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Abstract

In this Thesis crumpling of thin sheets is explored when they are confined into a small
volume by external forcing. To this end a simulation model based on a discrete element
method is constructed. The Thesis begins with an introductory part reviewing the
related elasticity theory and previous results on the properties of relevant geometric
structures, ridges and cones, which appear in crumpled sheets. Results are reported
for elastic and plastic thin sheets, and elastic sheets with self adhesion.

Crumpling of elastic sheets was found to exhibit deterministic features and efficient
packing of the sheet. Real materials at macroscopic scale are, however, elasto-plastic.
By including plasticity we found that the crumpling process became random in agree-
ment with everyday experience, and found that in contrast with intuitive expectations
it is harder to crumple a plastic sheet.

At microscopic scales van der Waals interactions and thermal fluctuations are essential
for conformations of thin sheets. These effects are included in the simulations realized
by Langevin dynamics. An intriguing question of whether adhesive interactions and
thermal fluctuations would induce crumpling, even in the absence of external forcing,
is discussed. Stability of microscopic membranes is explained in terms of membrane
stiffness, adhesion strength and temperature.
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1 Introduction

Thin sheets, or membranes, are objects which are much larger in two of the spatial
dimensions than in the third one. Such objects are common in the nature at almost
all length scales. The thinnest sheets known are only one atom thick, as for example
a sheet of carbon atoms, called graphene, while among the thickest is the crust of
the earth. The common examples in between include cell membranes, aluminium
foil, paper, polymeric packing materials and metallic sheets used in e.g. car chassis.
The present work considers crumpling of such a thin sheet, when it is confined into
a small volume by external forcing. Crumpling of thin sheets has previously been
demonstrated to exhibit for instance fascinating stress condensation phenomena [68].
Stress condensation can be observed as a formation of a network of ridges and sharp
vertices when e.g. a sheet of paper is crumpled.

Behaviour of membranes became an active field of research in the late 1980s. The most
of the early studies was devoted to thermally fluctuating membranes and the related
statistical mechanics, for a variety of model membranes [18, 19, 21, 22, 24, 25, 26].
These membranes were classified as fixed connectivity or fluid membranes depending
on their internal connectivity, and phantom or self-avoiding if they were allowed to
intersect themselves or not. Furthermore, fixed connectivity membranes were flexible
(no bending rigidity) or rigid. There are no realizations of phantom membranes or of
purely flexible ones, so these membrane classes have served as theoretical simplifica-
tions. Examples of self-avoiding, rigid, fixed connectivity membranes include graphene
and macroscopic sheets, and those of fluid membranes include lipid bilayer membranes
of vesicles and cells. This Thesis mostly considers self-avoiding, rigid, fixed connec-
tivity membranes. The word membrane is used as a synonym for a thin sheet in this
Thesis.

An important question in the statistical mechanics of membranes is the existence
of entropy induced crumpling. Analysis by the renormalization group method have
revealed a crumpling transition of phantom membranes [12]. Self-avoidance makes
the analytical treatment very difficult, but simulation results indicate absence of the
crumpling transition in self-avoiding fixed connectivity membranes [12, 48, 49]. They
seem to preserve long range orientation order and an infinite persistence length at
any temperature. It seems however that self-avoidance does not prevent crumpling of
fluid membranes [31]. The reason for why the membranes of our cells do not appear
crumpled is that the persistence length is much higher than their size. An interest-
ing question still remains whether attractive interactions will change the conclusion



2 Introduction

concerning the existence of crumpling in microscopic world.

Research on the statistical mechanics of fluctuating membranes seems to have slowed
down during the last decade. Since the 1990s there has been, however, significant
interest in the mechanics and geometry of forced crumpling of thin sheets [37, 41,
44, 50, 53, 63]. Much of the theoretical progress in this direction has been related to
explaining the properties of isolated singular features like ridges [37, 40] and vertices
[44, 54, 59] that appear in crumpled sheets. Due to the complexity of the full process,
one has to rely on simulations or experiments when it comes to questions such as how
the network of ridges and vertices is formed and behaves under crumpling, and how
external and material parameters affect this process. Experiments on forced crumpling
are easy to carry out as possible sheet materials (paper, aluminium foil etc.) are
conveniently available everywhere. There are useful data available from experiments
(23, 53, 60, 70, 71, 72, 73, 78], but some experimental parameters such as plasticity,
friction and external forcing are rather difficult to control accurately. It is also difficult
to measure in detail, e.g., the energy and exact geometry of the sheet during crumpling.

Simulations offer a possibility for highly controlled crumpling ’experiments’; and by
including thermal fluctuation and attractive van der Waals like interaction they can
be extended to model behaviour of membranes at microscopic scales. Previous simu-
lations related to crumpling include Monte Carlo and molecular dynamics simulations
of thermally fluctuating membranes [22, 28, 25, 48|, simulations of single ridges and
vertices by energy minimization algorithms [24, 59, 50, 40], and molecular dynamics
or discrete element simulations of forced crumpling at effectively zero temperature
[41, 43, 58, 63, 75].

A discrete element method is used in the present work to simulate crumpling of thin
sheets. With the discrete element method very complex dynamics of a large set of
deformable elements can be simulated. The number of elements is so high and their
interactions are so complicated that explicit methods are used to solve their equations
of motion. In that sense the method resembles molecular dynamics. A feasible lattice
size of a sheet is currently around million points, which makes it possible to simulate
sheets of realistic size.

In Chapter 2 we review some relevant aspects of the elasticity theory for thin sheets,
and we also review the mechanics and geometry behind a single ridge, as it is the
most fundamental building block in crumpling. The discrete element models that are
used in the crumpling simulations are described in Chapter 3. Two approaches are
described for modeling the intrinsic deformability of the sheet, as well as for modeling
self-avoidance. Implementation issues and parallelization are also discussed. The main
results of this Thesis are reviewed in Chapters 4 (papers I, IT and III) and 5 (paper
V).

In Chapter 4 we study crumpling of ideal fully elastic and frictionless sheets and com-
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pare that process to crumpling of ‘realistic like’ elasto-plastic sheets. We are interested
in the statistical properties of crumpled geometry and how the previous theories for
a single ridge can be used to describe full-scale crumpling. Previous simulations and
theory have considered only elastic sheets, but real materials are elasto-plastic, mean-
ing that large strains are irreversible. Exploring that effect is important for bridging
theory and simulations with experiment.

At microscopic scales attractive interactions are present, and they have been included
in the studies presented in Chapter 5. Thermal fluctuations are also included by the
Langevin method. These simulations were motivated by previous studies of adhesive
membranes, which have only considered flexible membranes. Crumpling under exter-
nal force of fluctuating membranes has also been an unexplored area. An interesting
application of the studies of Chapter 5 is the behaviour of graphene under external
loading.

In chapter 6 we draw some conclusions about our main results and discuss possible
future directions. Thesis ends with an application to vertical compression of thin-
walled boxes in appendix A.



2 Deformations of thin sheets

2.1 Strain, curvature and energy of a deformed
sheet

We consider a sheet of isotropic elastic material with a flat metric in an undeformed
configuration. The sheet is assumed to be thin enough so it can be regarded as a
two-dimensional surface. In such a case sheet deformations can be separated in to
in-plane stretching and bending [3]. The formulation presented here applies to a case
where the sheet is allowed to undergo large deflections but to have only small strains.
This is compatible with crumpling, as large strains are expected to carry only a small
fraction of the total deformation energy and concentrate into a small area fraction of
the sheet at and near the tips of the vertices [68].

In the following we denote by x = (x1, z9, 3) material coordinates, where x; and xo
are planar coordinates and x3 is a coordinate in the thickness direction of the sheet.
Position in space of a material point x is given by r = (uq, ug, u3). The metric tensor
g together with its relation to the strain tensor -~y is given by

or Or
R e = s 4 Dy 2.1
9 = 5o o, i + 24 (2.1)

According to Hooke’s law the deformation energy is proportional to the square of
the strain. Since energy is a scalar quantity it can only depend on the quadratic
invariants of the strain tensor. These can be taken to be (Tr+)? and Tr~? leading to
the expression

1
F = 5/\(Tr'y)2 +puTr~? (2.2)
for the deformation energy density. Here A and p are the Lamé coefficients of the

material. It is more convenient to express the energy in terms of Young’s modulus Y
and Poisson’s ratio v. Their relation to the Lamé coefficients is given by [3]

Yv
A AT )T (2:3)
= ﬁ (2.4)
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The Young’s modulus of a material is defined as the ratio of the uniaxial stress to the
uniaxial strain. When a material is stretched in one direction it typically contracts
in the other directions. Poisson’s ratio measures the ratio of this contraction to the
amount of stretching. The free energy density expressed in terms of Y and v is

F= ﬁ (Tm2 + _VQV(TW)Z) . (2.5)

For determining the energy of a deformed sheet we first consider the contribution of
in-plane strain, i.e. stretching deformations. The components of the in-plane strain
tensor € are

_ (o
611—2 d21 )

_]_ (91‘ 2 (26)
622f§ (8_x2> — 11,

Moo
612—621—2 Or1 Oy .

The stretching energy S is found by integrating equation (2.5) over the area A and
thickness h of the sheet, which gives

Yh

S:ZT:5%1ﬂ3+dng%@1dA (2.7)

In order to determine the contribution of bending to the total deformation energy we
introduce the curvature tensor
0r

=n- 2.
CU n axiaxj’ ( 8)

where 7,7 = 1,2 and n is the normal of the midplane surface x3 = 0. Curvature of the
sheet results in a strain given by

71 = —23C1,

Yoz = —x3C52,

Y12 = —23C12, (2.9)
= C C

Y33 1_V333( 11+ Ca2),

Y23 = 713 = 0.

The free energy per unit volume associated with bending is found from equation (2.5).
Integrating F' over the thickness and area of the sheet yields

B_mé{gﬁcy+u—ymﬁc%4ﬁcﬂ}¢¢ (2.10)
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e

Figure 2.1: The surface on the left has curvature only in one direction and its Gaussian curvature
is Kg = ki1ks = 0. The surface in the middle has both principal curvatures in the same direction
resulting in a positive Gaussian curvature. The surface on the right has principal curvatures of
opposite sign and the resulting Gaussian curvature is negative.

Yh3
12(1—02)

where Kk = is the bending modulus.

The total deformation energy of the sheet is S+ B. The ratio of stretching to bending
energy for a given configuration of the sheet is of the order of Eh/k ~ h™2, which
means that for thin membranes stretching is expensive in comparison with bending.
Configurations of a thin sheet are thus unavoidably close to isometric transformations,
meaning that distances along the sheet are approximately preserved under deforma-
tion.

Eigenvalues of the curvature tensor, k; and ko, are the principal curvatures related
to the minimum and maximum curvature at the point considered. The two invariants
of the curvature tensor, H = (ki + k2)/2 and Ko = kiks, are called the mean and
Gaussian curvature, respectively. The principal curvatures and Gaussian curvature are
illustrated in figure 2.1. An important aspect of Gaussian curvature is that its change
affects the internal metric of the surface. For a sheet with flat undeformed metric this
means that Gaussian curvature necessary produces strain. This connection results
from Gauss’s Theorema Egregium [68],

KG = 28162612 — 8161622 — 8282611 + 0(62). (211)

2.2 Determination of strain and curvature

The two dimensional in-plane strain and curvature introduced above are useful in
describing the deformations of a thin sheet. In this section we present methods to
estimate them on a regular triangular lattice.

We express the elements of the strain tensor € in terms of the basis vectors b; and by
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b1

Figure 2.2: A small part of a deformed triangular lattice.

of the basic cell of the lattice (lattice constant a) [12]. The basis vectors are indicated
in figure 2.2. The undeformed angle between these basis vectors is 7/3. We form the
vector g = (2by — by)/+/3 that is perpendicular to b;. The elements of the strain
tensor are now given by

€11 = (bf/aQ — 1)/2,

€19 = €21 = b1 . g/(2a)2, (212)

€2 = (g°/a® — 1)/2.

An estimate for the mean curvature is found by noticing that it is given by the
divergence of the surface normal: H = V - n. By a fairly simple algebra one can show
that [45], for a vertex P,

—Hn = i Z(cot a; + cot 3;)(q; — p), (2.13)

where {Q;} are the neighbour vertices of P, a; and ; are the two angles opposite to
the edge Q); P, q; and p are the positions of ); and P, respectively, and A =), A, is
the area of the triangles surrounding P, see figure 2.2.

Estimation of the Gaussian curvature K¢ relies on its close connection to the angle
deficit A®, which is defined for a vertex of a polygonal surface as A© =27 — ). ©,.
Here {©;} are the angles between the adjacent edges connected to the vertex, see
figure 2.2. Since the integral of the Gaussian curvature over some area is the total
angle deficit in that area, and the area related to the vertex is >, A;/3, we find
approximately that

K¢ =3A0/> A, (2.14)
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2.3 The elastic loop

In this section we consider a strip of thin sheet bent half a round such that the ends
become parallel and touch each other. Solving for properties of such a deformation
finds application in Chapter 5 dealing with adhesive sheets. As a result of minimization
of elastic bending energy, the bent loop assumes a smooth shape as illustrated in figure
2.3. For a strip of length [ and width L the elastic energy of the loop can be expressed
in the form

2

where C' is the curvature of the loop and integration is along the cross section. Cur-
vature C(t) is related to the directional angle ©(t) between the loop and its middle
plane such that C' = % = ©’. The loop is obviously symmetric with respect to its
middle plane so we may focus only on the first half of the loop: 0 < ¢ < /2. Boundary
conditions for the angle are ©(0) = 0 and O(l/2) = —x/2, and symmetry requires

that

1 l
B,y = —I{L/ C(t)%dt, (2.15)
0

1/2
/ sin ©dt = 0. (2.16)
0

In order to find the curvature that minimizes the elastic energy [20], we use the
multiplier method of variational calculus [2], and consider the functional

1/2 1/2
H= / F(0,0)dt = / (0" + Asin©) dt. (2.17)
0 0

The Euler equation for F'(0,©’) is then given as [2]

,dF
F—-06 o const = —C3 (2.18)
so that
0”7 — \sin© = C5. (2.19)
b _Oh)=a

Figure 2.3: An elastic loop of length . The directional angle © takes a universal value a =~ 28° at
point b, at which the curvature changes sign.
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By recalling that C' = ©’, and by writing the constant A as A = —CZ/ sin «, we find
that the curvature of the cross section of the loop is

C=Cpy/1-m0
S1N «
(2.20)
C=—C, 1—Sl_n@; t> b
S1n &«

Here the constant a ~ 27.54° is the angle at the point b ~ 0.163] at which the
curvature changes sign, and Cy =~ 6.05/I. By equation (2.15) we find the loop’s elastic

energy,
E.q=axL/l, a=18.33. (2.21)

The constants here were found by numerical integration of equation (2.20). The energy
can also be expressed in terms of elliptic integrals as

b 1/2
E=kL (/ C(t)th+/ C(t)2dt>
0 b
« : _71-/2 .
:HLCO< ,/1—81,“9059—/ ,/1—8,”19(19) (2.22)
0 Sin « o Sin o

. \/§ HLCO
Vsin o

{4 E(k) = 2E(7,k) — (1 —sina) 2 K (k) — F(v, )]},

sino + 1 1
_ — aresin 4/ ——— 2.23
5 , ~ = arcsin Smatl ( )

and F, F' and K are the elliptic integrals [4]

@
—/ V1 —k2sin?6d#,

/ (2.24)
1— k2sin26
E(k)=E(n/2,k), K(k)= F(7r/27 k).

where

The constant Cy in terms of elliptic integrals can be determined from the equation

b 1/2
:/ dt+/ dt

sin o

</ m / - ﬁ) (2.25)

= 250““ 2K ()~ F(r, )],
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0 0.1 0.2 0.3 0.4

Figure 2.4: The theoretical shape of an elastic loop of unit length (inner line) is compared with
that of a bent metal blade (outer line).

but, however, the angle a remains to be determined numerically. An experimental
confirmation for the shape of the loop is shown in figure 2.4.

2.4 The ridge and cone singularities

In the thin sheet limit, h — 0, stretching becomes energetically prohibited, and the
membrane configurations are strictly isometric. However, it is not possible to con-
fine an unstretchable two-dimensional surface into a small three-dimensional volume
by only smooth deformations [46]. Such confinement necessarily requires folding along
sharp lines and vertices. For non-zero thickness these singular lines and vertices would
have infinite bending energy. What happens is that these singularities smoothen re-
sulting in a balance between stretching and bending [6, 33, 37, 47]. In this section
properties of the resulting geometric structures, line-like ridges and point-like ver-
tices, are briefly reviewed.

An elastic ridge is very important in crumpling. We present here geometric reasoning
to derive its properties. The derivation follows that of Lobkovsky’s [37]. We consider a
thin sheet of width X bent sharply as in figure 2.5. The transverse curvature between
the rigidly fastened sides relaxes assuming a value C) at the mid-ridge, such that the
ridge line must deflect away from its original position by an amount (,. of the order of
1/C,.. This deflection results in stretching v ~ (¢, /C,)? at the ridge line. The bulk of
the deformation is concentrated on a strip of width w ~ 1/C, so that the stretching
energy of the strip is

S=Yh / YA ~ Yhy*Xw ~ YhX 3C7°, (2.26)

The energy to bend the strip is given by
B~ kC?Xw ~ YR*XC,. (2.27)
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Figure 2.5: Illustration of a ridge formed by bending a strip of thin sheet. The strip width X, sag
¢, and radius of curvature 1/C, in the middle of the ridge are indicated.

Figure 2.6: Loosely crumpled aluminium foil displaying a network of ridges meeting at sharp ver-
tices.

Minimizing the sum of these two energy components requires that C,. ~ (1/X)(X/h)/3,

and the energy E, of an optimal configuration is of the order of x(X/h)"2.

Vanishing of the derivative of E, with respect to C, leads to another important con-
clusion [68]:
dE, dS dB —-5S B

i —ac Tac. ¢ T (2.28)

indicating that B = 55 for ridges.

Lobkovsky also performed an asymptotic analysis of the Foppl-von Karman equations
[3] for the ridge setup, and ended up with agreement with the above reasoning [40].
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Figure 2.7: Developable cone in a loosely confined sheet.

A more detailed analysis of the energy of a ridge leads to

X\ /3
E, ~ F.x (E) »73, (2.29)

in which also the bending angle ¢ is included [40, 68]. The constant F, ~ 1 can be
determined numerically. Ridges are clearly observed in a confined thin sheet, as e.g.
in that of figure 2.6.

In addition to a ridge, there is another perhaps even more fundamental singularity that
appears in crumpled sheets: a developable cone or d-cone. These cone-like structures
with a sharp vertex appear as endpoints of a ridge or alone in a gently confined sheet,
as in figure 2.7. The energy of an isolated d-cone is given by [44, 47]

C

R
Ed ~ Fdﬁ In (R—> ¢2, (230)
where R is the size of the cone, ¢ the complement of the tip angle of the cone, and
Re ~ (k)Y h)YSR234=1/3 (2.31)

is the radius of the core of the d-cone, i.e., the crescent-shaped region on which
stretching is concentrated [59]. The constant Fy above is F; ~ 100 [47].

By qualitatively comparing the energies of a ridge and a d-cone it is evident that, in a
very thin sheet with sharp ridges, the ridge energy dominates. That is the typical case
in crumpling. However, for a weakly confined sheet with just a few gentle singularities
the d-cone energy can be relevant.



3 Modeling a thin sheet

3.1 Deformable beam elements

A model for a thin sheet of elastic or elasto-plastic material is constructed as a tri-
angular lattice. Each lattice point has mass m and moment of inertia I, and they
are connected by identical beam elements. The width and length of the beam are the
same as the lattice constant a, and its thickness is the same as the sheet thickness h.
The motion of a beam is governed by

Mii = Ca+ Ku, (3.1)

where M, C' and K are the 12x12 mass, damping and stiffness matrices, respectively.
Vector u contains the deformations of the beam (three translational and three rota-
tional degrees of freedom at both ends of the beam):

u= [ucvl Uy Uz @xl @yl @zl Uz  Uyz Uz 61‘2 @yQ @ZQ]T- (32)

We use a standard stiffness matrix for a 3-dimensional beam element with shear effects
accounted for, see table 2.1. For detailed derivation of the matrix see reference [7].
The familiar geometric moments I, I,, and I, of the cross-sections that appear in the
stiffness matrix are given by

I, = ah®(0.33 — 0.19h/a), I, =ah®/12, I, =a’h/12. (3.3)

The mass matrix is diagonal, and the damping matrix is given by the mass matrix and
the diagonal part of the stiffness matrix such that C' ~ /M Kgiqe. The magnitude
of damping is chosen so that the motion of any single beam is under-damped. The
stiffness (Young’s modulus) of the beam is Y and its Poisson ratio is ¥ = 1/3 resulting
in the bending modulus x =~ 0.1Y h for the sheet.

Crumpling involves large displacements and rotations of beams although their actual
deformations are not necessarily large. The rigid body motion of a beam is separated
from its deformation u by attaching to it a coordinate frame which retains only the
deformation part of the total motion. This kind of formulation for handling large
displacements has been used in a finite element method (FEM) and in a computer
animation [15].

13
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3.2 Model by Seung et al. 15

triangle

edge

Figure 3.1: Illustration of our discrete element model of a thin sheet. A part of the underlying
triangular lattice is shown, and the sheet thickness h, lattice constant a and geometrical primitives
(a point, an edge and a triangle) are indicated.

To account for elasto-plasticity, elastic-perfectly plastic stress-strain relations are as-
sumed for stretching, torsion and bending of each beam. The yield points of these
deformation modes are proportional to the yield stress o, of the material. For a lon-
gitudal force, the torsion moment and bending moments they are

Fy = haog, M, =0.58041,/h, M,s=20.,/h, M, =20,l,/a, (3.4)

respectively. Yield stresses of typical macroscopic materials vary from around 0.1%
(aluminium and some other metals) to around 1% (paper and polymeric materials)
of their Young’s modulus. Some brittle materials have a yield stress much below this
range, and there are special hyperelastic materials like latex, elastomeres and rubber
which can have a yield stress higher than their Young’s modulus.

3.2 Model by Seung et al.

The model described in the last section was used in the simulations of papers I, IT and
III. In paper IV a sheet model originally introduced by Seung [24] was used. In that
model a sheet is also modeled as a triangular lattice. The lattice is connected by springs
with an unstretched length a and a spring constant k [24, 37]. The corresponding
energy for a pair of nearest neighbour lattice points is

k(x —a)?/2 (3.5)
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f>

V

Figure 3.2: Bending of adjacent triangles. The normals fi; and fs and the vectors v; and vy are
indicated, as well as the nodal forces f,, fy,, f; and fs resulting from bending. 7 is the bending
moment.

with = the distance between the points. The sum of these energies is the in-plane
energy S of the sheet. Bending rigidity is introduced by an energy cost

K(1—f, - fiy) (3.6)

for each pair of adjacent triangles with normals n; and n,, see figure 3.2. The energy
corresponds to a bending moment,

T=K (fll X ﬁg), (37)

which is balanced by forces on the four nodes of the pair. The forces f; and f5 on the
two opposing corners are given as

fi = (1 x vi) /12,

1 ( 1) / 1 ) (38)
fo = — (7 x va) /13.
Here vy and vy are the vectors pointing from the first middle node to the corner nodes,
and r; and ro are the distances of the corners from the middle edge. The forces on the
middle nodes are found by requiring vanishing net moment and force for the system
of adjacent triangles. We thus obtain

£, = —[f1(1— 1) + £o(1 — 59)] /2
fb = — [f181 + f252] /2,

where s; and s, are the normalized components of vi; and vy parallel to the middle
edge.

(3.9)

In the continuum limit and with small strains this model has been shown to behave
as a sheet of isotropic elastic material with thickness h = 22/ K /k and bending
modulus k = K+/3/2 [24]. A notable difference in this model in comparison with
the beam model described above is that lattice points have only translational degrees
of freedom. Otherwise, the equations of motion are solved in a similar way in both
models (see below). We found that these two models behave very similarly in crum-
pling simulations. The largest differencies in the respective elastic energies during the
crumpling process were about thirty percent.
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3.3 Self-avoidance

Self-avoidance of the sheet is implemented by geometrical collision tests. Self-avoidance
without irregularities can be provided for a triangular lattice by resolving pairwise
point-triangle contacts and edge-edge contacts [56, 14] (these geometrical primitives
are indicated in figure 3.1). If a point is closer than h to a triangle, it then feels a
repulsive force f, normal to the triangle, as illustrated in figure 3.3a. The magnitude
of f, is proportional to the Young’s modulus Y and the depth of the contact. Opposite
forces

fﬂ = —wlfp, ftg == —UJpr, ftg == —’wgfp (310)

are exerted on the corner points of the triangle. Here wy, ws and w3 are the barycentric
coordinates of the contact point at the triangle. Edge-edge contacts are treated in a
fashion similar to that of point-triangle contacts, see figure 3.3b. Here an edge means
a segment between any two neighbouring lattice points.

The number of expensive pairwise contact tests described above is first pruned by a
coarse proximity detection that is based on spatial partitioning with a uniform grid
[14]. By this technique the number of pairwise tests is reduced to be of the order of
the number of lattice points (or sheet area). Implementation of contact tests related
to self-avoidance involve a fair amount of basic vector algebra. For details and related
algorithms see references [56] and [14]. Friction or adhesion for sheet-sheet contacts
can be applied simultaneously with self-avoidance.

An alternative approach to self-avoidance is to have impenetrable elastic spheres at
the lattice points. This previously widely used approach is very fast in the imple-
mentation, but it causes uncontrolled effective friction for sheet-sheet contacts. That

a b
f.
ebl febz
< / a&i&
ft2 ft3 ¢feal

Figure 3.3: The two contact cases, a point-triangle contact (a) and edge-edge contact (b), for a
triangular lattice. The triangle pairs shown represent parts of the lattice. In a a point closer than
h to a triangle is given a repulsive force f,, and a force of the same magnitude but in the opposite
direction is interpolated for the nodes t1, t2 and t3 of the triangle. In b an edge in contact with
another one is given a repulsive force that is interpolated to its two nodes, eal and ea2. Consequently,
a force of opposite direction is exerted on the other edge.
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would restrict deformations of a sheet, most noticeably in the case of adhesive sheets
crumpled at zero temperature. For non-adhesive sheets or in the presence of thermal
fluctuations the effect does not seem to be too significant. In this approach to self-
avoidance the thickness of the sheet is restricted to be equal to the lattice constant.

3.4 Langevin dynamics

Langevin dynamics is a stochastic alternative to Newtonian dynamics [10]. Tt adds
friction and random forces to the external and interparticle systematic forces with
the physical motivation of representing a simple heat bath provided by molecular
collisions for coarse grained particles. The continuous form of the Langevin equation
is given as

mx(t) = —VE(x(t)) — ymx(t) + R(t), (3.11)

where m is the particle mass, x its position, —V E the elastic force, and v the collision
parameter in reciprocal units of time, also known as the damping constant. The ran-
dom force vector R is a stationary Gaussian process with statistical properties given
by

R(t) =0, (RORE)") =2vkgTmd(t —t'), (3.12)

where kp is the Boltzmann constant, 7" the target temperature, and o the usual Dirac
delta function.

The magnitude of v determines the relative strength of the inertial forces with respect
to the random forces. Connection of v to viscosity n of the implicit solvent is provided
by Stokes’ law:

v = 3mnd/m, (3.13)

where d is the particle diameter. Increasing ~ changes the dynamics of the system
from an inertial to a diffusive regime. A small value for v should be chosen if the
aim is to use Langevin dynamics only to control the temperature. The time scale of
the simulation should still be much longer than y~! as the equilibrium kinetic energy
distribution is reached in a time ~ 1.

When the Langevin dynamics is implemented a homogeneous distribution of random
numbers can be used instead of a Gaussian one to produce the force R, taken that
the properties of equation (3.12) hold. The Dirac delta function of equation (3.11) is
discretized by replacing d(t — t') by Onm/At with At the simulation time step.
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3.5 Solving the equations of motion

Finally, the equations of motion, whether Newtonian or Langevin, are solved for the
lattice nodes by an explicit scheme [13],

v(t+ At) =v(t) + %At, (3.14)
w(t+ At) = w(t) + ¥At, (3.15)
x(t+ At) = x(t) + v(t + At)At. (3.16)

Here v is the velocity of the lattice node, w its angular velocity, x its position and F
and M the total force and moment acting on the node. More complicated higher order
schemes would not necessarily provide an advantage as velocity dependent forces are
relevant. Angular velocities w are solved for updating the orientation and deformation
of the beam elements. Equation (3.15) is omitted if only translational degrees of
freedom are present, as in the Seung model. The time step At is set by the stiffness,
mass and lattice constant such that At ~ %\/g . Simulations at a high temperature
or with strong attractive forces require shorter timesteps. The simulations presented
in this work typically took a few million time steps.

3.6 Parallelization

Our implementations of the sheet models are parallelized by dividing the lattice into
strips which are then assigned to processes (particle partitioning). This approach
provides good load balancing, but a complicated part is the inter-process transfer
of the lattice points that are, or are likely to be, involved in sheet-sheet contacts.
In contrast with this, by using a spatial partitioning technique typical in molecular
dynamics [11], self-avoidance would be easier to treat, but the tricky part would then
be load balancing as the sheet fills the space very inhomogeneously in the early phases
of crumpling. An overview of the implementation is given below.

At each time step the data (positions and velocities) required to handle local connec-
tivity at the strip boundaries are exchanged with the adjacent processes. As mentioned
above, in addition to this trivial part, self-avoiding contacts may require communica-
tion between any two processes. This communication is based on lists which contain
the indexes of the lattice nodes whose data need to be sent or received. Each process
has such lists for every other process. These lists are updated simultaneously with an
update of pairwise proximity lists. In order to generate the proximity lists, positions
of all lattice nodes of the sheet are gathered for each process. The send and receive
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lists are then generated at each process based on these global proximity lists. It is
not necessary to do this expensive operation at every time step but only when the
maximum displacement of the sheet after the last update exceeds a half of the spec-
ified skin width (only the lattice nodes involved in the point-triangle or edge-edge
pairs with a distance less than the skin width are included in the proximity lists). The
practical skin width is a half of the thickness of the sheet.



4 Crumpling of elastic and
elasto-plastic sheets

4.1 Simulation of a single ridge

As mentioned in the last chapter, previous theoretical results indicate that in the
limit of large width to thickness ratio (X/h) the energy of a single elastic ridge is
proportional to x(X/h)/3¢7/® [37], where ¢ is the bending angle of the ridge. We
simulated the energy of a single ridge as a function of its size X (fixed h) for both
elastic and elasto-plastic sheets (see figure 4.1). In elastic sheets the expected scaling
was apparent even for fairly short ridges (the range of ridge lengths studied was
chosen to represent ridge lengths that appear in simulated crumpled sheets). The
energy of a ridge in an elasto-plastic sheet approached that of an elastic case as
X was increased, and became nearly proportional to (X/h)Y/3, but only for clearly
longer ridges than in the elastic case. The explicit ridge energies also approached
E =~ r(X/h)Y3¢"/3 in agreement with previous numerical results [47, 50]. It is evident
that in long enough ridges the plastic deformations are concentrated in small areas in
the vicinities of vertices as suggested in reference [68], and that the elastic part of the
energy dominates the deformation energy in this limit. Such a validity of the elastic
theory for elasto-plastic vertices has also been shown experimentally [54].

We also tested if simulations can produce the predicted B/S = 5 ratio for the bending
and stretching energies [68]. Our simulation model based on 3D beam elements does
not explicitly deal with separate bending and stretching deformations, but the sum
of all energy components related to deformations parallel to the tangent plane of
the sheet gives an approximation for S, and similarly the sum of energy components
related to deformations normal to the sheet approximates B. For the ridge lengths
simulated (figure 4.1) we observed that B/S > 5, but for the longest ridges (X/h ~
1100) the ratio was close to the expected value (/6.3 for the elastic ridge and ~5.8
for the elasto-plastic ridge). For the elasto-plastic ridges the ratio was always slightly
smaller than for the elastic ones. We determined also the magnitude of energy focusing
in a single elastic ridge. The result (figure 4.2) was in agreement with the prediction
that the area fraction of the sheet in which the energy density exceeds a given value €
should scale as ~ ¢~%/4 [51, 68]. We may conclude that the model correctly describes
the known scaling behavior and energy focusing in fully elastic sheets, and seems to
extend such behaviour into elasto-plastic sheets in a reliable manner.

21
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Figure 4.1: Deformation energy of a single ridge in an elastic and elasto-plastic sheet (o,/Y = 0.01)
as a function of its length X. To form a ridge, two opposing sides of a sheet were bent to an angle of
¢ = /2. An example of a ridge in an elasto-plastic sheet is also shown, in which the areas containing
plastic yielding are marked with dark shading. The energies are scaled by the expected scaling for
an elastic ridge, F ~ k(X/h)Y/3¢7/3 [40]. The sheet sizes were X x 4X//3.

Figure 4.2: Focusing of deformation energy in an elastic ridge (X/h & 1100, the lattice size was
1280 x 640). The fraction ¢ 4(¢) of the sheet area in which the deformation energy density exceeds e
is compared to the expected [51, 68] scaling ¢4 ~ €5/%, The energy density of the sheet is shown
logarithmically shaded in the inset.

4.2 Features and energetics of forced crumpling

To simulate crumpling of thin sheets a rectangular sheet of width L was placed inside
a spherical shell of decreasing radius R. The initial radius enclosing the flat sheet
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Figure 4.3: The total deformation energy, energy of self-avoiding contacts and kinetic energy as a
function of solid volume fraction ® during crumpling of an elastic sheet. The dashed vertical line
indicates the location where the first sheet-sheet contacts appear.

was Ry ~ L. Perturbations to the initial configurations were introduced by random
variations in the initial height coordinate at each lattice site. Random forces applied on
the corners of the sheet were also tested for this purpose without qualitative changes
in the results. Crumpling was performed slowly so that the related inertia is assumed
negligible. The simulations here consider ideal fully elastic and elasto-plastic sheets
without thermal fluctuations (i.e. macroscopic sheets).

The external work performed by the shrinking shell that causes the crumpling in the
simulations can be divided into four parts: intrinsic deformation of the sheet (tech-
nically the deformation energy of the beam elements), sheet-sheet contacts, kinetic
energy and dissipation (technically the damping of the elements). The first three of
these energies, during a typical simulation of crumpling of an elastic sheet, are shown
in figure 4.3. It is evident that most of the energy is contained in the intrinsic defor-
mations of the sheet. The energy of sheet-sheet contacts grows fast with increasing
compression, but remains however small compared to the total deformation energy,
although these contacts have an otherwise significant role in crumpling [63, 64]. The
kinetic energy fluctuates heavily during the process, owing to the occational bucklings
of ridges [50] and facets under tension. Such buckling causes crackling noise which has
been observed to occur generally during crumpling [38, 39]. In the rest of this section
we explore in more detail how fully elastic sheets crumple and then see how that is
affected by plasticity.

Elastic sheets under crumpling display efficient packing in terms of energy, which is
explained by the ability of the sheet to relax its shape so as to minimize its energy
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during the process. Elastic sheets under compression first transform into a cone (figure
4.4a), and under further compression they display more or less symmetric folding re-
sulting in efficiently packed configurations. An example of an efficiently packed sheet
is shown in figure 4.5. In this case the sheet has reduced its energy by a series of
successive symmetric foldings. Such a folded sheet apparently has a small configura-
tional entropy, and the process is nearly deterministic. However, not all elastic sheets
displayed as strong a folding as the one in figure 4.5, and at high compressions the
induced packing appeared rather random.

Most of the energy of crumpled configurations is stored in the ridges between vertices.
This suggests that the energy can be expressed in terms of a typical ridge length X
and the energy of a single ridge. By assuming that X ~ L(R/L)® we can express the
number of ridges as Nx ~ (L/X)? ~ (L/R)?**. By multiplying Nx by the scaling form
for the energy of a single ridge, Ex ~ k(X/h)? ~ k(L/h)?(R/L)*", we find that the

| ' b ‘

c ! d !

Figure 4.4: Crumpling thin sheets inside a spherical shell. An elastic sheet takes the form of a cone
at radius R = 0.44R, (a) and has only few vertices at R = 0.25R; (b), while an elasto-plastic sheet

(c and d) does not display a single cone regime nor elastic relaxation under crumpling and appears
thus stiffer. In ¢ R = 0.44Ry and in d R = 0.25R,.
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total deformation energy scales as

s (B) (5 ()

An equivalent scaling relation can also be derived by dimensional analysis [63].

From simulations on elastic sheets we find that ae =~ 1.65 for R < 0.4R, (figure 4.6a).
We approximated the characteristic facet size (equals approximately the typical ridge
size) as a mean path of uniform sign of mean curvature when traversed along the
sheet in directions parallel to its edges. With o = 1.65 and 3 = 1/3, equation (4.1)
gives Ef' ~ R727 for elastic sheets, which is within error bars the same as our direct
numerical result for the energy, B¢ ~ R=283+011 (figure 4.6b). This scaling law holds
for volume fractions up to about 30%. Beyond this limit energy increases faster as the
sheet becomes so densely packed that further folding is blocked. In elastic sheets ridge
patterns at constant R/Ry were found to be similar independent of sheet thickness.

In the case of elasto-plastic sheets the crumpling process is partly different. In vertices
in particular, plastic deformations appear already in the beginning of compression.
An elasto-plastic sheet is not able to transform into a cone necessary for folding type
of initial deformations, as is evident from figure 4.4. As a result crumpled elasto-
plastic sheets have a higher density of ridges and they appear more random than
their elastic counterparts (see figure 4.7). This also becomes increasingly pronounced
for an increasing width to thickness ratio L/h. For a qualitative picture of the effect
of elasto-plasticity, see also figure 4.8, where ridge patterns of crumpled elastic and
elasto-plastic sheets are compared.

>0.1
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0.0 H[1/m]
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<-0.1
] *h_1

Figure 4.5: Folding inside a spherical shell. Snapshot on the left shows the membrane in a symmetri-
cally folded configuration. A colour coded mean curvature map on the right displays the symmetrical
fold pattern of the configuration. The mean curvature was extracted from the simulation lattice using
equation (2.13). The width to thickness ratio of the membrane is 1000 : 1, and the radius of the
crumpled configuration is R = 0.25R.
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Figure 4.6: Development of facet size and deformation energy during crumpling. a, Average linear
size of areas with uniform sign of mean curvature for elastic and elasto-plastic sheets of size L/h =
250, 500 and 1000. In a crumpled state (R < 0.4Ry) this size describes the characteristic size of facets
and ridges in the sheet. b, The total energy of elastic and elasto-plastic sheets of size L/h = 250,
500 and 1000, scaled by 1/(L/h)'/3. Transitions in the energy of the elastic sheets at R ~ 0.75Rq
and R ~ 0.4Ry indicate the formation of a cone and the end of a single-cone regime, respectively.
The plots shown are averages of three simulations, and the yield point of the elasto-plastic sheets is
oy/Y =0.01.

It is evident from figure 4.6 that for small R/R, the average facet size and energy of
elasto-plastic sheets scale similarly as a function of compression to the elastic sheets.
However, the relative facet diameter decreases for increasing L/h, and consequently,
the scaled energy increases with L/h. This also means that similarity of ridge patterns
at constant R/Ry found for crumpled elastic sheets does not hold for elasto-plastic
sheets.
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Figure 4.7: Intersections of crumpled sheets. Snapshots are taken at volume fractions of ® = 0.25
(left) and ® = 0.5 (right) for sheets with L/h = 1000. A crumpled elastic sheet (a) is more effectively
folded, indicated by its more layered structure, so that it has a larger characteristic facet size and
a lower energy than a crumpled elasto-plastic sheet (b). The yield stress /Y = 0.01 is typical for
e.g. paper [65].

The L/h dependence in the crumpling of elasto-plastic sheets arises from the L/h
dependence of deformations which involve plastic yielding. For increasing L/h the
plastic fraction of energy becomes increasingly concentrated only on the tips of vertices
(in agreement with simulations of a single ridge above). For small L/h the spatially
more extended plasticity of vertices and ridges makes them relatively weaker. Such
sheets can, to some extent, accommodate further confinement by extending the size of
existing plastic deformations instead of forming new initially elastic deformations. An
existing plastic vertex can then (small L/h) move so as to form a plastically deformed
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crease. The length of a plastic crease cannot scale proportional to the sheet size (fixed
h) because of the crease’s rapidly increasing energy with increasing length. Formation
of new ridges and vertices becomes preferred as L/h is increased. Elasto-plastic sheets
of small width to thickness ratio may thus deform to shapes close to those of elastic
sheets during their early phase of compression, and may thereby sustain a relatively
higher facet size and lower energy during further crumpling in comparison with elasto-
plastic sheets of higher width to thickness ratio.

We have so far only considered simulations of frictionless sheets. Adding friction is
expected to hinder folding and relaxation of an elastic sheet and leading to random
crumpling, higher stiffness and energy, as plasticity also does. This is qualitatively
evident in figure 4.8, where crumpled frictionless sheets are compared with an elastic
sheet having a friction coefficient of 1 = 0.5 typical of real materials. A thorough
quantitative analysis of the effect of friction was not carried out within this Thesis.

4.3 Facet size distributions

It is evident by experience and by the simulations above (see e.g. figures 4.7 and 4.8)
that ridges and facets in crumpled geometry are not of uniform size. To determine the
facet size distributions of crumpled sheets, 2D mean curvature maps were thresholded
resulting in binary images where areas of positive and negative curvature were marked
respectively as black and white (figure 4.9). Black and white areas were then split
into separate roughly convex regions by applying the watershed algorithm [35]. These
regions approximate facets. Their relative linear sizes x were determined as square
roots of their areas divided by the linear size L of the sheet. Facets with a size smaller
than L/100 were omitted from the analysis. This procedure does not rely on any
assumption regarding the detailed shape or energy content of the ridges. It is thus
straightforward to apply at any degree of crumpling and in sheets of varying width
to thickness ratio.

Facet size distributions in crumpled sheets were reasonably well described by a log-
normal distribution

1
N(I) ~ Eef[ln(z)fﬂ]Q/(ZJQ)’ (42)

where p is the mean of the distribution, see figure 4.10a. The found standard deviations
o ~ 0.5 for the logarithms of linear facet sizes correspond to o ~ 1.0 for the facet
areas in good agreement with the o ~ 1.17 found for crumpled paper [72]. For ridge
lengths [ in simulated crumpled elastic sheets a lognormal distribution given in the

form 1
N(l) ~ ﬁe—[log(l/lo)}Z/b @3
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Figure 4.8: Maps of logarithmically scaled deformation energy density of a crumpled frictionless
elastic sheet (top), elastic sheet with friction (middle) and frictionless elasto-plastic sheet (bottom).
Maps on the left column are for mildly crumpled states (solid volume fraction ® = 0.03) and those in
the middle for strongly crumpled states (® = 0.7). The friction coefficient of the sheet in the middle
row is f = 0.5, and the yield stress of the elasto-plastic sheet is o,/Y = 0.01. Cross-sections in the
right column display the structures of the strongly crumpled states. The diameter d of the confining
spheres is marked in the topmost energy density map of the middle column.

has earlier been found with b = 0.95 [63]. This corresponds to o ~ 0.7, and is also
in agreement with the present results. The lognormal distribution found for the ridge
lengths in crumpled paper [60] is a bit wider (0 ~ 1.2 — 1.4). A wider ridge length
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Figure 4.9: Illustration of facet segmentation. a, Mean curvature field of a crumpled sheet. b,
Thresholded areas of positive (white) and negative (black) curvature. ¢, The thresholded image
segmented into regions which approximate facets.
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Figure 4.10: a, Distributions of relative linear facet size & are shown for elasto-plastic (yield stress
oy = 0.01Y") and elastic sheets of size L/h = 1000. The parameters of the lognormal distribution
fit (see text) for elastic sheets are p = —2.90 and o = 0.52 and for elasto-plastic sheets they are
p = —3.15 and o = 0.47. The parameters of the gamma distribution fit for elastic sheets are a = 4.0
and b = 0.015. b, Comparison of facet size distributions for L/h = 250 and L/h = 1000. Distributions
in a and b are averages over those for six sheets crumpled to R/Ry = 0.18.

distribution may arise from the fact that a single facet is surrounded by multiple
ridges of varying length. The lognormal distribution suggests a mechanism in which
facets and ridges break into smaller ones having sizes that are random fractions of the
sizes of the original ones [68].

In the case of elastic sheets, a slightly better fit in comparison with a lognormal fit
was provided by a gamma distribution

N(z) ~ bf;a)e—w/b (4.4)

with the shape parameter a = 4.0 (figure 4.10a). The scale of the distribution is given
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by b. A gamma distribution has previously been found for the segment lengths of a
1D model of crumpling, owing to interaction at high confinement of segment layers
[64]. Crumpled elastic sheets display a much more stronger layering than elasto-plastic
sheets, and this may explain their somewhat different facet size distributions. Figure
4.10b displays the similarity of distributions of relative facet size for elastic sheets of
varying L/h, while in the case of elasto-plastic sheets the distribution changes with
increasing L/h such that its mean decreases.

4.4 Fractal dimension

Fractal dimension of crumpled sheets is a measure for how sheet size affects compact-
ification, and it has been measured for sheets of different materials [23, 71, 73, 22].
The fractal dimension D relates the radii R of crumpled configurations to the linear
sizes L of the sheets such that R ~ L?P, or equivalently L? ~ RP ~ M. To achieve
this relation for forced crumpling, one needs also to define a condition for when the
crumpled radii R are measured. A usual practice is to measure R when a predefined
compressive force is reached. A value D close to its lower physical limit, D = 2, means
a loose 'packing’ of the crumpled sheet and that much force is required for crumpling
of large sheets. On the other hand, a value of D close its upper physical limit, D = 3,
means that a compact structure results from application of much less force. A natural
assumption is that D is determined by the density of vertices, facets and ridges, and
by the scaling of the energies of these structures with their size.

We can derive a scaling expression for the fractal dimension of crumpled elastic sheets
by considering the dependence of their energy on their size R, and determining the
point at which a predefined total force F' ~ dE/dR = const is reached. Inserting
a constant force in equation (4.1), and expressing it in the form R(L), the fractal
dimension defined by R ~ L?P< can be found such that

2(1 - p)
2-pla+p

Similarity of elastic ridge patterns thus leads to the result that the fractal dimension
of crumpled elastic sheets only depends on the scaling properties under crumpling of
the average ridge length and ridge energy. Using the numerically obtained values for
these scaling properties, o ~ 1.65 and [ ~ 0.33, equation (4.5) gives D, ~ 2.43.

Dy=2+ (4.5)

In elasto-plastic sheets the lack of similarity of ridge patterns means that there is
an additional L/h dependence in the average ridge length, which would appear in
an equation for the total elastic energy of the ridges similar otherwise to equation
(4.1) (the exponent in the L/h term would effectively be increased), and thereby in
a subsequent expression for the fractal dimension. We do not attempt to derive such
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Figure 4.11: Relation of sheet width to the final radius of the crumpled configuration. Sheets of
varying size (fixed h) were crumpled until the confining force reached 50 N. Scaling fits to simulated
final radii as a function of L indicate a fractal dimension of D.; = 2.50 4= 0.03 for elastic sheets and
D,; = 2.20 £ 0.03 for elasto-plastic sheets with the yield point o,/Y = 0.01. The plots shown are
averages over three simulations. Fractal dimensions for different yield points are shown in the inset.

an expression here, but can however draw some conclusions concerning the fractal
dimension in the elasto-plastic case. Since the ridge density will in this case increase
with increasing sheet size, the energy and ’strength’ of crumpled elasto-plastic sheets
will increase faster with increasing sheet size than in the elastic case (at the same time
the energy to create a single ridge approaches that of an elastic ridge). The fractal
dimension of elasto-plastic sheets, D,;, must thus be smaller than the D,; of equation
(4.5). This conclusion follows also from equation (4.5) if the exponent in the L/h term
in equation (4.1) is increased.

In order to obtain numerical values for the fractal dimensions, we crumpled elastic
and elasto-plastic sheets of size varying from 1 cm? to 100 cm?. The thickness of the
sheets was 0.1 mm and their Young’s modulus was 1 GPa. A predefined force of 50
N was chosen, and the plastic yield stress was o,/Y = 0.002,0.01 or 0.05. For elastic
sheets we found D,; ~ 2.50 in excellent agreement with the scaling result above, and in
elasto-plastic sheets D,; increased from about 2.11 to about 2.37 for increasing values
of oy, also very much as expected (see figure 4.11). When the compression force was
increased, we observed a slight increase in the fractal dimensions. This is reasonable
since in the limit of high compression D = 3.



5 Fluctuating adhesive
membranes

5.1 Membranes with attractive interaction

Attractive Van der Waals interactions are essential for conformations of polymers
and membranes at nanometer scales [8], while such forces can largely be neglected in
their macroscopic counterparts. Attraction forces and fluctuations induce a tendency
for 1D and 2D nano-structures to collapse spontaneously as long as they are free to
deform in a 3D space. Microscopic membranes in particular have a large surface area
and may thus easily minimize their potential energy by forming conformations with
large contact areas. Examples of such membranes include, e.g., graphene [61, 67, 74],
graphitic oxide membranes [34], recently synthetized nanoparticle membranes [80],
polymerized membranes [62] and lipid bilayers (typically having cross-linked proteins
embedded in them), including the skeleton of red blood cells [32]. For example, scrolled
and folded graphene sheets have been observed in various experiments [57, 67].

In this chapter membranes are described by the Seung model introduced in Chapter 2.
The lattice constant in the model is set to a = 2h. The self-avoidance and attraction of
membrane-membrane contacts is implemented by proximity detection for non-nearest
neighbour point-triangle pairs and for non-nearest neighbour edge-edge pairs, as de-
scribed in Chapter 2. Proximity detection yields the midplane separation r and the
related contact normal for any two parts of the membrane close to each other. For
separations h < r < 2h the two parts interact through an attractive harmonic poten-
tial which has energy —W per unit area at » = h. Contacts with r» < h are penalized
by a strong repulsive harmonic potential. We restrict the investigation to hexagonal
fully elastic membranes which have the width to thickness ratio L/h = 1000 along the
diagonal (see figure 5.1A). We simulate Langevin dynamics in the regime of relatively
small damping, i.e., the membrane is assumed to be surrounded by a dilute fluid.

A thin membrane with attractive forces can efficiently lower its potential energy by
either folding or scrolling. The simplest forms of such configurations are displayed
in figures 5.1B and 5.1C. Simulations demonstrate that these types of configurations
often appear if strong fluctuations or external forces have been exerted on the mem-
brane. It is therefore of interest to investigate these structures in more detail. Their
stability is determined by a balance between the elastic deformation energy E.; and
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the potential energy of the attraction force Ey.

Consider a square membrane of linear size L (the same analysis applies for hexagonal
membranes used in the simulations), which is folded once so that a smooth loop of
length [ is formed at the end of the fold, as in figure 5.1C. We recall the elastic energy
E. = akL/l with a ~ 18.33 of such a loop from equation (2.21). The size of the
adhered part of the fold is L(L — [)/2, which means that the total energy of the fold
is given by

Ey=FE,+Es=axL/l—WL(L—-1)/2. (5.1)

Ey has a minimum at [ = /2ax/W. If L > L} = 2,/2ax/W the fold is stable, i.e., it
has a smaller energy than a flat membrane (E = 0).

The energy of a scrolled membrane is well approximated by a membrane with a
constant curvature of radius R. The total energy of a scrolled membrane is then

E,=E,+ Ey=rL?/2R* — WL(L — 27R) (5.2)
with a minimum E, < 0 at R = (kL/27W)Y3 if L > L* = 37/3k/2W. The minimal

membrane size for a stable scroll is almost equal to that of a fold, L} ~ L} = L*. The
fold and scroll energies are compared in figure 5.2.

An interesting question regarding adhesive membranes is whether they could undergo
crumpling into a small volume without strong external compression. Figures 5.3D and
5.3E display the total energy ' = E, + E4 and pressure P for non-adhesive (W = 0)
and adhesive (W L?/r = 10*, L ~ 8L*) membranes during forced confinement at zero
temperature. The pressure was determined as the areal force density the membrane
exerts on the shell, and the shell radius was decreased at a constant rate. At the
beginning of the compression the energies and pressures of these two cases coincide as
there is no contact area. For smaller confinement radii, membrane-membrane contacts
become unavoidable and the adhesive membrane folds resulting in a drop in its total
energy. The first folds appear with little cost in the elastic energy, but soon com-
pression demands more elastic energy than what is gained by creating new contact
surface, and the energy begins to grow. The overall minimum in the total energy of
the adhesive membranes came close to that of a scrolled membrane. Rather surpris-
ingly, the average pressure was almost the same in the two cases. This means that the
energy released through attraction force does not aid the packing of the membrane,
and it mainly dissipates.

It is also useful to compare the energy E = br(L/h)Y3(V/Vy)™" of a confined
non-adhesive membrane (the constant b ~ 3.7, see figure 5.3D) with the maxi-
mum possible energy gain WIL? from attraction. If V/V; is large enough for WIL? >
bi(L/h)Y3(V/Vy) =09, the packing of the membrane is expected to be dominated by
the attraction forces and it has large adhered folds as in figure 5.3B. When V/Vj is
reduced, the relative energy gain of adhesion becomes weaker and the compression
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Figure 5.1: Simulated adhesive membranes in a flat (A), scrolled (B), once folded (C) and multiply
folded collapsed (D) configuration. The membranes have the strength of attraction WL?/x = 103
(flat, once folded, scrolled) or WL?/k = 10* (collapsed).
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Figure 5.2: The total energy per area for once folded and scrolled membranes as a function of sheet
size L. The critical size L* is indicated, and the energies are compared to the adhesion energy density
w.

will proceed like in the non-adhesive case. When this happens the folds will become
elastic ridges [37]. For simulated membranes with WL?/k = 10%, the total energy
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Figure 5.3: Forced crumpling of membranes. (A) Adhesive membrane loosely confined in a spherical
shell. The volume of the shell relative to its initial volume is V/V =~ 0.5. (B) The membrane twice
folded at V/Vy = 0.05. (C) The membrane highly compressed at V/Vy = 0.004. (D) Total energy
E/k = E./k + Ea/r of non-adhesive (W = 0) and adhesive (WL?/k = 10*) membranes during
compression. The energy of non-adhesive membranes is compared to E/x = 3.7(L/h)Y/3(V/V,) 7% =
37(V/Vy)~9. The energies that would result from folding once or scrolling up an adhesive membrane
are indicated by line segments. (E) The pressure exerted by the membranes against the confining
shell during compression. The pressures are compared with PV/k ~ (V/V5)~%9. The plots in (D)
and (E) are averages of five independent simulation runs.

E. + E4 turned positive at V/Vy &~ 0.004. At this point the elastic energy of adhe-
sive membranes became roughly equal to that of non-adhesive ones. The similarity of
elastic energies in the two cases at high confinement reflects the fact that packing of
adhesive membranes was not more efficient than that of non-adhesive ones.

When the external compression of adhesive membranes was relaxed, they opened up
into multiply folded collapsed conformations, as in figure 5.1D, if the adhesion was
strong (L > L*). These collapsed conformations were fairly flat rather than spherical.
Membranes with weaker adhesion opened up as folded and in some cases as scrolled
configurations. The latter requires that the opposing sides of the membrane have
adhered at some point. If the membrane size was less than L*, a flat configuration
always resulted when compression was released.
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Figure 5.4: Heating of a folded adhesive membrane. The adhesion energy E4 is shown scaled
by WA/2 with A the membrane area (open diamonds). The two snapshots show the fluctuating
membrane at T = vVxkWh?/3 and close to the temperature at which the fold opens up completely.
This temperature should approach the unbinding temperature 7% in the limit of large membrane
size (here L/h = 1000) with sufficiently strong attractive interaction (here WL?/x = 10°). In that
case the adhesion energy is expected to vanish as ~ —(T* — T')7¥~! [28]. This scaling behaviour is
plotted as a dashed line using the theoretical estimate 7¢ = 2.7 [26] and T™* = 2.0V kW h?2.

5.2 Role of thermal fluctuations

Perhaps the most interesting question related to the stability of microscopic mem-
branes is whether folded, scrolled or collapsed configurations are likely to appear as
a result of thermal fluctuations. If this is the case, then free standing membranes do
not exist. We give temperatures here as energies by including the Boltzmann constant
k B inT.

For a stack of flat membranes bound together by attractive forces it has been shown
by renormalization methods that there is a critical unbinding temperature 7™ at
which thermal fluctuations overcome the attraction [18, 8]. For fluid membranes
T ~ VEWd? [8, 29], where d is the range of attraction. For our rigid fixed con-
nectivity membranes we found 7™ ~ 2v/ kW h? (we have d = h) by heating up a folded
membrane (figure 5.4). A higher 7% in comparison with that of fluid membranes is
expected due to in-plane stiffness.
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Figure 5.5: Heating of non-adhesive flat membranes. (A) A phantom membrane at temperatures
T =k, T =2k and T = 3k, and a self-avoiding membrane at T' = 3x. (B) Radius of gyration R,

(defined as Ri = Zszl |tk — Tmean|?/N, where r is particle position) as a function of temperature
for the phantom and self-avoiding membrane divided by its zero temperature value Rgo. The drop
in the radius of gyration of the phantom membrane indicates its collapse by crumpling, while its
self-avoiding counterpart displays only linear shrinkage R,/Rg40 ~ 1.0 — 0.10 T'/x. The crumpling
transition temperature agrees with T~ 2.6« found by earlier Monte Carlo simulations [22].

Previous simulations have demonstrated that adhesive membranes without bending
stiffness (k = 0) collapse to a folded or even compact phase below T* [27, 28, 30, 36].
However, we argue here that in a typical experimental environment and for realistic
membranes, the bending modulus x tends to be so high that the energy of thermal
fluctuations below T™ typically cannot drive the membrane to collapse. Above T™,
membranes with fixed internal connectivity are always flat [12, 48]. We confirmed the
high 7" flatness of our membranes by heating them up to a very high temperature. By
switching off self-avoidance we found crumpling at 7" =~ 2.6k in agreement with early
Monte Carlo simulations [22], see figure 5.5.

The minimum energy barrier that thermal fluctuations need to overcome to collapse
an adhesive membrane corresponds to the energy needed to bend a corner of the mem-
brane around to touch itself. Making such a deformation of a hexagonal membrane
used in our simulations requires an energy F.; &~ 10x. This is a useful approximation
for the lowest energy barrier. The temperature must then be close to 10x to over-
come the barrier, but at the same time it must be below the unbinding temperature
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T*. Consequently, for a membrane to fold spontaneously, within a feasible timescale, a
rough estimate found by simulating free standing membranes (L > L*) is that 7" must
be within the interval vVkWh? 2 T 2 k. If adhesion is weak such that the unbinding
temperature is much less than the bending modulus, then flatness is metastable at
T < T~

Next we turn to forced compression of membranes at 7" > 0 in order to investigate
whether there are any significant differences arising from thermal fluctuations. Earlier
investigations have revealed that self-avoiding membranes with fixed internal connec-
tivity do not crumple by heating, not even if a membrane has zero thickness and
no explicit bending rigidity [12, 48]. In such a case the membrane could be packed
into a small volume without energy, which implies that the reason for the absence of
crumpling is purely entropic and that there would be a free energy cost for crumpling
due to loss of entropy.

However, it is not clear whether it requires more or less external work to compress
a membrane at a high temperature than at a low temperature. Entropic rigidity
is likely to increase compression stiffness, but thermal fluctuations may also help
the membrane to find the most efficient packing configurations. Simulations suggest,
however, that this is not the case. Crumpling of a fluctuating membrane requires
more external work, and heating up a compressed membrane increases the pressure
that the membrane exerts against the confining shell, as is shown in figure 5.6B
for non-adhesive and adhesive (W L?/k = 2.5 x 10*) membranes at the confinement
V/Vy = 0.004. For non-adhesive membranes we find from these simulations that there
is an approximately linear increase in the pressure with increasing temperature: the
pressure is approximately P ~ Pr_o(1 + oT/k) with a ~ 2. We experimented also
with other degrees of compression finding always a positive . We did not attempt
to find the precise volume, membrane size or adhesion strength dependencies of the
pressure within this work. The increase in pressure with temperature is analogous
to the behaviour of compressed solid or fluid, but opposite to that of rubber. The
pressure increase is, however, quite moderate considering that the highest simulated
temperature T" = k would be a very high temperature in an experiment.

The unbinding temperature of the compressed adhesive membranes can be seen in
figure 5.6B as the point where the pressure begins to increase at an equal rate with
the non-adhesive membranes. At this point (7" ~ T* ~ 0.3x) tightly bound layers
break up as a result of increased thermal fluctuations. The layers 'swell’ as can be
observed in figure 5.6A. The overall conformation is, however, not affected much. This
is quite reasonable since confinement of an elastic membrane in a small volume results
in a very efficient conformation in terms of energy already at zero temperature. In
addition, such conformations consist of large ridges and folds whose energies are far
beyond the simulated temperatures.
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Figure 5.6: (A) Confined adhesive membrane (W L?/k = 2.5x 10%, T* ~ 0.3x) at zero temperature,
below the unbinding temperature (7' = 0.1x) and above it (T' = ). (B) Pressure exerted by non-
adhesive and adhesive membrane as a function of temperature. The dashed line shows a linear fit
with a = 2. The confining volume in (A) and (B) is V/Vy = 0.004.

5.3 Comparison with real membranes

We are now in a position to review properties of some real adhesive membranes and
to consider applicability of our results to them. Membranes in biological systems are
typically composed of phospholipid bilayers embedded with proteins [12, 8]. If the
proteins form a dense cross-linked network then the membrane behaves as a solid
elastic membrane studied here. A typical bending modulus for biological membranes
is k = 0.3—0.6 eV, but the strength of their attractive interaction varies a lot depend-
ing on their composition [8]. However, repulsive hydration forces typically result in
separations by about two or three nanometers reducing the attractive van der Waals
interaction [12]. The regime W > 107° J/m? has been characterized as a regime of
'strong’ adhesion for lipid bilayer vesicles [66]. A membrane with W = 107% J/m?
would have L* ~ 3 — 4 pum, such that for a membrane size of the order of a few
micrometers the conformations could be affected by adhesion in the regime of strong
adhesion. The adhesion should, however, be much beyond W = 107% for large flat
membranes to pack into a volume equivalent to that of a typical cell. It has been
pointed out [8], that the unbinding temperatures of biological membranes can appear
at very reasonable temperatures so that binding and unbinding of membranes may
play a role in biological systems. In such a case T* < & so that folding, scrolling up
or collapse as a result of thermal fluctuations is very unlikely.
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Figure 5.7: TEM images of graphene. (A) A freely suspended graphene flake. The top and bottom
edges display scrolling and there is a folded region on the right. Scale bar, 500 nm. Reprinted by per-
mission from Macmillan Publishers Ltd: J. Meyer et al., Nature 446, 60 (2007), copyright 2007. (B) A
graphene flake supported only from the bottom edge. The size of the flake is approximately 3 by 5 pum.
The bright dots are copper particles. Reprinted with permission from T. J. Booth et al., Nano Lett. 8,
2442 (2008). Copyright 2008 American Chemical Society. (C) Stacking graphene layers. Closed edges
display folds of length [ ~ 4 nm. Reprinted with permission from Z. Liu, K. Suenaga, P. J. Harris and
S. Lijima, Phys. Rev. Lett. 102, 015501 (2009), link.aps.org/doi/10.1103/PhysRevLett.102.015501.
Copyright 2009 by the American Physical Society.

Graphene is another kind of membrane with fascinating properties (figure 5.7). It has
a very high inplane stiffness [77], but in comparison its intrinsic bending rigidity is
small. The bending modulus of a single layer graphene has been approximated as
Kk ~ 1 eV at room temperature [74]. The exfoliation energy 52 meV/atom [69] of
graphene layers results in W a 0.3 J/m?2. These values of x and W yield L* ~ 8 nm,
and a loop length [ of only ~ 4 nm. Loops of this size have been recently observed
in graphene by transmission electron microscopy, see figure 5.7C. The adhesive mem-
brane in figure 5.3 has W L?/kx = 10* which for graphene would imply L =~ 100 nm.
Graphene membranes can have L much larger than this, and thus the relative effect
of adhesion would be even stronger. Graphene can sustain large strains elastically (up
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to 10-20% [76]), which makes a fully elastic membrane model justified. The high stiff-
ness and strong attraction of graphene suggest a very high unbinding temperature,
at least several thousand Kelvin, giving no hope that folded, scrolled up or crumpled
graphene could be released back to a flat state by heating. Although graphene has a
strong attraction, its bending modulus is so high that some driving, other than just
thermal fluctuations, might be required for the collapse of graphene. This is compat-
ible with recent experiments, where free standing graphene has shown to be stable
in a gas environment [76], see figure 5.7B, and sonification of graphene-liquid sus-
pension was used to improve formation of scrolls [57]. There have been no reports
on graphene membranes collapsing compactly to form small graphite particles, which
seems reasonable as that would likely require strong external forcing.
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In elastic materials crumpling was found independent of the width to thickness ratio
of the sheet as far as solid volume fraction of the crumpled configuration is not too
high. The energy of crumpled elastic sheets satisfies a scaling expression given by the
scaling properties of a single ridge and the average ridge size. Similarity of elastic
ridge patterns for varying thickness is expected to result from the ability of elastic
structures to relax towards minimum energy configurations.

For elasto-plastic materials crumpling was found qualitatively different than in the
elastic case. It is evident that for high enough width to thickness ratio an isolated
elasto-plastic ridge behaves as an elastic one. However, high strain at the end vertices
of the ridge exceeds the elastic limit of the sheet material. This means that a vertex in
a crumpled elasto-plastic sheet cannot move without energetic cost. This hinders the
elastic relaxation and a high number of ridges forms. As a result large elasto-plastic
sheets are harder to crumple than their elastic counterparts. This is expected to be
relevant for almost all real materials.

For membranes at microscopic scale we confirmed that thermal fluctuations do not
induce crumpling. Thermally fluctuating membranes appear stiffer under externally
forced crumpling, but this is overwhelmed by typically high deformation energies
involved in crumpling. We demonstrated that membranes with van der Waals like
adhesion can reach low energy configurations by scrolling or folding, but confining
them into a small spherical volume requires as much effort than their non-adhesive
counterparts. Temperature should be high and adhesion strong for such a membrane
to collapse spontaneously without any guidance. We suggest that such a collapse is
not realized in typical biological and atom-layer membranes, such as e.g. graphene.

There are several directions in which research on crumpling could be carried on.
In simulations we were able to simulate sheets with a width to thickness ratio of
L/h = 1000. Sheets that appear in nature are typically not of larger size, but artificial
sheets, like graphene, can have much larger L/h. Predicting statistical properties of
crumpling in the thermodynamic limit (L/h — o0) would benefit from large sheet
sizes. They are computationally challenging because not only the number of lattice
points grows with increasing L/h, but the effective stiffness of the sheet decreases
such that compression of large sheets must be performed very slowly to avoid inertial
effects. This problem could be partly resolved with an adaptive simulation lattice. Use
of such a technique would be justified by the physics of crumpling, as a dense mesh is
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only needed for a small fraction of the sheet, i.e. for sharp vertices and ridges. That
fraction also decreases for incresing L/h. Another way to improve performance might
be using an implicit method to solve the equations of motion instead of an explicit
method [42]. This could allow significantly larger time steps, but implementation for
crumpling applications would be far from trivial.

In elastic theory properties of isolated ridges and cones are already well established
(37, 44, 47, 68], and buckling of single ridges have been analyzed [55]. However, in the
simulations the main mechanisms of crumpling and in the formation of new ridges
were buckling of relatively flat facets and splitting of vertices rather than buckling of
ridges. This behaviour would deserve further analysis.

Finally, the geometry of full scale crumpling is an unexplored area. For example, we
were able to approximate only by simulations how the average facet size behaves as
a function of radius of the crumpled configuration. This size decreased faster than
the radius. There are special ways that allow compactification of a sheet into a small
volume without excessive stretching while retaining the facet size similar to that of
the packed configuration [16, 12, 17]. Under simple confinement such packings may,
however, be unattainable. For finite L/h the relaxation of curvature in ridges does not
allow for the sharp folds obviously required for such ’geometrically clever’ packings. In
any case, the constraints set by self-avoidance and the fact that deformations in a thin
sheet are nearly isometric, could somehow be utilized when constructing a geometrical
theory of crumpling.



Appendix A: Box compression

Strength of cartons and thin-walled cylinders

Strength of a thin-walled box against compressive loading has practical importance in
packaging. Boxes, typically made of paperboard or polymeric materials, are stacked
reducing costs in transport and storage. An obvious requirement is that the lowest
box must hold the load set by the boxes on top of it. A related problem is the axial
loading of a thin-walled cylinder [1, 6]. Compression of a cylinder results in a uniform
in-plane strain until a critical buckling load. At the critical load F,. the compressive
strength reaches the maximum, and the cylinder collapses. For a material with Young’s
modulus Y, thickness h and Poisson’s ratio v = 0.3, the critical load is [1, 6]

F, = 3.8Yh* (6.1)

The strength of a thin-walled cylinder is, however, sensitive to imperfections and the
theoretical critical load (6.1) is practically difficult to achieve. A proposed empirical
formula based on extensive data is [52]

B 05
F.~10nYh? | = , 6.2
i (3) (6:2)
where R is the radius of the cylinder. The formula was found valid for 100 < R/h <
3000 [52].

The compressive strength of boxes made of paperboard, i.e. cartons, are often es-
timated by the Fellers formula [5, 9], by which the maximum strength of a carton

1S
Fb ~ 87T\/O'SCT\/ SMDSCD- (63)

Here oger is the short compressive strength (SCT) measuring the ultimate in-plane
strength, and /Sy pScp is the geometric mean of the bending stiffnesses in the so
called machine and cross directions of the paperboard. An equivalent formula for an
isotropic material is found by writing oscr = o,Y h and /Sy pScp = k. With v = 0.3
this results in

F, ~ 8Y h*\/a,, (6.4)

which is of the same form than F, (6.1) for a cylinder, excluding the yield stress o4 de-
pendence. The derivation of equations (6.4) and (6.3) is based on the classical analysis
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Figure 6.1: (A) Thin-walled box of size L/h = 1000 uncompressed (left), compressed by 1 %
(middle) and by 10 % (right). (B) Thin-walled cylindrical can of size R/h = 500 uncompressed
(left), compressed by 1 % (middle) and by 10 % (right).

of panel compression strength [1, 5]. For a box made of fully elastic material (o5, = c0)
these results do not seem to be valid, and to this end we simulated the compression
of an elastic box. We also compare briefly the box and cylinder compression.

Compressing an elastic box and cylindrical can

We modeled compression of an elastic thin-walled box (L/h = 1000) and cylindrical
can (R/h = 500) by the model based on deformable elements (see Chapter 3). They
had closed tops and bases, which were fastened along all their edges to the vertical
faces. The compression was performed between two solid horizontal plates. The con-
tact with the compressive plates was frictionless, and deformations of the tops and
bases were not restricted in any way (simulations indicated that their deformation
was rather meaningless for the compression strength).



top page line 47

10

NA

<

z ../c

i o

0

§ 10” | .o. _ i 1
“3 ‘. .-i!!"!::' 3

o ® 5goe &
g— s

8 10 s ® Cylinder, R/h = 500

e o Box, L/h=1000

10" 10° 10° 10"
Relative compression €

Figure 6.2: Compressive force F scaled by Y'h? as a function of relative compression € for a simulated
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Simulated compression of the can was much as expected. There was a uniform in-
plane compression in the beginning of the compression, after which the can abruptly
collapsed. The resulting buckling pattern displayed familiar diamond shaped defects,
see figure 6.1B. The maximal compression force agreed, within the accuracy of the
simulation model, with the theoretical critical load for a cylinder, see figure 6.2. This
was expected as the can had no imperfections.

The maximal compression force for the box was F,/(Yh?) ~ 1.7, i.e. about a half of
that of the can. It was reached at a more than an order of magnitude higher com-
pression (figure 6.2), which reflects a qualitative difference in compression of cylinders
and boxes. Boxes under compression display out-of-plane buckling under compressive
forces much less than their ultimate strength. The box compressed by 1 % in figure
6.1A is not yet collapsed, unlike the can below it at the same compression.

Simulations indicate that equations (6.3) and (6.4) are not valid for high yield stresses.
This means that the relative importance of plastic yielding and elastic buckling for
the box compression strength needs to be analyzed.
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