylindrical domain is perturbed periodically. Guiding idea is that a
small perturbation should result only to a small difference to eigenvalues and
phonon modes, so that the modes remain mainly the same. We can also expect
that if the perturbation becomes greater but possesses enough symmetry then
the phonon modes should maintain their characteristic behavior: flexural mode
in cylinder should remain mainly flexural, torsional should remain mainly tor-
sional and longitudinal should remain mainly longitudinal. We will later confirm
numerically that this is in fact true when considering the first 20 — 25 modes.

Thinking about elastic waves in a straight infinite cylinder we can try to
use some of their characteristics to define wave types in perturbed periodical
domains. For example starting with flexural waves we know that the main dis-
placement component lays in x-y-plane with only little displacement on z-axis.
Similar situation is with longitudinal waves where there is only little displace-
ment in x-y-plane with most of it pointing to z-direction. Torsional modes of
the lowest energy, on the other hand, have the most of their displacement near
to radial boundary around z-axis. Assuming there is not much change for the
modes under a small perturbation to the domain we can use these properties as
a definition. How well the definition works numerically is seen a posterior from
frequency spectrum: if the mode recognition procedure fails, there appear spikes
on the curves.

Summarizing, in this chapter we examine the elastic modes in slightly de-
formed 3D waveguides by comparing their characteristics to flexural, torsional
and longitudinal modes in a straight cylinder. We build an algorithm that tests
these characteristics and classifies the modes into corresponding types. We also
draw a frequency spectra separately for each of these modes which is later used
to estimate the approximative quality of 1D models for each phonon type.
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3.1 Frequency spectrum of periodical domain

By the symmetry of the perturbation we mean that starting from a straight finite
cylinder it should look the same from both ends and it should also possess axial
symmetry after the perturbation. Probably the simplest example of such a fiber
is seen in Figure 13. The cylinder of radius r has been axially perturbed (i.e.

FIGURE 13 Example of the straight cylinder which has undergone a small axi-
symmetrical perturbation. The symmetry of the perturbation is assumed
to leave phonon modes mostly intact. It can be also seen how the pertur-
bation is implemented on the 3D domain as a linear approximation of the
boundary curve.

”lathed”) with one period of cos-curve with amplitude 0.25r so that the cross-
sectional shape remains circular and the domain remains smooth along the radial
boundary. The diameter of the cylinder after the perturbation at the ends is »
and in the middle 0.75r. Because the theory of elasticity is independent of length
scale, we do not use here any particular unit of length.

We start the classification by introducing a similar domain that was ex-
plained above with almost non-existent perturbation. The parameter a control-
ling the amplitude of the perturbation curve a cos(z) is here set to « = 0.05. More
precisely, the boundary curve B(z), i.e. the upper boundary of x-z-section of the
domain is given with

B(z) =7 {1 +0.5 [1 + sign (é - |z|>] [—0.5 —0.5cos (zzTTCﬂ IX} ,  (35)

where z € [—1/2,1/2] and where r is the radius and [ is the length of unperturbed
cylinder. The periodical domain ITis generated with help of MATLAB functions
circ2 and extrude.
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First a circle of radius r is drawn on x-y-plane. Then function B = B(z)
is evaluated in 40 constantly separated points in [—1/2,1/2]. These 40 values of
B(z) are used as a piece-wise scaling factor for extruding the circle from z = 0 to
z = I in R3. Finally the domain is moved backwards on the z-axis so that circular
ends lay at z = —I/2 and z = [/2. Extruding the circle in piece-wise linear
fashion along values from a smooth function doesn’t necessarily give a smooth
surface in MATLAB. However there will not be any sharp edges or spikes and
therefore we can neglect the effects of boundary roughness. Final remark about
the domain is that the circular ends should share a same radius for definition of
quasi-periodic boundary condition. If this is not the case then COMSOL uses a
linear transformations to deform the other end to meet with the other. [38] In such
a case the quasi-periodic model would not match with an infinite periodically
perturbed almost cylindrical fiber, but instead an exponential infinite horn profile
as a result of stacked linear transformations.

The equation to be solved in domain IT is Lamé’s eigenvalue equation

—uNii — (A +p)V divii = pw?il (36)
with quasi-periodical boundary condition
exp(ikl)ii|c, = iilc, (37)
at the circular ends of the domain. Along the radial boundary or I'T we put
—v-CVii =0, (38)

where v is the unit normal vector of the boundary and C is stiffness matrix. This
is called a free boundary condition. In the boundary condition (37) the parame-
ter k goes over the zone [0,277/1] with predefined steps of constant width. The
resolution is usually 100 steps/zone in the figures presented in this text. For ev-
ery k some given number n of smallest eigenfrequencies and their corresponding
eigenmodes are calculated, and the eigenfrequencies are stored in a matrix of size
n x 100. Finally the rows of the matrix are plotted one by one in a same figure
regardless of what kind of mode the values represent. More precisely, what we
are plotting is actually functions f; such that

fi = k) = min ({w(k) }/ U {fiK) }),

where { w(k) } represents the true unordered eigenfrequency spectrum for given
k.

As a result we get an eigenfrequency graph shown in Figure 14. The value
of k is let to sweep over the larger range [—0.17t/1,2.17t/1] in order to visualize
the periodical structure of frequency spectrum. At k = 7/l is located so called
Brillouin zone edge of the periodical structure, which is shown in the figure by
dashed vertical line. We used nanometer scale dimensions in order to find out the
frequency range for the first acoustic phonons. We can immediately see from the
scales that the lowest phonons have frequencies up to 40GHz in a periodical fiber
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FIGURE 14 Frequency spectrum of almost cylindrical 3D silicon fiber. Parameters for
geometry are length | = 300nm, diameter D = 20nm and the strength of
cos-type perturbation @« = 0.05. Black dashed line denotes the Brillouin
zone edge. We can notice small gaps in the spectrum to appear near the
Brillouin zone edge at w ~ 0.5-10'' 1/s and w ~ 0.8 - 10! 1/s.

with periodicity length | = 300nm and diameter D = 20nm. The elastic material
parameters are for silicon (Si) and they are E = 1.31-10''Pa, v = 0.27 and p =
2330Kg/m?>. Finally we conclude that the resulting frequency spectrum is quite
hard to interpret without more information about the corresponding modes.

3.2 Defining algorithm for the lowest elastic modes

In order to categorize the elastic modes they are put through an algorithm that
evaluates the displacements in some points and names the modes according to
their similarities with elastic modes in a straight cylinder. This algorithm serves
as a definition for names of elastic modes in almost cylindrical fibers. Conse-
quently while solving the eigenvalue equation (36) for every k large enough all
the eigenmodes corresponding to eigenvalues are analyzed with the next proce-
dure:

e Interpolate the value for displacement vector (#,v,w) in some predefined
point p; on z-axis.

e If the sum |u(p1)| + |v(p1)| of complex norms is large, i.e. close to maximal
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total displacement of the solution, then the mode will be called flexural.

e If the mode is not flexural and the sum |u(p1)| + |v(p1)] is small and |w(p1)|
is large in comparison to maximal total displacement of the solution, then
the mode will be called longitudinal.

e If the mode is neither flexural nor longitudinal and the sum of norms is
small in comparison to maximal total displacement,

[u(p1)| + [o(p1)| + [w(p1)| <e,

then we interpret that point p; suggests mode being torsional and the algo-
rithm is run for a different point p,. When enough points p; suggest that
mode is torsional the procedure is ended and the mode will be called tor-
sional.

¢ If the mode being analyzed did not meet any of these conditions for point
p1, then start from the beginning with a different point p».

Just to mention, it is somewhat challenging to find a small number of general
test points p; which would allow the identifying procedure to work for large col-
lection of different boundary shapes and values of k. Increasing the number of
test points would of course result to increased calculation time, so therefore they
should be chosen with care. The adjectives large and small need not be given
exact values here as they can be defined separately for different domain shapes.
For values of k ~ 0 this procedure may fail because the elastic modes at k = 0
are standing waves. For such solutions there are one or more discretely located
points z € [—1/2,1/2] such that [1(0,0,z)| + |v(0,0,z)| 4+ |w(0,0,z)| =~ 0 where it
is impossible to say which mode it is in question. It also seems in this case that
the modes can be coupled with each other so that the intuitive mode characteris-
tics are harder to see. However this problem can be avoided if we define that the
modes near k = 0 will be called the same that they are called for small k > 0. This
is done by keeping the same ordering of names for eigenvalues near k ~ 0.

Whether the procedure works or not with given parameters it can be de-
cided a posterior by combining the flexural, torsional and longitudinal frequency
spectrums together and comparing the resulting picture to original frequency
spectrum with unclassified modes. Differences in figures would be easily no-
ticeable as spikes or discontinuities. For clarification we use same color codes for
each of these modes: flexural will be printed with green, torsional with red and
longitudinal with blue through out the text.

3.3 Flexural waves

Let us look into more detail of how the algorithm works for flexural waves.
Say that we have calculated the frequency spectrum and corresponding eigen-
modes from first up to 24" modes. For each eigenmode we use COMSOL/MAT-
LAB build-in interpolation function postinterp to evaluate the displacement field
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(u,v,w) atpoint p; = (0,0,1/4). The adjective large in the definition of algorithm
issetto 0.1 - D, where D is the diameter of the periodicity cell end. Deciding rule
for flexural wave is therefore

[u(p1)| +[v(p1)| > 0.1-D. (39)

If no result was found at p; then procedure is carried again one at a time for
p; = (0,0,(2—1/j)I/4),j=2,...,10 until a solution is found.

In Figure 15 we represent the eigenfrequencies that passed the flexural test.
We can immediately see that there is no visible spectral gaps present or they are
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FIGURE 15 Frequency spectrum of eigenmodes with characteristics of flexural waves in
almost cylindrical 3D fiber. These curves were identified from the spectrum
with the algorithm that compares the characteristics of the corresponding
modes to ordinary flexural modes in a straight cylinder. Parameters for
geometry are length | = 300nm, diameter D = 20nm and the strength of
cos-type perturbation « = 0.05.

small enough not to be seen within this resolution. Quick examination at the
picture reveals that the algorithm should have worked in this case: there are no
discontinuities or spikes on the curves. Also w « k? as it should be for flexural
modes in a straight cylinder. [18] In order to be sure what kind of modes in fact
passed the procedure the modes can be plotted as it is done in Figure 16. Coloring
shows the absolute displacement, i.e. |Reii| with dark blue corresponding to
value zero. Clearly all of these modes have dominant displacement component
in x-y-direction and therefore they succeed in being intuitively flexural.
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FIGURE 16 First four eigenmodes of almost cylindrical periodical fiber for fixed k.
These modes passed the test which compares displacements to flexural
wave displacements in a cylinder and are therefore called flexural as well.
Coloring refers to absolute value of the real part of displacement field.

There are a couple of things to be noted about flexural waves. First, because
of axial symmetry of the domain flexural modes are two-fold degenerated. It
means that an eigenvalue corresponds to two different eigenmodes that have ma-
jor displacement vectors to different directions in x-y-plane. Degenerated modes
can be also coupled so that, loosely speaking, there is a minor component of other
mode within the other. Eigenmodes are not necessarily orthogonal. This results
to elliptically rotating flexural vibration, which can be seen from eigenmode ani-
mations in COMSOL. If the axial symmetry is relaxed, for example by squeezing
even a small elliptical deformation to the original cylinder, then the degeneracy
is relaxed as well as is the coupling of flexural modes. The final conclusion of this
section is that the classifying algorithm works for flexural waves.
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3.4 Torsional waves

We now turn to examine higher energy modes of the low frequency spectrum. In
Figure 17 we present the eigenfrequencies that passed the torsional test. It was
required in the algorithm that the sum of norms [u(p;)| + |o(p;)| + |w(p;)| must
be smaller than 0.1 - D for 5 different points p; = (0,0, (2 —1/j)1/4),1 < j <10,
along z-axis. Theory predicts (see [18]) that for torsional waves in straight cylin-
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FIGURE 17  Frequency spectrum of eigenmodes with characteristics of torsional waves
in almost cylindrical 3D fiber. These curves were identified from the spec-
trum with the algorithm that compares the characteristics of the corre-
sponding modes to ordinary torsional modes in a straight cylinder. Pa-
rameters for geometry are length | = 300nm, diameter D = 20nm and the
strength of cos-type perturbation a = 0.05.

der there is a linear dependence between wavenumber and frequency, w « k.
That is also correct for small values of k in almost cylindrical domains according
to our results. Another remark from the Figure 17 is that for larger k, near the
center of the zone, linearity seems to break down and there appears a remark-
ably wide spectral gap at w ~ 0.5-10' 1/s. As we remember, amplitude of the
perturbation is only 5% of the original cylinder. Existence of a spectral gap for
torsional waves means that such waves with frequencies lying inside a gap do
not exist in such periodical fiber. Due to this it is possible to hypothesize that
transmission probability of torsional waves through a finitely long wire would
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be easily reduced, if the wire undergoes a deformation of a number of periods of
cos-type perturbation.

(a) Torsional 1

(c) Torsional 3 (d) Torsional 4

FIGURE 18 Eigenmode numbers 7, 11, 17 and 20 of almost cylindrical periodical fiber
for fixed k. These modes passed the test which compares displacements to
torsional waves in a cylinder and are therefore called torsional. Coloring
refers to absolute value of the real part of displacement field.

In Figure 18 we present the modes that correspond to the four lowest eigen-
frequency curves in Figure 17. Coloring of the solutions shows that the dark blue
areas, where displacement is close to zero, lay on z-axis. This meets the charac-
teristic requirements of torsional waves. In addition, there is considerably large
displacement in radial direction which is located where the rotational displace-
ment is large as well. Relative strengths of radial and rotational displacement in
torsional modes are controlled by material parameters A, y and p in Lamé’s equa-
tion. We can conclude that clearly the identifying algorithm works for torsional
modes.
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3.5 Longitudinal waves

In Figure 19 there are presented the first longitudinal eigenfrequencies. By the
definition, corresponding modes of these frequencies were identified to be almost
longitudinal by the algorithm. Distinctive mark of longitudinal modes is nearly
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FIGURE 19 Frequency spectrum of eigenmodes with characteristics of longitudinal
waves in almost cylindrical 3D fiber. These curves were identified from
the spectrum with the algorithm that compares the characteristics of the
corresponding modes to ordinary longitudinal modes in a straight cylin-
der. Parameters for geometry are length | = 300nm, diameter D = 20nm
and the strength of cos-type perturbation « = 0.05.

constant z-displacement in every transversal cross-section of the domain. It was
required that in any of the points p; the norm [w(p;)| > 0.1- D and the sum of
norms |u(p;)| + |o(pj)| < 0.1- D so that a mode would be named as longitudinal.

According to theory longitudinal waves in a cylinder have frequency pro-
portional to wavenumber which is evidently correct for waves with small wave-
numbers k in perturbed cylinders. Like before, we can spot a spectral gap of
approximately similar width as for torsional waves at the crossing of first and
second eigenfrequency curves. Spectral gap is located around w ~ 0.8 - 101 1/s.
We may again hypothesize that transmission coefficients of longitudinal waves
would be easily reactive to radial harmonic perturbation of the domain also in
finite fibers.
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Finally, just to complete the survey of lowest eigenmodes, we show the first
three longitudinal modes in Figure 20. These modes indeed seem to have a cross-
sectionally constant z-displacement and only a small radial displacement along
the whole domain. Dark blue color again corresponds to | Re ii| = 0.

(a) Longitudinal 1

-10
2
04
2 0 2
(c) Longitudinal 3

FIGURE 20 Eigenmode numbers 10, 16 and 23 of almost cylindrical periodical fiber for
fixed k. These modes passed the test which compares displacements to lon-
gitudinal waves in a cylinder and are therefore called longitudinal as well.
Coloring refers to absolute value of the real part of displacement field.



4 ONE DIMENSIONAL MODELS OF ELASTIC
WAVES

We have learned in previous chapters that are three kinds of elastic eigenmodes
in almost cylindrical fibers at the lowest energy level: flexural, longitudinal and
torsional. Simulating these modes numerically in a 3D model is challenging in
terms of computer time. Solving and identifying the modes from frequency spec-
trum can take even several hours depending on the resolution and mesh size.
However, as we have seen from the figures representing eigenmodes the fields
are almost one dimensional having dominant displacement in only one direc-
tion. For longitudinal modes this direction is z-axis, for two flexural modes it is
the two transversal axes and for torsional mode the direction is the angular axis
¢ in cylindrical coordinate system. This remark gives us a reason to believe that
suitable 1D models can give a good approximation to 3D frequency spectrum.
One dimensional models would also be many times faster to solve numerically
and longer fiber models could also be used in simulations.

In this chapter we are going to describe three different 1D models and give
some results of how well they approximate 3D frequency spectrum. We will
compare the width and location of first spectral gaps from 1D and 3D frequency
spectrums. It will be seen at the end that all of the lowest 3D elastic modes can
be approximated very well by the 1D models with inaccuracy usually less than
1%. The idea is to find three ordinary differential equations defined on 1D do-
main [—//2,1/2] that would approximatively describe the physics of each of the
modes. The equations would operate as a Lamé’s equation (21) in 1D domain.
Such way they could be used for both finding a frequency spectrum of almost
cylindrical periodical fibers and later finding so called scattering amplitudes s,
for different phonon modes in finite fibers. Therefore we will also find the har-
monic wave solutions for each of these models in a straight cylinder. Let us start
with flexural waves.
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4.1 Flexural waves

The governing 1D equation for flexural waves in thin rods is developed in [18]
and we explain it here carefully. Consider a differential element of thin rod such
as one in Figure 21 undergoing a transversal motion into x-direction. Several

FIGURE 21 Differential element dz of thin almost cylindrical fiber under transversal
motion. Bending moment M = M(z) and shear force V = V(z) are shown
by vectors pointing to their respective directions. Coordinate parameter z
refers to the cross-section of the fiber perpendicular to its neutral axis.

forces are acting on the element dz, but in this approximation we notice only the
bending moment M = M(z) and shear force V = V(z). We take an assumption
that perpendicular plane cross-sections of the fiber remain plane and perpendicu-
lar to neutral axis of the fiber. This is a basic postulate in the Bernoulli-Euler beam
theory. The second derivative approximation of bending moment M = M(z) at
point z is
u(z)  M(z)
0z2 ~  El(z)’

where I(z) is the moment of inertia and E Young modulus. Denominator on the
right side is sometimes called a bending stiffness. Displacement of neutral axis of
the fiber in vertical direction for differential element at z is given by

—-V(z) + <V(z) + aniz) dz) = pA(z)azua(% dz, (40)
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where A(z) is the cross-sectional area of the element, V(z) is the shear force
on vertical direction and p the density as usual. For elliptical or circular cross-
sections area A(z) can be expressed with A(z) = 7By (z)By(z) where By(z) and
By(z) are the boundary curves in x-z and y-z-plane. Moment of inertia I(z) for
the differential cross-section dz can be expressed with a same formula for circu-
lar and elliptical disc shapes: I(z) = 7By (Z)B;(Z) /4. We can also exchange the
time derivation with d/dt — iw in order to relax the model to static scheme.

We may use V(z) = dM(z)/0z for the moment-force relation neglecting the
rotational-inertia changes arising from changing cross-section. This assumption
limits the application of 1D model to only low frequency waves where defor-
mation in y-direction is small. Moreover, the cross-section of the fiber must be
symmetrical in x-y-plane or otherwise one must be prepared to consider coupled
flexural-torsional waves (e.g., see [18]).

Substitution of the above equations into (40) gives

02 50%u(z) 4p 2
32 (Bx(z)By(z) 52 ) = fo(z)By(z)w u(z). (41)
Equation (41) can be solved numerically in MATLAB by separating the equation
into two coupled second order equations with a substitution v = BxBiazu /922,
The equation becomes

0? 40

ﬁv(z) - EBX(Z)By(z)wzu(z) =0, z€]-1/2,1/2],

0? 1
— - = —1/2,1/2].
aZzu(z) Bx(z)By(z)3v(Z) 0, z€]—-1/2,1/2]
For a straight cylinder where By = B, = a, where a > 0 is a constant, the
harmonic wave solution of (41) is of a form u(z) = A exp(i{z). With wavenumber
{ solved the solutions take a form

u(z) = Aexp (:I:i 4_;)6:2) , or u(z)=Aexp (:I: \/%c: ) , (42)

where only the first two give a propagating wave field. The latter two are ex-
pected to play a role in forced or transient elastic problems and are therefore
neglected here.

4.2 Torsional waves

Let us then consider a differential element of almost cylindrical fiber subjected to
different torques at the ends of the element as shown in Figure 22. The guide lines
of analysis were presented for straight cylinders in [18]. By adding the torques
we end up to equation of motion for element, which is

z 2y
—T(z) + (T(z) + agi(z) dz> = pl(z)dz %. (43)
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T(z)+ aTa(ZZ) dz

FIGURE 22 Differential element dz of thin almost cylindrical fiber under torsional mo-

tion. Vectors T(z) and T(z) + aggz) dz at the ends of block resemble differ-

ent torques in effect.

We substitute T(z) = C(z)dug/0z into the equation (43). Function C(z) is called
torsional rigidity and for domains with circular cross-section it is given by

C(z) = umBi(z) /2.
For elliptical cross-sections

B(2)B(2)
CE =g+ B2(z)’ (44)
where By and By are again the boundary curves of the domain in x and y -
direction. We immediately see that if By = By then the torsional rigidity equation
for elliptical cross-sections yields the one for circular. Therefore we can use equa-
tion (44) in 1D model, if the 3D domain has circular or elliptical cross-section. In
the rotational equation of motion (43) I(z) is the polar moment of inertia, and it
is given by
T 2 2
1(z) = 7B:(2)By(2) (B3(2) + B(2))

After exchanging the time-derivation from (43) with d/dt — iw we end up to

following static equation:

o | B(2)Bj(2) duy(z)
oz Bi(z) + Bj(z) oz

] = BB (BYG) + B ()wPuo(e). )

Equation (45) will be used to approximate torsional waves in circular or elliptical
fibers. We can find the harmonic wave solutions to it by setting the boundary
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curves By and By, identically to 1. We immediately see that it reduces to ordinary
wave equation with solutions

u(z) = Aexp (ii\/ng) . (46)

It will be observed in the proceeding sections that this model gives a very
good approximation to real 3D torsional modes with error less than 1% on a wide
parameter range. Before going into that we introduce an approximation for lon-
gitudinal modes.

4.3 Longitudinal waves

For longitudinal waves the suitable 1D approximation is done in analogous way
to torsional case except that the physical coefficients in the equations will be dif-
ferent. [18] Consider a differential element for longitudinal motion as shown
in Figure 23. We expect that the only affecting field on the cross-section at z

o(z,t) + @ dz

o(z,t)

FIGURE 23 Differential element dz of thin almost cylindrical fiber under longitudinal
motion. Vectors 0(z,t) and o(z,t) + W dz at the ends of block resemble
different dynamic stress fields in effect. Wire-frame shows the form of the

element in stress-free situation.

is dynamically changing stress field o (x,t). Writing down the forces F(z) =
A(z)o(z,t) at both ends leads to an equation of longitudinal motion for differ-
ential element with variable cross-sectional area. Coefficient A(z) is the area of
cross-section. By adding the forces we get

toleg d0A 1 J0A *u
—0A+ <(7—|—a—zdz> (A—I—gdz> =3P <A+ <A+gdz)> dzﬁ, (47)
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where A := A(z) = 7mB,(z)By(z) is the cross-sectional area of the circular or
elliptical cross-section and ¢ := 0(z, ) is the stress. Here we neglect the second
order terms of dz resulting from the multiplication of differentials. Therefore

A3 CEAR) = peuz),

after removing the time dependence. Now by applying Hooke’s law, 0(z) =

Edu(z)/0dz we get
1 9 ou(z) 0 o
~— (A =L , 48

A(z) oz < @) 0z ) EY u(z) 48)
which is the final form of the approximative equation. Setting cross-sectional
area A(z) to constant it cancels out and we are again left with an ordinary wave
equation. This time the solutions have a form

u(z) = exp (ﬂ:i\/gw z> . (49)

We will later notice that equation (48) approximates the elastic motion of
almost cylindrical fiber in z-direction with a positively good precision. Together
with torsional 1D equation they give almost non-existent error between 1D and
3D models for low frequency waves.

4.4 Comparison of frequency spectra produced with 1D and 3D
models

Maybe the easiest way to examine the differences of previously introduced mod-
els is to compare the frequency spectra of some typical deformation. We intend to
use here a cylindrical axially symmetric deformation similar to one in Figure 13.
Defining boundary curve for geometry is given in formula (35), with parameters
I = 300nm, D = 20nm and & = 0.251. One dimensional equations should work
equally well for all materials so we therefore continue to use material constants
for silicon. The 3D spectrum is calculated and the eigenmodes identified by the
algorithm explained in Chapter 3. Finally 1D spectrum for each type of vibration
is calculated with the formulae presented in this chapter. Flexural, torsional and
longitudinal frequency spectra are then plotted separately for examination.

First remark is that with such a strong perturbation parameter we intend
to test the limits of approximation: with a large we go far from the definition of
almost cylindrical fiber and with I not very large compared to average diameter
of the fiber we relax to focus only on thin fibers. Although we are interested
here only on low frequency waves and the first spectral gap we plot the higher
frequencies in order to see the increasing error between 1D and 3D models.

Like before, let us start with flexural modes. In Figure 24 there are the first
four eigenmodes from 1D flexural model plotted with green dash-dotted line to-
gether with first eight eigenmodes from 3D model that passed the flexural test.
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— Flexural 3D
4= "= Flexural 1D

FIGURE 24 Frequency spectra of flexural waves obtained from 1D and 3D models of
strongly perturbed periodical domain. Material constants are for silicon
(Si). Parameters for geometry are I = 300nm, D = 20nm with harmonic
perturbation of strength « = 0.251. In addition to reasonably good approx-
imation with 1D, we can notice two small spectral gaps for flexural waves.

Recall that 3D eigenmodes are two-fold degenerated so there is only four solid
lines visible. We can immediately see remarkable increase in error between 1D
and 3D models as w increases, but in the neighborhood of the first spectral gap,
at w ~ 0.4-10'91/s, the error is almost vanishing. This is good news on be-
half of approximative capabilities of 1D models. Another remark is that choos-
ing an appropriate numerical solver is important in this case, since flexural 1D
model is more complex than the one for torsional or longitudinal. As a solver we
used UMFPACK which seems to give much more robust and more accurate re-
sults than SPOOLES which was used for other problems. SPOOLES gives slightly
more random results than UMFPACK for eigenfrequencies for « > 0.1, and the
eigenfrequency corresponding to the first flexural mode in 1D model does not
go to zero as k — 0. These problems were present also in 1D flexural spectra of
almost cylindrical fibers with # ~ 0 and I large. There will be more discussion
about numerical implementation in Chapter 8.

For torsional and longitudinal modes 1D approximation is much more ac-
curate. In Figure 25 we present the frequency spectra for both of these modes
because of similarity of the results. Spectrum corresponding to torsional waves
is plotted with red while longitudinal spectrum is blue. Dash-dotted curves rep-
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FIGURE 25 Frequency spectra of torsional and longitudinal waves obtained from 1D
and 3D models of strongly perturbed periodical domain. Material constants
are for silicon (Si). Parameters for harmonically perturbed geometry are
I = 300nm, D = 20nm and « = 0.251. 1D and 3D spectra of these waves
clearly coincide on this frequency range. In addition, there are wide spectral
gaps for both waves.

resent the 1D spectra as solid lines represent 3D spectrum. Approximation for
torsional modes is so good that it is impossible to distinguish 3D and 1D curves
from each other in this resolution. This result is in line with theory: 1D approxi-
mation of the first torsional mode should coincide with results from exact elastic-
ity theory. [18] For longitudinal modes the approximation is as well significantly
good although for higher frequencies 1D and 3D are starting to separate from
each other. We can make a remark from Figure 25 that the mode recognition has
failed for highest torsional 3D spectral branch near k ~ 0 as only 1D curve is
visible there. This suggests to adjust the constants in the recognition algorithm.

It can be also observed that perturbation of strength « = 0.251 on the bound-
ary generates a large spectral gap for both types of modes. Gaps do not coincide
but as it was seen in Chapter 3 for small « they share about the same width. It is
our interest to study how the formation of gaps responds to change of parameter
« and length [ of the periodicity cell. We will examine this incident next.
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4.5 Spectral gaps in 1D and 3D models

When considering the low temperature thermal conductance of infinite or finite
perturbed fibers, it is reasonable to study the properties of spectral gaps as well.
We already know that periodical perturbation on the boundary of a fiber creates
spectral gaps in frequency spectrum of infinite fiber. Phonons with frequencies
in this gap cannot propagate in the fiber. With a good reason we can expect that
even when the periodical perturbation is finite, phonons with corresponding fre-
quencies notice a potential barrier because of the perturbation. In the next chapter
we will examine how this potential barrier arises for finite fibers when the num-
ber of periods is increased. We will also utilize the knowledge gathered here in
designing a thermo-resistant fiber in Chapter 7.

Let us now compare numerically the spectral gap widths and locations cal-
culated from 1D and 3D models. This analysis serves as a justification to use 1D
models as an approximation for low energy acoustic phonons. We first calculate
the widths of first spectral gaps from 1D and 3D model as a function of perturba-
tion parameter & and present them in separate figures for each mode in order to
compare the differences. Moreover, the location of the first spectral gap, i.e. the
average of the first two eigenvalues will be plotted from 1D and 3D models. It is
clear how the average and difference of eigenfrequencies is calculated in 1D case.
However, when parameter « changes, the order of 3D eigenmodes at k = 77/]
can change. Therefore in 3D case the algorithm for identifying eigenmodes is run
on every step so that eigenfrequencies corresponding to correct phonon types are
considered. Comparing 1D and 3D models while changing a becomes especially
handy if one wants to find in some sense optimal strength of perturbation while
keeping the approximative error limited.

In Figures 26, 27 and 28 we present widths and locations of flexural, tor-
sional and longitudinal spectral gaps of similar periodical fiber than earlier in this
chapter. The length of periodicity cell is kept constant while a sweeps over range
[0,0.5] over prescribed steps. Nanometer length scale is used: lenght of the peri-
odicity cell is on purpose taken | = 10nm and D = 2nm so that length:diameter
ratio is small. This can be assumed to reveal error more easily than with longer
domains. Like before the dash-dotted curves show the results from 1D models as
where solid lines refer to 3D models. Color choices of the curves have a following
rule: lighter color represents the location of spectral gap on frequency axis and
dark colors represent the gap width as a function of parameter «.

Let us first analyze the general behavior of these curves. Looking from the
pictures the spectral gap width Aw = Aw(a) is increasing function for all of
these modes and Aw(x) — 0 as « — 0. However, the flexural wave gap width
does not increase as quickly as it does for torsional of longitudinal modes with
axisymmetrical harmonic perturbation. For flexural modes both quantities, gap
width and location, seem to form strictly concave curves, but for torsional and
longitudinal modes the same curves are strictly convex. In fact, for torsional and
longitudinal modes spectral gap location seems to be almost independent of «.
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FIGURE 26 Width and location of first flexural spectral gap calculated from 1D and
3D models of periodical domain as a function of perturbation parameter a.
Inset picture shows the form of 3D periodicity cell for | = 10nm, D = 2nm
and « = 0.5. We can remark the small systematic difference in gap location
from 1D and 3D models. Gap width increases slowly as &« — 0.5.

This phenomenom can be explained with constant phase velocity of torsional
and longitudinal modes. Changing the average diameter of the fiber does not
affect speed of these modes. There is also an interesting difference between char-
acteristics of mode types: in order to lower flexural gaps one must increase a thus
lowering the weight and width of the fiber, but this doesn’t lower the location of
gaps for torsional or longitudinal modes which in fact slightly increase. Chang-
ing I, the length of the cell, is expected to take greater effect on longitudinal and
torsional gap locations. We remark that if the parameter a controls the pertur-
bation in such a way that the mass of periodicity cell is constant, then also the
flexural spectral gap location becomes independent of . We will take a quick
look into wavelengths and velocities of these modes in Chapter 7.

In addition, the figures reveal that the only significant error between models
seems to be the one for flexural spectral gap location in 1D approximation. Al-
though this was expected to happen considering the analysis of frequency spectra
in earlier sections, it was not clear how this error would spread over wider range
of parameter «. It seems to have characteristics of systematic error because the
error is almost independent of w. This kind of inaccuracy could be easily cor-
rected by subtracting the difference from 1D spectrum or by scaling the spectrum
by some exponent f if agreement on wider range of w is desired. Also applying
a more advanced 1D model such as Timoshenko beam theory should give more
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FIGURE 27 Width and location of first torsional spectral gap calculated from 1D and
3D models of periodical harmonic domain as a function of perturbation
parameter . Inset picture shows the form of 3D periodicity cell for [ =
10nm, D = 2nm, & = 0.5. We see that gap width increases sharply as the
perturbation parameter « increases.

accurate results, as suggested by [18]. Final remark is that for width and loca-
tion of torsional and longitudinal spectral gap there is a slight error increasing
polynomially as a function of «.

In Figure 29 there are plots of spectral gap locations of all the three modes
as a function of [, the length of periodicity cell. The length I changes from 8nm
to 60nm for 3D model and up to 100nm for 1D models. The choice of horizontal
axis limits corresponds to diameter:length ratios 1:4 to 1:50. At the lower end of
the range of period ! the perturbation for infinite fiber is changing rapidly com-
pared to cell dimensions into x- and y-direction, while on the other end change is
slow. This means that with / /D small we test the reliability of 1D approximation,
because the cell is not “thin”. First impression is that the curves show inverse pro-
portionality between  and w. All the modes seem to obey this behavior and there
is no such characteristic difference between flexural and the two other modes like
there was in a case of variable strength of perturbation. Also the error between
1D and 3D gap locations is clearly insignificant for high //D. Only a small differ-
ence between 1D and 3D flexural mode approximation can be observed for small
1/D.

In Figure 30 we show the first spectral gap widths or flexural, torsional and
longitudinal modes. The length of period ! again changes from 8nm to 60nm for
3D model and 8nm to 100nm for 1D models. Relation between length of period
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FIGURE 28 Width and location of first longitudinal spectral gap calculated from 1D and
3D models of periodical harmonic domain as a function of perturbation
parameter . Inset picture shows the form of 3D periodicity cell for [ =
10nm, D = 2nm, a« = 0.5. We can notice a slightly increasing error in gap
width and location as « — 0.5. Harmonic perturbation seems to induce a
comparably wide spectral gap for longitudinal waves.

I and gap widths seems to be Aw ~ 1/I. We can also see that error between 1D
and 3D comes slightly visible at [ /D < 5 in this resolution.

We may end this section by concluding that 1D models are clearly suitable
for approximating the characteristics of first spectral gaps for 3D flexural, tor-
sional and longitudinal modes in periodically perturbed cylindrical fibers. They
are faster to solve and while there is no need for eigenmode identification, there
is no possibility for the identifying algorithm to fail.
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FIGURE 29 Locations of the first flexural, torsional and longitudinal spectral gaps for

harmonically perturbed silicon (Si) fiber calculated from 1D and 3D models
as a function of length I of the periodicity cell. Gap locations w from 3D and
1D model are calculated for | = 8 — 60nm and | = 8 — 100nm, respectively.
Diameter is D = 2nm and perturbation strength a = 0.251 is kept constant.
We can perceive a good correspondence between 1D and 3D models when
I increases.
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FIGURE 30 Spectral gap widths of the first flexural, torsional and longitudinal modes
for harmonically perturbed silicon (Si) fiber calculated from 1D and 3D
models as a function of length [ of the periodicity cell. Gap widths Aw
from 3D and 1D model are calculated for I = 8 — 60nm and I = 8 — 100nm,
respectively. Diameter is again set to D = 2nm and perturbation strength is
a constant « = 0.251.



5 TRANSMISSION COEFFICIENTS

In the previous chapters we have studied infinitely long periodically perturbed
almost cylindrical fibers. We calculated frequency spectrum for 1D and 3D mod-
els and made conclusions about how the lowest energy waves would be dis-
turbed by boundary deformation. We now change the perspective to finite fibers
with finite perturbation and explain how to analyze the wave propagation in
them. There are some reasons that motivate us to examine thermal conductance
of finite fibers: In practical applications nanostructures are finite and usually
there is an interest to keep length:diameter ratios in control. Considering for
example a 2D grid of bolometers with thermally insulating legs, the density of
censors in the grid is inversely proportional to length of legs squared. In such
a case, infinite models do not always give an adequate picture of the thermal
properties of the system. Moreover, long periodical fibers containing thousands
of periods can sometimes be replaced with shorter fiber designs consisting only
10-100 periods of perturbation of variable period length. This construction can re-
flect phonon waves more effectively than strictly periodic one. A simple example
of this type of a fiber was shown in Figure 2.

Methods of analysis used in previous chapters must be changed slightly
in order to study finite fibers. This is because we cannot calculate a similar
frequency spectrum for fibers containing only a finite deformation. However,
there is another way to study wave propagation: a transmission coefficient curve,
which is a probability p;(w) for a phonon j of some frequency w to be transmitted
over the perturbed part G(R) of the fiber. The probability can be calculated from
so called scattering amplitudes s;, which are complex numbers describing the
elastic wave amplitude and phase before and after the perturbation. The main
difficulty is how to find the numbers s;,, from 1D or 3D models.

This problem is attacked by using a method [13] to calculate a scattering ma-
trix for the problem and use it to find transmission probabilities. Scattering ma-
trix is a 2M-dimensional square matrix and its elements are defined as complex
amplitudes for different scattered waves. In the next sections we describe this
matrix and its use in calculation for transmission coefficients. Moreover, there is
a direct way to solve the probabilities by evaluating the solutions of 1D and 3D
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problems at the circular ends of the domain. We will first take a look into that
and compare the transmission coefficients of 1D and 3D longitudinal waves. It
is then proposed that if the 1D approximation works for longitudinal waves it
works also for flexural and torsional waves. One dimensional transmission coef-
ficients are also calculated from scattering matrix so that the methods can prove
each other to give correct numerical values. The formulation is done following
[27] where scattering matrix was calculated for 1D and 2D domains.

5.1 Scattering of elastic waves in perturbed 3D fiber

As a mathematical model for the 3D nanofiber G we use an infinite cylindrical
domain lying on z-axis in IR. The shape of the cylinder is perturbed slightly near
origin so that the perturbation serves as a potential barrier for elastic waves com-
ing from plus or minus infinity along the fiber. When moving farther away from
origin we can think the perturbation as a target, a scatterer, which is bombarded
by elastic waves whose scattering amplitudes are then measured far away from
origin. Let G be a smooth and simply connected domain such that

G={(xy2) : 2l >R [xP+|y? <1} UG(R) (50)

where G(R) is a compact simply connected set acting as a perturbed part of the
cylinder. By assuming simply connectedness for G(R) we demand there are no
holes in the fiber. Let S > R and

G(S) =GN {(xy2) : [ <5} (51)

so that G(R) C G(S). Domain G(S) is called a truncated domain, which consists
of the perturbed part G(R) and two straight cylinders of length S — R attached
to the circular ends of G(R). An illustration of the model is shown in Figure 2 in
Chapter 1. Admissible elastic displacement modes in 3D model are the bounded
continuous spectrum eigensolutions (see Chapter 1) of Lamé-operator (18) in this
domain.

Given a quick thought about the model it seems intuitive that far away from
the scatterer there should be only normal phonon modes present. That is because
the domain looks locally a straight cylinder and in a cylinder the lowest energy
elastic waves are normal phonon modes as was explained in Chapter 2. This
heuristic also leads to a general philosophy of elastic scattering theory: to be able
to solve the normal phonon modes at given frequency and to express the com-
plete solution as a sum of them. On the other hand, near the deformed part of the
fiber there can exist some smooth part of the solution which may be impossible
to express as a sum of normal phonon modes. Therefore we only use asymp-
totic symbol O(exp(—7|z|)) to keep inside everything else than normal phonon
modes. For mathematical formulation of the space of admissible phonon waves
see e.g. [27]. To summarize we are looking for phonon displacement fields Y;
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such that

N
Yi(x,y,2) = w;r(x,y,z) + le]'pw;(x,y,z) +O(e ), (52)
p:

where we have one incoming phonon w]+ and N different outgoing phonons w;
forming a linear combination with complex scattering amplitudes s;,. The sum
of outgoing waves can be thought as a scattering pattern. How large N is de-
pends on the frequency w of the waves. In the lowest energy interval w € [0, w1 |
below the so-called first threshold w;, N = 8. As we have seen from the figures
in previous chapters showing 3D spectra of straigth cylinders and various per-
turbed domains, there exist only four different eigenmodes in this energy region.
Because these modes can propagate either plus or minus infinity their number is
multiplied by two. Also at the higher energy levels number N is always even,
because of existence of right and leftward propagating waves. Moreover, we re-
call that normal phonon modes U;(x,y, z) in infinite unperturbed cylinders were
calculated analytically in Chapter 2. We can use them as incoming and outgoing
waves in the previous formula after defining

4 B nr(z)Uj(x,y,z),  U;coming from / going to co,
@i (v,y,2) = { nr(—2z)U;(x,y,z),  U; coming from / going to — oo. 53)

A smooth cut-off function #r was defined by

1, z>R+1,
0, z < R.
+

Finally, we can assume that the modes w;" are organized so that forj = 1,...,4

waves w; are going to —co and for j = 5,...,8 waves w; go to co. Also the
waves w]+ forj =1,...,4 are incoming from —oo and waves w]+ forj=5,...,8
are incoming from oco. Numbers 1, . . ., 4 therefore refer to waves acting on the left
and numbers 5, . . ., 8 on the right.

Recall that we assumed simply connectedness of the domain, so there are no
holes inside the fiber. Also, because other scattering processes arising from e.g.
high temperature (phonon-phonon scattering), defects or impurities of crystal are
assumed to be negligible. Therefore only the perturbation of the boundary in our
model is affecting the amplitudes s;,. However, we can conjecture that given
a complex enough boundary geometry, any scattering pattern can be obtained

from outgoing waves w,,, provided that the energy of the incoming wave w]+ is

preserved. In other words Y, [sj,|* = 1 for all j.

To proceed with discussion, we have to expect that given a suitably smooth
and symmetric perturbation there should not be much transformation between
different phonon types: again, flexural should stay mainly flexural, torsional
should stay mainly torsional and longitudinal should stay mainly longitudinal.
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We remark that such an assumption must be made cautiously, because for exam-
ple bulk phonons are known to couple in free boundary scattering. Assuming this
allows us to use the previously introduced 1D models in approximation, because
they only simulate one type of displacement at a time. How well they approxi-
mate, can be decided a posterior by comparing the 1D transmission coefficients to
ones obtained from 3D model. If there is not much difference then 1D modelling
proves itself useful. To compare the differences, we will first introduce a simple
method to calculate transmission coefficients for 3D longitudinal waves.

5.2 Boundary amplitude method for longitudinal 3D waves

We take into account the assumption that in a domain with enough symmetry
basic elastic modes should remain the same after scattering and start to look for
3D solutions of the form

i(x,y,z) = wf(x, v, z) +s1wy (x,y,2) +sow, (x,y,2) + (’)(e’ﬂz‘), (54)

where the incoming wave w; (x,y,z) = nr(—2z)(0,0,exp(i\/p/Ewz)) is mainly

of longitudinal type. In theory this wave w; contains harmonics of real longi-
tudinal wave and possibly other types of waves, but because the wavelength
of those waves is much lower they can be assumed to pass the perturbation
without scattering. Wave w;" is used here for simplicity of calculations in or-
der to avoid Bessel functions arising in analytic solutions in Chapter 2. There are
also two outgoing waves w; (x,y,z) = nr(—z)(u;,v{, (exp(—i\/p/Ewz)) and
w, (x,y,2) = nr(z)(uy,v, ,exp(iy/p/Ewz)) having the same form than the in-
coming one. There might be some displacement involved in x-y-direction in the
solution, but it is assumed that u; ,u, ,v; and v, are small. Constants p and E
again describe density and Young modulus and they depend on the material at
hand.

Problem to be solved is Lamé’s equation (18) Lii = 0 on the truncated do-
main G(S) with free boundary condition v - ¢(if) = 0 on dG(S)\I(S), where
I(S) = {(x,y,z) € G : |z| = S} is the set of circular boundaries of truncated
domain. Boundary conditions at I(S) must be set differently in order to obtain
a solution of the form (54). In COMSOL, strong boundary conditions must be
given in terms of so called Robin boundary condition which is a sum of Dirich-
let and Neumann conditions. It is sometimes used e.g. in electromagnetics as
an impedance boundary condition. We use it here to obtain continuity for dis-
placement and stress fields at the circular boundaries. Neumann condition can
be given as a vector differential operator so that each component of the solution
can be differentiated separately. Let us first assume

i(x,y,z) = (0,0,exp(ifz)) + s1(uy , vy ,exp(—ilz)),

for all (x,y,z) € I(S), z = —S. Because s; and s; are unknown, we set the
boundary conditions accordingly to get rid of them in the equations. Taking a z-
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directional derivative D, = (0,0,9;) only from z-displacement component from
the solution gives

—D, -ii(x,y,z) = —i{exp(ilz) + s1i{ exp(—iz). (55)
We end up to an equation in Robin form
—D, -ii(x,y,z) + (0,0, —iC) - ii(x,y,z) = —2i{ exp(i{z) (56)

by adding the term (0,0, —i{) - ii(x,y, z). Equation (56) will be used as boundary
condition at (x,y,z) € I(S), z = —S§, for incoming waves from —oo. At the
right boundary (x,y,z) € I(S), z = S, there can coexist in the solution another
incoming wave from +oco which must be forced to zero by setting:

D, -ii(x,y,z) — (0,0,i0) - ii(x,y,z) =0, (x,y,2z) €I(S), z=S. (57)

By taking equation (57) as the right boundary condition, it implies that if the
solution is of the form ii(x,y,z) = (u,,v, ,s2exp(ilz) + Aexp(—iz)) atz = S,
then

D, -ii(x,y,z) = syi{ exp(i{z) — Aif exp(—i(z).

Now by adding the term (0,0, —i{) - i(x,y,z) we have
D, -ii(x,y,z) + (0,0, —iQ) - ii(x,y,z) = —2Ai{ exp(—ilz),

which satiesfies the boundary condition (57) only if A = 0. The solutionatz = S
must be therefore ii(x,y,z) = (u,,v,,5» exp(i{z)), which was indeed aimed at.

Let us examine the solutions of the problem with an example: Let S =
132nm, and let the boundary curve of the perturbed part of fiber consist two peri-
ods of cos-curve with wavelength 60nm. Length of the perturbed part is therefore
equal to 120nm and it is less than half of the full length of domain. Boundary
curve By(z) = By(z) is shown in Figure 31 by green. The problem is to find
longitudinal 3D displacement field with equation £ii = 0 with free boundary
condition together with previously introduced additional boundary conditions.
Frequency w = 392 - 10° 1/s is on purpose taken approximately in the middle of
the first longitudinal spectral gap of infinite periodical fiber with similar pertur-
bation.

In Figure 31 there is shown the solution to the problem in the inset picture
at lower left corner. In the main graph the displacement is evaluated along z-axis
and drawn as a function of z with blue. The solution seems to behave intuitively,
so that far from the perturbation it is close to a superposition of harmonic waves
and transformation between waves occurs on the perturbed part of domain. We
see that when the amplitude is changing the phase also changes. It can be seen
by comparing the blue curves to red curve, which is the shape of the incoming
wave extended to the right side of perturbation.

Complex valued amplitudes Ajer; and Ayign of the solution field at the bound-
ary are drawn in the figure on the left and right end, but they can also be calcu-
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FIGURE 31 z-displacement of “almost” longitudinal 3D wave along z-axis of 3D cylin-
drical fiber with two periods of harmonical perturbation. Radial displace-
ment of incoming wave is assumed to be zero. Solid (dotted) blue line is
the real (imaginary) part of scattered displacement field in z-direction. Red
curve is the incoming wave shape in z-direction. Green curve shows the sil-
houette of the fiber. Real and complex field amplitudes u(0, 0, z) at bound-
aries z = £S5, which are solved by fitting sin-curves in the solution, are
marked with black. Inset picture shows the true 3D displacement field of
the solution.

lated easily from the solution by fitting sin-curves on it. We obtain

A, _VP(Re Mz(—S))ngr (Redzuz(~5))%
+i\/§2(lmuz(—5))2+ (Im 9,1, (—S))?2
g ’
A _VEPReus(S)) + (Red,us(S))> 4 /P (Imuz(S))* + (Im9;u2(S) )
right — g 1 g ,

(58)
which are derived from the equations such as

Reu;(—S) = Re Ay sin(g(—S) + ¢)
Re d;1;(—5) = Re At { cos({(—S) + ¢).

Boundary amplitudes can be used to solve transmission and reflection coef-
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ficients, i.e. normalized scattering amplitudes |s1|? and |s;|? with

1
Ptrans = |52|2 = §|Aright|2/
(59)

1
Pret = [s1* = §|Aleft|2 -L
We will show how the transmission probability formula is obtained. To relate

amplitudes Ajet and Ayt to the probabilities we need only the absolute values
of the boundary amplitudes

2 _€2|”2(_5)|2+ 0.1 (—S)?
|Aleft| -

Ao _Pluz(S)I” + [0zu=(S)
right| = §2 .

Assume first u,(S) = spexp(—i(S). Then 0,u,(S) = —i{s, exp(—i¢S). By taking
absolute value of these complex numbers we get |u;(S)|> = |s2|? and [9,u(S)|> =
7?|s|%. By multiplying the former with {? and adding them we get

20%[s2[* = C?u=(S)[* + [9z12(S) %,

from where the formula for pirans follows. Transmission probability of the lowest
energy phonons will later be plotted as a function of frequency w and compared
to similar curves obtained with scattering matrix method. The boundary ampli-
tude method will be abbreviated with BAM in future.

5.3 Boundary amplitude method for 1D waves

When looking more closely on BAM for 3D modes we can see that it only ob-
serves z-directional motion on z-axis and the transmission coefficients are cal-
culated with only that information. It therefore suggests that the same method
could be used with 1D models. This will be later shown to be true by comparison,
when transmission coefficients calculated from scattering matrix are available.

Let us assume that a problem to be solved on domain [—S, S] can be any of
the 1D models (41), (45) or (48). The wavenumber { in the solution form comes
from corresponding 1D model. Boundary conditions at z = £S5 must be set simi-
larly to 3D case in order to obtain unique solution of the form

u(z) = wi (z) + s1w5 (z) + spw5 (z) + O (e 7). (60)

We use (—9; — i{)u = 2i{ exp(i{z) atz = —Sand (d; — i{)u = 0atz = S.

Let us again examine the problem with an example: Let S = 55nm, and let
the boundary curve of the perturbed part of fiber consist of five periods of cos-
curve with wavelength 10nm and diameter D = 2nm. Boundary curve B(z) =
By (z) is shown in Figure 32 by green. The problem is to find torsional 1D displace-
ment field with equation (45) with previously introduced boundary conditions.
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Frequency of the wave w = 1900 - 10? 1/s is on purpose set to be near the upper
edge of first torsional spectral gap of infinite periodical fiber with similar pertur-
bation. This can be checked from Figures 29 and 30. The #-displacement field

2
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FIGURE 32 Scattering of 1D torsional left-incoming wave from finite periodical per-
turbation. Boundary shape of 1D fiber is printed in green. Solid (dotted)
blue line is the real (imaginary) part of scattered displacement field in 6-
direction in cylindrical coordinate system, respectively. Red curve is the
incoming wave shape, which is plotted also to left side of the perturbation
for comparing the phase shift of field after scattering. Field amplitudes
at boundaries, which are solved by fitting sin-curves in the solution, are
marked with black.

u is plotted in Figure 32 with other curves that provide the phase information
of incoming and scattered waves. The solution seems to behave in a same way
comparing to longitudinal 3D solution in previous section. Amplitudes of the
solution at boundary are again calculated by fitting sin-curves on the solution.

We may generalize that the boundary amplitude method works for all of the
1D models in question and clearly, differences in boundary amplitudes are related
to frequencies near the spectral gaps. We can predict that BAM should give a
good correspondence with scattering matrix method which will be introduced
later in this chapter.
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5.4 Comparison of transmission coefficients of longitudinal 1D and
3D waves

We will now compare the transmission coefficient curves obtained with BAM
from 1D and 3D models of longitudinal waves. The domain used in simulation
cannot be too long because the size of 3D mesh increases rapidly. Therefore we
only use perturbations with a simple strictly periodic structure and with a small
number of periods starting from two. In Figure 33 there are presented the trans-

1k : [ S S
N\ /\/
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FIGURE 33 Longitudinal transmission coefficients obtained from 3D and 1D models for
a fiber containing two periods of cos-type perturbation of wavelength I =
90nm on the boundary. Diameter of the fiber is D = 10nm and perturbation
strength & = 0.251. We can see that 1D approximation coincides with 3D
reasonably well.

mission coefficients of the similar fiber that was used also in Figure 31. It consists
of two periods of harmonic perturbation with wavelength | = 90nm, diameter
D = 10nm, and amplitude « = 0.251 together with straight cylinders of size
0.55-2 -1 = 99nm attached to the ends. Transmission coefficient curve obtained
from 1D model is drawn with light blue while 3D curve is drawn with dark blue.
We can see from the picture that the error is almost non-existent.

In order to analyse the error we try to magnify it by introducing a longer and
more complex domain with seven periods of cos-curve of wavelength | = 45nm.
Length of the perturbed part is therefore 315nm and to construct the domain ap-
propriately we add cylinders of size 157.5nm to both ends. Total length becomes
630nm. In order to solve a 3D problem in such a thin and long domain we have
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to scale down z-coordinates in 3D mesh. More discussion about the implementa-
tion is left to Chapter 8. Longitudinal transmission coefficients from 1D and 3D
models are presented in Figure 34.
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FIGURE 34 Longitudinal transmission coefficients obtained from 3D and 1D models
for a fiber containing seven periods of cos-type perturbation of wavelength
I = 45nm on the boundary. Diameter is again D = 10nm and perturba-
tion parameter &« = 0.251. There is an increasing error as a function of w,
which can be explained as numerical inaccuracy because the wavelength of
incoming wave gets closer to the length of used 3D mesh element.

We immediately notice that locations of the cliffs in the curves are usually
at correct place but there is an increase in error between the depths as frequency
increases. This imprecision can be explained as an approximative error of 1D
model, which was also detected with eigenfrequency spectra. However the main
cliff, its location and depth, is approximated well by 1D model. For higher fre-
quencies there appears some kind of fluctuation in the 3D curve which could be
explained as numerical error. This is because the wavelength of higher frequency
waves becomes closer and closer to the size of z-scaled elements in 3D mesh.

Conclusion of this section is that BAM gives a very good correspondence for
transmission coefficients of 1D and 3D longitudinal modes. It therefore suggests
that 1D approximation should work well also for flexural and torsional modes.
In addition, because longitudinal 1D approximation coincides well with the 3D
case it can be expected that fibers with symmetrical perturbation do not couple
different elastic modes strongly together.

For torsional modes the error between 1D and 3D can be expected to be of
same magnitude as it is for longitudinal modes, because the equation used for
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torsional 1D approximation differs from longitudinal one by only its coefficient
functions. However, for flexural waves the error between 1D and 3D is expected
to be somewhat higher because higher error was observed also in comparison of
frequency spectra. Despite the fact, we can expect that cliffs in transmission coef-
ficient curves obtained from 1D and 3D models give well enough correspondence
so that 1D model can be used in calculation of thermal conductance.

5.5 Scattering matrix method for 3D and 1D models

In order to verify the results obtained with BAM we take a look at a different
mathematical method to calculate transmission probabilities. One method was
introduced in [13] and it is related to mathematical approximation of the scatter-
ing matrix of the problem.

To start with, let us briefly concentrate on the coefficients s;, in the solution
(52). Under the first threshold there are four elastic modes present: two flexural
(F1, B), one torsional (T7) and one longitudinal (L;). These modes can be going
to either plus or minus infinity, so in the scattering matrix there are total of eight
elements in each row related to scattering of one of the normal modes. Total
number of rows in S is eight as well. To clarify the matrix a bit more we can
mark each element with an arrow describing the propagation direction of the
corresponding wave.
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We also underlined those elements of scattering matrix S = (sjp ) jp=1,..5 that
can be approximated with corresponding elements from 1D scattering matrices.
It is supposed at this point that the perturbation of the domain is selected so that
the other elements are close to zero. We have already seen some evidence that
by designing the domain with axial symmetry there is just a negligible scattering
from one type to another.

Generally, with scattering matrix one can calculate the scattering pattern
of any incoming wave field. For example, if one has an incoming wave field
=Y, A]-w].+ expressible as a sum of normal modes the scattered field is then

(5); = Lp Apsjpiop -
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At the moment, the problem is how to calculate the coefficients s;,. This will
be done following [27] where the method was used for scattering matrices of size
2M x 2M. For each j we will use an approximative method for evaluating the
row vector (sj1, T om) from the scattering matrix. We define a certain func-
tional J; and later minimize it to give an approximative value to elements of j-th
row vector. This functional J; simply compares the numerical solution of Lamé’s
equation on truncated domain to any given linear combination of normal modes.
Finally in order to minimize functionals J; we turn them into a matrix equation
which can be easily solved numerically.

First we write down the correct boundary value problem in truncated do-
main G(S) where S > R so that the perturbed part G(R) is included in.

EY]S(x,y,z) =0, (xyz) €G(S),
v-o(Y?)(x,y,2) =0, (x,y,2) € 9G(S)\I(S),

(62)

2M

(3 +i)YS = (3, +i0) (w; +Y apwp> , (xy,2) €1(5),
p=1

where set I(S) = {(x,y,z) € G : |z| = S} contains the cross-sectional bound-
aries at z = +S. Again v is the outward unit normal vector, { € R and 4,
p=1,...,2M given complex numbers. We see immediately that the last bound-
ary condition in (62) requires Y]S to coincide with given linear combination of
outgoing normal mode solutions with complex amplitudes a,, p = 1,...,2M.
Operator (0, + i{) is used in order to achieve continuity of stress fields in addi-
tion to continuity of displacement field.

Now we can define the functional ]]5 as L?-difference of numerical solution

Yjs and the given linear combination of normal modes at the truncation cross-

sections: 5

2M
]]S(al,...,aZM) = / Y]»S — w]+ — Z apw, | dA.
I(S) p:]

By the definition of the problem (62) the minimizer @ of ]js is an approximation to

row vector (s;,) of the scattering matrix of the problem. It was proved in [13] that
ai converges to s;, exponentially fast as S — oo. Qualitatively, one can quickly
become convinced that the minimizer exists for S > R, and it is unique, because

the waves w;,t and w]i are linearly independent and therefore cannot be used to
expressed Yjs in many different ways.

The idea of solving the functional | ]5 is to separately find solutions for prob-
lem (62) with row vectors @ being zero, so that only one incoming or outgoing
wave is present. Let us write the emerging problems down once more:

[,Uji(x,y,z) =0, (xy,z) €G(S),
v-o(Uf)(x,y,2) =0, (x,y,2) €G(S)\I(S), (63)
(@ +iQU" = 3y +ig)ws, (x,y,2) € I(S),
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where j = 1,...,2M. We recall that in the definition of incoming waves a cut-off
function was used so that for j = 1, we have w] 0 on right end of domain
G(S). It means we have a boundary condition 9, U j = —i{ Llj+ at that end. The

boundary condition forces U]*(x, y,z) = C(x,y) exp(—iCz) there, and we there-
fore have a Bloch wave solution at that cross-section of the cylinder. With the
waves llji solved, the full solutions Y]rS can be written in terms of them:

S 2M
— —
YP=U+ ) apl,.
p=1
This relation is the one where the coefficients a, can be solved. It is done by
introducing 2M x 2M matrices E° and F° depending on domain truncation point
S. Matrix elements are defined as complex inner products
s _ = _

Fi = (U —w;, U —wf)ys

on the two cross-sectional boundaries I(S), i.e.

(V/ W)I(S) = /I(S) V(xryrz)w(x/yrz) dXdy

(64)

Letting GS (LI+ wf, U]f - w}*) 1(s) we can write the functional | ]5

JP(a) = (ajE®, aj) + 2Re(F?, a;) + G7,

where F]-S = (Fjsl, ..,F]-SZM). Now the minimizer a?(S) can be found from the
equation
a)(S)E° + F} =0, (65)

which is just a gradient of | ]S set equal to zero.
One dimensional case differs from 3D only by definition of inner products
(64). They are reduced to products of point-wise differences:

Ef = (U; (=S) —w; (=8))(U; (=8) —w; (=9))
+ (U; (S) —w; (5))(U; (S) —w; (S)),

Ff = (U (=S) — w; (=) (U} (=) — w] (=S5))
+ (U7 (8) = wi () (U] (S) — w; (5)).

Also the scattering matrices are of size 2 x 2, because each 1D model can simulate
only one type of wave. The abbreviation for scattering matrix method will be SM
in proceeding pages of this thesis.

We conclude after the simulations that the difference between transmission
coefficients calculated with BAM and SM is negligible. This serves also as a proof
that both methods work and there are no errors in the program code for MAT-
LAB. Because calculating the whole scattering matrix in 1D with SM is over four
times slower than direct calculation of probability with BAM, we use only BAM
in future with occasional error checks with SM.

(66)
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5.6 Transmission coefficients in 1D

Since the 1D equations introduced in Chapter 4 approximate only one type of
the modes at a time we must calculate all the modes separately. The problem is
that for some particular deformation there might occur scattering from one mode
type to another. Therefore it is not easy to decide whether the 1D model gives re-
liable approximation. For example longitudinal modes can become coupled with
torsional modes if there is a twisted change in the principal axis of inertia of the
fiber cross-section along the deformed part, as it can be seen if an animation of the
eigenmode is constructed with COMSOL. However, with symmetrical fibers, for
example if the cross-section is constantly circle, there shouldn’t be significant scat-
tering between these two mode types. We already found some evidence earlier
in this chapter that a perturbation with enough symmetry should not couple dif-
ferent vibration modes when 3D transmission coefficients of longitudinal modes
were examined.

Let us recall that as an incoming and outgoing waves at the circular ends of
the fiber we use

4
wi (z) = exp | =i fp%z ,

wi (z) = exp <iiw \/§z> ) (67)
wi(z) = exp <iiw\/gz> ,

where sub-indexes F, T and L stand for flexural, torsional and longitudinal waves.
These normalized solutions were calculated from equations (41), (45) and (48) in
Chapter 4.

First we shall examine the modes with lowest energy, flexural modes: In
Figure 35 there are shown the transmission coefficients calculated with BAM for
finite fibers of different number of periods of perturbation. Total length of the
fiber changes from 110nm to 440um while the diameter is D = 2nm. Radius of
the boundary of the fiber follows cos-curve with period length I = 10nm and the
perturbation strength is again « = 0.251. After the perturbed part G(R) to both
directions there is attached a finite straight cylinder with length 0.55K so that the
whole length of the domain becomes 2.2 x n x 10nm where n is the number of
periods. Value 0.55R was chosen by comparing transmission coefficient curves
of fibers of different lengths. The length of straigth cylinders was chosen high
enough so that O(exp(—v(z|)) in equation (52) is negligible and therefore the
curves would not change much while changing the length of the domain.

For reference there are also the eigenfrequencies of similar infinitely per-
turbed fiber. We can clearly see that the spectral gaps from infinite model corre-
spond to cliffs in transmission coefficient curves. Also, with more periods the cliff
deepens converging asymptotically to some kind of characteristic function xr of
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FIGURE 35 Up: Transmission coefficients pr for flexural wave as a function of fre-
quency w in a perturbed cylindrical fiber with finitely many periods of
perturbation. Down: Eigenfrequencies of similar infinitely perturbed fiber.
Spectral gaps of infinite model seem to correspond to cliffs in transmission
probability curves. Atleast 20 periods of perturbation is needed to decrease
the probability pr close to zero in the first spectral gap.

spectral gaps, i.e.

[ 1, if wnotin spectral gap,
KE(w) = { 0, if w in spectral gap.

These functions ), could be used for calculating thermal conductance for infinite
periodically structured fibers. This procedure was used in 1D e.g. in [28]. We will
utilize it in Chapter 6 to various periodicity shapes.

One dimensional approximation of transmission coefficients for torsional
modes is shown in Figure 36. Domain is again cylindrical one with axi-symmetric
cos-type perturbation in the middle with strength « = 0.251. Length of the per-
turbation changes from 220nm to 880nm units as the number of perturbation in-
creases. The diameter is D = 2nm. There are 2,4,6 and 8 periods of perturbation
in the fibers, and we can immediately see that the effect of perturbation to trans-
mission probability is much stronger than for flexural waves. Length of period
for perturbation is I = 50nm and the straight cylinders after the perturbation are
again 0.55R. The cliff appearing over the spectral gap is also about as wide as
the gap is. Therefore only a few periods of perturbation can be assumed to be
enough for diminishing the thermal conductance for torsional waves.
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FIGURE 36 Up: Transmission coefficients pr for torsional wave as a function of fre-
quency w in a perturbed cylindrical fiber with finitely many periods of
perturbation. Down: Eigenfrequencies of similar infinitely perturbed fiber.
Spectral gaps of infinite model seem to correspond to cliffs in transmission
probability curves. Probability pr ~ 0 is reached for frequencies inside the
first spectral gap with eight periods of perturbation.

Similar results can be obtained with longitudinal 1D waves. In Figure 37
there are transmission coefficients of a fiber with diameter D = 2nm again with
2,4,6 and 8 periods of perturbation. Length of period is now set to I = 60nm and
the total length therefore changes from 264nm to 1056nm as number of perturba-
tions increase. We can clearly see that spectral gaps of infinite fiber correspond to
drops in transmission probability.

We may end this section by concluding that for all the investigated phonon
modes the transmission coefficient curves seem to converge to characteristic equa-
tions of spectral gaps as number of periods increases. For flexural modes there
appeared considerably wide second spectral gap, which suggests that harmonic
perturbation may not be the most effective choice in reflecting flexural waves. We
will return to this remark in Chapter 7.
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FIGURE 37 Up: Transmission coefficients p;, for longitudinal wave as a function of
frequency w in a perturbed cylindrical fiber with finitely many periods of
perturbation. Down: Eigenfrequencies of similar infinitely perturbed fiber.
Spectral gaps of infinite model again seem to correspond to cliffs in trans-
mission probability curves. Probability p; ~ 0 is reached for frequencies
inside the first spectral gap with eight periods of perturbation.



6 THERMAL CONDUCTANCE

In the previous chapter we have introduced methods for calculating the trans-
mission probability for elastic phonons of lowest energy. This information is now
used to calculate the phonon thermal conductance. The formulae discussed in
this chapter were successfully used by number of different research groups e.g.
[29, 30, 31, 32, 33]. The numerical results were compared with experimental data
by [34, 35], where a good agreement was found by calculating the thermal con-
ductance from full dispersion relations of phonons. In our calculation we only
use the low-end spectrum because the presence of higher modes is exponentially
small. Regardless, we may expect a good agreement also with our results and
experimental data when it is available. With this pretreatment we are now ready
to introduce a formula for phonon thermal conductance. Later in this chapter
we will make calculations of the thermal conductance of nanofibers with various
boundary deformations. We use both finite and infinite periodical models as an
example.

6.1 Equation for thermal conductance by acoustic phonons

Let us assume that left and right ends of the fiber are connected to reservoirs
with temperatures Tjet and Tiign. Thermal distribution of phonons in the reser-
voirs is given by Planck distribution n;(w) = 1/ (exp(hiw/kpT;) — 1). Constants
i and kg are Planck constant and Boltzmann constant, respectively. We will be
discussing here only on the thermal conductance along the fiber and neglect re-
flection phenomena at the joints of fiber and reservoirs. Interfaces between 2D
and 1D regimes were examined e.g. in [7]. Our starting point here is one dimen-
sional Landauer energy flux

0 00
Do T heolna(w) — ng@))palw) de (68)

w
as in [7],[27]. Lower integration limit wy;, is the cut-off frequency for phonon a.
Quantity p,(w) is the transmission probability along the fiber for phonon a. At
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the first threshold the main contribution to thermal conductance is by the lowest
energy acoustic modes, i.e. by phonons with w,(0) = 0. Therefore lower in-
tegration limit is wmin = 0. This regime corresponds to temperatures below 1K.
Present phonon modes are the familiar flexural, torsional and longitudinal modes
which have been studied in the preceding chapters. In higher temperatures than
1K other modes such as shear modes start to contribute to thermal conductance.

Let |Tieft — Tright| << min{ Tiest, Trigne }, SO that temperature difference be-
tween reservoirs is small compared to temperature. Under this assumption, the
thermal conductance can be presented in a form

2 0o
Q- 0Q/ot  h / w w? exp(Bhw) 4 (69)

= = w,
Theft — Tright 27-(kBT2 o Pa< ) (exp(ﬁhw) - 1>2

Wmin

where g =1/(kpT) and T = Tieft = Tright-

In order to understand the formula (69) better and to simplify numerical
calculation we make a change of a variable: Let X = hw/kpgT. The formula
becomes

27TkBT2 2/ & (ﬁh> ﬁ2h2(exz((p() 1 1)2ﬁlth
“aa Tk () gt
—

D(X)

where it is easily seen how the integrand contributes to the integral. The distribu-
tion function D(X) goes quickly to zero as X — oo. For example X = 10 implies
D(X) ~ 0.0045. Limit at X = 0 is one. Therefore with variable X we need to inte-
grate only over the zone [0, 10] for sufficient precision. Temperature dependence
of the integral (69) is left into scaling factor of p, and into coefficient k3T /(27th).
The latter multiplied by the integral of distribution D(X) is known as a universal
quantum of thermal conductance Qpiy. [7]

As we saw in the previous chapter finite periodical deformations seem to
assign frequency bands where phonon propagation is mainly disturbed. These
bands correspond to spectral gaps of similar infinitely perturbed fibers. In vicin-
ity of the spectral gaps there also occurs weak resonances in the transmission
probability curves which can slightly affect the phonon propagation. However,
we can expect that as w — co transmission probability p, ~ 1. Wavelength of
such waves becomes small and slowly changing boundary has no or just very
little effect on them. Also, at the other end as w — 0 the wavelength becomes
long in comparison to deformed part of the fiber. Such waves do not either expe-
rience a strong potential wall caused by the perturbation. With this reasoning we
may now estimate the low and high temperature limit for thermal conductance
through a periodical perturbation. As T — oo scaled transmission coefficient
curve pu(X) tends move towards X = 0. When integrating over X, thermal con-
ductance becomes ) = Qypiy. Also as T — 0 curve p,(X) spreads to infinity in
comparison to phonon distribution D(X) and the integral again gives the same
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result. We may later observe from the numerical simulations that for all fiber
designs used here ()(T) increases rapidly towards Qypiy as T — 0.

In order to diminish thermal conductance transmission probability curves
should be nullified on some zone near zero. Let us take as a general objective
that transmission coefficients p, will be less than 0.1 on interval [0.2,7] for tem-
peratures T = 0.1 — 1K for all massless modes. At this point we do not have a
reference how well different fiber designs function on this matter. Let us assume
for instance that for T = 0.5K we manage to reach a complete drop on transmis-
sion coefficients on interval [0.2,7]. This would result to 7.7% left over of the total
area 71%/3 of distribution D(X) so thermal conductance would be reduced more
than 10 times compared to a fiber without such forbidden band.

Let us find out which frequencies w should be reflected in T = 0.1 — 1K in
order to nullify transmission probability on that particular zone. We recall from
formula (70) that the change of variable was made with X = fiw/kgT. Therefore
w = XkgT/h. If now X = 0.2 and T = 0.1K then w; ~ 2.62-10°1/s, and if
X = 7 then wy ~ 91.6-10°1/s. So T = 0.1K requires nullified frequency band
on 0.42 — 14.6GHz. By setting T = 1K we end up to frequency band multiplied
by ten: 4.17 — 146GHz. An immediate remark is that the zones are overlapping
so minimum and maximum frequencies can be chosen as Z = 0.42 — 146G Hz.
However we do not yet have a reference how easily a band gap of this size can
be obtained.

Looking the first spectral gap locations and widths from Figures 29 and 30
we can see that for example torsional waves can have roughly Awr ~ 800 - 10°1/s
at wr ~ 1500 - 107 1/s for a 25.1% perturbed cell with length 10nm and diameter
2nm at both ends. These frequencies can be scaled to different units of length
with wy scaled = wa/a where a is a scaling factor and « describes the phonon
type. Scaling can be used when needed to calculate spectral gaps for thicker
and longer fibers. If for example the diameter of a fiber is 10nm instead of 2nm
weusea = 5-1077/1-107" = 5. For such a fiber, we would have wr gcaleq =
300 - 107 1/s and Awrgealed = 160 - 107 1/s. These quantities fall into frequency
range Z. Therefore we can predict that fibers with diameter 10nm and periodicity
cells with length 50nm could be used for reducing phonon thermal conductance
at low temperatures. We will consider the scaling of spectral gap frequencies in
more detail in the following chapter.

6.2 Infinite periodical fibers

We recall from previous chapter the claim that thermal conductance can be cal-
culated with characteristic functions x, of frequency spectra for different modes.
These functions are defined with

1,  if w notin spectral gap of phonon «,

Kalw) = { 0, if win spectral gap of phonon «, @D
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for phonon modes a. Such a characteristic function can be formed by first calcu-
lating the 3D frequency spectrum for some periodicity cell and then identifying
the spectral gaps for different modes with mode recognition algorithm. If the pe-
riodicity cell has enough symmetry in its geometry then the modes should remain
mainly flexural, torsional or longitudinal.

Assume that we manage to design a cell that nullifies the transmission co-
efficients for T = 0.5K on range X = 0.2 — 7. This range corresponds to frequen-
cies 2 — 73GHz. We shall examine how this affects the thermal conductance on
wider temperature range T = 0.1 — 10K. In Figure 38 we can compare the scaled
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FIGURE 38 Normalized thermal conductance of an ideally designed periodical
nanofiber with forbidden band set to 2 — 73GHz on temperature range
T = 0.1 — 10K. As a reference a scaled characteristic function of spectral
gaps in units of X at T = 0.5. Thin grey curve shows the shape of the scaled
phonon distribution D(X).

transmission coefficient curve to thermal distribution of phonons as a function of
scaled frequency parameter X and see how the thermal conductance is changed.
Thermal conductance is presented as a function of T with thick black curve, and it
is normalized into units of universal quantum ()i, We immediately notice that
at T = 0.5K such transmission coefficient curve indeed provides over 10 times
smaller thermal conductance as was calculated in previous section. However as
temperature changes transmission coefficient curve is rescaled to edges of zone Z
and more mass of D(X) is left over to contribute to thermal conductance. When T
increases p, is scaled left and when T decreases p, is scaled right. This is the rea-
son why Q) increases as T changes from 0.5K. Thermal conductance at T = 0.1K
or T = 1K is still roughly 20% of the corresponding value for unperturbed cylin-
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der.

After simulating the thermal conductance of a few infinite periodical 3D
models we conclude that a typical harmonic axi-symmetrical perturbation can
result into 30% drop in thermal conductance for longitudinal or torsional waves
at T ~ 0.5K if the length:diameter ratio is chosen ideally for these modes. Usually,
contributing flexural waves travel through such perturbation without trouble. If
the boundary curve of axi-symmetrical perturbation is more complex, e.g. has
a shape of smoothed sawtooth wave which is constructed as a superposition of
multiple shorter wavelengths, we obtained 10% drop in thermal conductance for
flexural waves at temperature range T = 0.1 — 1K, and at the same time, 10 — 30%
drop for torsional and longitudinal waves on temperature range T = 1 — 3K.
The results are shown in Figure 39. For the reference there is also shown a 3D
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FIGURE 39 Thermal conductance by flexural, torsional and longitudinal modes in a pe-
riodical silicon fiber with smooth sawtooth-shaped periodicity cell. Length
of the cell I = 40nm and diameter at the ends D = 2nm. Inset pictures
show the shape of (horizontally scaled) periodicity cell and a 3D frequency
spectrum of the cell.

frequency spectrum of the cell.

We may predict that somewhat higher decrease in thermal conductance of
infinite periodical fibers can be obtained with using form optimization methods
to design the periodicity cell. Also, it should be possible to find a single geometry
which considerably lowers the thermal conductance of all three modes at range
T=01-1K.
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6.3 Finite periodical fibers

Let us now consider thermal conductance of finitely perturbed fibers. We will fix
here a geometry for a typical finitely periodical fiber and calculate the complete
thermal conductance through it. In Figure 40 we present first calculations of ther-
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FIGURE 40 Normalized thermal conductance of 1D longitudinal waves on temperature
range T = 0.1 — 10K in a finite fiber with eigth periods of harmonic pertur-
bation. Geometry parameters are [ = 60nm, D = 2nm and « = 0.251. The
scaled transmission probability curves at T = 1K and T = 0.3K show how
they are shifted to right when temperature decreases. Grey curve shows the
shape of the scaled phonon distribution D(X).

mal conductance by longitudinal waves in a cylindrical fiber with n = 8 periods
of harmonic perturbation on the boundary. Thermal conductance is again nor-
malized to units of universal quantum of thermal conductance so that it is com-
parable with thermal conductance of a straight prismatic cylinder. It is presented
with thick blue curve in the figure. Period length of the perturbation is the same
I = 60nm as in some of the previous examples in last chapter. Gray curve cor-
responds to distribution function D(X) in the integral (70) and thin blue curves
show the scaled transmission probabilities of longitudinal waves for two differ-
ent temperatures. The fiber under inspection is 960nm long and has a diameter
of 2nm. The thick blue curve shows that for a fiber with the described boundary
shape there is approximately 80% thermal conductance by longitudinal waves on
range T = 0.5 — 1K compared to conductance of unperturbed cylinder. If larger
temperature range T = 0.1 — 10K is observed one can say that the thermal con-
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ductance by longitudinal waves is lowered approximately 5%.

To obtain a complete picture of the thermal conductance one must calcu-
late and sum the corresponding curves for torsional and flexural modes in the
same geometry. In Figure 41 there are shown normalized thermal conductances

1
0.8 |
(T
a
-
= 06 |
=
c
=}
S
a 0.4r |
— Therm. distr.
0.2 —ppatT=1K I
. === Therm. cond. by tors.
— PpeatT=1K
0 i i i i i ‘ 1= Therm. cond. by flex.
1 2 3 4 6 7 8 9 10

5
TIK], X[1]

FIGURE 41 Normalized thermal conductivities by 1D torsional and flexural waves in
a finite fiber with eight periods of harmonic perturbation on temperature
range T = 0.1 — 10K. Geometry parameters are [ = 60nm, D = 2nm and
« = 0.251. Also drawn are the transmission probability curves pr and pr
with a scaled phonon distribution D(X).

by torsional and flexural waves, torsional with red and flexural with green as
before. We can see, by comparison with previous figure, that perturbation of pe-
riod length [ = 60nm affects the propagation of torsional waves at T = 1K such
a way that thermal conductance is lowered noticeably more. However, flexural
waves are not affected by the perturbation because their wavelengths at T = 1K
are much shorter. Thermal conductance by flexural waves drops only slightly as
T — OK. By choosing T' = 0.5K we can now calculate the total thermal conduc-
tance with
O=(08+06+1+1) Quuiy =~ 1.6-10"12W/K.

Final remark of this chapter is that cliffs in transmission probability curves
for different mode types did not effectively cover the main part of distribution
function D(X) where there is most of the area. In order to diminish thermal con-
ductance one must widen the cliffs of transmission probability curves so that the
integrand in (69) is close to zero on wider range. This is the topic in next chapter:
How to design a fiber that has strongly reduced total thermal conductance on
given low-level temperature interval?



7 DESIGNING THE PERTURBATION

Now that we are able to calculate low-level thermal conductance of deformed di-
electric nanofibers with 1D models we can study how to execute the perturbation
so that total thermal conductance would have desired properties. We continue to
work with silicon (Si) as a material keeping in mind the nearest applications for
fiber shape design. There are still several questions to be answered concerning
the design: How to affect the propagation of all of the phonon modes that are
present? How many periods should there be in the perturbation? What should
be the strength of the perturbation? How to make forbidden band wider for dif-
ferent phonon types? The last problem will be the one we are answering first.

7.1 Chirped fibers

There are at least a couple of solutions to problem how to widen the forbidden
band for phonons. First is to build so-called chirped structure. One can think that
in a chirped fiber perturbation is almost periodical, so that the length of period
is slightly changing when moving along the fiber. In a chirped fiber there will
be correct lengths in perturbation to reflect back phonons from wider frequency
band than in regular fiber with constant length of period. In chirped fibers the
ratio between lengths of neighboring periods L; and L;;1 should be kept con-
stant, so that the density of lengths would be constant. Then, if we examine two
phonons of type a with slightly different frequencies w; ~ w,, we can assume
that they experience approximately the same potential barrier from the pertur-
bation and share approximately the same transmission probability. Therefore we
define L := L;11/L; > 1 to be called period ratio. With the number of periods
n and period ratio L known in the perturbation we can calculate ratio between
lengths of the first and the final period:

_ Ly _ Ly Lnfl _ Ly Ly _

Ci=—= =... S22 =
Ly Ly Ly Lp1 Ly

Lt (72)
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This quantity will be called chirp ratio. If period ratio L is close enough to one
and number of periods n high enough then it can be assumed that forbidden
band becomes wider and transmission probability in the gap stays zero or close
to zero. However if L goes too high there will be resonance effects for phonons
inside the band gap and cliffs in transmission coefficient curve start to fill up. We
can use here as a reference the final section of Chapter 5 where it was found that
eight periods of constant perturbation was enough for torsional and longitudinal
modes to be fully reflected on some small frequency interval. When there was less
periods available the transmission probability did not reach small enough values.
Flexural waves appeared to require little more than 20 periods to be reflected with
the same probability.

We continue by constructing an analytical description of the boundary curve.
Function B in (35) will be changed a bit for chirped structures. We put as an ar-
gument for cos-function another function A = A(z)

B(z) = {1 _ % [1+ sign (R — |2])] % 1+ cos (71 +277A(z 4+ R))] oc}, 73)

which scales the zeros of cos-function so that period ratio L is obtained. For sim-
plicity let us use notation

m—1 )
Z(m):= Y LiL,
i=0

with £(0) = 0. This is the usual geometric series. Real number R in the formula
(73) is the half-length of the perturbation, as in Figure 2. It can be calculated
from number of periods n and period ratio L with R = 1%(n). Function A is
constructed in a following way: It has support on [0,2R] and it is equal to zero
elsewhere. It must have a property A(X(m)) = m, on [0,2R], so therefore it is
inverse function of £. We follow a known procedure for finding the inverse of
geometric series. Multiply the definition of X(m) by (1 — L):

m—1 )
(1-L) Y LiL'=(1—-L)Li(L°+ L' +...+ L™ 1)
i=0

= Li(1-L")
m—1

=l 1—Lm
= X(m)=)_ LiL =Lig—
i=0

1=

This form can be inverted analytically and we finally end up to

z(1-L)
_ 20-1)) _los(1-*5")
A(z) =log; <1 “ L > Tog L .

Now that we have an analytic form for boundary curve of chirped fiber we
would like to decide which period lengths should be present in the perturbation.
Our goal is still the same: to reach 90% drop in thermal conductance for temper-
atures T = 0.1 — 1K. As stated before the mainly contributing phonons should
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TABLE1 Wavelengths for different phonon types in silicon wire of diameter 10nm for
frequency range 0.41 — 146G Hz, which was calculated to provide 90% drop in
thermal conductance if the transmission probability of such waves is nullified.

Phonon « ca [Mm/8] Aming [1079m]  Amax [1070m]
Flexural 222-4144 28.4 0.53
Torsional 4705 32.3 11.3
Longitudinal 7498 51.4 18.0
have frequencies in zone Z := 0.41 — 146GHz. Knowing the frequencies, we

can make quick approximations on the wavelengths for different phonons with
equation

Ay = 27%‘. (74)

The phase velocity ¢, for each phonon type can be taken from 1D equations (41),
(45) and (48) from Chapter 4. For longitudinal and torsional waves we simply get

L = E, ct = \/ﬁ
P P

The wave speed of these modes is independent of frequency. They are said to
propagate non-dispersively. For flexural waves the equation is just a bit problem-
atic, because there is angular frequency w and parameter a describing the radius
of the fiber present in the equation (42). Dependence on w results into dispersive

wave propagation, as
| E
CF - W/g - wa %

Because a was assumed to be independent of z we are essentially calculating the
flexural wavelength in an unperturbed fiber. Dispersion of flexural waves can
be tried to explain physically so that changing the perturbation strength « affects
the fiber bending stiffness EI(z) ~ B(z)* more than it affects the cross-sectional
mass pA(z) ~ B(z)?. Recalling quickly from Figure 26 that flexural gap location
is a decreasing function of perturbation parameter & we can only expect to ap-
proximate the gap location with this formalism. If « ~ 0 is small, then we can
anticipate a good approximation.

With the wave speeds and the frequency range we can now calculate the
wavelengths of phonons in a fiber. Let us fix the unperturbed diameter at D =
10nm. Then a = 5nm, and we can express the calculated wavelengths in a Table
1. Now, going back to Figure 31 in Chapter 5 we can make some visual inter-
pretations about the scattering process. The frequency of the incoming wave was
chosen in the middle of the spectral gap of similar infinitely perturbed fiber. We
can see that the wavelength is about double the wavelength of the perturbation
functions By and B,. This suggests that the perturbation wavelength should be
half of the phonon wavelength. With the previous formulae this can be easily
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checked, as one can take for example parameters [ = 300nm, a = 10nm and
w = 0.5 10" 1/s from Figure 25 for torsional wave band gap, and calculate

Ar = 27'c\/ﬁ1 ~591nm ~2-1.
pw

Also, while considering flexural waves, one might want to confirm that the for-
mulas correspond the numerical results. Let I = 10nm and a = 1nm as in Figure
26. Let a ~ 0 and we can read spectral gap frequency w ~ 360 - 10° 1/s from the
figure. Then we calculate

Ap =2m———— = 203nm~2-1.
w

For longitudinal waves the formula works similarly. The conclusion is therefore
that given the phonon wavelengths in Table 1 one should half them and use the
obtained values as the period of perturbation in the definition of boundary curve.

There is yet another important parameter to set when designing a chirped
structure. It is the number of periods n which is sufficiently small so that to-
tal length of fiber does not rise too much while transmission coefficients are still
effectively nullified. This can be analyzed independently for different vibration
types by fixing the chirp ratio C according to minimum and maximum wave-
lengths that are wanted to be reflected and let the number of periods increase.
Period ratio decreases as a function of number of periods. This way a 3D surface
of transmission coefficients can be drawn as a function of number of periods n
and frequency w in order to decide the best value for n which should be used in
calculations for thermal conductance. We will demonstrate the use of such a 3D
surface in next sections.

7.2 Fibers with cylindrical chirped deformation

Let us first consider longitudinal motion. To reflect longitudinal waves we have
to construct a very long fiber which tests the limits of numerical accuracy of basic
table-top computer. Even if we choose narrower bandwidth than Z for longitudi-
nal wavelengths with first period L1 = 30nm and chirp ratio C = 160 the resulting
fiber can be over 100um long. The smallest details have therefore length:diameter
ratio 3 : 1 and we need there at least 10 — 20 FEM-nodes in every period to obtain
numerically accurate results. As period length increases moving along the fiber,
we cannot make the node grid much more sparse because otherwise it would re-
sult into loss of detail for high frequency waves. With high number of periods n
we easily ended up to almost maximal number of FEM-nodes for the computer
used in simulations.

In Figure 42 there is shown a 3D graph of transmission coefficients as a
function of number of periods 7 and frequency w. This type of 3D graph is similar
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FIGURE 42 Transmission coefficients of 1D longitudinal waves for variable number of
perturbations in Silicon fiber with diameter 10nm. First period L1 = 30nm
and chirp ratio C = 160, so that last period is always L, = 4.8um. Period
number 1 changes from 10 — 79. We can notice that transmission probability
decreases almost uniformly on frequency band 2.4 — 127G Hz as n increases.

to one used in [30]. Let us first examine visually how many periods should be
used to reflect longitudinal waves. The darker blue area which becomes visible
after n > 70 can be estimated to diminish transmission probability under 0.1 for
frequency range 2.4 — 127GHz and we can therefore use a value for n from that
scale. Let n = 80 for instance.

Now, in Figure 43 we show the thermal conductance by 1D longitudinal
waves with the scaled transmission coefficient curve at T = 1K with the chosen
geometry parameters. First remark of the parameters is that the total length of
the fiber 2- S = 107um is still many times smaller than phonon free length in
Silicon at low temperature, T < 10K. Therefore these parameters are physically
reasonable. In the inset picture there is shown the boundary curve of the fiber.

Length of boundary cylinders was set to 0.7 - R where R is the half-length of
perturbed part of the fiber. It was checked that reducing the length of boundary
cylinders does not visibly affect the result. We can perceive from Figure 43 that on
temperature interval T = 0.2 — 1K longitudinal thermal conductance is reduced
to 1/10 of the one for prismatic cylinder. We also remark that the scaled transmis-
sion coefficient curve at T = 1K near X =~ 8.7 rises over 1. This phenomenon can



91

Q [Quniv]’ pL

=== Therm. cond.
—p(X) at T=1K

8 9 10

5
TIK], X[1]

FIGURE 43 Thermal conductance by longitudinal waves in 107um Silicon fiber with
diameter 10nm. Transmission coefficient pr(X) at T = 1K. Inset picture:
Boundary curve B(z) for chirped fiber with 80 periods of cos-type pertur-
bation with first period L1 = 30nm, chirp ratio C = 160 and period ratio
L = 1.0664.

be explained with numerical inaccuracy because corresponding frequencies are
high compared to mesh resolution. The thermal conductance reached only 80%
drop at T = 0.1K because we decided to cut out the longest periods of deforma-
tion. However, it can be immediately concluded that 90% drop can be reached at
T = 0.1K or even lower by using longer fiber models.

For torsional waves we intend to use the same perturbation as for longitu-
dinal waves. We can predict, by refering to similarities of spectral gap locations,
that this design would reflect torsional modes approximately with the same ef-
ficiency as longitudinal waves. In Figure 44 we show the results of calculation.
The thermal conductance by torsional waves reaches over 90% drop on the whole
temperature range T = 0.1 — 1K. One remark on the scaled transmission proba-
bility curve presented in the figure is that for high frequencies X > 6 the numer-
ical error results into pr(X) > 1. This does not have a great impact on thermal
conductance because the distribution D(X) ~ 0 on that region. Therefore we can
neglect this error.

For flexural waves 1D design is even more complex in numerical sense than
it is for longitudinal waves because the fourth order equation must be used in
simulation. Therefore we have two dependent variables for UMFPACK solver
and in order to maintain the same numerical accuracy number of degrees of free-
dom is doubled to 122882. This is roughly the highest possible with the computer
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FIGURE 44 Thermal conductance by torsional waves in a Silicon fiber of length 107um
and diameter 10nm as a function of temperature. Scaled transmission co-
efficient pr(X) at T = 1K. Inset picture: Boundary curve B(z) for chirped
fiber with 80 periods of cos-type perturbation with first period L; = 30nm,
chirp ratio C = 160 and period ratio L = 1.0664.

setup used in simulations. In order to reflect high frequency flexural waves the
period length must be very small. As before the perturbation was of cos-type with
perturbation amplitude « = 0.251. We used value L; = 15nm for the first period
of perturbation. This value is close to half of approximated minimum wavelength
of flexural waves that mainly contribute to thermal conductance in T ~ 1K. Nev-
ertheless, unlike for torsional and longitudinal waves, periodical perturbation
creates a considerably wide second spectral gap for flexural waves. We intend
to use this phenomenon even that we clearly verify from frequency spectra that
1D model used has significant error near the second spectral gap. However 1D
approximation near the second gap seems to be always higher than correspond-
ing gap from 3D spectrum so we may trust that given a slow and long enough
perturbation the 1D model approximates 3D transmission coefficient curve from
above.

Moreover, because flexural waves are not interfered as much as longitudinal
or torsional wave by this type of perturbation we used a small value for period
ratio L = 1.005. This value was chosen from comparison of transmission coef-
ficient graphs for different parameters. Number of periods is 350 and the chirp
ratio is therefore only C = 5.7011. We remark that increasing a perturbation
parameter « in order to use less periods of perturbation would harm structural
properties of the fiber. It is clear that for axi-symmetrical case tensile strength
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depends on the minimum value of the area of cross-section of the fiber. In Figure
45 we show the flexural wave thermal conductance obtained with given param-
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FIGURE 45 Inset picture: Boundary curve B(z) for chirped fiber with 350 periods of cos-
type perturbation with period ratio L = 1.005. Other geometry parameters
are Ly = 15nm, D = 10nm and « = 0.251. Thich green curve shows the
calculated thermal conductance by flexural waves. Thin green curve is the
scaled transmission probability pp(X) at T = 1K.

eters. For reference there is also shown the boundary curve in the inset picture
and scaled transmission coefficient pr(X) in the main graph. It is interesting to
see how the second spectral gap contributes to thermal conductance of flexural
waves. From X > 5 we have pr(X) =~ 0.6. These frequencies do not play a major
role in temperatures under 1K. Even with all the efforts done we notice that flexu-
ral thermal conductance does not reach the desired 1/10 of the universal thermal
conductance on temperature range T = 0.1 — 1K. Also, because the chirp ratio of
the perturbation was only a fraction of what it was for longitudinal and torsional
waves, we can understand why it seems that pp(X) — 1 much quicker than pp
and pr for X ~ 0. Clearly, being able to use boundary curves with more periods
one can confidently assume that 90% drop can be obtained with cos-type cylin-
drical perturbation. However, there is another solution to the problem and we
intend to describe it next.
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7.3 Elliptical balanced deformation for reflecting flexural waves

In order to use stronger amplitude of perturbation for reflecting flexural waves
with less number of periods we introduce an elliptical deformation which is bal-
anced so that the cross-sectional area remains constant. With area of cross-section
staying constant longitudinal modes should propagate almost freely through the
perturbation. This hypothesis can be made because 1D model for longitudi-
nal waves depends only on the area of cross-section. Torsional modes are also
expected to remain mostly intact because area moment of inertia, which con-
tributes in torsional 1D equation, does not change much between circular and
elliptical cross-section. We also intend to use elliptical deformation with periodi-
cally chirped setup. Elliptical deformation will be constructed so that function A,
which scales the zeros of cos-function into a geometric series, is usable again.

Starting with the assumption that area of cross-section is constant we have
for elliptical case A = 7B, (z)By(z) where the boundary curves By and By, act as
elliptical semi-axes. To obtain a domain with constant cross-sectional area we can
set for example By ~ 1+ asin when B, ~ 1/(1 4 asin). However, this does not
form a symmetrical perturbation so that x- and y-polarized flexural waves would
experience the same potential wall. To revise this, we recall that A was built to
map one period [X(m),X(m+ 1)] to [m, (m + 1)]. Therefore, we can again use sin-
curve as a perturbation so that on D" := [27tm, 27rm + 7] it is defined normally
and we invert it on D} :=]27tm + 7t, 27t (m + 1)]. Boundary curve B, = 1/B, will
then have otherwise equal shape except that order of D" and D}" is reversed. By
defining the boundary curves with alternating the inversion, x- and y-polarized
flexural waves will share the same frequency spectrum. This claim will be veri-
fied shortly. Function A was defined on [0, o[ so we must use periodical cut-off
function for D" and D;". The periodical cut-off function 1 is defined by

1
P(z) = 5(1 + sign(sinz)).
Now we can set for balanced sin-type function S = S(z)

1

S(z) =y¢(z)(1+asinz) + ¢(z + ﬂ)m/

where « is the amplitude parameter of the perturbation. First term in the sum
has support on Dj" and the other term on D;". Boundary curves B, and B, are
defined with

Bul(2) = 5 (1~ sign(R — [2])) + (1 + sign(R — [z]))S@nAG +R)) (75

and By = 1/B,.

In Figure 46 we show the frequency spectrum of elliptical balanced fiber.
Length of period is I = 50nm and diameter D = 10nm at the circular bound-
aries. Parameter « controlling the perturbation is set to « = 0.7. It controls
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FIGURE 46 Comparison of 3D and 1D frequency spectra of infinite periodical ellipti-
cally perturbed balanced fiber. Periodicity cell of the fiber is shown in the
inset picture. Period length is | = 50nm and diameter of the cell at circular
boundaries is D = 10nm. Strength of perturbation is « = 0.7. We can notice
comparably wide spectral gaps for flexural waves at w; ~ 50 - 10°1/s and
wy ~180-10°1/s.

the maxima of boundary curve so that in each elliptically squeezed spot maxi-
mal radius on the major semi-axis is 1 + . Minor axis is inverse of that number:
1/(1+ a). As it can be seen from inset picture the periodicity cell looks extremely
strongly squeezed. We can immediately say by examining the spectrum that
3D model does not reveal noticeable spectral gaps for torsional or longitudinal
waves. There is only one gap for longitudinal waves that is visible and it is lo-
cated at the second cross-section of longitudinal wave spectra. One dimensional
models for longitudinal and torsional vibration agree very well with 3D model
even in this strongly perturbed case. Only the slope, i.e. the speed of 1D waves
is slightly different than the corresponding value from 3D graph. The second 3D
longitudinal spectral gap for k = 0 and w ~ 600 - 10° 1/s does not show in 1D
approximation, but this error can be neglected because we are focusing mainly on
first spectral gaps. There are some spectral gaps visible for flexural waves, and
we observe by examining them that 1D approximation should work as well as it
does for cylindrical domain. The error increases in similar fashion as frequency
of the wave increases. Therefore we can assume that 1D simulation of transmis-
sion coefficients for elliptical periodically perturbed fibers is as accurate as it is
for cylindrical fibers.

Let us now calculate the thermal conductance for chirped elliptically per-
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turbed domain. We put as first period Ly = 20nm in a fiber with diameter
D = 10nm. This setting of L is slightly more than half of the approximated mini-
mum flexural wavelength Ar min = 28.4nm for reflected frequency zone Z. Again,
we can use the second spectral gap to reflect high frequency flexural waves. Let
chirp ratio C = 6.8 and let number of periods increase from n = 10 to n = 69. In
Figure 47 we present similar 3D graph as for longitudinal waves in last section.
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FIGURE 47 Transmission coefficients of 1D flexural waves for variable number of el-
liptical balanced perturbations in silicon fiber with diameter 10nm. First
period L; = 20nm and chirp ratio C = 6.8, so that last period is always
L, = 136nm. Number of periods n changes from 10 — 69. We notice that
transmission probability decreases almost uniformly on band 2.4 — 70GHz
as n increases. On the band 70 — 159GHz, which is “governed” by second
flexural gap, the decreasing is slower and there appear resonances.

We can see that there are more resonance spikes than there is for longitudinal
waves but althogether the picture looks the same. Increasing number of periods
does not affect much to transmission probability after n > 50 so we can decide
that best number for # is 50. Total length of the fiber then becomes 4.3um.

Now, with the parameters chosen for a chirped structure we show the ther-
mal conductance by flexural waves in Figure 48 together with the scaled trans-
mission probability curve at T = 1K. Inset picture shows the form of bound-
ary curve By. First impression of the curves is that elliptical fiber with such a
pronounced deformation reflects flexural waves very well. It seems to be easy
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FIGURE 48 Thermal conductance by flexural waves in silicon fiber with diameter 10nm
and length 4.3ym. Transmission coefficient pr(X) at T = 1K. Inset picture:
Boundary curve B(z) for chirped elliptical balanced fiber with 50 periods
of sin-type perturbation with first period L; = 20nm, period ratio L = 1.04,
chirp ratio C = 6.8 and perturbation strength &« = 0.7.

to obtain a thermal conductance reduction even lower than 1/10 of correspond-
ing straight cylinder. For perturbation of 50 periods the reduction on interval
[0.1K, 1K] is about 90% which satisfies our aim.

7.4 Fibers with several perturbed parts

The fact that flexural, torsional and longitudinal modes of same frequency need
different perturbation on the fiber to be reflected back leads us to study fibers
whose perturbed part consists of two or three different perturbations put in a
series. Each of these parts is designed for one phonon type and it is assumed
that any of the parts does not interfere much with other phonon types except the
one that it is designed for. This might be achievable with computerized form
optimization or with just conventional design applying physical arguments.

Let us study with an example what happens if two almost periodical per-
turbations are put in a series. We choose here only slightly chirped structures
with small number of periods in order to maintain good numerical accuracy and
low time spend in calculation. We can assume that interference effect of two per-
turbed parts is independent of the physical model used so we can choose e.g.



98

longitudinal 1D model. Let perturbation G;(R;) contain ten periods of symmet-
ric cos-type perturbation with chirp ratio C; = 3 and length of the first period
L1 = 50nm. Let perturbation G,(R;) contain six periods of similar perturbation
with chirp ratio C; = 2 and first period Ly; = 100nm. Diameter of both fibers is
D = 10nm. We also parameterize the distance I between perturbations G; and
Gy in order to study how far from each other different perturbations should be
placed without much interference. To construct shorter fibers I should be mini-
mized. In Figure 49 we present the transmission probabilities p; of parts G; and
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FIGURE 49 Transmission probabilities of longitudinal 1D waves in perturbations G;
and G,. Inset pictures show the form of boundary curve B,. Up: Gy, Down:
Go.

G as a function of w. Immediate remark is that probability cliffs overlap around
w ~180-1071/s.

In Figure 50 there is also the transmission probability curve for fiber con-
taining both perturbations G; and G, with mutual distance | = 0. The black
curve in Figure 50 is formed by multiplying probability curves p;; and pro. We
can immediately see that it serves as an approximation to transmission probabil-
ity of combined fiber. Blue curve in Figure 50 has spikes which can be explained
as resonances in longer perturbed part. We noticed that increasing the distance
I results into more spikes on transmission coefficient curve. There was no differ-
ence in cliff depth or width. Therefore we conclude that distance should be set to
zero when combining almost periodical perturbations.
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FIGURE 50 Transmission probability of combined perturbations G; U G, together with
product of pr1 and pr, from Figure 49. Inset picture shows to form of com-
bined fiber.



8 NUMERICAL IMPLEMENTATION IN
MATLAB/COMSOL

In this final chapter we give a description of the program code and numerical
method that was used in elastic wave simulations in 1D and 3D nanofibers. Simu-
lation was done completely with MATLAB version R2008b and COMSOL version
3.5. Moreover, COMSOL Multiphysics graphical user interface was often used to
produce MATLAB script to serve as a basis for correct syntax and to set up a cor-
rect physical problem. As a numerical method to solve the arising equations we
used finite element method, abbreviated here by FEM as usual. The mathemati-
cal partial differential problems arising from simulation were mounted to COM-
SOL toolboxes and build-in FEM solvers SPOOLES and UMFPACK were run to
obtain numerical solutions. COMSOL Multiphysics was also used for drawing
some figures of fibers and periodicity cells in the thesis. Some parts of the coding
for MATLAB and working with COMSOL was done with Dr. Alexey Pozharskiy.
Simulations were run on Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz system
with 4G ram memory. Before explaining the program structure in detail we take
a quick glance at FEM.

8.1 Finite element method

To solve a partial differential equation with the finite element method, a mesh
must be constructed on the geometry. It is a piece-wise partition of the domain.
Mesh consists of small units of a simple shape called mesh elements. Mesh ele-
ments can be of various forms, linear or curved. Curved mesh elements are used
to approximate a curved domain better than linear elements. [38] In our studies
we chose curved elements, because the domain is cylindrical and there is curva-
ture involved with the perturbation. Perhaps the most common choice is to use
mesh elements of polynomial curvature of order k. This means that all the ele-
ments are polynomials of degree k and they can be described with k 4 1 different
nodes. We have chosen k = 2, because a slowly changing cross-sectionally cir-
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cular or elliptical domain, as it is in our case, can be thought to be approximated
sufficiently well with second order polynomials. It means that for each mesh ele-
ment parameterized with ¢ € [0,1] the points t = 0,1/2 and 1 define the shape of
the element. It should be remarked that by increasing the mesh thickness results
usually to better precision and therefore an optimal mesh should be sought from
various curvature and thickness alternatives.

Once the mesh is formed, we can introduce approximations to the depen-
dent variables. We go through here the discussion presented in [38] by concen-
trating only on one unknown variable, u. The general idea in FEM is to approxi-
mate u with functions ¢ that can be described with a finite number of parameters.
These parameters are called degrees of freedom. Functions ¢ form so called finite
element space or a basis. Usually with a polynomial mesh of degree k Lagrange
elements of degree k are used as a basis. Lagrange basis is formed by introducing
polynomials ¢, such a way that on everynode t =n/k,n=0,1,...,k,

1, ift =mn,
('b”(t)_{ 0, ift#n.

Now the dependent variable u can be expressed formally with u = Y, U,¢,
on each mesh element. Coefficients U, form a solution vector U when n goes
through all the nodes in mesh. In order to solve U one must discretize also all the
constrains, boundary conditions, and the equation itself.

Let us focus only on 2D problem on () for simplicity. Assume we have some
constrains

0=R® on (),
0=RM on d(),
0=R®O on P,

where P is some set of points. Now for each mesh element in Q) coded by num-
1)

- Then we can discretize the

ber m, consider thenodes j = 1,. ..,k denoted by x
constraints on boundary with
—rM (D
0=RY ().
Constraints then hold point-wise at the Lagrange points. The constraints on do-
main () and set of discrete points P are discretized in the similar way. Finally all
the point-wise constraints are collected in one equation 0 = M(U) with a dis-
cretized solution vector U.
We now discretize the problem by considering the weak form:

0 :/ w® +/ w4+ x,w©
O Q)

—{ . 1@ <z>_/ W0y y(0),0)
/Qv iz R ;v iz

where 1(? are so called Lagrange multipliers and functions v are the test func-
tions. It is enough to require that the weak equation holds when we choose the
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test functions as basis functions v = ¢,,. By inserting these into the weak formu-
lation we are left with one equation for each n. Let

AS:]) = y(d) <x(d)> w(d)

mj mj’
where w,(jj) are certain weight factors. From the discretized weak equation the
term

g hUp

is approximated as a sum over the mesh elements in dQ). The contribution from
each mesh element number m is approximated with the Riemann sum

L () 1 () 1 () ) = Kot () B () A

( ]) is the length of “appropriate” part of the mesh element m. The integral

where w
over () and the sum over points P is approximated in a similar fashion.
To sum up, we can write the discretized weak equation as 0 = L(U) —

Ng(U)A, where L is a vector whose n'"* component is

/ W@ / W 4+ Y W
Q o0 i

being evaluated with test functions v = ¢,. Vector A contains all the discretized

(d)

Lagrange multipliers A, y and matrix Nr has rows formed by concatenating the

vectors <Pn(x,(,f]-)) and h(@ (xfjj)). For more explicit presentation of FEM see e.g.
[36, 37]. We now move on to the implementation of the program.

8.2 Program code

To start with, we show a diagram in Figure 51 explaining the structure of the pro-
gram used in simulations. Each block in the diagram represents one or multiple
actions ordered from MATLAB. We will explain the main points here so that the
numerical results could be easily reproduced.

The program code consists of a main loop where on every step the param-
eters are changed according to task. Curved arrow refers to this loop. For ex-
ample when calculating transmission coefficients frequency w in the equation
is changed every step. Also the domain can be parameterized: for example the
number of periods in the perturbation can be changed every step which results to
recalculation of length and rebuilding the domain. Parameters block contains the
information about the name of the fiber, radius, length, setup for boundary curve
function, period number, period ratio and chirp ratio. There are also numerous
parameters about resolution of pictures, minimum and maximum frequencies
and physical constants, and finally the order which task is to be calculated by the
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FIGURE 51 Diagram of the program that is used to simulate propagation of elastic
waves in 1D and 3D domains.

solver. Solver is then chosen accordingly for 1D or 3D case. Let us now explain
the main parts of code and give some details about the solutions we made. A
basic understanding of MATLAB syntax is expected from the reader.

8.3 One dimensional simulation

One dimensional solver first builds a 1D domain with respect to information of
the length and the task. For eigenfrequency problem the domain is set to equal
the length of one period with

fiber_final=solid1 ([ —(1+10e—6)*first_period /2,...
first_period /2]);

where there is a small addition (10~ %) at left boundary in order relax the sym-
metry of the domain. This was found to give more robust functionality for the
code. For calculating the transmission coefficients, the domain was built larger
containing the perturbation and additional straight parts at the ends of fiber. Also
the mesh was constructed so that finally when solving the problem the number of
degrees of freedom was between 60000 — 120000. These values were the largest
which could be used on a computer system at hand.

After formation of the domain correct time-independent one dimensional
ordinary differential equation for each task is set by defining the coefficient func-
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tions in the general second order formula (76)

eu%%‘—l—da%—”t‘—i—v-(—cVu—ocu+'y)+ﬁ-Vu+au=f in G(S),
v-(cVu+au—v)+qu=g—hTy onaG(s), (76)
hu =r onadG(S).

For example to solve flexural transmission coefficient the equation was set with

equ.f = 0;

equ.da = 0;

equ.c = {{1,0;0,1}};

equ.a = {{0, 1/(BY(x)*BX(x)"3) ;...

"(omega”2)*(4+rho/E)*(BX(x)*BY(x)) " ,0}};

while other coefficients are by default set to zero. Here e.g. BX(x) refers to MAT-
LAB .m file containing definition of boundary curve function By (x). The solver
also sets correct boundary conditions according to task. For transmission coef-
ficients, different boundary conditions were chosen for each phonon type. For
example with longitudinal wave simulation with BAM method we use an inline
function to apply different values of w to boundary conditions. This was done by
um2str (omega*sqrt (rho/E));

1}.type="inline ’;

1}.name="Long(x) ’;

1}.expr=sprintf ("exp(%s =ixx)’,a);
1}.complex="true ’;

and function Long(x) was then used in boundary condition
bnd.g = {'—2+ixzeta*Long(x)”,0};

For both BAM and SM the scattering problem for longitudinal and torsional
waves was solved with

fem.sol=femstatic (fem,
“complexfun’, "on”,
"solcomp’ ,{'u’},
“outcomp’ ,{‘u’},
"linsolver ’, "spooles ") ;

For flexural waves an additional variable v was used in order to be able to solve
fourth order ordinary differential equation, and instead of SPOOLES, a solver
called UMFPACK was used to get rid of inaccuracy at low values of w.

For SM method the inner products (66) were calculated by evaluating the
incoming and outgoing fields with function postint which returns the value of
solution u at given node. For BAM, the field amplitudes and their derivatives at
both boundaries were evaluated with e.g.

uleft = postinterp (FieldLeftIln, 'u’,[CoordLeft]);
uxleft = postinterp (FieldLeftIn , ux’,[ CoordLeft]);
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and after that amplitudes were calculated with equation (58). Finally in transmis-
sion coefficients for different frequencies are stored in a vector or matrix which is
later plotted and stylized in post processing block.

The construction of eigenfrequency solver for 1D is somewhat simpler. Only
the equation must be set differently according to which phonon type one intends
to simulate.

8.4 Three dimensional simulation

In 3D simulation the domain must be geometrically constructed along the shapes
of boundary curves By and By. In order to build the perturbation, a point-wise
approximation of boundary curves is taken and stored into vectors scalevectX
and scalevectY. Resolution of this approximation is 40 steps per period for infinite
fibers and 60 steps per perturbation for finite fibers. The resolution for finite
fibers cannot be taken much bigger because of the increase of mesh size. Number
60 was found the best by testing several other resolutions and comparing the
strength of numerical fluctuations in transmission coefficient curves.

After taking the linear approximation a 2D base circle or ellipse is drawn by

el = ellip2 (BX(lbound) ,BY(lbound),...
"base’,’ center ', "pos’,[0,0]);

and it is expanded to 3D with information stored to distvect, scalevectX and
scalevectY. Expansion is done with extrude by commanding

graph = extrude(el,’distance’, distvect,...
"scale ' ,[scalevectX;scalevectY]);

The resulting perturbation is circular or elliptical tube whose boundary curves
at x-z and y-z plane follow piece-wise linear approximations of boundary curve
functions By and B,,.

Finally if the task is to solve a scattering problem of longitudinal wave in
finite fiber to obtain transmission coefficients, an additional straight cylinders are
added to both ends of perturbation. The mesh is built with default settings from
COMSOL except that for long fibers z-direction must be scaled. We have used
values 04, ...,1 for Zscale with command

fem . mesh=meshinit (fem, ' Zscale ’ ,0.4);
fem . mesh=meshrefine (fem);
fem . mesh=meshrefine (fem);

Usually two or three mesh triangulations are done in 3D case in order to obtain a
finer mesh. The number of degrees of freedom is over 60000 for eigenfrequency
problems and scattering problems emerging from simulations.

Setting up the correct boundary conditions in 3D problems needs more rig-
orous scripting than in 1D case. COMSOL solver needs information about the
vertices that are located on the edges of boundary element for which boundary
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condition is set. In COMSOL faces and vertices are numbered in awkward fash-
ion so that even small changes in the geometry of domain can change the order-
ing. Therefore at the beginning of a loop cycle, right after the domain is built the
face numbers of circular ends are identified. It is done algorithmically by finding
the faces which are closest to points (0,0, R F €), € > 0 small, outside of the
3D domain. Vertices that lay on these faces are identified as well and put in cor-
rect cyclic order into string cell variables bnd.ind and submap. This guarantees
that no twist will appear in the solution field. Identifying algorithm of faces and
vertices was made with help of MATLAB codes by Yannick Fargier, which were
obtained from COMSOL Discussion Forum.

For 3D eigenfrequency problem we used COMSOL build-in toolbox Struc-
tural Mechanics, Solid Stress-Strain, where the equation (76) is set in weak form.
However the boundary conditions can still be given in strong form for COM-
SOL solvers. For solving the eigenfrequency problem we used options complex-
fun, conjugate and symmetric set to “on” where the first orders COMSOL to
handle complex valued functions correctly. Last two options set the coefficient
matrix of the problem Hermitian i.e. conjugate and symmetric so that certain
unwanted solutions are neglected. These do not represent elastic displacement
modes. SPOOLES was used to numerically solve the 3D problem in this case.
Eigenfrequencies are then stored into matrix and if necessary the identifying al-
gorithm is run for eigenmodes.

The identifying algorithm tests the eigenmodes according to rules explained
in Chapter 3. For every solved eigenmode a number of points along z-axis are
evaluated in the solution field with function postinterp. Then x-y and z-norms
are calculated for comparing their values to control values which are set in ad-
vance. Finally, according to the results obtained, every mode is named after its
characteristics and the information is stored in string variable to be used to con-
struct separate eigenfrequency curves.

To solve the scattering problem for 3D longitudinal waves we used the same
toolbox than for 3D eigenfrequency problem. Only the weak term in the equation
was revised slightly by adding term pw?(uil + v + w) to it. Tildes over di-
rectional displacement fields u, v and w refer to test functions. Weak term in
MATLAB then appears as

equ.weak="—ex_sld_test+sx_sld—ey_sld_testxsy_sld —...
ez_sld_testxsz_sld —2+exy_sld_test+sxy_sld —...
2+eyz_sld_testxsyz_sld —2+exz_sld_testxsxz_sld +...
rho_sldromega”2+(ux*test (u)+vxtest (v)+wxtest(w))’;

where sx_sld = oy, ex_sld_test = ¢y, etc. are stresses and test functions with

the notation borrowed from definition (20). Boundary conditions at the ends of

domain are set in similar fashion to 1D case except that inline function, called

ZLong(x,y,z), is three dimensional. They are set with

bnd.g = {0,{0;0;" —2xi+zetaxZlong(x,y,z) "} ,0};

bnd.q = {0,{0;0;" —i+zeta’},{0;0;" —ixzeta’}};

where zeta is defined with zeta = Ew./p/E. Additional coefficient E is put in
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front to compensate matrix c in the formula for strong boundary condition in
equation (76). Matrix ¢ cannot be set to e.g. identity matrix because weak formu-
lation of the problem forces it to be recalculated.

8.5 Post processing

After calculating the necessary amount of problems for the task at hand the re-
sults are plotted and stylized. For presenting displacement fields graphically in
Chapter 2 and 3 we used COMSOL function postplot. In order to set correct
parameters for color scale, camera angle and distance we applied COMSOL Mul-
tiphysics to build MATLAB script for that. By sharing the same orientation and
distance displacement fields can be compared more easily. Also the inset pictures
of domains used in many graphs showing frequency spectra or transmission co-
efficient were produced by COMSOL script and with geomplot function. Three
dimensional objects were always drawn with perspective and, if applicable, ren-
dered.

Color coding for flexural, torsional and longitudinal waves was automati-
cally kept standard through out the text. Flexural frequency spectrum, transmis-
sion coefficients and thermal conductance used medium green color with RGB
code (0,173,0). Torsional waves were coded with red (255,0,0) where longitudi-
nal were blue (0,0,255). Also the main figures were named automatically so that
the header would express the name of fiber, length, diameter, value of parameter
« or other important quantities.

Eigenfrequency solver stores solutions in a matrix. Each row vector in the
matrix corresponds to solution with one set of preliminary parameters. Ele-
ments of the row vector are the eigenfrequencies expressed in complex numbers
z, where imaginary component gives the eigenfrequency and real number can be
understood as an quantity for error. If Rez < Im z then the real part is neglected
from the solution. Frequency spectrum is plotted with function plot hence the re-
sulting graph is a set of piece-wise linear curves that go through elements in each
row vector. The resolution of frequency spectra, i.e. the length of row vectors,
was usually 120. Transmission coefficients are also stored in vectors and plotted
with the same function plot. To form 3D surfaces of transmission coefficients we
again used a matrix as a storage medium and finally plotted the solution with
function surf. Shading model for 3D surfaces used interpolation method called
Gouraud shading.

Finally the thermal conductance curves were calculated on basis of trans-
mission coefficient vectors. We used a simple loop to calculate the contribution
of each element in vector to the integral of thermal conductance. This had to be
done because MATLAB cannot directly integrate functions defined by their val-
ues stored in vectors. Also the change of variable X = hw/kgT with different
value of T for transmission coefficient curves was done in a loop where on each
step the vector elements p;, p;+1 surrounding w were searched. Then a value for
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X was calculated from the linear curve connecting the scaled values of p;, pj+1.
Consequence of this algorithm is that for higher T the resolution of scaled trans-
mission coefficient curve is reduced because it is scaled towards zero. However
the curves are smooth enough to express a general behavior of thermal conduc-
tance for perturbed nanofibers of this design.



9 CONCLUSIONS AND FURTHER STUDY

In the thesis we have given an account on the investigation of acoustic phonons
(elastic waves) of sufficiently low frequencies in cylindrical corrugated dielec-
tric nanofibers. First we calculate the frequency spectra of phonon propagation
for various periodically corrugated cylinders. We found out that periodically
corrugating the boundary of the fiber results into spectral gaps in the frequency
spectrum. The phonons whose frequencies lay in these gaps are prevented from
propagating. We also compared the exact 3D spectrum to 1D spectra obtained
from various 1D models. These well known 1D models [18] gave very good esti-
mates at the low-frequency region of exact 3D spectrum. We concluded that 1D
models are suitable for simulating the lowest phonon modes.

We also considered a phonon propagation in finitely corrugated fibers. This
was first done by numerically calculating the amplitudes of scattered displace-
ment field (BAM) for longitudinal waves at the beginning and the end of the 3D
perturbed fiber. Afterwards, similar calculation was done with 1D model for lon-
gitudinal waves and we concluded that 1D modelling should be sufficiently reli-
able for all the massless modes. In addition, a different method (SM) to calculate
the scattering matrix [13] was used in 1D to compute the transmission probabili-
ties, which gave the same results. We concluded that SM and BAM lead to equal
results and that BAM should be used because it is over four times faster. For
a sufficiently long finite fiber with cos-type perturbed part we managed to find
estimates for a number of periods, which reduces transmission probability of var-
ious phonon types less than 0.1 in the first spectral gap. We also concluded that
the forbidden band for phonons could be increased by monotonously increasing
perturbation periods and combining various perturbations in a series.

We make use of the results on phonon propagation to calculate low-tempera-
ture thermal conductance of corrugated nanofibers. We also designed a finitely
long nanofiber with different corrugated parts that has a thermal conductance of
only about 10% of the similar unperturbed cylinder. Such a fiber can be utilized
e.g. as a structural support for low-temperature infrared detectors. Moreover,
during the studies a program code was written for MATLAB/COMSOL that can
be used to compute the transmission probabilities of phonons or the thermal con-
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ductance of a nanofiber with given geometry parameters.

The research done gives a reasonable basis for further studies. The program
code that was used in simulations can be harnessed to similar studies concerning
thermal conductance in more complicated structures, for example, fibers with
complex geometry or “superlattices”. The latter can be constructed by periodical
variation of material constants. It was reported [39] that e.g. periodic doping of
silicon (%Si) by its isotope #2Si can reduce thermal conductance as much as four
times at 300K. Similar results can be expected at low-temperature limit. Material
parameters of nanofibers can be changed also by adding clumps of other material,
which affect the rigidity or density of the fiber. One can also study the thermal
conductance of simpler nanosize structures such as in [40].

Another direction involving numerical studies would be to apply the pro-
gram code into shape optimization procedure to find an optimal form for the
periodicity cell. [41, 42] The goal can be for example to obtain better reflective
properties with a shorter corrugation or an ability to reflect only certain types of
phonons.
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YHTEENVETO (FINNISH SUMMARY)

Téssd tyossd, nimeltddn “Poimutettujen nanokuitujen lammonjohtavuuden nu-
meerinen simulointi matalissa lampétiloissa” on simuloitu numeerisesti reunal-
taan poimutettujen elastisten nanokuitujen lammonjohtavuutta matalissa 1am-
potiloissa. Kuidun pinnalle muotoiltiin erityinen hitaasti muuttuva sylinteriméi-
nen tai elliptinen poimutus, jotta limpoenergiaa kuljettavat elastiset aallot (fono-
nit) heijastuisivat takaisin ja kuidun lammonjohtavuutta voitaisiin ndin alentaa.
Lampotila-alueella T = 0.1 — 10K lampoenergiaa kuljettavat padosin poikittais-
ja pitkittdissuuntaiset, sekd rotaationaaliset aallot, joita simuloitiin 1D- ja 3D-mal-
lein. Adrellisten elementtien menetelmaa (FEM) kaytettiin ratkaistaessa jaksol-
listen nanokuitujen taajuusspektri, sekd lyhyiden lokaalisti jaksollisten kuitujen
sirontamatriisi. Landauerin teoriaa kéytettiin lopuksi ratkaistaessa lammonjoh-
tavuutta. Numeeriset laskelmat tehtiin kdyttden kuidun materiaalina piita (5i).
Tutkimuksessa havaittiin, ettd 3D-taajuusspektrid voidaan approksimoida 1D-
aaltojen spektrilld, joka saadaan tietyistd yksinkertaisista differentiaaliyhtaloista.
Simuloimalla lukuisia erilaisia kuidun muotoja esitettiin arvoja parametreille,
joilla 1D-mallinnus antaa luotettavia tuloksia. Tutkimuksessa voitiin todeta, et-
td yksiulotteista mallia voidaan luotettavasti kdyttdd matalaenergisten aaltojen
lapaisytodennékoisyyksien laskemiseen. Lopuksi piinanokuidulle suunniteltiin
erityinen poimutettu sylinterimdinen muoto siten, ettd kuidun kokonaislammon-
johtavuus saatiin laskemaan 90% lampétila-alueella T = 0.1 — 1K.
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