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Chapter 1

Introduction

Several astrophysical observations, including stellar motions in spiral galaxies
and galaxy motions in galaxy groups, clusters and superclusters, indicate that
there should be much more mass in these systems than what has been opti-
cally observed. This apparent presence of non-luminous gravitating mass, is the
well-known dark matter problem. These astrophysical observations are further
supported by the analysis done from the fluctuations of the cosmic microwave
background radiation, which indicates the presence of a dominant non-baryonic
matter component in the Universe. According to the present knowledge only
~ 17% of the total matter density in the Universe is made of normal baryonic
matter, while as much as ~ 83% is dark matter of some unknown origin. Even
more enigmatic quantity is the cosmological constant, or dark energy, which
sets the expansion of the Universe to accelerate, and which seems to dominate
the energy density of the universe, covering ~ 73% of the total energy density.
These dark matter and dark energy problems are among the greatest unsolved
mysteries in modern cosmology and physics.

In this thesis the dark matter problem is considered, in the context of a par-
ticle dark matter model, embedded in the minimal walking technicolor (MWT)
theory. The minimal walking technicolor is a model for the dynamical elec-
troweak symmetry breaking, without a fundamental scalar field, which can be
also extended to provide the unification of standard model coupling constants.
The pure MWT and its minimal extension, discussed in this thesis, predicts
natural particle dark matter candidates such as the fourth family heavy neu-
trinos and SU(2)weax adjoint fermions. Specific dark matter models including
well defined gauge couplings, effective Higgs couplings, the mass terms and mass
mixings and detailed annihilation cross section calculations, accurate relic den-
sity calculations and analysis of constraints following from experimental data
for the models are represented in papers [I]- [III]. Also the effects of a dynam-
ical dark energy to the dark matter density is studied in paper [I]. It has been
demonstrated in these articles that the minimal technicolor dark matter mod-
els are plausible and they can produce correct dark matter densities. It is of
particular interest that they can be either verified or ruled out by the present



or upcoming dark matter experiments. A more general dark matter model in
the MWT context, which combines the models represented in articles [I}- [II1],
is introduced and studied in some detail in this thesis.

The thesis contains the papers [I]- [III] and an introduction. Introduction
contains the part specifying the model and a summary which are organized as
follows. The Chapter 2 contains a general discussion of the dark matter from the
cosmology point of view, discussion of observations, speculation of the possible
nature of the dark matter and the massive cold particle dark matter scenario.
The Chapter 3 includes an introduction to technicolor theory and a more specific
consideration of minimal walking technicolor model and its extension which
predicts the new dark matter particle candidates. In Chapter 4, from these
elements a more general dark matter model is constructed. The models and the
results presented in articles [I]- [IIT] can be obtained from this model in certain
limits. Also the constrains set by different dark matter search experiments to the
general model and limiting cases are discussed in Chapter 4. A global analysis
of the general model is yet do be done in the near future.



Chapter 2

Basics of dark matter problem

In this chapter the basic cosmological framework is presented, the main obser-
vational and theoretical arguments that support the existence of non-luminous
(dark) matter in the universe are introduced and the nature of the dark matter is
discussed. Finally the evolution equation for the number density of the massive
dark matter particles is derived.

2.1 Cosmological framework

According to observations [1-3] the universe seems to be homogeneous and
isotropic at large scales and expanding according to Hubble law!. When the
observed expansion is viewed backwards, a hot and dense initial state, the big
bang, can be conceived to exists at the beginning. The standard cosmological big
bang model is, accordingly, built on the cosmological principle, that states that
the universe at largest scales is homogenic and isotropic. When a universe sat-
isfying the cosmological principle is set to expand the expansion automatically
realizes the Hubble law.

The evolution equations of the universe in the big bang model are assumed
to follow from the Einsteins field equations (EFE) of the general relativity (GR),
which tell how the spacetime metric evolves in the presence of matter and energy.
The matter and energy content of the universe which form the source in the field
equations need to be chosen to follow the observed symmetries which implies
that also the corresponding metric needs to respect the cosmological principle.
The metric that fulfills these symmetry arguments is called Friedmann-Lemitre-
Robertson-Walker (FLRW) metric which can be written as

2

1 —kr?

ds® = g, da’da” = dt* — a*(t) ( + 72d#? + r? sin® 9d¢2> , (2.1)

!The expansion of the universe was first discovered by Edwin Hubble in late 1920’s. He
observed that the velocities of distant galaxies increase linearly as a function of their distance
and derived the Hubble law: v = Hyr, where Hy = 100 hkms~! Mpc™! with i = 0.73(3) [4]
is the present measured value for the Hubble constant.



where t,7,60,¢ are the co-moving time and spherical coordinates respectively
and a(t) is the time dependent scale factor that describes the evolution of the
physical distances in the universe, or loosely speaking the size of the universe.
Finally k specifies the geometry of the space-time so that for £ = 0, +1or—1 the
universe is flat, closed or open respectively.

Einsteins field equations of the general relativity follow from the principle of
least action for S = Sg_y + Ssm, where the Einstein-Hilbert action Sg_y and
matter action the Sqy; are defined as

1

H = - don/— 2A 2.2
SeE—n 167rGN/d xy/—g(R + 2A), (2.2)

fields

Ssm = Z / d*z/—gL;. (2.3)

Here g is the determinant of the metric tensor g,,, I is the Ricci scalar, A is
the cosmological constant and the Sgy; contains the sum of Lagrangian densities
L; for all the matter and gauge fields belonging to the standard model (SM) of
particle physics or its possible extensions. When the functional variation for the
S is taken with respect to the metric tensor g,, the Einsteins field equations of
the general relativity follow:

1
R;w - ég/wR - Ag/w = 87TGNT}U/7 (24)

where R, is the Ricci tensor and the energy momentum tensor is defined as
‘/_ngW = —25SSM/(59“V.

In the standard cosmological model the matter and energy content of the
universe is described by the energy momentum tensor of the perfect fluid form;

T = (p+ p)uyty — DYy, (2.5)

where p, p and u" are the pressure, the energy density and the four velocity of
the fluid respectively. The different fluid components respect the equation of
state p = wp, where w = 0 for matter (dust), w = 1/3 for radiation and w = —1
for cosmological constant. Furthermore w = w(t) is possible for exotic fluids
modeling a dynamical dark energy?.

When the FLRW metric Eq. (2.1) is substituted to the Einstein field equa-
tions Eq. (2.4) simplify dramatically because of the symmetry; only non-trivial
components are the 00 and 11 (all ii-components are the same, in fact) which
are called the Friedmann equations:

. 2
a k G
<—) + = s (2.6)

a a 3

2Note that wior = Prot/pror generally depends on ¢ even without exotic fluids if system
contains different fluids.



. . 2
a a k

2— + <—) + - = —87TGN Ptot- (27)
a a a

Here dot denotes the time derivative, and the total energy density and the
total pressure are defined as piot = Prad + Pmat + pa With pp = A/(87Gy) and
Diot = Prad + Pmat + Pa With py = —pp for a cosmological constant. Friedmann
equations for the evolution of the scale factor are the basis of the standard big
bang cosmology. The first Friedmann equation, Eq. (2.6) describes the expansion
of the universe and the second, Eq. (2.7) its acceleration. Further, from the
covariance of the Einsteins equations it follows that the covariant derivative
of the energy momentum tensor vanishes i.e. T4” = 0, which guarantees the
conservation of the energy and the momentum of the fluid. With the help of
Eq. (2.6) this can be written in a continuity equation

p=—3H(p+p). (2.8)

where H = a/a is the Hubble expansion parameter. The different scaling laws
for energy densities can be derived by using the continuity equation and the
equation of state of the fluid w; resulting generally (for non-interacting fluids)
to

p; oc a3 (2.9)

from which the scalings for different fluids follow; for matter (dust) p,, o< a3,

for radiation pqq o< a~* and for cosmological constant naturally p, o< const.

The evolution of the universe is completely determined by the energy (and
pressure) content of the universe. Note that normal matter naturally decelerates
the expansion of the universe since it is gravitationally attractive. However fluids
with an equation of state w < —1/3 tend to accelerate the expansion. This is
the case for example for the cosmological constant. Defining the critical density
pe = 3H?/(87Gy) and the conventional dimensionless density parameters:

Pm Prad A —k
Qn=—, Q= , Q = = _ M d Qg = , 2.10
Pe T e SR ) K= 2 (2.10)
the first Friedman equation Eq. (2.6) can be recast in form
Qo+ Qg + U + Qg =1. (2.11)

By measuring the density parameters (£2) today, with the Hubble expansion
rate, the evolution and age of the universe can be derived. This can be seen
from the first Friedman equation Eq. (2.6) when it is written, with the help of
Egs. (2.9) and (2.10), in a more transparent form

= 1000 (%) 4 00 (B) v 00 100 ()], 12

where now the index 0 refers to the present value. Thus determining the present
values of density parameters and Hubble parameter with high accuracy is one



of the main goals in modern cosmology. (For more on basic cosmology see
e.g. [5,6].)

A generic, although more speculative part of the standard cosmological model
is the cosmic inflation (see e.g. review [7]), a short period of time in which uni-
verse expands exponentially. Inflation can be described by Friedmann equations
consistent with the general relativity. It is expected to happen at very early
times right after the big bang and it is usually modeled by dynamical inflation
field(s). There are several theoretical and observational motivations for introduc-
ing inflation. These include the overall smoothness of and the apparently acausal
structures seen in the cosmic microwave background (CMB) radiation and the
flatness of the universe. Inflation stretches the spacetime exponentially which
explains how apparently causally disconnected parts of the universe seen in the
CMB actually can belong to a single causally connected region prior inflation.
Similarly, the exponential growth of the scale factor forces the observed universe
to seem extremely flat, irrespective of its original curvature. Further, and most
importantly, the quantum fluctuations during inflation have been shown to be
able to create the seeds of structures seen in the universe; the natural predic-
tion of the inflation of the nearly scale invariant spectrum is consistent with the
observations. Also the absence of magnetic monopoles and other unwanted topo-
logical relics can be explained with inflation which may drive the densities all of
these relics toward zero during the exponential expansion. Yet the SM particle
content is expected to be created after the inflation in the reheating/preheating
when the inflation field dumps its energy into SM matter fields.

Now, assuming that the universe is flat as a consequence of the inflation i.e.
Qi = 0, and since the radiation density is negligible in the present universe,
the total energy density is expected to be dominated, and thus the evolution
of the universe to be determined, by the matter density and the cosmological
constant, whereby the Eq. (2.11) reduces to €, + Q25 = 1. The most successful
cosmological model, the ACDM model containing a cosmological constant A and
an exotic dark matter component in addition to ordinary matter is just of this
form. The ACDM model fits very well to the CMB radiation data, collected by
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and other CMB-
observations, producing the inferred values €2, ~ 0.27, Q) ~ 0.73 and Q;; ~ 1.
These values are supported by the Hubble Space Telescope data on Hy and
by the observations of Baryonic Aqoustic Oscillations (BAO) in the large scale
structure of galaxy distribution [8]. Thus the cosmological constant appears
to dominate the energy density and the expansion of the universe seems to be
accelerating. Of course the question of the origin and existence of dark energy
is still unknown and debated. However in the end the main interest in this work
is on the matter density and its decomposition.

In the ACDM model the pressureless matter density further decomposes such
that the density parameter for baryons is {2, ~ 0.046 [8] and, since there is no
observations of any other luminous matter, the difference Qpy ~ 0.23 [8] is
associated with some non-luminous dark matter of unknown origin.



It should also be noted that the Big Bang nucleosynthesis (BBN) [9] ex-
plains very well the observed fractional abundances of light elements: hydrogen,
deuterium, helium, and lithium. (The heavier elements are mainly produced in
stars and released to the space in supernova explosions.) The BBN predictions
for the abundances of the light elements can be calculated as a function of the
baryon-photon ratio, and thus when the observed light element abundances are
compared to BBN predictions, the present baryon-photon ratio can be deter-
mined. From these considerations the baryon density parameter can be solved,
resulting in €, ~ 0.04 [9], in a nice agreement with the WMAP results.

Thus both the BBN and the CMB results agree in that baryons cannot
explain the whole matter content of the universe, even if non-luminous. Other
evidence for existence of dark matter also exist. These questions, as well as the
issues concerning the nature of the dark matter, will be considered in more detail
in next section. Before that a few words will be spent discussing the dominant
dark energy component in the Universe.

Dark energy and Quintessence

According to the ACDM model the cosmological constant dominates the present
energy density of the universe. Yet the origin and the smallness of its value
are unsolved problems. The first assumption could be that A is the vacuum
energy predicted by quantum field theories. However the value of the observed
constant is pao = 0.73p.0 ~ (1073eV)? while a generic field theory prediction is
porr ~ (Apv)* ~ (101GeV)?*. Clearly the difference is so huge that quantum
fluctuations cannot be attributed to the cosmological constant at least without
some extremely delicate and unknown mechanism of fine-tuning. Another puzzle
concerns the question why the cosmological constant has started to dominate
the energy density only recently. Because the energy density of matter scales as
a™3 the energy density ratio which today is Qx0/Qmo &~ 2.7 was, for example
at the time of recombination Qa 0/(Qm.o(1 4 2rec)?) ~ 2.7 x 107, Thus the fact
that right now, when we are observing the universe, the ratio is of the order of
one seems fortuitous. It would be much more sensible if there was some natural
explanation for the smallness of the dark energy component so that the observed
density ratio would not be just a result of some unnatural fine-tuning.

In summary, although the cosmological constant fits best the observations,
it is worth considering whether the cosmological constant is really a constant or
rather something else which at late times appears as an effective cosmological
constant. On boarder sense the question is whether there are any other pos-
sible explanations for the cosmic acceleration® than the cosmological constant?
Several different scenarios have been considered.

One recently studied option is to drop the cosmological principle at the late
times in the evolution of the universe, while still keeping the GR as correct theory

3See e.g. a short review about cosmic acceleration and dark energy [10].



of gravity. The idea is that the inhomogeneities and the non-linear corrections
to the Einstein equations could alter the properties of light, mimicking the effect
of a cosmological constant. (See for example [11].)

Another option is to change the GR for example by replacing the Ricci scalar
in Einstein-Hilbert action with some more general function f(R). However the
constrains coming from solar system dynamics appear to minimize the allowed
corrections to GR so that these models can deviate only very little from the GR
with a cosmological constant [12].

Another class of models include some exotic fluids which manifest themselves
as a dynamical dark energy with an equation of state wq(t) with a present value
wg(ty) = —1. Although the origin and the specific nature of the fluid can vary
a lot within different models, a common feature for several models is that the
fluid can be described by a dynamical scalar field, bearing similarity to the
inflation field. A general scalar field model of this type is referred here as the
quintessence [13].

Now the action and the Lagrangian density for a generic scalar quintessence
field @) are defined as:

1
S= [dav=sLo,  Lo=-3auPQQ+V(Q) (2.13)

where ¢ is the determinant of the metric tensor and V(Q) is some unspecified
potential, which in the end defines the evolution of the ()-field. The equations
of motion of the Q-field again follow from the Euler-Lagrange equations:

Q+3HQ+V'(Q) =0, (2.14)

where the field was assumed to be homogeneous. The dot denotes the time
derivative and V' = %. Using /—g7,, = —205/dg"" the energy momentum
tensor components for quintessence can be calculated. Comparing these with
the energy momentum tensor of the ideal fluid 7§ = pg and T} = —pg, one finds
the equation of state of the quintessence:
12
wo =L = fQ—V(Q) (2.15)
Po 5@+ V(Q)

Since the wg(t) parameter is time dependent, the apparent cosmological constant
is actually a dynamical parameter in quintessence models.

As mentioned above, the form of the potential V(@) defines the evolution of
the quintessence field and thus that of the dark energy. In this thesis the main
interest is not in the specific quintessence models however, and the exact form of
the potential is actually irrelevant here. Still the evolution of the Q)-field needs
to fit to the observations. It is also natural to assume that the field is not fixed to
the potential minimum at the beginning, because in this case the quintessence
would reduce to the ordinary cosmological constant. It can then be assumed
that at some point Q # 0, and because V (tg) is very small at the moment,

8



it is plausible that kinetic term of the @Q-field dominates the energy density of
the quintessence at some stage. Indeed, when V'(Q) < 3HQ, it follows from
Eq. (2.14) that @ o< a3, and moreover that the energy density scales as

1.
pPQ = §Q2 o a”®. (2.16)

This scaling is called kination [14]. It is relevant to notice that although kination
can dominate the early universe expansion it must be over by the time of BBN,
since otherwise it would dramatically alter the nucleosynthesis predictions of
light element abundances in contradiction with observations. Yet the boosted
expansion, if occurring much earlier than BBN, can be perfectly accepted, and
might affect to the densities of heavy thermal relics, in some cases making them
possible dark matter candidates. This scenario will be considered further later
in this chapter.

2.2 Astrophysical evidence for the dark matter

The first astrophysical observations of support the existence of dark matter were
made already in early 1930’s.

In 1932 J. H. Oort [15] measured the velocities of stars in our galactic neigh-
borhood and to explain why the stars were not flying away from the galactic
plane he proposed that there must exist some dark matter to bound them into
the system. This was the first indication of the dark matter but of course at
that time there was yet no evidence for non-baryonic dark matter.

In 1933 F. Zwicky [16, 18] measured radial velocities of galaxies belonging to
Coma galaxy cluster and from these he was able to make a crude estimate of
the total mass of the cluster using the virial theorem. Then he estimated the
mass-to-light ratios of some nearby spiral galaxies and compared them to the
mass-to-light ratios of the clusters and found that the ratio for the cluster was
about 400 times larger than for the spirals (This result has since been verified,
although the mass estimate has been improved). From this Zwicky concluded
that the cluster needs to contain some non-luminous matter so that the observed
motions of the galaxies could be understood.

Much later, in 1974, Ostriker et al. and Einesto et al. proposed that spiral
galaxies are embedded in the dark matter halos, whose radii are several times
larger than the size of the visible part of the galaxies. This picture was and still is
in a good agreement with the observations; today there are several observations
of the galaxy motions in galaxy groups, galaxy clusters and in superclusters
which all point to the existence of dark matter. (For a recent review see [19].)

2.2.1 Galactic rotation curves

One of the first, and maybe the most convincing evidence for the dark matter
follows from the measurements of the stellar rotation velocities in the spiral
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Figure 2.1: Example of spiral galaxy rotation curve. Galactic rotation curve
for NGC 6503 showing disk and gas contribution plus the dark matter halo
contribution needed to match the data. Picture adopted from [17].

galaxies. From the observed rotation velocities it easy to estimate the mass of
the galaxy inside the radius of the orbit of the star using the Newton gravity.
Indeed, according to Newtons theory a test particle on a circular orbit of a radius
r from the center of a spherically symmetric matter distribution has a rotation

velocity v;
2 M M
vo_Gw . L o, /GME) , (2.17)
r r r

where M(r) is the mass inside the radius r and G is the Newton constant.
So if the rotation velocities are measured then the mass can be calculated. On
the other hand the mass of the visible galaxy can be estimated by counting
and estimating the mass of the individual stars, gas and dust clouds. Thus the
rotation velocity curve following from the mass distribution of the visible galaxy
can be derived. The Keplerian velocity scaling law v ~ 1/4/r corresponding to
a pointlike mass distribution, is easily seen from equation (2.17) when M(r) =
M = const. This scaling law fits very well the measured rotation velocities of the
planets in the solar system. One would expect that this law would hold at least
fairly well also for star orbiting on near the edges of the visible galaxy. Yet the
scaling law is not observed in galactic scales. Instead, the rotation velocities turn
to a constant at the outskirts of the visible galaxy and continue to stay constant
far beyond the visible disk. An example of galactic rotation curve showing this
feature is shown in Fig. 2.1. Thus galaxies seem to be missing relatively large
amounts of mass, supporting the existence of dark matter.

Conversely, from the observations of rotation curves one can solve the density
distribution of the dark matter. Because the velocity profile turns constant at

10



large distances, the Newton theory prediction for the mass profile becomes

2 _ GnyM(r)
T

v = const. = M(r) ocr. (2.18)

From this the density profile can be easily solved

dM(r)

const. =

= 47 p(r) = p(r) o % . (2.19)
Thus the dark matter halo enclosing the visible galaxy is expected to have this
density profile called Singular Isothermal Sphere (SIS) (ref. [18] 4.4.3b). Re-
markably this distribution is just what one would expect to find if the halo were
formed of thermally distributed non-interacting dust-like particles.

Indeed, assuming that DM is a gas made of neutral, non-relativistic and
collisionless particles, and further realizing that the dark matter halo formation
is a very slow process, a simple model for dark matter halo formation can be
built using the isothermal ideal gas law for the dark matter:

pV = NkgT = p(r) = MkBT. (2.20)
m

Studying a differential gas volume element, the pressure-gravity equilibrium
gives

dp __GNM(T)P(T) N kT d ﬁ@
dr r? Gymdr \ p dr

= —d4mpr?, (2.21)

where in the last step the Eq. (2.20) was used and the differentiation with respect
to r was made, using the Eq. (2.19) for the mass differential. Eq. (2.21) is easily
solved by a power function p = Ar®, where A and b are constants, that are solved
by direct substitution. One finds

0'2 _9 2 kBT
T, g —_—.
27TGN m

p= (2.22)

7
used to parametrize the solution. Although the halo formation in reality is

a more complicated process, this simple model is fairly well consistent with
the observations and thus can assumed to be good a approximation for the
dark matter halo formation independent of the exact nature of the dark matter
particles.

In summary, the observed flattening of rotation curves of spiral galaxies and
their explanation with the help of halo made of noninteracting dark matter is
one of the most convincing evidence for the existence of dark matter.

Where the 1D velocity dispersion defined as o? = (v?) = 3v* = kT/m was

11



2.2.2 Structure formation

The present observable universe abounds in structure. The density contrast
between the average empty space around us and the solar density is d, =
(po—p)/p ~ 103, Similarly in a typical galaxy, like Milky Way, the density con-
trast is of the order dg, ~ 10° and further in a galaxy clusters o, ~ 10% — 10°.
Although the density contrast gets smaller the larger scale is viewed?, there
still is structure in all scales. How was all the structure formed? The answer
lies in the cosmic microwave background radiation, that represents the state
of the 380000 year old universe. The small temperature fluctuations of order
OT/T ~ 107°, seen in the CMB spectrum were created by the density fluctu-
ations in the plasma during the recombination and these fluctuations were the
seed for the structures we observe today. The way the structures evolve from
the ripples seen in the CMB spectrum to the observed large density constraints,
is a highly complicated matter, which is beyond the scope of this introduc-
tion. However, it is known that if all the matter in the universe was made of
baryons the observed structures could not have been formed in the time given.
Instead, another pressureless matter component, decoupled from radiation is
needed, which starts to build structures immediately after the matter-radiation
equality via gravitational interactions. When the baryon-gas eventually decou-
ples from photons, baryons fall into the potential wells already formed by this
other matter component, increasing the efficiency of the structure formation. It
thus appears that observed structures can only be explained by the interplay of
some non-baryonic and baryonic matter components. This picture is consistent
with the ACDM-model which includes the pressureless non-baryonic cold dark
matter (CDM) component.

To summarize, motions of the galaxies in galaxy groups, galaxy clusters and
larger structures as well as the rotation curves of the spiral galaxies indicate
the presence of a sizable dark matter component. Furthermore, the structure
formation and the WMAP results heavily support the existence of non-baryonic
preasureless DM. Thus, there is a lot of observational evidence for the dark
matter and in the next section the nature of this DM will be discussed.

2.2.3 Nature of the dark matter

The exact nature of DM is still unknown, although several candidates have been
studied, among which new elementary particles are perhaps the most favorable
ones. In general particle dark matter is categorized in to two classes; the ther-
mal and non-thermal relics. The thermal DM particles are decoupled from the
thermal path formed by the hot plasma in the early universe. The non-thermal
DM particles, in general, have so weak interactions that they are never in equi-

4For example the quasar survey [2] shows that in large scales universe is rather homogeneous
and isotropic.
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librium. They can be created in some non-thermal process in the early universe,
perhaps related to the end of the inflation or to some phase transition.

Further, the thermal particles are called either hot dark matter (HDM) or cold
dark matter(CDM) depending whether they were relativistic or non-relativistic,
respectively, at the moment of decoupling. For example the light SM neutrinos
are hot dark matter, while the massive supersymmetric neutralinos would be
cold dark matter and the axion field (particle) can be considered a non-thermal
relic.

If the dark matter is hot it has specific influences on structure formation
which are observationally constrained, because the energy density of a relativistic
HDM can diffuse to large scales and wash away the small scale density contrast.
This free streaming limits the amount of the hot dark matter that can exist,
based on the the observed magnitude of the small scale structures in the galaxy
distribution. Cold dark matter on the other hand clusters more efficiently thus
remarkably helping to explain the structures seen in present universe, as was
already mentioned above in connection with the structure formation.

DM particles in general can be either bosons or fermions. Fermions on the
other hand can be either Dirac- or Majorana states depending on the structure of
their mass matrix. They can have pure Dirac or Majorana mass terms or both,
which through mass mixing results in Majorana states. Performing collision
matrix element calculations with Majorana particles is more tricky than with
Dirac particles, especially when mixing Majorana fields are considered. This is
so because Majorana particles are their own antiparticles, which increases the
number of non-trivial contractions. Moreover for mixing fields comprehensive
Feynman rules are still lacking. There are new aspects associated with the
phases of the mixing Majorana fields, whose effects to the cross section and relic
density calculations, and to particle physics considering mixing fields in general
has not yet been fully appreciated in the literature. Clearing these issues is one
of the main results in this thesis. These issues will be considered in more detail
in Sec. 4.4 and in Appendix where an example calculation of matrix element
including mixing Majorana fields is given.

Before going further with the hot/cold particle dark matter scenarios let us
consider baryons and their role as dark matter.

Baryons as dark matter

If we ignored the WMAP results for the matter content of the universe and
considered only the galaxy cluster motions and galaxies rotation curves as a
evidence of dark matter, the first natural assumption would be that the dark
matter is made of non-luminous baryons. Indeed, all the visible matter is made
of baryons, although the stars and hot gas yields only small fraction of the total
energy density of the universe: Q™ =~ 0.003 [20]. The rest of the baryonic
matter predicted by the BBN (Qi°" ~ 0.04) should then be in a non-luminous
form i.e. dark, and observable only through the gravitational effects. This dark
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baryonic matter could be for example in the form of a gas, dust, (primordial)
black holes or other faint massive compact objects.

However, the amount of baryons predicted by the BBN is not enough to
make the universe flat and this contradicts the inflation prediction. This sets
the first doubts over the pure baryonic dark matter.

Hiding large amounts of baryons to ionized or neutral gas is also very difficult.
This is easily verified using the SIS model. Indeed, assuming that all the missing
mass in a galaxy is in the form of a baryonic gas (mostly Hydrogen m ~ m,),
the temperature of the gas can be computed using Eq. (2.19) and Eq. (2.22),
which give
M(r)  2kgT

r o myGy’

const. = (2.23)

Substituting typical galactic (Milky Way) scales to the equation one finds the

temperature
M 100kpc
T~ 230eV . 2.24
‘ (1012M®) ( Rhato ) ( )

Baryonic gas of this temperature should radiate photons in the X-ray region so
brightly that it would have been already detected with present telescopes.

Further, according to observations the dust is expected to form only Qg,s <
2% 107° of the total energy density [21]. The massive compact halo objects (MA-
CHOs), such as black holes and faint objects such as Jupiters, brown dwarfs or
white dwarfs ranging from planetary to stellar masses have been search by MA-
CHO [22] and EROS [23] collaborations. Their results indicate that MACHOs
can cover at most 20% of the Milky Way halo mass and that MACHOSs in mass
range 107"M, — 20M,, are excluded as a primary constituents in Milky Way
halo. It is reasonable to think that this trend follows also to larger scales, which
suggests that the MACHOs are not the dominant the dark matter component
in the universe.

The black holes can be formed either at deaths of massive stars or in the early
universe, for example in the QCD-phase transition. The black holes which are
star remnants should obviously be formed out of baryonic dark matter whereas
the primordial black holes could be also considered as CDM. If all the dark mat-
ter were made of black holes formed in supernovaes, one would expect that the
heavy elements would be much more abundant than what has been observed,
since in this case large amount of light elements would have gone trough the
stellar cycle ending up in formation of heavier elements. The primordial black
holes have also other constraints [25]. In particular they must have been massive
enough when formed so that they would not have evaporated by now. There are
mass regions where black holes could be the dark matter but then, according
to [26], the primordial black holes need to be either the dominant dark mat-
ter component or, if also a particle dark matter component exists, the black
hole dark matter is constrained to form only small fraction of the total density
Qppr < x1074. (Otherwise the annihilating WIMPs, which are assumed to ac-
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crete a ultracompact minihalos around the PBH’s, would produce an observable
annihilation end-product signal [26].)

These observations, which are supported by WMAP results, show that baryons
cannot explain the total mass observed in the universe. In addition it is con-
cluded that part of the baryonic matter seems to be missing.

Hot dark matter

Another group of candidates for the dark matter are the SM light neutrinos.
These neutrinos were relativistic at the time of the decoupling so they are consid-
ered as hot relics. Yet, if their mass exceeds the ~ 10~* eV, which is the current
cosmic neutrino background temperature, these neutrinos are non-relativistic
today. In cosmology the sum of the masses of the neutrinos becomes the most
relavant parameter, in particular because the structure formation is affected by
the neutrino energy density because of the free streaming. This highly constrains
the total amount of light neutrino dark matter, setting > m, < 0.6 — 0.7eV,
which implies that (using the dimensionless Hubble parameter h = 0.71) the cur-
rent dark matter density coming from light neutrinos is limited by the precision
cosmology data to €, < 0.015 [27].

Another well motivated dark matter candidate, which like baryons is re-
lated to Quantum Chromodynamics (motivated by the model introduced to fix
the strong CP-problem) is the pseudoscalar axion field (see e.g. [28]). There
are mechanisms to produce this pseudoscalar axion thermally or non-thermally.
Recent analysis considering several distinct cosmic data sets [29] show that ther-
mally produced axions should be considered as a hot dark matter (m, < 0.91
eV at 95% C.L.) but in this case they cannot explain all the missing mass in the
universe because of the free streaming constraint which affects them in the same
way as it affects light neutrinos. However if axions were produced non-thermally,
(even though in this case the axions are even lighter, m, < ueV) they can be
threated like cold dark matter since the momentum of the axion condensate is
essentially zero. Such light axion is still a viable dark matter candidate.

Other possibilities: MOND?

After going through the obvious dark matter candidates included in the standard
model of particle physics one might change the line of thinking and ask if the
solution to the DM problem could be that there is something wrong with the
Newton gravity. Maybe the Newton gravity does not work correctly at large
distances so that to explain the observation one should modify the Newton
gravity theory. These kind of theories have been developed and they are called
Modified Newtonian Dynamics MOND [30] (see short review e.g. [31]).

The MOND models are able to explain the galactic rotation curves using only
the estimated mass of the visible baryonic matter in many cases. Yet building
a MOND which fits to all observations with fixed model parameters seems to
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be problematic and especially explaining the motions of the galaxies in galaxy
clusters and in larger systems seems to be difficult in the MOND models.

Also the N-body simulations of structure formation within MOND have been
done. A generic problem within the MOND, according to Ref. [32], seems to
be the late time of the structure formation meaning that although the present
structures, similar to ACDM-model, can be formed using the MOND, the lack of
structures in redshifts z > 3 contradicts the observation of structures at z ~ 6.

The first MOND models were also criticized by the fact that they did not
respect the relativity principles, but relativistic MOND models have since been
built. These models are generally very complicated and highly phenomenologi-
cal, lacking sound independent theoretical motivation.

Gravitational lensing and the Bullet cluster

As is well known the general relativity, (as well as Newtonian gravity, although
erroneusly) predicts the bending of the trajectory of the light as it travels by
a massive object. This light bending phenomena is called gravitational lensing
and it has been used in cosmology to study the shape of matter distribution in
the universe. Especially it has been used to reveal the existence, the amount
and the nature of the dark matter [34].

In gravitational lensing the image and the brightness of a light emitting
source; a star, a galaxy etc., depend on the mass, the shape and the size of the
object or objects which work as a lens, and also on the distances from the source
to the observer and to the lens. Thus information of the lensing object is gained
from analyzing the images of known light sources. Depending on the shape and
the size of the lensing objects different names for the lensing phenomenon are
used. The term strong lensing is used when the lens is massive and a fairly com-
pact object like a core of a galaxy or a galaxy cluster, and multiple images of the
source are seen. Microlensing refers mainly to the MACHO searches in galactic
halo. In this case the identification of the lens is based on the brightening of the
source, usually a star, and not on detection of separate images. Most of the light
propagating trough the universe, along the line of sight, does not pass near any
strong lenses however. Even this light can be deflected slightly when it passes
far from the core of a galaxy or a galaxy cluster in general or through a weak
gravitational field. This weak lensing phenomenon is used to study the aver-
age dark matter distribution in large scales and the dark matter density in the
universe. Weak lensing results are in a nice agreement with the WMAP results
supporting the ACDM-model and when combined yielding €2,,, = 0.248 + 0.019
[35].

The weak lensing plays important role also in the so called bullet cluster ob-
servation [36], which arguably verifies the existence of the dark matter and rules
out the MOND models. The bullet cluster refers to an unvirialized system of
two colliding clusters of galaxies, imaged by three different observational meth-
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Figure 2.2: The bullet cluster. In left picture the visible collided clusters with
the (green) gravitational equipotential contours adopted by the weak lensing. In
right picture the same figure but now the X-ray instead of visible band is shown.
Pictures taken from [36].

ods to determine the different mass components in the system Fig. 2.2. The
optical image reveals the visible mass in the system, the X-ray image shows the
distribution of the hot ionized gas which was collected together and heated in
the collision. Finally, the weak lensing image shows the constant gravitational
potential contours created by the total mass concentrations in the clusters. The
mass belonging to the gas is dominating over the mass of stars in the galaxies
in the clusters, and so it would be expected that the center of the gravity well
should coincide with in the center of the accumulated hot gas. However the
weak lensing results clearly indicate that the centers of the mass distributions
are following the visible galaxy clusters. This observation is consistent with
the existence of weakly interacting dark matter which, just like the stars in the
galaxies pass through without interacting in the cluster collision, so that the
dark matter distribution follows the distribution of the visible galaxies. How-
ever, MOND models where the observations are considered to be explained by
baryons only, the center of the gravity potentials should follow the dominant
gas component, which is in contradiction with the two mass centers observed
by lensing observations. Thus the bullet cluster observation seems to verify of
existence of collisionless dark matter and rule out the MOND.

Cold dark matter

The indirect and the lack of direct observations indicate that dark matter should
be made of massive weakly interacting particles WIMPs. Since WIMPs are non-
relativistic and weakly interacting, a halo made of WIMPs can be modeled with
the isothermal ideal gas law naturally giving rise to the desired SIS density pro-
file. The fact that the SIS model is consistent with both the N-body dark matter
simulations for the dark matter halo profiles and with the actual observations
improves the status of CDM and the WIMP scenarios as a correct solution for
the dark matter problem.
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The favorite dark matter particle or WIMP is the lightest supersymmetric
particle (LSP). Typically LSP is expected to be a neutralino which is mix-
ture of the neutral SUSY states, mostly bino or photino. The stability of the
LSP is guaranteed by a postulated new symmetry; the R-parity and the associ-
ated conserved quantum number, which is +1 for SM particles and -1 for their
SUSY partners. Other WIMP candidates proposed over the years include mas-
sive non-SM neutrinos such as the fourth family heavy neutrinos, a variant of
which is studied in this thesis and detailed in articles [I] and [II]. These states
are naturally predicted by the minimal walking technicolor theory which is dis-
cussed in more detail in next the chapter. The DM aspects of heavy neutrinos
have been earlier considered also in [38,39]. The recent advanced technicolor
models provide also other cold dark matter candidates such as the TIMP in-
troduced in [40-42] and other exotics [43] which are techni-interacting. Many
other cold dark matter particle candidates with different origins and production
mechanisms, having wide range of masses and interaction strengths and specific
signatures have been proposed. Yet, few of them have equally sound theoret-
ical basis as the LSP and the technicolor based WIMPs considered in this thesis.

Although WIMPs have not been directly detected yet, the experiments have
started to put interesting constrains on the parameter space of the WIMP mod-
els. The improved experimental efficiencies set also demands to the DM models.
The DM models need to be complete or otherwise well defined so that their pre-
dictions can be calculated to high precision. These include the WIMP-nucleon
cross sections, which are constrained by the direct cryogenic DM search exper-
iments, the possible WIMP accumulation and annihilation in the core of the
Earth, the Sun or the Galaxy, which can be searched by observation of the
WIMP-annihilation end-products in the indirect DM searches. Lastly, also the
direct collider signals should be determined. Of course the cosmic WIMP den-
sity needs to be solved first to test whether a correct amount of DM can be
created in a given model. In the following section the equation from which the
WIMP relic density can be solved is derived. The constrains to WIMP proper-
ties, which follow from observational DM searches, are considered in more detail
in Sec. 4.6.

2.3 The Boltzmann equation

In the following the Boltzmann equation which describes the evolution of the
number density of the thermal WIMPs will be derived [45-47]. Let us first study
the effects of the expansion on the particle momentum. In microscopic scale the
curvature is irrelevant and the early universe is taken to be effectively flat and
described by the metric

ds? = dt? — a(t)*(da® + dy* + dz2?), (2.25)
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where a(t) is the scale factor as before and t,z,y, z are the co-moving coordi-
nates. By minimizing the action for the path length:

da?’

where A is arbitrary affine parameter, the Euler-Lagrange equations, particle
trajectory (geodesic), can be calculated:

d?t Crday2 d2z? ay dt dz
we=lgy) o= (2.27)
where ¥ = (x,y, z) and dot denotes the time derivative. Now define the four-
momentum in the co-moving coordinates as p# = da*/dA. This differs from the
four-momentum p* measured at the local orthonormal coordinates corresponding
to the flat metric 7, = diag(1l, -1, -1, —1) in which the usual quantum field
theory rules are formulated. Since the p? does not depend on the coordinate
system p? = p?, from which it follows that: F = E. = dt/d) and p’ = ap,.. Thus,
using the previous definitions and relations with Eq. (2.27) the A-derivatives of
the momentum and the energy can be solved in local orthonormal coordinates;

2
S:%/d)\ﬁ, c=3 (2.26)

dpe.  ,a dp’ a

= 2-Ep. = - =-—-Ep,
B a P o’
dE, . dE  a,
A L 2.28
a P - (2.28)
—_—
co-moving local orthonormal

These evolution equations can be used for interacting particles in an expanding
universe and are needed in the following derivation of the Boltzmann equation.

The Boltzmann equation describes the evolution of the phase-space density
of the WIMPs, which in general is of the form f(z#()), p*(\)) . In an FLRW
universe the density distribution is spatially homogeneous and isotropic however,
so that Vz f = (. In the non-interacting case the density is of course constant
along geodesics so that d f /d\ = 0, which using the Einstein chain rule and
equations (2.28) becomes:

df  dt o, 4 o 5, dp 0
o dA&tf+ f+d/\8p0
. o .
94 ;0 O 2.9
poatf pop Vif papo (2.29)
- 0.

Otherwise the fluctuations in the density follow from the interactions with other
particles; df/d\ = C(p,t), where the collision term C(p,t) describes the inter-
actions with the background. The physical phase-space density is defined on

5The system is described in local orthonormal coordinates and the effects of expansion
are fed in through the evolution equations (2.28). Other approach, starting with co-moving
coordinates, has been followed e.g. in Ref. [45].
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(positive) mass-shell however. That is by

fp,t) = / F (w0, 7.1)8(p0 — (7 + m2))dpo, (2.30)

where the dependence of only p = |p] and ¢ follows from isotropy and homogene-
ity requirements. Thus the mass-shell integral to be studied is of the form:

df Oodf 1 ) 2\1/2
—L95(p? — L 5(py — 2.31
/O N §(p® — m*)dpy = /O I\ o (po — (P* +m*)YH)dpy (2.31)

from which the Boltzmann equation directly follows by using d f Jd\ = C (p,t)
with Eq. (2.29) and Eq. (2.30):

=S5 Vat = [ ) . (232)

Integrating Eq. (2.32) over the momentum p and using partial integration the
usual form of the integrated Boltzmann equation is found:

d3p 1
(T SH(t)n(t) = ———C(p,1). 2.33
)+ 3HOn(0) = g [ G HEC00) (23
Here n(t) = g f &) E-f(p,t) is the particle number density, where g counts the

particle spec1es mternal degrees of freedom and H(t) = a/a the Hubble pa-
rameter. The C(p,t) is interaction term containing the elastic and inelastic
collision integrals. From Eq. (2.33) it can be seen that in the absence of colli-
sions (C(p,t) = 0) the particle number density merely gets diluted because of
the expansion of the universe, so that the solution for the Boltzmann equation
in this case is n ~ a3,

2.3.1 Lee-Weinberg approximation

Beyond having integrated the original Boltzmann equation over the 3-momenta,
other simplifications are possible when studying thermally decoupling dark mat-
ter. First assume that particles are held in kinetic equilibrium by elastic scat-
terings. Further assume that the 2—2 particle processes dominate the inelastic
interactions. Then the WIMP density evolution is mainly affected by the an-
nihilations of the WIMPs to other particles. With these approximations® the
collision integral in Eq. (2.33) can be written in form:

d3p 1
g/ (2—;))@0(1), t) = — Z / dIl, dIlg dIL; dIT; (27)*6% (py + px — pi — D7)
[ ’M|X+X—>2+z fof((l + fl)(l + fz)
|M|z+zﬂx+xffg(]— ifx)(l ifi)]? (234)

6See more about the Boltzmann equation and the approximations e.g. [46,47,53].
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where the sum over ¢ refers to all possible final state to which the WIMPs,
denoted by x, can annihilate. f; is the phase space density of the species j and
in the blocking factors + is for bosons and — for fermions. |[M|2,, ., are the
squared annihilation matrix elements for the processes a + b — ¢ + d including
the appropriate symmetry factors for the initial and final states and averaged
over the initial and final state spins. Furthermore, the delta function ensures
the momentum conservation and the invariant phase space volume elements are

C d3ps . . . .
defined as dII; = (2*35)3 2]57. Now assuming time reversal invariance the same
J

matrix element can be used for the inverse annihilation processes:
2 2 _ 2

’M|X+>‘<—>z‘+2 = ‘M‘z‘-i—i—w-f-;‘( = [M[". (2.35)
Moreover, since the WIMPs are massive and non-relativistic at the time of de-
coupling, Maxwell-Boltzmann statistics can be used and the Fermi/Bose block-
ing/enhancement factors can be ignored: 1+ f; ~ 1. (Also chemical potentials
are assumed to be zero here.) Yet further, assuming that the kinetic equilib-
rium is always retained during the freeze-out process, the energy conservation
E, + E; = E; + E; sets a useful relation for the densities:

fifi = exp[=(Ei + E;) [T] = exp[—(Ey + Ex)/T] = [/, (2.36)

where f¢? is the thermal Maxwell equilibrium density distribution. With these
approximations the collision integral reduces to [53]:

$Bp 1
9 / (2—:)350 (pt) = — Z / dIL,, Il dI1; dIT; (27) 6% (py, + px — pi — D7)
X|IMP[ fofy = F{£5)
= —{wo)(n* — ). (2.37)

where in the last line n., is the number density in thermal equilibrium and (vo)
is a velocity average total annihilation cross section which when the Maxwell-
Boltzmann distribution is used to describe the DM particles becomes a simple
1-dimensional integral [53]:

(vo) = m /4:2 dsv/s(s — 4m2)K1($)awt(s). (2.38)

Here K;(y)’s are modified Bessel functions of the second kind and s is the usual
Mandelstam invariant and 7" is temperature. The total annihilation cross section
Ttot ($) is the sum of the DM particle annihilation cross sections to all the possible
final states. Thus the Boltzmann equation eventually reduces to familiar Lee-
Weinberg equation [48]:

i+ 3Hn = —(va)(n® — nl). (2.39)
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Changing the variables

x = b(T)% : f(z) = @ : (2.40)
where
s =bWT)PT*,  b(T)= (24%9*8 )1/3,

and s is the entropy density, g.s(7) is the number of entropy degrees of freedom
at the temperature 7" and m is the WIMP mass, Eq. (2.39) finally becomes

of(x)  (voym’z* ,
g~ H@ V@) L) (2.41)

Given the Hubble parameter H (Eq. (2.43) below) and the average annihilation
rate (vo) (Eq. (2.38)) this equation can be solved numerically.

Hubble expansion parameter
For Hubble parameter in the early universe can be used the form

_87TGN
3

H2

(Praa + 1), (2.42)

where the expansion is driven not only by the standard radiation density p.q =
(72/30)g.(T)T*, where g.(T) denotes the number of energy degrees of freedom
at the temperature 7', but also the dynamical dark energy part po dominated
by the kinetic energy term of generic quintessence field. The kination scaling
law for the quintessence energy density is pg ~ a~%. With the definitions from
Eq. (2.40) and the entropy conservation in co-moving frame the above Hubble
expansion formula can be written as

H:H0<£>2 (h+r(ﬁ)2)m, (2.43)
To To

where Hy = (87 praa0/3M2,)"/? is the Hubble expansion rate at the reference
temperature 7' = Ty = 1 MeV in the standard cosmology, 7 = ps0/prado 1S
the ratio between dark energy and radiation energy densities at 7' = Tj, and
h = (g.(T)/9+(T))(gsx(T)/ gsx(T5))*3. Naturally if r = 0 the standard radia-
tion driven expansion is obtained. The standard expansion is usually considered
when the annihilation cross section of the dark matter particles is suppressed
with the mixing or is otherwise small. This is the case in articles [IT] and [ITI].
However, in the article [I], where the WIMP has standard, unsuppressed weak
interaction strength, the more general kination driven expansion law was used.
The effects of the expansion and cross section to the WIMP density are explained
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in more detail in subsection 2.3.2 below.

In article [I] Eq. (2.41) was solved analytically using approximative methods
as in [39]. In articles [II] and [III] it was solved numerically using a specialized
Fortran 95 code. Given the solution for Eq. (2.41) the density parameter for
dark matter particles can be calculated from the value of the f-function today:
f(0) and the definitions in Eq. (2.40) and Eq. (2.10), resulting to

&2mf(0)30

~ 1.09 x 10% ( mn
pc,O

@) £(0). (2.44)

QOpy =
Here the subscript 0 refers to present values of quantities and @ = 1 for Dirac
particles and a = 1/2 for Majorana particles.

2.3.2 Annihilation rate vs. expansion rate

The largest effects on the final abundance of the thermal dark matter particles,
described by Eq. (2.41), come from the Hubble parameter and from the annihi-
lation cross section. The smaller the cross section, or the larger the expansion
rate H, the larger final density is obtained. This is illustrated in Fig. 2.3, which
describes generically the freeze-out process. Physically this can be understood
so that the smaller the cross section is the longer it takes for particles to find an
antiparticle with which to annihilate, and thus the particle density drops earlier
from the equilibrium as the Hubble expansion overcomes the annihilation rate,
and the universe becomes transparent for the DM particles (The mean free path
of the WIMP becomes longer than the particle horizon.)

If one considers for example a standard model like 4™ family heavy neutrino
with standard weak interactions and a standard radiation driven expansion of
the universe the outcome is that these neutrinos cannot work as a dark matter.
The reason is that their cross sections is too large for allow a large enough
relic density. But if the annihilation cross section was but an order or two
magnitudes smaller or if the early universe expansion were enhanced by some
mechanism these particles could be produced in suitable quantities to become a
dominant dark matter component.

The usual method is to tweak the cross section by a mass mixing, so that
the mixing angles suppress the WIMP couplings to SM fields. In addition to
boosting the density this method has other favorable outcomes: for example as
it makes the particles more weakly interacting, it helps to explain why these
particles have escaped detection in the dark matter search experiments. Such
WIMPs also produce weaker astrophysical signals. However, if the cross section
were too small, the DM particles could be overproduced, so that they would
make the universe closed in contradiction with observations. Thus achieving
naturally just the right coupling strengths is a desired feature of any realistic
dark matter model.
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Figure 2.3: The freeze-out of a WIMP. Dashed line corresponds to the actual
density of the WIMPs and solid line depicts the equilibrium density. The evolu-
tion of the WIMP density, when Hubble expansion is increased or annihilation
cross section is suppressed, is illusterated.
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Another possibility to produce a correct dark matter density is to effect a
stronger expansion rate with some mechanism. In article [I] was considered a
model where a dynamical dark energy, corresponding to a kinetic term of a
quintessence scalar field, dominated the early universe expansion. (This idea for
a generic WIMP was studied earlier in [49], and in the case of a scalar tensor
gravity in [50].) The increased expansion makes DM particles decouple earlier
from thermal bath increasing the relic density suitably. The early universe ex-
pansion cannot be modified arbitrarily, however. In particular the quintessence
dominance must end before the big bang nucleosynthesis so that the light element
abundances, which according to observations support the standard BBN theory,
are not changed too much. Nevertheless, the expansion law can be adjusted to
provide both the correct DM abundance and the successful BBN. However the
model now appears to be ruled out. The problem is that since the couplings
to SM fields are not suppressed, the particles have difficulties to escape from
being detected by the direct dark matter search experiments. Only if the local
dark matter density is estimated drastically wrong (which is fairly unlike [51])
or that these particles are extremely heavy, this scenario could be still possible.
Otherwise the DM particles with standard weak interactions to SM fields are
ruled out by the direct DM search experiments [52].
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Chapter 3

Technicolor

In this chapter a brief motivation and introduction to Technicolor (TC) and to
Extended Technicolor (ETC) is given. Then a Minimal Walking Technicolor
(MWT) model and its minimal extension are presented and discussed as sources
of dark matter.

3.1 Motivation

The Standard Model of elementary particle physics (SM) is a combination of
the Quantum Chromodynamics (QCD) and the Electroweak (EW) Glashow-
Weinberg-Salam theory, with the gauge structure SU(3) x SU(2) x U(1). It
successively predicts a vast number of different physical phenomena, and yet
there are a few important observations and internal issues that remain unex-
plained. Three of these are related to studies presented in this thesis:

e The hierarchy and naturality problems i.e. why is the Higgs mass scale
that of the EW scale (~ 100 GeV); why is the EW symmetry breaking
happening at that scale, although in the renormalization picture the natu-
ral scale for the scalar field mass term is the ultraviolet cut off scale, which
in the SM is naturally of the order of the Planck scale (~ 10'® GeV)?

e The dark matter problem i.e. what is that dark matter which seems to
dominate the matter content of the universe?

e Why there are so many different forces in SM i.e. why there are three
gauge groups with different coupling constants in the SM? Could these be
unified as a grand unified theory (GUT) at very high energies, under a
single large group with one coupling constant?

Finding the answers to the hierarchy and naturality problems is the main moti-
vation for the technicolor. The possible answers to the latter two questions are
discussed in the end of this chapter and partly in the next chapter.
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The original Higgs mechanism of obtaining the electroweak symmetry break-
ing (EWSB) in the SM is very simple. What is needed are just some new fields
that are coupled to weak gauge bosons and a mechanism which breaks the local
SU(2) x U(1) symmetry to U(1) electromagnetism, however such that a global
SU(2) symmetry is conserved; this custodial symmetry guarantees the right mass
ratio for the massive EW gauge bosons.

In the standard Higgs scenario the weak gauge bosons are coupled to a com-
plex scalar doublet whose potential is chosen so that it obtains a non-zero vac-
uum expectation value (VEV) which breaks the local SU(2) gauge symmetry.
Before symmetry breaking the scalar degrees of freedom in the Higgs doublet,
when considered as a four real scalar fields, have a global O(4) symmetry. In the
symmetry breaking this breaks to O(3), which has precisely the algebra of the
custodial SU(2) symmetry. The same phenomenon happens also in two flavor
QCD, from which the idea was adopted to TC at higher energies.

Indeed, in the two flavor QCD the approximately massless quarks have a
left-right chiral symmetry. The left handed u and d quarks forming an SU(2)
doublet which is coupled to weak gauge bosons and the right handed states
form another doublet with just a global SU(2) symmetry. At high energies, well
above Agcp ~ 200MeV, the system has eight symmetries with the corresponding
symmetry currents. When the energy drops and becomes of the order of, or less
than Aqcp, the QCD coupling becomes strong and the quarks form a condensate.
This condensate breaks the local SU(2) symmetry and the goldstone bosons (the
pions) from the broken axial-isospin symmetry are left to be eaten by the EW
gauge bosons if it would be considered that there was no Higgs field and no
Higgs mechanism. Yet the global SU(2) isospin current is not broken and this
custodial symmetry guarantees the right mass ratio for the weak gauge bosons.
The mass scale (~ Aqcp) of the gauge bosons is of course too small in this case.

Technicolor copies this mechanism by introducing a new strong gauge in-
teraction TC and new chiral techniquarks on which the TC interactions acts,
and by requiring that the TC coupling becomes strong at the EW energy scale
Arc ~ 100 — 1000 GeV, the EWSB could be achieved dynamically without the
problems associated with the fundamental scalar Higgs field.

The following introduction to the TC and the extended technicolor follows
reviews by Hill and Simmons [54] and by Sannino [55].

3.2 Introduction to TC and ETC

Technicolor is an alternative for the SM Higgs sector for the electroweak sym-
metry breaking. As explained above, TC is a new QCD-like strongly interacting
gauge theory involving new chiral fermions (techniquarks) that feel a new gauge
interaction (technicolor). The EW energy scale is the fundamental energy scale
in which the TC interactions become so strong that the technifermions will form
a condensate breaking EW symmetry according to the desired pattern. The

28



excitations of this condensate can be interpreted as a composite Higgs. The for-
mation of this condensate introduces a dynamical EWSB without the fine-tuning
issues associated with the fundamental scalar Higgs fields.

Although this way of solving the hierarchy problem is very elegant TC con-
tains also some issues which need to be solved before it can become a credible
theory for EWSB. In summary these are: consistency with the EW precision
data, acceptable Goldstone boson masses, suppression of flavor changing neu-
tral currents and generation of the fermion masses.

When the SM Higgs is replaced with a techniquark condensate, a composite
Higgs, the theory and it predictions change. Question then is, whether the new
theory is consistent with the experimental data? For example new fermions
related to the TC-model, when coupled to EW-boson, change the weak gauge
boson vacuum polarization amplitudes, which are usually parameterized with the
oblique parameters S, T and U. These on the other hand are highly constrained
by the EW precision data from LEP II. Since the SM predictions for S, T and
U are in good agreement with the experimental results, the corrections to the
oblique parameters coming from the new fermionic fields must be very small.

The full chiral group of a TC-model depends on the TC gauge group and
the representation at which the technifermions are implemented, and thus the
number of Goldstone bosons, formed in the chiral symmetry breaking leading
to EWSB, is specific for each TC-model. Three of the Goldstone bosons are
eaten by the EW gauge boson but usually there are other Goldstone bosons
that are left over. Some of these obtain small masses when the electroweak
gauge couplings are turned on but some in general stay massless. The problem
is that none of these massless or light Goldstone bosons have been observed
in the experiments. Generating high enough masses for these states such that
they might evade the mass limits set by present day experiments is one of the
challenges set to TC-models.

Other problematic issue in TC models are the fermion masses. Indeed, when
the usual scalar Higgs is removed from theory, also the Higgs-fermion Yukawa
couplings are lost, and the mass terms for the fermions vanish. To overcome
this problem a new interaction, the extended technicolor (ETC), is usually intro-
duced. This new gauge interaction is added to combine the technifermions with
the SM fermions, so that after the EWSB the SM fermions obtain their masses
from the TC condensate by interacting with the quark condensate through ex-
change of the ETC gauge bosons. The fundamental energy scale for the ETC is
assumed to be orders of magnitude higher than the TC and so in low energies be-
low EW scale, where the ETC symmetry is broken, the interaction between the
technicolor condensate and SM fermions can be viewed as an effective 4-point
fermion interaction. That is, at low energies the ETC gauge boson interac-
tions are considered to be a point like interactions described by the following
non-renormalizable operators [54]:

QT QT Q1. T QQYT*Q Uy TPy T
Qlgp 2 + Dab + Yab :
ETC

Ba (3.1)

2 2
AE‘TC AE‘TC
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Here () denotes the techniquarks and i the SM fermions, T%’s are the yet un-
specified ETC generators and the coefficients oy, B and 7., are parameters
specific to the underlying ETC model. Phenomenologically the most important
operators can be assorted from the above by Fierz rearrangement:

QT QIT'y |\ QT'QQT'Q | JT™T'y

Qab (32)

2 2 2
AZre Afre Agre

After the techniquark condensation in low energies the first operator with a
coefficient ay;, gives following masses to SM fermions:

2
my & —gETCC (QQ) pre» (3.3)

where ggrc is the ETC running coupling constant evaluated at the Agpco-scale.
Also the TC condensate is calculated at ETC-scale and the Mgrc is the mass
of the ETC gauge bosons after the ETC symmetry breaking. A realistic ETC-
model should explain the mass hierarchy between the different families of SM
fermions and also between quarks and leptons and in the end the mass differ-
ences within the weak doublets like electron vs. neutrino masses. Models which
can produce hierarchies for the families have been studied in ref. [56] and more
recently in [57]. The basic idea for generating the hierarchy within these models
is fairly simple: Models have a large ETC group structure which sequentially
breaks down to the TC gauge group SU(Np¢) at the TC scale. At each ETC
symmetry breaking, a distinct condensate <QQ> pro 18 formed and since each
condensate is formed in a different scale the mass hierarchies in the SM fami-
lies are produced. The highest partial ETC breaking scale produces the lowest
masses and the lowest ETC breaking scale the highest masses for the SM fami-
lies. A general consideration of these models is beyond the scope of this thesis.
However a naive estimate for the SM fermion mass can be obtained in the case
of a QCD-like technicolor model by using the Eq. (3.3) and an approximation
which states that in the ETC breaking scale (not specified here) the conden-
sate scales as (QQ)prc ~ (QQ)rc ~ A3.. Further if only one weak doublet
of technifermions is considered and if the interaction between the SM and TC
fermions is mediated by an electroweak singlet ETC gauge boson which has a
mass Mgrc ~ gercNETc, the mass estimate becomes

3
Are
Y 2 .
AETC

Using this approximation and the assumption that Ay¢ ~ 100 GeV, an ETC
scale Apre < 1 TeV is needed to obtain medium mass quark mepam ~ 1 GeV.
This seems reasonable, but getting the top quark mass m; ~ 100 GeV right
seems more problematic and gives a harder challenges to the TC and ETC
model-building.

The operator with a coefficient 3y, in Eq. (3.2) gives rise to a masses for the
pseudo-Goldstone bosons and for the techniaxions. The previously mentioned
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problem concerning the light masses of these particles can thus be partially
solved with the ETC interactions and even further alleviated in the context
of the walking type TC-models, which are introduced in the following section.
Obtaining heavy masses for these new mesons is not discussed further here; for
a discussion see [54] and [55].

Finally the operator with a coefficient 7, in Eq. (3.2) produces the unwanted
flavor changing neutral current (FCNC) processes. For example processes like
i — pee,ey may occur through an exchange of a heavy ETC gauge boson
but such processes are forbidden by the experimental observations. Suppressing
these flavor changing neutral currents is possible by increasing Apgrc-scale, as
seen from the Eq. (3.2). However, when the experimental bounds are combined
with naive ETC models the obtained limit is Agrc = 10°TeV [58] which is in
conflict with the estimate for the quark masses given below the Eq. (3.4). Indeed,
with this FCNC limit the quark masses would be scaled down to my ~ 100MeV
which is obviously a too low value. Also the FCNC problem is alleviated in the
walking TC models to be considered next.

3.2.1 Walking TC

As discussed above, in the QCD-like TC models it is difficult to produce the
heavy quark masses and suppress the flavor changing neutral currents at the
same time. To get a better insight of these problems and to find a way to solve
them one should consider the full TC dynamics. It is enlightening to study the
scale evolution of the techniquark condensate since the quark and lepton masses
are related to it. As was previously mentioned, the techniquark condensate is
evaluated at the ETC-scale. Using the renormalization group methods one can
estimate its value at the TC-scale, which is the relevant scale in light of the

present day experiments. The condensate values at these two scales are related
as [H4];

AeTC

(Q@)erc = [ ) il yin(a(i)) (Qbre (35)

where 7, is the anomalous mass dimension and «(y) the running coupling eval-
uated at the scale . Now for a QCD-like TC dynamics the coupling constant is
expected to scale as the QCD-running coupling a(p) o< 1/ In e in scales pp 2 Arc,
and the anomalous dimension is expected to behave as 7, < a(u). With these
approximations the integral in the Eq.(3.5) can be easily worked out and the
values of the condensate at the two scales get related as:

~ (ln Agre

(QQ)Erc ~ m) . (QQ)rc - (3.6)

Thus the correction to the condensate given by the strong dynamics is only
a power-logarithmic factor. This has only a small effect that can be ignored
in the first approximation ie. (QQ)rprc ~ (QQ)rc. This estimate, with
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(QQ)rc ~ A3, was already used when the fermion masses were considered
in Eq. (3.4). However, this scaling, and consequently the problem between ob-
taining the heavy quark masses and suppression of the flavor changing neutral
currents can be alleviated with the 'walking’ type strong dynamics. Indeed, if a
model is considered where the coupling constant stays nearly a constant over the
energy scales from Arc to Apre (meaning that the coupling rather walks than
runs to the UV fixed point), then the correction factor to the condensate be-
comes a power law. This kind of behavior of the coupling constant is possible if
the theory has a near conformal fixed point. In this case the coupling a(u) ~ o*
is approximatively constant, staying in the vicinity of the IR conformal fixed
point a* over the range Ar¢c < o S Agre. The anomalous dimension is evalu-
ated at the apparent fixed point 7,,(a*) ! and the equation relating condensate
at different scales becomes

Ym (a*)
(00 pre ~ (AETC) (QQ)re. (3.7)

Are

Using this estimate for the condensate with (QQ)rc ~ Ao and Mpro ~
gercMNETc as before, one can see that in walking TC models increasing the ETC-
scale suppresses the FCNC as wanted while the SM fermion masses will not be
reduced too dramatically as was in the case of naive QCD-like TC models. This
scaling of the condensate helps increasing also the masses of the technimesons.

While walking behavior helps getting suitable SM quark masses, elevates the
technimeson masses and helps to suppressing the FCNC, it does not necessarily
make the model consistent with the EW precision data. Indeed, the EW mea-
surements show that the oblique parameters S, T and U should be very small.
Usually, in TC models, the reduction of the S-parameter is most challenging
because S is sensitive to the number of new matter fields. For example the prob-
lem with the first realizations of the walking dynamics was that the matter fields
were put into the fundamental representation of TC, whereby a large number
of flavors was needed to produce the walking behavior. This however made the
S-parameter too large and the model inconsistent with EW data. Thus in TC
model building the theories with low number of matter fields and near conformal
behavior are the ones of greatest interest.

In the end the evolution of the coupling, walking or running, depends on the
gauge dynamics, the chosen TC gauge group and the representations at which
the technifermions are implemented, because these factors define the form of the
beta-function. Thus studying the phase structure of SU(N) gauge theories with
matter fields in arbitrary representations as a function of the number of colors
N and number of flavors N; has been of particular interest in recent research
(for a recent review see e.g. [55]). In its different phases the theory may be
confined (QCD-like, running coupling), near conformal or conformal (walking or

Tn the walking TC models the anomalous dimension is estimated to be v, (a*) ~ 1 [54].

32



constant coupling) or the asymptotic freedom may be lost (QED-like coupling).
The general study of phase structures of different theories helps to find the
favorable TC models. However, finding plausible TC models is not the primary
subject of this thesis and thus this subject will not be dwelled on further here.
Instead particular minimal walking T'C models, where a minimal number of new
matter fields are implemented in higher dimension representations of TC group
to produce the desired walking behavior will be considered next.

3.3 Minimal walking TC

The minimal walking technicolor (MWT) was introduced by Sannino and Tuomi-
nen [59]. This model has two techniflavors (quarks) in the two index symmetric
(adjoint) representation of the SU(2) technicolor gauge group. Since the two in-
dex symmetric representation of SU(2) is real, the techniquarks can be combined
in the following form, showing the global chiral SU(4) structure,

Ur
D
—iUQ U}*%a
—iJQD}k%a

Q" = : (3.8)

where U and D represent the two new TC flavors and the upper index a = 1, 2, 3
is the technicolor index indicating the three dimensional adjoint representation.
The left handed fields can be rearranged into three doublets (U¢, D4)T of the
SU(2)., weak interactions. The formation of techniquark condensate at ~ Apc
breaks the global SU(4) group to SO(4) leading to the appearance of nine Gold-
stone bosons. Three of these will be eaten by the EW gauge bosons and the right
mass ratios for the gauge bosons are guaranteed by the custodial SU(2) sym-
metry included in the SO(4). Procedure leaves out six quasi-Goldstone bosons
which should receive masses from the ETC dynamics. These are expected to
show up in the low energy spectrum of the theory and thus as a possible signal of
the MWT in the Large Hadron Collider (LHC) experiments in CERN. Because
the SU(2) adjoint representation is three dimensional there are only three new
weak doublets and thus the model suffers from the global Witten anomaly [60].
To cure the anomaly a new heavy lepton family is introduced [59]:

Ly = ( Ey ) Eg, Ng. (3.9)

Here L is the left handed weak doublet constructed from the left handed ’elec-
tron’ F;, and 'neutrino’ Ny, fields and the Er and N are the corresponding right
handed singlets. The gauge anomaly can be canceled with a generic hypercharge
assignment




where y can be any real value. In these studies the SM-like convention y = 1/3
will be used throughout.

In ref. [59] it was shown that this model should be governed by a quasi-stable
infrared fixed point (IRFP) and thus it is expected to have the walking-like be-
havior. This result is supported by the recent lattice data, see e.g. ref. [61]. Fur-
thermore, the small number of technicolor matter fields keeps the S-parameter
small, which is further reduced because of the new heavy leptons. In refs. [62]
and [63] it was shown that the model is indeed consistent with the EW data and
that, in contrast to the QCD-like or ordinary walking TC models, the MW'T
model can produce a light Higgs mass of my ~ 90 — 150 GeV.

To study the collider phenomenology and to overcome the problems concern-
ing the fermion masses, an effective low energy theory of MWT was introduced
in [64]. The effective theory accounts for the low energy spectrum of compos-
ite scalar, pseudoscalar, vector and pseudovector particles expected to rise from
the underlying strongly interacting theory. As discussed previously, the fermion
masses are usually generated by introducing another strongly interacting the-
ory ETC (e.g. [57]). Yet another commonly used method to generate fermion
masses is to introduce a new fundamental scalar sector to which the fermions
are coupled (see e.g. [65] and [66]). In the effective MWT model [64] fermions
were coupled to effective composite Higgs forming Yukawa-like couplings. In
this approach the SM-like effective Higgs couplings parameterize the unknown
form of the ETC theory and the model, as one may expect, looks effectively like
the SM at low energies. The usual mixing patterns of the SM quarks and both
Dirac and Majorana mass terms for the neutrinos can be obtained within the
effective model.

The new heavy leptons and especially the cosmological implications of the
new heavy neutrinos are the subject of real interest in this thesis. The existence
of these states is natural in MW'T model because they were necessary to remove
the global Witten anomaly. Since these leptons have not been observed in col-
liders these particles are expected to be heavy, a natural scale in this case being
the EW scale. In addition, the non-degeneracy of leptons is strongly favored in
the MWT fits to EW precision data. Further, if there exists some symmetry
(for example Z5) that prevented the new neutrino from mixing with the SM
fields and if this neutrino is lighter than the corresponding charged lepton (as
is again favored by the EW data), the neutrino becomes an excellent candidate
for the dark matter. The dark matter aspects of these neutrinos, in different
mass scenarios, have been studied extensively in articles [[,1I]. A summary and
a generalized extension of these works will be presented in the next chapter. The
related collider phenomenology of these heavy leptons has been studied in [67].

The MWT is a very interesting model for the EW symmetry breaking. It
provides an EWSB dynamically without a fundamental Higgs. It overcomes the
problems related to older QCD-like TC models and it is consistent with the
present EW precision data, and it provides plausible dark matter candidates.
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It thus provides a compelling alternative to supersymmetry. However, one ap-
pealing feature in the SUSY, contrast to MWT model described above, is that
it provides the standard model coupling constant unification. Unification arises
naturally in SUSY, albeit with the price of a dramatic increase of the number
of degrees of freedom. Yet, only few of the new SUSY fields, the gauginos, are
relevant for the unification. Thus the large number of new degrees of freedom
(and the fact that the SUSY needs to be broken, because of the non-observation
of light supersymmetric states,) lowers the beauty of the SUSY. Thus one might
ask what needs to be added to the MWT to obtain the SM coupling constant uni-
fication as well? It turns out that only two additional Weyl fermions in suitable
representations of the SM gauge groups are needed. This theory is considered
in more detail below.

3.4 Minimal extension of the MWT

Extension of the MW'T which produces unification of the SM coupling constants
was proposed by Gudnason, Ryttov and Sannino in [68]. This model is the
minimal extension of the SM which can potentially solve the three problems
which were laid out in the beginning of this chapter; produce naturally EWSB,
the dark matter and the gauge coupling unification. All this can be achieved by
adding only three new Weyl fermions, which are TC singlets, to the MWT. Two
of these Weyl fermions are need for the one loop unification; one in the adjoint
representation of SU(3) QCD color and the other in the adjoint representation
of SU(2) weak isospin. These degrees of freedom are in fact similar to the
SUSY gauginos; the gluinos and the winos. Note that these two Weyl fermions
are singlets under the other SM charges. To complete the partial symmetry
within the 'gaugino’-sector, which seems natural and is motivated and required
by the possible mass unification, also a third Weyl fermion associated with the
hypercharge gauge interaction, the bino, is added to the system. This particle
is expected to be a singlet under all SM and TC gauge interactions and its
effects are felt only through the mass mixing. The mass mixing of the singlet
with the neutral state of SU(2) adjoint triplet and the dark matter aspects of
the corresponding mass eigenstates will be discussed in more detail in the next
chapter.

Since already in the underlying MW'T the techniquarks are in the two index
symmetric representation of TC gauge group, adding new matter fields in higher
dimensional representations in unifying model is quite natural. Yet adding mat-
ter fields in even higher than the two-index representations can easily spoil the
asymptotic freedom of the theory [69]. For naturality i.e. avoiding the low en-
ergy fine tuning of the coupling constants, the asymptotic freedom of the theory
is required. This essentially restricts the rank of representations to the ones
discussed above.

A common feature in most unifying theories is that they generally predict
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a proton decay. The unification scale is related to the proton lifetime and so
the experiments which study the stability of the protons set a lower bound for
the unification scale. Thereby to be a realistic unifying model this extension of
the MWT needs to predict a high enough a unification scale. Finally also the
unification of TC coupling constant with SM couplings can be speculated [68].
This issue does not alter the dark matter aspects which are the priority in this
work and so the generalized unification will not be discussed further here.

3.4.1 Unification

The formal procedure for obtaining the SM coupling constant unification in the
present minimally extended MW'T model is the following: First the Higgs de-
grees of freedom are eliminated from the SM and replaced with the MW'T degrees
of freedom. The absence of Higgs and the existence of techniquarks and the new
leptons will make the evolution of the weak and the hypercharge coupling con-
stants differ from that of the SM. Next, the two new Weyl fermions, which are
in the adjoint representations of color and weak isospin, are added; the former
changes the running of QCD coupling and the latter further modifies the evolu-
tion of the weak coupling. The singlet bino does not effect to the running of the
couplings at least at the one loop level. In the unifying theories, as it was shown
in [70], only the particles not forming complete representations of the unifying
group contribute to the unification. Of course all the particles coupled to some
gauge group affect the running of the corresponding coupling constant, but the
beta function coefficients arising from particles forming complete representations
of the full unifying group cancel.

One could expect that also the TC interactions affect the running of the
SM couplings, and indeed, in perturbation theory the TC coupling constant
corrections to SM couplings appear at the two loop level. Moreover, one could
argue that the perturbative evaluation of these TC corrections is not valid at
low energies because of the strong dynamics. However, the lattice simulations
of the MWT model [61] suggest the existence of an infrared fixed point at a
fairly small coupling, which makes the use of perturbative theory reasonable.
It turns out that the two loop TC contribution to the weak beta function is
small, of the order of 10% when compared to the one loop result [III]. Further,
going higher in energy, towards the unification scale, the TC coupling constant
only decreases, whereby the running of the weak coupling is not expected to be
substantially altered by the TC corrections.

One could also expect that the ETC interactions, either through some new
strong dynamics or possibly via a new fundamental scalar related to fermion
masses, could effect to evolution of the SM couplings. As discussed in the previ-
ous section the ignorance of the complete ETC model and thereby the ignorance
of the generation of the fermion masses can be parameterized with an effective
SM-like Higgs field. However, while the effective Higgs may be used to provide
the fermion masses and to study the low energy phenomenology, it is not nec-
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essarily reliable to use it to study the unification. The effective Higgs model is
valid only up to some ETC-scale, which at least in the usual strongly interacting
ETC models is much less than the unification scale, so that the contributions of
the effective Higgs to the SM beta functions and thus to running of the couplings
breaks down above the ETC-scale. Thus the contributions of the effective Higgs
to the SM one loop beta functions are not reliable, and can be used at most as
a suggestive estimate, up to the unification scale. The case is different if the
ETC is expected to consist of a fundamental scalar, but then one may of course
speculate about the sensibility of the reintroduction of the fundamental scalar
into the theory. Anyhow, it would be reasonable to use some specific strong
dynamics model to calculate the ETC corrections to the unification above the
ETC-scale. In practice these corrections arise only at the two loop level. The
crossover from the low energy effective ETC theory to the strongly interacting
ETC theory gives uncertainty to the behavior of ETC coupling and thereby to
the effects of the ETC to the SM beta functions. It is thus very difficult to
estimate the effect of the undefined ETC-corrections to the unification and thus
the E'TC corrections are completely left out from the analysis. The precise unifi-
cation analysis, in the present extended MWT model, is presented in article [III]
which follows the analysis done in [68].

To conclude, the MW'T and its minimal extension, discussed above are well
motivated models for the dynamical electroweak symmetry breaking and pos-
sibly for the SM coupling constant unification. In addition they give rise to
interesting dark matter candidates including a fourth family heavy neutrino and
an SU(2) adjoint weyl fermion, and an extra SM singlet that can mix with ei-
ther or both of the firstly mentioned fields. To study the dark matter nature of
these particles, qualitatively concrete models need to be considered. Thereby a
general model including the mass terms and the interactions for these particles
will be specified next. In the model that will be introduced the particle densities
can be calculated in different mass scenarios and the model parameter space can
be constrained with the observational and experimental data.
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Chapter 4

Dark matter model

The dark matter analysis done in articles [I], [II] and [III] is motivated and es-
sentially based on the minimal walking technicolor model. The models start
from the simplest MWT with a single heavy neutrino in ref. [I] and then extend
to more general MWT with mixing heavy neutrinos in ref. [IT]. Other favorable
properties (gauge coupling unification) lead to an MWT model with adjoint par-
ticles and new dark matter particle candidates, which are studied in ref. [III].
In the following chapter the most general (DM) model in this framework, from
which all the results in [I]- [III] can be obtained as limiting cases, will be pre-
sented. The particle spectrum of this model contains the left handed fourth
family neutrino which makes the MWT model anomaly free, and a left handed
neutral adjoint Weyl particle from the SU(2) adjoint triplet, which enables the
SM gauge coupling unification, and a new right handed singlet. The singlet
can be interpreted as a right handed sterile neutrino or just a new generic right
handed singlet Weyl fermion. A new Z, symmetry is postulated to stabilize the
dark matter particle arising from this scenario. This procedure is very similar
to SUSY, where the WIMP is the lightest supersymmetric particle (LSP) in the
mixture of the neutralinos, stabilized by the R-parity.

4.1 General model

The MWT and its unification extension contain several new particles: techni-
quarks, technigluons, 4" family heavy leptons, SU(2) adjoint Weyl fermions and
SU(3) adjoint Weyl fermions and the right handed singlet state postulated above,
in addition to the speculative ETC sector. The neutral states contained in this
set of states are potential dark matter candidates. However, the strongly in-
teracting particles are not considered as primary DM candidates in the present
study, and thereby the TC sector is not contemplated further here. Also the
QCD-SU(3) adjoint Weyl fermions are assumed to be heavy and decoupled from
the system. Thus the general dark matter sector considered here contains a
4™ family heavy neutrino, an SU(2) adjoint particle and a neutral singlet. The
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relevant low energy Lagrange density for this model is
Laom = Lag+ Lag + Lsvi—tiges + L Higes T Lrest 5 (4.1)

where L,¢ denotes the 4" generation lepton family part, L4 the SU(2) adjoint
Weyl fermions, Lgn—miggs the SM without the fundamental Higgs field, Lrg Higes
the low energy effective Higgs part and finally £,y denotes the TC-sector, SU(3)
adjoint Weyl fermions and possible other ETC terms which do not have impor-
tant role in the dark matter analysis. The possible right handed singlet state is
included in Laq.

This chapter is organized as follows. First the Lagrangians introduced in
Eq. (4.1) and especially the gauge interactions of the fourth family heavy lep-
tons and the SU(2) adjoint Weyl fermions are studied, and their possible mass
generation mechanisms are introduced. Second a general mixing pattern be-
tween the fourth family neutrino, the neutral adjoint particle and neutral right
handed singlet is established and the effects of the mixing to gauge interactions
and to effective Higgs interactions are presented. Then the significance of the
Majorana phases relating to the dark matter mass positivity is discussed, using
2 X 2 mass mixing as an example. Finally the model results and the constraints
arising from the DM search experiments will be discussed.

4.2 Weak currents

4.2.1 Weak currents for heavy leptons

To make the complete model SU(2) gauge anomaly free, the hypercharges for the
new TC quarks and for the new leptons are chosen similarly as for SM quarks
and leptons, as was already noted in connection with Eq. (3.10). Let E denote
the new charged lepton and N the new heavy neutrino so that L; = (N Ep)T
is the left handed doublet and Eg is the charged right handed singlet. The
hypercharges that produce the SM like charges are Y (FL) = Y(Ny) = —1/2
and Y(Er) = —1. The kinetic and gauge interaction terms in the Lagrangian
density for the fourth family leptons can be written similarly as for the SM
leptons. In the charge basis this Lagrange density is

Lys = L, L, +iEr @ Eg+ Lasn

+Lw + L7+ Lem (4.2)
where the weak and electromagnetic currents are
Ly = %(WHEL’Y“NL + WiIN"EL),
ﬁz = LZM (NL’}/”(%)NL + +EL’}/‘“(—% + SiIl2 ew)EL
cos Oy
+ER")/M(SiH2 ew)ER) y
Levy = —eA“Ev“E, (4.3)
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and the Oy is the Weinberg angle. The difference in Eq. (4.2) when compared
to the Lagrangian of the SM leptons arise from the mass-Lagrangian included
in L4, which will be introduced explicitly in Sec. 4.3 below.

4.2.2 Weak currents for the SU(2) adjoint Weyl fermions

The second ingredient in the general DM model are the left handed SU(2) adjoint
Weyl fermions. These have a major role in the unification of SM gauge coupling
constants, which was considered in in Sec. 3.4.1. Also a right handed singlet
Weyl fermion is introduced, which does not affect the SM gauge unfication but
is crucial for the dark matter scenario. The Lagrangian density of the Weyl
fermions is then

Lag = iw'e"D,w +iB0"0,8" + Laan (4.4)

where w = (w!, w?, w?) is the left-handed triplet, 37 the right-handed singlet
and " = (1, —7) and o = (1,0) with & presenting a vector constructed from
the Pauli matrices. The covariant derivative D), in the component form is

D¢ = 0,6 4 ge™ AV, (4.5)

where [T, = —ie® are the SUL(2) generators in the adjoint representation.
That is, the field w transforms as a triplet under SU.(2) and is a singlet under
hypercharge. The field 37 is singlet under all SM gauge groups.

Next these 2-component fields will be written in a more familiar 4-component
form, as charged Dirac and neutral Majorana fields. This makes the calculation
of the annihilation cross sections straightforward since the usual Dirac matrix
machinery is then available. We start by finding the charged states. Since
the charge operator is Q = T + Y and the w field is a hypercharge singlet the
eigenstates of diagonal weak isospin 7" generator are also the charge eigenstates.
In the adjoint representation the diagonalizing matrix of T is

1

1 0 L1
V2 V2
0 1 0

After the diagonalization' the eigenstates are

1
w* = —=(w' Fiw?), w’=uw (4.7)

V2

which have the electromagnetic charge +£1 and 0, as the notation suggests. Using
these fields one easily finds the kinetic terms

w0, = iwt e ot + iw e 9w + iw"ad,u’ . (4.8)

'Diagonalization is done by wDDIT3DDw where the eigenstates are Dfw

41



Similarly the gauge interaction term becomes

Loange = igeabcwaT5“Ach (4.9)
Wi —-wr 0 wt

= g(wtw )" | -W,; 0 Wi w? ] (4.10)
0 W, —Wj’ wo

where the charged gauge bosons are defined as usual: W = (A], FiA%)/v2. All
expressions can then be transformed from the Weyl notation to the 4-dimensional
Dirac notation by defining Dirac spinors carrying negative and positive charges:

wp = ( (w%:)Td ) , wh = ( (ww:)m ) . (4.11)

Similarly the neutral 4-component Majorana spinors can be defined:

why = ( (wlg%m ) , Bu = < g& ) . (4.12)

These satisfy (wp,)¢ = w},, (wl,)¢ = wl, and (Bx)° = Bas. Since only one of the

charged spinors can be treated as an independent degree of freedom, everything
can be written using only w9, 3ys and either of the charged Dirac-spinors w,%.
Setting wp = w, the Lagrangian (4.4) can be written as

Laa = 1Wp Pwp+iwn Pwn + iy P Bur + Laan
+ g (WHoyv'wp + W, wpywy, — Wiwpy wp) . (4.13)

The field 3); does not couple to electroweak gauge fields but may mix with the
neutral adjoint state through the mass terms represented by Laqn in Eq. (4.17).
The desired charged and neutral currents can be read from Eq. (4.13):

Ly = gWiwy~y"wp+ W, wpy*wy,), (4.14)
EZ = gcosHWZ“va“wD,
Ly = eAupy'wp.

It is important to note that the field w9, does not couple to the neutral gauge
boson Z,. Therefore, if the DM particle is dominantly a w$, — [y-mixture
only the charged current processes will have significant role in the dark matter
analysis.

4.3 Effective mass terms

To obtain the mass terms for the fourth family leptons, SU(2) adjoint particles
and for the singlet, an effective Higgs doublet is introduced to the model. This
procedure is practical and natural since the more complete ultraviolet ETC-
theory presumably manifests itself as an effective Higgs-like model in low ener-
gies, as previously discussed in Sec. 3.3.
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4.3.1 Mass terms for heavy leptons

For the effective Higgs couplings to the 4" family leptons and to charge neutral
singlet field 3,;, the following gauge invariant effective interactions, including
dimension five operators, are introduced:

£4.f,H = yEELHER+h.c.
-+ CDI_JLHN-ﬂR—i_h-C.

n %@cﬁ)(ﬁ%) +he.. (4.15)

Here H = i72H* and yg, Cp and C}, are some dimensionless coupling constants,
and A is a suppression factor related to the more complete ultraviolet theory,
expected to generate the full flavor structure emerging above the electroweak
scale. The first term is the usual SM-like Yukawa term which gives the Dirac
mass term for the charged leptons. The second term is an SM-like Yukawa
coupling of the left handed neutrino and the singlet which generates a Dirac
like mass term that mixes the neutrino and the singlet states. This coupling
could be considered to give the left-right Dirac mass term if the right handed
singlet is interpreted as a right handed sterile neutrino®. The last term is a non-
renormalizable dimension five operator which produce the left handed Majorana
mass terms for the neutrinos.

Note that the interactions in Eq. (4.15), as well as the other terms in Eqgs. (4.2)
and (4.13), are invariant under Zs symmetry transformation, in which £ — —F,
N — =N, f — —f and w — —w. Such interactions, Eqs. (4.15), (4.2)
and (4.13) as well as the following Eq. (4.17) below do not connect the ad-
joint fermions to ordinary matter and hence do not endanger the stability of the
DM candidate.

After the spontaneous symmetry breaking (SSB) where v2H — (0,v + h)”
Eq. (4.15) becomes

_ h
£4.f7H Si? ngDED (1 + ;)
BN
m — — h
+ L2 BNy + B Nr) (1 + ;) the.
MY _ I 2
+ ENuNu (1 + —) , (4.16)
v

where the masses are mg = ypv/v/2, m%N = Cpv/v/2and MY = Crv?/A and v
is the vacuum expectation value (VEV) of the effective Higgs field h. Note that
(Np)¢ = Ny Here and in the following the shorthand 4-component notations
Np = Ny = (No, 00T, Ng = Nyg = (0, NOT 09 = wl,;, = (w?,0)7 and
Br = PBur = (0, 3)T are used.

2Note that the pure right-handed Majorana mass term for the singlet is given, in connection
with the mass terms of SU(2) adjoint Weyl fermions, below.
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4.3.2 Mass terms for the SU(2) adjoint Weyl fermions

For the Higgs couplings to the SU(2) adjoint particles, to 4'® family neutrino and
to singlet (), with mixings, the following effective interactions, which include
dimension five operators and also respect the Z,-symmetry, are considered:

A
Lpagu = ILHTwwH—l—h.c.

+ wa{Tu)LL + h.c.
A
+ TDﬁHTa}H +h.c.
A
+ TRﬁﬁHTH +he, (4.17)

where w = w*7® and 7% = ¢%/2 in terms of the Pauli matrices. The suppressing
scale A is as in Eq. (4.15). When v2H — (0,v + k)T, Eq. (4.17), written in the
4-component notation, becomes

Laan B (MPwpwp + A;[ww(])wwM) (1 + h>2
+ iy (W N, + W) Ng) (1 + %) + h.c.
b G+ B (14 2) 4 b
- MgﬂMﬂM (1 - h)2, (4.18)

where M¥ = A\pv?/4A simultaneously gives the mass of the charged wp field and
the Majorana mass of the state w3, constructed from the adjoint triplet. Dirac
like mixing mass terms are m%Y = y,0/2v/2 and m2” = Apv?/2A. Finally
Mg = Agv*/A is a right-handed Majorana mass for the 3y,-field.

In the above scenario the singlet field 3), interacts with the SM-like Higgs
state through the term in the last line of the Eq. (4.17) (and Eq. (4.18)). Alterna-
tively the (5, field can receive its mass in a dynamical symmetry breaking from
the VEV of a new weak SU(2) singlet field S, which can plausibly emerge from
a more complete extended technicolor theory. The gauge- and Zy symmetric
interaction Lagrangian for 1 and S is

Los = yaS85+he. % TRG, (14 2) (4.19)

S

where, after the symmetry breaking in which v/2S — v, + s, the mass My =
V2yrvs with v, being the VEV of the singlet S. In the dark matter density
calculations the (j/-mass generating scenario using the last line of Eq. (4.18)
will be refered as scenario I and the one using Eq. (4.19) as scenario II. The
change from the scenario I to the scenario II can be done by replacing the last
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line in Eqgs. (4.17) and (4.18) with Eq. (4.19). Of course a combination of the
two scenarios could also be studied, but this case is not considered in this thesis.

Finally note that similar to [71], gauge invariance allows us to write a Yukawa
couplings

yo, H' (it*)wL; + y5H" (it?) BL; + h.c.
v+h

V2

where the L; is generation ¢ SM lepton doublet. These kind of terms would
endanger the stability of the dark matter particle since they couple SM fields
to the adjoint w fields so that the w fields and thus the possible dark matter
particle could decay to lighter SM particles. However, these terms are forbidden
by the postulated Z5 symmetry as the SM model fields are thought to be singlets
under Z,.

[y, (V2w e; + w'v;) + yjBui] + hec. (4.20)

4.4 Mass mixing

In the following section the mass terms of the neutral particles Ny, wS, and By,
introduced in the previous section, will be collected to form a general mixing
mass matrix, and the many consequences of the diagonalization of this mass
matrix will be considered, such as different mixing scenarios, the mass eigenvalue
positivity, gauge couplings and effective Higgs couplings in the mass eigenbasis
and the Majorana nature of the dark matter particles in the context of Feynman
rules.

4.4.1 General mass mixing

The general 3 x 3 mass matrix of the new neutral Majorana particles can easily be
formed by collecting all but the first (involving charged fields) mass terms from
the equations (4.16) and (4.18). The resulting matrix in the four component
notation reads

1/ — MY mpN mlY Np
['mass = 5 < NR w% ﬁR ) m%N MEU m%w ’LU% + h.c. (421)
m?N i My Br

This mass matrix induces an analogous mixing pattern to that described by the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in the 3 x 3 light neutrino
mixing. This mixing matrix differs from the usual Cabibbo-Kobayashi-Maskawa
(CKM) matrix in the quark mixing in that it includes extra Majorana phases.
Note that in the present case the mixing matrix appearing in charged weak
currents is a retangular 2 x 3-matrix. To clarify this issue let us briefly discuss
about the general N x N mass mixing.
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In general a complex N x N mass matrix (M’) has 2N? independent real pa-
rameters and it can be diagonalized by a biunitary transformation: VLT M'Vy =
M, where the two diagonalizing unitary matrices VLT and Vi have N? indepen-
dent real parameters each. Furthermore the N? independent real parameters of
the general diagonalizing N x N unitary matrix can be divided into N(N —1)/2
mixing angles and to N(N + 1)/2 phases. Yet not all the phases are physically
observable. The physical effects of the mixing are seen in the weak gauge inter-
actions and except these weak current terms the Lagrangian is invariant under
global phase transformations of the fields. Thus a number of the phases in the
generic diagonalizing matrix (which appears in the total mixing matrix in the
weak currents) can be eliminated by this rephasing of the fields.

In the studied case N = 3 but actually the mixing matrix seen in the weak
currents is not precisely unitary, but rectangular 2 x 3 matrix since in this case
we have only two charged Dirac fields £p and wp to accompany with the three
neutral fields, in contrast to the three (flavors of) charged fields in the usual
lepton or quark mixing. Still, the treatment of the mass matrix diagonalization is
similar to that of three Majorana neutrino 3x3 mixing. Indeed, the diagonalizing
unitary matrices in these cases are the same. The retangular mixing matrix,
which appears in the weak currents, is then formed by taking just the two upper
rows of the 3 x 3 diagonalizing (mixing) matrix. These issues are considered in
more detailed in [72].

It turns out that in this case there are 3 mixing angles and 5 phases of which
two phases can be eliminated by making suitable global phase transformations
for the charged fields. Note that the neutral fields cannot be rephased since
the mass Lagrangian contains Majorana mass terms which are not invariant
under these phase rotations. So the final unitary matrix which diagonalizes the
Eq. (4.21) mass matrix has 3 mixing angles and 3 physical phases which can
be divided using the usual terminology into one Dirac phase and two Majorana
phases. Standard parametrization for this matrix is:

Unie = UpUns = (4.22)
C12C13 $12C13 s13€ 7001 10 0
9 10 i\
—5812C23 — C12523513€"°%  C1aCa3 — S12823513€"1 $23C13 0 e 0
9 9 i\
S12523 — C12C23513€"°®  —C12S923 — S12C23513€"% C23C13 0 0 e

Here Up matrix is the usual CKM matrix and the diagonal Uy, contains the
additional Majorana phases. Further, ¢;; = cosv;; and s;; = sin®;; where the
three mixing angles 0 < 9);; < /2 refer to the rotations in ¢, j-plane and the CP-
violating Dirac and Majorana phases are restricted to 0 < d13 < 27, 0 < \; < 27
respectively.

Further reduction of the mixing matrix can be done only by making further
approximations on the mass matrix. For example the assumption that the mass
terms are real drops all the phases out of the diagonalizing matrix. This is
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the scenario which will be considered in this thesis for simplicity. Still, the
mass eigenvalues might be negative, and to overcome this problem an additional
diagonal phase matrix p is introduced. These phases are related to the Majorana
phases of the Majorana particles and they contribute to the definition of the
intrinsic CP-parities of the mass eigenstates.

There are two possible ways of dealing with these p-phases. Either the di-
agonal phase matrix is divided to two taking a root of the original matrix, so
that the phases will be integrated to the diagonalizing unitary matrix. In this
case the field operators are independent of the phases but the phases will appear
explicitly in the vertex Feynman rules. Another possibility is that the phases
are substituted to the field operators whence they become the Majorana phases
of the particles. An approach similar to the former case, restricted to the 2 x 2
mass matrix, was studied in [67]. In this work the latter option is used and will
be explained in more detail.

To calculate the dark matter density from the Lee-Weinberg equation the
dark matter annihilation cross sections are needed. To define these cross sections,
the weak currents and the effective Higgs couplings need to be rewritten in mass
eigenbasis and thus the diagonalization of the mass matrix and the relations
between the mass and flavor states need to be specified in detail. These will be
done next.

4.4.2 Mixing and couplings

The diagonalization of the mass matrix M. presented in Eq. (4.21) can be done
by using Upix from the Eq. (4.22). Since Majorana mass matrix is symmetric
M ipass = ]\/[nTmss it can be diagonalized with transformation UnTﬁX]\/[massUmiX =m,
where the mass eigenvalues are m; > 0.

Yet, if the mass matrix is expected to be real; M. = M, ., the matrix
Unix further reduces to an orthogonal matrix Op which is just the Up from
Eq. (4.22) without the Dirac phase factor. So the general real and symmetric

mass matrix can be diagonalized as
OF MyassOp = m/ = diag.(X;, X, \b), (4.23)

where M\, is the ¢'th mass eigenvalue, which still can be positive or negative.
To ensure that the physical masses are positive, a diagonal phase matrix p is
implemented, so that m’ = pm and the p;:s are chosen such that masses m;
are always positive. These p;’s are the phases mentioned in the end of the last
section and they will have important effects on the results as will be clarified in
the following sections.

Now, by using the relations OLOD = OLO0p =1, pp' =1 and the notation
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Qr = (Npwh )T, Eq. (4.21) can be written in the form
1— 1—
Lomass = §QRMH‘1&SSQL + §QLMmassQR

1—
- 5 QRODPPT Og MmassODOg QL

1—
+ §QLODOngaSSODPTPOgQR

1
= §me , (4.24)
where the m is the diagonal mass matrix with positive mass eigenvalues and the

mass eigenstates are defined as
X =Xz + Xr = Op, + pOpQlg, (4.25)

which obey the Majorana condition x§ = p;x;. From Eq. 4.25 can be immedi-
ately inverted

QL = ODXL, QR == ODpXR . (426)

Now the weak currents and the effective Higgs couplings can be written in the
mass eigenbasis. Still, at this point one should notice that the phase factors
p; appear in the mass eigenstates, or inversely in flavor states, and thus will
influence the gauge and Higgs couplings when these are represented in mass
eigenbasis. But before proceeding to these couplings let us comment the relations
for solving the mass eigenvalues using the mixing angles.

To specify the mass eigenvalues and the mixing angles the mass terms in the
original mass matrix need to be specified. Finding the relations and particularly
the inverse relations, giving the original mass matrix in terms of the eigenmasses,
mixing angles and p-phases in the case of a general 3 X 3 mass matrix is intricate
and thus the explicit relations will not be given here. In general the diagonal-
ization is easily done numerically. However, the relations for eigenvalues and
mixing angles to the original mass parameters will be presented in an example
case of 2 X 2 mixing in Sec. 4.4.4.

Mixing and gauge couplings

Using the Eqgs. (4.3), (4.14) and (4.26) the weak currents of the heavy leptons
and of the SU(2) adjoint fermions in the mass eigenbasis become

E}le = %[WH— (OllEL’Yﬂle + OlgEL’y‘uXQL + 013EL'7MX3L) + hC] , (427)
Ez.f = ﬁzu[(On)QXEL”Y“XlL + (012)2X5L”Y“X2L + (013)2X§L7MX3L +
w
012011 X2(A21 + B217”)v*x1 + O13011X3(As1 + Bsiy’)v'xa +
013012X3(As2 + B3275)7”X2] ) (4.28)
Ly = gW, [051wpy" (A1 — B1y°)x1 + On@Wpy"(As — Boy®)x2 +
OQg@D’YM(A;g — Bg’yS)Xg] + h.C. s (429)
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where the real matrix elements O;; are the elements of Up from Eq. (4.22)
without the complex phase factors; exp(+idi3) — 1, and

1 1
Ay = 5(1 —pi;) and By = 5(1 + pij), (4.30)
1 1

where p;; = pip;. It should be emphasized that w9, does not couple to the
Z-boson and thus if the WIMP is dominantly w9, — 33 mixture the charged
current will control the dark matter abundance.

Mixing and Higgs couplings

Further, using the equations (4.16), (4.17), (4.19) and (4.26) the couplings to
effective Higgs can be reduced to

g _ -~ _
Ly = —=——|ClhXIX1 + CohXoxz + CluhXxs +
2 My
h2 h2 h2

%hQXHXl + %h%{z)@ + %hQXEX:s +
Clhxi (Bia — Ay x2 + Clshxa (Bis — Ay?)xs +
CoghXa(Bas — Asg¥)xs| + .-, (4.32)

where My is W*-boson mass, v = 2My, /g is the vacuum expectation value
of the Higgs boson and the projection factors A;; and B;; are as defined in
Eq.(4.30). The mixing angle, mass and phase factor dependent coefficients Cj;
are specified in Table 4.1. The dots refer to the terms which do not affect the
tree level matrix element calculations and are thus left out from the expression.

The equations (4.27)-(4.32) include most of the information needed to calcu-
late the annihilation matrix elements. Yet the Majorana nature of the particles
and the phases p;, as previously mentioned, will have further consequences for the
calculations. These will be considered in the following section. From Egs. (4.27)-
(4.32) it can be seen, that the interaction terms get coupled with mixing angle
dependent factors (O;;) in the mass eigenbasis. These factors, when small, are
responsible of the reduction of the coupling strengths which subsequently causes
the decrease of the annihilation cross sections. This suppression of the anni-
hilation cross sections from the standard weak interaction strength enables the
increase of the dark matter density as explained in the end of the Chapter 2.

4.4.3 Accounting for the mixing phases

The matrix element calculations are much more laborious with general mixing
Majorana fields than with the usual Dirac fields, in part because general Feyn-
man rules are lacking in the case of mixing Majorana fields. The p-phases affect
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Scenario I Scenario I1
C{Ll ml(% - ) ml(% - 01011031 - —PlO )
ch, ma(3 — ) my(3 — W;EN p2012032 — %—502 52)
Cls ma (5 — ) ms (3 — " —P3O 5)
C{Lf 011 ml(% m% le p1O 1)
Ch Gy ma(3 — bt s 22p203)
C?}f?f Cly m3(% m% §mp3033)
C{Lg my[— n:,%N p1(011035 + 012031)] | ma[— n:,%N 1(011032 + 012031) — 2%—%01031032]
Cly | mi[— nﬁv p1(011033 + 013031)] | mu[— o p1(011033 + 013031) — 2]‘”{—%01031033]
ng mz[—%Pz(Ole&s + O13037)] | mao[— - 2(012033 + O13037) — 2%—%02032033]

Table 4.1: Shown are the coefficients of the different type of composite Higgs -
X -interactions from the both $-mass generating scenarios.

non-trivially the calculations and the number of possible contractions increases
dramatically because of the Majorana nature of the particles. To clarify these
issues, some explicit Feynman rules for mixing Majorana fields with non-trivial
phase matrix will now be given, including the in- and out-state and propagator
Feynman rules. Also the general features of the p-phases will be discussed. Fur-
ther, in the Appendix an explicit example of a detailed calculation of a matrix
element is represented.

Feynman rules. According to definition (4.25) x° = px. This means that the
phases p; must appear in the Majorana field operators, which now become

—dgk a —ikx AT ikx
Xi = ;/ (271-)3 [&hkiuhi(k)e +pi@hkivhi(k)€ , (4.33)

where the sum is over the helicities h. This operator gives rise to the following
nontrivial contractions in the momentum space Feynman rules:

A1 — - At ks
Xithpi = Uhi (p)  and Xihpi = PiVhi (p)
a ] e ) 7 d a Z_Z =u 7 . 4. 4
Ahpi X4 PiVh (p> an Qhp Uh (p) ( 3 )

Only the first two of these will be needed in computations because in all processes
these WIMPs appear in the initial state only. In Majorana case one also has
four different internal contractions, or propagators:

Xi(@)xi(y) = 1Si(z —y)
i ()} (y) = iSi(z —y)(=pC)
Yi(@)xi(y) = (p;C)iSi(z —y)
(v) = (piC)iSi(x —y)(—=p:C), (4.35)
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where iS5;(x — y) is the standard Dirac propagator for the mass eigenstate ¢, and
C' is the usual charge conjugation matrix. Note that above Feynman rules can
be used for particles with general N x N Majorana mixing as long as the mass
matrix is real and symmetric. In that case 7 =1,..., N.

p-phases. Of course the original mass matrix defines uniquely the mass eigen-
values and their signs and thus especially the phases p;. As seen previously these
phases appear in several relations and thus appear to have consequences for the
model predictions. Indeed, accounting for the mixing phases is relevant. Al-
though the individual phases p; are not physical observables, the relative phases
pip; = pi; are®. They show up explicitly in the calculations, as in weak gauge-
and Higgs couplings, and they define physically distinct regions in the model
parameter space. Although these phases are thus relevant, their consequences
have not been appreciated in the literature before. To demonstrate the effects
of these phases an explicit example is considered in next section.

One way of exploring the physical parameter space of the model is by us-
ing directly the physical mass and mixing angle values in the calculations. But
in this case the relations between the physical parameters and the original La-
grange parameters is not always clear and physically different cases can easily be
lost. The control of phases can be very difficult in this case. A second and more
straightforward way is to make a Monte Carlo analysis for the Lagrange param-
eters. From every given parameter set the physical parameters can be solved
and then the suitable physical parameter space of the model can be constructed
by excluding those parameter regions which do not produce right dark matter
abundance or do not satisfy experimental constrains following from collider or
dark matter search experiments. The former case is considered in articles [II]
and [III] and the latter method is more suitable to be used in the general 3 x 3
mixing model.

Instead of going deeper into the consequences of the phase matrix p and the
diagonalization of the general 3 x 3 mass matrix, let us consider simpler mass
scenarios which can be obtained from the 3 x 3 in certain limits. These examples
are easier to deal with and yet they include the additional p phase matrix so
that the implications of these phases can be studied explicitly. These are also
the mass mixing patterns that appear in articles [II] and [III].

4.4.4 Example: 2 X 2 mass mixing

Within this example the mass mixing patterns appearing in articles [I]- [II]]
will be constructed. There are three different cases to be studied. The first
article [I] considers the most trivial mass scenario were the dark matter particle
has either a pure left handed Majorana or a pure Dirac mass term. This analysis
will be left last. The articles [II]- [III] consider 2 x 2 mixing. In what follows

3In general N x N mixing there are N — 1 physically distinct relative phases p;;. This can
be seen for example by noting that general N x N Majorana mixing includes the Majorana
phase matrix with V — 1 phases which can be rendered to form the total p-phase matrix.
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the other member in the 2 x 2 mixing is always the singlet § and the mixing
is named by the representation in which the other state is assembled under the
weak interaction.

2 x 2 Doublet mixing

The article [II] considers a general 2 x 2 heavy neutrino DM mixing. The studied
2 x 2 mixing scenario can be constructed form Eq. (4.21) by setting certain mass
terms to zero so that the mass term becomes:

. - MY o0 mPY Ny,
Los =5 ( NawfBa ) | 0 My 0 W | +he (436)
m%N 0 Mg 1673

When the ( is considered as a four component Majorana neutrino constructed
from the two component right handed sterile neutrino and if M¥ > MY M g, mﬁDN
the consequences of the mass mixing are equivivalent to the scenario studied
in [II]. In this case the very heavy w° field is decoupled from the mixing lighter
neutrino system. Still w® can be part of the total model and enable the unifica-
tion of the SM coupling constants.

Note that the elimination of the certain mass terms can also be considered
from the mixing matrix point of view just as a loss of certain mixings. In the
above case this would mean that m%", m%w — 0 is equivivalent to ¥, 93 — 0.
Remembering that the original mass parameters are chosen to be real, this
indicates that the phases are zero (613 = Ay = Ay = 0) and so the following
mixing matrix is obtained

ciz 0 s13
Unix2 = Upa = 0 1 0 . (4.37)
—s13 0 13
From this matrix the usual 2 x 2 diagonalizing orthogonal matrix Op can be
read from the corners.
To summarize, the 2 x 2 effective mass and the diagonalizing matrices in the
present case are

(MY m?Y _( cost sind
Mmass — < m%N M}ﬁg ’ OD - —<iné cos 9, ’ (438)

where the mixing angle § = 9,3 *. Now using the notation Q;, = (N, 3;)T and
the Myass above the (IV, B)-part of the Eq. (4.36) can be written in the form

1 — — 1
Lmass - i(QRMmaSSQL + QL]\4111assQR) - ime7 (439)

“Note that in the following a notation x = (1, x2)7 for the mass eigenstates are adopted
in the reduced system. More correctly this should be x = (x1,x3)?. Similarly when the
2 x 2 mass and the mixing matrices etc. are considered the elements such as Op 12 should
be understood as Up 13 from Eq. (4.37). This is relevant if one considers the weak and Higgs
couplings. However the new notation is adopted because it is used in papers [II] and [III].
Similar notation will also be used in the adjoint mixing case consider below.
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where the diagonal mass matrix is m = diag(m;, ms) with positive physical mass
eigenvalues. The mass eigenstates ¥ = (x1,x2)?, which obey the Majorana
condition x§ = p;x;, are defined as

X = Xt + Xr = OpQ + pOpQr, (4.40)

where the diagonalizing orthogonal matrix Op is of the form Eq. (4.38) and the
associated mixing angle obeys the relation

QmD

tan20 = ——— .
an PR

(4.41)

Also a new phase matrix p = diag(ps, p2) is introduced to ensure that the phys-
ical masses m, o are positively definite. Indeed, the eigenvalues of the mass
matrix M.s in Eq. (4.38) are easily found to be

1
Ao = S (M + MG/ (MY — M2 + 4 ), (4.42)

but these eigenvalues can be positive or negative depending on the signs and the
relative magnitudes of the MY, M }G% and m%N. Yet by choosing the phases as
p+ = sgn(Ay) the physical masses will always stay positive my = pp Ay = | A4
as required. For the dark matter calculations it will be convenient to express
everything in terms of the physical mass eigenvalues m; > ms and the mix-
ing angle sin @ instead of the Lagrangian parameters My, Mpr and mp. While
working with physical parameters has obvious advantages, the downside is that
the connection between the physical and the Lagrangian parameters is not al-
ways straightforward as already mentioned in the previous sections and will be

illustrated in the following.

Accounting for the mixing phases

Now the role of the phase-rotation matrix p and the the structure of the param-
eter space of the model will be discussed in detail.

In Fig. 4.1 shown is the parameter space along a plane of some nonzero
value of mp. Now suppose first that Mz + My > 0. Then the eigenvalue A,
(4.42) is always positive and larger than |A_|. Further choose to denote by x
the heavier state, so that p; = p,. = 1 and so the WIMP is always associated
with xs with the mass my = m_. The sign of ps = p_ is defined by the ratio
of m?, and My Mpg: py = —1 if m% > MpMp, and otherwise ps = +1. As
previously mentioned the individual phases are not observable, but the relative
phase corresponding to the product of the two is:

p1P2 = p4P- = P12 - (4.43)

In particular this phase will show up explicitly in the various couplings of the
mass eigenstates. The situation with respect to the product phase is again

93



400
p,p_=+1
200
<)
> 100
() e
S o
o
=
-200 [A +|>|)\_| J
NI
-400 | |
-400 -200 200 400

0
M, (GeV)

Figure 4.1: Shown is a constant-mp slice of the mass parameter space, which is
divided into physically disjoint regions by the sign of the effective phase pyp_.
The physical parameters are invariant under the mirroring symmetry with re-

spect to the line Mg = — M.
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illustrated in Fig. 4.1: p,p_ is positive in the upper right corner separated by
the black solid line and negative elsewhere in the region Mz + My > 0. From
Eq. (4.41) is seen that tan20 becomes infinite along the the line M, = Mg,
corresponding to a maximal mixing |#| = 7w/4. The mixing angle is defined
to be zero in the limit Mg — My > |mp|, whereby 0 < |0| < 7/4 below and
w/4 < |0| < 7w/2 above the line of maximal mixing. The sign of the mixing
angle is determined by the sign of mp. Physically, in the region below the line
of maximal mixing, the WIMP is predominantly a sterile right chiral state while
in the region above the line it is predominantly a left chiral state with ordinary
weak interaction strength. It is thus clear that the area of most interest in this
case is the rightmost quadrant bounded by the diagonal lines in the phase space
in Fig. 4.1. Now consider the case Mr + M, < 0. In this area A\_ is always
negative and |A_| > |A;|. Thus, in this region the heavier state (which is always
chosen to be labeled with N;) has to be associated with N_, while the WIMP
is always the now lighter N, = N,. Here is always p; = p_ = —1 while the
sign p; = p; again depends on the relative magnitude of My Mg and m?%; the
resulting division to distinct areas according to the sign of p1o = p_p, is again
shown in Fig. 4.1. There is an obvious symmetry in the phase space about
the reflection along the line My + Mz = 0. Indeed, all that happens in this
reflection is that the eigenvalues A1 and their associated eigenstates exchange
roles, but all physical parameters 6, m;, my and p;o remain invariant. That is,
the reflection corresponds to a mere relabeling 1 < 2 as the two regions can be
mapped to each others by a redefinition of the phases of the states. Thus the
region My + My, > 0 is considered from now on. Nevertheless, for each triplet
of physical mass and mixing parameters mi, my and 6 the original parameter
space contains two physically distinct solutions labeled by the relative phase pis.
In what follows, the results will be given always for both possibilities.

This subsection is concluded by noting that all the typical special cases are
contained within the p;o = —1 portion of the parameter space: the pure left- or
right-handed Majorana states correspond to Mr = 0 and My = 0 axes in the
plane mp = 0, respectively, while the M, = 0 and Mg = 0 planes for nonzero
mp correspond to usual seesaw scenarios. Finally the Dirac limit corresponding
to the axis M = Mg = 0 is also contained only in the p; = —1 domain. It is
perhaps due to this reason that the other domain with p;o = +1 has so far gone
unnoticed in the literature.

Mass mixing and couplings

The WIMP couplings to weak gauge bosons and to the effective Higgs boson
now follows from equations (4.27)-(4.32), when the mixing limits specified at
the beginning of this section are taken. They naturally reduce exactly to the
couplings represented in the article [II] in Sec. 2.3. Using these interactions the
annihilation cross sections can be computed.
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2 x 2 Adjoint particle mixing

Also the mixing matrix studied in article [III] can be obtained by a similar
treatment as above. In this case by setting m%", m%N — 0 which coincide with
V12,3 — 0 (and again requiring the phases to be zero) the mass matrix and

the mixing matrix becomes

MY 0 0 1 0 0
M = 0 MY m |  Unxs= | 0 ¢ 05 | . (4.44)
0 my’ M 0 —s23 3

The resulting 2 x 2 mixing pattern arises when MY > MY M }g, m%w, and the
mixing matrices are of the same form as in doublet (neutrino) mixing case and
thus the accounting for the mixing phases are similar. Yet the couplings to
gauge bosons and to effective Higgs boson are not the same. Instead, taking the
mixing limits specified above, the equations (4.27)-(4.32) reduce to couplings
studied in article [III] in Sec. I1.D, which are different from the doublet mixing
case.

Pure Dirac/Majorana mass terms

Finally the pure Dirac and pure left handed Majorana neutrino cases are consid-
ered. In the general 3 x 3 mass matrix all but m}," or MY mass terms are now set
to zero (or if considering that the adjoint state and the singlet state are present
then assuming that My and M g are very large). In both cases no mixing angle
dependence nor p-phase dependence appear in couplings since there is no mass
mixing. In this case the heavy neutrinos are SM-like neutrinos, with pure Dirac
or pure left handed Majorana mass terms, with standard weak interactions and
standard (effective) Higgs interactions.

Since no mixing angle dependence exists the annihilation cross sections are
not suppressed from the standard weak scale. As discussed in the Sec. 2.3.2
the standard weak scale annihilation cross section is not suitable to produce the
correct dark matter density if standard radiation driven expansion is considered.
This is because the too large cross section lets the annihilation of the particles
proceed for too long, leading to a too large reduction of the particle density
before the freeze-out. Thus to obtain the correct dark matter density this model
needs a quintessence mechanism or something equivalent to boost the early
universe expansion so that the freeze-out may occur earlier to allow the particle
abundance to freeze in an acceptable level. This model, including quintessence,
was studied in article [I], but the model is now essentially ruled out by the direct
cryogenic DM search results as shown by the XENON10 collaboration in [52].
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4.5 Results

Here a brief summary of the results presented in articles [II] and [III] will be
given.

The relic DM density is in general dependent of the WIMP mass, the mixing
angle(s), phases p;;, the Higgs mass and the f-mass scenario. Also the mass(es)
of the charged state(s) (Fp,ws) and of the other neutral state(s) (y;) affect
the final density of the lightest stable DM particle. However, these are less
important parameters because these masses appear only in propagators in a
sub-class of graphs in the annihilation cross section matrix elements. The mass
hierarchies may be limited by experimental constrains such as the EW precision
data. These aspects are considered in some detail in the Sec. 4.6. For further
details see articles [I]- [IT1].

Doublet mixing results

Given the annihilation cross sections following from the results given in Secs. 4.4.2,
4.4.3, and 4.4.4 and Eq. (2.38), the density parameter values for the mixing 42
family heavy neutrino dark matter can be solved from the Lee-Weinberg equa-
tion (2.41) together with the Eq. (2.44). The favorable constant density param-
eter {2y contours as a function of the WIMP mass and mixing angle are given in
Figs. 4.2 and 4.3 in the different [3-mass scenarios, p-phases and with different
Higgs masses. The Q) values shown with thick solid and dashed contours are
the ones consistent with the present DM density constraints given by the cur-
rent WMAP results. In figures also plotted are the exclusion regions following
from the LEP data (yellow areas) and the XENONI10 results [52] (red areas)
and moreover from the upcoming XENON100 updates (red lines). These con-
straints are discussed in more detail in Sec. 4.6. In conclusion the model gives
correct dark matter density for a wide range of parameters but the cryogenic
dark matter search experiments have started to constrain the parameters in an
interesting way, and the model may be either verified or ruled out already by
the XENON100-1T upgrades.

The form of the density parameter contours shown as a function of WIMP
mass and mixing angle in Figs. 4.2 and 4.3 basically reflect the inverse cross
section as a function of WIMP mass. The first dip (peak) in the contours
(cross section) follows from the WIMP annihilation to the fermionic final states
through the Z-boson exchange, so that as the cross section gets bigger in the Z-
pole, the mixing angle needs to be suppressed to obtain the correct density. The
second general characteristic seen in the contours is the opening of the W-boson
final state channel in WIMP mass ~80 GeV (Until this WIMP mass region
the fermion final states define the final WIMP density). When the W-boson
final state channel opens the cross section increases again and so the mixing
angle needs to be decreased to set the correct DM density. This overall effect is
partially disguised by the Higgs exchange and the Higgs pole, which results in
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Figure 4.2: Shown are the constant {2y contours as a function of the mass and
the mixing angle. The area between the contours with 2y =0.19 and 0.24 is
consistent with the WMAP results for the dark matter density. In both panels
mpy = 200 GeV was used. Thick solid lines correspond to the mass scenario II
and thick dashed lines to the mass scenario I. In left panel p;3 = 41 and in right
panel p;s = —1. Thin dotted contours show further contours for the scenario II.
The yellow (light shaded) area is excluded by the LEP limits and the red (dark
shaded) area is excluded by the XENON10 [52] limits. The red dash-dotted lines
show the predicted sensitivity of the XENON100 (upper line) and XENON100
update (lower line) as given in ref. [76].

the second dip in the contours. The last drop after second peak in the contours
follows from the opening of the Higgs boson final state channel, which once
again increases the cross section whereby the mixing angle needs to get further
suppressed to obtain the correct density. Note that in the Fig. 4.3 this effect is
not seen since the parameter space is only shown up to mwmnp = 420GeV which
is less than the my = 500GeV at which point the new Higgs channel opens.

Adjoint mixing results

Similarly to the doublet case, the adjoint DM results are given in Figs. 4.4
and 4.5 as favorable density parameter constant contours in the plane of adjoint
WIMP mass and mixing angle again in different mass scenarios, p-phase cases
and with different Higgs masses. The DM density parameter values shown with
thick solid and dashed contours are again the ones consistent with the current
WMAP results. Also plotted are the exclusion regions following from LEP data
(red lines) and the projected LHC data (green lines). These constraint curves
are discussed in more detail in Sec. 4.6. Different curves correspond to different
ratios for the neutral state masses, the lighter of which is the WIMP. Thick solid
lines correspond to the ratio A = my/msy = 2 which is used also in the density
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Figure 4.3: Same as in figure 4.3, but now for my = 500 GeV.

contour calculations. The dashed and dash-dotted lines corresponding to cases
A =4 and 1.5, respectively, show the trend that the bigger the mass hierarchy
the weaker the constraint. The blue horizontal lines give the limits above which
the charged adjoint particle is lighter than the neutral state: m%, < mwmp.
That area is excluded because in this case the dark matter particle would be
charged. Once again the thick solid, dashed and dash-dotted lines correspond to
mass hierarchies for the neutral states defined by A = 2, 4 and 1.5 respectively.
Also in this case the conclusion is that the model gives correct dark matter
density within a rather large parameter space and that collider experiments can
constrain the model parameter space quite efficiently and that the model may be
either verified or ruled out either by the LHC or in the upcoming XENON100-1T
experiments (discussed in the next section).

Also in this case a few words should be said about the characteristics of the
density parameter contours shown in Figs. 4.4 and 4.5. The clearest difference to
the profiles in the previous doublet mixing case follows from the lack of WIMP-
Z-boson coupling in the present scenario. Indeed, in these figures there is no
Z-pole dip in the contours; the only dip visible here comes from the Higgs pole.
Further, the suitable parameter space of the WIMP mass start only from the
region where the channel to the WW-boson final states opens. Basically the en-
tire contour curve shape is determined by the W-boson final state and H-boson
effects in the cross section. So to obtain the correct density value the mixing
angle needs to be suppressed to compensate the increase of the cross section as a
function of the WIMP mass which follows from the opening of the I/-boson final
state channel. Small corrections to this picture follow from the contributions to
the cross section when the Z-boson and H-boson final states open up.

A final note to the results: as discussed in the end of the Chapter 2 the
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Figure 4.4: Shown are the constant €2, contours as a function of WIMP mass and
the mixing angle sin § with p;o = —1. Scenario I is shown by thick black dotted
lines and scenario II by thick solid black and thin dotted lines. In left picture
Higgs-boson mass is 200 GeV and in right picture 500 GeV. The area between
the thick lines is favored by the WMAP results for dark matter density. Area
to the left from thick red curve in the left panel is excluded by the LEP limit
My, < 104.5 GeV, assuming my/mge = A > 2. The dash and dash-dotted lines
shown the same limit assuming that A = 4 and A = 1.5 respectively. Similar
(green) curves on the right panel show these constraints assuming an improved
limit m,,, < 200 GeV. The (blue) horizontal lines are the upper limits for the
sin § coming from the requirement that my < m,,,, where the thick solid, thin
dashed and thin dash-dotted lines again correspond to the cases A = 2, 4 and
1.5 respectively.

dynamical dark energy can have an effect to the cosmic WIMP density. This
scenario could be considered in both of the above neutrino and adjoint particle
dark matter cases. However, the effect to the results of, say the quintessence
caused kination would be that the suitable density contours would rise in all
figures shown. This is because the increased expansion rate lowers the need
to suppress the cross section and thus the mixing angle would be bigger for a
given target dark matter density. Of course this would result in the acceptable
values moving into the zone excluded by the observations. Thus the effects of
quintessence type expansion seem to actually be undesirable for these models.
However, seen the other way around the effect of the quintessence could be to
enlarge the allowed parameter space of the model, essentially to the entire region
between the contour with 2 ~ 0.214 and the current exclusion regions this can
be easily visualized in all the results shown in Figs. 4.2, 4.3, 4.2 and 4.3.
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Figure 4.5: Same as in Figure 4.4 but for p;o = +1.

4.6 Constraints

Finally the dark matter models will be confronted with the experimental and
observational data. Although no direct verification of the dark matter particles
exists yet, several experiments efficiently constrain the parameter spaces of dif-
ferent dark matter models, as was already shown in the section above. In the
following the most relevant experimental constraints for the studied dark matter
model will be discussed in more detail.

4.6.1 LEP limits

The first limits to the model parameter space follow from the Large Electon
Positron (LEP) collider data. The data can be used in two ways to constrain
the model.

The first limits come from the measurements of the Z-boson decay width
into invisible/neutral channel® [73,74]. The measured value for the decay width
into neutral particles almost exactly coincides with the decay width predicted
by the three light SM neutrinos. A small deviation in the decay widths, allowed
within the experimental errors, can be considered to be a non-standard origin
arising from the model studied here. Naturally, these constraints apply only
if the WIMP couples to the Z-boson. Since the fourth family neurtino has
such a coupling, a WIMP which is predominantly an N; — # mixture can be
constrained with this method. However, since the neutral SU(2) adjoint state is
not coupled to Z-boson a WIMP which is dominantly a wy —  mixture is not
constrained by the Z-boson decay width data. Thus, depending on the relative
N1 /we composition in the general WIMP, considered here, the model may or
may not get a substantial limits from the Z-decay width.

5An accurate description how to make these constraints is given in [II] in Sec. 4.1.
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The second constraint follows from the non-observation of the new heavy
charged particles in LEP. Essentially the mass of the new charged particles is
constrained to be more than half of the maximum collision energy in the CM-
frame reached in the LEP experiment. This limit, however, only affects the
charged lepton mass. It does not directly limit the heavy doublet neutrino
because the new charged lepton and the neutrino masses are not necessarily
coupled. However, the doublet neutrino, as a component of the WIMP, is ex-
pected to be lighter than the charged partner. The situation is different for
the WIMP containing a nonzero fraction of w. Indeed, since the wy belongs to
w-triplet, the electrically charged states of which form the charged Dirac parti-
cle, the original mass parameters of the wy and w,% states are related, as seen
from Eq. (4.18). Thus limiting the charged state masses one limits also the
wp mass term which, when a dominant part in the neutral mass matrix, also
limits the WIMP mass®. If the general model is considered, the N/wy composi-
tion in the WIMP defines, on grounds of above discussions, the strength of this
constraint to the model parameters. Following the notation in [III] the maxi-
mum CM collision energy in LEP was 2M ~ 209GeV. Thus the charged adjoint
state needs to have mass m%, > M, which constrains the mixings through the
relation m% = |M¢| = |m103, + pramaO03%y + p1smsO3| > M. Of course this
limit becomes tighter as M increases in the course of LHC experiments. An-
other limit follows from requirement that the WIMP has to be lighter than the
charged particle: m%, > mwmnp (mwmp refers to the mass of lightest neutral
mass eigenstate y;). These limits can severely constrain the general DM model.

4.6.2 Cryogenic limits

The direct DM-detection is searched in several cryogenic dark matter experi-
ments. In these experiments using low temperature detectors a signal of the
low recoil energy deposited by the WIMP to nuclide of the detector material
in a soft elastic collisions’ are searched. The most efficient experiments at the
moment are the XENON100 [77] and the CDMSII [78] experiments and they
give the most reliable® constrains to the WIMP-nucleon cross sections.
Constraining the DM model via cryogenic experiments is a highly non-trivial
task, when several aspects related to the detector, the nuclides used, the WIMP-
nucleon couplings and dark matter velocity and density distributions in the
galactic neighborhood need to be considered?. The plausibility of given DM

6An accurate description of how to make this constraint for the 2 x 2 wy — §# mixture is
given in [III] in Sec. IIT.A.

"Also inelastic collisions are studied, but these are not considered here.

8The recent XENON100 results [77] have rised a discussion [79,80] of the positive DM
signal in DAMA [81] and speculative signals seen in CDMSII [78] and CoGeNT [82]. For
now the XENON100 results appear to be most the reliable. Yet there is a recent N-body
simulation work [83], which might give some more consensus between the results of these
different experiments.

9A general procedure how to take account of all of these aspects is given for example in
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model is tested by calculating the expected collision count rate in a DM detector
and then comparing it to the observed counts. No fully confirmed signal has been
observed however!?, and therefore the observations have provided only limits on
the model parameters and therein such as cross section.

To compare the results from different experiments it is most practical to in-
vert the cross sections from the detector-specific WIMP-nuclide cross sections to
the generic WIMP-nucleon cross sections. Of course to do this the nuclear struc-
ture information, implemented to the nuclear form factors, need to be known
accurately. To make the cross section comparisons more convenient, the en-
ergy dependent form factors at the zero momentum transfer limit are usually
employed.

Further, depending on the Dirac or Majorana nature of the DM particle the
WIMP-nucleon interactions may in general proceed through a vector, an ax-
ial vector, a scalar and/or a pseudoscalar coupling. Since in the present case
WIMPs are Majorana particles, only the Majorana couplings are considered here
and thus the vector couplings are excluded. Further, in the non-relativistic limit,
which is the case for WIMP-nucleon interactions assuming the usual WIMP
masses and velocity distribution, the axial vector and the scalar couplings dom-
inate over the pseudoscalar coupling. In the present case the WIMP can have
an axial vector coupling to the Z-boson and a scalar coupling to the Higgs bo-
son. Further, the axial vector current couples to the spin of the nucleus so that a
WIMP-nucleon interaction which proceeds via Z-boson exchange through a axial
vector current causes a spin-flip in the nucleus. This is called the spin-dependent
WIMP-nucleon interaction. The WIMP-nucleon interaction via Higgs boson ex-
change is scalar and it does not affect the spin of the nucleus. This interaction
is called a spin-independent WIMP-nucleon interaction. In the spin-dependent
interaction case the WIMP only sees the unpaired valence nucleons in the nu-
cleus which in general determine the nuclear spin. Thus only the nuclides with
odd number of nucleons (neutron odd or proton odd depending on the nucleus)
are sensitive to the spin-dependent interactions. Further, because of the weak
isospin, the Z-boson couplings to neutrons and to protons are different and thus
in the spin-dependent case the WIMP-nucleon coupling is usually specified to be
either a pure WIMP-neutron coupling or a pure WIMP-proton coupling. Natu-
rally both cases count but usually, depending on whether the nucleus is neutron
odd or proton odd, one or the other is dominating. In the spin-independent
interactions the WIMP sees the entire nucleus coherently. All nuclides are sensi-
tive for the spin-independent interactions however, and no specification between
the neutron/proton interaction is needed in this case. Since the physical nuclear
final states are different for the spin-dependent and for the spin-independent
interactions the corresponding interaction matrix elements cannot be coherently
summed and the interaction channels need to be treated separately. For a typ-
ical WIMPs both interaction channels are possible but one usually dominates

article [II] Sec. 4.2.
10Besides the speculative DAMA [81], CDMSII [78] and CoGeNT [82] signals.
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over the other. Still, in an accurate analysis both channels should be considered.

The spin-dependent WIMP-nucleon cross section!! in zero momentum trans-
fer limit is given by

18GE

J+1
v 'U’IQIuc[aP<SP> + an<Sn>]2—

odp = (O) T

(4.45)

where /iy is the WIMP nucleon reduced mass, a,, and (S, ,) are the nucleon
spin factors'? and spin expectation values for protons and neutrons respectively
and the J is the total angular momentum of the nucleon. In calculations the
EMC measurement values [84] for the WIMP nucleon spin factors are used which
for pure proton (neutron) case is a}% = 0.46 (a®> = 0.34). Correspondingly the
spin expectation values are (S,) = 0.5 and (S,,) =0 ((S,) = 0.5 and (S,) = 0).
Finally J = 1/2 for both cases. For each value of mwpp = m;, where i refers
to the lightest state among the three neutral states, the mixing angle dependent
Oy; factor, defined in equation (4.23) with (4.22), is chosen to give the correct
dark matter density parameter value ., (M4, ij, pij) = 0.214.

The spin-independent WIMP-nucleon cross section, again in zero momentum
transfer limit, is

8G% m2m?

¢ mue g2 2 4.46
7T m%{ /"LnuC ) ( )

Ugl = (02)2

where My is nucleon mass, my is the Higgs boson mass and the mass scenario
and p;;-phase and mixing angle dependent Cl-factor is given in Table (4.1).
The quantity K = (1/muuc) ), (nuc|myqqgnuc) ~ 1/3 is the normalized total
scalar quark current within the nucleon. The sum in the K accounts for the fact
that the WIMP can couple via Higgs to all quarks (valence and sea) within the
nucleon. For the individual currents (nuc|m,qq|nuc) the values given in ref. [85]
is used. Also in this case the mixing angles are always chosen to produce the
favorable cosmological dark matter density €y ,p (M4, Vi, pij) = 0.214.

4.6.3 Other indirect limits

Dark matter may be expected to accumulate for example in the cores of the
Sun and the Earth or in the center of the Galaxy and start to annihilate there.
Thus indirect evidence of the dark matter can be searched via their annihilation
end products such as diffuse gamma rays, charged particles and neutrinos. The
accumulation process and the spectrum of the annihilation products are highly
model dependent and an accurate evaluation of these is not discussed here. Still,

1 Cross sections presented in Eqs. (4.45) and (4.46) are similar to those presented in [I1]
and [52]. However, the mixing angle dependent front factors are here of course more general.

12These are the effective WIMP-nucleon couplings which are dependent on the quark spin
distribution within the nucleons and the nature of the WIMP (in present case the SM-like
Majorana neutrino is considered).
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even lacking the proper treatment of the accumulation and annihilation products
for the model, the results from the indirect dark matter search experiments
from the SuperKamiokande [86] and the IceCube [87] neutrino detectors can
be inverted to limit the spin-dependent and spin-independent WIMP-nucleon
cross sections. Using the model cross sections shown in Eqgs. (4.45) and (4.46)
the model mass parameter space can be constrained using these limits. Such
bounds were established for the 2 x 2 doublet and 2 x 2 adjoint mixing models in
articles [II] and [III] respectively. Based on these analyses, it was concluded that
the complete IceCube detector, with the DeepCore extension installed, should
be able to verify or severely constrain the most general DM model. Performing
the analysis of these constraints in the most precise way possible, is one of the
main aims in the future.

4.6.4 Oblique constrains

The polarization amplitudes of the EW gauge boson, which are most conve-
niently characterized with the oblique parameters S, T and U, as already dis-
cussed in the TC chapter, are affected by the new fermions coupled to the weak
or electromagnetic interactions. Thus the new heavy particles; new leptons and
SU(2) adjoint states present in the studied most general model, contribute to
the S, T and U parameters whose values are highly constrained with the EW
precision data from LEPII. This data can be used to constrain the masses and
the mixings of the new particles. A general precision analysis for the most gen-
eral 3 x 3 mixing DM model is still lacking, but the partial 2 x 2 doublet mixing
model has been tested under the EW data in the article [II] (also the EW tests
within the adjoint mixing model have been discussed in the article [III]). Suit-
able parameter space, consistent also with the precision data, for this model
exists. The oblique parameter limits mainly constrain the mass ratio of the
WIMP N and the charged state £ in the doublet model. The general model
will be tested under the EW data in upcoming article and at this point, based
on the partial model consistency with the data, the acceptable parameter space
for general model is also expected to exist.
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Chapter 5

Summary and outlook

Several lines of evidence support the existence of the dark matter in the Universe.
In the light of the present observations the particle dark matter, and in particu-
lar the WIMP scenario is a very promising alternative to solve the dark matter
problem. In this context recent minimal walking techicolor model motivated
dark matter models have been studied. The minimal walking techinicolor and
the minimal extension of it, which can successfully provide a dynamical origin
for the electroweak symmetry breaking as well as the unification of the standard
model coupling constants, gives rise to natural dark matter candidates such as
fourth family heavy neutrinos and SU(2) adjoint matter. A general model which
combines these two dark matter scenarios has been considered here and numeri-
cal results and predictions in certain limits have been discussed. In general these
models can produce the right amount of dark matter and the dark matter parti-
cles are within the reach of upcoming experiments. Thus, if existing, they may
be detected in near future. One important side result in this thesis considers the
effects of the Majorana phases of mixing particles to the model parameter space.
Because of these phases, which are related to the mass eigenvalue positivity of
the mixing Majorana states, the general physical parameter space of the model
is larger than what usually has been thought.

Future studies include a complete Monte Carlo analysis of the parameter
space, including all experimental constrains, of the most general 3 x 3 mixing
dark matter model introduced in this thesis. Also a formulation of the general
Feynman rules for the mixing Majorana particles is one of the immediate research
goals.
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Appendix

Here an explicit example for calculating the annihilation matrix element includ-
ing mixing Majorana fields is given. The process considered is x3x3 — Z2
of which only the ys-propagator part is demonstrated. This channel includes
eight different initial state contractions following from the four different internal
x3-contractions i.e. propagators. There are also two final state contractions so
that altogether 16 contractions for this combined t/u-channel graph. Below is
represented four of these contractions, one with each different propagator, and
the first two and last two have different final state contractions. To help ma-
nipulations of the matrix elements a new notation in which the Dirac matrix
indices are shown explicitly is adopted. In this notation the useful relations

= Cx;" = pixi and x¢ = —xI C~! are denoted in matrix component form by;
XS = CoupXTP = CopX” and XCﬁ = —xLC* = —,0% where the charge con-
jugation matrices in component form are defined by; C' = C,5 and C~! = C°°
(C~! = (T = CT = —C). The matrix element is

|
Mzz = Aisl{az

az(k1)|(X512 Prla’ X30) (X3 L«,ﬂ 3 yaT 2)al (py
(2P )y 2P e () 0)

o DAL b (RI2PL] ) o)

+<&z<k2>&z<kl>\<>;<§[ZPLJJ>I<30 ) (FHA P sl ()l (1)

+<&Z<k2>c'az<k1>\<>|<§[ZPL]JX3U>I<

+12 other contractions | (5.1)
‘ 2
where A3 = é (ﬁ) (O13)* with O;; being the elements of the matrix Up

defined in Eq. (4.22) without the complex phase factors. Using the relations
from Eq. (4.34) and Eq. (4.35) (pf = p; here), and a careful bookkeeping of the
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momentum factors in the propagators, the matrix element becomes:

Mzz = A13[ pP3v (pl)a(Z(/ﬁ)P )a” (S(p2 — k2))s W(Z(/@)PL)WBU(M)Q

—p30(p1)" (4 (k2) Pp),*(=C 15(291 ka)O)*5(Z (k1) Pr)o"u(pa)s
+pst( 2)U(Z(k2)PL)OtU(p 1S(p1 kl))av(Z(kl)PL)vﬁ“(pl)ﬁ
+p30(p2)* (4 (k2) Pr)a” (—psS(p1 — k1)C)op(Z (k1) Pr), 0 (p1)
+12 other terms | (5.2)

where S(q) is the usual Dirac propagator. To simplify the matrix elements
further, the following relations become handy: wu, = Capt’? = Cupt®, v, =
C, guTﬂ = Cut’, 1* = C%Pug and u* = C%uvg. For a generic operator
O it holds that @(pa)(’)u(pb) = —T)(pb)C’OTC’*lu(pa), and CAy*TC™1 = —41
CyTC~' = ~5. Propagators are easily manipulated in component form, e.g.
(—CT1S(q)C)5 = —C18(9),7Coy = —Cipo ST ()%, C7 = —(CST()C )5 =
—S5(—q)s~. After manipulating all the 16 terms in this way, the matrix element
finally reduces to:

Myzz = i<m)2P3(013)465(k1)65(/€2) X (5.3)
0(p1) [DsY" (P, — ¥, +ma)y” + Dy (P, — K, + ma)y*]u(pa)

where propagator D} = 1/(j—m2). One should notice that the total Ysxs — ZZ
matrix element, which is not represented here, includes also the t- and u-channel
graphs with x;-and ys-propagators and also s-channel with Higgs propagator.
In these channels also the phase factors p; will have more transparent role as

they explicitly exist in the interaction vertices, as seen from the Eq. (4.29) and
Eq. (4.32).
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