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ABSTRACT

Toivanen, Jukka

Shape Optimization Utilizing Consistent Sensitivities

Jyvaskyla: University of Jyvaskyld, 2010, 54 p.(+included articles)
(Jyvaskyld Studies in Computing

ISSN 1456-5390; 116)

ISBN 978-951-39-3990-8 (PDF), 978-951-39-3968-7 (nid.)

Finnish summary

Diss.

This thesis deals with gradient based methods to solve shape optimization prob-
lems governed by partial differential equations (PDE). Automatic differentiation
(AD) techniques provide a straightforward way to augment new and existing
PDE solvers with derivative computation routines. We present a novel imple-
mentation of the so called sparse forward mode AD, which provides an automatic
way to exploit sparsity in derivative computations. Using this technique it is pos-
sible to compute large sparse Jacobians of vector functions so that only minimal
changes to the original code are required. Moreover, this technique can be used
in the context of the discrete adjoint approach to efficiently compute large shape
gradients. The implementation has only slightly larger computational overhead
than traditional dense mode implementations.

The AD technique is used to implement shape sensitivity analysis capabil-
ities into an existing electromagnetic solver based on the methods of moments,
and the solver is used to solve various shape optimization problems related to
antenna design. Sensitivity analysis is also implemented in the context of the
finite element method, and this implementation is used for example to solve a
fibre orientation control problem in a simplified paper machine headbox. Shape
optimization governed by the Bernoulli free boundary problem is also consid-
ered. To this end, a so called pseudo solid approach is used to develop a solver
that enables efficient solution of the free boundary problem, as well as the shape
sensitivity analysis.

Keywords: shape optimization, sensitivity analysis, automatic differentiation
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1 INTRODUCTION

Shape plays a crucial role in the design of many objects. Classical examples are
cars [1] and aeroplanes [2], where the shape affects the aerodynamic drag, and
thus the fuel efficiency. Traditional way to design such objects is to evaluate ex-
isting configurations based on measurements, and use intuition and experience
to find ways for improvement. Often this kind of approach results in a design
that is acceptable, but not the best possible.

Advances in computational power and mathematical modeling have pro-
vided an alternative approach to this design process. At least to some extent,
measurements can be replaced with computer simulations when evaluating can-
didate designs. This offers several benefits: computer simulation is much cheaper
and often faster than building prototypes and setting up experiments, which in
turn enables quick experimentation with many different shapes. Moreover, com-
puters can be harnessed to explore design candidates in a systematic fashion and
seek the best possible one, i.e. to perform shape optimization.

Numerical shape optimization has been utilized for at least three decades
[3, 4, 5], and the mathematical foundations date back even further. Still, despite
the enormous potential, shape optimization capabilities are not a standard part
of commercial simulators. This thesis aims to promote generic and simple tech-
niques that enable the shape sensitivity analysis for a wide range of new and
existing simulation codes.

In Section 2 of this thesis we introduce a simple model shape optimization
problem, and take a look at some problems caused by the remeshing of the com-
putation domain. To avoid the need for remeshing, a mesh deformation approach
is often used. Article [PII] presents one possible technique for that purpose.

Sensitivity analysis is a key ingredient in efficient optimization methods. It
can also serve other purposes. For example in [6] shape sensitivity analysis is
used to predict the variation in the performance of microwave devices due to
geometrical uncertainties in the manufacturing process. It also plays a crucial
role in many solution strategies for free boundary problems [7]. In Section 3 we
review possible approaches for the shape sensitivity analysis. For the reasons
mentioned in Section 3.6 we will rely on discrete level sensitivities computed
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with the aid of automatic differentiation [8] (AD, sometimes called algorithmic or
computational differentiation).

The article [PI] presents our implementation of one particular AD technique,
called the sparse forward mode automatic differentiation. By numerical exam-
ples, the technique is shown to be reasonably efficient in terms of the compu-
tational overhead. Perhaps even more significant is the ease of use offered by
the technique. Once the AD operations have been implemented, the approach
provides a transparent way to exploit the sparsity in derivative computations.

In Section 4 we describe our implementation of the finite element method,
which is used to perform many of the computations presented in this thesis.
Moreover, we take a look at the application of the automatic differentiation in
the solution process of non-linear problems and in the shape sensitivity analysis.

In Section 5 we present another model problem, for which we perform the
shape sensitivity analysis. The effect of incomplete convergence of the state prob-
lem solution on the results of the sensitivity analysis are discussed, as well as
computational complexity of performing the shape sensitivity analysis with re-
spect to a large number of design variables.

The articles [PIII, PIV, PV, PVI] include applications of shape optimization.
The article [PIII] deals with the fibre orientation control in a simplified paper ma-
chine headbox. In the article [PIV] we consider optimization of systems where
the state problem is a so called Bernoulli type free boundary problem, which
arises for example in the modelling of ideal fluid flow or electro-chemical ma-
chining. The articles [PV, PVI] deal with antenna shape optimization, where the
state problem is governed by the time-harmonic Maxwell equations. The article
[PV] also highlights the fact that makes the automatic differentiation approach
tempting: implementing sensitivity analysis capabilities into an existing simula-
tor was only a matter of days in a case where manual implementation of sensi-
tivity computations had been previously deemed infeasible due to complexity of
the numerical methods utilized in the solver [9].

1.1 Setting of the problem

The physical phenomena that give rise to the shape optimization problems are
often modelled using partial differential equations. Such a partial differential
equation (PDE), or a set of equations, is often called the state problem, since it
models the state of the studied system. Let us denote our state problem by

B(u,Q,B) =0, @

where 1 = u(Q) : R™ — R" is the solution to the partial differential equation(s)
in the domain (), and B denotes the input data, such as the boundary conditions.
The function u can be scalar valued (e.g. temperature in the domain (2), a vector
quantity (e.g. velocity field of fluid) or a combination of scalar and vector fields.
Dimension m of () is typically 2 or 3. Physical phenomena also quite often depend
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on time, but time dependences are handled using special techniques, and will not
be considered within this thesis.

Using this notation, the shape optimization problem can be written as a
constrained optimization problem:

min ] (u(Q),Q, B) @)

Qeurd
subject to the state constraint (1). Here ] is so called objective functional and e
is the set of admissible domains. In what follows we shall suppose that the state
problem has an unique solution for every Q € U*. The optimization problem
may have other constraints, which can also depend on the solution u#, and multi-
criteria optimization problems [10] even have several objective functionals. The
techniques presented in this thesis can be extended to these cases without too
much difficulty.

The choice of the set of admissible domains is important in order to assure
that the optimization problem is mathematically well posed [11]. There might
also be practical reasons to pose some limitations on the shapes that are allowed.
Without proper limitations the domains resulting from the optimization can be
arbitrarily complex, exhibiting for example more and more oscillations on the
boundary as the optimization proceeds. If the optimization considers a model of a
real world device, such a result may be impossible or impractical to manufacture,
and therefore of no real value.

In sizing optimization only some dimensions related to the geometry are op-
timized, and the set of admissible geometries is therefore quite limited. When
non-trivial changes in the shape are allowed, one often speaks of shape optimiza-
tion. Topology optimization permits also changes in the topology, such as creating
new holes inside the geometry.

Topology optimization is considered a discipline of its own, because stan-
dard shape optimization techniques are not capable of handling changes in the
topology. For example, if the boundary of the domain intersects itself, some lo-
cation in space can be occupied by the material “twice” or have a “negative”
volume (see Figure 1). In these cases the numerical solution of the state problem
will in general be incorrect.

[ | —— % I\ _—

FIGURE 1 Initial geometry and two illegal deformed shapes.

One way to realize the topology optimization problem is to consider a bi-
nary design variable in each element of the computation mesh such that the
variable defines whether or not material is present in that element. However,
such a combinatorial optimization problem is very hard to solve, and therefore
heuristics such as genetic algorithms are sometimes used [12]. Another remedy
is to consider a relaxed problem. A topology optimization technique known as
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the solid isotropic material with penalization (SIMP) method [13], developed for
structural mechanics problems, relates the rigidity of each element to a design
variable that can obtain any value from the interval [0,1]. A sort of penaliza-
tion technique is then used to drive the design towards a state where all design
variables obtain a value close to 0 or 1.

Topological changes can be made possible also using so called level set
parametrization [14]. This approach is based on implicit representation of the
geometry through a scalar function ¢(x) which is defined in a larger domain.
The domain Q) is then defined to be that part of space where this scalar function
obtains certain values, for example ¢ > 0. The boundaries of () are thus defined
by the level curves of the scalar function, and no explicit restrictions are placed
on the topology of ().

In the rest of this thesis we shall not consider methods that allow topolog-
ical changes, but we shall focus on optimizing shapes of domains with a fixed

topology.

1.2 Discretization of the state problem

In general, the partial differential equations that constitute the state problem can
not be solved analytically. Instead, numerical methods and computers must be
utilized. In order to be solved with a computer, the problem must be discretized,
i.e. converted into a form that is represented by a finite set of real variables. That
is, the continuous function u is approximated with a function uj, which is defined
by a set of variables g = (q1,...,qn) called the degrees of freedom. The infinite
dimensional problem is thus converted into a finite dimensional one.

Common discretization methods include the finite element method (FEM)
[15, 16], the finite volume method (FVM) [17], and the boundary element method
(BEM) [18]. The methods are based on slightly different principles, and differ
in the way they approximate the unknown function and seek a solution of the
discrete problem.

To overcome the problem of mesh distortion during shape changes, and to
avoid remeshing, so called meshfree or meshless methods [19] have been devel-
oped. In such methods, a division of the computation domain into elements is not
required in order to define the basis functions. These methods are less sensitive
to large shape changes than the finite element method, making them tempting for
shape optimization purposes. Drawbacks of these methods include difficulties in
imposing essential boundary conditions, and relatively high computational cost
of the analysis [20].

In this thesis we shall focus on FEM and BEM discretizations. The basics
of the finite element method will be introduced through a simple model problem
in the next chapter, and the method is utilized in the articles [PII, PIII, PIV]. The
articles [PI, PV, PVI] consider a boundary element type discretization.
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1.3 Discretization of the geometry

Discretization of the optimization problem also includes representing the geom-
etry as a function of a finite set of design variables & = (ay,...,ap)". There are
many ways to define the design variables and to reflect the geometrical changes
in the computation. In the traditional finite element method, the computation
domain is defined using a mesh, which is fitted to the boundaries of the geome-
try e.g. by placing the nodes on the boundary curve. Changes in the geometry
are therefore reflected as changes in the mesh. These kind of techniques shall be
utilized also in this thesis.

An interesting methodology that has emerged during recent years is the
isogeometric analysis [21]. In this approach, the same spline functions that are
used to define the geometry in many CAD systems are used also to approximate
the unknown functions during the analysis. Therefore, unlike in the traditional
finite element meshing, it is no longer necessary to construct e.g. a piecewise lin-
ear approximation of the spline based geometry, which is an obvious advantage.
Instead, the geometry is exactly represented even in the coarsest discretization,
and is preserved during refinements, which can be performed without interaction
with the CAD system.

This approach has been successfully applied also in the context of shape
optimization. In [22] two-dimensional structural shape optimization is consid-
ered, analytical sensitivities for the NURBS (Non-Uniform Rational B-Splines)
discretizations are derived, and gradient based optimization methods are ap-
plied. In [23] continuous level sensitivity analysis is considered. Also in that
context the isogeometric approach offers additional benefits. Namely, the NURBS
basis functions naturally provide the design velocity fields needed in the sensi-
tivity analysis process. Moreover, the normal vector and the curvature of the
boundary can be calculated exactly.

The idea behind so called fictitious domain methods is to avoid doing most
of the mesh related computations each time there are changes in the geometry.
Instead one uses a regular mesh covering a larger domain that includes all ad-
missible computation domains. Changes in the actual design domain are then
reflected either by modifying the mesh only locally [24], or by keeping the mesh
completely constant and forcing the appropriate boundary conditions using pe-
nalization [25] or Lagrange multipliers [26].

The choice of suitable design variables is obviously problem dependent. It
is common to parameterize some parts of the shape using for example spline
curves, and take the design variables to be the control points of the splines. In
so called CAD free setting [27] the boundary nodes of the mesh are directly used
as design variables. This way there is no need to know anything about the CAD
model which produced the mesh used in the computation. However, the number
of design variables can become very large. Furthermore, some form of smoothing
may have to be applied to the shape variations in order to keep the geometry
feasible.
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1.4 Optimization methods

Once the problem is discretized, some optimization method can be utilized to
solve the discrete optimization problem

min J (1, (u), &, By) ®
subject to
up = F(Oy(a), By,)- 4)

Here u, is the discrete approximation of the solution to the PDE, produced with
the numerical method denoted by F, (0, is an approximation of the domain used
in the solution process, B, is discrete version of the input data, J is the numeri-
cally evaluated objective function, and a™ is the set of admissible design variable
values.

There are many ways to solve the optimization problem (3). Usually the
combined function J, : & — Jj,(«) is non-linear, and the optimization process
must be iterative. Optimization methods in general can roughly be divided into
two groups: deterministic and stochastic methods.

Stochastic methods include for example simulated annealing [28] and ge-
netic algorithms [29]. These methods include some amount of randomness in
the optimization process. Reason for this is to avoid falling into the nearest lo-
cal optimum in cases when the objective function has multiple local optima. A
drawback is that these kind of methods often require a large amount of function
evaluations, which is very costly when each function evaluation requires solving
a partial differential equation.

Another class of methods are deterministic optimization methods, which
do not include any randomness. Instead, in each iteration these methods do a
local search and try to find a design that improves the value of the objective func-
tional. Gradient based methods utilize the derivative of the objective functional
to construct a search direction that guarantees an improvement in the objective.
For some methods of this type, global convergence can be proven (see e.g. [30]).
This means that the method will converge to a critical point from any initial guess.
However, without additional assumptions there is no guarantee that the obtained
solution is a global optimum. Some methods approximate the Hessian matrix of
the objective functional, in which case one often speaks of quasi-Newton opti-
mization methods. For some of these methods a superlinear convergence rate
can be established.

Gradients can be exploited also in hybrid methods, which attempt to com-
bine the best qualities of stochastic and deterministic methods. For example in
[31] genetic algorithms are used to explore the search space, and a conjugate gra-
dient algorithm is used to perform a local search, which guarantees that the final
solution is at least a local optimum.

In this thesis we focus on gradient based methods. Most of this thesis is
therefore devoted to techniques that allow the computation of the exact gradient
of the discrete objective functional, i.e. so called consistent gradient.



2 MODEL PROBLEM1

Let us consider a classical shape optimization problem related to maximizing the
torsional stiffness of a prismatic bar. Let the cross section of the bar Q)(«) belong
to the set of admissible shapes given by

2
uud:{(s,t)eRZZZJraZﬁg}. )

That is, Q(«) is an ellipse with semiaxis « and 1/a. Our state problem is as fol-
lows: we seek a scalar function u : ) — R such that
—Au = in Q)
! ©
u=20 on d(),
where f is a constant force function f = 2 in Q).
We wish to find the design parameter « that maximizes the torsional rigidity
of the bar, being equivalent to minimizing the functional

J=— [ uf )

Because of the simplicity of the admissible shapes, analytical solution to the state
problem can be found. It is given by

o? 1, at o,
,t) = — — . 8
u(s,t) ot +1 oc4—|—1s ot +1 ®)
Moreover, the analytical expression for the objective functional J is
2
n
= 9
J@) = 7 ©

2.1 Discretization

Finite element discretization of the model problem is based on the so called weak
or variational formulation. We multiply the equation (6) with a test function ¢,
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integrate over the domain (), and perform partial integration, to obtain the prob-
lem:

Find u € H{(Q) : Vu-Vo— | Vu-np= [ f¢ VYoecHI}Q). (10)
v fovem= ),

Here the Sobolev space H} () includes functions that vanish on 9(), are square
integrable, and have square integrable weak first derivatives.

Discretization of the weak formulation then involves replacing u in (10) with
an approximation uy, which is defined as a linear combination of simple basis
functions ¢4, ..., N € VNt

N
Uy =y qi9j, (11)
j=1

where Vy C H}(Q) is a N-dimensional subspace. In the so called Galerkin’s
method one uses the same functions ¢; as the testing functions ¢ in (10). We now
obtain

N
VoV »:/ i=1...N 12
/Q];q] @i Vi foPz i (12)

which can be written as a system of linear equations of size N x N:

Aq = b with Aij = /Q Vq)] -Ve;and b; = /(;f(pl (13)

From this system the coefficients g can be solved to obtain the approximate solu-
tion uy,.

In the finite element method the basis functions are chosen so that they have
a small support. To this end, one utilizes a mesh of the domain, like the one
shown in Figure 2. The mesh is a collection of simple geometrical entities, such
as triangles or quadrilaterals in 2D and tetrahedrons and hexahedrons in 3D, and
defines a discrete approximation of the domain (). We denote this discretization
by O, where & is a parameter characterizing the granularity of the discretization.
Since curved boundaries can not be exactly represented with straight edges, the
discrete domain is sometimes only an approximation of the true domain.

The standard linear basis functions are as follows. The basis functions are
associated to nodes, which in this case coincide with the vertices of the mesh
x; = (xil, ey x;-”)T, i =1,...,Ny. The basis functions are constructed so that they
are continuous, linear in each element (triangle in the mesh), and in the nodes it

holds that

() = V=T (14)

(x;) =

i 0,ifi #j.

The support of one particular basis function is hilighted in Figure 2. It is clear
from the expression given in (13) that the system matrix element A;; is non-zero
only if the supports of ¢; and ¢; overlap. From this choice of the basis and testing
functions it follows that the resulting linear system of equations will be sparse,
which is a characteristic feature of the finite element method.
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FIGURE 2 Mesh of the initial geometry.

2.2 Effects of remeshing

The type of mesh used in this example is called unstructured. This kind of meshes
can be generated automatically by several methods using a mesh generator soft-
ware [32, 33], given as input only the domain boundary. Thus we can automatize
the evaluation of the functional (7): for a given design a we utilize the mesh
generator to create a mesh approximating the corresponding domain Q) («), solve
the state problem (6) approximately using the finite element method, and eval-
uate the value of the objective (7) using numerical integration. Some values ob-
tained by this process and the corresponding values of the exact expression (9)
are shown in Figure 3.

-1.42 - o Computed (remeshing) 7
Exact solution

-1.44
-1.46
-1.48
15k
-1.52
-1.54 -
-1.56

158 L 1 1 1 1 1 1 1 1
08 085 09 095 1 1.05 11 115 1.2

Design variable

Objective functional

FIGURE 3  Solution of the model problem by completely regenerating the mesh for each
design.

Based on the Figure 3, there is a small systematic error in the solution. This
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can be explained as follows. It is known that the solution u € H}(Q) of the
problem (6) is the minimizer of the energy functional

1 1
_ . _/ _ i _7/ . @5
! argue?é?o) 2 /Q v qu e uegér(ln) 2 qu 15

The discrete solution, on the other hand, is the minimizer over the subspace Vy,
and
min —1/ fv > min —1/ fw. (16)
veVn  2Ja” T weHl(Q) 2J/a
However, the location of the minimum of the objective functional seems to
be quite close to the exact minimum. Moreover, the numerical solutions seem to
draw a nice, continous looking curve as a function of the design. One could there-
fore be tempted to try for example some gradient based optimization method
using the finite difference approximation to the derivative of the functional:

A, oy _ Jn(a®+e€) — Ju(a®)
G )~ - . (17)

However, here one runs into trouble. Figure 4 shows the objective functional
values obtained similarly than before, but over a smaller interval. It turns out that
the approximation of | obtained using this process is not a continuous function of
«, but instead it includes a significant amount of noise. Naturally, use of floating
point arithmetic will always produce some amount noise, but the noise seen here
is several orders of magnitude larger than that. The reason of this behaviour is as
follows.

The mesh used in finite element computations consists of the nodal connec-
tivity or topology T, and nodal positions X: 0, = (X, T). Solving the same
problem using two meshes, which represent exactly the same domain and have
the same nodal coordinates but a different nodal connectivity, will usually result
in slightly different solutions. Therefore also slightly different objective func-
tional values are obtained. Similarly, using two meshes with the same topology
but different internal nodal positions will also give two different solutions. All of
this is basically caused by the discretization error.

Most unstructured mesh generators work by iteratively adding (and some-
times deleting) points to selected locations until some quality criteria are fulfilled
[32]. Therefore, even a very small change in the boundary shape can cause a com-
plete change in the mesh topology, and even a change in the number of nodes in
the produced mesh. Such a change then causes a discontinuity in the objective
functional.

The magnitude of the noise depends on the mesh density, and will tend to
zero as the mesh is refined. However, in practical applications extremely dense
meshes can not usually be used, since the computation times would become too
long, especially as the computation has to be repeated several times during the
optimization. Moreover, extremely dense meshes are often not required to obtain
sufficient accuracy from the simulation point of view.
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FIGURE 4 Solution of the model problem obtained by remeshing for each analysis, and
by deforming a reference mesh.

The noisy behaviour of the objective functional has the following conse-
quences. First of all, looking at Figure 4, it is evident that one should use a quite
large value for the parameter € in order to get a sensible approximation for the
derivative using the formula (17). If the functional were highly non-linear, large
values of € would introduce a significant error in the approximation of the deriva-
tive.

Another problem is that gradient based optimization methods are usually
designed to be used on continuous functions. Therefore, when applied to a func-
tion with a significant amount of noise, such optimization methods may stop at a
point which is not very close to a local optimum.

Finally, remeshing the whole model for each objective functional evaluation
can be quite time consuming. For these reasons, the following mesh deformation
based approach is used in this thesis.

2.3 Mesh deformation approach

The idea of this approach is that the mesh topology is fixed, i.e. T(a) = T(ap),
but the mesh nodal positions are allowed to move according to changes in the
shape, i.e. X(a) # X(ap) in general. To this end we utilize a mesh deformation
operator denoted formally by

G(X(x),&)=0. (18)

Usually the mesh deformation operator is constructed using a reference mesh,
which is generated in the beginning of the optimization and corresponds to the
initial design «9. Many different approaches to deform the mesh have been devel-
oped, each having different relative merits in terms of the ease of implementation,
quality of the resulting mesh, the amount of deformation that can be tolerated,
and the computational cost.
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Some methods perform the movement of the mesh nodes in iterative fash-
ion, relocating each node based on the locations of its neighbours. A classical
method of this type is based on a technique called Laplacian smoothing [34], and
it involves defining the movement of each node as the average of the movement
of its neighbours. This approach has resulted in many variants, which try to im-
prove the robustness of the method and the quality of the resulting mesh. See
[35] and [36] for examples.

Another possibility is to model the mesh movement using partial differen-
tial equations. This is not completely different from the previous approach: under
certain assumptions the basic method of Laplacian smoothing is nothing more
than iterative solution method for the Laplace equation. Other popular PDEs are
the linear elasticity model [37] and the biharmonic equation [38].

Radial basis function interpolation has been recently introduced in the field
of fluid structure interaction problems [39] and aerodynamic shape optimization
[40]. This deformation technique is independent on the mesh type and topology,
relatively straightforward to implement, and it is not computationally expensive.

In case of simple geometries the mesh deformation operator can sometimes
be defined analytically. For example, let the reference mesh related to our model

problem correspond to initial design «g, and J?{ be the j coordinate of i node in
that mesh. We can now define

{Gi =x} — (a/ag) X}

Giyn, = X7 — (ap/ ) X7

; —

(19)

wherei=1,...,N,.

Besides avoiding the need of remeshing, use of the mesh deformation tech-
nique has the following benefit. Under the assumption of fixed mesh topology
and continuous dependence of the nodal positions on the design variables, it can
be shown (see e.g. [41]) that the mappings « — A(«a), « — b(«) are continuous,
and thus « — gq(«) is continuous. Moreover, assuming that Jj, is continuous, the
composite mapping & — J,(«) is continuous.

In Figure 4 are shown the objective functional values obtained using an an-
alytical mesh deformation approach and remeshing for each analysis. There is a
small difference between the results obtained using the two approaches, which
may result from the fact that the mesh was generated corresponding to the design
a9 = 1.2, and relatively large deformation of the mesh was thus taking place. The
meshes that are regenerated for each analysis include more regularly shaped ele-
ments, and may also include a different number of nodes and elements. However,
the functional obtained using the mesh deformation approach is continuous, ex-
cept for the very small scale noise caused by the use of floating point arithmetic.

In what follows, the discrete objective functional Jj, is taken to mean the
function that arises when the mesh topology is fixed to that of the reference mesh,
and the mesh nodes are relocated according to some given mesh deformation op-
erator G. In practise, however, remeshing is still sometimes required, but we will
consider these as cases of restarting the optimization with an essentially different
objective functional (see e.g. article [PIV]).



3 SENSITIVITY ANALYSIS

The sensitivity analysis of optimization problems governed by partial differential
equations can be performed in many ways. In the following the main features
of different approaches will be briefly introduced. For a rigorous mathematical
presentation see e.g. [42] in the continuous and [43] in the discrete case.

3.1 Continuous sensitivity equation method

In the continuous sensitivity equation method the differentiation is performed
on the continuous level to obtain so called sensitivity equations, from which the
sensitivities of the solution with respect to the design variables can be solved. The
sensitivity expressions need to be derived separately for each problem, but there
are some generic results that can be utilized (see e.g. [41], [42]).

The equations can be derived by considering a shape deformation mapping
x — x+tV(x), Q — O and defining u; to be the solution to the state problem
which is posed in the deformed domain ();:

up = u(t,x+tV(x)). (20)

The resulting derivatives can be seen as directional derivatives characterizing the
behaviour of the objective when () moves in the direction given by V. Connection
to more general shape changes can be established by noticing that if a point x € ()
moves according to changes in the design «, position of x is locally approximated

by
; ox
x(ao + te') ~ x(ag) + ¢ FYE (21)
Ny
=Y

Assuming necessary smoothness, the chain rule can be applied to obtain

(0, %) = %u(t,x—l—ﬂi(x)) 0%) +Vau(0,%)-V,  (22)

=—u
=0 Ot
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or, in abbreviated form,
=u+Vyu V. (23)

The term u is called the material derivative, and u’ is called the pointwise shape
derivative.

The shape derivative u’ is obtained by differentiating the state problem with
respect to t at f = 0. In case of our model problem the shape derivative is obtained
as solution to a boundary value problem [41]

—Au' = in O)
{ u 0 in (24)

u=—(Vu-n)V-a on 0Q).

The velocity depends on the shape parametrization. In this case it is given by
V(x!,x?) = (x1/a, —x2 /).

Alternatively, we may compute the material derivative of u. It is obtained
by solving [41]

{.—Au:V-(fV—i—AVu) in O 25)
u=2~0 on aQ,
where [44]

A= (V-V)id—- (DV)T - DV, (26)

and DYV denotes the Jacobian of V.
The objective functional must also be differentiated with respect to t. For an
integral type objective functional

I = /Q g(ur) dxy, 27)

t

the derivative [ is given by [41]

. d 0 , _
j= E]t = Q%(u)u dx—l—/an(u)(V~n)ds. (28)

=0+

Alternative expression utilizing the material derivative is given by

]:/Qﬁ(u)udx+/(2g(u)V~de. (29)

In case of the model objective functional (7) we have g(u) = — fu, and there-
fore dg/ou = —f = —2. Moreover, g(u) = 0 on 90}, and V -V = 0. Thus we
obtain

]':—Z/Qu’dx:—z'/ﬂudx. (30)

We now have the ingredients to perform the shape sensitivity analysis. Af-
ter solving the state problem, we solve the sensitivity equations for the shape
derivative related to each «; separately, and use the expression (30) to compute
the gradient of the objective functional. In this approach, M different PDEs have
to be solved, since the shape derivatives will in general be different for each «;. A
remedy to avoid this is to use the following technique.
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3.2 Continuous adjoint method

Let A satisfy the following adjoint equation:

AN = %8 i
AN = 52 (u) in Q) (1)
A=0 on 9Q).
Now, the expression (28) can be written as
= [ swrax+ [ V. 71) ds. 32
J=— [ awdr+ [ gwv-mds (2)

Using integration by parts twice we obtain

j:f/ AAu’der/ )\Vu’-ﬁds—/ u’V/\-ﬁds+/ gu)(V-)ds (33)
@) a0 Q) Q)

=0 =0

where the first two terms are zero since from (24) we know that Au’ = 0in O,
and in (31) we specified that A = 0 on 0Q).

In particular, all terms involving the sensitivity 1’ inside the domain () are
eliminated, and one does not have to solve the sensitivity equations any more.
Plugging in the term u’ on the boundary 0Q) as given in (24), we obtain

j:/ao(w-ﬁ)(VA-ﬁ)(V~ﬁ)ds+/an(u)(v-ﬁ)ds (34)

Since in the case of our model problem dg/Jdu = —f, we notice that the ad-
joint problem (31) is exactly the same as the state problem (6), except that the right
hand side has the opposite sign. Thus it follows that A = —u, and no additional
PDEs must be solved. This is a well known property of objective functionals that
are defined as an integral of the solution times the force vector over the compu-
tation domain. Again, g(1) = 0 on 9(2, and the sensitivity is given by

j= _/m(w-ﬁ)Z(v-ﬁ)ds. (35)

In the general case one actually has to solve the adjoint PDE, but the ad-
vantage is that there is only one adjoint function A regardless on the number of
design variables.

Similarly, starting from the expression (29) and making use of (25), we ob-
tain

j:/ow-(fV+AVu)+/Qg(u)V-de. (36)

Noticing that V - V = 0 in this case, integrating by parts once more, and plugging
in A = —u, we obtain

j= / AV - Vudx. (37)
O
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3.3 Direct discrete sensitivity analysis

For brevity of notation, we write the discretization of the state problem in the so
called residual form:

r(q,X(a)) =0. (38)

In case of our linear model problem, the residual is simply r = Ag — b, and the
condition r = 0 means that g must be the solution to the linear system (13). In
case of non-linear problems the system matrix and/or the right hand side depend
on the solution vector g, and driving the residual to zero often requires using
some iterative method. However, the differentiation procedure presented in what
follows applies also in this case.

The notation X («) is used to emphasize that in this case a are geometrical
design variables, and therefore affect the discretization only through the mesh
nodal positions. The unknowns ¢q also depend on «, but this dependence is im-
plicit through the relation (38). To differentiate this dependence we apply implicit
differentiation to the equation (38) and rearrange the terms to obtain

or dq or 0X

dqon; X om )
We have now obtained a linear system, from which the sensitivities dq/da; can
be solved and used to compute the derivatives of J:

4y _21,0X 9, 2g )
le,‘ 0X azxi aq azxi'
Here 0],/ 90X denotes the direct dependence of ], on the geometry, which exists
for example if | is given in the form of an integral, and the domain of integration
is affected by the design variables.

Since there are M design variables, this approach requires the solution of
M linear systems. This is in analogy with the continuous sensitivity equation
method. As in the continuous case, the adjoint approach can be used to overcome
this problem.

3.4 Discrete adjoint approach

The discrete adjoint approach is based on the following algebraic manipulations.
Since the residual #(g, X («)) is required to remain zero regardless of changes in
the shape, [, coincides with the Lagrangian

L(q,X()) = Ju(q, X () + ATr(q, X (x)), (41)

where A is an arbitrary vector of Lagrange multipliers.
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Differentiating this relation with respect to «; and rearranging the terms we

obtain dL 9], 0X or 0X a] or\ 9
h T (9" h T\ 99

e = Zh AT ) A 4

i~ axom 1 <8X8ai) <8q A aq) o (42)
Since the Lagrangian multiplier is arbitrary, we can choose it to satisfy the adjoint
equation

ar\ ' o, "
() 2= 5% -

This choice kills the last term in (42), and the sensitivity can be computed from
LI 7 (20X

da;  0X 0w 0X ou; (44)

3.5 "Doubly adjoint" discrete approach

In the direct discrete and discrete adjoint methods presented earlier, the mesh
nodal sensitivities %—f are assumed to be known. They can of course be computed
by applying implicit differentiation to the mesh deformation equation (18), and
solving the resulting linear systems. However, in some cases the mesh deforma-
tion operator is itself a PDE, which makes this procedure quite inefficient. The
following "doubly adjoint" approach can be used instead.

Following Nielsen and Park [45] we define a Lagrangian function
L(q, X(a)) = Jn(q, X(«)) + A{r(q, X (a)) + A, G(a, X (a)) (45)
Differentiation with respect to a; yields
Aol IOX (e, BOK) g (96 960K
da;  0q da;  0X da; * \9gon; 90X ou; "™\ ox;  0X du;
Rearranging this we obtain

(46)

de;  \9g  "*og)oa;  \0X  "FoX  "™0X)ow; ~™oa;
Now the derivative can be obtained from
dL 719G
dTai = /\mBTc,» (48)
where A, satisfies
G\ " of,T orT
(8X> Am = — (ax + X As (49)
and A satisfies ;
T
<8r> As = —% . (50)
9q oq

In this formulation two adjoint systems need to be solved. Right hand side of (49)
depends on A, and therefore the system (50) must be solved first. Both adjoint
vectors are independent on «, and the systems therefore have to be solved only
once regardless of the number of design variables.
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3.6 Concluding remarks

Applicability of the different sensitivity analysis methods has been the subject of
much research and even debate. For survey papers on sensitivity analysis see
[46,47, 48, 49].

3.6.1 Accuracy and consistency

Following [48] we make a distinction between accuracy and consistency of gra-
dients. By accuracy we mean the difference between the derivative obtained us-
ing the employed sensitivity analysis method and the exact derivative based on
the exact solution of the governing state equations. Accurate derivatives are ob-
viously desirable, but the accuracy is dependent on the discretization. That is,
density of the mesh dictates the accuracy of the sensitivity analysis as well as
the primal analysis, and accurate derivatives are in general obtained only as the
element size tends to zero. Consistency, on the other hand, is defined as the differ-
ence between the computed derivatives and the exact derivative of the numerical
model.

The continuous level sensitivity expressions in general depend on the so-
lution of the state problem, and are therefore exact only assuming we know the
exact solution. Since it is usually not known, the numerical approximation must
be used instead. Depending on which formulation is used, the resulting deriva-
tives may or may not be consistent with the derivatives of the numerical model.
This approach is sometimes called computing the inexact gradient of the exact
objective functional, or in other terminology, the differentiate-then-discretize ap-
proach.

In [50, 51] examples are given, where the optimization terminates to a point
which is not very close to the optimum due to the inconsistency in the gradient
obtained using the continuous level sensitivity analysis. This can happen because
the optimizer uses the supplied gradient information to choose the search direc-
tion so that it should be a direction of descent, but due to the inconsistency it may
fail to be the case. Thus the optimizer can get confused and stop the optimization.

On the other hand, authors of the review [49] do not consider the potential
inconsistency a major problem, because the quality of the gradients is often suffi-
cient to achieve convergence relatively close to the optimum. For example in [52]
continuous and discrete level gradients were compared in the context of aero-
dynamic optimization. The gradients were found to be in good agreement, and
similar convergence in the optimization was observed using both approaches.

The partial derivatives appearing in the discrete level formulas can be com-
puted exactly (up to numerical precision), and consistent derivatives can thus
be obtained. The discrete level derivatives are therefore sometimes called exact
derivatives of the inexact objective functional. Term discretize-then-differentiate
is also sometimes used. Obvious advantage of the consistency is that the opti-
mization is able to converge to the exact local optimum of the discrete model.
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Let us consider the sensitivity analysis of the Model problem I. We shall use
the following abbreviations for the sensitivity analysis methods:

* HOFD means differentiation of objective using a response level finite differ-
ence formula

Jn(e) = (Ju(e — 2€) — 8]y (x — €) + 8]y (ax +€) — Jn(a +2€)) /(12¢).  (51)

The truncation error using this formula is of the order O(e*). The step
length € = 10~* was used, which provides a very low truncation error with-
out significant round off errors. This method is used as a reference method
to compute the "exact" derivative of the numerical model.

e CSELl is the continuous sensitivity equation method based on the shape
derivative u’ obtained by solving (24).

e CSE2 is the continuous sensitivity equation method based on the material
derivative 1 obtained by solving (25).

¢ CAl is the continuous adjoint method based on the expression (35).
* CA2 is the continuous adjoint method based on the expression (37).

e AD is the discrete adjoint method (Section 3.4), where automatic differenti-
ation is used to compute the terms 9]}, /dq, 9],/ da, and or/dw exactly. More
details on the implementation of this method are given in Section 4.3.

The other discrete level methods were not included in the test, because they are
known to produce the same results as we solve the linear systems with high pre-
cision and use accurate partial derivatives.

In Figure 5 is presented the results of the sensitivity analysis of the model
problem performed with the different methods at & = 1.5. Analytical value of
the derivative at this point was d]/da ~ 1.0417. The Figure shows the difference
between the analytical derivative and the numerical approximation as a function
of characteristic element size h.

In this case the CSE2, CA2, and AD methods coincide: the maximal dif-
ference between the derivatives obtained using these methods was of the order
10—, Moreover, the derivatives produced using these methods are consistent:
the maximal difference between them and the HOFD reference gradient was of
the order 107 '°. Therefore these results are plotted using only a single curve in
the Figure 5.

As we can expect, all the methods produce more and more accurate deriva-
tives as the element size decreases. However, a different convergence rate is ob-
served for some methods. Using a least squares fit of a linear model to the data
presented in the Figure, the errors are found to depend on h as O(h'%0), O (h%%?),
and O(h*%) in case of the CSE1, CA1, and HOFD methods, respectively. This is
due to a particular problem pointed out e.g. in [53]. Namely, gradients of the so-
lution and/or the adjoint variable evaluated at the boundary are required in the
sensitivity formulas, but such gradients are poorly captured using linear finite
elements.
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FIGURE 5 Absolute value of the error.

3.6.2 Implementation effort

While the continuous level methods are relatively well established for traditional
fields of application, such as structural and fluid mechanics, new areas of appli-
cation and multidisciplinary design cases remain a problem. For example, tur-
bulence models are still often "frozen", i.e. neglected from differentiation, to sim-
plify calculations [49]. Moreover, there are some limitations on what can be used
as objective functions so that the adjoint problem is well posed [54, 49].

On the other hand, manually differentiating complex simulation codes to
obtain discrete level derivatives is sometimes next to impossible [9]. Moreover,
as pointed out in [27], even the setting of the optimization problem is often an
iterative process: the objective functional and/or the constraints may have to be
modified as the solution is found to be infeasible in some, unforeseen, sense. This
makes manual differentiation of simulation codes even more impractical, as the
sensitivities would have to be reprogrammed after each change to the simulation
code or the optimization problem.

However, manual labour can be kept to minimum by using automatic differ-
entiation. Automatic differentiation is the topic of the article [PI], and is not there-
fore discussed in detail here. Automatic differentiation computes the derivatives
of a computer code exactly up to floating point precision, resulting in perfectly
consistent derivatives.

3.6.3 Computational complexity

In general, if the number of objective functionals and solution dependent con-
straints is lower than the number of design variables, adjoint approaches (contin-



33

uous and discrete) are more efficient than the direct ones.

Difference in the computational cost between continuous and discrete ap-
proaches appears to be problem and implementation dependent [48]. In some
cases the continuous adjoint method can be very efficient. For example, due to
the self-adjoint nature of our model problem, the gradient could be obtained by
simply computing one boundary integral per design variable. In the discrete case
computation of the partial derivatives of the residual with respect to the design
variables is required. The boundary layer concept is sometimes utilized to im-
prove the efficiency of the discrete methods [55].

A common notion about automatic differentiation is that computational cost
of differentiating a single objective functional with respect to M design variables
is of the order of M times the original solution time when so called forward mode
AD is used, whereas so called reverse mode is a way of obtaining the gradient so
that computation time is independent on the number of design variables. The
latter is true in theory, but the problem is that information about the whole com-
putation has to be stored to a so called tape, size of which can easily become very
large [56]. Thus the tape needs to written to a disk, which is very slow compared
to memory access, and can lead to significant decrease in computational perfor-
mance (see [PI]). To avoid this problem, significant changes to the solver code
may be needed [57, 58], making this approach less automatic.

An often overlooked possibility is to apply forward mode AD in the context
of the discrete level adjoint formulas. Let us look at the complexity of computing
the required partial derivatives in the discrete adjoint formulas of Section 3.4 in
a situation where the sensitivities X /dx are easy to compute. This is the case
for example if the geometry is defined using an analytical mapping, or if the
mesh deformation operator is computationally inexpensive (see article [PVI] for
an example of such a situation).

The term dr/0dq is often already available, since it is utilized while solving
the state problem using Newton iteration. The terms d];,/dq and 0],/ o are often
quite cheap to compute, but care must be taken when AD is applied (see the sec-
tion about partially separable functions in article [PI]). The term dr /0w is the one
that is often the most complicated to compute, since it requires differentiating the
whole residual with respect to all design variables, and the computational cost
may therefore be of the order of M times the original assembly time. However,
we can write or/da = (0r/0X)(0X/oa). Here the Jacobian dr/dX is extremely
sparse, since each residual component is affected only by the shape of the ele-
ments that belong to the support of the associated testing function. Now we only
have to compute this sparse Jacobian, and the gradient with respect to « is ob-
tained by a simple multiplication.

This can be implemented for example by applying the dense forward mode
AD only to local contributions, i.e. differentiating the residual in each element
with respect to the nodal coordinates of that particular element. However, this
approach requires the mapping of indices to assemble these local contributions
to the global Jacobian and/or gradient storages. This is done automatically for
example in Numerrin 2.0 finite element software [59].
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The approach taken in this thesis is even more general: exploitation of the
sparsity is on the responsibility of the automatic differentiation implementation,
as we use the sparse forward mode AD [60]. Our implementation of the method
is described in the article [PI]. This approach offers maximum flexibility to ex-
periment with things that are in some sense non-standard, since the automatic
differentiation is not in any special way related to the finite element method. In-
deed, the same implementation of automatic differentiation can be easily applied
to existing simulation codes (see article [PV]). We return to the exploitation of the
sparsity using this technique through a numerical example in Section 5.3.

If the mesh deformation operator is expensive, making it impractical to
compute the derivatives 0X /0w, the technique discussed in the Section 3.5 may be
used. In this method 0X /0w is never explicitly computed. Instead one must com-
pute dG /90X, which e.g. in the case of PDE based mesh deformation possesses
similar sparsity properties than dr/9X, and solve one additional adjoint system.
The dependence of G on « is usually through boundary conditions, which means
that the computation of dG /da is not complicated. The computational cost of ob-
taining the gradient using this approach is essentially independent on the number
of design variables.

3.6.4 Options for commercial solvers

Adding sensitivity analysis capabilities to existing commercial solvers would of-
ten be very tempting. There are a few ways for doing this, but certain properties
are required from the solver. If the source code of the solver is available, applying
automatic differentiation may be feasible also in case of solvers of commercial
complexity. For example in [61] ADIFOR tool is used to differentiate FLUENT
fluid dynamics solver. However, source codes of commercial solvers are usually
not available.

Finite differences in the objective functional value level are in principle al-
ways possible. However, as seen in the case of our example problem, the objective
functional can be noisy. This means that relatively large steps must be used, re-
sulting in poor accuracy of the derivatives. Accuracy can be improved by using
higher order finite difference formulas, but this also significantly increases the
computational cost.

If there is a way to adapt the mesh to geometrical changes while keeping
the mesh topology constant, and if the system matrix and right hand side vector
are accessible, finite differences can be utilized to approximate the partial deriva-
tives required in the discrete adjoint method. For examples of this approach in
electromagnetic shape optimization see [62].

Finally, the continuous level methods may also be employed. To do this the
solver must be able to solve the sensitivity or adjoint equations, which may or
may not be similar to the original problem. For an example of this approach in
the context of magnetostatics see [63]. Problems related to structural mechanics
are considered in [64].



4 FINITE ELEMENT LIBRARY

In this Chapter we describe our finite element library, which is used to perform
the shape optimizations described in the publications [PIL, PIII, PIV]. The purpose
of the library is to enable quick experimentation with different problem formu-
lations and numerical techniques. The finite element routines are quite standard
textbook implementations following mostly [65].

The library is written in C++ programming language, and utilizes external
state of the art open source codes when possible:

e Gmsh ! [66] is used to generate meshes.
* Boost 2 is used for sparse matrix storage.
e Interfaces to SuperLU 2 [67] to solve sparse linear systems.

Currently supported element types are a segment and a triangle, both of which
are available as linear and quadratic versions. Adding more Lagrange elements
in any dimension is straightforward. Isoparametric element mappings are used,
and numerical integrations are performed in the reference elements. To this end,
the library enables the evaluation of the basis functions and their gradients with
respect to the global coordinates in the quadrature points.

4.1 System matrix assembly

Let us look at the solution of the model state problem using the library. We loop
over the elements of the mesh and the quadrature points of each element. At
each quadrature point, the gradients of the basis functions are evaluated using
the syntax

Available at http:/ /www.geuz.org/gmsh/
Available at http:/ /www.boost.org/
8 Available at http:/ /crd.Ibl.gov/~xiaoye/SuperLU/
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elem->evalBasisGrad(l, gbas);
elem->evalBasisGrad(k, gphi);

where [ and k are local indices. The contribution of V¢, - V¢; from this element
can then be added to the matrix A (which is a sparse matrix provided by the Boost
library) as follows:

A(i,j)+t=(gbas[0]*gphi[0]+gbas[l]*gphi[l])*elem->dx();

Similarly, the value of the test function is evaluated to the variable phi, and a
contribution is added to the right hand side vector:

b(i)+=2.0xphixelem->dx () ;

The effects of the quadrature weight and the Jacobian determinant of the trans-
formation from local to global coordinates are included in the function dx ().

While this is sufficient for solving linear state problems, non-linear prob-
lems and shape optimization can benefit from a slightly different approach, which
permits the use of automatic differentiation.

4.2 Residual assembly

In Section 3.3 we wrote the state problem in the residual formulation (38) for
brevity of notation. As we will see, this formulation is convenient also from the
programming point of view, especially when the sensitivity analysis phase is in-
volved.

The Newton iteration to solve the set of algebraic equations (38) can be writ-

ten as )
or(gh)\
g+ =q" - < ra(z )> r(q")- (52)

Here g is an approximation to the vector of unknowns at iteration k. Compu-
tation of the required Jacobian dr/dq can be easily implemented as follows. We
first create a vector g containing the degrees of freedom, and define the compo-
nents of the vector to be the independent variables from the AD point of view.
These variables, and all the variables depending on them, must be represented
using the addouble type (see articles [PI, PV] for more information). During the
assembly phase, we first compute Vi,

gu[0] += gbas[0]*g(1i);
gul[l] += gbas[1l]l*g(1i);

looping over all basis functions in this element. Here gbas contains the gradient
of the basis function, obtained using elem.evalBasisGrad () like previously.
Next we evaluate the value and the gradient of each test function, and add the
contribution to the residual vector:
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r(i) += (gulO0lxgphi[0]+gull]l*gphi[l]-2.0xphi)+elem.dx();

Notice the similarity of this piece of code and the mathematical expression (10) of
the weak form of the problem.

Here r is a dense vector containing addouble type variables. However, as
explained in the article [PI], each addouble computes and stores only non-zero
partial derivatives. In this case, the variables gu[0] and gu[1] only have non-
zero partial derivatives with respect to a few degrees of freedom. The same holds
true for each component of residual, e.g. each element in the vector r. Thus the
sparsity of the Jacobian dr/dq is exploited as usually in the finite element method.

We use exactly the same finite element routines than previously, such as
elem.evalBasisGrad() and elem.dx (). The fundamental difference to the
previous approach is that we do not assemble the system matrix and the right
hand side vector separately. Instead, we only assemble the residual vector, and
let the underlying automatic differentiation engine compute and store the partial
derivatives with respect to the degrees of freedom 4. The Jacobian matrix can
then be extracted and used to solve the linear system related to the Newton step
(52).

In case of the linear model problem considered here, the Jacobian is ex-
actly the same matrix A that is obtained using the previous method, the residual
r = —b, and the Newton iteration will converge with just one step. Thus in this
case, there is not much difference between these approaches from the point of
view of solving the state problem. However, this approach is convenient from
the shape sensitivity analysis point of view, as we will see next, and in the case of
non-linear state problems like the one we will consider in Section 5.

4.3 Sensitivity analysis

The shape sensitivity analysis capabilities are implemented into the library as
follows. In the finite element routines, all variables that depend on mesh nodal
coordinates are represented using the addouble type. Most notably, the gradi-
ents of the basis functions and the Jacobian of the mapping from local to global
coordinates are affected.

Using this version of the library, computing the partial derivatives with re-
spect to shape is very easy. In case of our model problem we only have to define
the mesh nodal positions as a function of the design

for (int i=0; i<nnodes; i++) {
mesh.coord(i,0) = alpha/alphal*mesh0.coord(i,0);
mesh.coord(i,1) = alphaO/alphas*meshO.coord(i,1);
}

where alpha has been declared independent, and alpha0 is the design corre-
sponding to the reference mesh mesh0. After this, exactly the same assembly
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procedure described in the previous section is used to compute the partial deriva-
tives or/du.

In this case we have only one design variable, and there is no need for any
special exploitation of sparsity of geometrical derivatives. However, in cases
when there are many design variables, it may be beneficial to perform the dif-
ferentiation with respect to the mesh nodal coordinates, as explained in Section
3.6.3. This can be done simply by declaring the mesh nodal coordinates as in-
dependent variables. We return to the issue of computational efficiency of this
approach in Section 5.3.



5 MODEL PROBLEM II

Let us now consider the discrete level sensitivity analysis in the context of a non-
linear state problem. As an example we consider the well known Navier-Stokes
equations for incompressible flow with a constant viscosity:

0
V=0 (53)

{ —ulAii+p(a-Vii) + Vp

Here i1 = (uq,u)" is the velocity, p is the pressure, p is the density, and y is the
viscosity of the fluid.

The weak form is obtained by multiplying with a vector valued test function
@, and performing integration by parts:

/QVVW'V%—/HQ VVMi'ﬁ§0i+/QP(ﬁ'Vui)€0i

—/Q pv¢i+/;30 poin; =0, i=12 (54)
(V-0)) g3 = 0.

It is known, that when solving the Navier-Stokes equations the elements used to
approximate the velocity and the pressure need to be chosen in a special way to
obtain good convergence and approximation properties (see e.g. [68]). For this
example, the famous Taylor-Hood element combination was chosen, i.e. quadratic
triangular elements were used for the velocity and linear triangular elements for
the pressure.

We consider the classical problem of a flow past a backward facing step. The
geometry of the problem is shown in Figure 6, and the boundary conditions are
as follows:

=1, atl;
i=0 atly, (55)
i-t=0, n-c-in=0 atl,
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where ¢ is the stress tensor given by

aui aM]

0ij = —poij + 2u€ij = —pojj + <ax] + axl> , (56)

and I';, ', and I, are the inflow, wall and outflow boundaries, respectively.

(0,1) FW (40,1)

¥ (4.0) Ty
(0,0

(4-1)

FIGURE 6 The backward facing step geometry.

The Reynolds number Re is a dimensionless number characterizing the na-
ture of the flow. It is defined as

Re = PUL (57)

H

where U and L are the characteristic velocity and length scales of the flow. Low
Reynolds number flows are laminar, and can be simulated using the Navier-
Stokes equations alone. As the Reynolds number exceed a certain case depen-
dent limit, the flow becomes turbulent. In that case, direct simulation using the
Navier-Stokes equations is usually not feasible, because the length scales present
in the flow are so small that an extremely dense mesh would be required. Instead,
a turbulence model [69] is often used.

5.1 Solution of the state problem

Here we consider only a low Reynolds number case, where the flow is known
to be laminar. However, due to their non-linear nature, the Navier-Stokes equa-
tions can be complicated to solve even in this case. Therefore, a Picard type lin-
earization is applied, and the convective term is taken to be #*~! - Vi, where
7*~1 means that the velocity is taken to be a constant from the previous iteration
when the residual is linearized. In the context of our finite element library, such
a linearization can be realized simply by using a function called value, which
returns the value of a addouble variable as a regular double, thus ignoring its
derivatives.

When a reasonably good approximation is achieved, i.e. the residual has
dropped below given tolerance, we switch to relaxed Newton iteration. Only in
the very end of the process we can use the full Newton iteration without relax-
ation. These switches happen after 68 and 92 iterations, and are clearly visible in
the convergence history shown in Figure 7.
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FIGURE7 Convergence of the non-linear state problem.

The number of degrees of freedom was 16880 for the pressure approxima-
tion, and 66386 for both components of the velocity, resulting in the total number
of 149652 unknowns. The total computation time needed for the 94 iterations
was around 48 minutes on a server having two Intel Xeon Quad Core 2.33GHz
processors and 8 gigabytes of RAM. No parallelization was exploited in this com-
putation.

Streamlines of the computed solution are shown in Figure 8. To verify the
results, comparison was made to the computations of Keskar et al. [70], and Lee et
al. [71], and to the measurements of Lee et al. and Armaly et al. [72]. The present
results are qualitatively similar to the referenced works, i.e. vortices similar to
the ones shown in Figure 8 are found to be present in the flow. A quantitative
comparison can be made using the location of reattachment at the bottom wall
x, and locations of the separation and attachment at the upper wall x;, x5 (see
Figure 8 for illustration). Reasonably good agreement between the results was
observed.

FIGURE 8 Streamlines of the solution.

5.2 Incomplete convergence and sensitivity analysis

The discrete level sensitivity formulas were derived under the assumption that
the state problem is solved exactly, i.e. the residual vector is zero. However, in
case of difficult non-linear problems it may not always be feasible to solve the



42

state problem with such a high accuracy. The question is, how does this affect the
quality of the sensitivity analysis? We test this by computing the sensitivity of the

pressure difference
— [ pdx— / d 58
] /r pdx— | pdx (58)

with respect to the height of the step.

In Table 1 is shown the sensivitity of the objective functional (58) with re-
spect to the height of the step computed using the discrete adjoint method for
various orders of convergence of the state problem. Reference gradient was ob-
tained using the finite difference formula (51), where the step length was 1072,
and the residual norm was below the value 10714 when the function evaluations
were performed.

In cases where the relative residual of the state problem is 4.6 - 10~ or larger,
the obtained value for the sensitivity is not even close to the correct value. When
the relative residual has reached the value 4.6 - 1079, the deviation from the ref-
erence value is less than one per cent. Below this level, an order of magnitude
decrease in the residual produces roughly one more correct digit in the sensitiv-
ity. That is, to obtain a high level of consistency, the state problem should be
solved with relatively high accuracy.

However, in the early stages of the optimization very high level of consis-
tency may not even be needed. Later on during the optimization the changes
in the design are often smaller, and a good initial guess for the state problem is
therefore available from the previous evaluation, making it easier to solve the
state problem with higher precision.

TABLE1 AD gradient versus order of convergence.

Method Relative residual Gradient

AD 3.1-1072 —18.3798000050421491 - 10—°
46-107% —3.4392497720377437 - 10~°
46-10°° —1.4563802649023588 - 10~°
43.10°8 —1.4444250576081891 - 10~°
40-10710 —1.4443244719085867 - 10~°
46-10712 —1.4443235472460206 - 10>
54.10"14 —1.4443235364881294 - 10>

HOFD —1.4443235364440352 - 10~°

5.3 Computing large shape gradients

Let us now consider the sensitivity analysis of the objective functional (58) in a
case where we have a lot of design variables. As an example we consider sen-
sitivity analysis in a CAD free setting, where the design variables are the x? dis-
placements of the boundary nodes on the bottom of channel after the step. In our
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discretization this equals M = 450 design variables.

Let a; be the j design variable, and b(j) be the global index of the corre-
sponding node. We number the design variables so that b(j) and b(j + 1) are al-
ways neighbouring nodes. The sensitivities of the mesh nodes in [4,40] x [—1,0]
are defined analytically as follows. Let the node i be located in this area. It holds

f%,(j) <xl < f},(]-ﬂ) for some j, and we can define
ox} ox?
SLt=(1-t)-(-%) and it (—), 59
9, ~ 178 (%) 5y = () (59)
where
b= (% = Ty)/ (Ty(jn) — Tp) € 10,1]. (60)

In Figure 9 are shown the obtained sensitivities of Jj, for a part of the channel as a
function of the location of the corresponding boundary node.

2e-07 T T T T

1e-07

0

-1e-07

-2e-07

Sensitivity

-3e-07

-4e-07

-56-07 Il Il Il Il

FIGURE 9 Sensitivity of J;, with respect to x? displacements of nodes on the bottom of
the channel.

Using our implementation, the following computation times were observed:

® One evaluation of the residual vector takes on average about 0.95 seconds.
We shall use the abbreviation T for this computation time later while com-
paring some sensitivity analysis approaches.

* Evaluating the residual and the Jacobian dr/dq takes around 2 seconds (ab-
breviation Tg ).

e If we simultaneously compute also dr/0X, computation time increases to
about 4.5 seconds (abbreviation Tg}x).

e Solution of a linear system with the Jacobian as the coefficient matrix takes
around 23 seconds (abbreviation T7).
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In Table 2 we summarize the computation times to obtain the gradient using dif-
ferent methods. The finite difference approach performs a reanalysis for each
design variable. Each reanalysis requires (at least) one iteration using the New-
ton’s method, and a lot of time is consumed to solve the the linear systems. Some
improvement could be obtained by reusing the factorization of the Jacobian ma-
trix, but obviously there is no way the finite differences could compete with the
adjoint approach.

The second method in the Table is the adjoint approach, where the residual
is differentiated directly with respect to all the design variables. We implemented
this using finite differences, but performing the differentiation with a dense for-
ward mode AD results in comparable computational complexity. Here, only one
linear system is solved, but the computation time of dr/dwa is approximately M
times the original residual vector evaluation time.

The last approach is based on the exploitation of the sparsity as explained
in Section 3.6.3. That is, we perform differentiation with respect to the mesh
nodal coordinates to obtain dr/0X, from which 0r/da can be easily computed
as 0X/da is known. The total duration of the sensitivity analysis phase using
this approach was 32 seconds, only slightly longer than 30.5 seconds that was on
average required for one non-linear iteration during the state problem solution
phase.

TABLE 2 Total computation times required for the sensitivity analysis using different

approaches.
Method Required operations Computation time
Finite differences M x (Tryj + 1) 3h36min5s
Adjoint without sparsity Ty + Tp + M x Tg 15min 11s

Adjoint with sparse AD Tryj+x + 11 32 sec



6 AUTHOR’S CONTRIBUTION

Sparse forward mode automatic differentiation has been previously utilized very
little, because it has been considered too slow for practical purposes [8]. Article
[PI] presents a simple practical implementation of this method, and by compu-
tational examples shows that a quite reasonable overhead is achieved, making
the method suitable for many applications. The article is mainly written by the
author, and the presented techniques and numerical tests are developed by the
author. The electromagnetic simulator utilized in the tests was obtained from the
research partners, as acknowledged in the article.

As mentioned earlier in this thesis, a mesh deformation procedure is needed
to obtain a numerical model for which consistent derivatives can be computed.
In the article [PII] written by the author, a particular deformation technique is
proposed. The method is a minor modification of an existing technique as refer-
enced in the article. The article also considers an example optimization problem,
which is an inverse design problem featuring the Navier-Stokes equations as the
state problem. All computations were performed by the author.

The finite element library presented in Chapter 4 has been implemented
by the author. The library is otherwise based on quite standard techniques, but it
utilizes the sparse forward mode implementation presented in [PI] as a technique
enabling sensitivity analysis. The library has been used to study an optimization
problem related to fibre orientation control, results of which are presented in the
article [PIIT]. The author has written the section about automatic differentiation
in the article and provided some assistance during the computations.

The author came up with the idea to apply the so called pseudo solid ap-
proach to solve Bernoulli free boundary problems, and developed the numerical
methods presented in the article [PIV]. The problem formulation and the math-
ematical analysis were done by the co-authors, who also wrote the related parts
of the article. The parts related to discretization, optimization, and numerical
results were mainly written by the author, who also performed all computations.

Although there are many published applications of shape optimization in
the context of electromagnetics problems [73, 74, 75], gradient based shape opti-
mization is still relatively seldom used in the design of microwave devices [76].
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To our knowledge, the article [PV] presents the first work where exact discrete
level sensitivity analysis is performed on a method of moments solver. The au-
thor applied automatic differentiation techniques presented in the article [PI] to
the solver provided by the project partners, and was the main writer of the article
[PV], except for the part describing the electromagnetic solver. The author also
performed all computations presented in the article.

The article [PVI] is an extension of the article [PV], and deals with the practi-
cal problems related to geometry parametrization and sensitivity analysis in case
where the geometry is parametrized using splines, but the mesh generator does
not provide sensitivity information. The author was the main writer of the article,
and performed all computations.



7 CONCLUSIONS AND FUTURE WORK

This thesis has considered methods for computing consistent shape derivatives,
i.e. derivatives of the numerical model that are exact within very high accuracy.
The methodology used is the classical boundary variation based shape optimiza-
tion using deformed meshes. While highly useful in many applications, this ap-
proach has its limitations. Namely, large changes in the shape usually result in an
invalid mesh and deterioration of accuracy in the simulations, unless the mesh is
regenerated.

An area of further study would be, how to efficiently deal with the small
discontinuities that are caused by the inevitable mesh generations. Namely, a
complete restart of the optimization after each mesh regeneration loses valu-
able information, such as the Hessian approximation. One possibility could be
gradient-only optimization methods [77], where the line search is performed by
looking at the sign of the projected gradient, and function values are therefore
irrelevant.

One problem often encountered while setting shape optimization problems
is the need to have a link between the geometry parameterization and the mesh,
as discussed in the article [PVI]. If an explicit representation of the shape using
e.g. spline curves is not mandatory, free form deformation type strategies could
be exploited. Namely, if only the deformation of the mesh is parameterized for
the optimization, we do not have to know anything about the parameterization
that was used to generate the original mesh.

Methods that permit topological changes, such as level set type methods,
are obviously interesting. They allow much more flexible changes in the shape,
and creation of completely new, perhaps unexpected, shapes. However, level
set methods require a lot of problem dependent manual work, since they are
based on the continuous level shape differentiation. It would be interesting to
develop methods that utilize AD to automatize some of the tasks related to level
set methods.
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YHTEENVETO (FINNISH SUMMARY)

Téssa tyossd, nimeltadn Muodon optimointia konsistenttien herkkyyksien avulla, so-
velletaan gradienttipohjaisia menetelmid muodonoptimointitehtdviin, joissa ti-
layhtdl6 on osittaisdiffentiaaliyhtdlo (ODY). Automaattinen derivointi (AD) tar-
joaa suoraviivaisen tavan laskea kohdefunktion gradientti, kun kaytettavan rat-
kaisijan (simulaattorin) ldhdekoodi on saatavilla. Tuloksena saadaan numeerisen
mallin tarkka gradientti, jota kutsutaan tdssd yhteydessa nimelld konsistentti gra-
dientti.

Téssd tyossd esitetddn uusi toteutus niin sanotulle harvalle etenevalle au-
tomaattiselle derivoinnille. Tekniikan avulla voidaan automaattisesti kayttaa hy-
véksi derivaattavektorien harvuusominaisuuksia, mikd voi johtaa merkittaviin
saastoihin laskenta-ajassa. Mikali laskettavat derivaattavektorit eivit ole harvo-
ja, toteutus on ainoastaan hivenen raskaampi kuin perinteinen etenevan AD:n
toteutus.

Menetelmdn avulla voidaan laskea vektorifunktioiden suuria mutta harvo-
ja Jacobin matriiseja siten, ettd laskentakoodiin tarvitsee tehdd ainoastaan mini-
maalisia muutoksia. Yhdessa diskreetin liittotilatekniikan kanssa mentelma tarjo-
aa tehokkaan tavan laskea muotogradientteja myos siind tapauksessa ettd suun-
nittelumuuttujia on paljon.

Esitettya tekniikkaa sovelletaan muotoherkkyysanalyysin toteuttamiseksi
olemassaolevaan sihkomagneettiseen ratkaisijaan, joka perustuu momenttime-
netelmdan. Muokattua ratkaisijaa kdytetdan useiden antennisuunnittelluun liit-
tyvien muodonoptimointitehtdvien ratkaisemiseen.

Herkkyysanalyysi toteutetaan myos elementtimenetelmén yhteydessa. To-
teutusta sovelletaan muun muassa kontrollitehtdvaan, joka mallintaa kuituorien-
taatiota yksinkertaistetussa paperikoneen peralaatikossa. Lisdksi késitellaan Ber-
noullin vapaan reunan ongelmaan liittyvdd muodon optimointitehtdvaa. Tilayh-
talolle kehitetddn niin sanottuun pseudosolidi-lahestymistapaan perustuva rat-
kaisija, joka mahdollistaa vapaan reunan tehtdvian tehokkaan ratkaisemisen ja
muotoherkkyysanalyysin.
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