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ABSTRACT

Blackledge, Jonathan

Electromagnetic Scattering Solutions for Digital Signal Processing

Jyväskylä: University of Jyväskylä, 2009, 297 p. (nid.), 2010 (PDF)
(Jyväskylä Studies in Computing

ISSN 1456-5390; 108)

ISBN 978-951-39-3944-1 (PDF), 978-951-39-3741-6 (nid.)

Electromagnetic scattering theory is fundamental to understanding the interaction

between electromagnetic waves and inhomogeneous dielectric materials. The theory

unpins the engineering of electromagnetic imaging systems over a broad range of

frequencies, from optics to radio and microwave imaging, for example. Developing

accurate scattering models is particularly important in the field of image under-

standing and the interpretation of electromagnetic signals generated by scattering

events. To this end there are a number of approaches that can be taken. For rela-

tively simple geometric configurations, approximation methods are used to develop

a transformation from the object plane (where scattering events take place) to the

image plane (where a record of some measure of the scattered field is taken). The

most common approximation is the weak scattering approximation which ignores the

effect of multiple scattering interactions and the first part of this thesis investigates

the use of this approximation for electromagnetic imaging systems modelling. When

scattering interactions become progressively more complex (e.g. multiple scattering

from random media), the applications of deterministic scattering theory becomes

difficult to use in practice. Consequently the inverse scattering problem can become

ill-posed. For this reason, a number of other approaches are considered which include

developing statistical models for the scattered field itself rather than the scatterer.

In this thesis, we investigate the use of diffusion based models for solving the inverse

scattering problem when strong scattering processes occur. We then extend this

approach and consider the intermediate case by modelling the scattering processes

using a fractional diffusion equation. Finally, a low frequency scattering theory is

presented which leads to the proposition that light and other high frequency electro-

magnetic wavefields can be weakly diffracted by a low frequency scattered field. This

leads to a new interpretation of gravity gravitational lensing which is investigated

through the question as to why Einstein rings, observed in the visible spectrum, are

blue?

Keywords: Electromagnetic fields and waves, scattering theory, inverse scattering

solutions, exact inverse scattering theory, scattering from random me-

dia, diffusion based models, fractional diffusion, fractaional calculus, in-

termediate scattering models, low frequency scattering.
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GLOSSARY

Alphabetical

A(k) Amplitude spectrum

A Magnetic vector potential

b Microscopic magnetic field

B Magnetic field density

c Wavespeed

c0 Wavespeed of free space (e.g. speed of light)

D Fractal dimension, scale size of an object or Diffusivity

D Electric displacement

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

e Microscopic electric field

E Macroscopic electric field

f (r) Arbitrary real (or complex) function

(typically the object function or system input)

| f (r) | modulus of complex variable or function f
‖ f (r)‖ Norm (e.g. a Euclidean L2-norm) of a

continuous function f
fij 2D discrete function (in real space)

‖ fij‖ Norm (e.g. a Euclidean �2-norm) of a

discrete function (e.g. 2D array or matrix) fij
F(k) Complex spectrum of function f (r)
Fr Real component of spectrum

Fi Imaginary component of spectrum

g(r | r0, k) Time independent Green function

G(r | r0, t | t0) Time dependent Green function

Im[ f ] Imaginary part of complex variable or function f
H Hurst exponent

H Macroscopic magnetic field

H Hausdorff space

j Charge density

k Wavenumber (= 2π/λ)

kx Spacial frequency in the x-direction

ky Spacial frequency in the y-direction

k Wave vector = x̂kx + ŷky
n(r) Noise function

n̂ Unit vector

N(k) Noise spectrum

O(x, y) Object function

Õ Fourier transform of object function



p(r) Instrument function, or Point Spread Function

P(k) Optical Transfer Function [Fourier transform of p(r)]
Pij Discrete Optical Transfer Function (DFT of pij)

Pr[x(t)] Probability density Function

P(k) Power spectrum (=| F(k) |2)
q Fourier dimension

Re[ f ] Real part of complex variable or function f
r General position vector in a 2D or 3D space

(depending on the context)

d2r Surface element dxdy
d3r Volume element dxdydz
s(r) Real or complex (analytic) image

S Surface

sinc(x) Sinc function (= sin(x)/x)

t Time

u(r, t) General scalar wavefield function)

ui Incident wavefield

us Scattered wavefield

V Volume

x, y, z General independent variables

z0 Free space wave impedance

∈ In (e.g. x ∈ [a, b) is equivalent to a ≤ x < b)

∀ Forall (e.g. f (t) = 0, ∀t ∈ (a, b])

Greek

α Chirping parameter

γ General scattering function

Γ(q) Gamma function =
∞∫
0

xq−1e−xdx

δn n-dimensional Dirac delta function

ε Permittivity

ε0 Permittivity of free space

θ Phase, angle

λ Wavelength

σ Conductivity

μ Permeability

μ0 Permeability of free space

ρ Charge density, or material density

ω Angular frequency



Operators

D̂ Homogeneous linear differential operator

F1 One dimensional Fourier transform

F−1
1 One dimensional inverse Fourier transform

F2 Two dimensional Fourier transform

F−1
2 Two dimensional inverse Fourier transform

H Hilbert transform

L̂ Inhomogeneous linear differential operator

⊗n n-dimensional convolution operation

causal or otherwise (depending on the context specified)

⊗⊗ ≡ ⊗2
⊗ ≡ ⊗1 or ≡ ⊗2 or ≡ ⊗3

depending on context, i.e. dimension of functions

�n n-dimensional correlation operation - continuous or discrete,

causal or otherwise (depending on the context specified)

�� ≡ �2
� ≡ �1 or ≡ �2 or ≡ �3

depending on context, i.e. dimension of functions

⇐⇒ Transformation into Fourier space

←→ Transformation into some transform space (as defined)

∇2 Laplacian operator
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1 INTRODUCTION

Scattering theory is very important due to the wide range of applications in which it

must be applied to interpret the characteristics of signals and images. Applications

are varied and include radar sensing, medical ultrasound, semiconductor wafer in-

spection, polymerization process monitoring, acoustic tiling, free-space communica-

tions, computer-generated imagery and so on. Major research problems in scattering

theory often involve predicting how various systems will scatter radiation. A widely

studied but more difficult challenge is the inverse scattering problem, in which the

goal is to observe scattered radiation and use that observation to determine prop-

erties of either the scatterer or the radiation field pattern before scattering has

occurred. In general, the inverse problem is not unique. Different types of scatterers

can give rise to the same pattern of scattered radiation and thus, the problem is not

solvable in the general case. For this reason, developing new approaches and meth-

ods for improving the extraction of information from signals and image obtained by

recording a scattered field is a very important and topical field of research.

Electromagnetic (EM) scattering theory is fundamental to modelling the in-

teraction of EM waves with matter. This has been an important topic for many

years as the ‘physics’ associated with EM signals and images and the engineering

that is applied to develop different EM ‘imaging systems’ is usually based on some

type of scattering model. In turn, information retrieval from data produced by such

systems relies on the design of data processing and data analysis software that is

often, in effect, based on solutions to the inverse scattering problem. The details and

complexity of the algorithms designed for this purpose vary from one application to

the next but at the centre of any application is a model based on the scattering of an

EM wavefield from an inhomogeneous (dielectric) material. The goal of this thesis

has been to develop the mathematical techniques used for modelling EM imaging

systems and show how such models can be used as a guide to the interpretation of

the data captured by different imaging systems from which suitable image process-

ing algorithms can be designed. An underlying theme is the relationship between

the development of image processing systems and the ‘physics’ of waves and vibra-

tions. Central to this relationship is the role of scattering theory and, in particular,

the Green’s function solution to an appropriate linear inhomogeneous wave equation
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that can be taken to describe (usually to a limited extent) the ‘physics’ associated

with a particular type of wavefield.

1.1 Scattering Theory and the Imaging Equation

Conventional models used for developing a basic ‘imaging equation’ (i.e. an equa-

tion that models the relationship between the object and image planes) and their

relationship to the properties of a detected scattered wavefield are almost exclusively

based on application of approximation methods used to model a scattered field that

is measured in the far-field, i.e. along way from the position in space where the

scattering interactions have occurred. The most common of these approximation

methods is the weak scattering approximation. The weak scattering approxima-

tion assumes that the scattered field is the result of single scattering processes only.

When this approximation is considered in the far-field, a simple mapping is obtained

between the scattered field and the scattering function that is compounded in the

Fourier transform. This result is the basis for Fourier optics, for example, the essen-

tial point being that, in the focal (or Fourier plane), a lens can be taken to perform

a Fourier transform of the input, i.e. the light wavefront that is normally incident

on the back of the lens. In this case, the scattering function is glass and a wave-

front is taken to be a plane wavefield. In the intermediate field, when a wavefront

is taken to have a parabolic curvature, the Fourier transform is replaced with the

Fresnel transform which is characterised by a quadratic phase factor. Although the

geometry associated with the Fresnel transform is different to that of the Fourier

transform, both transforms are based on the same weak scattering approximation.

The weak scattering approximation is often referred to as the Born approx-

imation after Max Born, who first considered the approximation with regard to

scattering processes in quantum mechanics through solutions to the Schrödinger

equation. This requires that the ‘scattering model’ adheres to the ‘weak field’ con-

dition in which the total scattered field is considered to be a weak perturbation

of the incident field in terms of some appropriate measure. In turn, depending on

the complexity of the scattering model, this condition can usually be quantified in

terms of physical parameters such as the wavelength λ of the incident wavefield and

the scale length L of the scatterer, a basic ‘standard’ being that λ >> L. The

problem with this condition is that it is fundamentally incompatible with a basic

requirement associated with systems that are designed to recover information at a

resolution compatible with the scale of the wavelength, i.e. when λ ∼ L. Thus,

any system that is designed and engineered to ‘image’ an object in some way on the

scale of the wavelength of the incident field is prone to distortion due to the effects

of multiple scattering, an effect that is not incorporated within the weak scattering

condition. Instead, multiple scattering processes are considered to contribute to the

noise function of the system. One of the principal aims of this thesis has been to

investigate multiple scattering models and solutions that can be used to process EM

signals and images. To do this, it is necessary to combine scattering theory with the
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engineering principles and fundamental models associated with imaging systems.

1.2 Imaging Systems

All imaging systems can be viewed in terms of some appropriate instrument that, by

default, is only able to record a scattered field to a limited extent. The relationship

between the object plane and the image plane is determined by the ‘instrument

function’ that, in turn, either directly or indirectly (i.e. after appropriate data

processing has been applied), determines the characteristics of the image via the

Point Spread Function. The fundamental imaging equation is given by

s(x, y) = p(x, y) ⊗2 f (x, y) + n(x, y) (1.1)

where ⊗2 denotes the two-dimensional convolution integral, f is the object func-

tion (a description of the object plane), p is the Point Spread Function, n is the

noise (function) and s is the signal (one-dimensional case) or image (as in the two-

dimensional given here) or a three dimensional image, depending upon the applica-

tion.

The Point Spread Function (PSF) is taken to be invariant of different positions

in the image plane and the process is therefore stationary or ‘isoplanatic’1. This

allows the convolution theorem to be applied providing a route to the analysis and

processing of an image in Fourier space using the Fourier transform. However, if

the PSF varies in the image plane, the convolution process is non-stationary and

the convolution theorem cannot be applied in the same way. This has important

consequences for developing methods involved in solving the fundamental inverse

problem: given s, p and a statistical model for n (i.e. the Probability Density

Function for n), find f . For the stationary case, Fourier based methods can be used

to design a range of (inverse) filters (e.g. deconvolution algorithms) but, for non-

stationary problems, the filters must designed be applied algebraically. This may

involve solving large systems of linear equations of size n2 × m2 for digital images

of size n × m leading to problems of numerical stability. A historically important

case of this problem occurred when the Hubble Space Telescope was first launched

and it was found that minor errors in the curvature of the primary reflector were

leading to blurred images that were non-isoplanatic. Numerical based compensation

of these effects were considered impractical and compensating optics were designed

and implemented instead.

Under ideal circumstances, by accurately modelling an imaging system, it is

possible to derive a description for the relationship between the object and image

planes, identify the nature of the inverse problem and thus, develop an appropriate

reconstruction method as required. However, the accuracy of the model has to be

balanced with the simplicity of the results that can be derived from it in terms of

designing algorithms that are of practical and ‘engineering’ value. Achieving the

right balance is central to imaging systems modelling and image understanding. A

1 A term that is used primarily in the field of Optics
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key feature to achieving this balance, which is fundamental to all scatter imaging

systems, is that the physical effects of strong scattering together with other in-

compatibilities and errors associated with the representation of a recorded image

in terms of equation (1.1) are combined to form the noise term. In other words,

equation (1.1) is based on the weak scattering approximation where λ >> L and is

therefore incompatible with the criterion that the information content of an image

is based on interactions that take place on the scale of the wavelength (i.e. λ L).

Thus, although equation (1.1) is used as a fundamental model for an image, it is

generally incompatible with the weak scattering approximation used to derive it, at

least in terms of understanding and analysing the information content of the image.

The difference between the idealised model given by the first term of equation (1.1)

(under the assumption that λ >> L) and the actual scattering interactions that

occur (where λ ∼ L) are compounded in the noise term. The weak scattering ap-

proximation essentially allows the scattering model to be linearised which leads to

imaging systems being described in terms of a ‘linear systems model’. The basis for

such models is discussed in the following section.

1.2.1 Linear Systems Modelling

A ‘system’ may be defined as that which produces a set of output functions from

a set of input functions. Physically, it may be an electrical circuit (with input and

output voltages, for example) or an imaging system where the inputs and outputs are

either complex amplitudes or intensities. From the point of view of ‘linear systems

theory’, the physical nature of the system is unimportant.

Let us represent a system via an operator L say in terms of the equation

s(x, y) = L[ f (x, y)]

where f is the input and s is the output. A linear system has the property that

L[a f1(x, y) + b f2(x, y)] = aL[ f1(x, y)] + bL[ f2(x, y)]

for all inputs f1 and f2 and all constants a and b. Linearity implies that an out-

put function can be broken down into elementary functions, each of which can be

separately passed through the system; the total output is then the sum of the ‘ele-

mentary’ outputs.

The ‘sampling property’ of the delta function allows us to consider any input

function to be a linear combination of weighted and displaced delta functions:

f (x, y) =
∞∫

−∞

∞∫
−∞

f (x′, y′)δ(x − x′)δ(y − y′)dx′dy′

giving an output

s(x, y) = L[ f (x, y)] =
∞∫

−∞

∞∫
−∞

f (x′, y′)L[δ(x − x′)δ(y − y′)]dx′dy′.
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The system response at (x, y) due to a delta function input at (x′, y′) is called the

Impulse Response Function (IRF) given by

p(x, y; x′, y′) = L[δ(x − x′)δ(y − y′)].

In imaging systems, the quantity p is called the Point Spread Function (PSF). For

a linear imaging system,

s(x, y) =
∞∫

−∞

∞∫
−∞

f (x′, y′)p(x, y; x′, y′)dx′dy′

If the impulse response function of a linear system depends only on the coordinate

differences (x − x′) and (y − y′), and not on each coordinate separately, i.e.

p(x, y; x′, y′) ≡ p(x − x′, y − y′),

then we obtain an expression for p which involves the convolution relationship

s(x, y) =
∞∫

−∞

∞∫
−∞

f (x′, y′)p(x − x′, y − y′)dx′dy′.

This is an example of a stationary linear system. In optical imaging, for example,

a stationary optical systems is called ‘isoplanatic’. Isoplanacity requires that the

PSF is the same for all field angles and implies that the aberrations are independent

of field angle. Many optical imaging systems are (to a good approximation) both

linear and isoplanatic.

The convolution relationship between input and output suggests using Fourier

transforms (FT) which, via the convolution theorem, gives

S(kx, ky) = F(kx, ky)P(kx, ky)

where

P(kx, ky) =
∞∫

−∞

∞∫
−∞

p(x, y) exp[−i(kxx + kyy)]dxdy

i.e.

FT of the output = (FT of the input)×(FT of the impulse response function).

The quantity P is called the system Transfer Function (TF). In optical imaging

systems, P is called the Optical Transfer Function or OTF. The OTF is just the 2D

FT of the PSF. Note that:

� the convolution relationship only applies to linear stationary imaging systems;

� there is no unique TF for an imaging system with field-dependent aberrations

(i.e. for the non-stationary case);

� there is no unique TF for an imaging system when an object is illuminated by

spatially partially coherent radiation.
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1.2.2 Incoherent Imaging

Consider the case where the object plane is illuminated by an incident wave and

by perfectly spatially coherent light. Let the complex amplitude immediately after

the object be denoted by Uin(x, y) and Uout(x, y) be the complex amplitude at the

image plane. Also, let the complex amplitude at (x, y) in the output due to a unit

strength point input be p(x, y; x′, y′). The total amplitude at (x, y) due to all such

points in the object plane is then given by

Uout(x, y) =
∞∫

−∞

∞∫
−∞

Uin(x′, y′)p(x, y; x′, y′)dx′dy′.

For an isoplanatic optical system, this reduces to

Uout(x, y) =
∞∫

−∞

∞∫
−∞

Uin(x′, y′)p(x − x′, y − y′)dx′dy′.

A spatially coherent optical system is linear in the complex amplitude. Let us now

consider the case of narrowband light that is not perfectly spatially coherent. The

general complex representation of the time-varying scalar field is called the analytic

signal V(r, t); it is defined such that

Real scalar field = �[V(r, t)].

For narrowband light, the analytic signal can be written in terms of a product

of a slowly varying function; the time varying complex amplitude U(r, t) times

exp(−iωt). Thus,

V(r, t) = U(r, t) exp(−iωt).

The instantaneous intensity is defined as

I(r, t) =| U(r, t) |2

whereas the time-averaged intensity Ī(r) (i.e. that observed by an optical detector

over a period of time T) is given by

Ī(r) =
1

2T

T∫
−T

I(r, t)dt.

In general, the time-varying complex amplitudes are related by

Uout(x, y, t) =
∞∫

−∞

∞∫
−∞

Uin(x′, y′, t)p(x, y; x′y′)dx′dy′.

Coherent illumination implies that U(x, y, t) = U(x, y), i.e. the field does not vary

in time. For incoherent light, however, the average intensity is given by

Īout(x, y) =
1

2T

T∫
−T

| Uout(x, y, t) |2 dt =
∞∫

−∞

∞∫
−∞

p(x, y; x′, y′)p∗(x, y; x′, y′)
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×
⎡⎣ 1

2T

T∫
−T

Uin(x′, y′, t)U∗
in(x′′, y′′, t)dt

⎤⎦ dx′dy′dx′′dy′′.

The term in [ ] is called the mutual intensity of narrow-band light and is given by

Jin(x′, y′; x′′, y′′) =
1

2T

T∫
−T

Uin(x′, y′, t)U∗
in(x′′, y′′, t)dt

or

Jin(r′, r′′) = 〈Uin(r′, t)U∗
in(r′′, t)〉.

Incoherent light is defined to be such that

J(r′, r′′) = Ī(r′)δ(r′ − r′′).

That is, two neighbouring points r′ and r′′ have uncorrelated fields, for any r′ �= r′′.
Using the definition for incoherent light above, the expression for Īout becomes

Īout(x, y) =
∞∫

−∞

∞∫
−∞

p(x, y; x′, y′)p∗(x, y; x′, y′)

× Īin(x′, y′)δ(x′ − x′′)δ(y′ − y′′)dx′dy′dx′′dy′′

or

Īout(x, y) =
∞∫

−∞

∞∫
−∞

| p(x, y; x′, y′) |2 Īin(x′, y′)dx′dy′.

where the quantity | p(x, y; x′, y′) |2 is the intensity Point Spread Function. For an

isoplanatic optical system, this result reduces to

Īout(x, y) =
∞∫

−∞

∞∫
−∞

Īin(x′, y′) | p(x − x′, y − y′) |2 dx′dy′.

where the bar over I is usually omitted when referring to the intensity because a

time average is always assumed.

For perfectly incoherent illumination, an optical system is linear in intensity

and, if isoplanicity holds, the output (image) intensity is equal to the input (object)

intensity convolved with the intensity point spread function.

1.2.3 Coherent Image Formation

With coherent wavefield, the complex amplitude of the image is equal to that at the

object plane convolved with the amplitude point spread function (for an isoplanatic

system), i.e.

Uout(x, y) =
∞∫

−∞

∞∫
−∞

Uin(x′, y′)p(x − x′, y − y′)dx′dy′
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TABLE 1 Schematic diagram illustrating the principles of modelling an imaging system
by deriving the imaging equation from the field equations: From the field equa-
tions we derive an inhomogeneous wave equation. Using the Green’s function
together with appropriate boundary condition, we derive an integral equation.
From this integral equation, given the geometry of the imaging system and
certain approximations (primarily the weak scattering approximation) we de-
rive the imaging equation with expressions for the PSF and the object function
in terms of the system parameters and field variables, respectively.

Maxwell’s equation

↓
Boundary Conditions → Wave equation ← Green’s function

↓
Geometry → Integral equation ← Approximation

↓
Imaging equation

where

p(x, y) =
∞∫

−∞

∞∫
−∞

P(x′, x′) exp
[
− ik

z
(xx′ + yy′)

]
dx′dy′

and P is the pupil function of the optical system, i.e. the complex amplitude in the

exit pupil. The pupil function P is, for a clear pupil, defined by

P(kx, ky) =

{
exp[ikW(kx, ky)], (kx, ky) ∈ aperture;
0, otherwise

where the function W is called the Wave Aberration Function. A shaded or apodized

pupil can be handled by introducing an absorption term A,

P(kx, ky) = A(kx, ky) exp[ikW(kx, ky)].

Taking the Fourier transform of Uout and using the convolution theorem we can

write

Ũout(kx, ky) = Ũin(kx, ky)T(kx, ky)

where Ũout is the spectrum of the image amplitude, Ũin is the spectrum of object

amplitude and T is the Coherent Transfer Function.

1.3 EM Imaging Systems Modelling

In terms of developing an EM imaging systems model based on a weak scattering

model, Table 1 provides a schematic overview of the interconnecting steps.

The convolution process is fundamental to both general methods of processing

a digital image but also in terms of the physical models we use to describe the way in
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which images are formed. By studying the ‘physics’ of an imaging system and using

appropriate approximations and geometries, it is possible to formulate the first term

in equation (1.1) for which there are two specific classes of images:

� coherent images where

I(x, y) =| p(x, y) ⊗2 f (x, y) + n(x, y) |2

� incoherent images where

I(x, y) =| p(x, y) |2 ⊗2 | f (x, y) |2 + | n(x, y) |2

In the former case the phases associated with the functions f , p and n (all of which

may be complex) are mixed via the convolution process and additive operations

which is not the case with the generation of an incoherent image.

The overview compounded in Table 1 provides a mathematical description

of the PSF and the object function in terms of fundamental physical parameters,

which is required in order to understand the information that an image conveys

and hence the most appropriate processing methods that should be applied. The

mathematical apparatus required for undertaking this task is the basis for Chapters

2-4 which discuss the field equation and wave equation used to model electromagnetic

imaging systems (chapter 2), the Green’s functions used to solve an inhomogeneous

wave equation (Chapter 3) and the analytical method used to compute the scattered

field (Chapter 4). Chapter 5 then presents a case study which focuses on modelling

a coherent microwave imaging system known as Synthetic Aperture Radar. This

case study demonstrates how to combine EM scattering theory with linear systems

modelling of an image to generate an expression for the object function of a Synthetic

Aperture Radar image in terms of the relative dielectric and conductivity of the

scatterer. The key to this approach is to use the weak scattering approximation,

thereby linearising the scattering model.

1.4 About this Thesis

This thesis is composed of ten chapters. Chapter 1 provides an introduction to

the work presented and sets the context under which the research has been carried

out. This chapter specifies the structure of the thesis and some of the original

contributions that have been made.

Chapter 2 considers the electromagnetic Langevin-type wave equations re-

quired to investigate the scattering of electromagnetic fields from inhomogeneous

materials consisting of variations in the relative permittivity, the relative permeabil-

ity and conductivity. The wave equations derived represent the founding models

required to develop a scattering theory that is compatible with Maxwell’s macro-

scopic equation. For this reason, Chapter 2 investigates the properties of EM waves

in homogenous and inhomogeneous materials. In the former case, solutions to the
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homogenous Helmholtz equation are considered based on the angular spectrum rep-

resentation of plane waves. This analysis provides a complete representation for the

propagation of the scalar electric field potential and the magnetic vector potential

under the Lorentz gauge condition.

Chapter 3 provides a background to the working tool of scattering theory,

namely, the Green’s function. The calculation of Green’s function in one-, two- and

three-dimensions are considered for the wave equation, the diffusion equation, and

finally the Laplace and Poisson equations. The properties of the Green’s functions

provide an understanding that is necessary to appreciate some of the basic anal-

ysis methods required to develop a scattering model especially with regard to the

geometry of a scatter imaging system.

Chapter 4 introduces formal scattering theory and looks at the approximations

used to develop different scattering models and the analysis of different scattering

regimes. The chapter then explores the issues associated with the inverse scattering

problem, presenting formal methods to this problem under the weak scattering,

weak gradient approximation and (conditional) multiple scattering conditions. An

exact inverse scattering approach is then considered which forms the background to

material presented in Chapter 6.

Chapter 5 is a case study used to focus the theoretical ideas presented in Chap-

ter 4. This chapter explores the use of weak scattering theory to develop a full model

for a Synthetic Aperture Radar (SAR) image which incorporates polarization. The

model developed provides a solution to the inverse scattering problem in which SAR

images on the different dielectric properties of the ground surface can be obtained

by using electric fields with different polarizations. It is also shown how this model

can be used to explain the ‘sea spikes’ phenomenon.

In Chapter 6, the exact inverse scattering solutions developed at the end of

Chapter 4 are investigated further and numerical simulations presented to illustrate

the superiority of the approach over the weak scattering approximation. These

results are then used to develop an expression for a side-band signal for strong

(multiple) scattering which is compounded in a single addition term representative of

the noise term under the weak scattering approximation. Applications are considered

based on SAR data which links to the material discussed in Chapter 5.

Chapter 7 provides an introduction to the theory of EM scattering from random

media. Two models are developed:

� weak scattering from random media where the media is taken to conform to a

random variable with a defined statistic;

� strong and coherent scattering where the scattered field itself is modelled in

terms of a random process leading to a expression for the K-distribution.

However, the principal focus of this chapter is to investigate the use of diffusion

based models for multiple scattering and the inverse solutions that are available and

applicable in this case.

The diffusion models considered in Chapter 7 provide solutions to the mul-

tiple scattering problem when the scattering processes are strong and taken to be
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based on application of the diffusion equation. If weak scattering is considered to

be a solution to the wave equation (under a the weak scattering approximation),

the question arises as to how intermediate scattering can be modelled. Chapter

8 addresses this question by considering a fractional diffusive model. The chapter

revisits random walk theory in order to provide a physically intuitive overview of

the principles associated with fractional diffusion. Solutions are considered based

on the application of fractional calculus and applications studies for the case of light

scattering from a tenuous random medium.

The large majority of EM scattering theory assumes that the wavelength is

small. Chapter 9 looks at the case when the wavelength of a scalar wavefield as

defined by the inhomogeneous Helmholtz equation tends to infinity and it is shown

how this condition provides an exact scattering solution. However, the principal

purpose of this chapter is to consider the effect of waves scattering from waves over

a large frequency spectrum. This leads to the hypothesis that EM and gravitational

fields may be unified by attempting to develop a unified wavefield theory rather

than unified field theory. The results presented in this chapter lead to a range

of arguments, one of which appears to explain why Einstein rings observed in the

visible spectrum are blue. This phenomenon is taken to be due to the ability of a

gravitational field to not only bend light but to diffract light, a result that has and

analogy to the refraction and diffraction of light by a lens, for example.

Chapter 10 of this thesis provides a discussion and conclusion to the work.

For completeness, the thesis includes appendices which provide the original research

plan, theorems and proofs associated with an exact inverse scattering theory, proof

of the relationship between different fractal parameters, a brief introduction to the

fractional calculus used in Chapter 8 and finally, a list of open problems associated

with the research undertaken to date.

1.5 Original Contributions

The principal and original contributions provided in this thesis are as follows:

� Development of an EM scattering model for Synthetic Aperture Radar based

on the weak scattering approximation given in Chapter 5 and an explanation

of the sea skies phenomenon.

� Development of an exact inverse scattering solution given towards the end of

Chapter 4 and developed further in Chapter 6.

� Modelling intermediate scattering processes in a tenuous random medium us-

ing a fractional diffusion model which is the subject of Chapter 8

� Low frequency scattering theory developed in Chapter 9 and the hypotheses

and results presented therein.

This material has been published in a range of International Journals and Con-

ferences during the compilation and completion of this thesis. These publication
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include the following:

J M Blackledge, Application of the Fractal Market Hypothesis for Modelling Macroe-

conomic Time Series, ISAST, Transactions on Electronics and Signal Processing,

1(2), 89-110, 2008, ISSN: 1797-2329;

http://www.isastorganization.org/ISAST ES 1 2008.pdf

J. M. Blackledge, T. Hämäläinen and J. Joutsensalo, Inverse Scattering Solutions

with Applications to Electromagnetic Signal Processing, ISAST, Transactions on

Electronics and Signal Processing (To be published), 2009;

http://eleceng.dit.ie/papers/113.pdf.

J. M. Blackledge, Scattering from a Tenuous Random Medium with Applications

in Optics, ISAST Transactions on Electronics and Signal Processing (accepted for

publication), 2009;

http://eleceng.dit.ie/papers/114.pdf

J. M. Blackledge, Imaging Reconstruction for Light Scattering from a Tenuous Ran-

dom Medium, ISSC 2009, UCD, June 10-11th, 2009;

http://eleceng.dit.ie/papers/115.pdf

J. M. Blackledge, T. Hämäläinen and J. Joutsensalo, Inverse Scattering Solutions

for Side-Band Signals, ISSC 2009, UCD, June 10-11th, 2009;

http://eleceng.dit.ie/papers/118.pdf

J. M. Blackledge, Diffusion and Fractional Diffusion Based Image Processing EGUK

Theory and Practice of Computer Graphics, Conference Proceedings, Pages 233 -

240, 2009;

http://eleceng.dit.ie/papers/118.pdf

J. M. Blackledge, Exact Inverse Schrödinger Scattering, 19th International Con-

ference on Ion Beam Analysis, Cambridge University, Sept. 7-11, 2009, Preprint

Submitted to the IoP Journal of Nuclear Physics B;

http://eleceng.dit.ie/papers/139.pdf



2 ELECTROMAGNETIC FIELDS AND WAVES

This Chapter is concerned with the fundamental equations used to describe the fields

that are measured in electromagnetic information (signal and imaging) systems and

their relationship with the material variables with which these fields interact. The

field equations determine the physical characteristics and behaviour of a particular

type of field and the primary purpose of this Chapter is to introduce and discuss the

electromagnetic field equations which are employed in later chapters. From these

results, we derive wave equations which describe the propagation of electromagnetic

waves through homogeneous and inhomogeneous media.

2.1 The Langevin Equation

The propagation of a wavefield can be modelled by various different wave equations

depending upon the type of field, the supporting material and its physical state. In

general, however, if the supporting material is assumed to be a linear medium and

the scalar field U(r, t) obeys a partial integro-differential equation of the form

D̂(1)U(r, t) = −s(r, t)

where

D̂(1) = D̂(0) + L̂

and s is a source function. For a vector field U(r, t),

D̂(1)U(r, t) = −s(r, t)

This is the Langevin equation [1] where D̂(0) and L̂ are linear operators: D̂(0) is

associated with the homogeneous portion of the medium, L̂ is, in general, an integro-

differential scattering operator. The source function s describes the emission of the

incident field from a given source. The operator L̂ models the interaction of the

incident field with the differential or local scattering from material inhomogeneities.
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The operator D̂(1) has the general form

D̂(1) ≡ D̂(1)
(
∇,∇2, ...; 1,

∂

∂t
,

∂2

∂t2 , ...
)

.

The source function s is, in general, given by

s = p ⊗r ⊗t f

where f is the probe field, p is a filter weighting function for the emitted field and

⊗r⊗t is taken to denote the convolution over three-dimensional space r and time

t. From this general formalism, one can consider a variety of scalar wave equations

governing the propagation of different types of wavefields supported by different

isotropic media. Two cases arise that are based on: (i) a rigorous derivation of

the Langevin from a set of fundamental field equations; (ii) the proposition of a

Langevin equation (a phenomenological model) whose characteristics are confirmed

experimentally.

The wave equation that is used to model a wavefield determines the underlying

physical model. This includes aspects such as the wavelength or bandwidth of the

wavefield, the accuracy of the spatial mapping of the scatter generating parameters

in an image (e.g. the level of distortion as determined by the propagation model) and

image fuzziness. A fuzzy image is an image which, although attempting to display

a specific scatter generating parameter, fails to achieve this because the scattered

wavefield that has been measured and processed is corrupted by some other interac-

tion that has not been included on the original model (i.e. the wave equation). Thus,

all scatter-imaging techniques are highly model dependent since the reconstruction

algorithm is determined by the wave equation which characterizes the medium, in

particular, the model associated with the operator L̂. An inappropriate choice of

wave equation results in image fuzziness. Scatter imaging demands appropriate

modelling of the scattering dynamics, even if the computations are approximate.

An inexact model will lead to a fuzzy image whereas an approximate computation

may lead to poor resolution. Distortion, due to poor propagator models which are

compounded in the operator D̂(0) and its associated (free-space) Green function, is

a common artifact in many imaging systems and poor physical modelling manifests

some form of distortion in most imaging methods. A general criticism, common to

many imaging systems, is that emphasis is often placed on a significant amount of

computation for image reconstruction and processing. This can provide good, or at

least, enhanced resolution but at the expense of developing accurate models for the

propagation of a wavefield through the medium that generates the scattered field

from which an image is generated and interpreted. This leads to images which are

well resolved but may be badly distorted and fuzzy.

In this chapter, we start by considering Maxwell’s equations [2] which provide

a unified theoretical framework for the interaction of electromagnetic waves with

matter. In the case of the macroscopic form of these equations, we introduce material

parameters such as the permittivity, the permeability and the conductivity.

The field equations presented provide the fundamental basis for modelling

electromagnetic scattering. It is shown how the field equations can (under certain
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conditions and approximations) be decoupled to provide a governing inhomogeneous

wave equation whose complexity increases according to the number of material pa-

rameters that are considered. General methods of solving such equations are then

addressed in the following Chapter.

2.2 Maxwell’s Equations

We shall now consider Maxwell’s equations and study the electromagnetic wavefields

and wave equations that arise from these equations [3] We first consider these equa-

tions in their microscopic form (for individual charged particles) and go on to con-

sider the macroscopic form of Maxwell’s equations (for the case when there are many

particles per cubic wavelength) and briefly study the propagation of monochromatic

electromagnetic waves in homogeneous media. The macroscopic form of Maxwell’s

equations is then used to construct inhomogeneous wave equations in a form that

are suitable for applying the solutions methods discussed in Chapter 5.

The motions of electrons (and other charged particles) give rise to electric and

magnetic fields. These fields are described by the following equations which are a

complete mathematical descriptions for the physical laws quoted [3], [4] 1.

Coulomb’s law

∇ · e = 4πρ (2.1)

Faraday’s law of induction

∇× e = −1
c

∂b
∂t

(2.2)

No free magnetic monopoles exist

∇ · b = 0 (2.3)

Modified (by Maxwell) Ampere’s law

∇× b =
1
c

∂e
∂t

+
4π

c
j (2.4)

where e is the electric field, b is the magnetic field, j is the current density, ρ

is the charge density and c � 3× 108 ms−1 is the speed of light. These microscopic

Maxwell’s equations are used to predict the pointwise electric e and magnetic b
fields given the charge and current densities (ρ and j respectively).

By including a modification to Ampere’s law, i.e. the inclusion of the ‘dis-

placement current’ term ∂e/∂(ct), Maxwell provided a unification of electricity and

magnetism compounded in the equations above.

1 For CGS units.



34

2.2.1 Linearity of Maxwell’s Equations

Maxwell’s equations are linear because if

ρ1, j1 → e1, b1

and

ρ2, j2 → e2, b2

then

ρ1 + ρ2, j1 + j2 → e1 + e2, b1 + b2

where → means ‘produces’. This is because the operators ∇·, ∇× and the time

derivatives are all linear operators.

2.2.2 Free Space Solution

The solution to these equations is based on exploiting the properties of vector cal-

culus and, in particular, identities involving the curl.

Taking the curl of equation (2.2), we have

∇×∇× e = −1
c
∇× ∂b

∂t

and using the identity

∇×∇× e = ∇(∇ · e) −∇2e

together with equations (2.1) and (2.4), we get

∇(4πρ) −∇2e = −1
c

∂

∂t

(
1
c

∂e
∂t

+
4π

c
j
)

or, after rearranging,

∇2e − 1
c2

∂2e
∂t2 = 4π∇ρ +

4π

c2
∂j
∂t

. (2.5)

Taking the curl of equation (2.4), using the identity above, equations (2.2) and (2.3)

and rearranging the result gives

∇2b − 1
c2

∂2b
∂t2 = −4π

c
∇× j. (2.6)

Equations (2.5) and (2.6) are inhomogeneous wave equations for e and b. These

equations are related or coupled to the vector field j (which is related to b). If we

define a region of free space where ρ = 0 and j = 0, then both e and b satisfy the

equation

∇2f − 1
c2

∂2f
∂t2 = 0.

This is the homogeneous wave equation. One possible solution of this equation (in

Cartesian coordinates) is

fx = p(z − ct); fy = 0, fz = 0
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which describes a wave or distribution p moving along z at velocity c. Thus, we

have shown that in free space when

∇ · e = 0, ∇ · b = 0,

∇× e = −1
c

∂b
∂t

, ∇× b =
1
c

∂e
∂t

.

Maxwell’s equations describe the propagation of an electric and magnetic (or elec-

tromagnetic field) in terms of a wave traveling at the speed of light (see front cover).

After developing the origins of the vector calculus, Maxwell derived the wave equa-

tions for an electromagnetic field in a paper entitled A Dynamical Theory of the

Electromagnetic Field, first published in 1865 and arguably one of the greatest in-

tellectual achievements in the history of physics.

2.3 General Solution using the Lorentz Gauge Condition

The solution to Maxwell’s equation in free space is specific to the charge density and

current density being zero. We now investigate a method of solution for the general

case [3], [4], [5]. The basic method of solving Maxwell’s equations (i.e. finding e and

b given ρ and j) involves the following:

� Expressing e and b in terms of two other fields φ and A.

� Obtaining two separate equations for φ and A.

� Solving these equations for φ and A from which e and b can then be computed.

For any vector field A
∇ · ∇× A = 0.

Hence, if we write

b = ∇× A (2.7)

then equation (2.3) remains unchanged. Equation (2.2) can then be written as

∇× e = −1
c

∂

∂t
∇× A

or

∇×
(

e +
1
c

∂A
∂t

)
= 0.

The field A is called the Magnetic Vector Potential. For any scalar field φ

∇×∇φ = 0

and thus equation (2.2) is satisfied if we write

±∇φ = e +
1
c

∂A
∂t
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or

e = −∇φ − 1
c

∂A
∂t

(2.8)

where the minus sign is taken by convention. φ is called the Electric Scalar Potential.

Substituting equation (2.8) into Maxwell’s equation (2.1) gives

∇ ·
(
∇φ +

1
c

∂A
∂t

)
= −4πρ

or

∇2φ +
1
c

∂

∂t
∇ · A = −4πρ. (2.9)

Substituting equations (2.7) and (2.8) into Maxwell’s equation (2.4) gives

∇×∇× A +
1
c

∂

∂t

(
∇φ +

1
c

∂A
∂t

)
=

4π

c
j

Finally, using the identity

∇×∇× A = ∇(∇ · A) −∇2A

we can write

∇2A − 1
c2

∂2A
∂t2 −∇

(
∇ · A +

1
c

∂φ

∂t

)
= −4π

c
j (2.10)

2.3.1 Lorentz Gauge Transformation

If we could solve equations (2.9) and (2.10) above for φ and A then e and b could

be computed. The problem here, is that equations (2.9) and (2.10) are coupled.

They can be decoupled by applying a technique known as a ‘gauge transformation’

called the Lorentz gauge transformation, after Lorentz who was among the first to

consider it as an approach to solving these equations. The idea is based on noting

that equations (2.7) and (2.8) are unchanged if we let

A → A + ∇X

and

φ → φ − 1
c

∂X
∂t

since ∇×∇X = 0. If this gauge function X is taken to satisfy the homogeneous

wave equation

∇2X − 1
c2

∂2X
∂t2 = 0

then

∇ · A +
1
c

∂φ

∂t
= 0 (2.11)

which is called the Lorentz condition. With equation (2.11), equations (2.9) and

(2.10) become

∇2φ − 1
c2

∂2φ

∂t2 = −4πρ (2.12)

and

∇2A − 1
c2

∂2A
∂t2 = −4π

c
j

respectively. These equations are non-coupled inhomogeneous wave equations.
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2.3.2 Green’s Function Solutions

The Green’s function solutions to wave equations for φ and A at (r0, t0) (the ‘re-

tarded potentials’) are given by (see Chapter 3)

φ(r0, t0) =
1

4πε0

∫
ρ(r, τ)
| r − r0 |d

3r, τ = t0− | r − r0 | /c0

and

A(r0, t0) =
μ0

4π

∫ j(r, τ)
| r − r0 |d

3r

respectively. These solutions are based on an infinite domain solution in which

the boundary conditions associated with spatial support of φ and j are zero (the

Neumann boundary condition as discussed in Chapter 3). These Green’s function

solutions show that a change in ρ and j affects φ and A | r − r0 | /c0 seconds

later. The change propagates away from the sources ρ and j at a velocity c0 which

is the theoretical basis for the propagation of electromagnetic waves [6]. Thus, an

oscillating point charge in which the charge density can be described by ρ(r, t) =
δ3(r) exp(iωt) where ω is the angular frequency and δ3 is the three-dimensional

delta function, generates an electric field potential given by

φ(r0, t0) =
1

4πε0r0
exp[iω(t0 − r0/c0)], r0 ≡| r0 |

2.4 Free Space Propagation of EM Waves

Given that an EM wave has been generated by an oscillating point charge, what

are the properties of the plane wave propagation (with a directional bias, i.e. prop-

agating in the z direction, for example) in free space when ρ = 0 and j = 0? An

answer to this question is based on representing plane wave in terms of an ‘angular

spectrum’.

2.4.1 The Angular Spectrum of Plane Waves

The angular spectrum of planes waves is a way of representing a wavefield in a

region of free space. In this representation, any wavefield can be described by a sum

(integral) of plane waves travelling in different directions where each plane wave is

an elementary solution of the (homogeneous) Helmholtz equation.(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

Here, U is taken to represent the electric field potential φ or any component of the

magnetic vector potential Ax, Ay and Az.

Consider a scalar monochromatic field

u(r, ω) = U(r) exp(−iωt); r = x̂x + ŷy + ẑz
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in a source free region 0 ≤ z ≤ Z. In the free space domain, the complex amplitude

u satisfies the homogeneous Helmholtz equation

(∇2 + k2)u(r, k) = 0; k =
ω

c
.

Let u have the following Fourier representation with respect to (x, y)

u(x, y, z) = F2[ũ] =
∞∫

−∞

ũ(kx, ky, z) exp[i(kxx + kyy)]dkxdky.

where F2 denotes the two-dimensional Fourier transform. Using

F2[∇2U] = −(k2
x + k2

y)ũ +
∂2ũ
∂z2

and substituting into the Helmholtz equation, we obtain

−(k2
x + k2

y)ũ +
∂2ũ
∂z2 + k2ũ = 0

or
∂2ũ
∂z2 = −k2ũ + (k2

x + k2
y)ũ = −k2

zũ

where

k2
z = k2 − k2

x − k2
y

or

kz =

⎧⎨⎩
√

k2 − k2
x − k2

y, k2
x + k2

y ≤ k2;

i
√

k2
x + k2

y − k2, k2
x + k2

y > k2.

The general solution to this equation is of the form

ũ(kx, ky, z) = A(kx, ky) exp(iwz) + B(kx, ky) exp(−iwz)

where A and B are arbitrary functions (excluding the degenerate case when w = 0).

The solution for U can now be written as

u(x, y, z) =
∞∫

−∞

A(kx, ky) exp[i(kxx + kyy + kzz)]dkxdky

∞∫
−∞

B(kx, ky) exp[i(kxx + kyy − kzz)]dkxdky.

This is the angular spectrum representation of the field. The field U can be consid-

ered to be a linear combination of functions

exp[i(kxx + kyy ± kzz)].

Each term in this solution for U represents a plane wave which is a solution of the

same differential equation as the field itself (i.e. the Helmholtz equation). Each
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term is a mode of the Helmholtz equation and the angular representation is a mode

expansion of the Helmholtz equation. The angular spectrum representation is not

a Fourier representation, i.e. it is not a 3D Fourier transform of U, rather, it is a

superposition of elementary solutions - plane waves - of the Helmholtz equation.

There are four different types of wave:

(i)

A(kx, ky) exp[i(kxx + kyy + kzz)]; w =
√

k2 − k2
x − k2

y, k2
x + k2

y ≤ k2

where kz is real, positive or zero (a homogeneous wave propagating from z = 0
toward z = Z).

(ii)

A(kx, ky) exp[i(kxx + kyy + kzz)]; k2
x + k2

y > k2

where kz is purely imaginary, i.e.

A(kx, ky) exp[i(kxx + kyy)] exp(− | kz | z)

which describes an inhomogeneous or ‘evanescent’ wave.

(iii)

B(kx, ky) exp[i(kxx + kyy − kzz); k2
x + k2

y ≤ k2

which describes a homogeneous wave propagating from Z to the origin.

(iv)

B(kx, ky) exp[i(kxx + kyy − kzz)]; k2
x + k2

y > k2

which describes an inhomogeneous wave propagating from Z to 0.

All four of these types of wave are, in general, necessary to represent the field

U.

2.4.2 The Half-Space Problem

Consider a half-space where a wave originating from z = 0 travels into the space

for which z > 0 and has an outgoing behaviour. Since the waves are outgoing

B(kx, ky) = 0 and thus in the half plane

(x, y, z) =
∞∫

−∞

A(kx, ky) exp[i(kxx + kyy + kzz)]dkxdky.

If we now let kx = kp, ky = kq and kz = km where k is the wave number (= ω/c)
then we can write

u(x, y, z) =
∞∫

−∞

a(p, q) exp[ik(px + qy + mz)]dpdq
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where

a(p, q) = k2A(kp, kq)

and

m =

{√
1 − p2 − q2, p2 + q2 ≤ 1;√
p2 + q2 − 1, p2 + q2 > 1.

When p2 + q2 ≤ 1, the mode is a plane wave propagating in a direction whose

‘direction cosines’ are (p, q, m). Let us consider the relationship between u(x, y, z)
and this field at z = 0. Decomposing the boundary wave (i.e. the wave at z = 0)

into a 2D Fourier integral,

u(x, y, 0) =
∞∫

−∞

ũ0(kx, ky) exp[i(kxx + kyy)]dkxdky.

According to the angular spectrum representation

u(x, y, 0) =
∞∫

−∞

a(p, q) exp[ik(px + qy)]dpdq.

Substituting kx = kp and ky = kq,

u(x, y, 0) =
1
k2

∞∫
−∞

a
(

kx

k
,

ky

k

)
exp[i(kxx + kyy)]dkxdky.

Thus,

ũ0(kx, ky) =
1
k2 a
(

kx

k
,

ky

k

)
or

a(p, q) = k2ũ0(kp, kq).

Hence,

u(x, y, z) = k2
∞∫

−∞

ũ0(kp, kq) exp[ik(px + qy + mz)]dpdq

=
∞∫

−∞

ũ0(kx, ky) exp[i(kxx + kyy + kzz)dkzdky.

Thus, the spectral amplitude a(p, q) of each plane wave is completely specified by a

single spatial frequency component of the boundary value of the field in the plane

z = 0. The frequency of the spatial frequency components are

kx = kp, ky = kq.

Homogeneous waves exist if

p2 + q2 ≤ 1.
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Hence, spatial frequencies in the boundary wave such that(
kx

k

)2

+
(

ky

k

)2

≤ 1

or

k2
x + k2

y ≤ k2

give rise to homogeneous waves. A spatial frequency kx arises from a sinusoidal com-

ponent of period 2π/Δx in the boundary wave. Therefore, periods in the boundary

wave such that
1

(Δx)2 +
1

(Δy)2 ≤ 1
λ2

give rise to homogeneous waves. Periods such that

1
(Δx)2 +

1
(Δy)2 >

1
λ2

give rise to evanescent waves. Since evanescent waves decay exponentially with

distance it follows that detail in u(x, y, 0) smaller than a wavelength is inaccessible

in the far field.

2.4.3 The Paraxial Wave Equation

A plane wave propagating along z can be represented by the field

u(x, y, z) = A exp(ikz), k =
ω

c

and is unidirectional. An optical beam, taken to be propagating in the z-direction,

can be represented by the field

u(x, y, z) = ψ(x, y, z) exp(ikz)

where it is assumed that: (i) ψ(x, y, z) varies slowly in comparison with exp(ikz);
(ii) ψ(x, y, z) is concentrated mainly around the axis (x, y) = (0, 0). With these as-

sumptions, an approximate partial differential equation for ψ can be obtained called

the Paraxial Wave Equation, whose solution provides a mathematical description

for the propagation of an optical (laser) beam.

The field U satisfies the Helmholtz equation

∇2U + k2U = 0.

Now
∂2U
∂x2 =

∂2ψ

∂x2 exp(ikz), and
∂2U
∂y2 =

∂2ψ

∂y2 exp(ikz).

Also,
∂U
∂z

=
∂ψ

∂z
exp(ikz) + ikψ exp(ikz)
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and
∂2U
∂z2 =

∂2ψ

∂z2 exp(ikz) +
∂ψ

∂z
ik exp(ikz)

+ik
∂ψ

∂z
exp(ikz) + (ik)2ψ exp(ikz)

= exp(ikz)
(

∂2ψ

∂z2 + 2ik
∂ψ

∂z
− k2ψ

)
.

Assume that ψ varies so slowly with z that∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << 2k
∣∣∣∣∂ψ

∂z

∣∣∣∣ .
Under this condition

∂2U
∂z2 � exp(ikz)

(
2ik

∂ψ

∂z
− k2ψ

)
and the Helmholtz equation reduces to

∂2ψ

∂x2 +
∂2ψ

∂y2 + 2ik
∂ψ

∂z
= 0.

This equation is the paraxial wave equation or beam equation. It can be written in

the form

∇2
⊥ψ + 2ik

∂ψ

∂z
= 0

where

∇2
⊥ =

∂2

∂x2 +
∂2

∂y2

is the transverse Laplacian. The condition∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << 2k
∣∣∣∣∂ψ

∂z

∣∣∣∣
implies that ∣∣∣∣ ∂

∂z

(
∂ψ

∂z

)∣∣∣∣ <<
4π

λ

∣∣∣∣∂ψ

∂z

∣∣∣∣ .
For small changes, the change | Δ(∂ψ/∂z) | in | ∂ψ/∂z | is such that∣∣∣∣∣∣

Δ
(

∂ψ
∂z

)
Δz

∣∣∣∣∣∣ <<
4π

λ

∣∣∣∣∂ψ

∂z

∣∣∣∣ .
If we take Δz = λ, then ∣∣∣∣∣∣

Δ
(

∂ψ
∂z

)
∂ψ
∂z

∣∣∣∣∣∣ << 4π.

Physically, this condition implies that the change in
∂ψ
∂z over a distance of the order

of a wavelength λ is small compared to
∣∣∣ ∂ψ

∂z

∣∣∣ itself.
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2.4.4 Solution to the Paraxial Wave Equation

The paraxial wave equation is given by

∂2ψ

∂x2 +
∂2ψ

∂y2 + 2ik
∂ψ

∂z
= 0

where

u(x, y, z) = ψ(x, y, z) exp(ikz).

Let us employ a Fourier integral representation for ψ, i.e.

ψ(x, y, z) =
∞∫

−∞

ψ̃(kx, ky, z) exp[i(kxx + kyy)]dkxdky.

Substituting this expression into the paraxial wave equation, we get

∞∫
−∞

dkxdky

(
ψ̃(kx, ky, z)[(ikx)2 + (iky)2] + 2ik

∂ψ̃(kx, ky, z)
∂z

)

× exp[i(kxx + kyy)] = 0

and, since this equality holds for all (x, y), it follows that

−(k2
x + k2

y)ψ̃ + 2ik
∂ψ̃

∂z
= 0.

Rearranging,
1
ψ̃

∂ψ̃

∂z
=

1
2ik

(k2
x + k2

y)

or
d
dz

ln ψ̃ =
1

2ik
(k2

x + k2
y)

which has the solution

ln ψ̃ =
1

2ik
(k2

x + k2
y)z + constant

or

ψ̃(kx, ky, z) = ψ̃(kx, ky, 0) exp
[

1
2ik

(k2
x + k2

y)z
]

.

Substituting this result into the Fourier integral representation for ψ, we obtain a

general solution to the paraxial wave equation of the form

ψ(x, y, z) =
∞∫

−∞

ψ̃(kx, ky, 0) exp
[
− i

2k
(k2

x + k2
y)z
]

exp[i(kxx + kyy)]dkxdky.

Changing variables to kx = kp and ky = kq, we can write the solution for the

amplitude U as

U(x, y, z) = exp(ikz)
∞∫

−∞

a(p, q) exp[ik(px + qy)] exp
[
−i

k
2
(p2 + q2)z

]
dpdq
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where

a(p, q) = k2ψ̃(kx, ky, 0).

This is the solution to the Helmholtz equation in the ‘beam approximation’.

2.4.5 Angular Spectrum Representation

Consider a field u(x, y, z) propagating into the half space z > 0 given by the

Helmholtz equation

∇2U + k2U = 0.

We may represent the field as an angular spectrum

u(x, y, z) =
∞∫

−∞

a(p, q) exp[ik(px + qy + mz)]dpdq

where

m =

{√
1 − p2 − q2, p2 + q2 ≤ 1;

i
√

p2 + q2 − 1, p2 + q2 > 1,

a(p, q) = k2ũ0(kp, kq)

and where ũ0 is the 2D spatial Fourier transform of the boundary value of U in the

plane z = 0, i.e.

ũ0(kx, ky) =
1

(2π)2

∞∫
−∞

u(x, y, 0) exp[−i(kxx + kyy)]dxdy.

For the field U to behave like a beam, we require that ũ0 must only contain low

frequency components such that

k2
x + k2

y << k2

or

p2 + q2 << 1.

The quantity m must therefore be real and positive; it is given approximately by

m = (1 − p2 − q2)
1
2 � 1 − 1

2
(p2 + q2).

Under this condition, U is given approximately by

u(x, y, z) � exp(ikz)
∞∫

−∞

a(p, q) exp[ik(px + qy)] exp
[
−i

k
2
(p2 + q2)z

]
dpdq.

This is the mathematical expression for a beam, subject to the constraint that a(p, q)
is appreciable only for values of p and q such that

p2 + q2 << 1.

Note that the field U is expressed in terms of its Fourier transform in the plane

z = 0. Also note that this expression is identical to the general solution of the

paraxial wave equation. The two approaches are mathematically equivalent.
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2.5 The Macroscopic Maxwell’s Equations

The microscopic form of Maxwell’s equations tells us how individual charged par-

ticles and electromagnetic fields interact. When there are many particles per cubic

wavelength, the electromagnetic radiation ‘sees’ only a macroscopic average. The

medium is then described by its dielectric parameters: the permittivity ε, the mag-

netic permeability μ and the conductivity σ.

Simple averaging of the quantities over a small volume V, e.g.

E(r, t) =
1
V

∫
V

e(r′, t)d3r′, B(r, t) =
1
V

∫
V

b(r′, t)d3r′

leads to the following, but not very useful, macroscopic form of Maxwell’s equations:

∇ · E = 4πρmacro, ∇× E = −1
c

∂B
∂t

,

∇ · B = 0, ∇× B =
1
c

∂E
∂t

+
4π

c
jmacro.

However, both ρmacro and jmacro can be split into two terms due to free and bound

electrons, i.e. we can write

ρmacro = ρbound + ρfree

and

jmacro = jbound + jfree.

By bound, we mean that the electrons are bound to the nucleus to constitute an

atom. If we introduce an electric polarization P of the medium to represent the

average dipole moment per unit volume given by

P = −Nes

where s is the average vector between bound electrons and nuclei, e is the charge of

an electron and N is the average number of electrons per unit volume, then we can

define the charge density of bound electrons as

ρbound = −∇ · P

and the current density of bound electrons in the form

jbound =
∂P
∂t

+ c∇× M

where M is the magnetization vector. At optical frequencies, M = 0 (in the absence

of a strong applied magnetic field). Further, we now define the following:

(i) the displacement vector given by D = E + 4πP;

(ii) the magnetic field strength given by H = B − 4πM.
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From these definitions, we obtain a useful macroscopic form of Maxwell’s equa-

tions given by [3], [4]

∇ · D = 4πρfree, ∇× E = −1
c

∂B
∂t

∇ · B = 0, ∇× H =
1
c

∂D
∂t

+
4π

c
jfree

These equations are valid for media which are: (i) non-isotropic; (ii) inhomogeneous.

2.6 EM Waves in a Homogeneous Medium

Having derived Maxwell’s equation in macroscopic form, let us now consider the

type of solutions they provide for a specific case. Suppose we illuminate a homo-

geneous material with monochromatic radiation of angular frequency ω. What are

the possible solutions of Maxwell’s equations in the material? i.e. what waves exist

in the medium?

2.6.1 Linear Medium

Assume that all the macroscopic vectors oscillate sinusoidally at angular frequency

ω (this is true, in general, only for high frequency, weak fields). Define vector

amplitudes E(r, t) = E(r, ω) exp(−iωt), B(r, t) = B(r, ω) exp(−iωt) and so on2,

so that Maxwell’s equations can be written in the form

∇ · D = 4πρ (2.13)

∇× E =
iω
c

B (2.14)

∇ · B = 0 (2.15)

∇× H = − iω
c

D +
4π

c
j (2.16)

where ρ and j are taken to be the free charge density and the free current density,

respectively.

Let

P = χeE, M = χmH and j = σE

where χe is the electric susceptibility, χm is the magnetic susceptibility and σ is the

conductivity, each of which may be tensors. Note that, in general, this linearity may

not occur and P could be of the form

P = χeE(1 + a1E + a2E2 + ...).

2 Strictly speaking E(r, ω), B(r, ω), etc. should be given a different notation but, in the
context of the equations that follow, it is implied that all dependent variables are functions
of r and ω and not r and t.
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Here a1, a2, ... are constant coefficients which would introduce a nonlinear optical

material and nonlinear optical effects for example. Note that the effect of introducing

monochromatic radiation (i.e. a wavefield oscillating at one single frequency ω) is

to replace the time derivatives in Maxwell’s equations with iω which significantly

helps in the algebra required to derive the solutions that follow.

2.6.2 Isotropic Medium

Let χe, χm and σ be complex scalars (not tensors) and let us define the following:

(i) the dielectric constant given by ε = 1 + 4πχe;

(ii) the magnetic permeability given by μ = 1 + 4πχm

so that we can write

D = εE (2.17)

and

B = μH. (2.18)

Taking the divergence of equation (2.16) and noting that ∇ · ∇× H = 0, we have

−iω∇ · D + 4π∇ · j = 0.

Hence, from equation (2.13) we get

ρ = − i
ω
∇ · j = − i

ω
∇ · (σE). (2.19)

Substituting equations (2.17), (2.18) and (2.19) into Maxwell’s equation (2.13)-

(2.16), we obtain the following time independent equations for the complex vector

amplitudes:

∇ ·
(

ε +
i4πσ

ω

)
E = 0, ∇× E =

iωμ

c
H,

∇ · (μH) = 0, ∇× H = − iω
c

(
ε +

i4πσ

ω

)
E.

These equations apply to a linear, isotropic but inhomogeneous medium, i.e. ε, μ

and σ may be functions of position. Note that, for any vector X and scalar a,

∇ · (aX) = ∇a · X + a∇ · X �= a∇ · X, unless ∇a = 0.

2.6.3 Homogeneous Medium

For a homogeneous medium (where ε, μ and σ are constants, the previous set of

equations reduces to

∇ · E = 0, ∇× E =
iωμ

c
H,

∇ · H = 0, ∇× H = − iω
c

(
ε +

i4πσ

ω

)
E.



48

2.6.4 Plane Wave Solutions

Let

E = E0 exp(ikc · r) H = H0 exp(ikc · r)

where kc is the complex wave number. Noting that

∇ · [C exp(ikc · r)] = ikc · C exp(ikc · r)

and

∇× [C exp(ikc · r)] = ikc × C exp(ikc · r)

we obtain

kc · E0 = 0, kc · H0 = 0, (2.20)

kc × E0 =
μω

c
H0, (2.21)

kc × H0 = −ω

c

(
ε +

i4πσ

ω

)
E0. (2.22)

Equations (2.20) are referred to as the transversality conditions. Substituting equa-

tion (2.21) into equation (2.22) yields

c
μω

kc × (kc × E0) = −ω

c

(
ε +

i4πσ

ω

)
E0.

Using the identity

A × (B × C) = (A · C)B − (A · B)C

we can write this result in the form

(kc · E0)kc − (kc · kc)E0 = −μω2

c2

(
ε +

i4πσ

ω

)
E0

or, since kc · E0 = 0, as

kc · kc = n2
c k2

0 (2.23)

where

k0 =
2π

λ
=

ω

c
and

n2
c = εμ +

i4πμσ

ω
.

Here, nc is called the complex refractive index. Let

nc = n + iκ

and

kc = k + ia

where n is the refractive index, κ is the extinction index, k is the wavenumber and

a is the attenuation vector. Substituting these expressions into equation (2.23) and

equating the real and imaginary parts gives

k2 − a2 = k2
0(n2 − κ2) (2.24)
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and

k · a = k2
0nκ. (2.25)

Thus, plane wave solutions exist of the form

E = E0 exp(ikc · r); H = H0 exp(ikc · r)

where, from equation (2.23),

| kc |= nck0, kc · E0 = 0

and

H0 =
1

μk0
kc × E0.

2.6.5 Non-absorbing Media (κ = 0)

Equations (2.24) and (2.25) reduce to

k2 − a2 = n2k2
0 > 0

and

k · a = 0.

Two kinds of waves are possible:

(i) Real vector waves where a = 0, kc = k, | k |= k0n and

E(r, ω) = E0(r, ω) exp(ik · r)

or

E(r, t) = E0(r, t) exp[i(k · r − ωt)].

This is like a free space plane wave. The velocity of propagation is ω/k = c/n and

the wavelength, is λ/n. Both amplitude and phase are constant and perpendicular

to k, i.e. the wave is homogeneous. Since k · E0 = 0, the real and imaginary parts

of E are perpendicular to k. H is also perpendicular to k and �[E] is perpendicular

to �[H].

(ii) Complex wave vector where k is perpendicular to a so that k · a = 0 and

E(r, t) = E0(r, t) exp(−a · r) exp[i(k · r − ωt)]

which propagates along k with velocity ω/k < c/n. The amplitude is constant over

planes perpendicular to a and the phase is constant over planes perpendicular to k
- the wave is homogeneous.
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2.6.6 Absorbing Media (κ > 0, k · a �= 0)

(i) Homogeneous wave: k and a are in the same direction,

k = nk0, a = κk0

and

E(r, t) = E0(r, ω) exp(−κk0 · r) exp[i(nk0 · r − ωt)].

This wave propagates along k0 at velocity c/n, with wavelength λ0/n and decreases

exponentially along the direction of propagation. Both amplitude and phase are

constant and perpendicular to k0 and both E and H are perpendicular to k0. �[E]
is not perpendicular to �[H].

(ii) Inhomogeneous wave: k and a are not in the same direction. There is

constant phase perpendicular to k and constant amplitude perpendicular to a. Since

a has a component along k, there is a decrease of amplitude along k.

2.7 EM Waves in an Inhomogeneous Medium

In the previous Section, we considered the EM waves that can occur in a homo-

geneous material that is linear and isotropic by studying Maxwell’s equations for

monochromatic propagation. We now turn our attention to developing wave equa-

tions for a medium that is linear, isotropic and inhomogeneous using Maxwell’s

equations in the form3

∇ · εE = ρ, (2.26)

∇ · μH = 0, (2.27)

∇× E = −μ
∂H
∂t

, (2.28)

and

∇× H = ε
∂E
∂t

+ j. (2.29)

where E(r, t) is the electric field (volts/metre), H(r, t) is the magnetic field (am-

peres/metre), j(r, t) is the current density (amperes/metre2), ρ(r, t) is the charge

density (charge/metre2), ε(r) is the permittivity (farads/metre) and μ(r) is the

permeability (henries/metre). The values of ε and μ in a vacuum (denoted by ε0
and μ0, respectively) are ε0 = 8.854 × 10−12 farads/metre and μ0 = 4π × 10−7

henries/metre. In electromagnetic imaging problems there are two important phys-

ical models to consider, based on whether a material is either conductive or non-

conductive.

3 For SI units.
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2.7.1 Conductive Materials

In this case, the medium is assumed to be a good conductor. A current is in-

duced which depends on the magnitude of the electric field and the conductivity σ

(siemens/metre) of the material from which the object is composed. The relationship

between the electric field and the current density is given by Ohm’s law

j = σE (2.30)

A good conductor is one where σ is large. By taking the divergence of equation

(2.29) and noting that

∇ · (∇× H) = 0

we obtain (using equation (2.26) for constant ε)

∂ρ

∂t
+

σ

ε
ρ = 0.

The solution to this equation is

ρ(t) = ρ0 exp(−σt/ε), where ρ0 = ρ(t = 0).

This solution shows that the charge density decays exponentially with time. Typical

values of ε are ∼ 10−12 − 10−10 farads/metre. Hence, provided σ is not too small,

the dissipation of charge is very rapid. It is therefore physically reasonable to set the

charge density to zero and, for problems involving the interaction of electromagnetic

waves with good conductors, equation (2.26) can be approximated by

∇ · εE = 0 (2.31)

and equation (2.29) becomes

∇× H = ε
∂E
∂t

+ σE.

Note that, in imaging problems, the material may not necessarily be conductive

throughout but may be a varying dielectric with distributed conductive elements.

For example, in imaging the surface of the Earth using microwave radiation (Syn-

thetic Aperture Radar), the electromagnetic scattering model is based on a ‘ground

truth’ that is predominantly a dielectric (dry ground surfaces and dry vegetation for

example) with distributed conductors (e.g. metallic objects on a dry ground surface,

the sea and to a lesser extent rivers and lakes).

2.7.2 Non-conductive Dielectrics

In this case, it is assumed that the conductivity of the medium is negligible and no

current can flow, and hence

j = 0

and equation (2.29) is just

∇× H = ε
∂E
∂t

.
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Also, if the conductivity is zero then ρ = ρ0 and if ρ0 = 0 then equation (2.26)

becomes

∇ · εE = 0.

The issues of when a material is a conductor or a dielectric is compounded

in the relative importance of the terms j and ε(∂E/∂t) in equation (2.29). Let

us consider the electric and magnetic fields to be monochromatic waves, so that

equation (2.29) becomes (with j = σE)

∇× H(r, ω) = (iωε + σ)E(r, ω).

The relative importance of the terms on the right hand side of equation (2.29) is

then determined by the magnitudes of σ and ωε. If

σ

ωε
>> 1

then conduction currents dominate and the medium is a conductor. If

σ

ωε
<< 1

then displacement currents dominate and the material behaves as a dielectric. When

σ

ωε
∼ 1

the material is a quasi-conductor; some types of semi-conductor fall into this cate-

gory. Note that the ratio σ/ωε is frequency dependent and that, consequently, a

conductor at one frequency may be a dielectric at another. For example, copper has

a conductivity of 5.8 × 107 siemens/metre and ε � 9 × 10−12 farads/metre so that

σ

ωε
∼ 1018

ω
.

Up to a frequency of 1016Hz (the frequency of ultraviolet light) σ/ωε >> 1, and

copper is a conductor. At a frequency of 1020Hz (the frequency of X-rays), however,

σ/ωε << 1 and copper behaves as a dielectric. This is why X-rays travel distances

of many wavelengths in copper. An insulator has a conductivity in the order of

10−15 siemens/metre and a permittivity of the order of 10−11 farads/metre, which

gives
ωε

σ
∼ 104ω

so the conduction current is negligible at all frequencies.

2.7.3 EM Wave Equation

In many electromagnetic imaging systems, the field that is measured is the electric

field. It is therefore appropriate to use a wave equation which describes the behaviour

of the electric field. This can be obtained by decoupling Maxwell’s equations for the



53

magnetic field H. Starting with equation (2.28), we divide through by μ and take

the curl of the resulting equation. This gives

∇×
(

1
μ
∇× E

)
= − ∂

∂t
∇× H.

By taking the derivative with respect to time t of equation (2.29) and using Ohm’s

law - equation (2.30) - we obtain

∂

∂t
(∇× H) = ε

∂2E
∂t2 + σ

∂E
∂t

.

From the previous equation we can then write

∇×
(

1
μ
∇× E

)
= −ε

∂2E
∂t2 − σ

∂E
∂t

(2.32)

Expanding the first term, multiplying through by μ and noting that

μ∇
(

1
μ

)
= −∇ ln μ

we get

∇×∇× E + εμ
∂2E
∂t2 + σμ

∂E
∂t

= (∇ ln μ) ×∇× E.

Expanding equation (2.31) we have

ε∇ · E + E · ∇ε = 0

or

∇ · E = −E · ∇ ln ε.

Hence, using the vector identity

∇×∇× E = −∇2E + ∇(∇ · E)

we obtain the following wave equation for the electric field

∇2E − εμ
∂2E
∂t2 − σμ

∂E
∂t

= −∇(E · ∇ ln ε) − (∇ ln μ) ×∇× E.

This equation is inhomogeneous in ε, μ and σ. Solutions to this equation provide

information on the behaviour of the electric field in a fluctuating conductive di-

electric environment. In electromagnetic imaging problems, interest focuses on the

behaviour of the scattered EM wavefield generated by variations in the material

parameters ε, μ and σ. In this context, ε, μ and σ are sometimes referred to as

the electromagnetic scatter generating parameters. In electromagnetic imaging, the

problem is to reconstruct these parameters by measuring certain properties of the

scattered electric field. This is a three parameter inverse problem which requires us

to first solve for the electric field E given ε, μ and σ.
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2.7.4 Inhomogeneous EM Wave Equations

In order to solve the wave equation derived in the last section using the most appro-

priate analytical methods for imaging science (i.e. Green function solutions which

are discussed in the following Chapter), it must be re-cast in the form of the Langevin

equation

(∇2 + k2)E = −L̂E

where L̂ is an inhomogeneous differential operator. Starting with equation (2.32),

by adding

ε0
∂2E
∂t2 − 1

μ0
∇×∇× E

to both sides of this equation and re-arranging, we can write

∇×∇× E + ε0μ0
∂2E
∂t2 = −ε0μ0γε

∂2E
∂t2 − μ0σ

∂E
∂t

+ ∇× (γμ∇× E)

where

γε =
ε − ε0

ε0
and γμ =

μ − μ0

μ
.

We can then use the result (valid for ρ ∼ 0)

∇×∇× E = −∇2E + ∇(∇ · E)

= −∇2E −∇(E · ∇ ln ε)

so that the above wave equation can be written as

∇2E − ε0μ0
∂E
∂t2 = μ0ε0γε

∂2E
∂t2 + μ0σ

∂E
∂t

−∇(E · ∇ ln ε) −∇× (γμ∇× E).

Finally, introducing the Fourier transform

E(r, t) =
1

2π

∞∫
−∞

Ẽ(r, ω) exp(iωt)dω,

we can write the above wave equation in the time independent form

(∇2 + k2)Ẽ = −k2γεẼ + ikz0σẼ −∇(Ẽ · ∇ ln ε) −∇× (γμ∇× Ẽ)

where

k =
ω

c0
, c0 =

1√
ε0μ0

and z0 = μ0c0.

The parameter z0 is the free space wave impedance and is approximately equal to

376.6 ohms. The constant c0 is the velocity at which electromagnetic waves propa-

gate in a perfect vacuum. In electromagnetic imaging, the fundamental problem is

to obtain images of the parameters γε, γμ and the conductivity σ.
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2.8 Discussion

This Chapter has been concerned with investigating the field equations for electro-

magnetic fields. It has been shown how these equations can be reduced or decoupled

to provide a linear inhomogeneous scalar wave equation (a Langevin equation) of

the form

(∇2 + k2)u(r, k) = −L̂u

where L̂ is an inhomogeneous linear differential operator which involves the ‘scat-

ter generating parameter’ sets (γε, γμ, σ) (where the material may be composed

of ‘good conductors’). In electromagnetism, nonlinear behaviour can occur as a

result of the polarization vector having a nonlinear relationship with the electric

field vector. The wave equations derived here are the result of trying to find a bal-

ance between developing a physical model that is relatively complete but ‘simple’

enough for the ‘forward scattering problem’ (solving for the wavefield u given L̂)

and the ‘inverse scattering problem’ (solving for the material parameter sets given

u) to become tractable using the analytical methods discussed in the following chap-

ters.



3 GREEN’S FUNCTIONS

Green’s functions are named after the mathematician and physicist George Green

born in Nottingham in 1793 who ‘invented’ the Green’s function in 1828 [7]. This

invention is developed in an essay entitled Mathematical Analysis to the Theories

of Electricity and Magnetism originally published in Nottingham in 1828 [8] and

reprinted by the George Green Memorial Committee to mark the bicentenary of the

birth of George Green in 1993 [9].

The Green’s function is a powerful mathematical tool rather than a physical

concept and was successfully applied to classical electromagnetism and acoustics in

the late Nineteenth Century. More recently, the Green’s function has been the work-

ing tool of calculations in particle physics, condensed matter and solid state physics,

quantum mechanics and many other topics of applied mathematics and mathemat-

ical physics [10], [11]. Just as the Green’s function revolutionized classical field

theory in the nineteenth century (hydrodynamics, electrostatics and magnetism) so

it revolutionized quantum field theory in the mid-Twentieth Century through the

introduction of quantum Green’s functions [12]. This provided the essential link

between the theories of quantum electrodynamics in the 1940s and 1950s and has

played a major role in theoretical physics ever since. For example, Richard Feyn-

man developed the Feynman diagram which was based on the Green’s function. In

fact, the Feynman diagram can be considered to be a pictorial representation of a

Green’s function (a Green’s function associated with wave operators), referred to by

Feynman as a ‘propagator’.

Green’s functions are used mainly to solve certain types of linear inhomoge-

neous partial differential equations (although homogeneous partial differential equa-

tions can also be solved using this approach). In principle, the Green’s function tech-

nique can be applied to any linear constant coefficient inhomogeneous partial differ-

ential equation (scalar or vector) in any number of independent variables, although in

practice difficulties can arise in computing the Green’s function analytically. In fact,

Green’s functions provide more than just a ‘solution’, for they transform a partial

differential equation representation of a physical problem into a integral equation

representation of the same problem which is entirely general and complete. The

kernel of the integral equation is composed (completely or partly) of the Green’s
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function associated with the partial differential equation. This is why Green’s func-

tion solutions are one of the most powerful analytical tools we have for solving

partial differential equations, equations that arise in areas of physics such as electro-

magnetism (Maxwell’s equations), wave mechanics (elastic wave equation), optics

(Helmholtz equation), quantum mechanics (Schrödinger and Dirac equations), fluid

dynamics (fluid equations of motion), relativistic particle dynamics (Klein-Gordon

equation) and general relativity (Einstein equations).

With regard to the application of Green’s functions, the inverse (scattering)

problem is typically based on first defining the (scattering) problem in terms of the

solution to a linear inhomogeneous PDE of the type1

D̂u(r, t) = L̂u(r, t)

where u is the wavefield (which is taken to include the scattered wavefield), D̂ is a

homogeneous differential operator and L̂ is an inhomogeneous differential operator.

The forward scattering problem can then be defined as follows:

Given D̂ and L̂ compute u(r, t).

The inverse scattering problem is then defined as:

Given u(r, t) compute the inhomogeneous characteristics of L̂.

An appropriate Green’s function solution (if available) allows us to write (with-

out loss of generality)

u(r, t) = Î L̂u(r, t)

where Î is an integral operator that incorporates the Green’s function.

Inverse scattering problems are, in general, concerned with the inversion of

integral equations of this type. However, the technique is not limited to wave equa-

tions alone, but can be applied to a wide range of inhomogeneous partial differential

equations including those associated with diffusion problems (the diffusion equa-

tion), transport phenomena (the Föcker-Planck equation) and static problems (e.g.

the Poisson equation).

Green’s function are relevant to electromagnetic scattering and imaging be-

cause electromagnetic waves obey a wave equation. By deriving a Green’s function

for this equation, we can calculate the response of an EM imaging system at a point

to a disturbance at some source. Further, many problems in EM image revolve

around the recovery of information that has been degraded or lost in the passage of

an EM wave through the medium of propagation. Green’s functions give us a very

general way of thinking about this process. If we have a good physical model for an

imaging process, for example, then we have a better chance of extracting valuable

information by reversing the process, this is the essence of the solving the inverse

scattering problem using the Green’s function solutions.

1 r is the multi-dimensional space vector and t denotes time.
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3.1 Introduction to the Green’s Function

In this chapter, we provide an introduction to the Green’s function method. The

material focuses attention on Green’s function solutions to the wave equation. How-

ever, for completeness, we also consider Green’s function solutions to the diffusion

equation and the Poisson and Laplace equations. Here, we are concerned with the

use of ‘Free Space’ Green’s functions which provide a general solution in the infinite

domain or over a finite domain to which boundary conditions can then be applied.

By way of a short introduction to help the reader understand the principle of

using Green’s functions we now consider two short examples. The first example is

based on considering point sources to generate a solution to an ordinary differential

equation and is based on a ‘qualitative analysis’. The second example makes specific

use of the delta function and its properties to develop a solution which is based on

a more systematic analysis - as used throughout this Chapter.

Example 1: Consider the following inhomogeneous ordinary differential equa-

tion

D̂u(x) = f (x) (3.1)

where D̂ is a linear differential operator and f (x) is a given function (the source

term), the solution being required on the interval 0 ≤ x ≤ a where a is some

constant.

Instead of considering f (x) as a continuous source function, let us approximate

it by a set of source functions f (ξ1), f (ξ2), ..., f (ξn) acting at the points x = ξ1, x =
ξ2, ..., x = ξn, all for x ∈ [0, a]. Now define the function g(x, ξi) to be the solution

to equation (3.1) due to a source acting at ξi. The solution due to the single effect

of this point source is given by g(x, ξi) f (ξi). The solution for u(x) is then obtained

by summing the results for all the n source terms acting over the interval 0 ≤ x ≤ a,
and takes the form

u(x) =
n

∑
i=1

g(x, ξi) f (ξi).

As n becomes larger so that the number of point source functions f (ξi) increases,

a better and better approximation to f (x) is obtained. In the limit as n → ∞,

|ξi − ξi+1| → 0 ∀i and the summation in the equation above may be replaced by an

integral to give the required solution to equation (3.1) in the form

u(x) =
a∫

0

g(x, ξ) f (ξ)dξ.

The function g(x, ξ) is called the Green’s function of the problem.

The Green’s function is usually denoted by g and G, but the notation changes

from author to author. They are usually written in the form g(x, ξ) (as in this

example), or g(| x − ξ |), or g(x | ξ) (as used here).
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Similar results to the one given above may be obtained for linear partial dif-

ferential equations. For example, the solution of the Poisson equation in two dimen-

sions, i.e.

∇2u(x, y) = f (x, y); x ∈ [0, a], y ∈ [0, b]

may be written as

u(x, y) =
a∫

0

b∫
0

g(x, y; ξ, η) f (ξ, η)dξdη

where g(x, y; ξ, η) is the Green’s function of the problem.

The approach to developing a Green’s function solution discussed in this ex-

ample is based on considering point sources to provide a set of elementary results

and then summing up the results to give the required solution. In optics, this prin-

ciple is often referred to as Huygens’ principle. It allows the optical field generated

by a given source to be computed by considering the field generated from a single

point on the source and then summing up the field generated from a large collection

of such points. In this sense, the principle behind a Green’s function solution is

effectively the same as Huygens’ principle, i.e. find the solution to the problem for

a single point and then integrate over all such points.

A point source can be described by a delta function and the relationship be-

tween the delta function and the Green’s function is fundamental. By way of a short

introduction to the use of the delta function for solving partial differential equations

using Green’s functions, we consider the following example which, in comparison

with the example given above, provides a more complete form of analysis to develop

a Green’s function solution for the one-dimensional inhomogeneous wave equation.

Example 2: Consider the inhomogeneous wave equation(
∂2

∂x2 + k2
)

u(x, k) = f (x) (3.2)

where k (the wavenumber) is a constant and f (x) is the source term, the solution

being required over all space x ∈ (−∞, ∞) subject to the conditions that u and

∂u/∂x are zero at ±∞. This equation describes the behaviour of ‘steady waves’

(with constant wavelength λ = 2π/k) generated by a source f (x). With reference

to Example 1, we are considering the case where

D̂ =
∂2

∂x2 + k2.

Let us define the Green’s function as being the solution to equation (3.2) when

the source term is replaced by a point source or delta function at a point x0 say,

giving the equation (
∂2

∂x2 + k2
)

g(x | x0, k) = δ(x − x0) (3.3)
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where δ has the following fundamental property

∞∫
−∞

u(x)δ(x − x0)dx = u(x0).

Pre-multiplying equation (3.2) by g gives

g
(

∂2

∂x2 + k2
)

u = g f

and pre-multiplying equation (3.3) by u gives

u
(

∂2

∂x2 + k2
)

g = uδ(x − x0).

Subtracting the two results and integrating over all space, we obtain

∞∫
−∞

(
g

∂2u
∂x2 − u

∂2g
∂x2

)
dx =

∞∫
−∞

f gdx −
∞∫

−∞

uδ(x − x0)dx.

Using the generalized sampling property of the delta function given above and rear-

ranging the result, we obtain

u(x0, k) =
∞∫

−∞

f gdx −
∞∫

−∞

(
g

∂2u
∂x2 − u

∂2g
∂x2

)
dx.

Evaluating the second integral on the right-hand side,

∞∫
−∞

(
g

∂2u
∂x2 − u

∂2g
∂x2

)
dx =

∞∫
−∞

[
∂

∂x

(
g

∂u
∂x

)
− ∂g

∂x
∂u
∂x

− ∂

∂x

(
u

∂g
∂x

)
+

∂u
∂x

∂g
∂x

]
dx

=
∞∫

−∞

∂

∂x

(
g

∂u
∂x

)
dx −

∞∫
−∞

∂

∂x

(
u

∂g
∂x

)
dx =

[
g

∂u
∂x

]∞

−∞
−
[

u
∂g
∂x

]∞

−∞
= 0

provided u and ∂u/∂x are zero at x = ±∞. With these conditions, we obtain the

Green’s function solution in the form

u(x0, k) =
∞∫

−∞

f (x)g(x | x0, k)dx.

Physically the Green’s function associated with wavefield problems, as in this ex-

ample, represents the way in which a wave propagates from one point in space to

another. For this reason, Green’s functions are sometimes referred to as propaga-

tors. In this case, the Green’s function is a function of the ‘path length’ between

x and x0, irrespective of whether x > x0 or x < x0. The path length is given by

| x − x0 | and the Green’s function is a function of this path length which is why,
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using the notation x | x0 ≡| x − x0 |, we write g(x | x0). Note that the solution

for u is a convolution (since x | x0 = x0 | x), the convolution of the source function

f (x) with the Green’s function g(| x |). In general, we can consider the solution to

an equation of the type

D̂u(x) = f (x)

to be given by

u(x) = g(| x |) ⊗ f (x)

where ⊗ denotes the convolution operation and g is the solution to the equation

D̂u(x) = δ(x − x0).

Such a solution is of little value unless the Green’s function can be computed and,

in the following Section, this problem is addressed.

3.2 The Time Independent Wave Operator

In this Section, we shall concentrate on the computation of Green’s functions for the

time-independent wave equation in one-, two- and three-dimensions. The solution is

over all space and the Green’s function is not constrained to any particular boundary

conditions (except those at ±∞). It is therefore referred to as a free space Green’s

function. Green’s functions of this type are used in a wide range of physical problems

related to the propagation and interaction of waves with matter. They are one of

the most important functions in mathematical physics because of the way they allow

partial differential equations that describe the interaction of wavefields with matter

to be solved. Physically, these Green’s functions represent the way in which a wave

propagates from one point source to another.

The type of equations that we are forced to consider with regard to the ‘physics’

of imaging systems, and the analytical techniques that have been developed to cope

with them, nearly always originate in some way from the properties of the Green’s

function that is used. A good understanding of these functions is therefore required

if the basic elements of imaging theory are to be understood.

3.2.1 The One-dimensional Green’s Function

We start by reconsidering Example 2 given in the Section A1.2 which, through

the application of the sampling property of the delta function together with some

relatively simple analysis, demonstrated that the solution to the inhomogeneous

wave equation (
∂2

∂x2 + k2
)

u(x, k) = f (x)

for constant k and x ∈ (−∞, ∞) subject to the boundary conditions

u(x, k) |±∞= 0 and
[

∂

∂x
u(x, k)

]
±∞

= 0
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is given by

u(x0, k) =
∞∫

−∞

f (x)g(x | x0, k)dx

where g is the Green’s function given by the solution to the equation(
∂2

∂x2 + k2
)

g(x | x0, k) = −δ(x − x0) (3.4)

subject to g(x|x0, k)|±∞ = 0 and [∂g(x|x0, k)/∂x]±∞ = 0. We shall now discuss the

evaluation of the Green’s function for this case. Note that, here, the Green’s function

is defined for −δ on the right hand side instead of δ as used previously. This is for

convenience only in the computations that follow; it does not affect the analysis but

does reduces the number of negative signs that accompany the calculation. For this

reason, many authors define the Green’s function with −δ, a definition which is used

throughout the rest of this Chapter.

The solution for the Green’s function is based on employing the properties

of the Fourier transform. Writing X =| x − x0 |, we express g and δ as Fourier

transforms, i.e.

g(X, k) =
1

2π

∞∫
−∞

G(u, k) exp(iuX)du (3.5)

and

δ(X) =
1

2π

∞∫
−∞

exp(iuX)du.

Substituting these expressions into equation (3.4) and differentiating gives

1
2π

∞∫
−∞

(−u2 + k2)G(u, k) exp(iuX)du = − 1
2π

∞∫
−∞

exp(iuX)du

from which it follows that

G(u, k) =
1

u2 − k2 .

Substituting this result back into equation (3.5), we obtain

g(X, k) =
1

2π

∞∫
−∞

exp(iuX)
u2 − k2 du =

1
2π

∞∫
−∞

exp(iuX)
(u − k)(u + k)

du.

The problem is therefore reduced to that of evaluating the above integral. This can

be done using Cauchy’s integral formula,∮
C

f (z)dz = 2πi × (sum of the residues enclosed by C)

where C is the contour defining the path of integration. In order to evaluate the

integral explicitly using this formula, we must consider the singular nature or poles
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of the integrand at z = −k and z = k. For now, let us consider a contour which

encloses both poles. The residue at z = k is given by exp(ikX)/(2k) and at z = −k
by − exp(−ikX)/(2k). Hence the Green’s function is given by

g(X, k) = 2πi
(

exp(ikX)
4πk

− exp(−ikX)
4πk

)
= −sin(kX)

k
.

This Green’s function represents the propagation of waves travelling away from the

point disturbance at x = x0, or ‘outgoing waves’, and also waves traveling toward

the point disturbance, or ‘incoming waves’. Since x and x0 are points along a line,

we can consider the result to be the sum of waves travelling to the left of δ(x− x0) in

which x < x0 and to the right of δ(x − x0) where x > x0. In most applications it is

convenient to consider the Green’s function for outgoing or (more rarely) incoming

waves, but not both. Here, the Green’s function for a incoming waves is given by

g(x | x0, k) = − i
2k

exp(−ik | x − x0 |)

and for outgoing waves is

g(x | x0, k) =
i

2k
exp(ik | x − x0 |).

3.2.2 The Two-dimensional Green’s Function

A Green’s function in two- and three-dimensions is synonymous with the source-

observer system illustrated in Figure 1. If the position of the source is denoted by

r0 and the position of the observer by r, then the Green’s function is written as a

function of | r − r0 | where in Cartesian coordinates,

| r − r0 |=
√

(x − x0)2 + (y − y0)2.

When the functional dependence of the Green’s function is declared, instead

of writing g(| r − r0 |), which is messy, it is more convenient to write g(r, r0) or

g(r | r0). Here, the latter notation is used throughout, i.e.

g(r | r0) ≡ g(| r − r0 |).

In two dimensions, the same method can be used to obtain the (free space) Green’s

function as that used to solve the one-dimensional case, i.e. to solve the equation

(∇2 + k2)g(r | r0, k) = −δ2(r − r0)

where

r = x̂x + ŷy, r0 = x̂x0 + ŷy0,

and

∇2 =
∂2

∂x2 +
∂2

∂y2 .
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FIGURE 1 Source-observer geometry used to defined the Green’s function which is a
function of the ‘pathlength’ | r − r0 |.

Note that

δ2(r − r0) ≡ δ(x − x0)δ(y − y0).

Also note that g is a function of the path length | r − r0 |. Writing R = r − r0
and using the same technique as before, namely the one used to derive an integral

representation of the one-dimensional Green’s function, we obtain

g(R, k) =
1

(2π)2

∞∫
−∞

exp(iu · R)
u2 − k2 d2u.

In polar coordinates this result becomes

g(R, k) =
1

(2π)2

π∫
0

∞∫
−∞

exp(iuR cos θ)
u2 − k2 ududθ.

Integrating over u first and using Cauchy’s residue theorem, we have∮
C

z exp(izR cos θ)
(z + k)(z − k)

dz = iπ exp(ikR cos θ)

where the contour of integration C has been chosen to enclose just one of the poles at

z = k. This provides an expression for the ‘outgoing’ Green’s function in which the

wave propagates away from the point disturbance at r0. A solution for the pole at

z = −k would provide a solution which represents a wavefield converging on r0. The

‘outgoing’ Green’s function is usually the most physically significant result (except

for an implosion for example). Thus, the (outgoing) Green’s function can be written

in the form

g(R, k) =
i

4π

π∫
0

exp(ikR cos θ)dθ.
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Writing the Green’s function in this form allows us to employ the result

H(1)
0 (kR) =

1
π

π∫
0

exp(ikR cos θ)dθ

where H(1)
0 is the Hankel function (of the first kind and of order zero). This is the

integral representation for the Hankel transform and it can be used to write the

two-dimensional Green’s function as

g(r | r0, k) =
i
4

H(1)
0 (k | r − r0 |).

Unlike the one-dimensional (Section 3.2.1) and three-dimensional (Section 3.2.3)

Green’s functions, the two-dimensional Green’s function can not be expressed ex-

plicitly in terms of a complex exponential function. For this reason, it is usual to

implement a semi-classical limit which is based on the series [13]

i
4

H(1)
0 (kR) =

i
4

√
2

πkR

[
1 − 8i

kR
− 9

128(kR)2 + ... +
[(2n − 1)!!]2

(8i)nn!(kR)n + ...
]

exp[i(kR − π/4)]

It is common to use only the first term and consider the Green’s function to be given

by

g(R, k) =
i
4

√
2

πkR
exp[i(kR − π/4)]

or

g(r | r0, k) =
1√
8π

exp(iπ/4)
exp(ik | r − r0 |)√

k | r − r0 |
Formally, this expression is based on the condition kR → and is an asymptotic

approximation to the two-dimensional Green’s function This condition means that

the wavelength of the wave originating from r0 is small compared with the distance

between r0 and r, which is physically reasonable with regard to high frequency

electromagnetic scattering.

3.2.3 The Three-dimensional Green’s Function

In three dimensions, the free space Green’s function is given by the solution to the

equation

(�2 + k2)g(r | r0, k) = −δ3(r − r0)

where

r = x̂x + ŷy + ẑz, r0 = x̂x0 + ŷy0 + ẑz0,

δ3(r − r0) ≡ δ(x − x0)δ(y − y0)δ(z − z0)

and

�2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .
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In this case, following the same procedure as before,

g(R, k) =
1

(2π)3

∞∫
−∞

exp(iu · R)
u2 − k2 d3u.

It proves convenient to evaluate this integral using spherical polar coordinates which

gives

g(R, k) =
1

(2π)3

2π∫
0

dφ

1∫
−1

d(cos θ)
∞∫

0

exp(iuR cos θ)u2

u2 − k2 du.

Integrating over φ and θ we then obtain

g(R, k) =
1

2π2R

∞∫
0

u sin(uR)
u2 − k2 du.

Since the integrand is an even function we may extend the integration to include

the interval −∞ to 0 by writing

g(R, k) =
1

4π2R

∞∫
−∞

u sin(uR)
u2 − k2 du.

This is done in anticipation of using Cauchy’s residue theorem to evaluate the con-

tour integral ∮
C

z exp(izR)
(z − k)(z + k)

dz

which has simple poles at z = ±k. Choosing the contour C to enclose the pole at

z = k (the ‘outgoing’ case), the residue is

exp(ikR)
2

and, thus, the ‘outgoing’ Green’s becomes

g(r | r0, k) =
1

4π | r − r0 | exp(ik | r − r0 |).

We see that in one-, two- and three dimensions the Green’s function is singular.

The precise nature of the singularity changes from one dimension to the next. In

three dimensions, the Green’s function is spatially singular when r = r0, whereas in

one dimension the singularity occurs when k = 0. In two dimensions, a singularity

occurs when either k = 0 or r = r0. An example of this two-dimensional Green’s

function is observed when a small stone falls vertically into a large pool of water. The

symmetrical expanding wavefront represents the result of applying a short impulse

to the surface of the water. What is observed is a good approximation to a Hankel

function! There are relatively few examples in nature which are characteristic of

an ingoing Green’s function since most impulses produce wavefields that propagate
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away from the point of disturbance. One notable example of an ingoing Green’s

function is an implosion.

In addition to the derivation of the 3D Green’s function given above, the

function can be derived in a more physically intuitive way. Imagine a point source

of radiation with a wavenumber k which gives out a stream of waves, moving radially

outwards. If the distance from the source is R, then we should expect to be able to

describe the wavefield (taken to be of unit amplitude) as exp(ikR) in the usual way.

However, in 3D, the intensity of the field should obey an inverse square law and vary

as 1/R2. But the intensity of the wavefield is proportional to the modulus squared

and so the amplitude of the wavefield must be proportional to 1/R and hence the

amplitude of the field should be
exp(ikR)

R
which is the correct form of the Green’s function, up to a numerical factor (i.e.

1/4π). Finally, if the source is taken to be at r0 and the field is measured at r, then

R must be given in terms of the ‘path length’ | r − r0 |.

3.2.4 Asymptotic Forms

Although the Green’s functions for the inhomogeneous wave equation can be com-

puted in the manner already discussed, their algebraic form is not always easy, useful

or indeed necessary to work with. This is because the geometry of many imaging

systems justifies an approximation. For this reason, it is now appropriate to consider

the form of the Green’s function when the field generated by a point source is moved

away from that source, i.e. when the magnitude of r0 becomes increasingly larger

than the magnitude of r. There are two approximations which are important in this

respect which are often referred to as the Fraunhofer and Fresnel approximations.

These approximations are usually associated with the applications of Green’s func-

tions in optics (in which both Fraunhofer and Fresnel undertook their original work)

but are, in fact, of general applicability.

The Fraunhofer Approximation

In one-dimension, we note that

|x − x0| =

{
x0 − x, x0 > x;
x − x0, x > x0.

so that the Green’s function for a left-travelling wave for example can be written as

g(x | x0, k) =
i

2k
exp(ikx0) exp(−ikx), x0 > x

and

g(x | x0, k) =
i

2k
exp(−ikx0) exp(ikx), x0 < x

for a right-travelling wave.
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In two- and three-dimensions, we expand the path length between the source

and observer in terms of their respective coordinates. To start with, let us look at

the result in two dimensions. In this case,

| r − r0 |=
√

r2
0 + r2 − 2r · r0 = r0

(
1 − 2r · r0

r2
0

+
r2

r2
0

) 1
2

where r = x̂x + ŷy, r =| r | and r0 =| r0 |. A binomial expansion of this result gives

| r − r0 |= r0

(
1 − r · r0

r2
0

+
r2

2r2
0

+ ...

)
(3.6)

which under the condition r
r0

<< 1

reduces to

| r − r0 |� r0 − n̂0 · r

where

n̂0 =
r0

r0
.

It is sufficient to let
1

| r − r0 | �
1
r0

, r0 >> r

because small changes in n̂ · r compared to r0 are not significant in an expression of

this type. However, with the exponential function

exp[ik(r0 − n̂0 · r)]

a relatively small change in the value of r0 − n̂0 · r compared to r0 will still cause

this term to oscillate rapidly, particularly if the value of k is large. We therefore

write

exp(ik | r − r0 |) = exp(ikr0) exp(−ikn̂0 · r).

The asymptotic form of the two dimensional Green’s function is then given by

g(r | r0, k) =
exp(iπ/4)√

8π

1√
kr0

exp(ikr0) exp(−ikn̂0 · r), kr0 >> 1.

In three dimensions, the result is (using exactly the same arguments as in the two

dimensional case)

g(r | r0, k) =
1

4πr0
exp(ikr0) exp(−ikn̂0 · r)

where

r = x̂x + ŷy + ẑz.

When we observe the field described by a Green’s function at large distances

(i.e. the wavefield generated by a point source a long distance away), it behaves
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like a plane wave exp(−ikn̂0 · r). Approximating the Green’s function in this way

provides a description for the wave in what is commonly referred to as the far

field or Fraunhofer zone (or plane). This approximation is often referred to as the

Fraunhofer approximation in physical optics. In this zone, the wave front which

reaches the observer is a plane wave front because, in effect, the divergence of the

field is so small. Observations of a field in this zone are said to be in the Fourier

plane because they lead to equations that involve a Fourier transform as shall be

shown later. This is the basis for Fraunhofer diffraction theory which is important

in applications such as X-ray crystallography, electromagnetic and acoustic imaging

and, of course, modern optics.

The Fresnel Approximation

When the source is brought closer to the observer, the wavefront ceases to be a

plane wavefront. In this case, the Fraunhofer approximation is inadequate and

another approximation for the Green’s function must be used. This is known as the

Fresnel approximation and is based on incorporating the next term in the binomial

expansion of | r − r0 |, namely the quadratic term r2/2r2
0 in equation (3.6). In this

case, it is assumed that r2/r2
0 << 1 rather than r/r0 << 1 so that all the terms

in the binomial expansion of | r − r0 | that occur after the quadratic term can be

neglected. As before, | r − r0 |−1 is approximated by 1/r0 but the exponential term

now possesses an additional feature, namely a ‘quadratic phase factor’. In this case,

the two and three-dimensional Green’s functions are given by

g(r | r0, k) =
exp(iπ/4)√

8π

exp(ikr0)√
kr0

exp(−ikn̂0 · r) exp(ir2/2r0), kr0 >> 1

and

g(r | r0, k) =
exp(ikr0)

4πr0
exp(−ikn̂0 · r) exp(ir2/2r0)

respectively. This type of approximation is used in the study of systems (optical

systems for example) in which the divergence of the field is a measurable quantity.

This is important in imaging systems such as Synthetic Aperture Radar, the ap-

plication of Fresnel- or zone-plates for example, and Fresnel optics in general. If

the source is moved even closer to the observer then neither the Fraunhofer nor the

Fresnel approximations will apply. In such cases, it is usually easier to retain the

Green’s function in full rather than consider another term in the binomial expansion

of the path length. Analysis of a wavefield that is produced when a non-asymptotic

form of the Green’s function is used is referred to as near field analysis. Thus, the

Green’s function solution to two- and three-dimensional wave type partial differential

equations usually falls into one of the three categories:

(i) near field analysis;

(ii) intermediate field (Fresnel zone) analysis;

(iii) far field (Fraunhofer zone of Fourier plane) analysis.
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These ‘zones’ are characterized by the geometry of the ‘wavefront’ as illustrated

in Figure 2.

FIGURE 2 Characteristic wavefronts in the near, intermediate and far fields

In practice the far field approximation is much easier to use. This is because

it leads to solutions that can be written in terms of a Fourier transform which is a

relatively easy transform to work with and invert. Using the Fresnel approximation

leads to solutions which involve a class of integral known as the Fresnel integral. The

nonlinear behaviour of this integral, because of the quadratic phase factor, makes it

more difficult to evaluate compared with the Fourier integral. There are relatively

few applications in wavefield theory which require a full near field analysis. This

is fortunate, because near field analysis presents some formidable analytical and

computational problems.

3.3 Wavefields Generated by Sources

Now that we have studied Green’s functions for the inhomogeneous time-independent

wave equation, in this Section we turn our attention to the more general problem of

developing a solution for the wavefield u(r, k) generated by an arbitrary and time

independent source function f (r). This study is a prelude to the work discussed in

the following Chapter which provides an introduction to scattering theory in which

the source function is not f (r) but f (r)u(r, k) or k2 f (r)u(r, k). Working in three

dimensions, our aim is to solve

(∇2 + k2)u(r, k) = − f (r), r ∈ V

for u where V is the volume of the source function which is of compact support

(occupies a finite region of space V) . Outside of this region, it is assumed that the



71

source function is zero. Note that we define the source term as − f rather than + f .
This is done so that there is consistency with the definition of the Green’s function

which is defined in terms of −δ by convention. We start by writing the equation for

a Green’s function, i.e.

(∇2 + k2)g(r | r0, k) = −δ3(r − r0).

If we now multiply both sides of the first equation by g and both sides of the second

equation by u, then by subtracting the two results we obtain

g∇2u − u∇2g = −g f + uδ3.

By integrating the last equation over all space, we can exploit the result∫ ∞

−∞
u(r, k)δ3(r − r0)d3r = u(r0, k)

and therefore write (noting that r ∈ V)

u(r0, k) =
∫
V

f (r)g(r | r0, k)d3r

+
∫
V

[g(r | r0, k)∇2u(r, k) − u(r, k)∇2g(r | r0, k)]d3r.

We see that this expression is not a ‘proper solution’ for u because u occurs on both

the left and right hand sides. What we require is a solution for u in terms of known

quantities on the right hand side of the above equation. To this end, we can simplify

the second term by using Green’s theorem∫
V

(g∇2u − u∇2g)d3r =
∮
S

(g∇u − u∇g) · n̂d2r.

Here, S defines the surface enclosing the volume V and d2r is an element of this

surface. The unit vector n̂ points out of the surface and is perpendicular to the

surface element d2r. Green’s theorem is a special but important consequence of

Gauss’ divergence theorem as shown below.

3.3.1 Green’s Theorem

Let u and g be any two piecewise continuous functions of position and S be a

surface enclosing a volume V. If u, g and their first and second partial derivatives

are single-valued and continuous within and on S, then∫
V

(g∇2u − u∇2g)d3r =
∮
S

(
g

∂u
∂n̂

− u
∂g
∂n̂

)
d2r

where ∂/∂n̂ is a partial derivative in the outward normal direction on S.
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The proof of this result stems from noting that since

∇ · (g∇u) = ∇g · ∇u + g∇2u

and

∇ · (u∇g) = ∇u · ∇g + u∇2g

then ∫
V

∇ · (g∇u − u∇g)d3r =
∫
V

(g∇2u − u∇2g)d3r.

But from Gauss’ theorem ∫
V

∇ · Fd3r =
∮
S

F · n̂d2r

for any vector F. Hence,∫
V

∇ · (g∇2u − u∇2g)d3r =
∮
S

(g∇u − u∇g) · n̂d2r

which provides the basic result, a result that can be written in an alternative (and

arguably more elegant way) by defining

∇u · n̂ ≡ ∂u
∂n̂

and

∇g · n̂ ≡ ∂g
∂n̂

so that we can write∫
V

(g∇2u − u∇2g)d3r =
∮
S

(
g

∂u
∂n̂

− u
∂g
∂n̂

)
d2r.

This theorem provides a solution for the wavefield u at r0 of the form

u(r0, k) =
∫
V

f gd3r +
∮
S

(g∇u − u∇g) · n̂d2r.

We have shown that using a Green’s function and Green’s theorem, the solution to

the equation

(∇2 + k2)u(r, k) = − f (r), r ∈ V

is

u(r0, k) =
∮
S

(g∇u − u∇g) · n̂d2r +
∫
V

f gd3r.

It is important to appreciate that this solution is entirely general with no conditions

being placed on any of the analysis at any point other than that u are g are piecewise

continuous. However, as discussed before, it is not a ‘solution’ as such because the

field variable u occurs on both the left hand and right hand sides of the ‘solution’.
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It is therefore better to consider this ‘solution’ to be a transform from a partial

differential equation to an integral equation. From a mathematical point of view, a

Green’s function is that function which allows any linear inhomogeneous PDE to be

transformed to an integral equation. Finally, note that the homogeneous equation

(∇2 + k2)u(r, k) = 0

also has a Green’s function solution given by

u(r0, k) =
∮
S

(g∇u − u∇g) · n̂d2r.

3.3.2 Dirichlet and Neumann Boundary Conditions

Although Green’s theorem allows us to simplify the solution for the wavefield u
derived in the previous Section (in the sense that we now have a two dimensional

instead of a three dimensional integral), we still do not have a proper solution for

u since this field variable is present on both the left and right hand sides of the

integral equation for u. However, as a result of applying Green’s theorem, we now

only need to specify u and ∇u on the surface S. Therefore, if we know, a priori,

the behaviour of u and ∇u on S, then we can compute u at any other observation

point r0. Clearly, a statement about the nature of u and ∇u on S is required, i.e.

the boundary conditions need to be specified.

In general, the type of conditions that may be applied depends on the applica-

tions that are involved. In practice, two types of boundary conditions are commonly

considered. The first one, known as the homogeneous Dirichlet boundary condition,

states that u is zero on S. The second one, known as the homogeneous Neumann

condition, states that ∇u is zero on S. Taken together, these boundary conditions

are known as the ‘homogeneous conditions’ and are referred to as such throughout

the rest of this work. When u satisfies these homogeneous boundary conditions, the

solution for u is given by

u(r0, k) =
∫
V

f (r)g(r | r0, k)d3r

because ∮
S

(g∇u − u∇g) · n̂d2r = 0.

If the wavefield generated by a source is measured a long distance away from the

location of the source, then by using the far field approximation for the Green’s

function, we have

u(n̂0, k) =
1

4πr0
exp(ikr0)

∫
V

f (r) exp(−ikn̂0 · r)d3r.

In this case, the field generated by the source is given by the 3D Fourier transform

of the source function f . By measuring the radiation pattern produced by a source
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denoted by f (r), the structure or spatial distribution of the source may be recovered

through a processes of inversion. In the far field, the source function can be recovered

by taking the inverse Fourier transform of the observed field. This is an example of

a solution to a class of problem known as an inverse source problem.

3.3.3 The Reciprocity Theorem

The reciprocity theorem applies to all Green’s functions associated with any linear

partial differential equation. Here, the theorem will be proved for the 3D Green’s

function corresponding to the time-independent wave equation. The theorem states

that if r1 and r2 are two points in space then

g(r1 | r2, k) = g(r2 | r1, k).

The proof of this result which can be obtained by considering the equations

(∇2 + k2)g(r | r1, k) = −δ3(r − r1), r ∈ V

and

(∇2 + k2)g(r | r2, k) = −δ3(r − r2) r ∈ V.

Then

g(r | r2, k)∇2g(r | r1, k) − g(r | r1, k)∇2g(r | r2, k)

= g(r | r1, k)δ3(r − r2) − g(r | r2, k)δ3(r − r1)

Integrating over V and using Green’s theorem, for homogeneous boundary conditions

on the surface of V, we have∫
V

g(r | r1, k)δ3(r − r2)d3r −
∫
V

g(r | r2, k)δ3(r − r1)d3r = 0

or

g(r2 | r1, k) = g(r1 | r2, k).

Thus, the propagation of a wave from a point at r1 to r2 is the same as the propa-

gation of a wave from a point at r2 to r1.

3.4 Time Dependent Green’s Function

We have studied the Green’s function for the time independent wave equation. In

this section, we investigate the time dependent case.

As an introduction to the time dependent Green’s function, let us first consider

the case where we have a homogeneous source of scalar radiation a long distance

away from an observer at r. Here, the scalar wavefield u as a function of space r
and time t is described by the homogeneous equation(

∇2 +
1
c2

∂2

∂t2

)
U(r, t) = 0 (3.7)

where c is the velocity at which the radiation propagates from the source to the

observer.
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3.4.1 Continuous Wave Sources

Let us assume that the source emits a continuous wave which oscillates at a fixed

frequency. In this case, the source is known as a continuous wave (CW) or monochro-

matic source as used earlier in Chapter 4 to investigate the solutions to the Maxwell’s

equations for a linear isotropic medium. The time dependence of the radiation field

is described by the complex exponential function exp(iωt) where ω is the angular

frequency (= 2π×frequency). The time dependent field u can therefore be written

as

U(r, t) = u(r, ω) exp(iωt).

Substituting this expression into equation (3.7), we obtain

(∇2 + k2)u(r, k) = 0

where

k =
ω

c
=

2π

λ

is the wavenumber and λ is the wavelength of the wavefield described by the function

u. A solution to this equation is

u(r, k) = exp(ik · r)

where the wave vector

k = kn̂

and it is assumed that the amplitude of the wave is 1. The unit vector n̂ points

along the direction in which the wave propagates. Thus, the solution for the time

dependent wavefield becomes

U(r, t) = exp[i(k · r + ωt)].

However, an equally valid solution is

U(r, t) = exp[i(k · r − ωt)]

which is obtained by using the exp(−iωt) to describe the time dependence of the

wavefield. If we imagine a straight line along the direction of n̂, then the above

solution for u represents a wave propagating to the right whereas the former solution

represents a wave propagating to the left. The function

exp[i(k · r + ωt)]

is said to describe a left-travelling wave and

exp[i(k · r − ωt)]

is referred to as a right-travelling wave.
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3.4.2 Pulsed Sources

If the source emits a pulse of radiation, then the time dependent field can be written

as the sum of many different monochromatic waves of different frequencies ω and

amplitudes u. If we consider all the different possible frequencies that can exist

between −∞ and ∞, then U(r, t) can be written in terms of its Fourier transform

as,

U(r, t) =
1

2π

∞∫
−∞

u(r, ω) exp(iωt)dω.

Here, U describes a left-travelling pulse. We can also consider a solution for a

right-travelling pulse by writing

U(r, t) =
1

2π

∞∫
−∞

u(r, ω) exp(−iωt)dω.

Substituting either of these expressions into equation (3.7), we obtain

(∇2 + k2)u(r, k) = 0

where now k is not fixed but can take on any value between −∞ and ∞. The time

dependent field produced by a left-travelling pulse is therefore

U(r, t) =
1

2π

∞∫
−∞

exp[i(k · r + ωt)]dω.

If we now write k · r as kn̂ · r = (ω/c)n̂ · r, then, using the integral representation

for a delta function, the above equation can be written as

U(r, t) =
1

2π

∞∫
−∞

exp[iω(t + n̂ · r/c)]dω = δ(t + n̂ · r/c).

The expression for a right-travelling pulse is given by

U(r, t) = δ(t − n̂ · r/c).

3.5 Time Dependent Sources

Let us now turn our attention to the case when an inhomogeneous time varying

source produces a wavefield U(r, t). To describe this situation mathematically, we

introduce a source function f (r, t). The wavefield is then governed by the inhomo-

geneous equation (
∇2 +

1
c2

∂2

∂t2

)
U(r, t) = − f (r, t).
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Now, as in the time dependent case, the Green’s function describes the wavefield

that is produced when the source function is a delta function, i.e. when

S(r, t) = δn(r − r0)δ(t − t0)

where n = 1, 2 or 3 depending on whether we are considering a one-, two-, or three-

dimensional wavefield respectively. Hence, the equation for the time dependent

Green’s function (which is usually denoted by G) is given by(
∇2 +

1
c2

∂2

∂t2

)
G(r | r0, t | t0) = −δn(r − r0)δ(t − t0).

3.5.1 3D Time Dependent Green’s Function

We shall consider the three-dimensional time-dependent problem first which is based

on an evaluation using the time-independent Green’s function. We write G and

δ(t − t0) as Fourier transforms,

G(r | r0, t | t0) =
1

2π

∞∫
−∞

g(r | r0, ω) exp[iω(t − t0)]dω

and

δ(t − t0) =
1

2π

∞∫
−∞

exp[iω(t − t0)]dω

where ω is the angular frequency. Substituting these equations into the equation

for G we then have

(∇2 + k2)g(r | r0, k) = −δ3(r − r0)

which is the same equation as that used previously to define the time-independent

Green’s function. Thus, once g has been obtained, the time dependent Green’s

function can be derived by computing the Fourier integral given above. Using the

expression for g derived earlier,

G(r | r0, t | t0) =
1

2π

∞∫
−∞

1
4π | r − r0 | exp(ik | r − r0 |) exp[iω(t − t0)]dω

=
1

4π | r − r0 |δ(t − t0+ | r − r0 | /c).

3.5.2 2D Time Dependent Green’s Function

In two dimensions, the point source (which depends on x and y) can be treated

as a line source, that is a uniform source extending from z0 = −∞ to z0 = ∞
along a line parallel to the z axis and passing through the point (x0, y0). Thus, a
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simple way of computing the two-dimensional Green’s function is to integrate the

three-dimensional Green’s function from z0 = −∞ to z0 = ∞, i.e.

G(s | s0, t | t0) =
∞∫

−∞

δ(t − t0+ | r − r0 | /c)
4π | r − r0 | dz0

where

s = x̂x + ŷy

and

s0 = x̂x0 + ŷy0.

Writing τ = (t − t0)c, ξ = z0 − z, S =| s − s0 | and R =| r − r0 | we have

R2 = ξ2 + S2

and
dR
dz0

=
ξ

R
and so the Green’s function can be written in the form

G(S, τ) =
1

4π

∞∫
−∞

δ(τ + R)√
R2 − S2

dR

=

{
1

4π
1√

τ2−S2 , τ > S;

0, τ < S.

3.5.3 1D Time Dependent Green’s Function

In one dimension, the time-dependent Green’s function can be calculated by inte-

grating the three dimensional Green’s function over z0 and y0. Alternatively, we can

use the expression for g(x | x0, k) (right-travelling Green’s function) giving

G(x | x0, t | t0) =
1

2π

∞∫
−∞

i
2k

exp(ik | x − x0 |) exp[iω(t − t0)]dω.

This equation is the inverse Fourier transform of the product of two functions (given

that k = ω/c), namely i/2k and exp(ik | x − x0 |). Thus, using the convolution

theorem and noting that

1
2π

∞∫
−∞

i
2k

exp[iω(t − t0)]dω =
c
4

sgn(t − t0)

and

1
2π

∞∫
−∞

exp(ik | x − x0 |) exp[iω(t − t0)]dω = δ(t − t0+ | x − x0 | /c),
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we obtain

G(x | x0, t | t0) =
c
4

sgn(t − t0) ⊗ δ(t − t0+ | x − x0 | /c)

=
c
4

sgn[t − t0+ | x − x0 | /c]

where ⊗ denotes the convolution integral and sgn is defined by

sgn(x) =

{
1, x > 0;
−1, x < 0.

3.5.4 Comparison of the Time-Dependent Green’s Functions

There is a striking difference between the time dependent Green’s functions derived

in the last Sections. In three dimensions, the effect of an impulse after a time t − t0
is found concentrated on a sphere of radius c(t − t0) whose centre is the source

point. The effect of the impulse can therefore only be experienced by an observer at

one location over an infinitely short period of time. After the pulse has passed by

an observer, the disturbance ceases. In two dimensions, the disturbance is spread

over the entire plane | s − s0 |. At | s − s0 |= c(t − t0) there is a singularity which

defines the position of the two dimensional wavefront as it propagates outwards

from the source point at s0. For | s − s0 |< c(t − t0) the Green’s function is still

finite and therefore, unlike the three-dimensional case, the disturbance is still felt

after the wavefront has passed by the observer. In one dimension, the disturbance

is uniformly distributed over all points of observation through which the wavefront

has passed, since for all values of | x − x0 | and c(t − t0), the Green’s function is

either c/4 or −c/4. This is illustrated in Figure 3.

Compared with the Green’s function in one and two dimensions, the three

dimensional Green’s function possesses the strongest singularity. Compared to the

delta function, the singularity of the two-dimensional Green’s function at | s− s0 |=
c(t − t0) is very weak. In one dimension, the time dependent Green’s function is

not singular but discontinuous when | x − x0 |= c(t − t0).
With regard to the two-diemsnional Green’s function, the time-dependent form

(with S = R and τ = t)

G(R, t) =
1

4π

1√
t2 − R2

has spectral characteristic defined by iH(1)
0 (kR)/4. The series expression for this

Green’s function presented in Section 3.2.2 corresponds, term by term, to the fol-

lowing expansion of the time-domain solution (with τ ≡ t − R,

1
4π

√
t2 − R2

=
1

4π
√

τ(2R + τ)
=

1
4π

√
2R

τ−1/2
(

1 +
τ

2R

)− 1
2

=
1

4π
√

2R

⎛⎝τ−1/2 − 1
4R

τ1/2 + ... +
Γ
(

n + 1
2

)
τn−1/2

Γ
(

1
2

)
Γ(n)(−2R)n

+ ...

⎞⎠



80

FIGURE 3 Time history of the Green’s function in one, two and three dimensions

where we consider only the non-vanishing region τ > 0. This is the Frobenius series

(with respect to t) about the singular point t = r (the first arrival time). This is the

Taylor series offset by the factor (t − r)−1/2 which accounts for the non-analyticity.

The correspondence of these series is based on the Fourier transform of the power

law (iω)−n, n > −1 given by

τn−1

Γ(n)
=

1
2π

∞∫
−∞

1
(iω)n exp(iωτ)dω, Γ(n + 1) = n!

which is based on the Laplace transform of τn, i.e.

∞∫
0

τn exp(−pτ)dτ =
n!

pn+1

with inverse Laplace transform

1
2πi

i∞∫
−i∞

n!
pn+1 exp(pτ)dp =

1
2π

∞∫
−∞

n!
(iω)n+1 exp(iωτ)dω, p = iω

Thus, the Fourier transform of the nth term of above series is

(−1)nin+1/2Γ
(

n + 1
2

)2

(kR)n+1/2(2π)n+3/2n!
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which, using the property Γ(n + 1/2) =
√

π(2n + 1)!!/2n for integer n, matches the

nth term (including pre-factors) of the series for iH(1)
0 (kR)/4. The first term of this

series corresponds to assuming a (t − R)−1/2 singularity in the time-domain, rather

than a (t2 − r2)−1/2, the relative differences only becoming large when t >> r.

3.6 Green’s Function Solution to Maxwell’s Equation

In Chapter 2, a gauge transform, together with the Lorentz condition, was used

to solve Maxwell’s equations and reduce them to two independent time dependent

wave equations given by

∇2U − 1
c2

∂2U
∂t2 = −4πρ

and

∇2A − 1
c2

∂2A
∂t2 = −4π

c
j.

Having discussed the time dependent Green’s functions for the wave equation, we

can now investigate the general solution to Maxwell’s equations under the Lorentz

condition. In particular, we consider the solution for the electric scalar potential U
given ρ. The form of analysis is the same as used before, throughout this Chapter.

Thus, solving for U, using Green’s theorem (with homogeneous boundary conditions)

and the conditions that u and ∂u/∂t are zero at t = ±∞ gives

U(r0, t0) =
∞∫

−∞

∫
4πρ(r, t)G(r | r0, t | t0)d3rdt =

∫
d3r

∞∫
−∞

dt
ρ(r, t)

R
δ

(
R
c

+ t − t0

)

=
∫

d3r
ρ
(
r, t0 − R

c
)

R
where R =| r − r0 | or

U(r0, t0) =
∫

ρ(r, τ)
R

d3r

where

τ = t0 − R
c

.

The solution for the Magnetic Vector Potential A can be found by solving for the

components Ax, Ay and Az separately. These are all scalar equations of exactly the

same type and therefore have identical solutions and combine to give

A(r0, t0) =
∫ j(r, τ)

cR
d3r

The wavefields U and A are called the Retarded Potentials. The current value of U
at (r0, t0) depends on ρ at earlier times τ = t0 − R/c. A change in ρ or j affects U
and A (and hence e and b) R/c seconds later - the change propagates outward at

velocity c. This is the principle of electromagnetic wave propagation.
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3.7 Green’s Function for the Diffusion Equation

We calculate the Green’s function G for the diffusion equation

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’, satisfying the homogeneous boundary conditions and

the causality condition

G(r | r0, t | t0) = 0 if t < t0.

This can be accomplished for one-, two- and three-dimensions simultaneously. Thus

with R =| r − r0 | and τ = t − t0 we require the solution of the equation(
∇2 − σ

∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

where n is 1, 2 or 3 depending on the number of dimensions. One way of solving

this equation is first to take the Laplace transform with respect to τ, then solve for

G (in Laplace space) and then inverse Laplace transform the result. This requires

an initial condition to be specified (the value of G at τ = 0). Another way to solve

this equation is to take its Fourier transform with respect to R, solve for G (in

Fourier space) and then inverse Fourier transform the result. Here, we adopt the

latter approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik · R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik · R)dnk.

Then the equation for G reduces to

σ
∂G̃
∂τ

+ k2G̃ = δ(τ)

which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

where H(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green’s functions are given by

G(R, τ) =
1

σ(2π)n H(τ)
∞∫

−∞

exp(ik · R) exp(−k2τ/σ)dnk
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=
1

σ(2π)n H(τ)

⎛⎝ ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

⎞⎠ ...

By rearranging the exponent in the integral, it becomes possible to evaluate each

integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− i

Rx

2

√
σ

τ

)2

−
(

σR2
x

4τ

)
= −τ

σ
ξ2 −

(
σR2

x
4τ

)
where

ξ = kx − i
σRx

2τ
.

the integral over kx becomes

∞∫
−∞

exp
[
−
(τ

σ
ξ2
)
−
(

σRx

4τ

)]
dξ = e−(σR2

x/4τ)
∞∫

−∞

e−(τξ2/σ)dξ

=
√

πσ

τ
exp
[
−
(

σR2
x

4τ

)]
with similar results for the integrals over ky and kz giving the result

G(R, τ) =
1
σ

( σ

4πτ

) n
2

exp
[
−
(

σR2

4τ

)]
H(τ).

The function G satisfies an important property which is valid for all n:∫ ∞

−∞
g(R, τ)dnr =

1
σ

; τ > 0.

This is the expression for the conservation of the Green’s function associated with the

diffusion equation. If, at a time t0 and at a point in space r0, a source is introduced

which starts to diffuse, then the diffusion process through the medium characterized

by σ is such that the total flux is unchanged.

3.8 Green’s Functions for the Laplace and Poisson Equations

The Laplace and Poisson equations (in one- or two-dimensions) are given by

∇2u = 0

and

∇2u = − f

respectively. Let us consider the Poisson equation first. The general approach is

identical to that used to derive a solution to the inhomogeneous wave equation.
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Thus, working in three dimensions and defining the Green’s function to be the

solution of

∇2g(r | r0) = −δ3(r − r0)

from Poisson’s equation, we obtain the following result

u =
∮
S

(g∇u − u∇g) · n̂d2r +
∫
V

g f d3r

where we have used Green’s theorem to obtain the surface integral on the right hand

side. The problem now is to find the Green’s function for this problem. Clearly,

since the solution to the equation

(∇2 + k2)g = −δ3(r − r0)

is

g(r | r0, k) =
1

4π | r − r0 | exp(ik | r − r0 |)

we should expect the Green’s function for the three-dimensional Poisson equation

(and the Laplace equation) to be of the form

g(r | r0) =
1

4π | r − r0 | .

This can be shown by taking the Fourier transform of the equation for g which gives

k2G(k) = 1

where

G(k) =
∫

g(R) exp(ik · R)d3R, R =| r − r0 | .

Therefore

g(R) =
1

(2π)3

∫ exp(ik · R)
k2 d3k =

1
(2π)3

2π∫
0

dφ

1∫
−1

d(cos θ)
∞∫

0

dk exp(ikR cos θ)

=
1

2π2R

∞∫
0

sin(kR)
k

dk =
1

4πR

using spherical polar coordinates and the result

∞∫
0

sin x
x

dx =
π

2
.

Thus, we obtain the following fundamental result:

∇2
(

1
4πR

)
= −δ3(R).



85

TABLE 2 Outgoing Free space Green’s functions for the wave equation in one-, two- and
three-dimensions.

Dimension Time-ependent Function Time-independent Function

1D c
4sgn(τ − R/c) i

2k exp(ikR) = i
2k , kR → 0

2D 1
4π

√
τ2−R2

i
4 H(1)

0 (kR)

= exp(ikR)√
kR

, kR → ∞ (ignoring scaling)

= − ln(kR), kR → 0 (ignoring scaling)

3D
δ(τ+R/c)

4πR
exp(ikR)

4πR = 1
4πR , kR → 0

With homogeneous boundary conditions, the solution to the Poisson equation is

u(r0) =
1

4π

∫
V

f (r)
| r − r0 |d

3r.

In two dimensions the solution is of the same form, but with a Green’s function

given by

g(r | r0) =
1

2π
ln | r − r0 | .

Clearly, the general solution to Laplace’s equation (in 3D) is

u =
∮
S

(g∇u − u∇g) · n̂d2r.

These solutions to the Laplace and Poisson equations are analogous to those for the

homogeneous and inhomogeneous wave equations. The principle behind the method

of solution is the same; what changes is the Green’s function.

3.9 Discussion

This chapter has been designed to provide an introduction to the use of Green’s

functions for solving partial differential equations in different dimensions and for time

dependent and time independent problems. The material presented has been based

almost exclusively on the use of free space Green’s functions in which a solution is

developed over the infinite domain to which boundary conditions can be applied. The

focus has been on Green’s functions for wave equations as this is the principal basis

for modelling imaging systems and image understanding. The free-space Green’s

functions for the wave equation are summarised in Table 2 (where R ≡| r − r0 |)



4 ELECTROMAGNETIC SCATTERING THEORY

A scattered wavefield depends on both the nature of the scatterer and the type and

properties of the radiation scattered by it. These properties are described by the

characteristic inhomogeneous wave equations. Chapter 2 introduced the field equa-

tions and wave equations that form a basis for modelling electromagnetic scattering

and and, in turn, EM imaging systems. For scalar wavefields u, it was shown that

we can derive inhomogeneous wave equations of the form

(∇2 + k2)u = −L̂u

or for vector fields u of the form

(∇2 + k2)u = −L̂u.

For a non-conductive linear isotropic electromagnetic scatterer with variations in

the permittivity γε and permeability γμ,

(∇2 + k2)Ẽ = −L̂Ẽ

with

L̂Ẽ = k2γεẼ + ∇(Ẽ · ∇lnε) + ∇× (γμ∇× Ẽ).

In this Chapter, we explore the use of the Green’s function for solving inho-

mogeneous wave equations of the type

(∇2 + k2)u = −k2γu

which is known as the inhomogeneous Helmholtz equation. This problem is related

to volume scattering when γ(r) is of compact support (i.e. r ∈ V) We also study

the solutions to the homogeneous Helmholtz equation

(∇2 + k2)u = 0

where u and ∇u are defined on a boundary defining a surface which generates surface

scattering. The homogeneous and inhomogeneous Helmholtz equations provide the
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basis for developing a scattering theory that is of value in imaging science. We can

then investigate scattering models that are based on physical models (inhomogeneous

wave equations) that are more complete (i.e. models that describe a greater number

of physical effects) when the right hand side of the wave equations considered here is

of the form −L̂u. The methods used are explicitly based on application of Green’s

functions presented in Chapter3.

Much of the original work on scattering theory began in the 1930s and has been

the product of mathematicians and physicists working on problems of theoretical

physics including quantum mechanics and high energy nuclear physics, where the

scattering of particles and the interpretation of their ‘images’ (particle tracking

devices) has been fundamental to investigating the structure of matter.

4.1 The Inhomogeneous Helmholtz Equation

The inhomogeneous Helmholtz equation is given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where γ is an inhomogeneity which is responsible for scattering the wavefield u
and is therefore sometimes referred to as a scatterer - usually considered to be of

compact support. In electromagnetism, the Helmholtz equation is obtained when

we can assume that the medium is non conductive (i.e. σ = 0), γμ is a constant

and the term ∇(E · ∇lnε) is ignored.

The Helmholtz equation can be derived quite generally from the time depen-

dent wave equation (
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

by letting [14]
1
c2 =

1
c2

0
(1 + γ)

where γ is a dimensionless quantity and c0 is a constant (wave speed). Note that

the form of the wave equation dictates that c must be of finite value. If a wavefield

(whatever the field may be) was to convey information from one point in space to

another instantaneously then the second term would be zero and the ‘wave equation’

would be reduced to ‘Laplace’s equation’ and the independent variable t would

become an irrelevance! The upper limit at which any wavefield can propagate is

determined by the speed of an electromagnetic wave in a perfect vacuum. However,

in a more general perspective, the rationale associated with the fact that c must be

finite (as given above) means that the influence of any physical field (whether it be

an electric, magnetic, gravitational, weak or strong force field) on any measurable

entity can only occur in a finite period of time and that there can be no such thing

as instantaneous ‘action at a distance’. This is the essential difference between the

‘universe’ according to Isaac Newton and the ‘universe’ according to Albert Einstein,
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a difference that, given the wave equation, points to the ‘physics’ of a wavefield

being more fundamental than the ‘physics’ of the field itself. This principle should

be considered in light of the fact that the one property common to all the principal

field equation of physics (i.e. Einstein’s equations, Maxwell’s equations and Dirac’s

equations), is that they describe wave phenomena (i.e. gravity wave, electromagnetic

wave and matter waves respectively).

With U(r, t) = u(r, ω) exp(iωt) we have

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where

k =
ω

c0
.

Note that we can write the Schrödinger equation in terms of the Helmholtz equation

since, from the postulates of quantum mechanics,

1
c2 =

1
c2

0
(1 + γ) =

2m(E − Ep)
E2

where E is the energy of a particle of mass m subject to a potential with potential

energy Ep and thus, the Schrödinger equation is

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

with

γ(r) = 2mc2
0
[E − Ep(r)]

E2 − 1.

Note that since γ is dimensionless, this result implies that mc2
0 is energy (i.e. Ein-

stein’s famous energy-mass equivalence formula, where c0 is the speed of light and

m is the rest mass). Thus, for a scalar electromagnetic wavefield interacting with a

non-conductive dielectric - ignoring the term ∇(E · ∇ ln εr) the Helmholtz equation

is given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where γ = εr − 1. We can therefore interpret the relative permittivity εr in terms

of the function

2mc2
0
[E − Ep(r)]

E2

on an entirely phenomenological basis. We now consider solutions to the inhomoge-

neous Helmholtz equation

4.2 Solutions to the Helmholtz Equation

The Green’s function method presented in Chapter 3 can be used to solve the inho-

mogeneous Helmholtz equation. The basic solution is (under the assumption that γ

is of compact support r ∈ V) [15], [16], [17]

u(r0, k) = k2
∫
V

gγud3r +
∮
S

(g∇u − u∇g) · n̂d2r.
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To compute the surface integral, a condition for the behaviour of u on the surface S
of γ must be chosen. Consider the case where the incident wavefield ui is a simple

plane wave of unit amplitude

exp(ik · r)

satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0.

By choosing the condition u(r, k) = ui(r, k) on the surface of γ, we obtain the result

u(r0, k) = k2
∫
V

gγud3r +
∮
S

(g∇ui − ui∇g) · n̂d2r.

Now, using Green’s theorem to convert the surface integral back into a volume

integral, we have∮
S

(g∇ui − ui∇g) · n̂d2r =
∫
V

(g∇2ui − ui∇2g)d3r.

Noting that

∇2ui = −k2ui

and that

∇2g = −δ3 − k2g

we obtain ∫
V

(g∇2ui − ui∇2g)d3r =
∫

δ3uid3r = ui.

Hence, by choosing the field u to be equal to the incident wavefield ui on the surface

of γ, we obtain a solution of the form

u = ui + us

where

us = k2
∫
V

gγud3r.

The function us is the scattered wavefield and the above equation is generally known

as the Lippmann-Schwinger equation [14].

4.2.1 The Born Approximation

From the last result it is clear that, in order to compute the scattered field us, we

must define u inside the volume integral. Unlike the surface integral, a boundary

condition will not help here because it is not sufficient to specify the behaviour of

u at a boundary. In this case, the behaviour of u throughout V needs to be known.

In general, it is not possible to do this (i.e. to compute the scattered wavefield

exactly) and we are forced to choose a model for u inside V that is compatible with

a particular physical problem in the same way that an appropriate set of boundary
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conditions is required to evaluate the surface integral. The simplest model for the

internal field is based on assuming that u behaves like ui for r ∈ V. The scattered

field is then given by

us(r0, k) = k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

This assumption provides an approximate solution for the scattered field. It is known

as the Born approximation after Max Born who first introduced it in his study of

quantum mechanics in the 1930s.

There is another way of deriving this result that is instructive; it helps us to

obtain a criterion for the validity of this approximation which will be considered

shortly. We start with the inhomogeneous Helmholtz equation

(∇2 + k2)u = −k2γu

and consider a solution for u in terms of a sum of the incident and scattered fields,

i.e.

u = ui + us.

The wave equation then becomes

(∇2 + k2)us + (∇2 + k2)ui = −k2γ(ui + us).

If the incident field satisfies

(∇2 + k2)ui = 0,

then

(∇2 + k2)us = −k2γ(ui + us).

Assuming that

ui + us � ui, r ∈ V

we obtain

(∇2 + k2)us � −k2γui, r ∈ V.

Solving for us and using the homogeneous boundary conditions (i.e. us = 0 on S
and ∇us = 0 on S) we obtain

us =
∮
S

(g∇us − us∇g) · n̂d2r + k2
∫
V

gγuid3r = k2
∫
V

gγuid3r.

4.2.2 Validity of the Born Approximation

In general, the Born approximation requires that us is ‘small’ compared to ui. What

do we really mean by the term ‘small’ and how can we quantify it? One way to

answer this question is to compute an appropriate measure for both the incident and

scattered fields and compare the two results. Consider the case where we compute

the root mean square modulus (i.e. the L2 norm) of each field. We then require that⎛⎝∫
V

| us(r0, k) |2 d3r0

⎞⎠
1
2

<<

⎛⎝∫
V

| ui(r0, k) |2 d3r0

⎞⎠
1
2
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or1 ‖us‖
‖ui‖ << 1. (4.1)

Essentially, this condition means that the overall intensity of us in V is small com-

pared to that of ui in V.

Let us now look in more detail at the nature of this condition. Ideally, what

we want is a version of the condition that can be cast in terms of a set of physical

parameters (such as the wavelength and the physical extent of γ for example). The

Born scattered field at r0 is given by

us(r0, k) = k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

By taking the L2 norm of this equation we can write

‖us(r0, k)‖ = ‖k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r‖

≤ k2‖ui(r0, k)‖ × ‖
∫
V

g(r | r0, k)γ(r)d3r‖.

Using this result, the condition required for the Born approximation to hold [i.e.

condition (4.1)] can be written as

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ << 1, r0 ∈ V. (4.2)

Here, the norm involves integration over the spatial variable r0 in the scattering

volume V. To emphasize this we write r0 ∈ V.

Condition (4.2) can be written as

I(r0) << 1

where

I(r0) = k2‖
∫
V

g(r | r0, k)γ(r)d3r‖

≤ k2

⎛⎝∫
V

| g(r | r0, k) |2 d3r

⎞⎠
1
2
⎛⎝∫

V

| γ(r) |2 d3r

⎞⎠
1
2

.

Substituting the expression for the three-dimensional Green function into the above

expression, we have

I(r0) ≤ k2

⎛⎝ 1
16π2

∫
V

1
| r − r0 |2 d3r

∫
V

| γ(r) |2 d3r

⎞⎠
1
2

.

1 where ‖ • ‖ is taken to denote the L2 norm, i.e. ‖ • ‖2
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A relatively simple calculation can now be performed, if we consider γ to be a sphere

of volume V and radius R, and resort to calculating its least upper bound which

occurs when r0 = 0. Using spherical polar coordinates (r, θ, φ), we have

sup
∫
V

1
| r − r0 |2 d3r =

∫
V

1
r2 d3r =

2π∫
0

1∫
−1

R∫
0

drd(cos θ)dφ = 4πR

where sup denotes the supremum. Using this result, we can write

sup I(r0) ≤ k2

⎛⎝ R
4π

∫
V

| γ(r) |2 d3r

⎞⎠
1
2

and noting that

V =
∫
V

d3r =
4
3

πR3

we obtain

sup I(r0) ≤ 1√
3

k2R2γ̄

where

γ̄ =

√∫ | γ |2 d3r∫
d3r

.

Hence, the condition for the Born approximation to apply becomes (ignoring
√

3)

k2R2γ̄ << 1

or

γ̄ <<
1

k2R2 .

This condition demonstrates that, in principle, large values of γ can occur so long

as its root mean square value over the volume V is small compared to 1/k2R2.

In scattering theory, γ is said to be a ‘weak scatterer’. Note that when k or R
approaches zero, this condition is easy to satisfy. Born scattering is thus, more

likely to occur in situations when

λ

R
>> 1

where λ is the wavelength (noting that k = 2π/λ). If

λ

R
∼ 1

then the value of γ̄ must be small for Born scattering to occur.

By repeating the method given above and using the two- and one-dimensional

Green functions, respectively, it is easy to show that in two dimensions the condition

required for the Born approximation to apply is given by

γ̄ <<
1

(kR)3/2
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where R is the radius of a disc of area A and γ̄ is the root mean square over A.

In one dimension, the result is

γ̄ <<
1

kL

where L is the length of the scatterer and γ̄ is the root mean square over L. In both

cases we use the same Green function solution to solve the 2D and 1D inhomogeneous

Helmholtz equations, respectively. In each case, we assume that the scattered field

is, on average, weak compared to the incident field. We may consider the term

‘weak’ to imply that the total energy associated with us inside the inhomogeneity γ

is small compared to ui outside the scatterer.

4.2.3 Asymptotic Born Scattering

By measuring us, we can attempt to invert the relevant integral equation and hence

recover or reconstruct γ. This type of problem is known as the inverse scattering

problem, and solutions to this problem are called inverse scattering solutions. This

subject is one of the most fundamental in mathematical physics and is the subject

of continuing research. The simplest type of inverse scattering problem occurs when

a Born scattered wavefield is measured in the far field or Fraunhofer zone (i.e. when

the Green functions takes on its asymptotic form discussed in Chapter 3). From

previous results, working in 3D, when the incident field is a (unit) plane wave

ui = exp(ikn̂i · r)

where n̂i points in the direction of the incident field, the Born scattered field observed

at rs is

us(n̂s, n̂i, k) =
k2

4πrs
exp(ikrs)

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r, r ∈ V

where n̂s(= rs/rs) denotes the direction in which us propagates. From this result,

it is clear that the function γ can be recovered from us by three-dimensional Fourier

inversion. The scattered field produced by a two-dimensional Born scatterer in the

far field is given by

us(n̂i, n̂s, k) =
exp(iπ/4)√

8π

k2
√

krs
exp(ikrs)

∫
A

exp[−ik(n̂s − n̂i) · r]γ(r)d2r, r ∈ A.

In one dimension, the equivalent result is (for a right travelling wave)

us(xs, k) =
ik
2

exp(ikxs)
∫
L

γ(x)dx, x ∈ L.

When n̂s = n̂i, we see that

us =
k2

4πrs
exp(ikrs)

∫
V

γ(r)d3r.
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This is called the forward-scattered field. In terms of Fourier analysis, it represents

the zero frequency or DC component of the spectrum of γ. Another special case

arises when n̂s = −n̂i. The scattered field that is produced in this case is called the

back-scattered field, and in three dimensions is given by

us(n̂s, k) =
k2

4πrs
exp(ikrs)

∫
V

exp(−2ikn̂s · r)γ(r)d3r.

In one dimension, the result is (for a left travelling wave)

us(k) =
ik
2

exp(ikxs)
∫
L

exp(−2ikx)γ(x)dx.

Note that, in one-dimension, the scattering function can only be recovered (via

Fourier inversion) by measuring the back-scattered spectrum whereas in two and

three dimensions, the scattering function can, in principle, be recovered by either

keeping k fixed or varying k.

4.3 Examples of Born Scattering

By way of a short introduction to the applications and uses of the Born approxi-

mation, some well known examples are now presented in which it is used to derive

expressions for the scattered intensity associated with three physically different scat-

tering phenomena - Rutherford scattering, Rayleigh scattering and Tyndall.

4.3.1 Rutherford Scattering

Rutherford scattering ranks as one of the most important experiments of the Twen-

tieth Century because it was the basis for developing the basic ‘visual model’ for the

atom - a positively charged nucleus with negatively charged orbiting electrons.

In Rutherford’s famous experiment (which dates from 1910), α-particles (or

helium nuclei) were scattered by gold leaf. The differential cross-section denoted by

dσ/dΩ (i.e. the number of particles scattered into a solid angle dΩ per unit time

divided by the number of particles incident per unit area per unit time) was then

measured at different scattering angles θ. By treating the α-particles as classical

Newtonian particles, Rutherford showed that if the scattering potential (i.e. due to

the nucleus of the atoms in the gold leaf) is a repulsive Coulomb potential, then

dσ

dΩ
∝

1
sin4(θ/2)

.

This was before the development of quantum mechanics and the emergence of

Schrödinger’s equation as a governing partial differential equation of quantum me-

chanics. In this Section, we shall derive Rutherford’s result by solving Schrödinger’s

equation using a Green function.
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In terms of quantum mechanics we can consider Rutherford’s scattering ex-

periment to consist of a source of plane waves (i.e. the de Broglie or probability

waves associated with the α-particles), a scattering function denoted by Ep (the po-

tential associated with the nucleus of the atoms which make up the gold leaf) and a

measuring device which allows us to record the intensity of the scattered radiation

at different angles to the incident beam. The Green function solution to the 3D

Schrödinger equation

(∇2 + k2)u(r, k) = V(r)u(r)

for an incident plane wave ui(r, k) = exp(ik · r) is given by

u(r0, k) = ui(r0, k) +
∫

g(r | r0, k)V(r)u(r, k)d3r.

This is the Lippmann-Schwinger equation. The limits of the integral are left ‘open’

because this equation applies to potentials that are finite (of compact support) or

asymptotic (tend to zero at infinity). The inversion of this integral equation is the

basis for inverse Schrödinger scattering in three-dimensions.

The Born scattered wave in the far field due to a scattering potential Ep which

is influential over all space is given by

us(n̂s, n̂i, k) = −exp(ikrs)
4πrs

∞∫
−∞

exp[−ik(n̂s − n̂i) · r]V(r)d3r.

For fixed k and rs (the distance at which the scattered wavefield is measured from

the scattering event), the measured intensity I of the scattered wavefield is given by

I = usu∗
s =

1
16π2r2

s
| A |2

where A is the scattering amplitude,

A(n̂s, n̂i, k) =
∞∫

−∞

exp[−ik(n̂s − n̂i) · r]V(r)d3r.

The differential cross section measures the flux of particles through a given area in

specific period of time. It is thus a measure of the wavefield intensity, i.e.

dσ

dΩ
= I.

Hence, using quantum mechanics (i.e. Schrödinger’s equation), the differential cross-

section for Rutherford’s scattering experiment can be obtained by evaluating the

Fourier transform of the potential Ep. For a radially symmetric potential Ep(r), the

scattering amplitude becomes (switching to spherical polar coordinates r, φ, ψ)

A(n̂s, n̂i) =
2π∫
0

dψ

1∫
−1

d(cos φ)
∞∫

0

dr r2 exp(−ik | n̂s − n̂i | r cos φ)V(r).
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The modulus of n̂s − n̂i is given by

| n̂s − n̂i |=
√

(n̂s − n̂i) · (n̂s − n̂i) =
√

2(1 − cos θ)

where

cos θ = n̂s · n̂i

and θ is the scattering angle (the angle between the incident and scattered fields).

Using the half angle formula,

1 − cos θ = 2 sin2(θ/2)

we can write

| n̂s − n̂i |= 2 sin(θ/2)

and integrating over ψ and cos φ the scattering amplitude as a function θ can be

written as

A(θ) =
2π

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)]V(r)rdr.

All we need to do now is compute the remaining integral over r. If we use a simple

Coulomb potential where Ep(r) ∝ 1/r, then we run into a problem because the

integrand does not converge as r → ∞. For this reason, another radially symmetric

potential is introduced which is given by

Ep(r) =
exp(−ar)

r

where a > 0 is a constant. This type of potential is known as a screened Coulomb

potential, the parameter a determining the range over which the potential is influ-

ential. It allows us to evaluate the scattering amplitude analytically. We can then

observe the behaviour of | A |2 for a Coulomb potential by letting a approach zero.

The scattering amplitude becomes

A(θ) =
2π

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)] exp(−ar)dr.

This integral is given by
2k sin(θ/2)

a2 + [2k sin(θ/2)]2

and we can write

A(θ) =
π

k2 sin2(θ/2)

(
1 +

a2

[2k sin(θ/2)]2

)−1

.

Hence, as a → 0, we obtain

A(θ) � π

k2 sin2(θ/2)
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and the intensity of the scattered field is

I =| A(θ) |2∝
1

sin4(θ/2)
.

We may think of Rutherford’s scattering experiment as an inverse scattering problem

in the sense that he deduced the potential of the nucleus by recording the way in

which it scattered α-particles. However, he did not actually solve the inverse problem

directly because he assumed that the scattering potential acted like a repulsive

Coulomb potential a priori and justified this hypothesis later by showing that the

theoretical and experimental results were compatible. One final and interesting point

to note is that in order to undertake the experiment Rutherford required a very thin

foil which was only a few atoms thick. Gold leaf was the best possible technical

solution to this problem at the time. The reason for this was that the α-particles

needed (on average) to scatter only from one nucleus in order to investigate the

repulsive Coulomb potential theory. If a thicker foil had been used, the α-particles

may have scattered from a number of atoms as they passed through it. Multiple

scattering would have led to an indeterminacy in the results. It is important to note

that the Born approximation used here to verify Rutherford’s results using a Green

function solution to Schrödinger’s equation is consistent with the concept of single,

or weak, scattering.

4.3.2 Rayleigh Scattering

Rayleigh scattering is the scattering of electromagnetic radiation by small dielectric

scatterers. It is named after the English scientist Lord Rayleigh who was one of the

Nineteenth Century’s most prolific scientists and made contributions in many areas

in mathematics, physics and chemistry, including some of the earliest studies on the

scattering of light following the development of James Clerk Maxwell’s theory of

electromagnetism.

If we consider a scalar electromagnetic wave theory, then we can consider a

wave equation of the form

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), γ = εr − 1; r ∈ V

to describe the behaviour of the electric field u, where εr is the relative permittivity

of a dielectric of compact support Ep. This is of course a highly idealized case,

but it helps to provide another demonstration of Born scattering in a form that is

pertinent to the use of Green functions for solving physically significant problems.

In the context of electromagnetic scattering problems, the Born approximation

is sometimes referred to as the Rayleigh-Gan approximation - just a different name

for an identical mathematical technique. Using this approximation, the asymptotic

form of the the scattered electric field is given by

us(n̂s, n̂i, k) =
k2

4πrs
exp(ikrs)

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.
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There are two important differences between this equation and its counterpart in

quantum mechanics (i.e. the Schrödinger equation). First, the coefficient in front of

the integral possesses a factor k2. Second, the integral itself is over a finite volume of

space V which is determined by the spatial extent of γ. In quantum mechanics, the

influence of a potential may be ‘felt’ over all space so that the integral is over ±∞.

This is an important distinction between scattering problems in quantum mechanics

which involve asymptotic potentials (potentials which go to zero at infinity) and

classical scattering problems of the type considered here.

Let us consider a model where a plane electromagnetic wave is incident on

a homogeneous spherical dielectric object of radius R and relative permittivity εr.

The theory which describes this type of scattering (scattering of light from uniform

spheres) is called Mie theory. In this case the Born scattered amplitude is given by

(following the same methods as those used earlier)

A(θ) =
2πkγ

sin(θ/2)

R∫
0

sin[2kr sin(θ/2)]rdr. (4.3)

If the dimensions of the scatterer are small compared to the wavelength, then

kR << 1

and

sin[2kr sin(θ/2)] � 2kr sin(θ/2), 0 ≤ r ≤ R.

The scattering amplitude is then given by

A(θ) � 4πk2γ

R∫
0

r2dr = k2γV

where V = 4πR3/3 is the volume of the scatterer. In this case, the scattering

is entirely isotropic (i.e. the scattering amplitude is independent of the scattering

angle). The intensity is proportional to k4 or

| A(θ) |2 ∝
1

λ4 .

Note the large inverse dependence on the wavelength. This result is characteristic of

Rayleigh scattering and of the spectra produced by light scattering from small sub-

wavelength structures. In the visible part of the spectrum, the intensity is greatest

for blue light (the colour associated with the smallest wavelength of the visible

spectrum). This is why the sky is blue, i.e. sunlight is scattered by the electrons

in air molecules of the terrestrial atmosphere generating blue light preferentially

around in all directions. Further, as the Sun approaches the horizon, we have to

look more and more diagonally through the Earth’s atmosphere. Our line of sight

through the atmosphere is then longer and most of the blue light is scattered out

before it reaches us, especially as the Sun gets very near the horizon. Relatively

more red light reaches us, accounting for the reddish colour of sunsets. In other
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words, the λ−4 dependence of the scattered intensity implies that the atmosphere

scatters green, blue and violet light photons more effectively than yellow, orange,

and red photons. As the Sun approaches the horizon, the path of light through the

atmosphere increases, so more of the short-wavelength photons get scattered away

leaving the longer-wavelength photons and the Sun look progressively redder.

4.3.3 Tyndall Scattering

Tyndall scattering is similar to Rayleigh scattering except that the condition kR <<
1 is replaced with kR ∼ 1 so that the wavelength is of the same order in the size of

the scatterer. In this case, the scattering amplitude is obtained by evaluating the

integral in equation (4.3), the scattering amplitude being given by

A(θ) = 3Vγk2 J1[2kR sin(θ/2)]
2kR sin(θ/2)

where J1 is the spherical Bessel function

J1(x) =
sin(x)

x2 − cos(x)
x

.

In this case, the scattering is not isotropic but strongly dependent on the scattering

angle. Also the intensity of the scattered field is proportional to λ−2 rather than

λ−4 (under the Rayleigh scattering approximation).

4.4 The Rytov Approximation

So far in this Chapter, we have been concerned with the use of the Green func-

tion for solving two fundamental inhomogeneous partial differential equations (the

Helmholtz and the Schrödinger equations). These have introduced the role that

Green functions play in an important aspect of mathematical physics - scattering

theory - which is fundamental to the field of image systems modelling and image

understanding.

The Rytov approximation is based on the use of an exponential type or ‘eikonal’

transformation where a solution of the type

A(r, k) exp[±s(r, k)] or A(r, k) exp[±is(r, k)]

is considered. This is analogous (in the latter case) to a plane wave solution of the

type A exp(±ik · r). In this transform, the scalar field s is known as the ‘eikonal’

from the Greek meaning ‘image’ or ‘icon’.

The Rytov approximation is based on an idea which has a long history dating

back to Huygens. In his book A Treatise on Light, Huygens suggested that the re-

flection and refraction properties of light can be explained on the basis of a sequence

of wavefronts which spreads out from a source much as ripples spread out from a

stone thrown into water, and that each point on such a wavefront act as a new dis-

turbance source. Although in 1678 Huygens did not specify exactly what is meant
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by a wavefront, he emphasized that the spacing between successive wavefronts need

not to be uniform which is one way of considering the physical interpretation of the

Rytov approximation.

4.4.1 Eikonal Transformation

Consider the 3D inhomogeneous Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k), r ∈ V.

If we substitute u = ui exp(s) into this equation and differentiate, we obtain the

nonlinear Riccatian equation

∇2s + 2
∇ui

ui
· ∇s + ∇s · ∇s = −k2γ (4.5)

where ui is taken to satisfy the equation

∇2ui + k2ui = 0, i.e. ui = exp(ik · r).

Suppose we assume that s varies sufficiently slowly for the nonlinear term ∇s · ∇s
in equation (4.5) to be neglected compared to the other terms, then we can write

(approximately)

ui∇2s + 2∇ui · ∇s = −k2γui. (4.6)

This is the Rytov approximation. To facilitate a Green function solution, we sub-

stitute s = w/ui into equation (4.6). Differentiating, we have

ui∇2s + 2∇u · ∇s

= ∇2w + 2ui∇w · ∇
(

1
ui

)
+ uiw∇2

(
1
ui

)
+ 2

∇ui

ui
· ∇w + 2w∇ui · ∇

(
1
ui

)
= ∇2w + k2w

and thus, equation (4.6) reduces to

∇2w + k2w = −k2γui.

The Green function solution to this equation (subject to homogeneous boundary

conditions) is

w(r0, k) = k2
∫
V

ui(r, k)γ(r)g(r | r0, k)d3r

and we arrive at the solution

u(r0, k) = ui(r0, k) exp

⎡⎣ k2

ui(r0, k)

∫
V

ui(r, k)γ(r)g(r | r0, k)d3r

⎤⎦ .

We can write this result as

u = ui

⎛⎝1 +
k2

ui

∫
V

uiγgd3r + ...

⎞⎠ � ui + k2
∫
V

uiγgd3r

which is the solution under the Born approximation.
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4.4.2 Conditions for the Rytov Approximation

The condition required for the validity of the Rytov approximation can be inves-

tigated by considering a Green function solution with the nonlinear term ∇s · ∇s
included. In this case, equation (4.6) becomes

ui∇2s + 2∇ui · ∇s = −k2γui − ui∇s · ∇s.

Substituting s = w/ui into this equation (except for the second term on the right

hand side) we have

∇2w + k2w = −k2γui − ui∇s · ∇s

whose Green function solution is

w = k2
∫
V

uiγgd3r +
∫
V

ui(∇s · ∇s)gd3r

so that we can write

s =
k2

ui

∫
V

uiγgd3r +
k2

ui

∫
V

uiγg
(∇s · ∇s

k2γ

)
d3r.

In order for the second term on the right hand side to be neglected, we must introduce

the condition
∇s · ∇s

k2γ
<< 1

or

‖k2γ‖ >> ‖∇s · ∇s‖.

The interpretation of this condition is not trivial. Clearly, the larger the value of

k (i.e. the smaller the value of the wavelength) for a given magnitude of γ and

∇s, the more appropriate the condition becomes. Thus, the condition is valid if

the wavelength of the field is small compared to γ. Since s can be taken to be the

phase of the wavefield solution u, another physical interpretation of the condition is

that the characteristic scale length over which a change in phase occurs ∇s is small

compared to the wavelength for a given γ.

4.5 Series Solutions

The Born approximation introduced earlier was used to solve some elementary scat-

tering problems. We shall now consider a natural extension to the Born approxima-

tion which is based on generating a series solution to the problem, known generally

as the Neumann series.
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4.5.1 The Born Series

Consider the 3D Green function solution to the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γu(r, k)

which is given by

u(r0, k) = ui(r0, k) + us(r0, k)

where

us(r0, k) = k2
∫
V

g(r | r0, k)γ(r)u(r, k)d3r,

ui is the incident field satisfying the equation

(∇2 + k2)ui(r, k) = 0

and g is the outgoing Green function given by

g(r | r0, k) =
exp(ik | r − r0 |)

4π | r − r0 | .

We have seen that the Born approximation to this equation is given by consider-

ing u ∼ ui, r ∈ V which is valid provided ‖us‖ << ‖ui‖. We then obtain an

approximate solution u1, say, of the form

u1(r0, k) = ui(r0, k) + k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

This result can be considered to be the first approximation to a series solution, in

which the second approximation u2, say, is given by

u2(r0, k) = ui(r0, k) + k2
∫
V

g(r | r0, k)γ(r)u1(r, k)d3r

and the third approximation u3 is given by

u3(r0, k) = k2ui(r0, k) +
∫
V

g(r | r0, k)γ(r)u2(r, k)d3r

and so on. In general, we can consider the iteration

un+1(r0, k) = ui(r0, k) + k2
∫
V

g(r | r0, k)γ(r)un(r, k)d3r, n = 0, 1, 2, 3, ..

where u0 = ui.

In principle, if this series converges, then it must converge to the solution. To

investigate its convergence, it is convenient to use operator notation and write

un+1 = ui + Îun
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where Î is the integral operator

Î =
∫
V

d3rgγ.

At each iteration n we can consider the solution to be given by

un = u + εn

where εn is the error associated with the solution at iteration n and u is the exact

solution. A necessary condition for convergence is that εn → 0 as n → ∞. Now,

u + εn+1 = ui + Î(u + εn) = ui + Îu + Îεn

and therefore we can write

εn+1 = Îεn

since u = ui + Îu. Thus

ε1 = Îε0; ε2 = Îε1 = Î( Îε0); ε3 = Îε2 = Î[ Î( Îε0)]; ...

or

εn = Înε0

from which it follows that

‖εn‖ = ‖ Înε0‖ ≤ ‖ În‖ × ‖ε0‖ ≤ ‖ Î‖n‖ε0‖.

The condition for convergence therefore becomes

lim
n→∞

‖ Î‖n = 0.

This is only possible if

‖ Î‖ < 1

or

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1.

Comparing this result with condition (4.2) and the analysis associated with it given

in Section 6.2.2, it is clear that

γ̄ <
1

k2R2

must be satisfied for the series to converge where R is the radius of a sphere of

volume V.

This series solution, which can be written out as

u(r0, k) = ui(r0, k) + k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r =
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k2
∫
V

g(r | r0, k)γ(r)

⎡⎣k2
∫
V

g(r1 | r, k)γ(r1)ui(r1, k)d3r1

⎤⎦ d3r + ...

= ui(r0, k) + k2
∫
V

d3rg(r | r0, k)γ(r)ui(r, k)

+k4
∫
V

∫
V

d3rd3r1g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)ui(r1, k)

+k6
∫
V

∫
V

∫
V

d3rd3r1d3r2g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)g(r2 | r1, k)γ(r2)ui(r2, k)

+ ...

is an example of a Neumann series solution to a Fredholm integral equation and is

known as the Born series. The scattered field can be written in the form

us(r, k) = k2g(r, k) ⊗ γ(r)ui(r, k) + k4g(r, k) ⊗ γ(r)[g(r) ⊗ γ(r)ui(r, k)] + ...

where ⊗ denotes the three-dimensional convolution integral over V and r ≡| r |.
Another approach to deriving this result can be taken by considering the inverse

operator. Writing

u = ui + k2 Îu

where

Î ≡
∫
V

d3rγ(r)g(r | r0, k),

we have

(1 − k2 Î)u = ui

or

u = (1 − k2 Î)−1ui = (1 + k2 Î + k4 Î2 + k6 Î3 + ...)ui.

Either way, the Born series can be interpreted as follows:

u(r0, k) =incident wavefield

+

wavefield generated by single scattering events

+

wavefield generated by double scattering events

+

wavefield generated by triple scattering events

+

...

Each term in this series expresses the effects due to single, double, and triple, etc.,

scattering. Feynman diagrams can be used to represent these effects graphically,
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e.g. the propagation of a wavefield generated by one interaction with another. In

particle physics, interparticle interactions are complicated multiple scattering events

in which the forces are transmitted by quantum fields. The propagation of fields

between points is precisely what Green functions describe. So Green functions, often

called Feynman propagators in particle physics, are among the standard working

tools of theoretical analysis in modern quantum physics.

For an incident plane wave ui(r, k) = exp(ik · r) and with R ≡| r − r0 |
each term in the Born series scales as 1

R , 1
R2 ,

1
R3 , etc., so that multiple-scattering

gets ‘weaker by the term’. This is due to the form of the Green function in 3D

which scales as 1/R, the intensity of the field being 1/R2 - the inverse square

law. Thus, if the scattering function is characterized by a number of scattering

‘sites’ (i.e. where γ is composed of a distribution of point-like scatterers that are

of compact support) then, provided that the distance between these sites is large,

the effect of multiple scattering will be insignificant. However, if these sites are

close together where the effect of the multiple scattering wavefield falling off as

1/R2, 1/R3, etc., is not appreciable, then multiple scattering events will contribute

significantly to the scattered field. Hence, one way to interpret the meaning of ‘weak’

and ‘strong’ scattering is in terms of the ‘density’ of scattering sites over the volume

V being low or high, respectively. For λ ∼ R where R is the characteristics size of

the scatterer, the Born approximation holds provided the root mean square of the

scattering function over the volume is much less than 1. This is a quantification

of the principle that the density of scattering sites from which we can suppose the

scattering function is composed is low.

Another important feature of the Born series for Helmholtz scattering is that

the terms are scaled by k2, k4, k6. Thus for a fixed k << 1 (long wavelength waves),

u(r0, k) = ui(r0, k) + k2
∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

In 1D, the Green function scales as 1/k, the Born series for Helmholtz scat-

tering being given by

u(x0, k) = ui(x0, k) +
ik
2

∫
L

dx exp(ik | x − x0 |)γ(x)ui(x, k)

−k2

4

∫
L

∫
L

dxdx1 exp(ik | x − x0 |)γ(x) exp(ik | x1 − x |)γ(x1)ui(x1, k)

− ik3

8

∫
L

∫
L

∫
L

dxdx1dx2 exp(ik | x − x0)γ(x) exp(ik | x1 − x |)γ(x1)

. exp(ik | x2 − x1)γ(x2)ui(x2, k)

+ ...

In this case, the series does not get ‘weaker by the term’ according to 1/Rn but by

1/2n. Consequently, we should expect that multiple scattering is a more common
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occurrence when waves scatter (transmit/reflect) from layered materials. This is

readily experienced when observing light reflecting from two glass plates - double

glazing for example. Here, a number of faded ‘ghost images’ are seen in addition to

the two primary images obtained from the partial reflection of light by the first plate

and that from the second. As in the 3D case, the Born approximation ‘improves’ at

larger wavelengths since for k << 1

u(x0, k) = ui(x0, k) +
ik
2

∫
L

exp(ik | x − x0 |)γ(x)ui(x, k)dx.

In quantum (Schrödinger) scattering, the Born series is of the same form but

without the factors of k2, k4, k6, etc., and in 1D is given by

u(x0, k) = ui(x0, k) +
∫

dxg(x | x0, k)γ(x)ui(x, k)dx + ...

Now, the 1D Green function is given by

g(x | x0, k) =
i

2k
exp(ik | x − x0 |)

and so for k >> 1

u(x0, k) = ui(x0, k) +
i

2k

∫
exp(ik | x − x0 |)V(x) exp(ikx)dx

= ui(x0, k) + exp(−ikx0)
i

2k

∫
V(x) exp(2ikx)dx, x0 → ∞.

Thus, for very high frequency quantum wavefields in 1D, the Fourier transform of the

scattering potential γ is an exact scattering transform. This result can be applied

to the 1D inhomogeneous Helmholtz equation by mapping it into the Schrödinger

equation. Writing (
∂2

∂x2 + k2Γ(x)
)

u(x, k) = 0

where

Γ(x) = 1 + γ(x),

application of the Liouville transformation

U(y, k) = g(x)u(x, k),
dx
dy

=
1

[g(x)]2
, and g(x) = Γ

1
2 (x)

gives (
∂2

∂y2 + k2
)

U(y, k) = f (y)U(y, k)

where

f (y) =
1

g(y)
∂2

∂y2 g(y).
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In imaging science, the fundamental imaging equation comes from assuming

that the recorded data d = u − ui is of the form

d = k2 Îui + n

where

n = (k4 Î2 + k6 Î3 + ...)ui + other noise

In other words, the multiple scattering events are assumed to be part of the noise

inherent in the system recording.

One of the principal issues with using the Born approximation is that it is

generally going to be valid for the case when λ >> R where R is a measure of

the characteristic size of the inhomogeneity. However, in imaging science, to obtain

information on an object over a scale of R, we apply wavefields whose wavelength is

of the same order, i.e. λ ∼ R. Now, since the Born approximation requires that (in

3D)

γ̄ <<
1

kR
,

for λ ∼ R,

γ̄ << 1.

In other words, to utilize the fundamental imaging equation (which is a product of

applying the Born approximation) the material we are imaging should ideally have

inhomogeneities whose root mean square value is much less than 1. Because this

condition is not always satisfied, multiple scattering effects are inevitable. Neverthe-

less, the basic imaging model is, for better or worse, based on the Born scattering

term plus noise for the case when λ ∼ R. Asymptotic conditions such as λ → ∞
or λ → 0 may provide exact scattering solutions but they are inconsistent with

imaging systems based on the use of radiation where λ ∼ R.

When multiple scattering is a dominant feature of an image system, although

it may be possible to construct a deterministic multiple scattering model, the ap-

plication of such a model for the development of a practical image reconstruction

and image processing algorithms is often intractable. Instead we can consider the

wavefield generated by multiple scattering events to be a stochastic field and investi-

gate its characteristics using statistical modelling and analysis. This approach is of

course consistent with many areas of physics and engineering when the ‘physics’ that

one is attempting to model becomes too complicated for a deterministic analysis to

be of any practical value. In such cases we turn to statistical methods of modelling

the data.

4.5.2 The Rytov Series

It is worth mentioning that a Rytov series can be derived by extending the Rytov

approximation in the same way that the Born series has been derived here by ex-

tending the Born approximation and considering higher order iterates subject to a

condition for convergence being satisfied. However, the interpretation of the Rytov

series is not trivial and the computational effort required to evaluate the series for

a given scattering function can become problematic.
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The use of the Born series (and the Rytov series) leads to computational prob-

lems when evaluating a fully multiple scattered field. First is the issue over the

convergence criterion for the series which may not always be satisfied; second is the

issue of the singularities that arise when a multiple point scattering model (i.e. mul-

tiple delta functions located at different position in space) for the scattering function

is introduced into the Born series. These problems necessitated the development of

renormalization theory in the early 1960s which lies beyond the scope of this work.

However, it is worth noting, that issues concerning the development of renormaliza-

tion theory and the difficulties associated with its application helped to forge the

foundations of string theory that, to this day, remains the most promising approach

for the development of a unified field theory (a theory of everything!).

4.6 Inverse Scattering

Inverse scattering aims to reconstruct the scattering function from measurements

of the data. The practicability of solving inverse scattering problems analytically

and implementing them experimentally varies considerably from one application

to another. An inversion method is usually based on the approximation that has

been applied to solve the forward scattering problem given the wave equation. For

example, given the Helmholtz equation, then under the Born approximation, in the

far field region, the scattering amplitude is given by

A(n̂s, n̂i, k) = k2
∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.

The inverse solution to this problem is therefore compounded in the inverse Fourier

transform. In 1D, the solution is, for a unit plane wave,

u(x0, k) = exp(ikx0) + exp(−ikx0)r(k)

where r is the ‘reflection coefficient’ given by

r(k) =
ik
2

∫
L

γ(x) exp(2ikx)dx

which can be written as

r(k) =
1
4

∫
dx exp(ikx)

d
dx

γ(x/2).

Hence, inversion is achieved by taking the inverse Fourier transform and integrating

the result.

The link between the application of the Born approximation in the far field and

the Fourier transform should now be clear. This ‘link’ is essential in imaging science

and is why the Fourier transform plays such an essential role. Inverse solutions

under the Born approximation are in effect the same as implementing Fourier based
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reconstruction methods in imaging science, at least when the data collected are

the result of a scattering event. In some cases, the scattering is not as weak as it

should be to support application of the Born approximation. In such cases, Fourier

based image reconstructions can become distorted. There is, however, a method of

inverting a wavefield that is the result of multiple Born scattering; this is known

as the Jost-Kohn method first published in 1952. A brief overview of this method

follows.

Using operator notation, the Born series can be written as

u = ui + Îiγ + Îi(γ Îγ) + Ii[γ Î(γ Îγ)] + ...

where γ is either the scattering potential (for Schrödinger scattering) or k2γ (for

Helmholtz scattering) and

Îi =
∫

d3ruig, Î =
∫

d3rg.

Now, let εU = u − ui and

γ =
∞

∑
j=1

εjγj.

Then

εU = Îi[εγ1 + ε2γ2 + ε3γ3 + ...]

+ Îi[(εγ1 + ε2γ2 + ε3γ3 + ...) Î(εγ1 + ε2γ2 + ε3γ3 + ...)]

+ Îi{(εγ1 + ε2γ2 + ε3γ3 + ...) Î[(εγ1 + ε2γ2 + ε3γ3 + ...)

Î(εγ1 + ε2γ2 + ε3γ3 + ...)]} + ...

Equating terms with common coefficients ε, ε2, etc., we have

For j = 1 :
U = Îiγ1; γ1 = Î−1

i U.

For j = 2 :
0 = Îiγ2 + Îi(γ1 Îγ1); γ2 = − Î−1

i [ Îi(γ1 Îγ1)]

and so on. By computing the functions γj using this iterative method, the scattering

function γ is obtained by summing γj for ε = 1. This approach provides a formal

exact inverse scattering solution but it is not unconditional, i.e. the inverse solution

is only applicable when the Born series converges to the exact scattering solution

and thus when

‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1

We note, that, for j = 1, the solution for γ1 is that obtained under the Born

approximation.
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4.7 Exact Inverse Scattering Solution

For γ(r) → 0 as r ≡| r |→ ∞, the the Lippmann-Schwinger equation [14]

u(r, k) = u±
i (r, k) + k2g(r, k) ⊗3 γ(r)ur, k)

where ⊗3 denotes the three-dimensional convolution integral and u±
i = exp(±ikn̂i ·

r) is a solution of

(∇2 + k2)u(r, k) = 0)

This is the solution of the inhomogenous Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

Instead of computing u given γ before tackling the inverse scattering problem, we

now consider an inverse scattering solution that is based on the transformation of

the inhomogeneous Helmholtz equation to the form

−k2γ(r) =
u∗(r, k)

| u(r, k) |2∇
2
(

us(r, k) − k2

4πr
⊗3 us(r, k)

)
(4.7)

A derivation of this transformation is given in Appendix 1.

Since

‖us − (k2/4πr) ⊗3 us‖2 ≤ ‖us‖2[1 + k2
√

r/(4π)],

in the far field, equation (4.7) becomes

−k2γ =
−1

u±
i + us

k2us ⊗3 ∇2
(

1
4πr

)
= k2A−1[(u±

i )∗ + u∗
s ]us, r → ∞ (4.8)

where A−1 =| u±
i + us |−2. Fourier analysis of equation (4.8) provides a far-field

solution for the scattered field that is compatible with the result under the Born

approximation, i.e. Fourier-space far-field equivalence. Taking the Fourier transform

of equation (4.8) and using the product theorem, for u−
i , we obtain

γ̃(kn̂) = [ũs[k(n̂i − n̂)] + ũ∗
s (kn̂) ⊗3 ũs(kn̂)] ⊗3 Ã−1(kn̂) (4.9)

where n̂ = k/k and, critical to the arguement, ũs is taken to be us in the far field.

Since A−1 = 1 − u−
i u∗

s − us(u−
i )∗− | us |2 +...,

Ã−1(kn̂) = δ3(kn̂) − ũ∗
s [k(n̂i + n̂)] − ũs[k(n̂i − n̂)] − ũs(kn̂) ⊗3 ũ∗

s (kn̂) + ...

With n̂i − n̂ = n̂s equation (4.9) can be written in the form

ũs(kn̂s) ⊗3 Ã−1[k(n̂i − n̂s)] = γ̃[k(n̂i − n̂s)]

−ũ∗
s [k(n̂i − n̂s)] ⊗3 ũs[k(n̂i − n̂s)] ⊗3 Ã−1[k(n̂i − n̂s)]

Note that for back-scattering (when n̂i = −n̂s) equation (4.9) becomes

γ̃(kn̂s) = [ũs(−2kn̂s) + ũ∗
s (kn̂s) ⊗3 ũs(kn̂s)] ⊗3 Ã−1(kn̂s)

The scattering function is obtained directly from data on the far-scattered-field

based on equation (4.9).
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4.8 Computation of the Scattered Field

Unlike the inverse scattering solution, computation of the unconditional scattered

field requires, like the Born or Rytov series, an iterative procedure, i.e.

ũm+1
s (kn̂s) = γ̃[k(n̂i − n̂s)]⊗3 Ãm[k(n̂i − n̂s)]− ũm

s [k(n̂i − n̂s)]⊗3 (ũm
s )∗[k(n̂i − n̂s)]

(4.10)
where

ũ0
s (kn̂s) = γ̃[k(n̂i − n̂s)]

the back-scattered cross section being obtained by computing | ũm
s (kn̂s) |2, n̂s ∼

−n̂i.

4.8.1 Approximation for Ã−1 = δ3

It is clear, that both equations (4.9) and (4.10) can be significantly simplified if we

assume that | u±
i + us |2∼ 1 because in this case Ã = δ3 and Ã−1 = δ3 so that

these equation can be approximated by the results

γ̃(kn̂) = ũs[k(n̂i − n̂)] + ũ∗
s (kn̂) ⊗3 ũs(kn̂)

and

ũm+1
s (kn̂s) = γ̃[k(n̂i − n̂s)] − ũm

s [k(n̂i − n̂s)] ⊗3 (ũm
s )∗[k(n̂i − n̂s)]

respectively. It is then apparent that multiple scattering effects are compounded in

a single term, namely, the term ũm
s [k(n̂i − n̂s)] ⊗3 (ũm

s )∗[k(n̂i − n̂s)]. The effect of

using this approximation is explored further in Chapter 6 which includes numerical

results on a study for the one-dimensional case and is used to develop a model

for a side-band pulse-echo signal that is inclusive of multiple scattering under the

condition that Ã−1 ∼ δ3. However, it is clear that underder this condition, the

Born approximation can now be attributed to the case when ũm
s [k(n̂i − n̂s)] ⊗3

(ũm
s )∗[k(n̂i − n̂s)] ∼ 0 which ‘translates’ to the autoconvolution of the scattered

field being effectively zero. The physical interpretation of this result is that multiple

scattering processes can be expected to produce replicating patterns in the scattered

field. These ‘matching features’ will then contribute to the autoconvolution function

making it a non-zero function.

4.8.2 Approximation under the Skew Hermitian Condition

Another simplification can be made to equations (4.9) and (4.10) is the product of

the incident and scattered fields are taken to be Skew Hermitian, i.e.

u−
i u∗

s = −(u−
i u∗

s )
∗

so that A = 1+ | us |2 and A−1 = 1− | us |2 +.... In particular, equation (4.10)

becomes

ũm+1
s (kn̂s) = γ̃[k(n̂i − n̂s)] + γ̃[k(n̂i − n̂s)]⊗3 ũm

s [k(n̂i − n̂s)]⊗3 (ũm
s )∗[k(n̂i − n̂s)]
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−ũm
s [k(n̂i − n̂s)] ⊗3 (ũm

s )∗[k(n̂i − n̂s)] (4.11)

which includes the convolution of the Born approximated scatterd field with the au-

toconvolution of the field (on an iterative basis). If we defined the three-dimensional

Fourier scattering operator F3 as

F3 ≡
∞∫

−∞

d3r exp[−ik(n̂i − n̂s) · r]

then, for m = 1, we can write equation (4.11) in the form

ũ1
s (kn̂s) = F3[γ(r)] −F3(| γ(r) |2 [1 − γ(r)]) (4.12)

and it is now clear that if ‖γ(r)‖ << 1, then

ũ1
s (kn̂s) ∼ ũ0

s (kn̂s) = F3[γ(r)]

4.8.3 Scattering from a Radially Symmetric Dielectric

A comparison is made of the differences in the scattered field generated by the

zero order ũ0
s and first order ũ1

s terms in equation (4.12) for a radially symmetric

scatterer. For a radially symmetric scatterer γ(r) = γ(r), the Fourier scattering

operator is given by

F3 ≡ 4π

ξ

∞∫
0

dr sin(ξr)

operating on a mdified scattering function given by γr(r) = rγ(r) and where ξ =
2k sin(θ/2), θ being the scattering angle over 2π radians. The integral is a sine

transform, i.e.

γ̃r(ξ) = S [γr(r)] =
∞∫

0

γr(r) sin(ξr)dr

This transform can be computed using a Fourier transform via application of the

Hilbert transform because the Hilbert transform provides a single sided representa-

tion of the spectrum of a function. Thus we can write

γ̃r(ξ) = Im{HF [γr(r)]}
where H denotes the Hilbert transform given by

H f (r) = − 1
πr

⊗ f (r)

with spectral response

− 1
πr

⊗ f (r) ↔ s̃(k) f̃ (k)

where f̃ (k) is the Fourier transform of f (r), s̃ is the Heaviside step function given

by

s̃(k) =

{
1 ∀k ≥ 0;
0 ∀k < 0.
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and we note that

s̃(k) ↔ δ(r) +
i

πr

Using this approach, from equation (4.12), for constant k the zero and first order

scattered field can be computed using the following equations respectively (ignoring

scaling by 4π):

ũ0
s (θ) =

1
2k sin(θ/2)

Im{HF [rγ(r)]}[2k sin(θ/2)] (4.13)

and

ũ1
s (θ) = ũ0

s (θ) − 1
2k sin(θ/2)

Im{HF (r | γ(r) |2 [1 − γ(r)])}[2k sin(θ/2)] (4.14)

Figures 4 to 6 provide an example comparative study of the scattered field

computed using equations (4.13) and (4.14) for three different dielectric scattering

functions γ(r) whose amplitude has been chosen to minimise the effect of second

and higher order scattering effects, i.e. where the numerical value of γn, n > 3 is

insignificant. In Figure 4 the differences in the scattered fields are not particu-

larly significant because the scattering function is a homogenous dielectric sphere

where multiple scattering are not significant (other than those generated from in-

ternal ‘boundary scattering’). However, when the sphere is a layered dielectric with

well defined and sharp discontinuities in the value of γ, differences are apparent as

illustrated in Figure 5 particularly with regard to the relative amplitudes of the

side-lobes. For a randomly distributed layered dielectric sphere, Figure 6, there is

a noticeable difference between the zero order and first order back-scattered fields.

FIGURE 4 Log-polar plots for the zero (center) and first order (right) scattered field
based on the Skew Hermitian condition generated by a uniformly distributed
(radially symmetric) dielectric scattering function γ(r) of compact support
(left).
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FIGURE 5 Log-polar plots for the zero (center) and first order (right) scattered fields
based on the Skew Hermitian condition generated by a non-uniformly dis-
tributed (radially symmetric) dielectric scattering function γ(r)of compact
support (left).

FIGURE 6 Log-polar plots for the zero (center) and first order (right) scattered fields
based on the Skew Hermitian condition generated by a Gaussian distributed
(radially symmetric) random dielectric scattering function γ(r) (left).
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4.9 Discussion

The purpose of this chapter has been to review formal methods in scattering theory

for modelling and computing the scattered field, particularly with regard to those

methods that are used in image modelling and imaging systems analysis. Although

the inverse solution presented in Section 4.6 for the Born series is nearly fifty years

old, it has not found any practically useful applications in imaging science and noth-

ing has been found in the open literature in this regard. Inverse scattering solutions

in electromagnetism are designed and implemented under the Born approximation

and is some cases, the Rytov approximation. The fundamental imaging equation,

which provides a mapping between the object and image planes in terms of a convo-

lution integral, is an intrinsically product of using the Born approximation, irrespec-

tive of the application. Note that this result can be derived using surface scattering

theory by applying the Kirchhoff approximation which is often used in the theory of

optical image analysis, for example [18]. The Kirchhoff approximation is the surface

scattering equivalent of the Born approximation.

Section 4.7 has introduced a ‘direct’ approach to solving the inverse scattering

problem. In principle, this provides an exact inverse scattering solution that is not

based on an ‘iterative solution to an iterative solution’ (i.e. the Jost-Kohn method

given in Section 4.6). However, computation of the scattered field does require

iteration which has been briefly investigated in Section 4.8.

The principle associated with with the method adopted is based on equation

(4.8) in which we have taken the Fourier transform of the equation

γ = A−1[(u±
i )∗ + u∗

s ]us (4.15)

where the Fourier transform of us is taken to be the scattered field. This is based

on utilising the result obtained under the Born approximation in the far field to

specify the transform that is taken. However, in general, one can consider any

transform of this equation where the transform of us is taken to be the scattered field

generated under a given regime. Thus, in the intermediate field, for example, when

the scattered field is measured in the Fresnel zone, the Fresnel transform (obtained by

applying the Fresnel approximation to the Green’s function as discussed in Chapter

3) of equation (4.15) is used to develop a scattering model.

In the following chapter, the Born approximation is used to model a Synthetic

Aperture Radar (SAR) imaging system which represents a case study on the ap-

plications of the weak scattering approximation. In Chapter 6, the exact inverse

scattering method discussed in this Section 4.7 is developed further under the con-

dition discussed in Section 4.8.1 and the result used to establish a ‘filtering protocol’

for SAR images.



5 AN ELECTROMAGNETIC SCATTERING MODEL
FOR SAR

Radar (Radio detection and ranging) has been used for many years to detect air-

borne objects using ground based antennas and to image the ‘ground truth’ using

airborne platforms. The world’s first ever Radar system was constructed in Britain

in the late 1930s. It was originally based on using CW radio wavefields. When these

radio waves were reflected from an object, a modulation in the amplitude of the

return signal occurred providing a characteristic detection signature. The resolution

of this Radar system was very poor due to the long wavelength (∼ 1km) radio waves

that were available at the time but it was instrumental in tracking enemy aircraft

and giving estimates of their direction and number during the ‘Battle of Britain’ in

the late summer of 1940.

Research undertaken at Birmingham University in the early 1940s led to the

development of the cavity magnetron. In a strong magnetic field electrons gyrate

around the direction of the field-lines at a high frequency to produce radio waves with

a much shorter wavelength (λ ∼ 10−3km). These are known today as microwaves.

This technology was used almost immediately for navigation in the night bomber

offensive of 1943-45. Microwave pulses were used to generate an image of the ground-

truth by rotating the antenna (a microwave ‘horn’). Major advances in microwave

(Radar) technology occurred in Britain and Germany throughout the early 1940s,

and a new research and development laboratory was established at the Massachusetts

Institute of Technology, USA, to advance the systems provided to the Americans by

the British as part of the lend-lease policy. The technology at the time was based

on using sideband pulses. The range resolution was determined by the width of

the pulse, and the lateral or azimuth resolution by the width of the beam at the

range required. This was the basis for most of the Radar systems used up until

the early 1960s when an American invention led to a radical improvement in the

range resolution. This was achieved by linearly frequency modulating the pulse and

then matched filtering the return ‘echo’ with its complex conjugate. The frequency

modulation was achieved by linearly increasing the intensity of the magnetic field

in the cavity magnetron over the duration of a pulse. Further developments in

the 1960s and early 1970s paved the way for a new generation of high resolution
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Radar systems which helped lead to the development of Synthetic Aperture Radar

in the mid 1970s (although it had been used covertly for military and some space

programmes well before that time). Synthetic Aperture Radar (SAR) was developed

to study the surface of the Earth (and other planets) from both spaceborne and

airborne platforms [19], [20]. The basic difference between spaceborne and airborne

SAR is the ‘look-down’ angle of the microwave beam that is used. Spaceborne SAR

uses look-down angles of ∼ 700 whereas airborne systems use look-down angles ∼
100. Both systems attempt to classify the inhomogeneous nature of the Earth’s

surface by repeatedly emitting a pulse of microwave radiation and recording the

back-scattered field [21], [22]

In this Chapter attention is focused on airborne SAR which is now used exten-

sively for both civilian and military reconnaissance. The original spaceborne SAR -

Seasat - became operational soon after its launch in June 1978 but only functioned

for a limited period of time (from July to October of the same year) owing to mal-

function. It was designed to carry out studies of the ocean surface using a range

of microwave sensors and was equipped with a 24 cm wavelength SAR. Another

satellite system - Earth Resources Satellite (ERS-1) was launched in the early 1990s

and included a 5cm wavelength SAR.

A conventional side-looking radar (a real aperture radar) operating at many

tens of kilometres is only able to obtain lateral resolutions of about a kilometre. By

synthesizing the aperture of the radar, one can obtain resolutions of a few metres.

This enhancement of resolution by three orders of magnitude, together with the fact

that radar can be used in cloud or fog, means that SAR is ideal for airborne recon-

naissance. The quantity of data that must be recorded and processed is typically a

million independent pixels (discrete picture elements) every second. This immense

amount of data has to be examined and positions of interest (targets) identified and

extracted, ideally, in near real time.

Another important aspect of SAR reconnaissance is that, in comparison with

optical or infrared reconnaissance, radar can often pick out details on the ground

which are either invisible or difficult to distinguish with the human eye. For exam-

ple, it is possible to distinguish between different types of vegetation. In some cases

it is even possible to observe sub-surface structures in regions where the skin depth

of the ground is small and the radar can penetrate a short distance into the ground.

Many ground-based objects are good reflectors of microwave radiation, particularly

those objects that are composed from materials that are good conductors (i.e. metal-

lic objects which have a relatively large radar cross-section). Objects of this kind

can therefore be distinguished more easily using radar reconnaissance. This is why

airborne SAR imaging is often used for the surveillance of military hardware.

SAR systems are usually classified in terms of the wavelength that is used.

The two basic modes of operation are X-band, with a wavelength of 2.8 cm, and

L-band, with a wavelength of 24 cm. In addition to different wavelengths, differ-

ent polarizations can be used. One of the most commonly used types is vertical

polarization. This is where an electric field is emitted which points in the vertical

direction (relative to the orientation of the antenna). The back-scattered field that

is produced with the same polarization is then measured. For this reason, the type
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of data produced is called vertical-vertical or VV polarization data. In addition to

the vertically polarized return, scattering by the ground creates polarizations which

differ from that of the incident electric vector, one component being along the di-

rection of the horizontal axis. This is known as the depolarized return, and the

type of data that is produced by measuring are known as vertical-horizontal or VH

polarization data. Alternatively, an incident electric field can be produced where the

electric vector points along the horizontal axis. The data produced by measuring the

like polarized field is known as the horizontal-horizontal or HH polarization data.

The data produced by measuring the cross-polarized return in this case is known as

the horizontal-vertical or HV polarization data. Hence, in principle, there are four

modes of operation that can be used. In practice VH and HV SAR images are not

significantly different. However, the difference between VV, HH SAR images can be

considerable.

An example of a SAR ‘microwave image’ together with an incoherent optical

image of approximately the same region is given in Figure 7. These images are of a

region of Northamptonshire (just south-west of the town of Northampton), England,

and show both urban (e.g. the village of Wootton) and rural features. The major

road in the bottom left hand corner of this image is the M1 Motorway (which runs

from London to Leeds, Yorkshire) in the locality of Junction 15. In contrast to the

optical image, the SAR image is dominated by noise of a special and quantifiable

physical type, namely, speckle.

The SAR image given in Figure 7 is an airborne SAR is VV polarized. This

type of image is known as a VVX SAR image (VV for vertical-vertical polarization

and X for X-band). Each resolution cell in this image corresponds to a real length

of about 1.5m. The image was obtained at a range of approximately 50 km and an

altitude of about 8 km. There are a number of interesting features in this SAR image.

A close inspection reveals that there is a variety of textures which change from one

region of the image to the next. These textures are related to physical changes in

the terrain such as the type of vegetation that is present. There is a particularly

marked difference between rural and urban regions. majority of these buildings

being constructed from non-conductive materials (brick, concrete and wood, etc.).

In general, much stronger reflections occur from structures that are made from

conductive materials.

5.1 Principles of SAR

Synthetic aperture radar is a pulse-echo system which utilizes the response of a

scatterer as it passes through the beam to synthesize the lateral (azimuth) resolution.

This allows relatively high resolution images to be obtained at a long range. The

basic geometry of the system is given in Figure 8. Here, and throughout the rest of

this chapter, the range coordinate is denoted by x and the tracking coordinate along

the flight path is denoted by y. The latter coordinate is referred to as the azimuth

direction. The antenna emits a pulse of microwave radiation and the return signal
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FIGURE 7 An incoherent optical image (above) and a coherent (Synthetic Aperture
Radar) image of the same region of Northamptonshire, England.
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or echo is recorded at fixed time intervals along the flight path.

FIGURE 8 Basic geometry of an airborne SAR imaging system.

5.1.1 The Radar Pulse

SAR is a peak power limited system. In other words it operates at the maximum

power available. The energy of the system is therefore given by

Energy = Peakpower × Time

In order to transmit a microwave field with enough energy to establish a measurable

return, the duration of the pulse must be made relatively long. The length of

this pulse is large compared to the wavelength and, hence the system is based on

application of a side-band spectrum. If a simple on/off pulse is emitted then the

characteristic spectrum is a narrow-band sinc function. The frequency content of

this type of pulse is not usually broad enough to obtain adequate range resolution.

For this reason, a frequency sweep or ‘chirp’ is applied over the duration of the pulse.

Even with a frequency sweep applied to it, the pulse has a very narrow frequency

band. In other words, the energy of the pulse is concentrated near to the carrier

frequency. The type of pulse that is actually used is given by (complex form)

p(τ) = exp(ik0τ) exp(iατ2), −T/2 ≤ τ ≤ T/2

where T is the pulse length, τ is time × speed of light, α is the quadratic chirp

rate / (speed of light)2 and k0 is the carrier wave number (carrier frequency = k0
2π×

speed of light). Note that in reality the pulse is of course not a complex but a real

valued function of time. It is given by the real part of p, i.e. cos(k0τ + ατ2). This

type of pulse is just one of a number of different types of coded pulses that can in
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principle be used. It is used extensively in radar systems because of its properties for

generating range resolution and it can be implemented comparatively easily. The

instantaneous phase of this pulse is k0τ + ατ2. The rate of change of phase, or

frequency modulation, is therefore k0 + 2ατ which is linear in τ. For this reason,

the pulse is known as a linear frequency modulated (FM) chirp. In general, most

SARs utilize values of k0 and α where

k0 >> 1

and

α << 1.

For example, in the system used to produce the SAR image given in Figures 5.1,

k0 � 224m−1

and the quadratic chirp rate was 2π × 1013sec−2 giving

α � 7 × 10−4m−2.

5.1.2 The Range Spectrum

The spectrum of the FM chirp is obtained by evaluating the integral

P(k) =
T/2∫

−T/2

exp(ik0τ) exp(−iατ2) exp(−ikτ)dτ (5.1)

This is given by

P(k) =
√

π

2α

[
K
(

αT + u√
2πα

)
+ K
(

αT − u√
2πα

)]
exp(−iu2/4α)

where u = k + k0 and

K(x) =
x∫

0

exp(iπx2/2)dx = C(x) + iS(x)

with real and imaginary parts

C(x) =
x∫

0

cos
π

2
x2dx

and

S(x) =
x∫

0

sin
π

2
x2dx.

The integrals above are known as Fresnel integrals. Figure 9 is a sketch of the

real valued pulse cos(k0τ + ατ2) and its characteristic amplitude spectrum. Observe

that the bandwidth of the pulse is determined by the value of αT. With microwave

systems this is typically two to three orders of magnitude smaller than the carrier

wavenumber k0.
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5.1.3 Range Processing

Consider a single point scatterer which reflects a replica of the transmitted pulse. At

the receiver the return signal is coherently mixed down to base-band (i.e. frequency

demodulated). In practice, the field that is actually measured is of course not a

complex but a real valued signal. The imaginary part of this signal is obtained using

a quadrature filter which demodulates the return signal using sin(k0τ) instead of

cos(k0τ). This is equivalent to computing the Hilbert transform of the signal after

demodulation to base-band. The complex or analytic signal that is obtained after

demodulation is given by

exp(iατ2), −T/2 ≤ τ ≤ T/2.

At this stage, the range resolution is determined by the pulse length T. By applying

FIGURE 9 Sketch of a linear frequency modulated (chirped) pulse and its characteristic
amplitude spectrum.

a suitable process to the return signal, we can enhance the range resolution and hence

obtain a more accurate record of the position in range of the point scatterer. This is

achieved by correlating the signal with its complex reference function exp(−iατ2).
In SAR and other pulse-echo systems which utilize a linear FM pulse, this process

is known as range compression. The range compressed data R(τ) can be written as

(u being a dummy variable)

R(τ) =
T/2∫

−T/2

exp[−iα(τ + u)2] exp(iαu2)du.
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Expanding (τ + u)2, this equation becomes

R(τ) = exp(−iατ2)
T/2∫

−T/2

exp(−2iαuτ)du.

Evaluating the integral over u, we have

R(τ) = T exp(−iατ2)sinc(αTτ).

The length of the pulse T is relatively large. As a consequence of this, the sinc

function is very narrow compared with the complex exponential. For this reason we

have

cos(ατ2)sinc(αTτ) � sinc(αTτ)

and

sin(ατ2)sinc(αTτ) � 0.

The range compressed signal can therefore be written as

R(τ) � Tsinc(αTτ), T >> 1.

By defining the range resolution to be the distance between the first two zeros of

the sinc function which occur when αTτ = ±π the range resolution is given by

Range resolution = 2π/αT metres .

Observe that, as the value of αT increases, the range resolution improves. For a 20 μs
pulse, T = 6 km and, with α = 7 × 10−4 m−2, the range resolution is approximately

1.5 metres.

5.1.4 Azimuth Processing

As the radar travels along its flight path (repeatedly emitting a linear FM pulse and

recording the back-scattered electric field that is scattered by the ground), the radar

beam illuminates an area of the ground which depends upon the grazing angle, its

angle of divergence and the range at which the radar operates. The width of the

beam in azimuth is given by R tan(β/2) where R is the range and β is the angle of

divergence of the beam. For a SAR system, this value corresponds to the maximum

length of the synthetic aperture as shown in Figure 10. In practice, β ∼ 10 and so

the width of the beam is approximately given by Rβ/2. This value determines the

resolution in azimuth of the so called Real Aperture Radar or RAR. At a range of

of say 50 km with β = 10, this resolution is just under a kilometre which is very

poor and of little practical use. Hence real aperture radar images are only useful

when short ranges are involved. The whole point of SAR is to obtain high resolution

at long ranges. By studying the response of the radar in azimuth as it passes by a

scatterer, we can synthesize the resolution via the principle demonstrated in Figure

11. If we consider the radar to be a point source then the field that is produced

may therefore be described by the three-dimensional Green function. At relatively
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large distances from the location of the source, the Green function can be simplified

using the Fresnel approximation (see Appednix 1). This provides a description for

the wavefield in the intermediate or Fresnel zone. The wavefronts in this zone have a

curvature which is parabolic as illustrated in Figure 11. Using the geometry shown

FIGURE 10 Plan view of a SAR showing the maximum length of the synthetic aperture.

in this figure, from Pythagoras’ theorem we have

(R + δR)2 + y2 = R2

or

2RδR + (δR)2 + y2 = 0.

If the angle of divergence of the beam is small, then δR is much less than 1. We can

then ignore the nonlinear term (δR)2 leaving the equation

2δR = −y2

R
. (5.2)

A simple plane wave travelling along the two-way path length 2(R + δR) can there-

fore be written as

exp[(−2ik0(R + δR)] = exp(−2ik0R) exp(−2ik0δR)

where k0 is the wavenumber. This wave has two phase factors. The first phase 2k0R
is constant but the second phase 2k0δR is, from equation (5.2) a function of y and

is given by k0y2/R. Hence, as the radar moves past the scatterer a quadratic phase
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FIGURE 11 By the time the wavefield emitted by the radar has reached a point scatterer,
the curvature of the wavefront is parabolic. Scattering occurs in the Fresnel
zone. This gives a phase history that is proportional to the square of the
distance moved in azimuth.



126

shift takes place. If we denote the width of the beam at R by L, then the complex

azimuth response of the radar can be written as

exp(ik0y2/R), −L/2 ≤ y ≤ L/2

where −L/2 is the point where the scatterer enters the beam and L/2 is the position

where the scatterer leaves the beam. A plot of the azimuth response of a SAR is

given in Figure 12. In some cases, this response can be clearly observed with real

data when the radar passes by a strong scatterer with a large radar cross-section.

An example of this is given in Figure 13. If the beamwidth is small, then this effect

is not significant. Also, only if k0 is sufficiently large will the effect be observed.

In other words, the wavelength of the wavefield must be small compared with the

range.

The analysis above demonstrates that the azimuth response of the radar is the

same as the response in range to a linear FM pulse. Hence, by utilizing the principles

of range compression, we can enhance the azimuth resolution. This is known as az-

imuth compression and, like range compression, is based on correlating the complex

function exp(ik0y2/R) with its complex reference function exp(−ik0y2/R) over the

beam width L. Hence, the azimuth compressed signal is given by

A(y) =
L/2∫

−L/2

exp[−ik0(y + u)2/R] exp(ik0u2/R)du.

Expanding (y + u)2 and evaluating the integral over u, we get

A(y) = L exp(−ik0y2/R)sinc(k0Ly/R)

� Lsinc(k0Ly/R), L >> 1.

For both azimuth compression and range compression, the correlation between the

return signal and its reference may be computed in Fourier space using the correla-

tion theorem and a FFT.

By defining the azimuth resolution to be the distance between the first zeros of

the sinc function which occur when k0Ly/R = ±π, the azimuth resolution is given

by

Azimuth resolution = 2πR/k0L = 2π/βk0 metres .

The microwave antenna (i.e. essentially the horn at the end of the microwave trans-

mission line) acts like a rectangular aperture which diffracts an otherwise collimated

beam of microwaves. The Kirchhoff diffraction integral for fixed k = k0 is given by∫
S

exp(ik · r) exp(−ik0r̂0 · r)d2r, r̂0 =
r0

| r0 |
which, for an aperture of width w, say, and an incident plane wave propagating in

the z-direction (where k = ẑk0), becomes (with r0 ∼ z0 and ignoring scaling)

w/2∫
−w/2

w/2∫
−w/2

exp(−ik0x0x/z0) exp(−ik0y0y/z0)dxdy
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FIGURE 12 Real (top) and imaginary (bottom) components of the theoretical response
in azimuth of a SAR to a single point scatterer, i.e. cos(k0y2/R) and
sin(k0y2/R), respectively.

FIGURE 13 Example of the experimental response in azimuth of a SAR to a single point
scatterer. It is clearly a noisy version of Figure 12.
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= 4
sin(k0x0w/2z0)

k0x0/z0

sin(k0y0w/2z0)
k0y0/z0

.

The first zeros of this diffraction pattern in azimuth can be taken to determine the

width of the radar beam (i.e. the first lobe). These zeros occur when

k0
w
2

sin
β

2
= ±π

where β/2 = y0/z0. Hence, for small values of β,

β � 4π

k0w
and, hence the azimuth resolution is proportional to w. The azimuth or synthetic

resolution of the SAR is therefore independent of the wavelength.

By studying the response of the radar to a point scatterer in range, and then

in azimuth, we have established the form of the SAR point spread function. This is

given by

P(x, y) = LTsinc(αTx)sinc(βk0y).

It is identical to the diffraction pattern produced by a rectangular aperture. Thus,

the (post-processed) SAR image data D(x, y) generated by scattering from the

ground is given by the convolution of the object function for the ground O(x, y)
with the appropriate point spread function, i.e.

D(x, y) = P(x, y) ⊗⊗O(x, y). (5.3)

A SAR image is a grey level display of the amplitude modulations in the data, i.e.

ISAR(x, y) =| D(x, y) | .

The object function describes the imaged properties of the ground surface. The

conventional model for this function is the point scattering model. This is where

the object function is taken to be a distribution of point scatterers each of which

reflects a replica of the emitted pulse and can be written in the form

O(x, y) = ∑
i

∑
j

δ(x − xi)δ(y − yj).

Here, nothing is said about the true physical nature of the ground surface such as its

shape and material (dielectric) properties. In the following Section this shortcoming

is addressed.

5.2 Scattering Model

By considering the response of the radar to a single point scatterer, the basic pro-

cessing technique required to recover a SAR image can be established. However,

this approach conveys no information about the possible physical interpretation of

a SAR image. To do this the relationship between the object function and the

physical properties of the ground surface such as its dielectric properties and height

fluctuations must be established. In this Section approximate expressions for the

object functions associated with different polarizations are derived.
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5.2.1 A Physical Model for SAR

Consider the model illustrated in Figure 14. Here, x is the range coordinate, y is the

azimuth coordinate and z is the vertical co-ordinate. Let the ground be composed

of three-dimensional variations in the permittivity ε and conductivity σ with height

variations h. We shall assume that the relative permeability of the ground is 1.

Hence, the back-scattered field detected by the radar is produced by variations in

ε(r) and σ(r) over a region of space r = x̂x + ŷy + ẑz where 0 ≤ z ≤ h(x, y) and

x̂x + ŷy ∈ A - the area of the ground illuminated by the radar beam (i.e. the radar

footprint). For z > h(x, y), ε and σ are equal to the permittivity and conductivity

of the atmosphere. The permittivity of the atmosphere is taken to be the same as

for a vacuum and the conductivity of the atmosphere is assumed to be zero. Thus, if

a denotes the altitude at which the radar operates, then for all values of z between h
and a, ε = ε0 and σ = 0. The field that is measured in a SAR is the electric field and

so we can work with equations for the electric field alone. From Maxwell’s equations,

we can write the basic wave equation for this field in the form (see Chapter 2)

(∇2 + k2)Ẽ = −k2γẼ + ikz0σẼ −∇(Ẽ · ∇ ln ε)

where

γ =
ε − ε0

ε0
,

k is the wavenumber and z0 is the impedance of free space (� 376.6 ohms).

FIGURE 14 Physical model for an airborne SAR.

Assuming that the scattered field only weakly perturbs the incident field, i.e.

‖Ẽs‖ << ‖Ẽi‖
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and writing ε = εrε0 where εr is the relative permittivity, we obtain

(∇2 + k2)Ẽs = −k2γẼi + ikz0σẼi −∇(Ẽi · ∇ ln εr) (5.4)

where

γ = εr − 1.

Note that, in this model, the effects of using different polarizations are determined

entirely by the term ∇(Ẽi · ∇ ln εr). If this term is neglected, then the behaviour of

the electric field is independent of its polarization (i.e. the wave equation remains

the same when the polarization of the electric field is changed). Our problem is to

solve equation (5.4) for the scattered electric field Ẽs and to write the solution in a

form that is the same as equation (5.3) so that the object function can be defined

in terms of the physical properties of the ground (εr, σ and h). To do this we need

a suitable model for the incident field.

5.2.2 Green’s Function for Airborne SAR

Consider the radar to be a point source. We may then consider a model for the

incident field of the form

Ẽi = n̂Pg

where P is the spectrum of the pulse that the radar emits given by equation (5.1)

and g is the three-dimensional ‘out-going’ Green’s function given by

g(r | r0, k) =
exp(ik | r − r0 |)

4π | r − r0 | .

The geometry of an airborne SAR allows us to approximate the Green’s function.

Writing the path length | r − r0 | in Cartesian coordinates,

| r − r0 |= (x − x0)
(

1 +
(y − y0)2

(x − x0)2 +
(z − z0)2

(x − x0)2

)1/2

and employing the conditions

(y − y0)2

(x − x0)2 << 1

and
(z − z0)2

(x − x0)2 << 1

a binomial expansion gives

| r − r0 |� x − x0 +
1
2

(y − y0)2

(x − x0)
+

1
2

(z − z0)2

(x − x0)
.

This result yields an expression for the Green’s function in the Fresnel zone. In this

case, we retain terms which are quadratic in both the azimuth and vertical directions.

It is the inclusion of quadratic terms of this type which forms the theoretical basis
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for synthetic aperture imaging. Physically, we are assuming that the wavefront as a

function of y and z has a curvature which is parabolic. The conditions required to

do this place limits on the grazing angle θ and the angle of divergence of the radar

beam β. In terms of θ and β, we may write these conditions in the form

tan2(β/2) << 1

and

tan2 θ << 1.

It is reasonable to restrict values of θ and β to being less than or equal to 10o when

tan2 θ and tan2(β/2) are two and three orders of magnitude less than 1, respectively.

This upper limit for θ and β falls well within the values of these parameters that

are used in airborne SAR systems, where θ is typically 5o − 10o and β ∼ 1o. The

above expression for the path length can be further simplified by exploiting the fact

that the range x0 at which the radar operates is large compared to the width of

ground that is illuminated by the beam (the swath width), i.e. we can introduce the

condition | x |
x0

<< 1.

This allows us to write

| r − r0 |= x − x0 − (y − y0)2

2x0
− (z − z0)2

2x0
.

The Green’s function is then given by

g =
1

4πr0
exp[ik(x − x0)] exp[−ik(y − y0)2/2x0] exp[−ik(z − z0)2/2x0].

The parameter r0 remains fixed throughout the operation of the SAR and is known

as the slant range (i.e. the distance between the radar and the scattering region).

5.2.3 Wave Equations for SAR

Let us consider a SAR that can emit a vertically polarized electric field of the form

Ẽi = (ẑ cos θ + x̂ sin θ)Pg (5.5)

or a horizontally polarized electric field where Ei is given by

Ẽi = ŷPg. (5.6)

Substituting equation (5.6) into equation (5.4) and taking the dot product of each

term with ŷ, the behaviour of the HH scattered field UHH is determined by the wave

equation

(∇2 + k2)UHH = −k2γPg + ikz0σPg

− ∂

∂y

(
Pg

∂

∂y
ln εr

)
, UHH = ŷ · Ẽs. (5.7)
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The cross polarized scattered field in this case is obtained by taking the dot product

of each term with ẑ cos θ + x̂ sin θ giving

(∇2 + k2)UHV = −
(

cos θ
∂

∂z
+ sin θ

∂

∂x

)(
Pg

∂

∂y
ln εr

)
,

UHV = (ẑcosθ + x̂ sin θ) · Ẽs. (5.8)

In a similar way, the wave equations for the VV and VH scattered fields are obtained

by substituting equation (5.5) into equation (5.4) and taking the dot product of each

term with ẑ cos θ + x̂ sin θ and ŷ, respectively. We then obtain

(∇2 + k2)UVV = −k2γPg + ikz0σPg

−
(

cos θ
∂

∂z
+ sin θ

∂

∂x

)(
cos θPg

∂

∂z
ln εr + sin θPg

∂

∂x
ln εr

)
,

UVV = (ẑ cos θ + x̂ sin θ) · Ẽs (5.8)

and

(∇2 + k2)UVH = − ∂

∂y

(
cos θPg

∂

∂z
ln εr + sin θPg

∂

∂x
ln εr

)
,

UVH = ŷ · Ẽs. (5.9)

Notice that the behaviour of the VV and HH fields is determined by variations

in both the permittivity and conductivity whereas that of the HV and VH fields

depends on variations in the permittivity alone. This result immediately suggests a

method of quantitative imaging with SAR. By measuring UVH we can in principle

determine εr, and therefore γ(= εr − 1). Hence by measuring UVV , with γ and εr
known, we can determine σ.

In general, fluctuations in εr and therefore ln εr (as a function x, y and z)
occur on a scale that is much smaller than the wavelength. For this reason we can

write
∂

∂u

(
g

∂

∂v
ln εr

)
� g

∂2

∂u∂v
ln εr

where both u and v are equal to x, y or z. For example, from equation (5.7)

∂

∂y

(
g

∂

∂y
ln εr

)
= g

∂2

∂y2 ln εr +
∂g
∂y

∂

∂y
ln εr

= g
(

∂2

∂y2 ln εr − ik0
(y − y0)

x0

∂

∂y
ln εr

)

� g
∂2

∂y2 ln εr

provided

Ly <<
x0

k0 | y − y0 |
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where Ly is the characteristic scale length over which variations in ln εr occur. For

an X-band radar operating at a range of 50 km with a beamwidth of 1 km,

Ly << 22cm

which is physically reasonable. This result allows us to reduce equation (5.7) and

write it in the form

(∇2 + k2)UHH � −k2γPg + ikz0σPg − Pg
∂2

∂y2 ln εr. (5.10)

Similarly, equations (5.8)-(5.9) become

(∇2 + k2)UHV � − cos θPg
∂2

∂z∂y
ln εr − sin θPg

∂2

∂x∂y
ln εr (5.11)

(∇2 + k2)UVV � −k2γPg + ikz0σPg − cos2 θPg
∂2

∂z2 ln εr

−2 cos θ sin θPg
∂2

∂z∂x
ln εr − sin2 θPg

∂2

∂x2 ln εr (5.12)

(∇2 + k2)UVH � − cos θPg
∂2

∂y∂z
ln εr − sin θPg

∂2

∂y∂x
ln εr. (5.13)

5.2.4 Determination of the Back-scattered Fields

Now that a set of wave equations has been derived, we can concentrate on developing

a solution for the back-scattered field that is observed by the radar. To start with,

we shall develop a solution for the HH field. For the time being, let us consider the

reduced wave equation

(∇2 + k2)U = −k2Pgγ + ikz0Pgσ (5.14)

After demonstrating the basic analytical method we shall return to equations (5.10)-

(5.13). Remember, we are aiming at a solution for the processed SAR data which

gives a mathematical expression for the object function in terms of εr, σ and h.

The Green’s function solution to equation (5.14) for the back-scattered field is

U = P
∫

(k2γ − ikz0σ)g2d3r. (5.15)

The radar measures the back-scattered field at a fixed range x0 and altitude z0 over

a finite distance in azimuth. Denoting the fixed range and altitude by R and a,
respectively, the kernel of equation (5.15) becomes

g2 =
1

16π2r2
0

exp[2ik(x − R)] exp[−ik(y − y0)2/R] exp[−ik(z − a)2/R].

Writing

X = x − R, Y = y − y0 and Z = z − a
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the back-scattered field as a function of y0 and k is given by

U(y0, k) =
P

16π2r2
0

∫ ∫ ∫
exp[ik(2X − Y2/R − Z2/R)](k2γ − ikz0σ)dxdydz.

Because the bandwidth of the pulse is so small compared to the carrier frequency

we can write k2γ and ikz0σ as k2
0γ and ik0z0σ, respectively. By taking the inverse

Fourier transform of the integral equation above, the back-scattered field can be

written in terms of its measured time history u(y0, τ) at different points in azimuth

y0. Using the convolution theorem we then obtain

u(y0, τ) =
1

16π2r2
0

∫ ∫ ∫
p(τ + 2X − Y2/R − Z2/R)(k2

0γ − ik0z0σ)dxdydz

where

u(y0, τ) =
1

2π

∞∫
−∞

U(y0, k) exp(ikτ)dk.

The pulse is of the form

p(τ) = exp(ik0τ) exp(iατ2).

Noting that k0 >> 1 and α << 1, by comparing the magnitude of terms which

make up the kernel p we obtain

p(τ + 2X + Z2/R − Y2/R) � p(τ + 2X) exp(−ik0Y2/R) exp(−ik0Z2/R).

This simplification is a consequence of the result

k0 − α(Y2 + Z2)/R � k0

and allows the scattered field to be written as

U(y0, τ) =
∫ ∫

p(τ + 2X) exp(−ik0Y2/R) f (x, y)dxdy

where f is the scattering function given by

f (x, y) =
1

16π2r2
0

h∫
0

(k2
0γ − ik0z0σ) exp[−ik0(z − a)2/R]dz.

We now have an integral equation where our processing variables τ and y0 have

been separated into two different functions. This is why SAR data can be processed

in range and azimuth separately. A further simplification can now be made to f by

noting that
z
a

<< 1, 0 ≤ z ≤ h

for an airborne SAR so that

(z − a)2 = z2 − 2za + a2 � −2za + a2.
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Hence, since a/R = tan θ, where θ is the grazing angle, the scattering function can

be written as

f (x, y) =
1

16π2r2
0

exp(−ik0a tan θ)
h∫

0

(k2
0γ − ik0z0σ) exp(2ik0z tan θ)dz.

We now introduce a couple of tricks which are designed entirely to write the scattered

field in a more convenient form. First of all we use the properties of the delta function

to write ∫ ∫
p(τ + 2X) exp(−ik0Y2/R) f (x, y)dxdy

=
∞∫

−∞

dτ′p(τ′)
∫ ∫

δ(τ′ − τ − 2X) exp(−ik0Y2/R) f (x, y)dxdy

=
∫

dτ′p(τ′)
∫

f [τ′/2 − τ/2 + R, y] exp(−ik0Y2/R)dy.

Next, we let x = 2R− τ and x′ = τ′ + x. Then, τ′ = x′ − x, τ′/2− τ/2 + R = x′/2
and dτ′ = dx′ and the scattered field can be written in the form

u(y0, x) =
∫

dx′p(x′ − x)
∫

f (x′, y) exp[−ik0(y − y0)2/R]dy.

To be consistent with the notation now being used for the range variable we write

y as y′ and y0 as y. The scattered field can then be written as

u(x, y) =
∫ ∫

exp[ik0(x′ − x)] exp[iα(x′ − x)2] exp[−ik0(y′ − y)2/R]

× f (x′, y′)dx′dy′.

At the receiver the scattered field, modelled by the above equation, is coherently

mixed down to base-band. This is equivalent to multiplying it by exp(ik0x) and

provides the data

d(x, y) = exp(ik0x)u(x, y)

=
∫ ∫

exp[iα(x′ − x)2] exp[−ik0(y′ − y)2/R] exp(ik0x′) f (x′, y′)dx′dy′.

This is a 2D convolution integral, and so we may write

d(x, y) = exp(iαx2) exp(−ik0y2/R) ⊗⊗O(x, y)

where O is the object function given by

O(x, y) = exp(ik0x) f (x, y).

We can now apply the processing method which was explained in Section 10.2.

Correlating these data with the functions exp(−iαx2) and exp(ik0y2/R) over the

pulse length T and beam width L, respectively, we obtain

D(x, y) = βRTsinc(αTx)sinc(βk0y) ⊗⊗O(x, y) (5.16)
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where

D(x, y) = d(x, y) �� exp(−iαx2) exp(ik0y2/R)

and β(= L/R) is the angle of divergence of the beam. The SAR image in then given

by

ISAR(x, y) =| D(x, y) |= βRT | sinc(αTx)sinc(βk0y) ⊗⊗O(x, y) | .

Observe that this equation for D is the same as equation (5.3). However, in this

case, the object function is defined in terms of a scattering function for the ground

f .
By taking the two-dimensional Fourier transform of D(x, y), equation (5.16)

can then be written in kxky-space as

D̃(kx, ky) =
π2R
αk0

F(kx − k0, ky); −αT ≤ kx ≤ αT, −βk0 ≤ ky ≤ βk0 (5.17)

where

D̃(kx, ky) =
∞∫

−∞

∞∫
−∞

D(x, y) exp(−ikxx) exp(−ikyy)dxdy

and

F(kx − k0, ky) =
∞∫

−∞

∞∫
−∞

exp(ik0x) f (x, y) exp(−ikxx) exp(−ikyy)dxdy.

From equation (5.17), it is clear that range compression provides a sample of the

spectrum F of width 2αT located at k0. Unlike the range spectrum the azimuth

spectrum is not the result of a spectral shift from GHz to MHz. The azimuth spec-

trum therefore gives base-band information on the nature of the scattering function

f band limited by 2βk0. The spectral content of f that is acquired is therefore a

rectangle of area 4αβk0T centred on (−k0, 0) in kxky space. This is shown in Figure

15 which illustrates that the spectral information (in contrast to resolution) on the

ground depends on the wavelength of the microwaves. The wavelength determines

the characteristic scale length over which scattering takes place. This leads to a

marked difference between SAR images obtained at different wavelengths. An ex-

ample of this is shown in Figure 16 which compares an XVV and LVV SAR image

of the same region.

Let us now return to equations (5.10)-(5.13). Recall that we worked with the

reduced wave equation (5.14) in order to demonstrate the basic analytic method.

Now that this has been done we are in a position to go back and repeat the calculation

for equations (5.10)-(5.13). From equation (5.10), the back-scattered HH field is

UHH = P
∫ ∫ ∫ (

k2γ − ikz0σ +
∂2

∂y2 ln εr

)
g2dxdydz.

This equation is identical in form to equation (5.15). The processed SAR data can

therefore be written without further proof as

DHH(x, y) = TRβsinc(αTx)sinc(βk0y) ⊗⊗OHH(x, y)
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FIGURE 15 The shaded region represents the band of the spatial frequencies on the
scattering function for the ground truth that is obtained with a SAR.

FIGURE 16 Comparison of two SAR images of the same region using different
wavlengths: λ = 2.8 cm (left) and λ = 24cm (right).
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where the HH object function is given by

OHH =
1

16π2r2
0

exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
k2

0γ − ik0z0σ +
∂2

∂y2 ln εr

)
exp(2ik0z tan θ)dz. (5.18)

A similar type of model can be generated for different polarization data. To begin

with, we can evaluate the cross polarized scattered field. From equation (5.11), the

back-scattered HV field is given by

UHV = P
∫ ∫ ∫ (

cos θ
∂2

∂z∂y
ln εr + sin θ

∂2

∂x∂y
ln εr

)
g2dxdydz.

Once again the form of this equation is identical to that of equation (5.15). Hence

the processed HV SAR data is

DHV(x, y) = TRβsinc(αTx)sinc(βk0y) ⊗⊗OHV(x, y)

where the HV object function is given by

OHV =
1

16π2r2
0

exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
cos θ

∂2

∂z∂y
ln εr + sin θ

∂2

∂x∂y
ln εr

)
exp(2ik0z tan θ)dz. (5.19)

From equation (5.12) it is easy to show that DVV is given by

DVV(x, y) = TRβsinc(αTx)sinc(βk0y) ⊗⊗OVV(x, y)

where

OVV =
1

16π2r2
0

exp(−ik0a tan θ) exp(ik0x)

×
h∫

0

(
k2

0γ − ik0z0σ + 2 cos θ sin θ
∂2

∂z∂x
ln εr

+ sin2 θ
∂2

∂x2 ln εr + cos2 θ
∂2

∂z2 ln εr

)
exp(2ik0z tan θ)dz. (5.20)

Finally, from equation (5.13), we get

DVH(x, y) = TRβsinc(αTx)sinc(βk0y) ⊗⊗OVH(x, y)

where

OVH =
1

16π2r2
0

exp(−ik0z tan θ) exp(ik0x)

×
h∫

0

(
cos θ

∂2

∂y∂z
ln εr + sin θ

∂2

∂y∂x
ln εr

)
exp(i2ik0z tan θ)dz. (5.21)
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5.3 The ‘Sea Spikes’ Problem

SAR images are highly sensitive to the polarization of the field that is emitted or

received. In principle, this result can be used to classify regions of an image when it is

known, a priori, how certain types of terrain affect different polarized radiation. One

of the most dramatic effects occurs when microwaves are scattered by the sea surface

at low grazing incidence. An example of this is shown in Figure 17. This figure

FIGURE 17 Real aperture radar images of the sea surface using vertical (left) and hori-
zontal (right polarization).

shows two real aperture radar or RAR images of the sea surface using X-band HH

and VV polarization. In this example, a pulse is emitted in a fixed time interval and

the VV return measured over a set period of time (approximately 60 seconds). The

radar is then switched to HH mode. Clearly, there is a marked difference between

the two images. The VV image shows features which are due to reflections from the

crests of waves that are aligned along the direction of the prevailing wind. These

features are almost completely lost in the HH image, although it is just possible to

observe the direction of wave motion. The HH image is dominated by a number

of very intense reflections which are known as ‘sea spikes’. This is a good example

of a problem in image understanding. To explain this effect and solve the ‘sea
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spikes’ problem we need to establish the physics associated with polarization and

establish a suitable model for the sea surface. From previous results, under the Born

approximation, polarization effects are characterized by the term ∇(lnεr · Ei) in the

wave equation for the electric field. Hence, a good starting point is to investigate

the characteristics of this term subject to a simplified model of the sea surface.

To a good approximation, the sea is a homogeneous conductive dielectric of

varying height h(x, y). We may therefore consider a model where

εr(x, y, z) = εro, z ≤ h(x, y);

σ(x, y, z) = σ0, z ≤ h(x, y)

and where [
∂εr

∂x

]
z<h

=
[

∂εr

∂y

]
z<h

=
[

∂εr

∂z

]
z<h

= 0.

Typical values for εro and σ0 are 81 and 4.3 siemens/metre, respectively. In this case,

for an X-band radar (k0 � 224m−1), k2
0γ0 � 4 × 106m−2 and k0z0σ0 � 3.6 × 105 so

that

k2
0γ0 − ik0z0σ0 � k2

0γ0.

A simple mathematical model for the VV and HH RAR images given in Figure 17

can be obtained by letting the grazing angle θ approach zero. All terms involving

sin θ can then be neglected, giving

Iij
RAR(x, y) = T | sinc(αTx) exp(−ik0y2/R) ⊗⊗Oij(x, y) |

where from equations (5.20) and (5.18),

OVV =
1

16π2R2 exp(ik0x)
h∫

0

(
k2

0γ0 +
∂2

∂z2 ln εr

)
dz, γ0 = εro − 1

and

OHH =
1

16π2R2 exp(ik0x)
h∫

0

(
k2

0γ0 +
∂2

∂y2 ln εr

)
dz

respectively. The VV object function is easy to evaluate, giving

OVV =
1

16π2R2 exp(ik0x)
(

k2
0γ0h +

1
εro

[
∂εr

∂z

]
z=h

)
.

The HH object function can be evaluated by using Leibniz’ formula for the integral

of a derivative, i.e.
b(x)∫

a(x)

∂

∂x
f (x, y)dy =

∂

∂x

b(x)∫
a(x)

f (x, y)dy

+
[

f (x, y)
]

y=a(x)

da
dx

−
[

f (x, y)
]

y=b(x)

db
dx

.
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We then obtain

OHH =
1

16π2R2 exp(ik0x)
(

k2
0γ0h − 1

εro

[
∂εr

∂y

]
z=h

∂h
∂y

)
.

Noting that
h∫

0

∂

∂z

(
∂ ln εr

∂y

)
dz =

1
εro

[
∂εr

∂y

]
z=h

and (using Leibniz’s formula again)

h∫
0

∂

∂y

(
∂ ln εr

∂z

)
dz = − 1

εro

[
∂εr

∂z

]
z=h

∂h
∂y

we have [
∂εr

∂y

]
z=h

= −
[

∂εr

∂z

]
z=h

∂h
∂y

since
h∫

0

∂

∂z

(
∂

∂y
ln εr

)
dz =

h∫
0

∂

∂y

(
∂

∂z
ln εr

)
dz.

Hence, the HH object function becomes

OHH =
1

16π2R2 exp(ik0x)

[
k2

0γ0h +
1

εro

[
∂εr

∂z

]
z=h

(
∂h
∂y

)2
]

.

A relatively simple expression for the VV and HH RAR images can then be obtained

by letting
1

εro

[
∂εr

∂z

]
z=h

= k0γ0 � 1.8 × 104m−1.

Here it is assumed that the gradient in the vertical direction due to a change in

the permittivity across the interface between the sea and air is equal to k0γ0εro �
1.3 × 106m−1 over the imaged scene. This allows us to write the VV and HH RAR

images as

IVV
RAR(x, y) = A | sinc(αTx) exp(−ik0y2/R) ⊗⊗ exp(ik0x) [1 + k0h(x, y)] |

and

IHH
RAR(x, y)

= A | sinc(αTx) exp(−ik0y2/R) ⊗⊗ exp(ik0x)
[

k0h(x, y) +
(

∂

∂y
h(x, y)

)2]
|

where A is given by

A =
γ0k0T

16π2R2 � 114T
R2 .

In this form, it is clear that the VV RAR image is a map of the height variations

h of the sea surface whereas the HH RAR image is a map of both h and (∂yh)2.
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Compared to h, the nonlinear term (∂yh)2 is very sensitive to the sea state. From

this result we deduce that sea spikes are caused by rapid variations in the height of

the sea surface as a function of the azimuth direction. In other words, the HH RAR

image is dominated by features which map the location of points where∣∣∣∣∂h
∂y

∣∣∣∣ >> k0h

on the scale of a wavelength. A simple illustration of this is given in Figure 18

which shows images of | sij | and | (si(j+1) − sij)2 |, where sij is a 32×32 random

Gaussian distributed array which is taken to represent a surface patch (without any

deterministic patterns), each pixel being taken to be on the scale of a wavelength.

A sequence of randomly distributed spikes occurs at locations where the difference

between the (j + 1)th and jth elements of sij is relatively large so that the nonlinear

term (si(j+1) − sij)2 produces a ‘spike dominant’ effect.

FIGURE 18 Simulation of sea spikes (right) using a low resolution rough surface patch
model (left) for the sea surface.

5.4 Quantitative Imaging

The object functions for a SAR image show that the VV polarization data are related

to both the permittivity and conductivity whereas the VH cross polarization data

are related to the permittivity alone. This result provides a method of quantitative

imaging using SAR. To illustrate the principle, consider a model where the grazing

angle approaches zero and where the ground is composed of conductors embedded in

a homogeneous dielectric. Using this model, we can employ the following conditions

εr(x, y, z) = εro, 0 ≤ z ≤ h(x, y)

and [
∂εr

∂x

]
z<h

=
[

∂εr

∂y

]
z<h

=
[

∂εr

∂z

]
z<h

= 0.
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The problem is then reduced to that of processing and combining the VV and VH

polarization data in such a way that the reflections from conductors are isolated. As

θ → 0, the SAR data for ij polarization are given by

Dij(x, y) = P(x, y) ⊗⊗Oij(x, y)

where

OVV =
1

16π2R2 exp(ik0x)

⎛⎝k2
0γ0h +

1
εro

[
∂εr

∂z

]
z=h

− ik0z0

h∫
0

σdz

⎞⎠
and

OVH =
1

16π2R2 exp(ik0x)
1

εro

([
∂εr

∂z

]
z=h

∂h
∂y

)
.

If we then consider the case when

1
εro

[
∂εro

∂z

]
z=h

= k0γ0

the object functions reduce to

OVV =
k0γ0

16π2R2 exp(ik0x)

⎛⎝1 + k0h − iz0

γ0

h∫
0

σdz

⎞⎠
and

OVH(x, y) =
k0γ0

16π2R2 exp(ik0x)
∂h
∂y

.

The VV and HH processed SAR data are then given as

DVV =
k0γ0

16π2R2 P ⊗⊗ exp(ik0x)

⎛⎝1 + k0h − iz0

γ0

h∫
0

σdz

⎞⎠
and

DVH =
γ0

16π2R2 P ⊗⊗ exp(ik0x)
∂

∂y
(1 + k0h)

where P is the point spread function. The last equation can be integrated directly

giving

k0γ0

16π2R2 P ⊗⊗ exp(ik0x)(1 + k0h) = k0

y∫
DVHdy

and, hence, the VV polarization data can be written as

DVV = k0

y∫
DVHdy − ik0z0

16π2R2 P ⊗⊗ exp(ik0x)
h∫

0

σdz.

By defining the SAR image of the conductivity variations as

Iσ
SAR(x, y) =

k0γ0

16π2R2 | P(x, y) ⊗⊗ exp(ik0x)
h(x,y)∫

0

σ(x, y, z)dz |
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we then obtain

Iσ
SAR(x, y) =| DVV(x, y) − k0

y∫
DVH(x, y)dy | .

This result provides a quantitative SAR image of the conductivity of the ground

surface obtained by integrating the cross polarization data DVH.



6 INVERSE SCATTERING SOLUTIONS WITH
APPLICATIONS TO ELECTROMAGNETIC SIGNAL
PROCESSING

6.1 Introduction

When a signal is recorded that has been physically generated by some scattering

process (the interaction of electromagnetic inhomogeneous materials, for example),

the ‘standard model’ for the signal (i.e. information content convolved with a char-

acteristic Impulse Response Function) is usually based on a single scattering approx-

imation. An additive noise term is introduced into the model to take into account

a range of non-deterministic factors including multiple scattering that, along with

electronic noise and other background noise sources, is assumed to be relatively

weak. Thus, the standard model is based on a ‘weak field condition’ and the inverse

scattering problem is often reduced to the deconvolution of a signal in the presence

of additive noise.

Attempts at solving the exact inverse scattering problem for equations such

as the inhomogeneous Schrödinger equation in quantum mechanics and the inho-

mogeneous Helmholtz equation in electromagnetism often prove to be intractable,

particularly with regard to the goal of implementing algorithms that are computa-

tionally stable and/or compatible with standard signal analysis methods and Digital

Signal Processing ‘toolkits’. This chapter is concerned with an approach at solving

the multiple scattering problem for narrow side-band systems (typically, electromag-

netic signal processing systems) that is compounded in the introduction of a single

extra term to the standard model. The approach is based on applying certain con-

ditions to an exact solution of the inverse scattering problem rather than applying

conditions to the forward scattering problem and then inverting the (conditional)

result.
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6.2 The Standard Model: Convolution Transform

The ‘standard model’ used to describe a signal s(t) is based on the equation [23]

s(t) = p(t) ⊗ f (t) + n(t)

where ⊗ denotes the convolution integral, p(t) is the Impulse Response Function

(IRF), f (t) is the ‘input’ (representing the information content of the signal associ-

ated with some physical process - a scattering process, for example) and n(t) is the

characteristic noise of the system whose ‘output’ is s(t). This linear and stationary

model is based on a convolution transform and applies to a wide range of systems

and applications involving the generation, interpretation and processing of digital

signals and images.

In any application, a fundamental signal processing problem is to recover f (t)
from s(t) given an estimate of p(t) and Pr[n(t)] (where Pr denotes the Probability

Density Function of the stochastic function n(t)). In many applications, this model

can be taken to be a relatively complete and accurate representation of the physical

processes that contribute to the generation of the signal s(t), the noise function

n(t) being taken to be a combination of electronic and background noise associated

with the recording system, for example. However, in applications where the signal is

based on the scattering of an incident wavefield with an inhomogeneous medium, the

standard model is based on applying an approximation to the scattering equation,

e.g. the Helmholtz equation. The approximation is often referred to as the Born

approximation (after Max Born, who first considered the approximation with regard

to scattering processes in quantum mechanics through solutions to the Schrödinger

equation) and considers the scattering events that contribute to the signal s(t) to be

based on single scattering processes only. This requires that the ‘scattering model’

adheres to the ‘weak field’ condition in which the total scattered field is considered to

be a weak perturbation of the incident field in terms of some appropriate measure.

In turn, depending on the complexity of the scattering model, this condition can

usually be quantified in terms of physical parameters such as the wavelength λ of

the incident wavefield and the scale length L of the scatterer, a basic ‘standard’

being that λ >> L. However, this condition is fundamentally incompatible with a

basic requirement associated with systems that are designed to recover information

at a resolution compatible with the scale of the wavelength, i.e. when λ ∼ L. Thus,

any system that is designed and engineered to ‘image’ an object on the scale of the

wavelength of the incident field is prone to distortion due to the effect of multiple

scattering, an effect that is not incorporated within the standard model. Instead,

multiple scattering processes are considered to contribute to the noise function n(t).
Given the standard model, the inverse (weak) scattering problem can be re-

duced to the process of Fourier inversion and deconvolution in the presence of ad-

ditive noise. Ideally, we consider some function p(t) such that p(t) � p(t) = δ(t)
where � denotes the correlation integral and δ(t) is the delta function, from which

it follows that

f (t) = p(t) � s(t) + n′(t)
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where n′(t) = −p(t) � n(t).
In this chapter we consider an new approach to the inverse scattering problem

that is exact in the sense that it includes the effects of multiple scattering [24].

Inverse solutions to the multiple scattering problem have been studied for many

years and a variety of solutions developed. However, in practice, except for some

special circumstances, such solutions are usually incompatible with the engineering

of a system associated with the methods of signal analysis upon which it is based

and the Digital Signal Processing ‘toolkits’ that are currently available, e.g. the

MATLAB DSP ‘Toolbox’ [25]. In this chapter, we develop a model for the signal

that is compounded in the equation

s(t) = p(t) ⊗ [ f (t)+ | s(t) |2 exp(iω0t)] + n(t)

where the noise function n(t) is not inclusive of the multiple scattering processes

that are, instead, described by the term p(t) ⊗ [| s(t) |2 exp(iω0t)]. This result

is based on two basic conditions: (i) the total wavefield (i.e. the sum of the inci-

dent and scattered wavefields) is a phase only field; (ii) the frequency bandwidth is

small compared to the carrier wave of the scattered field. In this sense, the result

is not an exact inverse solution in itself but based on an exact inverse solution to

which conditions (i) and (ii) are then applied. These conditions are applicable to

narrow side-band pulse-echo systems, and, for example, side-band systems that ex-

ploit (linear) frequency modulated (FM) pulses. Side-band systems are a general

characteristic of inverse problems associated with electromagnetic signals where the

band-width is small compared with the carrier frequency. Such systems include Real

Aperture Radar and Synthetic Aperture Radar and, in the latter case, a demonstra-

tion of the technique is provided by way of an application in electromagnetic signal

processing.

This chapter is structured into the following sections: Section 6.3 provides a

background to the forward and inverse scattering problems under the weak field

(Born approximation for single scattering) in one-dimension, the weak gradient

(WKB approximation) and strong field (multiple scattering) conditions. Section

6.4 introduces an exact inverse scattering approach and includes example numerical

simulations for weak and strong scattering in one- and two-dimensions. The simu-

lations considered are based on conditions appropriate for application to side-band

signal processing systems where the bandwidth of the wavefield is significantly small

compared to the carrier frequency which is taken to be high and Section 6.5 adopts

the same approach for modelling narrow side-band pulse-echo systems. Section 6.5

addresses signal processing methods associated with FM pulse-echo systems which

provides a background to the application of the solutions to Synthetic Aperture

Radar imaging discussed in Chapter 5 as presented in Section 6.6.

The material presented in this paper is based on an analysis of the problem

reduced to working in one-dimension. However, the approach is directly applicable

to inverse scattering problems concerned with two-dimensional systems (e.g. diffrac-

tion tomography) and three-dimensional systems associated with radio, microwave,

TeraHertz, photonics and electromagnetic signal and imaging processing systems in

general.
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6.3 Forward and Inverse Scattering Solutions in One-Dimension

Based on the material presented in Chapter 2, we consider a model in which ε and

σ are one-dimensional functions, μ = μ0 and the electric field is plane polarized, i.e.

Ẽ = ẑu(x, k), so that equation (8) can be reduced to the form (the one-dimensional

inhomogeneous Helmholtz equation)(
∂2

∂x2 + k2
)

u(x, k) = −k2γ(x, k)u(x, k)

where, for a conductive dielectric,

γ(x, k) = γε(x) − i
z0σ(x)

k
and for a non-conductive dielectric

γ(x) = γε(x) = εr − 1

with ε = ε0εr where εr > 1 is the relative permittivity. The functions εr and σ are

taken to be real whereas the wavefield u is a complex function with variations as a

function of x and k in both amplitude Au(x, k) and phase θu(x, k), i.e.

u(x, k) = Au(x, k) exp[iθu(x, k)]

On the basis of this model, the forward scattering problem is defined as: Given

γ obtain a solution for u. The inverse scattering problem is: Given u derive a solution

for γ.

We consider the case where the medium is a non-conductive dielectric and

where u(x, k), x ∈ (−∞, ∞) is given by the sum of an incident wavefield ui(x, k)
and a scattered wavefield us(x, k), ui being given by a solution of(

∂2

∂x2 + k2
)

ui(x, k) = 0.

Thus, with u = ui + us, for a non-conductive dielectric,(
∂2

∂x2 + k2
)

us(x, k) = −k2γ(x)[ui(x, k) + us(x, k)]. (6.1)

For most practically significant cases, it may be assumed that γ is of compact

support, i.e. γ(x)∃∀x ∈ [−X, X].

6.3.1 Weak Field Condition and the Born Approximation

Given equation (6.1), the weak field condition is based on assuming that the con-

tribution of the scattered field on the right hand side of this equation is minimal.

Under this condition, equation (6.1) is, to a good approximation, given by(
∂2

∂x2 + k2
)

us(x, k) = −k2γ(x)ui(x, k),
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provided

‖us(x, k)‖ << ‖ui(x, k)‖
where ‖ • ‖ denotes the norm of the function over x. This is the Born approximation

and provides a Green’s function solution for the scattered field given by [23]

us(x, k) = k2g(| x |, k) ⊗ γ(x)ui(x, k)

where ⊗ denotes the convolution integral, i.e.

g(| x |, k) ⊗ γ(x)ui(x, k) ≡
∞∫

−∞

g(| x − y |, k)γ(y)ui(y, k)dy.

Here, g is the ‘outgoing’ Green’s function given by

g(| y − x |, k) =
i

2k
exp(ik | y − x |)

which is the solution of(
∂2

∂x2 + k2
)

g(| y − x |, k) = −δ(y − x).

Formally, this solution requires that u and ∂u/∂x are zero at x = ±∞.

6.3.2 Asymptotic Solution

For the case when the wavefield is detected in the far field, i.e. | x |>>| X |, we can

consider an asymptotic solution of the form

us(x, k) = lim
x→∞

ik
2

X∫
−X

exp(ik | x − y |)γ(y)ui(y, k)dy

= exp(ikx)
ik
2

X∫
−X

exp(−iky)γ(y)ui(y, k)dy.

For an incident field ui(x, k) = exp(−ikx), u = ui + us is now given by

u(x, k) = ui(x, k) + us(x, k) = exp(−ikx) + s̃(k) exp(ikx)

where

s̃(k) =
ik
2

γ̃(k),

γ̃(k) =
∞∫

−∞

γ(x) exp(−2ikx)dx.

This solution for u represents the right- and left-travelling components of the wave-

field, the latter case being determined by the ‘reflection coefficient’ s̃(k). Note that

in this asymptotic solution, the function γ(x) maps to its Fourier transform γ̃(k)
(ignoring scaling). Thus, at a fixed position in space | x |>>| X |, the function

γ(x) can only be recovered from information on its spectrum γ̃(k). In this sense,

the inverse scattering problem is reduced to the problem of Fourier inversion. In

practice, this requirement necessitates the application of pulse-echo methods which

are discussed later.
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6.3.3 The Weak Gradient (WKB) Approximation

The solutions considered so far have been based on the application of the Born ap-

proximation (Born scattering theory) to Green function solutions of time-independent

wave equations. In this section, we consider the Wentzel-Kramers-Brillouin (WKB)

which is similar to the Rytov approximations for solving the one-dimensional inho-

mogeneous Helmholtz equations,

The WKB method is based on the idea that if the wavelength of the wavefield

u is very small compared to variations in γ then a suitable approximation can be

introduced which provides an appropriate solution. The approach is based on the

use of an exponential type or ‘Eikonal’ transformation where a solution of the form

A(x, k) exp[±s(x, k)] is considered with amplitude function A(x, k) and phase func-

tion s(x, k) [26]. This is analogous to a plane wave solution of the type A exp(±ikx).
A historically important example of the WKB approximation being used was in a

paper by George Green on The Motion of Waves in a Variable Canal of Small Depth

and Width (published in the Transactions of the Cambridge Philosophical Society

in 1837) who developed a solution for waves along a narrow (to make the problem

one dimensional) but variable channel. His solution involves an approach which is

essentially the same as the WKB method used in quantum mechanics. It is therefore

arguable that the approximation should be called the Green approximation!

To illustrate the idea behind the WKB approximation, let us consider a general

solution to the 1D wave equation(
∂2

∂x2 + k2
)

u(x, k) = −k2γ(x)u(x, k). (3.4)

The Green function solution to this equation is given by

u = ui + us

where ui is the incident wavefield (typically a unit amplitude plane wave) and us is

given by

us(x0, k) = k2
∫

γ(x)g(x | x0, k)u(x, k)dx.

Instead of considering the solution to be the sum of two wavefields ui and us, suppose

we introduce the eikonal transform

u(x, k) = ui(x, k) exp[s(x, k)].

Substituting this result into equation (6.2) and differentiating, we obtain

∂2ui

∂x2 + 2
∂s
∂x

∂ui

∂x
+ ui

(
∂s
∂x

)2

+ ui
∂2s
∂x2 + k2ui = −k2γui.

If we now consider ui to be a solution to ∂2ui/∂x2 + k2ui = 0 then, after differenti-

ating ui and rearranging, we have

2ik
∂s
∂x

+
(

∂s
∂x

)2

+
∂2s
∂x2 = −k2γ. (6.3)
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This is a nonlinear Riccatian equation for s which at first sight, appears to be more

complicated than the original. However, if we introduce the condition that the

wavelength λ = 2π/k is significantly smaller than the spatial extent over which s
varies, then the nonlinear term and the second derivative can be ignored and we can

write

2ik
ds
dx

= −k2γ

whose general solution is (ignoring the constant of integration)

s(x) =
ik
2

x∫
γ(x)dx.

The solution for u is therefore given by

u(x, k) = ui(x, k) exp

(
ik
2

x∫
γ(x)dx

)

= exp

[
ik

(
x +

1
2

x∫
γ(x)dx

)]
.

This is an example of the WKB approximation. It is based on the idea that if k is

large compared to the magnitudes of the terms (∂s/∂x)2 and ∂2s/∂x2 then the only

terms in equation (6.3) that matter are 2ik(∂s/∂x) and −k2γ. In other words, if L
is the characteristic scale length over which s varies, then

λ

L
<< 1.

The solution describes a plane wavefield whose phase kx is modified by k
2

∫
γdx, the

inverse scattering solution being given by (ignoring scaling) [27]

γ(x) ∼ d
dx

ln
[

u(x, k)
ui(x, k)

]
.

A similar approach can be used in higher dimensions which leads to an interpretation

of the solutions in terms of the characteristics or rays and the geometric properties

associated with them.

The WKB approximation as illustrated here does not in itself make use of a

Green function whereas the Rytov approximation discussed in Chapter 3 is based

on a similar idea to the WKB approximation and makes explicit use of the Green

function.

6.3.4 Solution for Multiple Scattering

The Born approximation can be considered to be a first solution u1 to the iterative

series (for n = 1, 2, 3, ...)

un+1(x, k) = ui(x, k) + k2g(| x |, k) ⊗ γ(x)un(x, k)
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where u0 = ui. The scattered field, can be written in the form (Born series solution)

us(x, k) = k2g(| x |, k) ⊗ γ(x)ui(x, k)

+k4g(| x |, k) ⊗ γ(x)[g(| x |, k) ⊗ γ(x)ui(x, k)] + ...

where each term in this series expresses the effects due to single, double and triple

etc. scattering, i.e. the wavefields generated by an increasing number of interactions.

In principle, if this series converges, then it must converge to the solution.

Using operator notation and writing

un+1 = ui + Îun

where

Î = k2
∫

dxgγ,

at each iteration n we consider the solution to be given by

un = u + εn

where εn is the error associated with the solution at iteration n and u is the exact

solution. A necessary condition for convergence is then εn → 0 as n → ∞. Since

u + εn+1 = ui + Î(u + εn) = ui + Îu + Îεn

we can write

εn+1 = Îεn

given that u = ui + Îu. Thus

ε1 = Îε0; ε2 = Îε1 = Î( Îε0); ε3 = Îε2 = Î[ Î( Îε0)]; ...

or

εn = Înε0

from which it follows that

‖εn‖ = ‖ Înε0‖ ≤ ‖ În‖ × ‖ε0‖ ≤ ‖ Î‖n‖ε0‖.

The condition for convergence therefore becomes

lim
n→∞

‖ Î‖n = 0.

This is only possible if

‖ Î‖ < 1

or

k2‖g(| x |, k) ⊗ γ(x)‖ < 1.

Defining the Euclidean norm of a complex function f (x) to be

‖ f (x)‖2 =
(∫

| f (x) |2 dx
) 1

2
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we have

k2‖g(| x |, k) ⊗ γ(x)‖2 ≤ k2‖g(| x |, k)‖2‖γ(x)‖2

and noting that x ∈ [−X, X], we can write

kX〈γ〉 < 1

where

〈γ〉 ≡
⎛⎝ X∫
−X

| γ(x) |2 dx

⎞⎠
1
2

.

This is the condition required for the Born series to converge, the Born approxima-

tion being dependent on the weak field condition

〈γ〉 <<
λ

X
.

6.3.5 Inverse Solution for Multiple Scattering Processes

Using operator notation, the Born series can be written as

u(x, k) = ui(x, k) + Îiγ(x, k) + Îi(γ(x, k) Îγ(x, k))

+Ii[γ(x, k) Î(γ(x, k) Îγ(x, k))] + ...

where γ(x, k) = k2γ(x) and

Îi =
∫

dxuig, Î =
∫

dxg.

Let εU = u − ui and

γ =
∞

∑
j=1

εjγj.

Then

εU = Îi[εγ1 + ε2γ2 + ε3γ3 + ...]
+ Îi[(εγ1 + ε2γ2 + ε3γ3 + ...) Î(εγ1 + ε2γ2 + ε3γ3 + ...)]
+ Îi{(εγ1 + ε2γ2 + ε3γ3 + ...) Î[(εγ1 + ε2γ2 + ε3γ3 + ...)

Î(εγ1 + ε2γ2 + ε3γ3 + ...)]} + ...

Equating terms with common coefficients ε, ε2 etc. we have For j = 1 :

U = Îiγ1; γ1 = Î−1
i U.

For j = 2 :
0 = Îiγ2 + Îi(γ1 Îγ1); γ2 = − Î−1

i [ Îi(γ1 Îγ1)]
and so on. By computing the functions γj using this iterative method, the scattering

function γ is obtained by summing γj for ε = 1. This approach provides a formal

exact inverse scattering solution [28], [29] but it is not unconditional, i.e. the inverse

solution is only applicable when the Born series converges to the exact scattering

solution and thus when

‖g(| x |, k) ⊗ γ(x)‖ < 1.

Note that for j = 1, the solution for γ1 is that obtained under the Born approxima-

tion.
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6.4 Exact Inverse Scattering Solutions

Given equation (6.2), an exact inverse scattering solution can be formulated based

on defining γ as

γ(x) =
u∗(x, k)

| u(x, k) |2
∂2

∂x2

[
R(x) ⊗ us(x, k) − 1

k2 us(x, k)
]

.

where (c1 and c2 being arbitrary constants)

R(x) =

{
(c1 − 1)x + c2, x > 0;
0, otherwise.

This result is derived in Appendix 1 and is an extension of the trivial solution

γ(x) = − 1
k2u(x, k)

(
k2 +

∂2

∂x2

)
u(x, k)

which, noting that γ = εr − 1 can be written in the form

εr(x) = − u∗(x, k)
k2 | u(x, k) |2

∂2

∂x2 u(x, k).

However, since u = ui + us where ui is a solution of(
∂2

∂x2 + k2
)

ui(x, k) = 0 (6.4)

we can write

γ(x) = − u∗
i (x, k) + u∗

s (x, k)
k2 | ui(x, k) + us(x, k) |2

(
k2 +

∂2

∂x2

)
us(x, k).

Further, we note that under the weak field condition where we consider the equation(
∂2

∂x2 + k2
)

us(x, k) = −k2γ(x)ui(x, k),

the equivalent expression for γ (under the Born approximation) is

γ(x) = − u∗
i (x, k)

k2 | ui(x, k) |2
(

k2 +
∂2

∂x2

)
us(x, k)

= −u∗
i (x, k)

k2

(
k2 +

∂2

∂x2

)
us(x, k)

given that ui(x, k) = exp(ikx) is a solution of equation (6.4).
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6.4.1 Narrow Side-band Condition

In general, and in comparison to the solution under the Born approximation, the

exact inverse scattering solution for γ includes | u(x, k) |−2 which describes the

(inverse square) amplitude envelop of the sum of the incident and scattered fields,

i.e. with u(x, k) = Au(x, k) exp[iθu(x, k)], it is clear that | u(x, k) |2= [Au(x, k)]2.
If u is taken to be a narrow side-band signal that is dominated by a high frequency

carrier wave determined by k0, which, in turn, is determined by a narrow band

incident wave ui, then, we can consider the condition where | u(x, k) |2∼ 1∀x (in

general, a constant). This condition is equivalent to considering the case where u is

a phase only field u(x, k) = exp[iθu(x, k)] say, and is imposed in respect of the fact

that, for narrow side-band signals, the contribution of | u |−2 to the reconstruction

of γ from u is insignificant when compared to u∗(k2
0 + ∂2

x)us.

Strictly speaking, the condition being imposed implies that, with ui = exp(±ik0x),

u∗
i us + (u∗

i us)∗+ | us |2= 0.

The principal difference between the reconstruction of γ using the Born approxi-

mation and the inverse solution considered here is compounded in the addition of a

single term, i.e. for a weak field where ‖us‖ << ‖ui‖

γ(x) = −u∗
i (x, k0)

(
1 +

1
k2

0

∂2

∂x2

)
us(x, k0) (6.5)

and for a strong field where ‖us‖ ∼ ‖ui‖

γ(x) = −u∗
i (x, k0)

(
1 +

1
k2

0

∂2

∂x2

)
us(x, k0)

−u∗
s (x, k0)

(
1 +

1
k2

0

∂2

∂x2

)
us(x, k0). (6.6)

Note that under the strict definition of a phase only field, for ‖us‖ ∼ ‖ui‖

γ(x) = ui(x, k0)u∗
s (x, k0)

− [ui(x, k0) + us(x, k0)]∗

k2
0

∂2

∂x2 us(x, k0)

= −ui(x, k0)u∗
s (x, k0), k0 → ∞

which yield the weak field condition. In this paper, we relax this condition and utilze

equations (6.5) and (6.6) given that | ui + us |2∼ 1. This is the ‘key’ to the results

that follow.
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6.4.2 Numerical Simulation I: One-dimensional Model

We consider a numerical simulation based on computing the scattered field using a

forward differencing approach to equation (6.2). For a fixed wavenumber k0 (which

defines a continuous wave mode), the vector un computed over a uniformly sampled

discrete array composed of N line elements, each of length Δ, is given by

un+1 − 2un + un−1

Δ2 + k2
0un = −k2

0γnun, n ∈ [1, N]

which has the solution

un =
un+1 + un−1

2 − Δ2k2
0(1 + γn)

=
un+1 + un−1

2 − Δ2k2
0εr,n

. (6.7)

This solution requires the following iteration to be implemented

um+1
n =

um
n+1 + um

n−1

2 − Δ2k2
0εr,n

(6.8)

where u1
n is taken to be a discrete representation of the (unit amplitude) incident

field which we define with a fixed number of periods p over n ∈ [1, N], i.e.

u1
n = exp

(
2πip(n − 1)

(N − 1)

)
.

A necessary condition that must be applied to equation (6.8) is that

Δk0 <

√
2

‖εr,n‖∞

where ‖ • ‖∞ defines the ‘uniform norm’ and

k0 =
2πp

N
.

Since a solution to equation (6.2) is not necessarily conditional on the amplitude of

the wavefield (i.e. the incident field can be A exp(±ik0x) where A is an arbitrary

value), the amplitude of the array um
n , after M iterations is normalised on output,

i.e. uM
n → uM

n /‖uM
n ‖∞.

For the discrete case, equations (6.5) and (6.6) transform to (for M iterations

used to compute the scattered field)

εr,n = 1 − u∗
i,n[us,n + (Δk0)−2us,n ⊗ (1,−2, 1)]

= 1 − (u1
n)∗[(uM

n − u1
n) + (Δk0)−2(uM

n − u1
n) ⊗ (1,−2, 1)] (6.9)

and

εr,n = 1 − u∗
n[us,n + (Δk0)−2us,n ⊗ (1,−2, 1)]

= 1 − (uM
n )∗[(uM

n − u1
n) + (Δk0)−2(uM

n − u1
n) ⊗ (1,−2, 1)] (18)
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respectively where ⊗ now denotes the discrete convolution sum. Figures 19 to

21 show comparisons between the numerical results given by equations (6.9) and

(18), illustrating the superiority of the inverse scattering solution considered over

that given by the weak field solution for the case when Δk0 = 0.01. These re-

sults are based on applying the initial solution u1
n = sin[2πip(n − 1)/(N − 1)] and

Hilbert transforming the output arrays before computation of equations (6.9) and

(18) through use of the MATLAB function hilbert. The profile of the reconstruction

for εr,n based on equation (18) is preserved inclusive of characteristic ‘ringing’ due

to the discontinuities associated with the model for εr,n. In comparison, the weak

field solution given by equation (6.9) has a relatively narrow dynamic range and pro-

vides a poor reconstruction particularly with regard to resolving the discontinuities

associated with εr,n.

FIGURE 19 Comparison between the weak and strong field inverse scattering solutions
for the case when N = 10000, M = 100, Δk0 = 0.01 with p = 50. From
top to bottom: Relative permittivity function model εr,n; real part of wave-
field computed via equation (6.8); inverse solution (real part) computed
using equation (6.9); inverse scattering solution (real part) computed using
equation (18).

6.4.3 Numerical Simulation II: Two-dimensional Model

Further appreciation of the difference between these weak and strong field solutions

is realised in Figure 22. Here, we have considered an iterative forward scattering

solution to the equation(
∂2

∂x2 +
∂2

∂y2 + k2
0

)
u(x, y, k0) = −k2

0γ(x)u(x, y, k0)
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FIGURE 20 Comparison between the weak and strong field solutions for the case when
N = 10000, M = 100, Δk0 = 0.01 with p = 100. The descriptions of each
plot follow those as given in Figure 19.

FIGURE 21 Comparison between the weak and strong field inverse scattering solutions
for the case when N = 10000, M = 100, Δk0 = 0.01 with p = 50 and a
non-symmetric model of the relative permittivity εr,n. The descriptions of
each plot follow the same as those given in Figure 19.

.
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based on the application of a regular (square) grid of size N2, i.e.

un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m

Δ2 + k2
0un,m

= −k2
0γn,mun,m, n ∈ [1, N], m ∈ [1, N]

with iterative solution

uq+1
n,m =

uq
n+1,m + uq

n−1,m + uq
n,m+1 + uq

n,m−1

4 − Δ2k2
0εr,n,m

under the condition that

Δk0 <
2√‖εr,n,m‖∞

.

with initial condition

u1
n,m = sin[2πipn(m − 1)/(N − 1)]

After M iteration, uM
n,m is normalised and the Hilbert transforms are taken of uM

n,m,

u1
n,m and uM

n,m − u1
n,m over m for all values of n (to compute analytic signals ∀n)

prior to the computation of the weak field reconstruction

εr,n,m = 1 − (u1
n,m)∗(uM

n,m − u1
n,m) − (Δk0)−2(u1

n,m)∗

×
⎡⎣(uM

n,m − u1
n,m) ⊗2

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠⎤⎦ (19)

and the strong field reconstruction

εr,n,m = 1 − (uM
n,m)∗(uM

n,m − u1
n,m) − (Δk0)−2(uM

n,m)∗

×
⎡⎣(uM

n,m − u1
n,m) ⊗2

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠⎤⎦ (20)

where ⊗2 denotes the two-dimensional convolution sum.

6.5 Pulse-Echo Mode Signals

The example numerical results presented in the previous section have been intro-

duced to illustrate the characteristic differences between the weak and strong field

solutions given the exact inverse scattering approach that we have considered. How-

ever, in practice, these inverse solutions have little practical value with regard to

engineering a system designed to recover εr(x) from information on the scattered

field measured ‘outside’ the scatterer, i.e. when | x |>| X |. This is because the

solutions considered so far require that the scattered field is known for x ∈ [−X, X].
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FIGURE 22 Comparison between the two-dimensional weak field and strong field inverse
scattering solutions for the case when N = 500, M = 100, Δk0 = 0.01
with p = 64 for the (left-to-right) CW case. Left: graded point scattering
model for permittivity function 1 < εr,n,m < 2; centre: inverse solution
(absolute value) computed using equation (19); right: inverse scattering
solution (absolute value) computed using equation (20). Note that in each
case, the numerical fields have been normalised for the purpose of generating
grey level image displays.

Practically applicable systems typically measure the scattered field at a fixed point

x0 in the far field (based on an asymptotic solution where x → ∞) by recording

the spectrum us(x0, k) at x0 over a range of values of k. Theoretically, this requires

that the inverse problem is based on an asymptotic solution of the type derived in

Section 6.3.2. In practice, this requires the application of pulse-echo mode methods.

Pulse-echo methods involve the emission of a pulse and a recording of the back-

scattered wavefield (echo). This approach is consistent with the physical nature a

system if: (i) the scattering function is a one-dimensional function; (ii) the incident

wavefield is a ‘pencil-line beam’. However, since all physical systems are intrinsically

three-dimensional, this model is idealised. Nevertheless, a variety of electromagnetic

information and imaging systems can be ‘cast’ in terms of problems involving layered

materials (e.g. the response of light, radio and microwaves to layered dielectric

materials including the propagation of electromagnetic waves along transmission

lines such as an optical fiber).

Pulse-echo mode signal analysis systems typically involve the utilization a pulse

that is emitted from a source in which the ‘time history’ of the back-scattered field

is recorded by a receiver which is placed in the vicinity of the location of the source.

By moving both the source and receiver and repeating this type of experiment, an

image can be built up based on the nature of the reflected pulse at different source

locations. The resolution that can be obtained with pulse-echo experiments of this

type is normally determined by the length of the pulse that is used and the width

of the beam. To obtain high resolution, a short pulse and narrow ‘pencil beam’ are

required. In some cases, the lateral resolution can be synthesized using synthetic

aperture methods. Also, in some cases (e.g. Real and Synthetic Aperture Radar),

it is possible to modulate the frequency of the pulse thereby providing a method of

reconstruction in which the resolution improves with pulse length (as discussed in

Chapter 4).
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In a pulse-echo experiment, the receiver monitors the time history of the re-

flected waves (the echo). After a short delay (which depends on the distance of the

source from the scatterer and the speed at which the pulse propagates), the first

reflections are received followed by a series or ‘train’ of other reflections from the

surface or the interior of the material. This process continues until all the energy

of the pulse has been dissipated. In electromagnetic systems (coherent time-history

resolved), the scattered electric field is typically measured by the way in which it

induces a time varying voltage in the antenna.

6.5.1 Base-band and Side-band Systems

Pulse-echo systems are based on using wavefields at frequencies where the time

variations of the wavefield can be recorded to produce a set of signals. With elec-

tromagnetic systems, the frequency range is from kHz - GHz. Apart from synthetic

aperture imaging systems, most pulse-echo based systems provide partially coherent

(in time) data. There is one important difference between them, however, which

is concerned with whether or not the pulse is a side-band of base-band wavefield.

Baseband pulses are multi-frequency wavefields with a frequency range from 0-Ω Hz

where Ω is the bandwidth of the pulse. Sideband pulses are fields with a bandwidth

of Ω but with a central frequency of ω0 (the carrier frequency of the pulse) where

ω0 >> Ω. In side-band systems, it is usual to demodulate back to base-band and

then digitize the resulting signal(s). Sideband systems are a natural consequence of

utilizing high frequency radiation sources where the pulse length is much longer than

the wavelength. Thus, suppose a pulse of radiation denoted by p(t) has a spectrum

p̃(ω) where | ω |≤ Ω. Then, for a base-band system we have

p(t) ↔ p̃(ω)

but for a side-band system

p(t) exp(−iω0t) ↔ p̃(ω) ⊗ δ(ω + ω0) = p̃(ω + ω0)

where ↔ denotes the transformation from time to frequency space. In the latter case,

there are many oscillations of the field over the duration of the pulse and hence we

have p(t) exp(−iω0t) rather than just p(t). Under the Born approximation, noting

that ω = k/c0, for an incident field ui(t, ω) = exp(−iωt) the reflection coefficient

- as derived in Section 6.3.2 - is

s̃(ω) =
iω
2c0

∞∫
−∞

γ(t) exp(−2iωt)dt.

where

γ̃(ω) =
∞∫

−∞

γ(t/2) exp(−iωt)dt.

Thus, for an incident field with a spectrum given by p̃(ω), i.e. an incident field given

by ui(t, ω) = p̃(ω) exp(−iωt), it follows that the reflection coefficient is given by

s̃(ω) =
iω
4c0

p̃(ω)γ̃(ω)



162

or using the convolution theorem,

s(t) = p(t) ⊗ f (t)

where

p(t) =
1

2π

∞∫
−∞

p̃(ω) exp(iωt)dω

and f (t) is the Impulse Response Function (IRF) given by (where t is the two-way

travel time and we ignore scaling by 1/4c0)

f (t) =
d
dt

γ(t).

However, for a side-band band system

s̃(ω) = iω p̃(ω − ω0)γ̃(ω) � iω0 p̃(ω)γ̃(ω + ω0), Ω << ω0

so that

s(t) = p(t) ⊗ f (t)

where

f (t) = iω0γ(t) exp(−iω0t).

For a conductive dielectric, the (equivalent) IRFs are given by

f (t) =
d
dt

γ(t) + z0σ(t)

and

f (t) = [iω0γ(t) + z0σ(t)] exp(−iω0t)

for a base-band and side-band system respectively. Irrespective of whether a base-

band or side-band pulse is used, the signal model

s(t) = p(t) ⊗ f (t)

is based on the weak field condition. The ‘standard’ approach is to extended this

model to the form

s(t) = p(t) ⊗ f (t) + n(t)

where the noise term n(t) is taken to include all effects that do not conform to the

model used, including multiple scattering processes. The inverse scattering problem

is thus reduced to the problem of deconvolution in the presence of additive noise.

This is a fundamental problem in both signal and image processing.
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6.5.2 Inverse Solution for Side-Band Pulse-Echo Systems

For a narrow side-band system with carrier frequency k0 >>| k |, we consider the

equation

γ(x) = −u∗(x, k)
k2

0

(
k2

0 +
∂2

∂x2

)
us(x, k)

which, for a weak field where ‖us‖ << ‖ui‖ reduces to

γ(x) = −u∗
i (x, k)

k2
0

(
k2

0 +
∂2

∂x2

)
us(x, k).

These results apply for all values of x ∈ (−∞, ∞) but γ is, as usual, considered

to be of compact support γ(x)∃∀x ∈ [−X, X]. Under the Born approximation, for

x → ∞, a mapping is obtained between the scattered field us and γ that is based

on the Fourier transform γ̃(k) of γ(x), i.e.

us(x, k) =
ik0

2
exp(ik0x)γ̃(k), | k |<< k0

which is a solution of

γ(x) = −u∗
i (x, k)

k2
0

(
k2

0 +
∂2

∂x2

)
us(x, k).

This result suggests taking the Fourier transform of γ where

γ(x) =

−[u∗
i (x, k0) + u∗

s (x, k0)]

(
1 +

1
k2

0

∂2

∂x2

)
us(x, k0)

giving

γ̃(k) =

−[ũ∗
i (k, k0) + ũ∗

s (k, k0)] �
(

1 − | k |2
k2

0

)
ũs(k, k0)

= −[ũ∗
i (k, k0) + ũ∗

s (k, k0)] � ũs(k), | k |<< k0

where γ̃, ũ∗
i , ũ∗

s and ũs are the Fourier transforms of γ, u∗
i , u∗

s and us respectively

and � denotes the correlation integral. Noting that, for ui(x, k0) = exp(−ik0x),
ũ∗

i (k, k0) = 2πδ(k0 − k) we have

γ̃(k) = 2πũs(k − k0) − ũ∗
s (k) � ũs(k), | k |<< k0

or (ignoring scaing by 2π)

ũs(k) =

p̃(k)γ̃(k + k0) + p̃(k)[ũ∗
s (k + k0) � ũs(k + k0)], ∀k
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where p̃(k) is some lowpass filter with a bandwidth significantly less than k0. Thus,

upon takling the inverse Fourier transform, we obtain an expression for the (demod-

ulated) scattered field us given by

us(x, k0) = p(x) ⊗ [γ(x) exp(−ik0x)]

+p(x) ⊗ [| us(x, k0) |2 exp(−ik0x)]

where p(x) is the inverse Fourier transform of p̃(k). Here, p(x) described the ban-

dlimited pulse that is incident on a layered dielectric described by γ(x). The first

term is a description for the weak scattered field and the second term describes the

effects of multiple scattering. In terms of the ‘standard model’ for a stationary signal

s(t) as a function of time t where

s(t) = p(t) ⊗ f (t) + n(t) (21)

it is now clear that the Impulse Response Function (IRF) f is given by

f (t) = γ(t) exp(−iω0t)

and the noise n(t) is given by

n(t) = p(t) ⊗ [| s(t) |2 exp(−iω0t)]

where ω0 is the angular (carrier) frequency. Note that in practice, n(t) will include

additional background noise and in this sense, we have extract a component of

the noise term that is attributed to multiple scattering effects, albeit under the

conditions that: (i) | ui + us |−2∼ 1; (ii) | k |<< k0.

6.6 Applications to Synthetic Aperture Radar

The principles of Synthetic Aperture Radar (SAR) is discussed in Chapter 4. SAR is

a side-band pulse-echo system which utilizes the response of a scatterer as it passes

through the radar beam to synthesize the lateral (azimuth) resolution. This allows

relatively high resolution images to be obtained at a long range. The antenna emits

a pulse of microwave radiation toward the ground and the return signal is recorded

at fixed time intervals along the flight path.

By studying the response of a SAR to a point scatterer in range, and then in

azimuth, the point spread function of the system is established which is given by

p(x, y) = LTsinc(αTx)sinc(βk0y)

and is identical to the diffraction pattern produced by a rectangular aperture. Thus,

the (post-processed) SAR image data f̂ (x, y) generated by scattering from the

ground is given by the convolution of the object function for the ground f (x, y)
with the appropriate point spread function, i.e.

f̂ (x, y) = p(x, y) ⊗2 f (x, y)
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where ⊗2 denotes the two-dimensional convolution integral and f̂ is taken to be

complex data generated by f . A SAR image is usually generated by displaying the

amplitude modulations of the data, i.e.

ISAR(x, y) =| f̂ (x, y) | .

The object function describes the imaged properties of the ground surface. A con-

ventional model for this function is the point scattering model where the object

function is taken to be a distribution of point scatterers each of which reflects a

replica of the emitted pulse and responds identically in azimuth. Here, nothing is

said about the true physical nature of the ground surface such as its shape and

material (dielectric) properties. Moreover, this standard convolution model for the

data is based on application of the Born approximation where multiple scattering

effects are taken to be part of the noise function n(x, y). SAR images are coherent

images (i.e. based on complex data containing magnitude and phase information)

and consequently, contain noise that is characteristic of speckle patterns (coherent

noise).

Based on results presented in Section 6.4, we consider a model for the ‘ground

truth’ estimate f̂ (x, y) given by

f̂ (x, y) = p(x, y) ⊗2 [ f (x, y)+ | s(x, y) |2 exp(−ik0x)]

where the second term (on the right hand side) is taken to be the multiple scat-

tering term1. Figure 23 shows the effect of applying a Gaussian lowpass filter to

the complex data f̂ before generation of the image | f̂ (x, y) | using data obtained

from the Sandia National Laboratories SAR database [30]. Filtering the complex

data is undertaken in order to attempt to suppress the term p(x, y) ⊗2 [| s(x, y) |2
exp(−ik0x)]. Applying a lowpass filter prior to generating an amplitude image of

the complex data illiminates the cross terms generated by computing the image

| f̂ (x, y) |, thereby reducing speckle, a conventional approach to speckle reduction

being to apply a filter to the amplitude image. In this sense, the multiple scattering

model developed in this chapter confirms a well known principle with regard to co-

herent image engineering which is that it is better to process complex data directly

rather than the amplitude data indirectly.

6.7 Discussion

The extension of the standard model s(t) = p(t) ⊗ f (t) + n(t) to include multiple

scattering effects that are compounded in a single term such that

s(t) = p(t) ⊗ f (t) + p(t) ⊗ [| s(t) |2 exp(−iω0t)] + n′(t)

provides a method of processing signals that is compatible with a standard signal

processing ‘toolkit’. Here the term n′(t) include all forms of noise that does not

include multiple scattering effects.

1 After application of conventional SAR signal processing.



166

FIGURE 23 Example of an original SAR image (left) and the same image after applying
a lowpass filter to the complex data (right). In both cases, the images have
been histogram equalized utilizing the MATLAB function histeq.

The inverse scattering problem is usually formulated by first solving the for-

ward scattering problem as discussed in Chapter 3. Once the relationship between

the scattered field and the scattering function has been established by solving the

Helmholtz equation, an inverse solution is then attempted. The approach taken here

has been to work directly with the Helmholtz equation to produce an expression for

the scattering function (as derived in Appendix 1). The example numerical simula-

tions illustrated in Figures 19 - 22, provides evidence of the expected superiority

of this solution over the weak scattering solution. However, it should be noted that

this result is based on the application of the narrow side-band condition | k |<< k0
and that | ui(x, k) + us(x, k) |2∼ 1. In this sense, the solutions developed are not

strictly based on an ‘exact’ inverse scattering solution, but rather a modified version

of the exact solution derived in Appendix 1 tailored for applicability to narrow side-

band systems. Such systems are consistent with the applications of electromagnetic

signal processing which is the focus of this chapter.

The approach taken in this paper has been to consider a theoretically ‘exact

solution’ to the inverse scattering problem (as compounded in Appendix 1) and

then modify this result to accommodate conditions that reduce the solution to a

form that is practically realisable in terms of existing signal processing models. This

is a different approach to that which is traditionally taken where a forward scattering

solution is developed based on physical conditions to obtain a (forward scattering)

transform which can then be inverted. With regard to pulse-echo side-band systems,

our approach provides a model for strong scattering that is compounded in a single

additional term. The form of this term indicates the use of lowpass filtering applied

to the complex data of a SAR rather than to the image itself which is the more usual

practice with regard to speckle reduction.

In general, the approach reported in this paper may provide a framework for
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developing ‘strong’ scattering solutions that are of practical value to signal pro-

cessing systems. For example, a further development of the approach used can be

undertaken by relaxing the condition u = exp(iθu) and considering an expansion of

the term
1

| ui + us |2 = 1 − uiu∗
s − u∗

i us− | us |2 +...

Finally, this paper is primarily based on a one-dimensional analysis of the problem.

However, the same method can be applied in two- and three-dimensions (at least

for the Schrödinger and Helmholtz equations) and for completeness, the underlying

results are given in Appendix 1.



7 SCATTERING FROM RANDOM MEDIA AND
CLASSICAL DIFFUSION MODELS

The use of formal scattering methods for modelling the interaction of light with an

inhomogeneous medium together with associated inverse scattering models is well

known (e.g. [31]). In applications associated with the processing and analysis of an

electromagnetic image, the aim is to develop a model that maps the object plane to

the image plane. If the scattering is ‘weak’ (i.e. based on single scattering events)

and the scattered wavefield is measured in the far field, then the map is determined

by the Fourier transform which yields the fundamental imaging equation [31]

I(x, y) = p(x, y) ⊗2 f (x, y) + n(x, y)

for an image I where p is the Point Spread Function (a characteristic of the imaging

system), f is the object function and ⊗2 denotes the two-dimensional convolution

operation, i.e.

p(x, y) ⊗2 f (x, y) =
∫ ∫

p(x − x′, y − y′) f (x′, y′)dx′dy′

The noise n is taken to be a stochastic function which at best, can be characterized

by a probability density function Pr[n(x, y)] that conforms to a physically significant

statistical model. The function n is taken to include a range of perturbations to the

scattered field that is recorded in the image plane. Within the context of the weak

scattering approximation used to derive the fundamental imaging equation, this

includes multiple scattering.

The object function f (x, y) is related to a three-dimensional scattering function

γ(r) where r is the three-dimensional spatial vector. In the far field, the weak

scattered wavefield us is (ignoring scaling factors) given by the Fourier transform of

the scattering function

us(k) ∼ F3[γ(r)]

where F3 denotes the three-dimensional Fourier transform operator and k is the

spatial frequency vector. The inverse scattering problem is then compounded in the

inversion of this result, i.e. the inverse Fourier transform. This weak scattering result
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can be interpreted in terms of single scattering events generated by a scattering

function consisting of an ensemble of localized point-like scatterers, for example.

When multiple is present, this simple result is not sufficient to model the scattered

field which must be modified to take into account double, triple, quadruple etc.

scattering events. This yields results that make the objective of ‘engineering’ a

practically viable imaging and image processing model for various applications rather

intractable. In such cases, it can be of value to develop a stochastic model for the

scattered field whereby, instead of relating the scattering function to some object

function which is then mapped onto the image plane, we attempt to generate a

model for the probability density function of a multiple scattered wavefield in order

to account for the statistical distribution of the intensity field obtained in the image

plane. This involves an approach in which the resultant scattered wavefield (i.e. the

wave amplitude) is taken to be a consequence of a random walk where each node in

the random walk is taken to be a scattering event.

7.1 Random Born Scattering

Analysis of scattering from a random medium ideally requires a model for the physi-

cal behaviour of the random variable(s) that is derived from basic principles. Ideally,

this involves modelling the scattered field in terms of its interaction with an ensemble

of ‘scattering sites’ based on an assumed stochastic process. If the density of these

scattering sites is low enough so that multiple scattering is minimal, then we can

apply Born scattering to develop a model for the intensity of a wavefield interacting

with a random Born scatterer.

In the far field, the Born scattered field (i.e. the scattering amplitude) is given

by the Fourier transform of the scattering function. If this function is known a

priori, then the scattering amplitude can be determined. This is an example of

a deterministic model. If the scattering function is stochastic (i.e. a randomly

distributed scatterer) such that it can only be quantified in terms of a statistical

distribution (i.e. the probability density function (PDF) - denoted by Pr) then we

can simulate the (Born) scattered field by designing a random number generator

that outputs deviates that conform to this distribution. The Fourier transform of

this stochastic field then provides the Born scattering amplitude. Thus, given a

three dimensional Helmholtz scattering function γ(r), r ∈ V with Pr[γ(r)] known

a priori, the scattering amplitude A is given by

A(N̂, k) = k2
∫
V

exp(−ikN̂ · r)γ(r)d3r

where N̂ = n̂s − n̂i and γ(r) is a stochastic function whose deviates conform to the

PDF Pr[γ(r)].
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7.1.1 Random Scatterer Model

If we consider the object function f (i.e. a two-dimensional map of the three-

dimensional scattering function) to be a stochastic function, then we can model this

function in terms of a random distribution of amplitudes using a random number

generator. A coherent image of this function is then given by (e.g. [32], [33])

I(x, y) =| p(x, y) ⊗2 f (x, y) |2

and an incoherent image by

I(x, y) =| p(x, y) |2 ⊗2 | f (x, y) |2

where p is the Point Spread Function (PSF) for a coherent image and | p |2 is

the intensity PSF for an incoherent image. An example of simulating such images

is given in Figure 24 which is based on the application of a zero mean Gaussian

distributed random field for the object function f and Point Spread Functions for a

square aperture. There is a striking difference between these images. The coherent

image yields ‘speckle’ which is a feature of all coherent images and is due to the

‘phase mixing’ of the functions p and f associated with the convolution operation

given above.

7.1.2 Power Spectrum Modelling

The intensity of a random Born scattered field is given by

I(N̂, k) =| A(N̂, k) |2= A(N̂, k)A∗(N̂, k)

= k4
∫
V

exp(−ikN̂ · r)γ(r)d3r
∫
V

exp(ikN̂ · r′)γ∗(r′)d3r′.

Using the autocorrelation theorem, we have

I(N̂, k) = k4
∫
V

exp(−ikN̂ · r)Γ(r)d3r

where Γ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′.

This result allows us to evaluate the intensity of the Born scattered amplitude by

computing the Fourier transform of the autocorrelation function of the scattering

function which is taken to be composed of a number of scatterers distributed at

random throughout V. This requires the autocorrelation function to be defined for

a particular type of random scatterer. Thus, a random medium can be characterized

via its autocorrelation function by measuring the scattered intensity and inverse

Fourier transforming the result.
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FIGURE 24 Simulation of the coherent (bottom-left) and incoherent (bottom-right) im-
ages associated with light scattering from a random medium imaged through
a square aperture with coherent (top-left) and incoherent (top-right) Point
Spread Functions whose absolute values are shown using a logarithmic grey-
scale.
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From the autocorrelation theorem, the characteristics of the autocorrelation

function can be formulated by considering its expected spectral properties since

Γ(r) ⇐⇒| γ̃(k) |2

where γ̃ is the Fourier transform of γ, k is the spatial frequency vector and ⇐⇒
denotes the transformation from real space r to Fourier space k. Hence, in order

to evaluate the most likely form of the autocorrelation function we can consider the

properties of the power spectrum of the scattering function. If this function is ‘white’

noise, for example (i.e. its Power Spectral Density Function or PSDF is a constant),

then the autocorrelation function is a delta function whose Fourier transform is a

constant. However, in practice, we can expect that few scattering functions have

a PSDF characterized by white noise, rather, the PSDF will tend to decay as the

frequency increases. We can consider a model for the PSDF based on the Gaussian

function

| γ̃(k) |2= γ̃2
0 exp

(
−k2

k2
0

)
,

for example, where γ̃0 = γ̃(0), k =| k | and k0 is the standard deviation which is

a measure of the correlation length. This form yields an autocorrelation function

which is of the same type, i.e. a Gaussian function. If the geometry of the scatter-

ing function is self-affine, then we can model the scattering function as a random

scattering fractal whose PSDF is characterized by [34]

| γ̃(k) |2∼ 1
k2q

where q > 0, the autocorrelation function being characterized by

Γ(r) ∼ 1
r3−q .

Other issues in determining the nature of the autocorrelation function are related

to the physical conditions imposed on the stochastic characteristics of the scatterer.

The method discussed above can be used to model the (Born) scattered in-

tensity from a random medium which requires an estimate of the autocorrelation

of the scattering function to be known. However, this approach assumes that the

density of scattering sites from which the scatterer is composed is low so that the

Born approximation is valid. When the density of scattering sites increases and

multiple scattering is present, the problem become progressively intractable. One

approach to overcoming this problem is to resort to a purely stochastic approach

which involves developing a statistical model, not for the scattering function, but

for the scattered field itself which is discussed in the following section.

7.2 Statistical Modelling of the Scattered Field

Random walk methods are used as the basis for generating stochastic scattering

models where the scattering of a wavefield from one scattering site to another is
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taken to be a random walk in the (complex) plane with arbitrary amplitude and

phase variations. We consider the wavefield E (e.g. the electric field) to be given by

E =
N

∑
j=1

rj exp(iφj) = R exp(iΦ)

where r, φ and N are independent random variables. Both r and φ are assumed

to be continuous random variables and N is discrete. We can write E as a vector,

whose components are the real and imaginary parts of E, i.e.

E = (Ereal, Eimag).

It is useful to work in terms of the characteristic function of a complex random

variable

U = (Ureal, Uimag)

defined as (2D inverse Fourier transform)

C(U) = 〈exp(iE · U)〉 =
∫

exp(iE · U)P(E)dE

where the integral is taken to over all E and where P(E) is the Probability Density

Function (PDF) of E. Thus, P can be computed from C via the 2D Fourier transform,

i.e.

P(E) =
1

(2π)2

∫
exp(−iE · U)C(U)dU

where the integral is taken over all U.

The aim of this calculation is to find an expression for P. This is done by first

computing C(U) = 〈exp(iE · U)〉 and then taking the inverse Fourier transform to

evaluate P. The calculation of the characteristic function will be based on the fol-

lowing assumptions: (i) The phase is uniformly distributed which represents strong

scattering; (ii) the scattering events at each site are independent; (iii) N conforms

to a negative binomial distribution of the form

PN =
(

N + α − 1
N

)
(N̄/α)N

(1 + N̄/α)N+α

where N̄ is the mean of the distribution and α is a ‘bunching’ parameter. Clearly

α > N̄ for PN to be a proper PDF. Assumption (iii) above is based on a birth-death-

migration processes which is representative of the distribution of scatterers.

To find 〈exp(iE · U)〉 we write E and U in terms of their real and imaginary

components, i.e.

E = (R cos Φ, R sin Φ), U = (U cos χ, U sin χ)

where U ≡| U |. Here R is the resultant amplitude and Φ is the resultant phase

that is detected:

E · U = R cos ΦU cos χ − R sin ΦU sin χ



174

= U
N

∑
j=1

rj(cos φj cos χ − sin φj sin χ) = U
N

∑
j=1

rj cos(φj + χ).

Hence, the characteristic function for a random walk with N steps is

CN(U) = 〈exp[iU
N

∑
j=1

rj cos(φj + χ)]〉.

Since

exp(x1 + x2 + ... + xN) = exp(x1) exp(x2) exp(x3)... exp(xN),

CN(U) = 〈
N

∏
j=1

exp[iUrj cos(φj + χ)]〉.

The variables r, φ and N are independent. Assumption (ii) given above means

that rj is independent of rk, i.e. a scattering event at site j is independent of a

scattering event at site k. The net effect of this assumption is to eliminate conditional

probabilities from the scattering process. In this case, the product can be taken

outside the average, giving

CN(U) =
N

∏
j=1

〈exp[iUrj cos(φj + χ)]〉.

The term 〈exp[iUrj cos(φj + χ)〉 is an average over both the amplitude distribution

and the phase distribution. Assuming that the phases are uniformly distributed

(strong scattering), the integral for the phase can be written as

〈exp[iUrj cos(φj + χ)]〉φ =
∫
∀φ

exp(iUrj cos(φ + χ)Pj(φ)dφ

where Pj is the uniform phase distribution defined as

Pj(φ) =

{
1

2π , −π ≤ φ < π;
0, otherwise.

Consider the integral

I =
π∫

−π

exp[iUrj cos(φ + χ)]dφ.

To evaluate this integral we use the following identity

exp(iα cos θ) = J0(α) + 2
∞

∑
k=1

ik Jk(α) cos kθ

where Jk is the Bessel function of order k. Then

I =
π∫

−π

[
J0(α) + 2

(
∞

∑
k=1

ik Jk(α) cos kθ

)]
dθ
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= [J0(α)θ]π−π +

[
2

∞

∑
k=1

ik

k
Jk(α) sin kθ

]π

−π

= 2π J0(α).

Hence,

〈exp(iE · U)〉φ = 〈exp[iUrj cos(φj + χ)]〉φ = J0(Urj)

where

U =
√

U2
real + U2

imag

and

CN(U) =
N

∏
j=1

〈J0(Urj)〉r

where

〈J0(Urj)〉r =
∞∫

0

J0(Ur)Pj(r)dr.

Here Pj(r) is the PDF for r. Now, if all the scattering processes are similar, then

they will all have the same PDF and therefore

N

∏
j=1

〈J0(Urj)〉r = 〈J0(Ur)〉N
r =

⎛⎝ ∞∫
0

J0(Ur)P(r)dr

⎞⎠N

.

This result depends on the number of steps N which is itself a random variable,

and, in order to proceed further, we must consider a PDF for N. For this purpose

we consider the negative binomial distribution - assumption (iii) - and develop an

expression for the characteristic function for the mean N̄ of N. This is given by

CN̄(U) =
∞

∑
N=0

PNCN(U)

=
∞

∑
N=0

(
N + α − 1

N

)
(N̄/α)N

(1 + N̄/α)N+α
〈J0(Ur)〉N

r

=
∞

∑
N=0

(N + α − 1)!
N!(α − 1)!

(
(N̄/α)〈J0(Ur)〉r

1 + N̄/α

)N 1
(1 + N̄/α)α

=
1

(α − 1)!(1 + N̄/α)α

∞

∑
N=0

(N + α − 1)!
N!

μN

where

μ =
(N̄/α)〈J0(Ur)〉r

1 + N̄/α
.

Now,
∞

∑
N=0

(N + α − 1)!
N!

μN

= (α − 1)!
(

1 + αμ +
α(1 + α)

2!
μ2 + ...

)
= (α − 1)!(1 − μ)−α
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and therefore we can write

CN̄(U) =
(α − 1)!

(α − 1)!(1 + N̄/α)α

1
(1 − μ)α

=
(1 + N̄/α)α

(1 + N̄/α)α(1 + N̄/α − (N̄/α)〈J0(Ur)〉r)α

=
(

1 +
N̄
α

(1 − 〈J0(Ur)〉r)
)−α

.

The calculation of 〈J0(Ur)〉r is based on a small but important modification whereby

we scale r according to r → r/
√

N̄. Thus, we consider

〈J0(Ur)〉r =
∞∫

0

P(r)J0(Ur/
√

N̄)dr.

As N̄ → ∞, this modification of the definition of 〈J0(Ur)〉r allows us to employ the

Frobenius series for J0, i.e.

J0(x) = 1 − x2

4
+

x4

26 − ...

then

〈J0(Ur)〉r

=
∞∫

0

P(r)dr − 1
4

∞∫
0

U2r2

N̄
P(r)dr +

1
26

∞∫
0

U4r4

N̄2 P(r)dr − ...

= 1 − 1
4

U2

N̄
〈r2〉 +

1
26

U4

N̄2 〈r4〉 − ...

where

〈rn〉 =
∞∫

0

rnP(r)dr.

Hence, we can write

CN̄(U)

=
[

1 +
N̄
α

(
1 −
(

1 − 1
4

U2

N̄
〈r2〉 +

1
26

U4

N̄2 〈r4〉 − ...
))]

=
(

1 +
1
4

U2

α
〈r2〉 − 1

26
U4

N̄α
〈r4〉 + ...

)−α

and

C(U) = lim
N̄→∞

CN̄(U) =
(

1 +
1
4

U2

α
〈r2〉
)−α

.

This result allows us to compute the PDF of E = R exp(iΦ) which can be obtained

by evaluating the Fourier integral of C(U), i.e.

P(E) =
1

(2π)2

∫
∀U

exp(−iE · U)C(U)dU
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=
1

(2π)2

π∫
−π

∞∫
0

exp(−iE · U)(
1 + 1

4
U2

α 〈r2〉
)α UdUdχ.

Integrating over χ generates a Bessel function as before

P(E) =
1

2π

∞∫
0

UJ0(UR)(
1 + 1

4
U2

α 〈r2〉
)α dU.

Evaluating the final integral gives

P(E) =
1

2π2α−1
Rα−1

Γ(α)

(
4α

〈r2〉
) 1+α

2

Kα−1

[
R
(

4α

〈r2〉
) 1

2
]

where Kα−1 is a modified Bessel function. The PDF of the amplitude follows by

integrating P(E) over all values of the phase Φ. However, P(E) is independent of Φ
and so this integral yield 2π, i.e.

P(R) =
π∫

−π

P(E)RdΦ = 2πRP(E)

P(R) can therefore be written as

P(R) =
β1+α

2α−1Γ(α)
RαKα−1(βR)

where

β =
(

4α

〈r2〉
) 1

2

.

This is the so called ‘K-distribution’ whose calculation illustrates the way in which

the PDF of an image can be derived subject to a model for the distribution of the

phase (in this case, a uniform phase distribution representing strong scattering) and

a statement of the characteristics of the random walk (in this case, a negative bino-

mial distribution for the number of steps N). The PDF derived can then be used

to characterize a signal or image (that has been generated by strong and coherent

scattering processes) statistically by computing the parameters α, β and 〈r2〉. Al-

though this approach may be of value to the statistical analysis of a signal/image,

it does not provide a solution to the inverse scattering problem. For this purpose,

diffusion models for strong scattering are required as discussed below.

7.3 Derivation of the Diffusion Equation from the Wave Equation

Consider the three-dimensional homogeneous time dependent wave equation

∇2u − 1
c2

∂2

∂t2 u = 0



178

where c is taken to be a constant (light speed). Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that field φ varies significantly slowly in time compared with

exp(iωt) and note that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2φ,

and
∂2

∂t2 u = exp(iωt)
(

∂2

∂t2 φ + 2iω
∂φ

∂t
− ω2φ

)
� exp(iωt)

(
2iω

∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ .
Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik
c

∂φ

∂t

where k = ω/c. However, since u∗ is also a solution,

(∇2 + k2)φ∗ = −2ik
c

∂φ∗

∂t

and thus,

φ∗∇2φ − φ∇2φ∗ =
2ik
c

(
φ∗ ∂φ

∂t
+ φ

∂φ∗

∂t

)
which can be written in the form

∇2 I − 2∇ · (φ∇φ∗) =
2ik
c

∂I
∂t

where I = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector and A is the amplitude function. Differentiating, and noting

that I = A2, we obtain

n̂ · ∇A =
2
c

∂A
∂t

or (
∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c

∂

∂t
A(x, y, z, t)
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which is the unconditional continuity equation for the amplitude A of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

where A varies slowly with time.

The equation

∇2 I − 2∇ · (φ∇φ∗) =
2ik
c

∂I
∂t

is valid for k = k0 − iκ (i.e. ω = ω0 − iκc) and so, by equating the real and

imaginary parts, we have

D∇2 I + 2Re[∇ · (φ∇φ∗)] =
∂I
∂t

and

Im[∇ · (φ∇φ∗)] = −k0

c
∂I
∂t

respectively where D = c/2κ, so that under the condition

Re[∇ · (φ∇φ∗)] = 0

we obtain

D∇2 I =
∂I
∂t

.

This is the diffusion equation for the intensity of light I. The condition required to

obtain this result can be justified by applying a boundary condition on the surface

S of a volume V over which the equation is taken to conform. Using the divergence

theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r

=
∮
S

(φr∇φr + φi∇φi) · n̂d2r.

Now, if

φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2 I(r, t) =
∂

∂t
I(r, t), r ∈ V.

This boundary condition can be written as

∇φr

∇φi
= −tanθ

where θ is the phase of the field φ which implies that the amplitude A of φ is

constant on the boundary (i.e. A(r, t) = A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= − A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t)
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= −tanθ(r, t), r ∈ S.

For a general field u, the homogeneous diffusion equation [35]

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’, differs in many aspects from the homogeneous scalar

wave equation

∇2u(r, t) =
1
c2

0

∂2

∂t2 u(r, t)

The most important single feature is the asymmetry of the diffusion equation with

respect to time. For the wave equation, if u(r, t) is a solution, so is u(r,−t). How-

ever, if u(r, t) is a solution of

∇2u = σ
∂u
∂t

the function u(r,−t) is not; it is a solution of the quite different equation,

∇2u(r,−t) = −σ
∂

∂t
u(r,−t).

Thus, unlike the wave equation, the diffusion equation differentiates between past

and future. This is because the diffusing field u represents the behaviour of some

average property of an ensemble (e.g. of particles) which cannot in general go back

to an original state. Causality must therefore be considered in the solution to the

diffusion equation. This in turn leads to the use of the one-sided Laplace transform

(i.e. a causal transform) for solving the equation with respect to t (compared to the

Fourier transform - a non-causal transform - used to solve the wave equation with

respect to t).

7.4 Green’s Function Solution to the Diffusion Equation

We now consider the Green’s function solution to the diffusion equation based on the

Green’s function derived in Chapter 3. Working in three dimensions, let us consider

the general solution to the equation(
∇2 − σ

∂

∂t

)
u(r, t) = − f (r, t)

where f is a source function of compact support (r ∈ V) and define the Green’s

function as the solution to the equation(
∇2 − σ

∂

∂t

)
G(r | r0, t | t0) = −δ3(r − r0)δ(t − t0)

It is convenient to first take the Laplace transform of these equations with respect

to τ = t − t0 to obtain

∇2ū − σ[−u0 + pū] = − f̄
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and

∇2Ḡ + σ[−G0 + pḠ] = −δ3

where

ū(r, p) =
∞∫

0

u(r, τ) exp(−pτ)dτ,

Ḡ(r | r0, p) =
∞∫

0

G(r | r0, τ) exp(−pτ)dτ,

f̄ (r, p) =
∞∫

0

f (r, τ) exp(−pτ)dτ.

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for ū by Ḡ and the equation for Ḡ by ū, subtracting

the two results and integrating over V we obtain∫
V

(Ḡ∇2ū − ū∇2Ḡ)d3r + σ
∫
V

u0Ḡd3r = −
∫
V

f̄ Ḡd3r + ū(r0, p).

Using Green’s theorem and rearranging the result gives

ū(r0, p) =
∫
V

f̄ (r, p)Ḡ(r | r0, p)d3r + σ
∫
V

u0(r)Ḡ(r | r, p)d3r

+
∮
S

(ḡ∇ū − ū∇ḡ) · n̂d2r.

Finally, taking the inverse Laplace transform and using the convolution theorem for

Laplace transforms, we can write

u(r0, τ) =
τ∫

0

∫
V

f (r, τ′)G(r | r0, τ − τ′)d3rdτ′

+σ
∫
V

u0(r)G(r | r0, τ)d3r

+
τ∫

0

∮
S

[G(r | r0, τ′)∇u(r, τ − τ′)

−u(r, τ′)∇G(r | r0, τ − τ′)] · ˆ̂nd2rdø′.
The first two terms are convolutions of the Green’s function with the source function

and the initial field u(r, τ = 0) respectively.

By way of a simple example, suppose we consider the source term to be zero

and the volume of interest is the infinite domain, so that the surface integral is zero.

Then we have

u(r0, τ) = σ
∫
V

u0(r)G(r | r0, τ)d3r.
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In one dimension, this reduces to

u(x0, τ) =
√

σ

4πτ

∞∫
−∞

exp
[
−σ(x0 − x)2

4τ

]
u0(x) dx, τ > 0.

Observe that the field u at a time t > 0 is given by the convolution of the field at

time t = 0 with the (Gaussian) function√
σ

4πt
exp
(
−σx2

4t

)
.

In two-dimensions, the equivalent result is

u(x, y, t) =
σ

4πt
exp
[
−
(

σ(x2 + y2)
4t

)]
⊗2 u0(x, y) (7.1)

7.5 Optical Diffusion

Suppose we record the intensity I of a light field in the xy-plane for a fixed value of

z. Then for z = z0 say,

I(x, y, t) ≡ I(x, y, z0, t)

so that
∂

∂t
I(x, y, t) = D∇2 I(x, y, t).

Let this two-dimensional diffusion equation be subject to the initial condition

I(x, y, 0) = I0(x, y).

Then, at any time t > 0, it can be assumed that light diffusion is responsible for

blurring the image I0 and that as time increases, the image becomes progressively

more (Gaussian) blurred. By comparing this model with equation (7.1) it is clear

that

I(x, y, t) =
1

4πDt
exp
[
−
(

(x2 + y2)
4Dt

)]
⊗2 I0(x, y).

This result can, for example, be used to model the diffusion of light through an

optical diffuser. An example of such an effect is given in Figure 25 which shows a

light source (the ceiling light of a steam room) imaged through air and then through

steam together with a simulation of the latter case based on the convolution of the

light source with a Gaussian PSF. Steam effects light by scattering it a large number

of times through the complex of small water droplets from which (low temperature)

steam is composed. The high degree of multiple scattering that takes place allows

us to model the transmission of light through steam in terms of a ‘diffusive’ rather

than a ‘propagative’ process. The initial condition I0 denotes the initial image which

is, in effect, and with regard to Figure 25, the image of the light source obtained

in air. As observed in Figure 25, the details associated with the light source are

blurred through the convolution of the object function I0 with the Gaussian PSF, a

function that is characteristic of diffusion processes in general.
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FIGURE 25 Image of an optical source (left) and the same source imaged through steam
(centre) and a simulation based on the convolution of the source image with
a Gaussian PSF (right).

7.6 Inverse Scattering Solutions: Dediffusion

The problem is to find I0 from I at some time t > 0. Consider the case in which we

record the diffused image I at a time t = T. The Taylor series for I at t = 0 may

then be written as

I(x, y, 0) = I(x, y, T) − T
[

∂

∂t
I(x, y, t)

]
t=T

+
T2

2!

[
∂2

∂t2 I(x, y, t)
]

t=T
+ ...

For T << 1, we can approximate this function be neglecting all terms after the

second term. Using the diffusion equation, we then obtain

I(x, y, 0) � I(x, y, T) − T
[

∂

∂t
I(x, y, t)

]
t=T

= I(x, y, T) − DT∇2 I(x, y, T).

Now, since

I(x, y, 0) = I0(x, y)

we have

I0(x, y) = I(x, y, T) − DT∇2 I(x, y, T).

7.6.1 The High Emphasis Filter

The high emphasis filter [6] is based on computing an output image I0 from the

input image I via application of the result

I0(x, y) = I(x, y) −∇2 I(x, y)

which is the case when DT = 1.
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This filter can be implemented by computing the digital Laplacian in order to

design an appropriate Finite Impulse Response (FIR) filter [33]. Applying a centre

differencing scheme, i.e.

∇2 Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij

we have

I0
ij = Iij −∇2 Iij = 5Iij − I(i+1)j − I(i−1)j − Ii(j+1) − Ii(j−1).

where

I0
ij ≡ I0(i, j).

The digital Laplacian is a shift invariant linear operation. Applying this operation

to a digital image Iij is the same as convolving the image with the two-dimensional

array (the FIR filter) ⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠ .

Hence, computing I0
ij is the same as convolving Iij with the FIR filter⎛⎝ 0 −1 0

−1 5 −1
0 −1 0

⎞⎠ .

An example of the application of this filter is given in Figure 26. Given the simplicity

of the process (i.e. application of a 3× 3 FIR filter), the method provides an effective

image enhancement technique providing the degradation of the image conforms to

a light diffusion (strong scattering) model.

7.6.2 General Solution

If we record an image at a time t = T then by Taylor expanding I at t = 0 we can

write

I(x, y, 0) = I(x, y, T) +
∞

∑
n=1

(−1)n

n!
Tn
[

∂n

∂tn I(x, y, t)
]

t=T

The high emphasis filter derived earlier is obtained by neglecting terms in the series

above for n > 1 giving an approximate solution for the de-diffused image I0. If we

include all the terms in this series, then an exact solution for I0 can be obtained.

This can be done by noting that (from the diffusion equation)

∂2 I
∂t2 = D∇2 ∂I

∂t
= D2∇4 I

∂3 I
∂t3 = D∇2 ∂2 I

∂t2 = D3∇6 I

and so on. In general we can write[
∂n

∂tn I(x, y, t)
]

t=T
= Dn∇2n I(x, y, T).



185

FIGURE 26 Original image (left) - rings of Saturn - and an enhanced image (right) using
the high emphasis filter.

Substituting this result into the series for I0 given above, we get

I0(x, y) = I(x, y, T) +
∞

∑
n=1

(−1)n

n!
(DT)n∇2n I(x, y, T)

and for DT = 1
I0 = I −∇2 I +

1
2!
∇4 I − 1

3!
∇6 I + ...

From this result, we can design FIR filters for the higher order terms. Since

∇2 Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij = Jij

then

∇4 Iij = ∇2 Jij = J(i+1)j + J(i−1)j + Ji(j+1) + Ji(j−1) − 4Jij

= I(i+2)j + Iij + I(i+1)(j+1) + I(i+1)(j−1) − 4I(i+1)j

+Iij + I(i−2)j + I(i−1)(j+1) + I(i−1)(j−1) − 4I(i−1)j

+I(i+1)(j+1) + I(i−1)(j+1) + Ii(j+2) + Iij − 4Ii(j+1)

+I(i+1)(j−1) + I(i−1)(j−1) + Iij + Ii(j−2) − 4Ii(j−1)

−4I(i+1)j − 4I(i−1)j − 4Ii(j+1) + 4Ii(j−1) + 16Iij

= 20Iij + I(i+2)j + 2I(i+1)(j+1) + 2I(i+1)(j−1) − 8I(i+1)j



186

+I(i−2)j + 2I(i−1)(j+1) + 2I(i−1)(j−1) − 8I(i−1)j + Ii(j+2)

−8Ii(j+1) + Ii(j−2) − 8Ii(j−1).

In terms of a convolution kernel, the result above can be written as⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ .

Hence, given the convolution kernel associated with the first order solution I −∇2 I,
the convolution kernel associated with the second order solution I −∇2 I + 1

2∇4 I is

given by ⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 −1 0 0
0 −1 5 −1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
0 0 1

2 0 0
0 1 −4 1 0
1
2 −4 10 −4 1

2
0 1 −4 1 0
0 0 1

2 0 0

⎞⎟⎟⎟⎟⎟⎠

=
1
2

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 −10 2 0
1 −10 30 −10 1
0 2 −10 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠
To compute the convolution kernel associated with the third order solution f −
∇2 f + 1

2∇4 f − 1
6∇6 f , we use the same method as above to evaluate ∇6 Iij to obtain

1
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0
0 0 −3 15 −3 0 0
0 −3 24 −87 24 −3 0
−1 15 −87 202 −87 15 −1
0 −3 24 −87 24 −3 0
0 0 −3 15 −3 0 0
0 0 0 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
An example of the application of these filters is given in Figure 27 which shows the

result of diffusing a image by applying a Gaussian low-pass filter and then restoring

the image using the first (high emphasis) and second order FIR filter given above.
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FIGURE 27 Original 256×256 image (top-left) - M83 galaxy; result after applying a
Gaussian low-pass filter (top-right); output after application of the first
order (high emphasis) FIR filter (bottom-left); output after application of
the second order FIR filter (bottom-right).



8 FRACTIONAL DIFFUSION MODELS

8.1 Random Walk Processes

The purpose of revisiting random walk processes is that it provides a useful concep-

tual reference to the model that is introduced later on in this paper and in particular,

appreciation of the use of the fractional diffusion equation for describing self-affine

stochastic fields, an equation that arises through the unification of coherent and

incoherent random walks. We shall consider a random walk in the plane where the

amplitude remains constant but where the phase changes, first by a constant factor

and then by a random value between 0 and 2π.

8.1.1 Coherent (Constant) Phase Walks

Consider a walk in the (real) plane where the length from one step to another is

constant - the amplitude a - and where the direction that is taken after each step

is the same. In this simple case, the ‘walker’ continues in a straight line and after

n steps the total length of the path the walker has taken will be just an. We define

this value as the resultant amplitude A - the total length of the walk - which will

change only by account of the number of steps taken. Thus,

A = an.

If each step takes a set period of time t to complete, then it is clear that

A(t) = at.

This scenario is limited by the fact that we are assuming that each step is of precisely

the same length and takes precisely the same period of time to accomplish. In

general, we consider a to be the mean value of all the step lengths and t to be the

cumulative time associated with the average time taken to perform all steps. A walk

of this type has a coherence from one step or cluster of steps to the next, is entirely

predictable and correlated in time.
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If the same walk takes place in the complex plane then the phase θ from one

step to the next is the same. Thus, the result is given by

A exp(iθ) = ∑
n

a exp(iθ) = na exp(iθ).

The resultant amplitude is given by na as before and the total phase value is θ. We

can also define the intensity which is given by

I =| A exp(iθ) |2= A2

Thus, as a function of time, the intensity associated with this coherent phase walk

is given by

I(t) = a2t2.

Suppose we make the walk slightly more complicated and consider the case

where the phase increases by a small constant factor of θ at each step. After n
steps, the result will be given by the sum of all the steps taken, i.e.

A exp(iΘ) = ∑
n

a exp(inθ)

= a[1 + exp(iθ) + exp(2iθ) + ... + exp[i(n − 1)θ]

= a
[1 − exp(inθ)]
[1 − exp(iθ)]

= a
exp(inθ/2)[exp(−inθ/2) − exp(inθ/2)]

exp(iθ/2)[exp(−iθ/2) − exp(iθ/2)]

= a exp[i(n − 1)θ/2)]
sin(nθ/2)

sin θ/2
.

Now, after many steps, when n is large,

α = (n − 1)θ/2 � nθ/2

and when the phase change θ is small,

sin(θ/2) � θ

2
� α

n

and we obtain the result

A exp(iΘ) = na exp[i((n − 1)/2)θ]sincα, sincα =
sin α

α
.

For very small changes in the phase θ << 1, sincα � 1 and the resultant amplitude

A is, as before, given by an or as a function of time, by at.



190

8.1.2 Incoherent (Random) Phase Walk

Incoherent or random phase walks are the basis of modelling many kinds of statistical

fluctuations. It is also the principle physical model associated with the stochastic

behaviour of an ensemble of particles that collectively exhibit the process of diffusion.

The first quantitative description of Brownian motion was undertaken by Albert

Einstein and published in 1905 [36]. The basic idea is to consider a random walk

in which the mean value of each step is a but where there is no correlation in the

direction of the walk from one step to the next. That is, the direction taken by the

walker from one step to next can be in any direction described by an angle between

0 and 360 degrees or 0 and 2π radians - for a walk in the plane. The angle that is

taken at each step is entirely random and all angles are taken to be equally likely.

Thus, the PDF of angles between 0 and 2π is given by

Pr[θ] =

{
1

2π , 0 ≤ θ ≤ 2π;
0, otherwise.

If we consider the random walk to take place in the complex plane, then after n
steps, the position of the walker will be determined by a resultant amplitude A and

phase angle Θ given by the sum of all the steps taken, i.e.

A exp(iΘ) = a exp(iθ1) + a exp(iθ2) + ... + a exp(iθn)

= a
n

∑
m=1

exp(iθm).

The problem is to obtain a scaling relationship between A and n. Clearly we should

not expect A to be proportional to the number of steps n as is the case with a

coherent walk. The trick to finding this relationship is to analyse the result of taking

the square modulus of A exp(iΘ). This provides an expression for the intensity I
given by

I = a2

∣∣∣∣∣ n

∑
m=1

exp(iθm)

∣∣∣∣∣
2

= a2
n

∑
m=1

exp(iθm)
n

∑
m=1

exp(−iθm)

= a2

[
n +

n

∑
j=1,j �=k

exp(iθj)
n

∑
k=1

exp(−iθk)

]
.

Now, in a typical term

exp(iθj) exp(−iθk) = cos(θj − θk) + i sin(θj − θk)

of the double summation, the functions cos(θj − θk) and sin(θj − θk) have random

values between ±1. Consequently, as n becomes larger and larger, the double sum

will reduces to zero since more and more of these terms cancel each other out. This

insight is the basis for stating that for n >> 1

I = a2n
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and the resulting amplitude is therefore given by

A = a
√

n.

In this case, A is proportional to the square root of the number of steps taken and

if each step is taken over a mean time period, then we obtain the result

A(t) = a
√

t.

With a coherent walk we can state that the resulting amplitude after a time t will

be at. This is a deterministic result. However, with an incoherent random walk,

the interpretation of the above result is that a
√

t is the amplitude associated with

the most likely position that the random walker will be after time t. If we imagine

many random walkers, each starting out on their ‘journey’ from the origin of the

(complex) plane at t = 0, record the distances from the origin of this plane after a

set period of time t, then the PDF of A will have a maximum value - the ‘mode’ of

the distribution - that occurs at a
√

t. In the case of a perfectly coherent walk, the

PDF will consist of a unit spike that occurs at at.
Figure 28 shows coherent and a incoherent phase walks in the plane. Each

position of the walk (xj, yj), j = 1, 2, 3, ..., N has been computed using (for a = 1)

xj =
j

∑
i=1

cos(θi)

yj =
j

∑
i=1

sin(θi)

where θi ∈ [0, 2π] is uniformly distributed and computed using the standard linear

congruential pseudo random number generator

xi+1 = aximodP, i = 1, 2, ..., N (8.1)

with a = 77 and P = 231 − 1 and an arbitrary value of x0 - the ‘seed’. For the

coherent phase walk

θi =
2π

16
xi

‖x‖∞

which limits the angle to a small range between 0 and π/8 radians1. For the

incoherent phase walk, the range of values is between 0 and 2π radians, i.e.

θi = 2π
xi

‖x‖∞

1 ‖x‖∞ denote the uniform norm, equivalent to the maximum value of the array vector x.



192

FIGURE 28 Examples of a coherent (top) and incoherent (bottom) random walk in the
plane for N = 100.

8.2 Physical Interpretation

In the (classical) kinetic theory of matter (including gases, liquids, plasmas and

some solids), we consider a to be the average distance a particle travels before it

randomly collides and scatters from another particle. The scattering process is

taken to be entirely elastic, i.e. the interaction does not affect the particle in any

way other than to change the direction in which it travels. Thus, a represents the

mean free path of a particle. The mean free path is a measure how far a particle

can travel before scattering with another particle which in turn, is related to the

number of particle per unit volume - the density of a gas for example. If we imagine

a particle ‘diffusing’ through an ensemble of particles, then the mean free path is

a measure of the ‘diffusivity’ of the medium in which the process of diffusion takes

place. This is a feature of all classical diffusion processes which can be formulated

in terms of the diffusion equation with diffusivity D. The dimensions of diffusivity

are length2/time and may be interpreted in terms of the characteristic distance of

a random walk process which varies with the square root of time.

If we consider a wavefront travelling through space and scattering from a site

that changes the direction of propagation, then the mean free path can be taken

to be the average number of wavelengths taken by the wavefront to propagate from

one interaction to another. After scattering from many sites, the wavefront can

be considered to have diffused through the ‘diffuser’. Here, the mean free path
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is a measure of the density of scattering sites, which in turn, is a measure of the

diffusivity of the material - an optical diffuser, for example.

We can use the random walk model associated with a wavefield to interpret

the flow of information through a complex network of ‘sites’ that are responsible

for passing on the information from one site to the next. If a packet of information

(e.g. a stream of bits of arbitrary length) travels directly from A to B, then, in

terms of the random walk models discussed above, the model associated with this

information exchange is ‘propagative’; it is a coherent process which is correlated in

time and its principal physical characteristic is determined by the speed at which

the information flows from A to B. On the other hand, suppose that this information

packet is transferred from A to B via information interchange sites C, D,...,Z,... In

this case the flow of information is diffusive and is characterised by the diffusivity of

the information interchange ‘system’. To a first order approximation, the diffusivity

will depend on the number of sites that are required to manage the reception and

transmission of the information packet. As the number of sites decreases the flow

of information becomes more propagative and less diffusive. Thus, we can consider

the Internet, for example (albeit a good one) to be a source of information diffusion,

not in terms of the diffusion of the information it coveys but in terms of the way in

which information packets ‘walk through’ the network.

8.2.1 The Classical Diffusion Equation

The homogeneous diffusion equation is given by (for the one-dimension case x) [37](
∂2

∂x2 − σ
∂

∂t

)
u(x, t) = 0

for a diffusivity D = σ−1. The field u(x, t) represents a measurable quantity whose

space-time dependence is determined by the random walk of a large ensemble of

particles or a multiple scattered wavefield or information flowing through a complex

network. We consider an initial value for this field denoted by u0 ≡ u(x, 0) =
u(x, t) at t = 0. For example, u could be the temperature of a material that starts

‘radiating’ heat at time t = 0 from a point in space x due to a mass of thermally

energised particles, each of which undertakes a random walk from the source of heat

in which the most likely position of any particle after a time t is proportional to√
t. In optical diffusion, for example, u denotes the intensity of light. The light

wavefield is taken to be composed of an ensemble of wavefronts or rays, each of

which undergoes multiple scattering as it propagates through the diffuser. For a

single wavefront element, multiple scattering is equivalent to a random walk of that

element.

The relationship between a random walk model and the diffusion equation can

also be attributed to Einstein [36] [37] who derived the diffusion equation using a

random particle model system assuming that the movements of the particles are

independent of the movements of all other particles and that the motion of a single

particle at some interval of time is independent of its motion at all other times.

The derivation is as follows: Let τ be a small interval of time in which a particle
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moves some distance between λ and λ + dλ with a probability P(λ) where τ is long

enough to assume that the movements of the particle in two separate periods of τ

are independent. If n is the total number of particles and we assume that P(λ) is

constant between λ and λ + dλ, then the number of particles which will travel a

distance between λ and λ + dλ in τ is given by

dn = nP(λ)dλ.

If u(x, t) is the concentration (number of particles per unit volume) then the con-

centration at time t + τ is described by the integral of the concentration of particles

which have been displaced by λ in time τ, as described by the equation above, over

all possible λ, i.e.

u(x, t + τ) =
∞∫

−∞

u(x + λ, t)P(λ)dλ.

Since, τ is assumed to be small, we can approximate u(x, t + τ) using the Taylor

series and write

u(x, t + τ) � u(x, t) + τ
∂

∂t
u(x, t).

Similarly, using a Taylor series expansion of u(x + λ, t), we have

u(x + λ, t) � u(x, t) + λ
∂

∂x
u(x, t) +

λ2

2!
∂2

∂x2 u(x, t)

where the higher order terms are neglected under the assumption that if τ is small,

then the distance travelled, λ, must also be small. We can then write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t)

∞∫
−∞

P(λ)dλ

+
∂

∂x
u(x, t)

∞∫
−∞

λP(λ)dλ +
1
2

∂2

∂x2 u(x, t)
∞∫

−∞

λ2P(λ)dλ.

For isotropic diffusion, P(λ) = P(−λ) and so P is an even function with usual

normalization condition
∞∫

−∞

P(λ)dλ = 1.

As λ is an odd function, the product λP(λ) is also an odd function which, if inte-

grated over all values of λ, equates to zero. Thus we can write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t) +

1
2

∂2

∂x2 u(x, t)
∞∫

−∞

λ2P(λ)dλ

so that

∂

∂t
u(x, t) =

∂2

∂x2 u(x, t)
∞∫

−∞

λ2

2τ
P(λ)dλ.
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Finally, defining the diffusivity as

D =
∞∫

−∞

λ2

2τ
P(λ)dλ

we obtain the diffusion equation

∂

∂t
u(x, t) = D

∂2

∂x2 u(x, t).

8.2.2 The Classical Wave Equation

The wave equation (homogeneous form) is given by (for the one-dimension case) [38](
∂2

∂x2 − 1
c2

∂2

∂t2

)
u(x, t) = 0

where c is the wave speed and u denotes the amplitude of the wavefield. A possible

solution to this equation is

u(x, t) = p(x − ct)

which describes a wave with distribution p moving along x at velocity c. For the

initial value problem where

u(x, 0) = v(x),
∂

∂t
u(x, 0) = w(x)

the (d’Alembert) general solution is given by [38]

u(x, t) =
1
2
[v(x − ct) + v(x + ct)] +

1
2c

x+ct∫
x−ct

w(ξ)dξ.

This solution is of limited use in that the range of x is unbounded and only applies

to the case on an ‘infinite string’. For the case when w = 0, the solution can be

taken to describe two identical waves with amplitude distribution v(x) travelling

away from each other. Neither wave is taken to undergo any interaction as it travels

along a straight path and thus, after time t the distance travelled will be ct. This

is analogous to a walker undertaking a perfectly coherent walk with an average step

length of c and after a period of time t reaching a position ct. The point here, is that

we can relate the diffusion equation and the wave equation to two types of processes.

The diffusion equation describes a field generated by incoherent random processes

with no time correlations whereas the wave equation describes a field generated by

coherent processes that are correlated in time. One of the aims of this paper is to

formulate an equation that models the intermediate case - the fractional diffusion

equation - in which random walk process have a directional bias.
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8.3 Hurst Processes

For a walk in the plane, A(t) = at for a coherent walk and A(t) = a
√

t for an

incoherent walk. However, what would be the result if the walk was neither coherent

or incoherent but partial coherent/incoherent? In other words, suppose the random

walk exhibited a bias with regard to the distribution of angles used to change the

direction. What would be the effect on the scaling law
√

t? Intuitively, one expects

that as the distribution of angles reduces, the corresponding walk becomes more

and more coherent, exhibiting longer and longer time correlations until the process

conforms to a fully coherent walk. A simulation of such an effect is given in Figure

29 which shows a random walk in the (real) plane as the (uniform) distribution

of angles decreases. The walk becomes less and less random as the width of the

distribution is reduced.

The equivalent effect for a random phase walk in three-dimensions is given in

Figure 30. Each position of the walk

(xj, yj, zj), j = 1, 2, 3, ..., N

has been computed using

xj =
j

∑
i=1

cos(θi) cos(φi)

yj =
j

∑
i=1

sin(θi) cos(φi)

zj =
j

∑
i=1

sin(φi)

for N = 500. The uniform random number generator used to compute θi and φi is

the same - equation (8.1) - but with different seeds. Conceptually, scaling models

associated with the intermediate case(s) should be based on a generalisation of the

scaling laws
√

t and t to the form tH where 0.5 ≤ H < 1. This reasoning is the

basis for generalising the random walk processes considered so far, the exponent H
being known as the Hurst exponent or ‘dimension’.

H E Hurst (1900-1978) was an English civil engineer who designed dams and

worked on the Nile river dam projects in the 1920s and 1930s. He studied the Nile

so extensively that some Egyptians reportedly nicknamed him ‘the father of the

Nile’. The Nile river posed an interesting problem for Hurst as a hydrologist. When

designing a dam, hydrologists need to estimate the necessary storage capacity of the

resulting reservoir. An influx of water occurs through various natural sources (rain-

fall, river overflows etc.) and a regulated amount needs to be released for primarily

agricultural purposes, for example, the storage capacity of a reservoir being based

on the net water flow. Hydrologists usually begin by assuming that the water influx

is random, a perfectly reasonable assumption when dealing with a complex ecosys-

tem. Hurst, however, had studied the 847-year record that the Egyptians had kept

of the Nile river overflows, from 622 to 1469. He noticed that large overflows tended
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FIGURE 29 Random phase walks in the plane for a uniform distribution of angles θi ∈
[0, 2π] (top left), θi ∈ [0, 1.9π] (top right), θi ∈ [0, 1.8π] (bottom left) and
θi ∈ [0, 1.2π] (bottom right).

FIGURE 30 Three dimensional random phase walks for a uniform distribution of an-
gles (θi, φi) ∈ ([0, 2π], [0, 2π]) (top left), (θi, φi) ∈ ([0, 1.6π], [0, 1.6π])
(top right), (θi, φi) ∈ ([0, 1.3π], [0, 1.3π]) (bottom left) and (θi, φi) ∈
([0, π], [0, π]) (bottom right).
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to be followed by large overflows until abruptly, the system would then change to

low overflows, which also tended to be followed by low overflows. There appeared

to be cycles, but with no predictable period. Standard statistical analysis of the

day revealed no significant correlations between observations, so Hurst, who was

aware of Einstein’s work on Brownian motion, developed his own methodology [39]

lead to the scaling law tH. This scaling law makes no prior assumptions about any

underlying distributions. It simply tells us how the system is scaling with respect

to time. So how do we interpret the Hurst exponent? We know that H = 0.5 is

consistent with an independently distributed system. The range 0.5 < H ≤ 1, im-

plies a persistent time series, and a persistent time series is characterized by positive

correlations. Theoretically, what happens today will ultimately have a lasting effect

on the future. The range 0 < H ≤ 0.5 indicates anti-persistence which means that

the time series covers less ground than a random process. In other words, there are

negative correlations. For a system to cover less distance, it must reverse itself more

often than a random process.

8.4 Lévy Processes

The generalisation of Einstein’s equation A(t) = a
√

t by Hurst to the form A(t) =
atH, 0 < H ≤ 1 was necessary in order for Hurst to analyse the apparent random

behaviour of the annual rise and fall of the Nile river for which Einstein’s model was

inadequate. In considering this generalisation, Hurst paved the way for an appreci-

ation that most natural stochastic phenomena which, at first site, appear random,

have certain trends that can be identified over a given period of time. In other words,

many natural random patterns have a bias to them that leads to time correlations

in their stochastic behaviour, a behaviour that is not an inherent characteristic of a

random walk model and fully diffusive processes in general. This aspect of stochastic

field theory was taken up in the late 1930s by the French mathematician Paul Lévy

(1886-1971) [40].

Lévy processes are random walks whose distribution has infinite moments. The

statistics of (conventional) physical systems are usually concerned with stochastic

fields that have PDFs where (at least) the first two moments (the mean and variance)

are well defined and finite. Lévy statistics is concerned with statistical systems where

all the moments (starting with the mean) are infinite.

Many distributions exist where the mean and variance are finite but are not

representative of the process, e.g. the tail of the distribution is significant, where rare

but extreme events occur. These distributions include Lévy distributions. Lévy’s

original approach2 to deriving such distributions is based on the following question:

Under what circumstances does the distribution associated with a random walk of

a few steps look the same as the distribution after many steps (except for scaling)?

This question is effectively the same as asking under what circumstances do we

obtain a random walk that is statistically self-affine. The characteristic function

2 P Lévy was the research supervisor of B Mandelbrot, the ‘inventor’ of ‘fractal geometry’.
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(i.e. the Fourier transform) P(k) of such a distribution p(x) was first shown by

Lévy to be given by (for symmetric distributions only)

P(k) = exp(−a | k |q), 0 < q ≤ 2

where a is a (positive) constant. If q = 0,

p(x) =
1

2π

∞∫
−∞

exp(−a) exp(ikx)dk = exp(−a)δ(x)

and the distribution is concentrated solely at the origin as described by the delta

function δ(x). When q = 1, the Cauchy distribution

p(x) =
1

2π

∞∫
−∞

exp(−a | k |) exp(ikx)dk =
1
π

a
a2 + x2

is obtained and when q = 2, p(x) is characterized by the Gaussian distribution

p(x) =
1

2π

∞∫
−∞

exp(−ak2) exp(ikx)dk

=
1

2π

√
π

a
exp[−x2/(4a)],

whose first and second moments are finite. The Cauchy distribution has a relatively

long tail compared with the Gaussian distribution and a stochastic field described by

a Cauchy distribution is likely to have more extreme variations when compared to

a Gaussian distributed field. For values of q between 0 and 2, Lévy’s characteristic

function corresponds to a PDF of the form

p(x) ∼ 1
x1+q , x → ∞.

This can be shown as follows3: For 0 < q < 1 and since the characteristic function

is symmetric, we have

p(x) = Re[ f (x)]

where

f (x) =
1
π

∞∫
0

eikxe−kq
dk

=
1
π

⎛⎝[ 1
ix

eikxe−kq
]∞

k=0
− 1

ix

∞∫
0

eikx(−qkq−1e−kq
)dk

⎞⎠
3 The author acknowledges Dr K I Hopcraft, School of Mathematical Sciences, Nottingham

University, England, for his help in deriving this result.
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=
q

2πix

∞∫
−∞

dkH(k)kq−1e−kq
eikx, x → ∞

where

H(k) =

{
1, k > 0
0, k < 0

For 0 < q < 1, f (x) is singular at k = 0 and the greatest contribution to this

integral is the inverse Fourier transform of H(k)kq−1. Noting that

F−1
[

1
(ik)q

]
∼ 1

x1−q

where F−1 denotes the inverse Fourier transform, and that

H(k) ⇐⇒ δ(x) +
i

πx
∼ δ(x), x → ∞

then, using the convolution theorem, we have

f (x) ∼ q
iπx

i1−q

xq

and thus

p(x) ∼ 1
x1+q , x → ∞

For 1 < q < 2, we can integrate by parts twice to obtain

f (x) =
q

iπx

∞∫
0

dkkq−1e−kq
eikx

=
q

iπx

[
1
ix

kq−1e−kq
eikx
]∞

k=0

+
q

πx2

∞∫
0

dkeikx[(q − 1)kq−2e−kq − q(kq−1)2e−kq
]

=
q

πx2

∞∫
0

dkeikx[(q − 1)kq−2e−kq − q(kq−1)2e−kq
], x → ∞.

The first term of this result is singular and therefore provides the greatest contribu-

tion and thus we can write,

f (x) � q(q − 1)
2πx2

∞∫
−∞

H(k)eikx(kq−2e−kq
)dk.

In this case, for 1 < q < 2, the greatest contribution to this integral is the inverse

Fourier transform of kq−2 and hence,

f (x) ∼ q(q − 1)
πx2

i2−q

xq−1
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so that

p(x) ∼ 1
x1+q , x → ∞

which maps onto the previous asymptotic as q → 1 from the above.

For q ≥ 2, the second moment of the Lévy distribution exists and the sums of

large numbers of independent trials are Gaussian distributed. For example, if the

result were a random walk with a step length distribution governed by p(x), q > 2,

then the result would be normal (Gaussian) diffusion, i.e. a Brownian process.

For q < 2 the second moment of this PDF (the mean square), diverges and the

characteristic scale of the walk is lost. This type of random walk is called a Lev́y

flight.

8.5 The Fractional Diffusion Equation

We can consider a Hurst process to be a form of fractional Brownian motion based

on the generalization

A(t) = atH, H ∈ (0, 1].

Given that incoherent random walks describe processes whose macroscopic behaviour

is characterised by the diffusion equation, then, by induction, Hurst processes should

be characterised by generalizing the diffusion operator

∂2

∂x2 − σ
∂

∂t
to the fractional form

∂2

∂x2 − σq ∂q

∂tq

where q ∈ (0, 2] and D = 1/σ is the fractional diffusivity. Fractional diffusive

processes can therefore be interpreted as intermediate between classical diffusive

(random phase walks with H = 0.5; diffusive processes with q = 1) and ‘propagative

process’ (coherent phase walks for H = 1; propagative processes with q = 2), e.g.

[41], [42] and [43] - references therein. Fractional diffusion equations can also be

used to model Lévy distributions [43] and fractal time random walks [44], [45].

However, it should be noted that the fractional diffusion operator given above is

the result of a phenomenology. It is no more (and no less) than a generalisation of

a well known differential operator to fractional form which follows from a physical

analysis of a fully incoherent random process and it generalisation to fractional

form in terms of the Hurst exponent. Note that the diffusion and wave equations

can be derived rigorously from a range of fundamental physical laws (conservation of

mass, the continuity equation, Fourier’s law of thermal conduction, Newton’s laws of

motion and so on) and that, in comparison, our approach to introducing a fractional

differential operator is based on postulation alone. It is therefore similar to certain

other differential operators, a notable example being Schrödinger’s operator.

The fractional diffusion operator given above is appropriate for modelling frac-

tional diffusive processes that are stationary. For non-stationary fractional diffusion,
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we could consider the case where the diffusivity is time variant as defined by the

function σ(t). However, a more interesting case arises when the characteristics of

the diffusion processes change over time becoming less or more diffusive. This is

illustrated in terms of the random walk in the plane given in Figure 31. Here, the

walk starts off being fully diffusive (i.e. H = 0.5 and q = 1), changes to being frac-

tionally diffusive (0.5 < H < 1 and 1 < q < 2) and then changes back to being fully

diffusive. The result given in Figure 31 shows a transition from two episodes that

are fully diffusive which has been generated using uniform phase distributions whose

width changes from 2π to 1.8π and back to 2π. In terms of fractional diffusion,

this is equivalent to having an operator

∂2

∂x2 − σq ∂q

∂tq

where q = 1, t ∈ (0, T1]; q > 1, t ∈ (T1, T2]; q = 1, t ∈ (T2, T3] where T3 > T2 > T1.

If we want to generalise such processes over arbitrary periods of time, then we

should consider q to be a function of time. We can then introduce a non-stationary

fractional diffusion operator given by

∂2

∂x2 − σq(t) ∂q(t)

∂tq(t)
.

This operator is the theoretical basis for non-stationary fractaional dynamic pro-

cesses.

FIGURE 31 Non-stationary random phase walk in the plane.

8.6 Fractional Dynamic Model

We consider an inhomogeneous non-stationary fractional diffusion equation of the

form [
∂2

∂x2 − σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F(x, t)
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where F is a stochastic source term with some PDF and u is the stochastic field

whose solution we require. Specifying q to be in the range 0 ≤ q ≤ 2, leads to

control over the basic physical characteristics of the equation so that we can define

an anti-persistent field u(x, t) when q < 1, a diffusive field when q = 1 and a

propagative field when q = 2. In this case, non-stationarity is introduced through

the use of a time varying fractional derivative whose values modify the physical

characteristics of the equation.

The range of values of q is based on deriving an equation that is a generali-

sation of both diffusive and propagative processes using, what is fundamentally, a

phenomenology. When q = 0 ∀t, the time dependent behaviour is determined by

the source function alone; when q = 1 ∀t, u describes a diffusive process where

D = σ−1 is the ‘diffusivity’; when q = 2 we have a propagative process where σ

is the ‘slowness’ (the inverse of the wave speed). The latter process should be ex-

pected to ‘propagate information’ more rapidly than a diffusive process leading to

transients or ‘flights’ of some type. We refer to q as the ‘Fourier Dimension’ which

is related to the Hurst Exponent by q = H + DT/2 where DT is the Topological

Dimension and to the Fractal Dimension DF by q = 1 − DF + 3DT/2 as shown in

Appendix 2.

Since q(t) ‘drives’ the non-stationary behaviour of u, the way in which we

model q(t) is crucial. It is arguable that the changes in the statistical characteristics

of u which lead to its non-stationary behaviour should also be random. Thus, sup-

pose that we let the Fourier dimension at a time t be chosen randomly, a randomness

that is determined by some PDF. In this case, the non-stationary characteristics of

u will be determined by the PDF (and associated parameters) alone. Also, since q is

a dimension, we can consider our model to be based on the ‘statistics of dimension’.

There are a variety of PDFs that can be applied which will in turn affect the range

of q. By varying the exact nature of the distribution considered, we can ‘drive’ the

non-stationary behaviour of u in different ways. However, in order to apply different

statistical models for the Fourier dimension, the range of q can not be restricted to

any particular range, especially in the case of a normal distribution. We therefore

generalize further and consider the equation[
∂2

∂x2 − σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F(x, t),−∞ < q(t) < ∞, ∀t.

which allows us to apply different PDFs for q covering arbitrary ranges. For example,

suppose we consider a system which is assumed to be primarily diffusive; then a

‘normal’ PDF of the type

Pr[q(t)] =
1

σ
√

2π
exp[−(q − 1)2/2σ2], −∞ < q < ∞

where σ is the standard deviation, will ensure that u is entirely diffusive when σ → 0.

However, as σ is increased in value, the likelihood of q = 2 (and q = 0) becomes

larger. In other words, the standard deviation provides control over the likelihood

of the process becoming propagative.
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Irrespective of the type of distribution that is considered, the equation[
∂2

∂x2 − σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F(x, t)

poses a fundamental problem which is how to define and work with the term

∂q(t)

∂tq(t)
u(x, t).

Given the result (for constant q)

∂q

∂tq u(x, t) =
1

2π

∞∫
−∞

(iω)qU(x, ω) exp(iωt)dω

we might generalize as follows:

∂q(τ)

∂tq(τ)
u(x, t) =

1
2π

∞∫
−∞

(iω)q(τ)U(x, ω) exp(iωt)dω.

However, if we consider the case where the Fourier dimension is a relatively slowly

varying function of time, then we can legitimately consider q(t) to be composed

of a sequence of different states qi = q(ti). This approach allows us to develop a

stationary solution for a fixed q over a fixed period of time. Non-stationary behaviour

can then be introduced by using the same solution for different values of q over fixed

(or varying) periods of time and concatenating the solutions for all q.

8.7 Green’s Function Solution

We consider a Green’s function solution to the equation(
∂2

∂x2 − σq ∂q

∂tq

)
u(x, t) = F(x, t), −∞ < q < ∞

when F(x, t) = f (x)n(t) where f (x) and n(t) are both stochastic functions. Ap-

plying a separation of variables here is not strictly necessary. However, it yields a

solution in which the terms affecting the temporal behaviour of u(x, t) are clearly

identifiable. Thus, we require a general solution to the equation(
∂2

∂x2 − σq ∂q

∂tq

)
u(x, t) = f (x)n(t).

Let

u(x, t) =
1

2π

∞∫
−∞

U(x, ω) exp(iωt)dω
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and

n(t) =
1

2π

∞∫
−∞

N(ω) exp(iωt)dω.

Then, using the result

∂q

∂tq u(x, t) =
1

2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω

we can transform the fractional diffusion equation to the form(
∂2

∂x2 + Ω2
q

)
U(x, ω) = f (x)N(ω)

where we shall take

Ωq = i(iωσ)
q
2

and ignore the case for Ωq = −i(iωσ)
q
2 . Defining the Green’s function g to be the

solution of (see Chapter 3)(
∂2

∂x2 + Ω2
q

)
g(x | x0, ω) = δ(x − x0)

where δ is the delta function, we obtain the following solution:

U(x0, ω) = N(ω)
∞∫

−∞

g(x | x0, ω) f (x)dx (8.2)

where

g(x | x0, k) =
i

2Ωq
exp(iΩq | x − x0 |)

under the assumption that u and ∂u/∂x → 0 as x → ±∞. This result reduces to

conventional solutions for cases when q = 1 (diffusion equation) and q = 2 (wave

equation) as shall now be shown.

8.7.1 Wave Equation Solution

When q = 2, the Green’s function defined above provides a solution for the outgoing

Green’s function. Thus, with Ω2 = −ωσ, we have

U(x0, ω) =
N(ω)
2iωσ

∞∫
−∞

exp(−iωσ | x − x0 |) f (x)dx.

Fourier inverting and using the convolution theorem for the Fourier transform, we

get

u(x0, t) =
1

2σ

∞∫
−∞

dx f (x)...
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1
2π

∞∫
−∞

N(ω)
iω

exp(−iωσ | x − x0 |) exp(iωt)dω

=
1

2σ

∞∫
−∞

dx f (x)
t∫

−∞

n(t − σ | x − x0 |)dt

which describes the propagation of a wave travelling at velocity 1/σ subject to

variations in space and time as defined by f (x) and n(t) respectively. For example,

when f and n are both delta functions,

u(x0, t) =
1

2σ
H(t − σ | x − x0 |).

This is a d’Alembertian type solution to the wave equation where the wavefront

occurs at t = σ | x − x0 | in the causal case.

8.7.2 Diffusion Equation Solution

When q = 1 and Ω1 = i
√

iωσ,

u(x0, t) =
1
2

∞∫
−∞

dx f (x)...

1
2π

∞∫
−∞

exp(−√
iωσ | x − x0 |)√

iωσ
N(ω) exp(iωt)dω.

For p = iω, we can write this result in terms of a Bromwich integral (i.e. an inverse

Laplace transform) and using the convolution theorem for Laplace transforms with

the result
c+i∞∫

c−i∞

exp(−a
√

p)√
p

exp(pt)dp =
1√
πt

exp[−a2/(4t)],

we obtain

u(x0, t) =

1
2
√

σ

∞∫
−∞

dx f (x)
t∫

0

exp[−σ(x0 − x)2/(4t0)]√
πt0

n(t − t0)dt0.

Now, if for example, we consider the case when n is a delta function, the result

reduces to

u(x0, t) =

1
2
√

πσt

∞∫
−∞

f (x) exp[−σ(x0 − x)2/(4t)]dx, t > 0

which describes classical diffusion in terms of the convolution of an initial source

f (x) (introduced at time t = 0) with a Gaussian function.
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8.7.3 General Series Solution

The evaluation of u(x0, t) via direct Fourier inversion for arbitrary values of q is not

possible due to the irrational nature of the exponential function exp(iΩq | x − x0 |)
with respect to ω. To obtain a general solution, we use the series representation of

the exponential function and write

U(x0, ω) =
iM0N(ω)

2Ωq

[
1 +

∞

∑
m=1

(iΩq)m

m!
Mm(x0)

M0

]
(8.3)

where

Mm(x0) =
∞∫

−∞

f (x) | x − x0 |m dx.

We can now Fourier invert term by term to develop a series solution. Given that we

consider −∞ < q < ∞, this requires us to consider three distinct cases.

Solution for q = 0

Evaluation of u(x0, t) in this case is trivial since, from equation (8.2)

U(x0, ω) =
M(x0)

2
N(ω) or u(x0, t) =

M(x0)
2

n(t)

where

M(x0) =
∞∫

−∞

exp(− | x − x0 |) f (x)dx.

Solution for q > 0

Fourier inverting, the first term in equation (8.3) becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω =

M0

2σ
q
2

1
2π

∞∫
−∞

N(ω)

(iω)
q
2

exp(iωt)dω

=
M0

2σ
q
2

1
(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) ∞∫
−∞

n(ξ)
(t − ξ)1−(q/2)

dξ.

The second term is

−M1

2
1

2π

∞∫
−∞

N(ω) exp(iωt)dω = −M1

2
n(t).
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The third term is

− iM2

2.2!
1

2π

∞∫
−∞

N(ω)i(iωσ)
q
2 exp(iωt)dω =

M2σ
q
2

2.2!
d

q
2

dt
q
2

n(t)

and the fourth and fifth terms become

M3

2.3!
1

2π

∞∫
−∞

N(ω)i2(iωσ)q exp(iωt)dω = −M3σq

2.3!
dq

dtq n(t)

and

i
M4

2.4!
1

2π

∞∫
−∞

N(ω)i3(iωσ)
3q
2 exp(iωt)dω =

M4σ
3q
2

2.4!
d

3q
2

dt
3q
2

n(t)

respectively with similar results for all other terms. Thus, through induction, we

can write u(x0, t) as a series of the form

u(x0, t) =

M0(x0)
2σq/2

1
(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) ∞∫
−∞

n(ξ)
(t − ξ)1−(q/2)

dξ

−M1(x0)
2

n(t) +
1
2

∞

∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)σkq/2 dkq/2

dtkq/2 n(t).

Observe that the first term involves a fractional integral (the Riemann-Liouville

integral), the second term is composed of the source function n(t) alone (apart from

scaling) and the third term is an infinite series composed of fractional differentials

of increasing order kq/2. Also note that the first term is scaled by a factor involving

σ−q/2 whereas the third term is scaled by a factor that includes σkq/2.

Solution for q < 0

In this case, the first term becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω

=
M0

2
σ

q
2

1
2π

∞∫
−∞

N(ω)(iω)
q
2 exp(iωt)dω =

M0

2
σ

q
2

d
q
2

dt
q
2

n(t).

The second term is the same is in the previous case (for q > 0) and the third term

is

− iM2

2.2!
1

2π

∞∫
−∞

N(ω)i

(iωσ)
q
2

exp(iωt)dω
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=
M2

2.2!
1

σq/2
1

(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) ∞∫
−∞

n(ξ)
(t − ξ)1−(q/2)

dξ.

Evaluating the other terms, by induction we obtain

u(x0, t) =
M0(x0)σq/2

2
dq/2

dtq/2 n(t) − M1(x0)
2

n(t)

+
1
2

∞

∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)

σkq/2
1

(2i)kq√π

Γ
(

1−kq
2

)
Γ
(

kq
2

) ...

∞∫
−∞

n(ξ)
(t − ξ)1−(kq/2)

dξ

where q ≡| q |, q < 0. Here, the solution is composed of three terms: a fractional

differential, the source term and an infinite series of fractional integrals of order kq/2.

Thus, the roles of fractional differentiation and fractional integration are reversed

as q changes from being greater than to less than zero. All fractional differential

operators associated with the equations above and hence forth should be considered

in terms of the definition for a fractional differential given by

D̂q f (t) =
dn

dtn [ În−q f (t)], n − q > 0

where Î is the fractional integral operator (the Riemann-Liouville transform),

Î p f (t) =
1

Γ(p)

t∫
−∞

f (ξ)
(t − ξ)1−p dξ, p > 0 (8.4)

The reason for this is that direct fractional differentiation can lead to divergent

integrals. However, there is a deeper interpretation of this result that has a synergy

with the issue over whether a fractional diffusive system has ‘memory’ and is based

on observing that the evaluation of a fractional differential operator depends on the

history of the function in question. Thus, unlike an integer differential operator

of order n, a fractional differential operator of order q has ‘memory’ because the

value of Îq−n f (t) at a time t depends on the behaviour of f (t) from −∞ to t via the

convolution with t(n−q)−1/Γ(n− q). The convolution process is of course dependent

on the history of a function f (t) for a given kernel and thus, in this context, we can

consider a fractional derivative defined via the result above to have memory. In this

sense, the operator
∂2

∂x2 − σq(t) ∂q(t)

∂tq(t)

decribes a process, compounded in a field u(x, t), that has a non-stationary memory

association with the temporal characteristics of the system it is attempting to model.

This is not an intrinsic charcteristic of systems that are purely diffusive q = 1 or

propagative q = 2.
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8.7.4 Asymptotic Solutions for an Impulse

We consider a special case in which the source function f (x) is an impulse so that

Mm(x0) =
∞∫

−∞

δ(x) | x − x0 |m dx =| x0 |m .

This result immediately suggests a study of the asymptotic solution

u(t) = lim
x0→0

u(x0, t) (8.5)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2σq/2
1

(2i)q√π

Γ
(

1−q
2

)
Γ( q

2)

∞∫
−∞

n(ξ)
(t−ξ)1−(q/2) dξ, q > 0;

n(t)
2 , q = 0;

σq/2

2
dq/2

dtq/2 n(t), q < 0.

The solution for the time variations of the stochastic field u for q > 0 are then given

by a fractional integral alone and for q < 0 by a fractional differential alone. In

particular, for q > 0, we see that the solution is based on the convolution integral

(ignoring scaling)

u(t) =
1

t1−q/2 ⊗ n(t), q > 0

where ⊗ denotes convolution and in ω-space (ignoring scaling)

U(ω) =
N(ω)

(iω)q/2 .

This result is the conventional random fractal noise model for Fourier dimension

q. Table ?? quantifies the results for different values of q with conventional name

associations4. The field u has the following fundamental property for q ∈ (0, 2):

λq/2Pr[u(t)] = Pr[u(λt)].

This property describes the statistical self-affinity of u. Thus, the asymptotic so-

lution considered here, yields a result that describes a random scaling fractal field

characterized by a PSDF of the form 1/ | ω |q which is a measure of the time

correlations in the signal.

Note that q = 0 defines the Hilbert transform of n(t) whose spectral properties

in the positive half space are identical to n(t) because

1
t
⊗ n(t) ⇐⇒ −iπsign(ω)N(ω)

4 Note that Brown noise conventionally refers to the integration of white noise but that Brow-
nian motion is a form of pink noise because it classifies diffusive processes identified by the
case when q = 1.
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TABLE 3 Noise characteristics for different values of q. Note that the results given above
ignore scaling factors.

q-value t-space ω-space (PSDF) Name

q = 0 1
t ⊗ n(t) 1 White noise

q = 1 1√
t
⊗ n(t) 1

|ω| Pink noise

q = 2
t∫

n(t)dt 1
ω2 Brown noise

q > 2 t(q/2)−1 ⊗ n(t) 1
|ω|q Black noise

where

sign(ω) =

{
1, ω > 0;
−1, ω < 0.

The statistical properties of the Hilbert transform of n(t) are therefore the same as

n(t) so that

Pr[t−1 ⊗ n(t)] = Pr[n(t)].

Hence, as q → 0, the statistical properties of u(t) will ‘reflect’ those of n, i.e.

Pr
[

1
t1−q/2 ⊗ n(t)

]
= Pr[n(t)], q → 0.

However, as q → 2 we can expect the statistical properties of u(t) to be such that

the width of the PDF of u(t) is reduced. This reflects the greater level of coherence

(persistence in time) associated with the stochastic field u(t) for q → 2.

8.7.5 Other Asymptotic Solutions

A similar result to the asymptotic solution for x0 → 0 is obtained when the diffu-

sivity is large, i.e.

lim
σ→0

u(x0, t)

=
M0(x0)
2σq/2

1
(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) ∞∫
−∞

n(ξ)
(t − ξ)1−(q/2)

dξ

−M1(x0)
2

n(t), q > 0. (8.6)



212

Here, the solution is the sum of fractal noise and white noise. Further, by relaxing

the condition σ → 0 we can consider the approximation

u(x0, t) � M0(x0)
2σq/2

1
(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) ∞∫
−∞

n(ξ)
(t − ξ)1−(q/2)

dξ

−M1(x0)
2

n(t) +
M2(x0)

2.2!
σq/2 dq/2

dtq/2 n(t), q > 0, σ << 1 (8.7)

in which the solution is expressed in terms of the sum of fractal noise, white noise

and the fractional differentiation5 of white noise.

8.7.6 Equivalence with a Wavelet Transform

The wavelet transform is defined in terms of projections of f (t) onto a family of

functions that are all normalized dilations and translations of a prototype ‘wavelet’

function w [46], i.e.

W [ f (t)] = FL(t) =
∞∫

−∞

f (τ)wL(τ, t)dτ

where

wL(τ, t) =
1√
L

w
(

τ − t
L

)
, L > 0.

The independent variables L and t are continuous dilation and translation parame-

ters respectively. The wavelet transformation is essentially a convolution transform

where wL(t) is the convolution kernel with dilation variable L. The introduction of

this factor provides dilation and translation properties into the convolution integral

that gives it the ability to analyse signals in a multi-resolution role (the convolution

integral is now a function of L), i.e.

FL(t) = wL(t) ⊗ f (t), L > 0.

In this sense, the asymptotic solution (ignoring scaling)

u(t) =
1

t1−q/2 ⊗ n(t), q > 0 x → 0

is compatible with the case of a wavelet transform where

w1(t) =
1

t1−q/2

for the stationary case and where, for the non-stationary case,

w1(t, τ) =
1

t1−q(τ)/2
.

5 As defined by equation (8.4).
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8.8 Solution to the Fractional Diffusion Equation

Consider the fractional diffusion equation for the intensity I(x, y, t) of light in the

image plane z given by

∇2 I(r, t) − σq ∂q

∂tq I(r, t) = I0(r)δ(t)

where r = x̂x + ŷy and I0(r) is a source function with an impulse at t = 0. For

q = 1, the solution to this equation in the infinite domain is (with r =| r | and

I(r, t = 0) = 0 as shown in Chapter 3)

I(r, t) = I0(r) ⊗2 G(r, t)

where, for t > 0,

G(r, t) =
1

4πt
exp
[
−
(

σr2

4t

)]
which is the solution of (

∇2 − σ
∂

∂t

)
G(r, t) = −δ2(r)δ(t).

For the fractional diffusion equation, we consider a similar (Green’s function) solu-

tion but where the Green’s function is given by the solution of(
∇2 − σq ∂q

∂tq

)
G(r, t) = −δ2(r)δ(t).

Using the Fourier based operator for a fractional derivative, we can transform this

equation into the form

(∇2 + Ω2
q)g(r | r′, ω) = −δ2(r − r′)

where

g(r | r′, ω) =
∞∫

−∞

G(r | r′, t) exp(−iωt)dt,

Ω2
q = −iωσ, Ωq = ±i(iωσ)q/2.

Note that for q = 2, this equation becomes

(∇2 + k2)g(r | r′, ω) = δ2(r − r′)

where k = ±ωσ. This equation defines the Green’s function for the time indepen-

dent wave operator in two-dimensions, the ‘out going’ Green’s functions being given

by

g(r | r′, k) =
1√
8π

exp(iπ/4)
exp(ik | r − r′ |)√

k | r − r′ |
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Generalizing this result, for q ∈ (1, 2), by writing the exponential function in its

series form, with R =| r − r′ | we have, for Ωq = i(iωσ)q/2,

G(R, t) =
1

2π

∞∫
−∞

dω exp(iωt)
exp(iπ/4)√

8π

exp[−(iωσ)q/2R]√
iR(iωσ)q/4

=
1√

8πR
1

2π

∞∫
−∞

dω exp(iωt)
(

1
(iωσ)q/4 − (iωσ)q/4R +

1
2!

(iωσ)3q/4R2 − ...
)

=
1√

8πR
1

σq/4t1−q/4 −
√

R
8π

σq/4δq/4(t)+
1√
8π

∞

∑
n=1

(−1)n+1

(n + 1)!
R(2n+1)/2σ3nq/4δ3nq/4(t)

(8.8)
Simplification of this infinite sum can be addressed be considering suitable asymp-

totics, the most significant of which (for arbitrary values of R) is the case when the

(fractional) diffusivity D is large. In particular, we note that as σ → 0,

G(R, t) =
1√

8πRσq/4t1−(q/4)
.

Thus, we can consider a solution to the two-dimensional fractional diffusion equation

(for a tenuous medium when σ → 0)(
∇2 − σq ∂q

∂tq

)
I(r, t) = I0(r)δ(t)

of the form

I(x, y) =
1

2
√

2π

1
(DT)1−q/4

1

(x2 + y2)
1
4
⊗2 I0(x, y).

Comparing this solution with the solution to the two-dimensional diffusion equation,

i.e.

I(x, y) =
1

4πDT
exp
[
−
(

x2 + y2)
4DT

)]
⊗2 I0(x, y),

we observe that when the diffusivity is large and the diffusion time t = T is small such

that DT = 1, the difference between an image obtained by a full two-dimensional

diffuser and a fractional diffuser is compounded in the difference between the con-

volution of the initial image with (ignoring scaling) the functions exp(−R2/4) and

1/
√

R, respectively. Compared with the Gaussian (at least for DT ≥ 1), the func-

tion R−1/2 decays more rapidly and hence will have broader spectral characteristics

leading to an output that is less ‘diffused’ than that produced by the convolution of

the input with a Gaussian. In terms of the fractional diffusion equation being used

to model scattering in a tenuous medium, this is to be expected.

The Green’s function used to derive this result is based on the condition

σωR >> 1 which is incompatible with use of σ → 0 unless ωR → ∞ faster

than σ → 0. In otherwords, the approximation(
1

(iωσ)q/4 − (iωσ)q/4R +
1
2!

(iωσ)3q/4R2 − ...
)
∼ 1

(iωσ)q/4 , R | ωσ | q
2 << 1
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needs to be consistent with the condition σωR >> 1 upon which the series above

is based. In order to do this more terms in the above series need to be included.

Thus the Point Spread Function characterised by spectral response R−1/2 is just

the first order effect of based on the infinite series expression for G(R, t) given by

equation (8.8). However, this term is the only term in the series solution for G
- equation (8.8) - that is non-zero forall t > 0, and in this sense, represents the

principal (time-dependent) solution.

Noting that in two-dimensions, the Green’s function is given by − ln(kR) for

kR → 0 (see Chapter 3), then the fractional Green’s function is given by

g(R, ω) = − ln[(σω)q/2R], σ → 0

In this case, the image model is given by

I(x, y) = − ln[(σω)q/2
√

x2 + y2] ⊗2 I0(x, y)

Compared to the Gaussian function and like the function R−1/2 the Point Spread

Function ln(R) is singular and has broader spectral characteristics than a Gaussian

Point Spread Function.

8.9 Inverse Solution

Let I0 be represented as a Taylor series at some time T > 0, i.e.

I(r, 0) = I(r, T) + T
[

∂

∂t
I(r, t)

]
t=T

− T2

2!

[
∂2

∂t2 I(r, t)
]

t=T
+ ...

Now, since
∂u
∂t

=
∂1−q

∂t1−q
∂q

∂tq u

then from the fractional diffusion equation

∂u
∂t

= Dq ∂1−q

∂t1−q∇2u

and
∂2

∂t2 u

=
∂

∂t

(
∂u
∂t

)
=

∂

∂t

(
Dq ∂1−q

∂t1−q∇2u
)

= Dq ∂1−q

∂t1−q∇2 ∂u
∂t

= Dq ∂1−q

∂t1−q∇2
(

Dq ∂1−q

∂t1−q∇2u
)

= D2q ∂1−q

∂t1−q

(
∂1−q

∂t1−q∇4u
)

so that in general,
∂nu
∂tn = Dnq ∂n(1−q)

∂tn(1−q)
∇2nu.
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Because (see Appendix 3)

∂−q

∂t−q I(r, t) =
1

Γ(q)t1−q ⊗ I(r, t)

we can write the Taylor series for the field at t = 0 in terms of the field at t = T as

I(r, 0) = I(r, T) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q ⊗∇2 I(r, t)
)]

t=T

− T2D2q

2!Γ(2q)

[
∂2

∂t2

(
1

t1−2q ⊗∇4 I(r, t)
)]

t=T

+
T3D3q

3!Γ(3q)

[
∂3

∂t3

(
1

t1−3q ⊗∇6 I(r, t)
)]

t=T
− ...

Note that for T << 1,

I(r, 0) = I(r, T) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q ⊗∇2 I(r, t)
)]

t=T

and under the condition that[
∂

∂t

(
1

t1−q ⊗ I(r, t)
)]

t=T
= I(r, T)

we can write

I(r, 0) = I(r, T) +
TDq

Γ(q)
∇2 I(r, T).

8.10 Deconvolution

In the presence of additive noise n(x, y), the deconvolution problem is as follows:

Given that

I(x, y) = p(x, y) ⊗2 I0(x, y) + n(x, y)

where Pr[n(x, y)] is known (ideally), find an estimate for I0. This is a common

problem in optics (digital image processing) known as the deconvolution problem

whose solution is fundamental to image restoration and reconstruction [47], [48]. In

terms of the material presented in this paper, there are two Point Spread Functions

(PSF) p(x, y) that have been considered: For full diffusion (strong scattering)

p(x, y) =
1

4πDT
exp
[
−
(

(x2 + y2)
4DT

)]
and for fractional diffusion (intermediate scattering in a tenuous medium with large

diffusivity)

p(x, y) =
1

2
√

2π

1
(DT)1−q/4

1

(x2 + y2)
1
4

.
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Based on the result provided in Appendix 4, we note that

1
4πDT

exp
[
−
(

(x2 + y2)
4DT

)]
↔ exp[−4DT(k2

x + k2
y)]

and
1

2
√

2π

1
(DT)1−q/4

1

(x2 + y2)
1
4

�
√

πΓ(0.75)
Γ(0.25)(DT)1−q/4

1
(k2

x + k2
y)3/4

where Γ denotes the Gamma function. In the latter case, the filter is a ‘fractal filter’

and thus, if I0 is characterised by white noise, then the output I is a Mandelbrot

surface with a fractal dimension of 2.5 [50], [51]. In the absence of noise, the inverse

solution for I0 can be written in the form (evaluating the Gamma functions)

I0(x, y) = 1.67(DT)1−q/4∇ 3
2 I(x, y),

a result that is based on the application of the fractional Laplacian or Riesz operator

[49]

∇q ↔| k |q .

Figure 32 shows the effect of filtering an image using full diffusion and frac-

tional diffusion for DT = 1. Comparison of the results shows that fractional diffusion

does not blur the image to the same extent which is to be expected given the physi-

cal characteristics under which fractional diffusion processes are taken to occur, i.e.

in terms of intermediate multiple scattering events in a tenuous rarefied medium.

There are a range of approaches to solving the one-dimensional and two-

dimensional deconvolution problem in practice (i.e. with additive noise) leading to

the classification of different ‘inverse filters’. If a priori information on the statistics

of the noise function and the object function is available, then Bayesian estimation

methods are preferable in the design of filters whose performance will then depend

on statistical parameters such as the standard deviation. In some cases, an estimate

of Pr[n(x, y)] can be obtained by taking an image (and a number of images to obtain

a statistically significant result) with zero input, i.e. with I0 = 0. This provides

a method of validating an idealised PDF through data fitting and, thus, determi-

nation of the statistical parameters from which a theoretical PDF is composed. In

cases when experimental determinism is not practically possible, statistical models

are used directly. This includes models such as the K-distribution discussed and

derived in Section 7.2. However, with regard to incoherent imaging systems, the

noise function tends to be Gaussian distributed - a result of the noise being a linear

combination of many different independent noise source which combine to produce

Gaussian noise (a consequence of the Central Limit Theorem).
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FIGURE 32 Comparison between the effect of diffusion (centre) and fractional diffusion
(bottom) on a binary image (top) for DT = 1.
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8.10.1 Bayesian Estimation

Using Bayes rule, the aim is to find an estimate for I0 such that

∂

∂I0
ln Pr[n(x, y)] +

∂

∂I0
ln Pr[I0(x, y)] = 0.

Consider the following models for the PDFs: (i) Gaussian statistics for the noise

when (ignoring scaling and where σ2
n is the standard deviation of n)

Pr[n(x, y)] =

exp
(
− 1

σ2
n

∫ ∫
[(I(x, y) − p(x, y) ⊗2 I0(x, y)]2dxdy

)
.

(ii) Gaussian statistics for the object function where (ignoring scaling and where σ2
I0

is the standard deviation of I0)

Pr[I0(x, y)] = exp

(
− 1

σ2
I0

∫ ∫
I2
0(x, y)dxdy

)
.

Differentiating, these statistical models yield the equation

I(x, y) �2 p(x, y) =
σ2

n

σ2
I0

f (x, y) + [p(x, y) ⊗2 f (x, y)] �2 p(x, y)

where �2 denotes the two-dimensional correlation integral. In Fourier space, this

equation becomes

Ĩ(kx, ky)P∗(kx, ky) =
1
Γ2 Ĩ0(x, y)+ | P(kx, ky) |2 I0(kx, ky)

The filter F(kx, ky) for Gaussian statistics is therefore given by

F(kx, ky) =
P∗(kx, ky)

| P(kx, ky) |2 +σ2
n/σ2

I0

where σn/σI0 defines the signal-to-noise ratio of I(x, y). and Ĩ0(kx, ky) = F(kx, ky) Ĩ(kx, ky).
The reconstruction for I0 is then given by

I0(x, y) =

1
(2π)2

∫ ∫
F(kx, ky) Ĩ(kx, ky) exp(ikxx) exp(ikyy)dkxdky

8.10.2 Adaptive Filtering

Given P(kx, ky), the performance of this filter depends on the value of Σ = σ2
n/σ2

I0
.

In general, as Σ → 0 the reconstruction sharpens but at the expense of ’ringing’.

Thus, an optimum value of Σ is obtained by computing I0 over a range of values of
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Σ and, for each reconstruction, computing the ratio of the number of zero crossings

Zc to the sum of the magnitude of a digital gradient ∑ | D I0[i, j] |, i.e.

R =
Zc

∑ | D I0[i, j] |
This ratio is based on the principle that an optimum reconstruction is one which

provides a sharp image with minimal ringing, i.e. a reconstruction for which R is

a minimum. This principle has been applied in the example results given in the

following section. Note that the Fourier based approach to image restoration relies

on the ability to implement the convolution and correlation theorems. This requires

that the data has been recorded by an (optical) imaging system that is isoplanatic

(i.e. the Point Spread Function is stationary).

8.11 Example Applications: Image Enhancement in Astronomy

We consider examples of image reconstruction based on equation (8.5) for fully

diffusive and fractional diffusive models using the optimization procedure discussed

in the previous section for the following ’digital Laplacian’

D I0[i, j] =

⎛⎝ 0 1 0
1 −4 1
0 1 0

⎞⎠ .

8.11.1 Deconvolution for Full Diffusion

Figure 33 shows the application of equation (8.5) where (ignoring scaling and with

σ = 4DT)

P(kx, ky) = exp[−σ(k2
x + k2

y)].

In this example, the diffusion of the object has been generated by turbulence of

the earths atmosphere through which light from the object has been fully diffused.

In this case, the reconstruction depends on the value of both σ and Σ and an

optimization scheme based on computing I0[i, j; σ, Σ] for minR.

8.11.2 Deconvolution for Fractional Diffusion

Fractional diffusion models apply to scattering processes that occur in a tenuous and

extremely rarefied medium. In applied optics, one of the most common examples of

this phenomena occurs in astronomy and the processes associated with light scat-

tering from cosmic dust which is composed of particles which are a few molecules

to the order of 10−4 metres in size. Cosmic dust is defined in terms of its astro-

nomical location including intergalactic dust, interstellar dust, interplanetary dust

and circumplanetary dust (such as in a planetary ring). In our own Solar System,

interplanetary dust is generated from sources such as comet dust, asteroidal dust,

dust from the Kuiper belt and interstellar dust passing through our solar system.
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FIGURE 33 Diffusion based deconvolution (below) of an image of Saturn observed by a
ground based telescope with light diffused by the atmosphere (above).

This dust is responsible for zodiacal light which is produced by sunlight reflecting

off dust particles. Cosmic dust can be categorised in terms of different types of

nebulae associated with different physical causes and processes. These include: dif-

fuse nebula, infrared reflection nebula, supernova remnants and molecular clouds,

for example. However, in a more general sense, cosmic dust often characterises the

interstellar medium which is the gas and dust that pervade interstellar space. This

medium consists of an extremely dilute (by terrestrial standards) mixture of ions,

atoms, molecules, and larger dust grains, consisting of about 99% gas and 1% dust

by mass. Densities range from a few thousand to a few hundred million particles

per cubic meter with an average value in the Milky Way Galaxy, for example, of a

million particles per cubic meter. In comparison with the scattering of light from

earth-based random media, for example, the interstellar medium is highly diffuse

and therefore ideal for applying light scattering models based on fractional diffusion

when D → ∞.

Figure 34 shows the application of equation (8.6) where (ignoring scaling)

P(kx, ky) =
1

(k2
x + k2

y)3/4

from an optical image obtained with the Hubble Space Telescope. This image is

part of the constellation of Perseus as observed through an interstellar dust cloud

that covers nearly 4 degrees on the sky observed 1,000 light-years away.
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FIGURE 34 Fractional diffusion based deconvolution (right) for σn/σI0 = 1 of a dust
clouded star field (left) in the constellation of Pegasus.

8.12 Discussion

We have considered different approaches to modelling light scattering through ran-

dom media including: formal scattering methods, cross-correlation models for a scat-

tering function under the weak field condition, statistical modelling of the wavefield

and application of the diffusion equation for modelling multiple scattering processes.

The formal scattering approach provides inverse solutions that are, in general, not

of any practical value to signal and image processing. Cross-correlation methods

are of value in modelling the intensity distribution but are not generally applicable

to image processing problems. While statistical modelling methods are useful for

developing theoretical PDFs of images and their statistical evaluation, they are not

directly applicable for image enhancement.

The use of a fully diffusive process for modelling strong (multiple) scattering

provides a result that is applicable in terms of solving the inverse scattering problem

which is compounded in terms of developing a suitable deconvolution algorithm. We

have extended this approach to model intermediate scattering by generalizing the

diffusion equation to the fractional form(
∇2 − σq ∂q

∂tq

)
I(r, t) = I0(r)δ(t)

where I(x, y, t) is a light intensity image, D−1 is the fractional diffusivity and q ∈
(1, 2). A solution has been considered based on a Fourier transform representation

of a fractional derivative for which the initial condition I(r, t = 0) (used to solve the

diffusion equation) is not required. An asymptotic result has then been derived for

the case when σ → 0 that is compounded in an Optical Transfer Function given by

(k2
x + k2

y)−0.75.



9 LOW FREQUENCY ELECTROMAGNETIC
SCATTERING AND A UNIFIED WAVEFIELD
THEORY

We review the inhomogeneous scalar Helmholtz equation in three-dimensions and

the scattering of scalar wavefields from a scatterer of compact support. An asymp-

totic solution is then considered representing the effect of the frequency approaching

zero when a ‘wavefield’ reduces to a ‘field’. The characteristics of ultra-low frequency

Helmholtz scattering are then considered and the physical significance discussed of a

model that is based on the scattering of Helmholtz wavefields over a broad frequency

spectrum. This is equivalent to using a linear systems approach for modelling the

propagation, interaction and detection of broad-band signals and provides an ap-

proach to the classification of a field from a wavefield that is intrinsically causal and

thus, consistent with the basic principle of information theory. The approach leads

to the proposal that all fields are derived from wavefields interacting over a broad

frequency spectrum and that there are two principal field types: (i) fields generated

by low frequency scattering - a ‘gravitational field’; (ii) fields generated by high

frequency eigenfield tendency - an ‘electric field’.

9.1 Introduction

The ideas presented in this chapter are a first attempt to develop a universal phys-

ical model in which ‘fields’ and ‘particles’ do not exist along with such concepts as

‘charge’. All that is considered is a universe consisting of scalar wavefields whose gov-

erning equation is the (inhomogeneous) Helmholtz equation over a broad frequency

spectrum with a bandwidth that is determined by the Planck length

� =

√
h̄G
c3

0
∼ 1.16 × 10−35metres



224

where h̄ is Dirac’s constant (Planck’s constant divided by 2π), G is the gravitational

constant and c0 is the speed of light. The frequency associated with the Planck

length is c0/� ∼ 2.59 × 1043Hz.

The rationale for a Planck bandwidth is as follows: Consider the hypothetical

case where the de Broglie wavelength λ associated with a non-relativistic parti-

cle with constant velocity v << c0 is continually decreased. The rest mass m
of the particle will then increase according to m = 2πh̄/(vλ). As the mass in-

creases, its Newtonian gravitational field will increase as will the escape velocity

ve =
√

2Gm/r =
√

4πh̄G/(vλr) where r is the distance required to escape the

gravitational field. Suppose that the wavelength becomes so small that the escape

velocity is equal to the speed of light (i.e. the particle becomes a micro black hole),

then λr = 4πh̄G/(vc2
0). We define the Planck length for the limiting case when

r → 4πλ and v → c0, i.e. the length associated with the case when the velocity

of a particle approaches the speed of light and the distance required to escape the

gravitational field approaches the de Broglie wavelength of the particle. The Planck

frequency sets a upper limit on the band width of a universal spectrum since, be-

yond this frequency, any particle (and the de Broglie wavefield associated with it)

will not be detectable. The breadth of the spectrum is taken to be a consequence of

the ‘big-bang’ (i.e. a broad frequency spectrum is the product of a short impulse).

Although the approach considered in this thesis has some philosophical similar-

ities to string theory, which is increasingly being challenged by a number of authors

(e.g. [52], [53]), it is different in its ‘scale’. If string theory is concerned with the

interpretation of physics through wavefields with a wavelength of the order of �,
here, we consider wavefields interacting (scattering) at all scales greater than the

Planck length (i.e. over all frequencies less than the Planck frequency). In a sense,

we consider the universe itself to be a single ‘string’ composed of a broad spectrum

of (scalar) wavefields. This is a ‘waves within waves’ approach and can thus be in-

terpreted in terms of a universal fractal model [54], not in terms of the ‘shape of the

universe’ but in terms of the wavefields from which it is taken to be composed. Here,

we adopt a formal scattering theory approach for a scalar Helmholtz wavefield and

derive both standard and some non-standard results which are considered in terms

of two fundamental experimental observations, the Poisson spot and the Einstein

ring.

9.2 Field Equations

The field equations for electromagnetic and gravitational fields (i.e. Maxwell’s equa-

tions [55] and Einstein’s equations [56], respectively) appear to have only one thing

in common: they both predict wave behaviour (the wavefields being composed of

very different ‘fields’ with different properties), namely, electromagnetic waves and

gravity waves respectively where, in the latter case, no direct experimental observa-

tions have been made, to date. In quantum mechanics, the quantum fields that are

modelled through equations such as the Schrödinger [57], Dirac [58], [59], [60], Klein-



225

Gordon (e.g. [61], [62]) and Rarita-Schwinger [63] equations, are not fields in the

sense of an electric (vector) field or a gravitational (tensor - a curved vector space)

field but wavefields of different types, i.e. scalar (Klein-Gordon and Schrödinger

equations for the relativistic and non-relativistic case, respectively), scalar-spinor

(Dirac equations), vector (Proca equations [64], [65]) and vector-spinor (Rarita-

Schwinger equations) fields. The theoretical origin of these wavefields is a direct

result of the fundamental postulates of quantum mechanics, namely, that energy

E = h̄ω and momentum p = h̄k for a wavefield with (angular frequency) ω and

wavenumber | k |= 2π/λ. Relating energy and momentum (particulate concepts

associated with Newtonian mechanics) to frequency and wavelength respectively

immediately raises the issue of particle verses wave. It also brings into focus the

question of whether a field or a wavefield is more fundamental.

Apart from the Schrödinger equation, all of the equations listed above describe

relativistic quantum fields. They are all ‘products’ of the fact that, given the pos-

tulates of quantum mechanics, Einstein’s special theory of relativity allows for the

existence of scalar, scalar-spinor, vector, vector-spinor and tensor fields. In each

case, the field, as characterised by a given operator, is taken to describe a ‘particle’

(a localised entity) that is classified in terms of a Boson or Fermion which have

integer or half-integer spin (the intrinsic angular momentum) respectively. This is

compounded in Table ?? (where m denotes the rest mass):

TABLE 4 Classification of different fields in terms of a Boson or Fermion

Equation name Field Type Spin sh̄ Example

Klein-Gordon Scalar s = 0 Higgs boson

Dirac Scalar s = 1/2 leptons:

Spinor electrons,

muons

Proca-Maxwell Vector s = 1 m = 0:

photons

gluons;

m �= 0:

mesons

Rarita-Schwinger Vector s = 3/2 None

Spinor discovered

Gravitation Tensor s = 2 gravitons

Note that, like the graviton, the Higgs boson is a hypothetical particle that

is taken to explain the origins of mass m which has, to date, not been verified

experimentally. The terms ‘Boson’ and ‘Fermion’ relate to the fact that the statis-

tical behaviour of integer spin particles can be classified in terms of Bose-Einstein

statistics and half-integer spin particles, in terms of Fermi-Dirac statistics.

Vector bosons are considered to mediate three of the four fundamental inter-
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TABLE 5 Summary of the principal physical forces, their range and example Bosons.

Force Range Transmitted by Bosons

Gravitational Long Graviton, m = 0, s = 2
Electromagnetic Intermediate Photon, m = 0, s = 1
Weak Short W±, Z0, m �= 0, s = 1
Strong Short gluons, m = 0, s = 1

actions in ‘particle’ physics, i.e. electromagnetic, weak and strong interactions, and

tensor bosons (gravitons) are assumed to mediate the gravitational force as sum-

marised in Table ??:

Of the four fundamental forces in nature, gravity was the first to be ‘invented’ but,

to this day, remains the most elusive. With just criticism over his universal theory of

gravity and, in particular, the principle of instantaneous action at a distance, upon

which the theory is based, Isaac Newton rightly stated that ‘... I have told you how

it works, not why’. Here, we consider a causal approach to explaining the ‘why’.

9.3 Fields, Wavefields and the Proca Equations

In electromagnetism and general relativity, the field equations are considered to be

fundamental, the wave properties of these fields being a consequence of decoupling

(under certain conditions) the field equations. In other words, the wave properties of

these fields are, in a sense, a by-product of writing a set of coupled equations in terms

of a single or set of equations of the same (wave) type. What if a wave equation

was to determine the form of the field equations and thus the characteristics of the

field(s)? The first to consider such an approach was the Romanian born Alexandru

Proca who derived the Proca or Proca-Maxwell equations.

For a three-dimensional space r = x̂x + ŷy + ẑz, with time denoted by t and

with the Laplacian operator defined as

∇2 ≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

it is well known that Maxwell’s equations (specifically, the microscopic equations

for point ‘charges’) can be decoupled to produce the inhomogeneous wave equations

(e.g. [60], [66], [67]) (
∇2 − 1

c2
0

∂2

∂t2

)
φ(r, t) = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t) = −μ0j
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for the magnetic vector potential A and the electric scalar potential φ where ρ is

the charge density, j is the current density and ε0 and μ0 are the permittivity and

permeability of free space, respectively. This requires use of the gauge transforms

A → A + ∇X and φ → φ − ∂X
∂t

where the gauge function X is taken to satisfy the homogeneous wave equation(
∇2 − 1

c2
0

∂2

∂t2

)
X = 0.

The solutions at (r0, t0) for the ‘retarded potentials’ φ and A are then given by

φ(r0, t0) =
1

4πε0

∫
ρ(r, τ)
| r − r0 |d

3r, τ = t0− | r − r0 | /c0

and

A(r0, t0) =
μ0

4π

∫ j(r, τ)
| r − r0 |d

3r

which show that a change in ρ and j affects φ and A | r − r0 | /c0 seconds later.

The change propagates away from the sources ρ and j at a velocity c0 which is the

theoretical basis for the propagation of electromagnetic waves.

In quantum mechanics, energy E and momentum p are replaced by the wave

operators

−ih̄
∂

∂t
and ih̄∇

respectively. Thus, the non-relativistic ‘free energy’ (no potential energy component)

equation

E =
p2

2m
yields Schrödinger’s equation [68]

ih̄
∂

∂t
U = − h̄2

2m
∇2U

for a unit amplitude plane wave of the form

U(r, t) = exp[i(k · r − ωt)].

In the relativistic case when

E = ±
√

p2c2
0 + m2c4

0 or E2 = p2c2
0 + m2c4

0

we obtain the (homogeneous) Klein-Gordon equation [60](
∇2 − 1

c2
0

∂2

∂t2

)
U − κ2U = 0
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where κ = mc0/h̄. This equation is taken to describe massive scalar Bosons (spin

0 particles) such as the Higgs boson. In contrast, the classical wave equation is

taken to describe massless scalar (for the electric field potential) or vector (for the

magnetic vector potential) Bosons, i.e. the photon.

Given that Maxwell’s equations can be decoupled to produce inhomogeneous

wave equations for φ and A, Proca’s idea was to modify Maxwell’s equations in

order to produce inhomogeneous Klein-Gordon equations for φ and A given by(
∇2 − 1

c2
0

∂2

∂t2

)
φ(r, t) − κ2φ = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t) − κ2A = −μ0j

respectively. The modifications required to do this yield the Proca equations given

by

∇ · E =
ρ

ε0
− κ2φ, ∇ · B = 0

∇× E = −∂B
∂t

, ∇× B = μ0j + ε0μ0
∂E
∂t

+ κ2A

where

B = ∇× A, and E = −∇φ − ∂A
∂t

.

Note that the Klein-Gordon equations for φ and A imply that φ and A and thus E
and B are effected by mass.

The Proca equations are relativistic field equations that describe massive elec-

tromagnetic fields or massive photons (spin 1 vector bosons). They form the founda-

tions for the electro-weak theory (the unification of electromagnetism with the ‘weak’

force) where it is assumed that the electromagnetic fields of the early universe had

significantly greater (relativistic) energies than now, i.e. the electromagnetic and

the weak force are manifestation of the same force at relativistic energies. Vector

Bosons (W± and Z0 bosons) are taken to be mediators of the weak interaction.

However, the Proca equations, as a description for massive photons, have a num-

ber of other implications. These include variations in light speed, the possibility of

charged black holes, the existence of magnetic monopoles and superluminal (faster

than light) particles (Tachyons) with an imaginary mass that can be described by a

Proca field with a negative square mass [69], [70] and [71].

The principle associated with deriving the Proca equations can be applied to

other field equations such as the Einstein equations for a gravitational field. The

Proca-Einstein equations have been used as a basis for modelling the interaction

of gravitational fields with dark matter, for example [72]. In string theory, there

is tentative evidence that non-Riemannian models such as the Einstein-Proca-Wyle

equations may account for dark matter [73]. However, in the context of this thesis,

the Proca equations are an example of the modification and extension of a set of field

equations in order that a given wave equation is satisfied. Thus, in the derivation of
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the Proca equations, the wavefield U is the governing function and not the fields E
and B. In other words, the Proca equations are based on ‘tailoring’ a field to ‘fit’ a

wavefield. This leads us to consider an approach in which unification is attempted,

not in terms of a unified field theory but in terms of a unified wavefield theory where

a wavefield U is not just the governing function but the governing principle.

If a unified field theory (unifying gravity and electromagnetism, for example)

were available, then, by induction, we should expect that the unifying field equations

yield a unifying wave equation. Since a unified field theory is not currently available,

our approach is to attempt to construct a unified wavefield theory in which a field is

the product of certain characteristics of a wavefield. Thus, the basic idea is to develop

a universal physical model that is based on a wavefield equation alone and attempt

to explain the characteristics of a field from the wavefield. In this chapter, we adopt

the (inhomogeneous) Helmholtz equation and study some of its properties over a

broad frequency band including the case when the wavelength approaches infinity.

We show how this approach can, for example, be used to explain phenomena such

as the ‘diffraction’ of light by a field that we interpret to be a gravitational field.

9.4 The Inhomogeneous Helmholtz Equation

The three-dimensional inhomogeneous scalar Helmholtz equation can be derived

from the (inhomogeneous) time dependent wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

by letting
1
c2 =

1
c2

0
(1 + γ)

where γ(r) is a dimensionless quantity (the scattering function) and U is a time-

dependent scalar wavefield (which is also taken to be dimensionless). We make no

demands on the physical nature of U or γ.

With

U(r, t) = u(r, ω) exp(iωt)

for constant ω (the angular frequency), or with

U(r, t) =
1

2π

∞∫
−∞

u(r, ω) exp(iωt)dω

for variable ω, we obtain the inhomogeneous Helmholtz equation in the form

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where k (= 2π/λ) is given by

k =
ω

c0
.
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We consider a scattering function γ which is of compact support, i.e.

γ(r) ∃ ∀ r ∈ V

where V is an arbitrary volume. In electromagnetism, for example, the Helmholtz

equation can be derived by decoupling Maxwell’s (macroscopic) equations where u
describes the scalar electric field and the scattering function is given by γ = εr − 1
where εr ≥ 1 is the isotropic relative permittivity, the relative permeability being

taken to be 1 and the conductivity being taken to be zero [74].

9.5 Green’s Function Solution for an Incident Plane Wave

Using Green’s theorem, the general solution to the inhomogeneous Helmholtz equa-

tion at a point r0 is given by [60], [74],

u(r0, k) =
∮
S

(g∇u − u∇g) · n̂d2r + k2
∫
V

gγud3r

where g is the ‘outgoing free space’ Green’s function given by [74], [75]

g(r | r0, k) =
exp(ik | r − r0 |)

4π | r − r0 |
which is a solution to the equation

(∇2 + k2)g(r | r0, k) = −δ3(r − r0)

where δ3 denotes the three-dimensional delta function. Here, S denotes the (closed)

surface of the scattering function γ with volume V and n̂ is a unit vector that is

perpendicular to an element of the surface d2r. Note that

g(r | r0, k) =
1

4π | r − r0 | , k → 0

and thus,

∇2
(

1
4π | r − r0 |

)
= −δ3(r − r0).

To compute the surface integral, a condition for the behaviour of u on the

surface S of γ must be chosen. We consider the case where a simple plane wave of

unit amplitude given by

ui(r, k) = exp(ikn̂i · r)

and satisfying the homogeneous Helmholtz equation

(∇2 + k2)ui(r, k) = 0

is incident on the surface of the scatterer. In this case,

u(r, k) = ui(r, k), ∀r ∈ S



231

and we therefore obtain

u(r0, k) =
∮
S

(g∇ui − ui∇g) · n̂d2rk2
∫
V

gγud3r = ui + us

where

us = k2
∫
V

gγud3r.

The function us is the scattered wavefield which we shall write in the form

us(r, k) = k2g(r, k) ⊗3 γ(r)u(r, k), r =| r |

where ⊗3 denotes the three-dimensional convolution integral.

9.6 Evaluation of the Scattered Field

To evaluate the scattered field (i.e. to compute us), we must define u inside the

volume integral. Unlike the surface integral, a boundary condition will not help

here because it is not sufficient to specify the behaviour of u at a boundary. In this

case, the behaviour of u throughout V needs to be known. This requires a model

to be chosen for u inside V that is compatible with a particular physical problem.

The simplest model for the internal field is based on assuming that u ∼ ui∀r ∈ V.

The scattered field is then given by

us(r0, k) = k2g(r, k) ⊗3 γ(r)ui(r, k).

This assumption - known as the Born approximation - provides an approximate

solution for the scattered field which is valid if

k2‖g(r, k) ⊗3 γ(r)‖ << 1.

This result can be considered to be a first approximation to the (Born) series

solution given by

us(r, k) = ui(r, k) + k2g(r, k) ⊗3 γ(r)ui(r, k)

+k4g(r, k) ⊗3 γ(r)[g(r) ⊗3 γ(r)ui(r, k)] + ...

which is valid under the condition

k2‖g(r, k) ⊗3 γ(r)‖ < 1.

Each term in this series expresses the effects due to single, double and triple etc.

scattering events. Because this series scales as k2, k4, k6, ..., for a fixed k << 1 (long

wavelength wavefields), the Born approximation becomes an exact solution.
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9.7 Low Frequency Helmholtz Scattering

If a Helmholtz wavefield oscillates at lower and lower frequencies, then we can con-

sider an asymptotic solution of the form

us(r0, k) =
k2

4π

∫
V

γ(r)
| r − r0 |ui(r, k)d3r, k → 0.

This is a consequence of the fact that the higher order terms in the Born series can

be ignored leaving just the first term as k → 0 and because

exp(ik | r − r0 |)
4π | r − r0 | =

1
4π | r − r0 | , k → 0

giving an exact solution to the problem.

If the incident field is a unit plane wave, then

u(r0, k) = 1 + us(r0, k)

where

us(r0, k) =
k2

4π

∫
V

γ(r)
| r − r0 |d

3r, k → 0

which we write in the form

us(r, k) =
k2

4πr
⊗3 γ(r), k → 0.

Here, the wavelength of the incident plane wavefield is assumed to be significantly

larger than the spatial extent V of the scatterer. For a given scattering function γ(r)
the wavefield is a ‘weak field’ because of the low values of k required to produce this

(asymptotic) result. But this result is the general solution to Poisson’s equation

∇2us(r, k) = −k2γ(r)

since, using the result

∇2
(

1
4πr

)
= −δ3

we have

∇2u = ∇2us = k2∇2
(

1
4πr

⊗3 γ

)

= k2γ ⊗3 ∇2
(

1
4πr

)
= −k2γ ⊗3 δ3 = −k2γ.

By considering us to be a potential, we can write

∇ · Us(r, k) = k2γ(r), Us(r, k) = −∇us(r, k).
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Integrating over the volume of the scatterer V, we obtain∫
V

∇ · Us(r, k)d3r = k2
∫
V

γ(r)d3r

and using the divergence theorem we can write∮
S

Us(r, k) · n̂d2r = k2Γ, Γ =
∫
V

γ(r)d3r.

If we now consider a scatterer that is a sphere, then the field U will have radial

symmetry, i.e. Us = n̂Us. In this case, the surface integral becomes 4πr2Us and we

obtain

Us =
k2Γ

4πr2 , k → 0.

Hence, in the limit as k → 0, Helmholtz scattering provides an exact solution for

a weak field whose gradient (for the radially symmetric case) is characterized by a

1/r2 scaling law.

9.8 Diffraction

For k → 0, us(r, k), which we now denote by u0
s (r, k0), is the solution to

∇2u0
s (r, k0) = −k2

0γ(r)

where k0 denotes a value for k, k → 0. Consider a Born scattered Helmholtz

wavefield us(r, k) for k >> 1 given by

us(r, k) = k2g(r, k) ⊗3 γ(r)ui(r, k).

We can then write

us(r, k) = −k2

k2
0

g(r, k) ⊗3 ui(r, k)[∇2u0
s (r, k0)]

from which we can derive an expression for the far field scattering amplitude gener-

ated by the field U0
s given by

us(r, k) = −k2

k2
0

g(r, k) ⊗3 ui(r, k)[∇ · U0
s (r, k0)]

=
exp(ikr0)

4πr0
A(n̂0, n̂i),

r
r0

<< 1

where, with ui(r, k) = exp(ikn̂i · r), n̂0 = r0/ | r0 | and

U0
s = n̂U0

s = n̂
k2

0Γ
4πr2 ,
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A(n̂0, n̂i) = −k2Γ
4π

∫
V

exp[−ik(n̂0 − n̂i) · r]∇ ·
(

n̂
r2

)
d3r.

Hence, the wavefield us(r, k) (for k >> 1) generated by a scatterer that is simul-

taneously generating a scattered wavefield u0
s (r, k0) is, in the far field (under the

Born approximation) determined by the Fourier transform of the scattering func-

tion (assuming radial symmetry) f (r) = ∇ · (n̂r−2). In other words, the weak field

generated by very low frequency scattering will diffract a high frequency Helmholtz

wavefield, the diffraction pattern (i.e. the far field scattering pattern) being deter-

mined by f (r). This is an example of a low frequency Helmholtz scattered field

scattering a high frequency Helmholtz field, the field being of the same type but

characterised by a (very) large difference in frequency.

9.8.1 Diffraction by an Infinitely Thin Scatterer

Consider the case where an incident plane wavefield is travelling in the z-direction,

i.e. ui = exp(ikz) and is incident on an infinitely thin scatterer defined by the

function γ(r) = γ(x, y)δ(z). The scattered wavefield is then given by

us(x, y, z, k)

= k2 exp(ik
√

x2 + y2 + z2)
4π
√

x2 + y2 + z2
⊗3 γ(x, y)δ(z) exp(ikz)

= k2 exp(ik
√

x2 + y2 + z2

4π
√

x2 + y2 + z2
⊗2 γ(x, y), γ ∃ ∀(x, y) ∈ S

where ⊗2 denotes the two-dimensional convolution integral over area S. Writing out

this result in the form

us(x0, y0, z0, k)

= k2
∫ ∫ exp[ik

√
(x − x0)2 + (y − y0)2 + z2

0]

4π
√

(x − x0)2 + (y − y0)2 + z2
0

γ(x, y)dxdy,

it is clear that if the scattered wavefield is now measured in the far field, i.e. for the

case when x/z0 << 1 and y/z0 << 1, then

z0

(
1 +

(x − x0)2

z2
0

+
(y − y0)2

z2
0

) 1
2

� z0 − xx0

z0
− yy0

z0
+

x2
0

2z0
+

y2
0

2z0

and thus,

us(x0, y0, z0, k) =
exp(ikz0)

4πz0
exp

(
ik

x2
0 + y2

0
2z0

)
A(kx, ky)
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where

A(kx, ky) = k2γ̃(kx, ky) = k2F2[γ(x, y)]

= k2
∫ ∫

exp(−iux) exp(−ivy)γ(x, y)dxdy

with spatial frequencies u and v being defined by

u =
kx0

z0
=

2πx0

λz0

and

v =
ky0

z0
=

2πy0

λz0
.

Here, F2 denotes the two-dimensional Fourier transform, the result being the stan-

dard expression for a diffraction pattern in the far field or Fraunhofer zone [74].

9.8.2 Diffraction by an Infinitely Thin Field

In the previous section, we derived the far field diffraction pattern for an infinitely

thin scatterer. However, suppose this scatterer also radiates a field generated by

low frequency Helmholtz scattering from the same scattering function. What is the

contribution of this field to the diffraction of the same incident plane wave within

and beyond the extent of the scatterer1? In this case, the scattered wavefield is

given by (under the Born approximation)

us = −k2

k2
0

g ⊗3 ui∇2u0
s , u0

s =
k2

0
4πr

⊗3 γ.

For an infinitely thin scatterer given by γ(x, y)δ(z),

u0
s (x, y, z, k0) =

k2
0

4π
√

x2 + y2 + z2
⊗2 γ(x, y)

so that in the (x, y) plane located at z = 0,

u0
s (x, y, k0) =

k2
0

4π
√

x2 + y2
⊗2 γ(x, y).

For an incident plane wave ui = exp(ikz), the scattered wavefield us is thus, given

by

us(x, y, z, k) = −k2g(r, k) ⊗3 exp(ikz)...(
∂2

∂x2 +
∂2

∂y2

)(
1

4π
√

x2 + y2
⊗2 γ(x, y)

)
.

1 Note that the scattered wavefield u0
s is taken to exist within and beyond the finite spatial

extent of the scatterer γ(r), r ∈ V, i.e. u0
s is not of compact support since it is given by the

convolution of a function of compact support with r−1.
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Repeating the calculation given in the previous section (for z → 0), the diffracted

wavefield now becomes

us(x0, y0, z0, k) =
exp(ikz0)

4πz0
exp

(
ik

x2
0 + y2

0
2z0

)
A(kx, ky)

where

A(kx, ky) = −2zk2F2

[(
∂2

∂x2 +
∂2

∂y2

)
1

4π
√

x2 + y2
⊗2 γ(x, y)

]
.

Note that although the scatterer is taken to be ‘infinitely thin’ because γ(r) =
γ(x, y)δ(z), we still consider the physical thickness of the scatterer to be finite2, i.e.

z �= 0. Now, for an arbitrary function f ⇐⇒ f̃ , where ⇐⇒ denotes the transform

from real space to Fourier space [74],(
∂2

∂x2 +
∂2

∂y2

)
f ⇐⇒ −(k2

x + k2
y) f̃ ,

1√
x2 + y2

⇐⇒ 2π√
u2 + v2

,

and we obtain

A(kx, ky) = zk2
√

u2 + v2γ̃(kx, ky).

Figure 35 shows numerical simulations of the diffraction patterns compounded

in the (intensity) functions

| γ̃(kx, ky) |2 and u2 + v2 | γ̃(kx, ky) |2

using a two-dimensional Fast Fourier Transform for the case when the scattering

function is given by the rotationally symmetric functions (for r =
√

x2 + y2)

γ(r) = exp(−r2/σ2)

(a unit amplitude Gaussian function3 with standard deviation σ) and (a unit am-

plitude disc function)

γ(r) =

{
1, r ≤ a;
0, otherwise.

The analytical solutions, for the intensity

I1 =| us |2

generated by diffraction from the scatterer γ and

I2 =| us |2
2 z should be taken to be a positive real ‘infinitesimal’ for all real k.
3 Taken by default, to be of finite extent.
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FIGURE 35 Numerical simulation of the intensity patterns for an Gaussian function
(top) and disc function (bottom) associated with the diffraction of a wave-
field by an infinitely thin scatterer γ(x, y) (left - plotted using a logarithmic
scale) and the field ∇2u0

s generated by the same scatterer.
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generated by the field ∇2u0
s are given by:

I1(r0, λ) =
π4σ2

z2
0λ4

exp

[
−
(

2π2σ2r2
0

λ2z2
0

)]

and

I2(r0, λ) = z2 4π6σ2r2
0

z4
0λ6

exp

[
−
(

2π2σ2r2
0

λ2z2
0

)]
for a Gaussian diffractor and, for a disc diffractor, with ξ = 2πar0

λz0
,

I1(r0, λ) =
4π4a4

z2
0λ4

(
J1(ξ)

ξ

)2

and

I2(r0, λ) = z2 16π6a4r2
0

z4
0λ6

(
J1(ξ)

ξ

)2

.

Note that the Gaussian ring has a maximum when r0 = z0λ/(
√

2πσ) and that, in

the latter case, the diffraction pattern is determined by the ‘jinc’ function J1(ξ)/ξ

whose first minimum occurs when ξ = 3.83, i.e. when

rmin = 1.22
λz0

a

which is a classical result in (Fourier) optics - an Airy pattern [74]. Observe that

the magnitude of the intensity patterns generated by the field ∇2u0
s is significantly

less than the scatterer γ, e.g. in the case of a Gaussian function

I2

I1
=

4z2π2r2
0

z2
0λ2

and only if r0/λ ∼ z/z0 will the magnitude become of the same order. Also observe

that the intensity generated by the scatterer γ scales as λ−4 whereas the intensity

generated by the field ∇2u0
s scales as λ−6. However, the most significant result is

that diffraction for a scattering function produces a pattern whose intensity peaks at

the centre of the image plane (a standard result in Fourier optics) but that diffraction

from a low frequency scattered field produces a pattern characterised by a ring. The

multiplicity of rings in either case is determined by whether or not the scattering

function is discontinuous.

9.9 The Poisson Spot and the Einstein Ring

Consider the images given in Figure 36 which show an example of a Poisson (or

Arago) spot [76] and an Einstein ring [77]. The Poisson spot (named after Simeon

Poisson who investigated the phenomenon in 1818) represents a landmark in the
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history of science in terms of validating whether or not light was a particle or a

wave. The Poisson spot is a bright compact feature (a spot) that appears at the

centre of the shadow of a circular opaque object. In Figure 36, the Poisson spot is

the result of laser light diffracting from the edge of a ball-bearing. In a theoretical

model of this effect, the ball-bearing can be replaced by an infinitely thin disc.

However, because this disc is opaque, the scattering function must be defined by

γ(r) =

{
0, r ≤ a;
1, otherwise.

and the Fourier transform (assuming an incident plane wave exp(ikz) that is of

infinite extent over the (x, y) plane) must be taken from −∞ to −a and from a to

∞. This is equivalent to computing the two-dimensional Fourier transform over all

space and subtracting the Fourier transform over r ≤ a. Since

∞∫
−∞

∞∫
−∞

exp(−iux) exp(−ivy)dxdy = 4π2δ(kx)δ(ky)

the diffracted intensity for an opaque object is

I1(r0, λ) = δ2(r0) +
π4a4

z2
0λ4

(
2J1(ξ)

ξ

)2

.

The fact that the Poisson spot occurs within the geometrical shadow of an opaque

object, is evidence that a particle and/or a geometrical theory of optics is invalid

and that light must therefore be a wavefield. This deduction occurred some forty

years before Faraday and Maxwell concluded that light was indeed a wave but one

composed of electric and magnetic fields - a direct consequence of the fact that

the field equations derived by Maxwell for an electric and magnetic field can be

decoupled to yield a wave equation.

9.9.1 Gravitational Diffraction

The Einstein ring shown in Figure 36 is an effect that is conventionally explained

in terms of the bending of light through the curvature of space (and time) by a

mass. This is a consequence of the field equations for a gravitational field (the

Einstein equations [56]). In order to obtain an Einstein ring, the magnitude of the

gravitational field must be relatively high such as that generated by a spiral galaxy.

Further, in order to generate a near perfect (complete) ring, the entire galaxy must

be well aligned with regard to an observer in the ‘object plane’. The bending of

light by a gravitational field has an analogy with the geometrical interpretation

of light interacting with a lens. At the edge of a lens, the light beam is ‘bent’

(discontinuously) by the change in refractive index from air to glass and from glass

to air - the extreme edge of a lens acts like a prism. Like an optical lens, gravitational

‘lensing’ will produce distortions of the object plane when alignment of the ‘earth-

lens-object’ is imperfect.
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FIGURE 36 Diffraction pattern from the incidence of laser light with a ball-bearing illus-
trating the Poisson spot (left) and an example of an Einstein ring generated
by a spiral galaxy (central feature) observed with the Hubble Space Tele-
scope (right).

If we interpret an Einstein ring in terms of the results given in Section 9.8.2,

then the ring is not due to light being bent (continuously) by the curvature of a

space-time continuum but the result of the diffraction of a plane wave (i.e. light) by

the field ∇2u0
s which is taken to be in the plane of the galaxy and to extend beyond

it. This requires the magnitude of the scattering function to be very large in order to

compensate for z → 0. If we model a (spiral) galaxy in terms of a Gaussian function,

then the ring associated with the diffraction pattern given in Figure 35 is, in this

sense, a simulation of the Einstein ring given in Figure 36. The use of a Gaussian

function to model the macroscopic gravitational field generated by a spiral galaxy is

intuitive as the edges of a galaxy will not be discontinuous (especially on the scale

of the wavelength of light!). However, in the case of a black hole, the event horizon

defines an edge. In such a case, we can expect gravitational diffraction to produce a

number of concentric rings similar to those associated with a Poisson spot, the black

hole being modelled in terms of an opaque disc. Multiple ring patterns associated

with a black hole are a prediction of the conventional bending of light by space-

time curvature. The idea is that, close to the event horizon, the gravitational field

is so intense that light can be curved right around the black hole by 180 degrees

or more to produce a ring associated with the light generated by an object that

exists in alignment with, and behind, the image plane [77]. These multiple Einstein

ring predictions are based on arguments analogous to geometric optics whereas the

multiple rings considered here are analogous to Fourier optics. In this sense, we

are interpreting a gravitational field to be generated by the scattering of a long

wavelength Helmholtz wavefield, i.e. the field U0
s defines a ‘gravitational field’.

9.9.2 Colour Analysis

Another feature of Einstein rings (complete or otherwise) is that, unless the source-

galaxy system has been substantially red shifted (when both the galaxy and the ring

appear red, e.g. [78]), the colour of the rings is blue (as in the example given in
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Figure 36) even, as in some cases that have been reported, when the galaxy itself

is red [79]. Note that there are many examples of Einstein rings in the infrared and

radio spectra which are not blue due to the false colour mappings that are used

to display the data. However, it the visible spectrum, the colour of an Einstein

ring is blue which is the true colour of the effect as observed by the Hubble Space

Telescope, for example. The issue of why an Einstein ring is blue does not appear

to have received musch attention and a variety of of unacceptable explanation have

been provided. For example, in the Astronomy Picture the Day of July 28 2008

[80] a NASA image of a Galaxy Einstein Ring is accompanied by the following:

What’s large and blue and can wrap itself around an entire galaxy? A gravitational

lens image. Pictured above on the left, the gravity of a normal white galaxy has

gravitationally distorted the light from a much more distant blue galaxy. It is clearly

not conceivable that all Einstein rings observed to date (in the visible spectrum) are

the result of gravitational lensing of light from blue galaxies. Galaxies are not blue

anyway but a source of radiation over the entire electromagnetic spectrum.

If we accept an Einstein ring to be a gravitational diffraction phenomena, then

the intensity of the diffracted light scales as λ−6 which explains the colour of the

rings (blue light having the shortest wavelength in the visible spectrum). This is

analogous to the explanation of why the Earth’s atmosphere is blue in colour. Un-

der the Rayleigh scattering condition in which the wavelength is significantly larger

than the physical size of the scatterer (when the Born approximation is valid), the

scattering amplitude becomes independent of the scattering angle and the intensity

of the scattered field is proportional to λ−4. Thus, the sky is blue, because sunlight

is scattered by the electrons of air molecules in the terrestrial atmosphere generat-

ing blue light preferentially around in all directions. Further, as the Sun approaches

the horizon, we have to look more and more diagonally through the Earth’s atmo-

sphere. Our line of sight through the atmosphere is then longer and most of the

blue light is scattered out before it reaches us, especially as the Sun gets very near

the horizon. Relatively more red light reaches us, accounting for the reddish colour

of sunsets. In other words, the λ−4 dependence of the scattered intensity implies

that the atmosphere scatters green, blue and violet light photons more effectively

than yellow, orange, and red photons. As the Sun approaches the horizon, the path

of light through the atmosphere increases, so more of the short-wavelength photons

get scattered away leaving the longer-wavelength photons and the Sun looks pro-

gressively redder. Rayleigh scattering in the atmosphere also explains why the sun

is yellow at mid-day. This is because the energy spectrum (i.e. Planck’s radiation

law [74]) for the Sun peaks at the point when the wavelength is that of green light

(i.e. ∼ 4.7× 10−7metres). Since the atmosphere filters out blue light and since blue

and yellow light combine to give green light, the Sun appears yellow.

Note that the λ−6 scaling dependency associated with gravitational diffraction

provides a method of validating or otherwise the theoretical model presented here.

We require a scenario in which the same Einstein ring is recorded simultaneously

over a broad frequency spectrum (e.g. using radio, infrared, visible and ultraviolet

imaging) in such a way that the intensities of each image (relative to a known

source that can be used for calibration) can be compared on a quantitative basis.
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FIGURE 37 Examples of the differences in the lightness (for a HSL - Hue, Saturation
and Lightness - colour model) of the blue light generated by Tyndall scat-
tering (scattering of light by fine flour suspended in water - left), Rayleigh
scattering (scattering of light by the atmosphere - centre) and ‘gravitational
scattering’ (diffraction of light by the gravitation field generated by a galaxy
- right).

However, data available to undertake such an analysis are not yet available. Instead,

another approach is considered based on the colour generated by light scattered

under different conditions. For Tyndall scattering discussed in Section 4.3.3, the

intensity of light is proportional to λ−2 and for Rayleigh scattering discussed in

Section 4.3.2, the light scattered intensity is proportional to λ−4. Because of these

wavelength scaling relationships, both Tyndall and Rayleigh scattering generate

blue light. However, Tyndall scattering can be expected to generate a lighter blue

than Rayleigh scattering. This is illustrated in Figure 37 which also shows, for

comparison, the colour of the blue light scattered by a gravitational field which is

proportionately darker because of the scaling relationship characterised by λ−6. This

comparison is quantified in Figure 38 which shows the differences in the lightness

of blue using a Hue, Saturation and Lightness (HSL) colour model. The lightness

factor associated with each image is characterised by the ratios 1:2:3 which is in

agreement with the logarithmic scaling ratios 2 ln λ : 4 ln λ : 6 ln λ.

9.10 Schrödinger Scattering

The theoretical ideas established so far and some of the implications that have

been discussed are without reference to any physical significance of the scattering

function. In this section (and the following section) we examine the characteristics

of this scattering function by revisiting two wave equations in quantum mechanics,

namely the Schrödinger equation (for the non-relativistic case) and the Klein-Gordon

equation (for the relativistic case).

If we consider the diffraction of light by a material object, then physically, the

scattering function γ(r) must describe some appropriate property of matter (the
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FIGURE 38 The ‘blues’ associated with Tyndall (left), Rayleigh (centre) and gravita-
tional (right) light scattering obtained by averaging over many images of
each effect.

material properties) that is consistent with electromagnetic theory. On the macro-

scopic scale (i.e. many orders of wavelength) the relative permittivity, permeability

and conductivity are the basis for defining Maxwell’s macroscopic equations [74].

These material properties vary considerably from one application to the next. They

may be isotropic or non-isotropic functions of space, time varying and field varying

(non-linear optics), for example.

In electromagnetism, the use of the scalar Helmholtz equation to develop the

results given so far, is compatible only with the case when the relative permeability

is 1, the conductivity is zero and when the material is isotropic (i.e. the relative

permittivity is a scalar function of space). However, in terms of a universal wavefield

theory, matter is ultimately composed of matter waves which conform to matter wave

equations such as the Schrödinger equation.

The fundamental postulates of quantum mechanics are that E = h̄ω and

p = h̄k. Given that

E =
p2

2m
then

1
c2 =

k2

ω2 =
p2

E2 =
2m
E

and the wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0,

1
c2 =

1
c2

0
(1 + γ)

can be written in terms of the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γu(r, k), γ =
2mc2

0
E

− 1.

Note that for a potential energy function Ep when

E =
p2

2m
+ Ep,
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the scattering function is given by

γ =
2mc2

0(E − Ep)
E2 − 1.

In either case, we note that Schrödinger’s equation is obtained when the angular

frequencies defining k and E are the same. Thus, the scattering function associ-

ated with the Helmholtz equation given above is, in this sense, a generalization of

Schrödinger’s equation where the wavefield U(r, t) can oscillate at any frequency ω

less than, or significantly less than the frequency, ω1 say, associated with a matter

wave of energy E = h̄ω1. Schrödinger’s equation is therefore taken to be a ‘product’

of the limiting case: ω → ω1
4.

Defining the scattering function in this way, we note that

U0
s =

k2
0Γ

4πr2

where, for constant E and m,

Γ = Mm

and

M =
V
m

(
2mc2

0
E

− 1

)
, V =

∫
V

d3r.

Suppose that a mass m′, placed in the vicinity of the field U0
s , experiences a force F

that is proportional to Um′ so that

F = v2Um′

where v2 is a constant of proportionality. Then

F = v2k2
0

Γm′

4πr2 = G
mm′

r2 , G =
Mv2k2

0
4π

and v has the dimensions of velocity (i.e. length.second−1). We can then derive an

expression for the wavelength of the field U0
s in terms of the gravitational constant

G, i.e.

λ0 =
2π

k0
=

c0

ν

where ν is the frequency given by

ν = r
c0

v2

√
Gm
πV

, r =

√
E

2mc2
0 − E

.

Note that for the frequency (and wavelength) to be a real positive quantity, we

require that

2mc2
0 > E

4 An entirely phenomenological argument (like Schrödinger’s equation itself!).
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so that
2mc2

0
E

− 1 > 0 =⇒ γ > 0.

Also note that because v has dimensions of velocity, the ‘force field has an associated

‘speed’.

The inhomogeneous Helmholtz equation(
∇2 +

ω2

c2
0

)
u = −ω2

c2
0

γu

where

γ = 2mc2
0(E − Ep)/E2 − 1

is the Schrödinger equation in ‘disguise’ in the sense that if ω → ω1 where E = h̄ω1,

then

(∇2 + k2
1)u = γ1u

where

k2
1 =

ω2
1

c2
0

=
2mE

h̄2 and γ1 =
2mEp

h̄2 .

Given that Proca’s equations can be decoupled to produce inhomogeneous

Klein-Gordon equations for φ and A, we can adopt the same procedure to obtain

the following inhomogeneous wave equations for the non-relativistic case, i.e.(
∇2 − 1

c2
0

∂2

∂t2

)
φ(r, t) − γ

1
c2

0

∂2φ

∂t2 = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t) − γ

1
c2

0

∂2A
∂t2 = −μ0j,

Maxwell’s equations being modified to the form

∇ · E =
ρ

ε0
− γ

1
c2

0

∂2φ

∂t2 , ∇ · B = 0

∇× E = −∂B
∂t

, ∇× B = μ0j + ε0μ0
∂E
∂t

+ γ
1
c2

0

∂2A
∂t2 .

The fields φ0
s and A0

s (the equivalent of U0
s ) are given by

φ0
s =

k2
0Γ

4πr2 +
P

4πε0r2

and

A0
s = n̂0

k2
0Γ

4πr2 +
μ0J

4πr2 , n̂0 = A0
s / | A0

s |
where, for time-independent functions ρ and J,

P =
∫
V

ρ(r)d3r and J =
∫
V

j(r)d3r.
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Note that for the limiting case when ω → ω1 we obtain modified Schrödinger

equations for φ and A given by

(∇2 + k2
1)φ = γ1φ − ρ

ε0

and

(∇2 + k2
1)A = γ1A − μ0j.

In the context of the results above, we interpret the field U0
s in terms of a low

frequency electric scalar potential (in a charge free environment with ρ = 0). In this

sense, we could interpret the field U0
s as an ultra low frequency electromagnetic field

in terms of an answer to the question: how long does a radio wave have to be before

it becomes something else? However, in the universal wave model considered here,

fields such as φ and A are subservient to the wavefield characterised by a governing

wave equation in a similar sense to the rationale associated with the derivation

of the Proca equations. Thus, the issue as to whether Us is interpreted in terms

of an electromagnetic, gravitational or quantum field is redundant, at least in the

conventional sense. Rather, we consider all fields such as φ to be a characteristic

of wavefields interacting over a broad frequency range. In this sense, the use of a

scalar wavefield U in quantum mechanical equations such as the Schrödinger and

Klein-Gordon equations is also being used in the interpretation of electromagnetism

and gravitation. Field equations such as Maxwell’s and Einstein equation’s must be

re-interpreted and derived from a universal wavefield approach alone, along with the

physical interpretation of an electric and gravitational field.

9.11 Klein-Gordon Scattering

For the relativistic case

E2 = p2c2
0 + m2c4

0

and
1
c2 =

k2

ω2 =
p2

E2 =
1
c2

0
− m2c2

0
E2 .

The wave equation (
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

can thus be written in terms of the Helmholtz equation as

(∇2 + k2)u(r, k) = −k2γu(r, k)

where γ is the ‘Klein-Gordon scattering function’ given by

γ = −m2c4
0

E2
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The field U0
s is then given by

U0
s = − k2

0Γ
4πr2

where (for constant E and m)

Γ = Mm2, M =
c4

0V
E2 .

We note that in this case, U0
s is proportional to the square of the mass and is

of negative polarity compared to the non-relativistic case, i.e. it will generate a

repulsive force on a particle of mass m′ given by

F = −G
m2m′

r2 .

9.12 Intermediate Scattering

Since (for positive energies)

E =
√

p2c2
0 + m2c4

0 � p2

2m
+ mc2

0,
p2

m2c2
0

<< 1

we recover Schrödinger’s equation

ih̄
∂U
∂t

= − h̄2

2m
∇2U + mc2

0U

which now includes the rest mass energy term mc2
0U. In order to consider the inter-

mediate scattering problem (intermediate between Schrödinger and Klein-Gordon

scattering) we need to derive a wave equation that unifies both the Klein-Gordon

and Schrödinger equations. One approach to this is through the introduction of a

fractional time derivative ∂q/∂tq, 1 < q < 2 where q = 1 provides Schrödinger’s

equation and q = 2 yields the Klein-Gordon equation. A fractional partial differen-

tial equation that achieves this unification is (derived through induction)(
∇2 − 1

cq
∂q

∂tq

)
U = KnU

where (c having fractional dimension L2/qs−1)

1
cq =

(
2m
ih̄

)2−q 1

c2(q−1)
0

and

Kn =

{
22−qκ2, n = 1;
a2−q(q − 1)κ2(q−1), n = 2.
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The function Kn provides unification for the Schrödinger equation with (n = 1)
and without (n = 2) the rest mass term, the constant a, with fractional dimension

L2(q−2)/(2−q), being required to yield dimensional compatibility. With

1
cq =

1
cq

0
(1 + γ)

we can then write (
∇2 − 1

cq
0

∂q

∂tq

)
U = γ

1
cq

0

∂qU
∂tq + KnU

where

γ =
(

2mc0

ih̄

)2−q
− 1 = (−2iκ)2−q − 1.

Defining a fractional differential in terms of the Fourier transform, i.e.

∂q

∂tq U(r, t) ⇐⇒ (iω)qu(r, ω),

we have (
∇2 + Ω2

)
u = −Ω2γu + Knu

where

Ω2 = − (iω)q

cq
0

, Ω = ±i
(iω)q/2

cq/2
0

.

The Born scattered field is then given by

us = Ω2g(r, ω) ⊗3 γui − g(r, ω) ⊗3 Knui

where

g(r, ω) =
exp(iΩr)

4πr
.

The time dependent Green’s function can be evaluated using the series expression

for the complex exponential term by term as follows (taking Ω = −i(iω/c0)q/2 to

give consistency with the ‘outgoing free space’ Green’s function in the case when

q = 2):

G(r, t) =
1

2π

∞∫
−∞

dω exp(iωt)
exp[(iω/c0)q/2r]

4πr

=
1

4πr
1

2π

∞∫
−∞

dω exp(iωt)[1 + (iω/c0)q/2r

+
1
2!

(iω/c0)qr2 + ...] =
δ(t)
4πr

+
1

4π
c−q/2

0
∂q/2

∂tq/2 δ(t)

+
1

4π

∞

∑
n=1

1
(n + 1)!

rnc−(n+1)q/2
0

∂(n+1)q/2

∂t(n+1)q/2
δ(t).
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Inverse Fourier transforming and using the convolution theorem, the time-dependent

scattered field is given by

Us = − 1
cq

0

∂q

∂tq G(r, t) ⊗3 ⊗tγUi − G(r, t) ⊗3 ⊗tKnUi

where ⊗t denotes the convolution integral over t and Us and Ui are the time-

dependent scattered and incident fields respectively (i.e. the inverse Fourier trans-

forms of us and ui, respectively5). We note that for r → 0,

Us = − 1
4πr

⊗3 γ
1
cq

0

∂qUi

∂tq − 1
4πr

⊗3 KnUi

− 1

4πc3q/2
0

∂3q/2

∂t3q/2

∫
V

γ(r)Ui(r, t)d3r

− 1

4πcq/2
0

∂q/2

∂tq/2

∫
V

Kn(r)Ui(r, t)d3r

and that in the ultra-low frequency range (i.e. in the limit as ω0 → 0),

u0
s =

Ω2
0

4πr
⊗3 γ − 1

4πr
⊗3 Kn.

In this case, the field U0
s is given by (for constant γ and κ)

U0
s =

V
4πr2 (Ω2

0γ − Kn)

which is zero when Ω2
0γ = Kn or when

k0 =
(−2)(q−2)/qκ(q−2)/qK1/q

n(
1 − (i/2)2−q

κ2−q

) 1
q

.

9.13 Interpretation

If we define a gravitational field (for a spherically symmetric scatterer) to be given

by the field U0
s then the interpretation of what gravity is must change. According

to the universal scalar wavefield model considered here, a gravitational field is due

to the scattering (by a material object composed of a spectrum of matter waves) of

very low frequency scalar Helmholtz wavefields. Thus, if two bodies are in proximity,

then each body will scatterer low frequency waves and each will interact with the

scattered wavefield generated by the other, both experiencing an attractive (in the

5 For notational convenience, we have used Us to represent the time-dependent wavefield
Us(r, t) which should not be confused with the use of Us(r, k), k → 0 in Section 9.7 or U0

s as
used in Section 9.8.
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non-relativistic case) gravitational force given by v2m′U0
s where m′ is the mass of

the other body. In this sense, we define gravity as follows:

Two bodies are attracted to each other because each ‘detects’ the ‘gravity waves’

scattered by the other in the non-relativistic case.

However, the term ‘gravity waves’ used here is not the same as that used in general

relativity. The term relates to the low frequency components of a scalar wave spec-

trum and must be interpreted within the context of the limiting condition k → 0.

The model provides results that are compatible with observable characteristics

of a gravitational field: (i) a gravitational field is a weak field; (ii) a gravitational

field is characterized by an inverse square law; (iii) a gravitational field deflects

light; (iv) gravity is an attractive only force. However, in this model, the ‘deflec-

tion’ of light is not taken to be due to the bending of light as it travels through a

curved space-time manifold (Einstein’s model) but through the diffraction of light

(and other electromagnetic radiation) by a gravitational field. It should be noted

that, according to this model, gravity waves (as understood in terms of Einstein’s

equations) can not be measured. The attempt to detect Einstein gravity waves (i.e.

the gravity waves predicted by general reativity) is the equivalent of constructing a

weighing machine to weigh itself! Rather, we are ‘detecting’ gravity waves all the

time, the effect of this ‘detection’ manifesting itself in terms of the ‘force of gravity’

we are all accustomed to.

The attractive only condition is valid for the non-relativistic case (i.e. for the

Schrödinger scattering function). In the relativistic case, although the gravitational

field U0
s is still weak, it depends on the square of the mass and generates a repulsive

force. Note that in the case of the Schrödinger scattering function with potential

energy Ep, then

γ > 0 =⇒ 2mc2
0(E − Ep)

E2 − 1 > 0

However, for any material characterised by a case when Ep > E, the scattering

function is negative and the gravitational field defined by U0
s will yield a repulsive

force.

9.14 Principle of Eigenfield Tendency: Quantum Mechanics Revis-
ited

Given the approach considered, an eigenfield tendency principle is required in order

to explain the properties of matter as described by Schrödinger’s equation (in the

non-relativistic case) as originally conceived by Schrödinger [57]. For different po-

tential energy functions Ep(r), it is well known that this equation describes eigenfield

systems that can be used to model the properties of matter through the principles of

quantum mechanics (in the full context of the subject). The original reason for de-

riving the Schrödinger scattering function was so that the asymptotic behaviour of a
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scattered Helmholtz wavefield (i.e. when ω → 0) could be examined. However, the

consequence of this is that the Helmholtz equation is the governing wave equation

only over a limited frequency band and that as the frequency of a wavefield increases

(i.e. as ω → ω1) the Helmholtz equation reduces to the Schrödinger equation. If

we consider the Schrödinger equation to represent eigenfields (at least in terms of

its description of matter waves), then we can argue that at the higher end of the

our universal spectrum, wavefields tend to behave more and more like eigenfields.

Matter is thus taken to be composed of eigenfield systems at higher and higher fre-

quencies; first the atom, then the nucleus, then the constituents of the nucleus (the

quarks) and so on. Equations such as Schrödinger’s equation and Dirac’s equation

are both descriptions for eigenfield systems at different energies (non-relativistic and

relativistic energies respectively).

In the context of matter being an eigenfield system described by eigenfunction

solutions to Schrödinger’s equation, consider the case of a free electron and a free

proton and the formation of hydrogen gas. In conventional (particle) terms, an elec-

tron and a proton have the same charge but of opposite polarity. This attracts the

particles to form a neutral hydrogen atom, an effect which requires the introduction

of a field, namely, an electric field. In terms of a wavefield theory, both the electron

and proton are waves. In an ionised state, the electron is a free wave and the proton

(relative to the electron) is a potential which is itself an eigenfield system (consisting

of a higher frequency spectrum - the ‘nuclear spectrum’). The free wavefield requires

greater energy to exist in a free state and hence, based on the principle of least en-

ergy, will ‘attempt to exist’ as an eigenfield. This ‘eigenfield’ may have a number

of eigenstates, each with a specific energy level. The difference in energy between

the free energy state and the available eigenstate(s) provides a residual energy, i.e.

a free energy wavefield with frequency E/h̄. Once formed, the eigenfield will not

share its eigenstate(s) as this will require greater energy and hence, if another elec-

tron comes in to the vicinity of the neutral hydrogen atom, it will appear to undergo

a repulsive force. On the other hand, since the combined eigenfields associated with

two hydrogen atoms requires lower energy than two separate eigenfields (i.e. two

hydrogen atoms) then the result is the diatomic Hydrogen molecule H2 - the result

of a covalent bond. In this sense, an electric field is not the product of a charge,

rather it is that entity associated with the propensity for a free wavefield to become

an eigen wavefield. A magnetic field is then a measure of the rate of change over

which this propensity is satisfied, i.e. If U(r, t) exists such that∫ ∫
| U(r, t) |2 d3rdt

is a minimum, then

Electric Field E
Free Wavefield → Eigen Wavefield

Magnetic field ∂E
∂t

Note that the transition described by Free Wavefield→ Eigen Wavefild may have

both magnitude and direction since a free wavefield will attempt to find the shortest
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possible path in a three-dimensional space in order to become an eigen wavefield.

An electric field will therefore appear to be a vector field. Further, if the transition

has no directional preference, then an electric field will appear to have a Coulomb

field strength characterised by an inverse square law.

The principle of eigenfield tendency is just the principle of least energy as

applied to a universal wavefield model. It is, however, a principle which allows us

to explain an electric field without having to refer to the concept of a field being

‘radiated’ by a charge! For example, ‘electron cloud’ repulsion theory (Valence

Shell Electron Pair Repulsion) is used to predict shapes and bond angles of simple

molecules in which the ‘electron cloud’ may be a single, double or triple bond, or

a lone pair of electrons - a non-bonding pair of electrons. The ‘electron clouds’

are taken to be negatively charged since the electrons are negatively charged, so

electron clouds repel one another and try to get as far away from each other as

possible. Instead of considering the electron cloud to consist of negatively charged

electrons, we consider the cloud to be a eigenfield which arranges itself in such a way

that it can exist in a minimum energy state, a state that affects the geometry of the

molecule. In a simple hydrogen atom, for example, the eigenfield will be distributed

symmetrically because, in a three-dimensional space, spherical symmetry represents

the most energy efficient configuration which is equivalent to the electron wavefield

‘experiencing’ a Coulomb potential.

The eigenfunctions that are the solutions to the Schrödinger equation for dif-

ferent materials will not necessarily be complete eigenfunctions. In some cases, so-

lutions only allow for the existence of quasi-eigenfunctions. In conventional atomic

physics, quasi-eigenfunctions are incomplete standing waves more commonly referred

to a delocalised electrons. These are electrons that exist in the ‘lattice’ of a ma-

terial but are free to move and provides a material with the property we refer to

as conductivity. This includes materials such as various metals and chemicals (e.g.

Benzene which is composed of a ring of delocalised electrons). The principle differ-

ence between an eigenfield and a quasi-eigenfield, is that a quasi-eigenfield has an

energy spectrum, albeit a narrow one.

The Schrödinger scattering function for matter waves is

γ =
2mc2

0(E − Ep)
E2 − 1.

In a macroscopic sense, Ep is the total potential energy associated with all the nuclei

from which a material of compact support is composed and E is the total energy

associated with the electrons. In the case of elements such as gold, the arrangement

of electrons around the nucleus is such that a single electron occupies the outermost

shell and is an example of a quasi-eigenfield, i.e. a relatively free wavefield (a free

electron) that is only loosely bound to the host atom. Successive energy levels are

contained in a small energy range dE and are so close that, in effect, a continuous

energy spectrum is formed. Each energy level in this spectrum can accommodate a

left-travelling and right-travelling wave (‘spin-up’ and ‘spin-down’ electrons - Pauli’s

principle) and these free electrons will distribute themselves throughout the energy

band from 0 to some value E. Irrespective of any particular system, the number of
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possible modes of oscillation per unit volume dn in a frequency range ν to ν + dν

for waves with a propagation velocity of c is given by

dn =
4πν2dν

c3 .

With E = p2/(2m) = h̄ω and p = h̄ω/c = E/c, then

dp =
h̄dω

c
and dE =

p
m

dp = h̄dω.

The number of states per unit volume in the energy interval dE is therefore

dn(E) =
(2m3)

1
2 E

1
2

2π2h̄3 dE

and thus, the total number of electrons per unit volume in the energy spectrum

(0, E) is6

n(E) = 2
(2m3)

1
2

2π2h̄3

E∫
0

E
1
2 dE = 2

(2m3)
1
2

3π2h̄3 E
3
2 .

Here m is taken to be the mass of an electron. Note that if the material is in a

‘ground state’ then the available electrons will occupy the lowest possible energy

level. Further, if the total number of electrons per unit volume is less than the

total number of energy levels available in a band (the bandwidth of the material),

then the electrons can occupy all energy states up to a maximum energy Emax - the

Fermi Energy. In this sense, the Fermi energy defines the (energy) bandwidth of a

(conductive) material composed of a quasi-eigenfield.

With an atomic number of 79, gold is the heaviest of the most conductive

elements in the periodic table, i.e. the product of the conductivity with the atomic

number (∼ 3.57 × 107cmΩ) for gold is larger than any other element. If it were

possible to reduce the total energy associated with the total quasi-eigenfield of gold

such that E < Ep, then the result would be a scattering function that is negative.

This requires the Fermi energy of gold to be reduced, the most influential factors

being temperature and volume. Clearly, if the number of electrons per unit volume

n is reduced then so is the Fermi energy. In terms of a physical material, n is

determined by the number of atoms defining the physical extent of the material.

This suggests an experimental investigation of the cryogenic properties of M-state

(mono-atomic) gold. M-state gold is a white powder and is an example of a nano-

material where each of the nano-metre size grains are clusters of a few hundred

atoms. Like other M-state materials, the surface area is huge compared to the

metallic (macro-crystalline) form. Thus, with the volume of each grain being small

enough and the temperature of the material being low enough, it may be possibly

to reduce the Fermi energy to an extent where E < Ep for the material as a whole.

6 The factor of 2 is because of Pauli’s principle.
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9.15 Discussion

The results developed in this chapter encapsulate a phenomenology where the Helmholtz

equation is, in effect, being used in an attempt to develop a unified scalar wavefield

theory where the wavefield u(r, ω) is taken to exist over a broad range of frequencies

limited only by the Planck frequency. At very high frequencies, u is taken to de-

scribe matter waves which are characterised by relativistic (Klein-Gordon and Dirac

equations) and non-relativistic energies (Schrödinger equation) associated with nu-

clear and atomic physics respectively. At intermediate frequencies, u is taken to

describe waves in the ‘electromagnetic spectrum’ and at low frequencies, u is taken

to describe waves in the ‘gravity wave spectrum’.

The structure of matter, the characteristics of light and other electromag-

netic radiation and the properties of gravity become phenomenologically related via

Helmholtz scattering over different frequency bands. Low frequency waves (gravity

generating waves) are scattered by high frequency waves (matter waves) to produce

a gravitational field; intermediate frequency waves (electromagnetic spectrum) are

scattered by high frequency waves (e.g. a lens) but can also be scattered by the

field generated from the scattering of low frequency waves to produce gravitational

diffraction. In this sense, ‘physics’ becomes the study of waves interacting with

waves at vastly different frequencies, the breadth of the spectrum ‘reflecting’ the

instantaneous birth of the universe - the ‘big-bang’ - since it requires (noting that

the Fourier transform of a δ-function is a constant over all frequency space) a short

impulse to generate a broad frequency spectrum. However, in attempting to derive

a ‘wavefield theory of everything’ we must re-interpret the nature of an electric field

using the principle of eigenfield tendency. Thus, instead of contemplating an elec-

tron in terms of a particle with a negative charge that ‘radiates’ an electric field

and is attracted to particles with a positive charge (which also ‘radiate’ an electric

field), we can visualise an electron in terms of a wave which is ‘attracted’ by the

‘requirement’ (through the minimum energy principle) of becoming an eigenfunction

(a standing wave with lower energy than a free wave) whose properties are deter-

mined by the potential energy associated with the atomic nucleus which is itself, a

higher (nuclear) frequency eigenfield system (quarks).

The form of the wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

dictates that c must be of finite value. If a wavefield (whatever the wavefield may

be) was to convey information from one point in space to another instantaneously,

then the second term of the above equation would be zero; the ‘wave equation’

would be reduced to ‘Laplace’s equation’ ∇2u = 0. Einstein’s principal postulate is

that the upper limit at which any wavefield can propagate is the speed of light c0
in a perfect vacuum and thus c ≤ c0. In a more general perspective, the rationale

associated with the fact that c must have a finite upper bound is that the influence

of any physical wavefield on any measurable entity can only occur in a finite period
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FIGURE 39 Example of fractal waves by the Japanese artist K Hokusai from the 1800s
illustrating waves of different scale in both amplitude and wavelength.

of time and that there can be no such thing as instantaneous ‘action at a distance’,

i.e. as Issac Newton put it: That one body may act upon another at a distance

through a vacuum, without the mediation of anything else, by and through which

their action and force may be conveyed from one to the other, is to me so great an

absurdity, that I believe no man who has in philosophical matters a competent faculty

of thinking, can ever fall into it. Taking Newton’s own term, mediation requires the

propagation (of information), but propagation at infinite speeds is not propagation

and thus, we postulate that instantaneous fields are not possible, i.e. the speed

at which a wavefield propagates must be finite for a wavefield to exist. In this

context, the results developed for this thesis highlight the idea that the ‘physics’ of

a wavefield is more fundamental than the ‘physics’ of a field. This principle should

be considered in light of the fact that the one property common to the principal

field equation of physics (e.g. Einstein’s equations, Maxwell’s equations, Proca’s

equations), is that they all describe wave phenomena - at least in an ‘indirect’ sense.

In the case of Proca’s equations, the field equations are derived with the singular aim

of ensuring that they can be decoupled to yield the inhomogeneous Klein-Gordon

(wave) equation.

9.15.1 Fractal Wave Model

The underlying philosophy associated with the approach considered, is based on a

‘waves within waves’ model, i.e. to quote an old Chinese proverb ‘In every way, one

can see the shape of the sea’. This is a universal self-affine or fractal model in which

the ‘fractal field’ is a scalar wavefield, a symbolic representation of the idea being

given in Figure 39. As the frequency increases, a wavefield tends to become an

eigenfield. This principle is required to explain the structure of matter and much of

the discussion given in Section 9.13 is quantum mechanics revisited without the need
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to define an electric field in terms of a charge. If we consider the structure of matter

at the atomic, nuclear and sub-nuclear scales (indeed at all scales down to the scale

of the Planck length) to be determined by eigenfields, then the question remains as

to why eigenfield systems should ‘kick-in’ at the atomic scale? If the principle of

eigenfield tendency applies at all frequencies then why do we not observe equivalent

naturally occurring eigenfield systems in the electromagnetic spectrum? Perhaps we

do under special circumstances, e.g. ball-lightning.

The approach to unification considered has yielded a number of questionable

and speculative results. The only experimental evidence offered in confirmation to

our model for a gravitational field is a possible explanation as to why the Einstein

rings associated with near field galaxies observed by the Hubble Space Telescope

are blue. However, it should be noted that this ‘evidence’ is most typical of Carl

Popper’s principle that all observation statements are ‘theory laden’ and that other

explanations may be possible that are more appropriate in terms of established

physical models.

In general relativity, the curvature of space-time bends light by the same

amount irrespective of the frequency - there is no dispersion relation. The λ−6

scaling law associated with gravitational diffraction may be validated (or otherwise)

from appropriate simultaneous observations of the same Einstein ring (complete or

otherwise) at different wavelengths. Other consequences such as a gravitational field

generating a repulsive force that is proportional to the mass squared in the relativis-

tic case remain of theoretical consequence only. However, it is noted that inflation

theory (the expansion of the early universe) requires gravity to be a repulsive force.

The model considered leads to the proposition that a gravity field is regenera-

tive and exists through the continuous scattering of existing low frequency Helmholtz

wavefields. This proposition may provide an answer to the following question: If

nothing can escape the event horizon of a black hole because nothing can propagate

faster than light then how does gravity get out of a black hole? The conventional

answer to this question is that the field around a black hole is ‘frozen’ into the sur-

rounding space-time prior to the collapse of the parent star behind the event horizon

and remains in that state ever after. This implies that there is no need for continual

regeneration of the external field by causal agents. In other words, the explanation

defies causality. In the model presented here, the gravitational field generated by a

black hole or any other body is the result of a causal effect - the scattering of low

frequency scalar waves. In this sense, a black hole is just a stronger scatterer than

other cosmological bodies and a gravitational field ‘gets out of a black hole’ because

it was never ‘in the black hole’ to start with.

9.15.2 Propagative Theories

Propagative or wave theories of gravity have been proposed for many years. In 1805,

Laplace proposed that gravity is a propagative effect and considered a correction to

Newton’s law to take into account the observation that gravity has no detectable

aberration or propagation delay for its action. Laplace’s ideas were advanced further

by Weber, Riemann, Gauss and Maxwell in the Nineteenth Century using a variety
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of ‘corrective terms’. In 1898, Gerber, developed a propagative theory that took into

account the perihelion advance of mercury and in 1906 Poincaré showed that the

Lorentz transform cancels out gravitational aberration. After the success of general

relativity (1916) for explaining gravity in terms of a geometric effect, propagation

theories were discarded. However, more recently, attempts at explaining gravity

in terms of causal effects through a ‘propagative’ force have been revisited [81] as

debate over the basic Einsteinian postulates7 has intensified. Moreover, from Laplace

to the present, propagation theories of gravity consider an object to be ‘radiating’

a field (in a passive sense). If general relativity considers gravity to be the result of

an object warping space-time, then the proposition reported is that gravity is the

result of an object scattering (long wavelength) waves that already exist as part of

the low frequency component of a universal spectrum which is, itself, the by-product

of the ‘big-bang’.

9.15.3 Compatibility with General Relativity

The compatibility of this approach with general relativity can be realised if the

wavefield as taken to warp space-time so that space-time is the medium of prop-

agation. Only at very large wavelengths does the warping of space-time become

so pronounced and over such a large scale that Einstein’s field equations can then

be used to describe the physics associated with the geometry of the field. In other

words, if space-time is taken to be the medium of propagation of all (scalar) wave-

fields at all frequencies, then the theory of general relativity emerges naturally as

k → 0. A two-dimensional and qualitative illustration of this idea is given in Figure

40 which shows four frames of a simple two-dimensional wave function as k → 0.

It is assumed that the wavefunction is due to the scattering of a plane wave from

a delta function located at the centre of the surface. If space is taken to be the

medium of propagation which undergoes curvature as a wave propagates through

it then Figure 40 can be taken to illustrate the curvature of a two-dimensional

space into a three dimensional space at increasingly lower frequencies. As k → 0 the

wavefield is replaced by what appears to be a static curved space manifold within

the locality of a low frequency scattering event. The curvature of this manifold is

the taken to be responsible for generating a gravitation force which is attractive in

terms of the influence of one mass upon another and is compounded in terms of

Einstein’s field equation, i.e.

Rμν − 1
2

gμνR + gμνΛ =
8π

c4 Tμν

where Rμν is the Ricci curvature tensor, R is the scalar curvature, gμν is the metric

tensor, Λ is the consmological constant, G is the gravitational constant, c is the

speed of light and Tμν is the stress-energy tensor [56].

Any propagation theory of gravity must address some basic known observa-

tions:

7 The invariance of the propagation of light in a vacuum for any observer which amounts to
a presumed absence of any preferred reference frame.
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FIGURE 40 Qualitative illustration of the function −Re[cos(kr)/r], r =
√

x2 + y2 for
four frames as k → 0 (from left to right and from top to bottom).

� Gravity has no detectable aberration or propagation delay for its action leading

to effects predicted by general relativity such a gravitomagnetism;

� the finite propagation of light causes radiation pressure for which gravity has

no counterpart pressure.

These results represent the most vital evidence with regard to gravity being a ge-

ometric and not a propagative effect. For example, in an eclipse of the Sun, the

gravitational pull on the earth by this 3-body (Sun-Moon-Earth) configuration in-

creases. By comparing the delay in time it takes to observe the visible maximum

eclipse on Earth (which can be calculated from knowledge of the distance of the

Moon from the Earth) with the equivalent gravitational maximum, then if gravity

is a propagating force, it appears to propagates at least 20 times faster than light!

[82] Irrespective of whether this value is valid or not, a fundamental issue remains,

which is compounded in the question: what is the speed of gravity? If we consider

gravity to be a propagation and/or a low frequency scattering effect, then in order

to account for the lack of propagation delay, it must be assumed that the speed of

gravity is greater than the speed of light. This is contrary to the Einsteinian pos-

tulates if these postulates are taken to apply to all wavefields irrespective of their

wavelength. The model presented here assumes that the speed of gravity is the

same as the speed of light c0. However, the asymptotic result k → 0 used to define

a gravitational field yields, what will appears to be, an instantaneous effect from a

wavefield that is taken to propagate at the speed of light. The wavelength is so long
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compared to the distances associated with a Sun-Moon-Earth system, for example,

that the speed of gravity will appear to be significantly faster than the speed of light

(i.e. U0
s is observed to be an instantaneous field).

9.16 Final Comments

In terms of the fractal wavefield model considered here, the gravitational force is

a consequence of very long wavelength waves and is therefore a long range force.

Electromagnetism is a consequence of intermediate wavelength waves which exist as

both free wavefields and eigen wavefields at the atomic scale, the transition from one

to the other creating an ‘electric field’. The strong force is a consequence of a nuclear

eigen wavefield where the values of E = h̄ω and p = h̄k are in the relativistic energy

limit. The weak force (associated with radioactive decay, for example) is explained

in terms of the transformation of a nuclear eigen wavefield to a more stable form

allowing for the emission of a free wavefield (quantum ’tunneling effect’ when the

potential barrier is low). For example, Rutherford scattering (the scattering of

alpha particles from gold nuclei which historically provided the basic model for the

atom) is an example of a free (nuclear) wavefield, interacting with a stable eigenfield

system which consequently appears to exert a repulsive Coulomb force. At this

frequency range the governing equation is Schrödinger’s equation which has a far

field scattering amplitude determined by the three-dimensional Fourier transform of

a Coulomb potential. Thus, as a function of the scattering angle θ

A(θ) =
2π

k sin
(

θ
2

) ∞∫
0

sin
[

2kr sin
(

θ

2

)]
γ(r)rdr

and for the screened Coulomb potential8

γ(r) =
exp(−ar)

r
, a > 0

we obtain (for a → 0)

A(θ) =
π

k2 sin2
(

θ
2

)
⎛⎜⎝1 +

a2[
2k sin

(
θ
2

)]2

⎞⎟⎠
−1

=
π

k2 sin2
(

θ
2

) .

The intensity (scattering cross-section) is therefore inversely proportional to

sin4(θ/2) which is the basic ‘signature’ of Rutherford scattering. In terms of neutron

scattering, a neutron is a free nuclear wavefield which, during its life time, is unable

to combine with an existing nuclear eigen wavefield until it does, in some cases

producing unstable nuclear eigen wavefield systems which transform into new stable

systems involving the emission of free wavefields, i.e. nuclear fission.

8 Required in order evaluate the integral over r.
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Note that the principle of eigenfield tendency in which free wavefields tend

to become eigen wavefield in order to achieve a minimum energy is equivalent to

the least action principle. In field theory - in this case, the wavefield U(r, t) - the

Lagrangian density L is a functional that is integrated over all space-time, i.e.

S [U] =
∫ ∫

L[U, ∂μU]d3rdt

where, using ‘relativistic notation’,

∂μ = (∂0;∇), ∂μ = (∂0;−∇),

∂0 =
1
c

∂

∂t
and ∂μ∂μ =

1
c2

∂2

∂t2 −∇2.

The Lagrangian is the spatial integral of the density and application of the least

action principle yields the Euler-Lagrange equations

δS
δU

= −∂μ

(
∂L

∂(∂μU)

)
+

∂L
∂U

= 0

which are then solved for U.

The wavefield approach adopted is consistent with the basic concepts asso-

ciated with the Grand Unified Theories of C H Tejman [83] and in one sense, we

have attempted to explain the example images given in Figure 36 using a single phe-

nomenological model. Just as Poisson used a wave model to explain the Poisson spot

without reference to light being an electromagnetic wave (Maxwell’s equations for

an electric and magnetic field which Poisson did not know of at the time), so we have

attempted to explain both a Poisson spot and an Einstein ring without reference to

general relativity (Einstein’s equation for a gravitational field). The problem then

remains of how to ‘formally recover’ Maxwell’s equations and Einstein’s equations

from a single wave theoretic model.



10 DISCUSSION AND CONCLUSIONS

10.1 Discussion

The principal theme of this thesis has been to explore the EM scattering problem

in an attempt to develop models that incorporate strong scattering for which the

inverse scattering problem becomes a feasible proposition. Four approaches have

been considered in this respect:

� implementation of the exact inverse scattering solutions considered in Chapter

6;

� application of diffusion models as discussed in Chapter 7;

� application of fractional diffusion to model the intermediate case as given in

Chapter 8;

� low frequency scattering as considered in Chapter 9.

The exact inverse scattering theory considered is based on modifying the inhomoge-

neous Helmholtz equation to the form

−k2γ(r) =
u∗(r, k)

| u(r, k) |2∇
2
(

us(r, k) − k2

4πr
⊗3 us(r, k)

)
For far field applications (the most typical case), given that

‖us − (k2/4πr) ⊗3 us‖2 ≤ ‖us‖2[1 + k2
√

r/(4π)],

we have considered the result

−k2γ =
−1

u±
i + us

k2us ⊗3 ∇2
(

1
4πr

)
= k2 | u±

i + us |−2 [(u±
i )∗ + u∗

s ]us, r → ∞

Working in one-dimension, this result has led to a model for the signal s(t) generated

by a pulse-echo system (with Impulse Response Function p(t) and carrier frequency

ω0) of the form

s(t) = p(t) ⊗ [εr(t) − 1] exp(−iω0t) + p(t) ⊗ [| s(t) |2 exp(−iω0t)]
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where εr(t) is the inhomogeneous permittivity profile as a function of the two-way

travel time t. The second term in the above expression is taken to be the component

due to multiple scattering processes which contributes to the noise term in the

conventional model for a signal under the weak scattering approximation. However,

this result relies on the condition that the band-width of the Impulse Response

Function is significantly small compared to the carrier frequency and thus, the result

conforms to side-band systems only. The result is also based on the assumption

that | u±
i + us |−2∼ 1 and in order to compute the signal, it is necessary to iterate.

However, the inverse scattering solution is not iterative and can be applied directly

to evaluate the permittivity profile γ(t) given s(t).
Application of the diffusion based models developed in Chapter 7 is accom-

plished using the following transformation from the wave equation to the diffusion

equation: (
∇2 − 1

c2
∂2

∂t2

)
u(r, t) = 0, u(r, t) = φ(r, t) exp(iωt)

↓(
∇2 − 1

D
∂

∂t

)
| φ(rt) |2= 0

under the conditions that∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ and Re[∇ · (φ∇φ∗)] = 0

The principal condition associated with this transformation is that the field φ varies

significantly slowly in time compared with exp(iωt).
Inverse solutions to the problem ‘Given | φ(r, t = T) |2 compute | φ(r, t =

0) |2’ have been developed which are compounded in the implementation of well

defined Finite Impulse Response filters of different order according to a Taylor series

expansion of | φ(r, t = T) |2. This diffusion based approach provides a method

of solving the inverse scattering problem for strong scattering interactions. This

is because the diffusion equation is based on a random walk process in which the

scattering angle is uniformly distributed as in the calculation of the K-distribution

given in Section 7.2.

In Chapter 8, the problem is modelling intermediate scattering has been con-

sidered based on the following transformation from the diffusion to the fractional

diffusion equation: (
∇2 − 1

D
∂

∂t

)
| φ(r, t) |2= 0

↓(
∇2 − 1

Dq
∂q

∂tq

)
| φ(r, t) |2= 0

where 1 < q < 2. The use of fractional calculus has then be explored to obtain a

Green’s function for this equation. This is an entirely phenomenological approach

based on the concept of a random walk with a directional bias as presented in

Sections 8.1 and 8.2.
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The ideas developed in Chapter 9 were originally based on considering low fre-

quency scattering theory given that the Born series solution to the inhomogeneous

Helmholtz equation can be reduced to a single and exact scattering transform for

the case when k → 0. However, although this asymptotic solution provides an exact

scattering transform (and thereby an exact inverse scattering transform), it is not of

any practical significance in imaging systems engineering. Instead, Chapter 9 devel-

ops a hypothesis which extends beyond the original scope of this thesis and considers

the foundations of an approach to developing a unified wavefield theory based on

the premise that all physical forces are manifestations of wavefields interacting with

other wavefields over a broad frequency spectrum. This hypothesis is based on a

philosophical extension of the idea that lies behind the Maxwell-Proca equations

in which Proca introduces new terms into Maxwell’s equations in order that they

decouple to produce a relativistic wave equation (the Klein-Gordon equation) rather

than a non-relativistic wave equation.

10.2 Conclusions

Of the material presented in this work, the most innovative is the use of the fractional

diffusion equation to model intermediate scattering events. In terms of the theory

of scattering from deterministic media and compatibility with the imaging equation,

the Born approximation represents a central theme. The exact inverse scattering

theory developed for this thesis (in Chapter 4) and investigated further in Chapter

6 provides the potential for improving image reconstruction and image processing

methods in general. For example, a principal result of the material presented in

Chapter 6 is that speckle reduction is in coherent pulse-echo imaging systems should

be applied to the complex data before the amplitude image is computed in order to

reduce the cross terms associated with single and multiple scattering processes.

With regard to the EM scattering from random media, three approaches have

been reviewed:

� application of weak scattering theory to a random scatterer which can be cast

in terms of computing the Fourier transform of a cross-correlation function

model for the random scatterer;

� application of statistical modelling methods for computing the PDF of the

scattered intensity based on random walk models applied to the amplitude

and phase;

� application of the diffusion equation

The use of the weak scattering approximation for scattering from random media

suffers from limitations in that multiple scattering is assumed to be negligible. Direct

statistical modelling is therefore preferable as it can take into account the case of

multiple scattering processes. However, while this approach may provide a valid

model for the PDF of a signal or image that can be used for statistical image
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analysis, for example, it is not of value in developing inverse scattering solutions

that are of value to processing a signal or image for the retrieval of information.

On the other hand, application of diffusion models for strong scattering leads to

inverse solutions (FIR filters) that can be used to reconstruct an image. For this

reason, the fractional diffusion equation has been used to develop inverse solutions

to the generalised problem and one of the principal conclusions of this thesis is that

fractional diffusion models provide a useful generalised approach to modelling EM

scattering problems that has practical value in the processing and interpretation of

EM signals and images.

10.3 Open Problems

1. Development of an intermediate scattering theory based on taking the Fresnel

transform of equation (4.8)

γ = A−1[(u±
i )∗ + u∗

s ]us, A−1 =| u±
i ) + us |−2

under application of the condition Ã−1 and the Skew Hermitian condition

considered in Sections 4.8.1 and 4.8.2 using the Fourier transform.

2. Development of a near-field scattering theory using equation (4.7)

−k2γ(r) =
u∗(r, k)

| u(r, k) |2∇
2
(

us(r, k) − k2

4πr
⊗3 us(r, k)

)
based on application of the convolution transform

γ(r) ⊗3 g(r, k)u±
i (r, k)

for the computation of us.

3. The simulations undertaken in Section 4.8.3 have been based on considering

the first order iteration to compare the scattered field under the Born approx-

imation with the effect of multiple scattering defined in terms of the autocon-

volution of a Born scattered field. The effect of undertaking further iterations

should be investigated and the relationship of each iteration with the physical

nature of the scattered field quantified and compared with the interpretation

of Born series given in Section 4.5.1.

4. Computation of the scattered field using the complex scattering function −k2γ +
ikz0σ.

5. Application of the exact inverse scattering solutions developed in Chapter 4

(based on the material given in Appendix 1) for designing image reconstruction

algorithms used in diffraction tomography and other optical and electromag-

netic imaging system.
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6. Coherent signal extraction based on the strong scattering model developed in

Chapter 6, i.e.

s(t) = p(t) ⊗ [γ(t) exp(−iω0t)] + n(t)

where

n(t) = p(t) ⊗ [| s(t) |2 exp(−iω0t)]

and a systematic analysis of the performance for de-noising coherent signals

based on this model.

7. Extension of the weak scattering SAR model developed in Chapter 5 to include

strong scattering effects based on the model developed in Chapter 6.

8. Extension of random Born scattering model considered in Section 7.1 to in-

clude multiple scattering effects based on equation (4.8) and comparison of the

statistical properties of the field with K-scattering discussed in Section 7.2.

9. Derivation of diffusion based models (as discussed in Section 7.3) for coherent

scattering processes and associated inverse solutions.

10. Application of fractional diffusion models for processing coherent signals and

images generated by the scattering of coherent radiation from random media

for intermediate strength scattering processes.

11. Derive fractional diffusive models that are based on more fundamental prin-

ciples and associated derivations than the phenomenological arguments pre-

sented in Section 8.2

12. Experimental verification or otherwise of the λ−6 scaling law for the diffraction

of electromagnetic waves by a gravitational field.
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APPENDIX 1 EXACT INVERSE SCATTERING SOLUTIONS

APPENDIX 1.1 Exact Inverse Scattering Solution in One-Dimension

Consider the 1D inhomogeneous Helmholtz equation for a scalar (complex) wavefield

u(x, k) given by(
∂2

∂x2 + k2
)

u(x, k) = −k2γ(x)u(x, k), x ∈ (−∞, ∞)

where k > 0 is the wavenumber (taken to be a constant) and the scattering function

may be of compact support, i.e.

γ(x)∃∀x ∈ [−X, X].

The Forward Scattering Problem is defined as follows: Given γ(x)∀x find an exact

solution for u(x, k) The Inverse Scattering Problem is defined as follows: Given

u(x, k)∀x find an exact solution for γ(x).

APPENDIX 1.1.1 Theorem

Given that the (forward scattering Green’s function) solution to the Helmholtz equa-

tion (as defined above) is

u(x, k) = ui(x, k) + us(x, k) (A1.1)

where ui is a solution of (
∂2

∂x2 + k2
)

ui(x, k) = 0,

us(x, k) = k2g(| x |, k) ⊗ γ(x)u(x, k)

≡ k2
∞∫

−∞

g(| x − y |, k)γ(y)u(y, k)dy (A1.2)

and

g(| x − y |, k) =
i

2k
exp(ik | x − y |)

which is the (outgoing Green’s function) solution of(
∂2

∂x2 + k2
)

g(| x − y |, k) = −δ(x − y),

then

γ(x) =
u∗(x, k)

| u(x, k) |2
∂2

∂x2

[
R(x) ⊗ us(x, k) − 1

k2 us(x, k)
]

.

where (c1 and c2 being arbitrary constants)

R(x) =

{
(c1 − 1)x + c2, x > 0;
0, otherwise.
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APPENDIX 1.1.2 Proof

From equations (A1.1) and (A1.2), we can write

(u − ui) = k2g ⊗ γu.

Consider a piecewise continuous function q that is twice differentiable, such that

q ⊗ (u − ui) = k2q ⊗ g ⊗ γu.

Differentiating twice, we have

∂2

∂x2 [q ⊗ (u − ui)] = k2 ∂2

∂x2 (q ⊗ g ⊗ γu)

= k2 ∂2

∂x2 (q ⊗ g) ⊗ γu = −k2δ ⊗ γu = −k2γu

provided
∂2

∂x2 (q ⊗ g) = −δ.

But
∂2

∂x2 (q ⊗ g) = q ⊗ ∂2

∂x2 g

= q ⊗ (−k2g − δ) = −k2q ⊗ g − q = −δ

and hence

q = δ − k2q ⊗ g

so that
∂2

∂x2 [q ⊗ (u − ui)] =
∂2

∂x2 [δ ⊗ (u − ui) − k2q ⊗ g ⊗ (u − ui)]

=
∂2

∂x2 [(u − ui) − k2q ⊗ g ⊗ (u − ui)] = −k2γu.

Thus,

γ =
1
u

∂2

∂x2

[
q ⊗ g ⊗ (u − ui) − 1

k2 (u − ui)
]

The function q is determined by the solution of

∂2

∂x2 (q ⊗ g) = −δ

=⇒ ∂

∂x
(q ⊗ g) = −H(x) + c1 (A1.3)

where

H(x) =

{
1, x > 0;
0, otherwise.

and c1 is a constant. But the solution of equation (A1.3) is

q ⊗ g = R(x)
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where (c2 being a constant of integration)

R(x) = −
x∫

−∞

H(x)dx + c1x + c2

=

{
(c1 − 1)x + c2, x > 0;
0, otherwise.

so that

γ =
1
u

∂2

∂x2

[
R ⊗ (u − ui) − 1

k2 (u − ui)
]

.

Finally, since u = ui + us, we can write

γ =
1
u

∂2

∂x2

[
R ⊗ us − 1

k2 us

]

=
u∗

| u |2
∂2

∂x2

[
R ⊗ us − 1

k2 us

]
. (A1.4)

APPENDIX 1.1.3 Corollary

Since (
∂2

∂x2 + k2
)

ui = 0.

it follows that (for c1 < 1)

γ =
1
u

∂2

∂x2

[
R ⊗ (u − ui) − 1

k2 (u − ui)
]

=
1
u

[
−δ ⊗ (u − ui) − 1

k2

(
∂2

∂x2 u − ∂2

∂x2 ui

)]
=

1
u

[
−(u − ui) − 1

k2
∂2

∂x2 u +
1
k2

∂2

∂x2 ui

]
=

1
k2u

[
−
(

∂2

∂x2 u + k2u
)

+
∂2

∂x2 ui + k2ui

]
= − 1

k2u

(
∂2

∂x2 + k2
)

u.

which recovers the Helmholtz equation(
∂2

∂x2 + k2
)

u = −k2γu.

APPENDIX 1.1.4 Remark I.1

The equivalent inverse solution for the Schrödinger equation(
∂2

∂x2 + k2
)

u(x, k) = γ(r)u(x, k)
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is

γ =
u∗

| u |2
∂2

∂x2

[
us − k2R ⊗ us

]
. (A1.5)

APPENDIX 1.1.5 Remark I.2

The inverse solutions given by equations (A1.4) and (A1.5) rely on the condition:

| u(x, k) |=| ui(x, k) + us(x, k) |> 0∀x, k.

Thus, for a fixed wavenumber k > 0, the incident ui and scattered us wavefields

must be ‘out-of-phase’ ∀x.

APPENDIX 1.1.6 Remark I.3

The theorem provides a result that is compatible with the trivial inverse solution

γ = − u∗

| u |2
(

1 +
1
k2

∂2

∂x2

)
u.

However, unlike this trivial solution, the theorem provides an expression for the

scattering function γ which is, at least, consistent with the (exact) forward scattering

(Green’s function) solution u = ui + us and is determined by the scattered wavefield

us = k2g ⊗ γu that, like the incident wavefield ui, is assumed to be a measurable

quantity.

APPENDIX 1.1.7 Remark I.4

In order to use this inverse solution, the wavefield u must be known ∀x. For a

scatterer of compact support, the field may only be measurable beyond this support

and thus, the data on u may be incomplete.

APPENDIX 1.2 Exact Inverse Scattering Solution in Three-Dimensions

APPENDIX 1.2.1 Theorem

Consider the 3D inhomogeneous Helmholtz equation for a scalar (complex) wavefield

u(r, k) given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where k is the wavenumber and the scattering function is of compact support, i.e.

γ(r)∃∀r ∈ V.

Given that the forward (Green’s function) solution to this equation is

u(r, k) = ui(r, k) + us(r, k) (A1.6)
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where ui is a solution of

(∇2 + k2)ui(r, k) = 0,

us(r, k) = k2g(| r |, k) ⊗3 γ(r)u(r, k)

≡ k2
∫
V

g(| r − s |, k)γ(s)u(s, k)d3s (A1.7)

and

g(| r − s |, k) =
exp(ik | r − s |)

4π | r − s |
which is the solution of

(∇2 + k2)g(| r − s |, k) = −δ3(r − s),

then, with r ≡| r |,

γ(r) =
u∗(r, k)

| u(r, k) |2∇
2
[

1
4πr

⊗3 us(r, k) − 1
k2 us(r, k)

]
.

APPENDIX 1.2.2 Proof

From equations (A1.6) and (A1.7), we can write

(u − ui) = k2g ⊗3 γu.

Consider a function q such that

q ⊗3 (u − ui) = k2q ⊗3 (g ⊗3 γu).

Taking the Laplacian of this equation, we have

∇2[q ⊗3 (u − ui)] = k2∇2(q ⊗3 g ⊗3 γu)

= k2∇2(q ⊗3 g) ⊗3 γu = −k2δ3 ⊗3 γu = −k2γu

provided

∇2(q ⊗3 g) = −δ3.

But

∇2(q ⊗3 g) = q ⊗3 ∇2g = q ⊗3 (−k2g − δ3)

= −k2q ⊗3 g − q = −δ3

and hence

q = δ3 − k2q ⊗3 g

so that

∇2[q ⊗3 (u − ui)] = ∇2[δ3 ⊗3 (u − ui) − k2q ⊗3 g ⊗3 (u − ui)]

= ∇2[(u − ui) − k2q ⊗3 g ⊗3 (u − ui)] = −k2γu.
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Thus,

γ =
1
u
∇2
[

q ⊗3 g ⊗3 (u − ui) − 1
k2 (u − ui)

]
where q is determined by the solution of

∇2(q ⊗3 g) = −δ3. (A1.8)

But the solution of equation (A1.8) is

q ⊗3 g =
1

4πr

so that

γ =
1
u
∇2
[

1
4πr

⊗3 (u − ui) − 1
k2 (u − ui)

]
.

Finally, since u = ui + us, we can write

γ =
1
u
∇2
[

1
4πr

⊗3 us − 1
k2 us

]

=
u∗

| u |2∇
2
[

1
4πr

⊗3 us − 1
k2 us

]
. (A1.9)

APPENDIX 1.2.3 Corollary

Since

(∇2 + k2)ui = 0.

it follows that

γ =
1
u
∇2
[

1
4πr

⊗3 (u − ui) − 1
k2 (u − ui)

]
=

1
u

[
−δ3 ⊗3 (u − ui) − 1

k2 (∇2u −∇2ui)
]

=
1
u

[
−(u − ui) − 1

k2∇2u +
1
k2∇2ui

]
=

1
k2u

[
−(∇2u + k2u) + ∇2ui + k2ui

]
= − 1

k2u
(∇2 + k2)u.

which recovers the Helmholtz equation

(∇2 + k2)u = −k2γu.

APPENDIX 1.2.4 Remark II.1

Remarks I.1-I.4 apply to this three dimensional derivation.
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APPENDIX 1.2.5 Remark II.2

In the 2D case, equation (A1.9) becomes

∇2(q ⊗2 g) = −δ2

and has the solution

q ⊗2 g =
1

2π
ln r

where ⊗2 denotes the two-dimensional convolution integral. The equivalent 2D

inverse solution is then given by

γ(r) =
u∗(r, k)

| u(r, k) |2∇
2
[

1
2π

ln r ⊗2 us(r, k) − 1
k2 us(r, k)

]
.

APPENDIX 1.2.6 Remark II.3

Equation A2.9 relies on the boundary condition u(r, , k) = ui(r, k) ∀r ∈ S where S
defines the surface of γ(r) which is taken to be of compact support. The Green’s

function solution to the three dimensional inhomogeneous Helmholtz equation is

u(r, k) = k2
∫
V

gγud3s +
∮
S

(g∇u − u∇g) · n̂d2s.

To compute the surface integral, a condition for the behaviour of u on the surface

S of γ must be chosen. If we consider the case where the incident wavefield ui is a

simple plane wave of unit amplitude

exp(ik · r)

satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0,

then

u(r, k) = k2
∫
V

gγud3s +
∮
S

(g∇ui − ui∇g) · n̂d2s.

Using Green’s theorem to convert the surface integral back into a volume integral,

we have ∮
S

(g∇ui − ui∇g) · n̂d2s =
∫
V

(g∇2ui − ui∇2g)d3s.

Noting that

∇2ui = −k2ui

and that

∇2g = −δ3 − k2g

we obtain ∫
V

(g∇2ui − ui∇2g)d3s =
∫

δ3uid3s = ui.
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Hence, by choosing the field u to be equal to the incident wavefield ui on the surface

of γ, we obtain a solution of the form

u = ui + us

where

us(r, k) = k2g(| r |, k) ⊗3 γ(r)u(r, k).



APPENDIX 2 RELATIONSHIP BETWEEN THE HURST
EXPONENT AND THE TOPOLOGICAL,
FRACTAL AND FOURIER DIMENSIONS

Suppose we cut up some simple one-, two- and three-dimensional Euclidean objects

(a line, a square surface and a cube, for example), make exact copies of them and

then keep on repeating the copying process. Let N be the number of copies that

we make at each stage and let r be the length of each of the copies, i.e. the scaling

ratio. Then we have

NrDT = 1, DT = 1, 2, 3, ...

where DT is the topological dimension. The similarity or fractal dimension is that

value of DF which is usually (but not always) a non-integer dimension ‘greater’ that

its topological dimension (i.e. 0,1,2,3,... where 0 is the dimension of a point on a

line) and is given by

DF = − log(N)
log(r)

.

The fractal dimension is that value that is strictly greater than the topological

dimension as given in Table II. In each case, as the value of the fractal dimension

TABLE 6 Fractal types and corresponding fractal dimensions

Fractal type Fractal Dimension

Fractal Dust 0 < DF < 1
Fractal Curve 1 < DF < 2
Fractal Surface 2 < DF < 3
Fractal Volume 3 < DF < 4
Fractal Time 4 < DF < 5
Hyper-fractals 5 < DF < 6
...

...

increases, the fractal becomes increasingly ‘space-filling’ in terms of the topological

dimension which the fractal dimension is approaching. In each case, the fractal

exhibits structures that are self-similar. A self-similar deterministic fractal is one

where a change in the scale of a function f (x) (which may be a multi-dimensional

function) by a scaling factor λ produces a smaller version, reduced in size by λ, i.e.

f (λx) = λ f (x).

A self-affine deterministic fractal is one where a change in the scale of a function

f (x) by a factor λ produces a smaller version reduced in size by a factor λq, q > 0,

i.e.

f (λx) = λq f (x).

For stochastic fields, the expression

Pr[ f (λx)] = λqPr[ f (x)]
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describes a statistically self-affine field - a random scaling fractal. As we zoom into

the fractal, the shape changes, but the distribution of lengths remains the same.

There is no unique method for computing the fractal dimension. The methods

available are broadly categorized into two families: (i) Size-measure relationships,

based on recursive length or area measurements of a curve or surface using different

measuring scales; (ii) application of relationships based on approximating or fitting

a curve or surface to a known fractal function or statistical property, such as the

variance.

Consider a simple Euclidean straight line � of length L(�) over which we ‘walk’

a shorter ‘ruler’ of length δ. The number of steps taken to cover the line N[L(�), δ]
is then L/δ which is not always an integer for arbitrary L and δ. Since

N[L(�), δ] =
L(�)

δ
= L(�)δ−1,

⇒ 1 =
ln L(�) − ln N[L(�), δ]

ln δ
= −

(
ln N[L(�), δ] − ln L(�)

ln δ

)
which expresses the topological dimension DT = 1 of the line. In this case, L(�) is

the Lebesgue measure of the line and if we normalize by setting L(�) = 1, the latter

equation can then be written as

1 = − lim
δ→0

[
ln N(δ)

ln δ

]
since there is less error in counting N(δ) as δ becomes smaller. We also then have

N(δ) = δ−1. For extension to a fractal curve f , the essential point is that the fractal

dimension should satisfy an equation of the form

N[F( f ), δ] = F( f )δ−DF

where N[F( f ), δ] is ‘read’ as the number of rulers of size δ needed to cover a fractal

set f whose measure is F( f ) which can be any valid suitable measure of the curve.

Again we may normalize, which amounts to defining a new measure F′ as some

constant multiplied by the old measure to get

DF = − lim
δ→0

[
ln N(δ)

ln δ

]
where N(δ) is taken to be N[F′( f ), δ] for notational convenience. Thus a piece-

wise continuous field has precise fractal properties over all scales. However, for the

discrete (sampled) field

D = −
〈

ln N(δ)
ln δ

〉
where we choose values δ1 and δ2 (i.e. the upper and lower bounds) satisfying

δ1 < δ < δ2 over which we apply an averaging processes denoted by 〈 〉. The

most common approach is to utilise a bi-logarithmic plot of ln N(δ) against ln δ,

choose values δ1 and δ2 over which the plot is uniform and apply an appropriate
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data fitting algorithm (e.g. a least squares estimation method or, as used in this

paper, Orthogonal Linear Regression) within these limits.

The relationship between the Fourier dimension q and the fractal dimension DF
can be determined by considering this method for analysing a statistically self-affine

field. For a fractional Brownian process (with unit step length)

A(t) = tH, H ∈ (0, 1]

where H is the Hurst dimension. Consider a fractal curve covering a time period

Δt = 1 which is divided up into N = 1/Δt equal intervals. The amplitude incre-

ments ΔA are then given by

ΔA = ΔtH =
1

NH = N−H.

The number of lengths δ = N−1 required to cover each interval is

ΔAΔt =
N−H

N−1 = N1−H

so that

N(δ) = NN1−H = N2−H.

Now, since

N(δ) =
1

δDF
, δ → 0,

then, by inspection,

DF = 2 − H.

Thus, a Brownian process, where H = 1/2, has a fractal dimension of 1.5. For

higher topological dimensions DT

DF = DT + 1 − H.

This algebraic equation provides the relationship between the fractal dimension DF,

the topological dimension DT and the Hurst dimension H. We can now determine

the relationship between the Fourier dimension q and the fractal dimension DF.

Consider a fractal signal f (x) over an infinite support with a finite sample

fX(x), given by

fX(x) =
{

f (x), 0 < x < X;
0, otherwise.

A finite sample is essential as otherwise the power spectrum diverges. Moreover, if

f (x) is a random function then for any experiment or computer simulation we must

necessarily take a finite sample. Let FX(k) be the Fourier transform of fX(x), PX(k)
be the power spectrum and P(k) be the power spectrum of f (x). Then

fX(x) =
1

2π

∫ ∞

−∞
FX(k) exp(ikx)dk,
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PX(k) =
1
X
|FX(k)|2

and

P(k) = lim
X→∞

PX(k).

The power spectrum gives an expression for the power of a signal for particular har-

monics. P(k)dk gives the power in the range k to k + dk. Consider a function g(x),
obtained from f (x) by scaling the x-coordinate by some a > 0, the f -coordinate by

1/aH and then taking a finite sample as before, i.e.

gX(x) =
{

g(x) = 1
aH f (ax), 0 < x < X;

0, otherwise.

Let GX(k) and P′
X(k) be the Fourier transform and power spectrum of gX(x), re-

spectively. We then obtain an expression for GX in terms of FX,

GX(k) =
∫ X

0
gX(x) exp(−ikx)dx =

1
aH+1

∫ X

0
f (s) exp

(
− iks

a

)
ds

where s = ax. Hence

GX(k) =
1

aH+1 FX

(
k
a

)
and the power spectrum of gX(x) is

P′
X(k) =

1
a2H+1

1
aX

∣∣∣∣FX

(
k
a

)∣∣∣∣2
and, as X → ∞,

P′(k) =
1

a2H+1 P
(

k
a

)
.

Since g(x) is a scaled version of f (x), their power spectra are equal, and so

P(k) = P′(k) =
1

a2H+1 P
(

k
a

)
.

If we now set k = 1 and then replace 1/a by k we get

P(k) ∝
1

k2H+1 =
1
kβ

.

Now since β = 2H + 1 and DF = 2 − H, we have

DF = 2 − β − 1
2

=
5 − β

2
.



284

The fractal dimension of a fractal signal can be calculated directly from β using the

above relationship. This method also generalizes to higher topological dimensions

giving

β = 2H + DT.

Thus, since

DF = DT + 1 − H,

then β = 5 − 2DF for a fractal signal and β = 8 − 2DF for a fractal surface so that,

in general,

β = 2(DT + 1 − DF) + DT = 3DT + 2 − 2DF

and

DF = DT + 1 − H = DT + 1 − β − DT

2
=

3DT + 2 − β

2
,

the Fourier dimension being given by q = β/2.



APPENDIX 3 OVERVIEW OF FRACTIONAL CALCULUS

Fractional calculus (e.g. [84], [85], [86], [87], [88]) is the study of the calculus asso-

ciated with fractional differentials and a fractional integrals which, in the main, are

based on generalizations of results obtained using integer calculus. For example, the

classical fractional integral operators are the Riemann-Liouville transform [84]

Îq f (t) =
1

Γ(q)

t∫
−∞

f (τ)
(t − τ)1−q dτ, q > 0

and the Weyl transform

Îq f (t) =
1

Γ(q)

∞∫
t

f (τ)
(t − τ)1−q dτ, q > 0

where

Γ(q) =
∞∫

0

tq−1 exp(−t)dt.

For integer values of q (i.e. when q = n where n is a non-negative integer), the

Riemann-Liouville transform reduces to the standard Riemann integral. This trans-

form is just a (causal) convolution of the function f (t) with tq−1/Γ(q). For fractional

differentiation, we can perform a fractional integration of appropriate order and then

differentiate to an appropriate integer order. The reason for this is that direct frac-

tional differentiation can lead to divergent integrals. Thus, the fractional differential

operator D̂q for q > 0 is given by

D̂q f (t) ≡ dq

dtq f (t) =
dn

dtn [ În−q f (t)].

where

Îq−n f (t) =
1

Γ(n − q)

t∫
−∞

f (τ)
(t − τ)1+q−n dτ, n − q > 0

in which the value of Îq−n f (t) at a point t depends on the behaviour of f (t) from

−∞ to t via a convolution with the kernel tn−q/Γ(q). The convolution process is

dependent on the history of the function f (t) for a given kernel and thus, in this

context, we can consider a fractional derivative defined via the result above to have

memory.

APPENDIX 3.1 The Laplace Transform and the Half Integrator

It informative at this point to consider the application of the Laplace transform to

identify an ideal integrator and then a half integrator. The Laplace transform is
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given by

L̂[ f (t)] ≡ F(p) =
∞∫

0

f (t) exp(−pt)dt

and from this result we can derive the transform of a derivative given by

L̂[ f ′(t)] = pF(p) − f (0)

and the transform of an integral given by

L̂

⎡⎣ t∫
0

f (τ)dτ

⎤⎦ =
1
p

F(p).

Now, suppose we have a standard time invariant linear system whose input is f (t)
and whose output is given by

s(t) = f (t) ⊗ g(t)

where the convolution is causal, i.e.

s(t) =
t∫

0

f (τ)g(t − τ)dτ.

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then, G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f (t) ⊗ H(t) =
t∫

0

f (t − τ)dτ =
t∫

0

f (τ)dτ.

Now, consider the case when we have a time invariant linear system with an impulse

response function by given by

g(t) =
H(t)√

t
=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system is f ⊗ g and the output of such a system with input f ⊗ g
is f ⊗ g ⊗ g. Now

g(t) ⊗ g(t) =
t∫

0

dτ√
τ
√

t − τ
=

√
t∫

0

2xdx
x
√

t − x2

= 2
[

sin−1
(

x√
t

)]√t

0
= π.
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Hence,
H(t)√

πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function H(t)/
√

πt represents a

‘half-integrator’ with a Laplace transform given by

L̂
[

H(t)√
πt

]
=

1√
p

.

This result provides an approach to working with fractional integrators and/or differ-

entiators using the Laplace transform. Fractional differential and integral operators

can be defined and used in a similar manner to those associated with conventional

or integer order calculus and we now provide an overview of such operators.

APPENDIX 3.2 Operators of Integer Order

The following operators are all well-defined, at least with respect to all test func-

tions u(t) say which are (i) infinitely differentiable and (ii) of compact support (i.e.

vanish outside some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =
t∫

−∞

u(τ)dτ.

Differential Operator:

D̂u(t) ≡ D̂1u(t) = u′(t).

Identify Operator:

Î0u(t) = u(t) = D̂0u(t).

Now,

Î[D̂u](t) =
t∫

−∞

u′(τ)dτ = u(t)

and

D̂[ Îu](t) =
d
dt

t∫
−∞

u(τ)dτ = u(t)

so that

Î1D̂1 = D̂1 Î1 = Î0.



288

For n (integer) order:

Înu(t) =
t∫

−∞

dτn−1...
τ2∫

−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and

În[D̂nu](t) = u(t) = D̂n[ Înu](t).

APPENDIX 3.3 Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally integrable. We can then define

an integral of order n in terms of a convolution as

Înu(t) =
(

u ⊗ 1
(n − 1)!

tn−1
+

)
(t)

=
1

(n − 1)!

t∫
−∞

(t − τ)n−1u(τ)dτ

=
1

(n − 1)!

t∫
−∞

τn−1u(t − τ)dτ

In particular,

Î1u(t) = (u ⊗ H)(t) =
t∫

−∞

u(τ)dτ.

These are classical (absolutely convergent) integrals and the identity operator admits

a formal convolution representation, using the delta function, i.e.

Î0u(t) =
∞∫

−∞

δ(τ)u(t − τ)dτ

where

δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =
∞∫

−∞

δ(n)(τ)u(t − τ)dτ = u(n)(t).
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On the basis of the material discussed above, we can now formally extend the

integral operator to fractional order and consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t − τ)dτ

=
1

Γ(q)

t∫
−∞

u(τ)tq−1
+ (t − τ)dτ

where

Γ(q) =
∞∫

0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear system with impulse

response function tq−1
+ (t) and transfer function 1/pq. For the cascade connection of

Iq1 and Iq2 we have

Îq1 [ Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all real q > 0 (and for-

mally for q = 0, with the delta function playing the role of an impulse function and

with a transfer function equal to the constant 1).

APPENDIX 3.4 Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville ) derivative of order q as

D̂qu(t) ≡ d
dt

[ Î1−qu](t) =
1

Γ(1 − q)
d
dt

t∫
−∞

(t − τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1 − q)

t∫
−∞

(t − τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,

Îq[D̂qu] = Îq[ Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator Îq. Given any q > 0, we can always

write λ = n − 1 + q and then define

D̂λu(t) =
1

Γ(1 − q)
dn

dtn

t∫
−∞

u(τ)(t − τ)−qdτ.
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Dq is an operator representing a time invariant linear system consisting of a cascade

combination of an ideal differentiator and a fractional integrator of order 1 − q. For

Dλ we replace the single ideal differentiator by n such that

D̂0u(t) =
1

Γ(1)
d
dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫

−∞

u(τ)δ(t − τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ

= u(n)(t) ≡
∞∫

−∞

u(τ)δ(n)(t − τ)dτ.

In addition to the conventional and classical definitions of fractional derivatives

and integrals, more general definitions are available including the Erdélyi-Kober

fractional integral [89]

t−p−q+1

Γ(q)

t∫
0

τp−1

(t − τ)1−q f (τ)dτ, q > 0, p > 0

which is a generalisation of the Riemann-Liouville fractional integral and the integral

tp

Γ(q)

∞∫
t

τ−q−p

(τ − t)1−q f (τ)dτ, q > 0, p > 0

which is a generalization of the Weyl integral. Further definitions exist based on

the application of hypergeometric functions and operators involving other special

functions such as the Maijer G-function and the Fox H-function [88]. Moreover, all

such operators leading to a fractional integral of the Riemann-Liouville type and the

Weyl type to have the general forms (through induction)

Îq f (t) = tq−1
t∫

−∞

Φ
(τ

t

)
τ−q f (τ)dτ

and

Îq f (t) = t−q
∞∫

t

Φ
(

t
τ

)
τq−1 f (τ)dτ

respectively, where the kernel Φ is an arbitrary continuous function so that the

integrals above make sense in sufficiently large functional spaces. Although there are

a number of approaches that can be used to define a fractional differential/integral,
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there is one particular definition, which has wide ranging applications in signal and

image processing and is based on the Fourier transform, i.e.

dq

dtq f (t) =
1

2π

∞∫
−∞

(iω)qF(ω) exp(iωt)dω

where F(ω) is the Fourier transform of f (t).



APPENDIX 4 SCALING LAW FOR A RANDOM SELF-AFFINE
FUNCTION

Self-affine functions are characterised by an amplitude spectral density function of

the type k−q where k =| k | is the spatial frequency. This appendix provides detail

on calculating the n-dimensional (inverse) Fourier transform of such a spectrum

which is compounded in the following theorem:

Theorem If q �= 2m or −n − 2m where m = 0, 1, 2, ..., then

Fn[rq] =
∞∫

−∞

rq exp(−ik · r)dnr =
(1

2 q + 1
2 n − 1)!

(−1
2 q − 1)!

2q+nπn/2k−q−n

where k and r are the n-dimensional vectors (k1, k2, ..., kn) and (r1, r2, ..., rn) re-

spectively, r ≡| r |=
√

r2
1 + r2

2 + ... + r2
n and k ≡| k |=

√
k2

1 + k2
2 + ... + k2

n. Note

that

Fn[ f (r)] =
∞∫

−∞

f (r) exp(−ik · r)dnr

is taken to mean

∞∫
−∞

∞∫
−∞

...
∞∫

−∞

f (r1, r2, ..., rn) exp[−i(k1r1 + k2r2 + ... + knrn)]dr1dr2..., drn.

Proof The proof of this result is based two results:

(i) If f is a function of r only, then

F(k) =

(
1 − ∂2

∂k2
1
− ∂2

∂k2
2
− ... − ∂2

∂k2
n

)N

(2π)n/2
∞∫

0

f (r)rn−1

(1 + r2)N

Jn−2
2

(kr)

(kr)(n/2)−1
dr

where N is a positive integer and J(n−2)/2 is the Bessel function (of order (n− 2)/2).

(ii) For Bessel Functions,

(2π)n/2

k(n/2)−1

∞∫
0

rq+(n/2)

(1 + r2)N Jn−2
2

(kr)dr

=
πn/2(1

2 q + 1
2 n − 1)!(N − 1

2 q − 1
2 n − 1)!

(N − 1)!(1
2 n − 1)!

1F2(1
2 q + 1

2 n; 1
2 q + 1

2 n − N + 1, 1
2 n; 1

4 k2)

+
πn/2k2N−q−n(1

2 q + 1
2 n − N − 1)!

(N − 1
2 q − 1)!22N−q−n 1F2(N; N − 1

2 q, N + 1 − 1
2 q − 1

2 n; 1
4 k2) (A4.1)

where

1F2(a; b, c; x) = 1 +
a

1!bc
x +

a(a + 1)
2!b(b + 1)c(c + 1)

x2 + ...
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The first of these results can be obtained by choosing a polar axis to lie along the

direction of k so that k · r = kr cos θ1 and

F(k) =
∞∫

−∞

f (r) exp(−ik · r)dr =
∞∫

0

f (r)rn−1
π∫

0

exp(−ikr cos θ1) sinn−2 θ1dθ1

×
π∫

0

...
2π∫
0

sinn−3 θ2... sin θn−2dθ2...dθn−1dr

=
∞∫

0

f (r)rn−1 2π(n−1)/2

(1
2 n − 3

2)!

π∫
0

exp(−ikr cos θ1) sinn−2 θ1dθ1dr

using
π∫

0

sinν dθ =
(1

2 ν − 1
2)!π1/2

(1
2 ν)!

.

Now,

−
(

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
=

∞∫
−∞

f (r)(r2
1 + r2

2 + ... + r2
n) exp(−ik · r)dnr

and therefore(
1 − ∂2

∂k2
1
− ∂2

∂k2
2
− ... − ∂2

∂k2
n

)N

=
∞∫

−∞

f (r)(1 + r2)N exp(−ik · r)dnr.

Hence, we can write

F(k) =

(
1 − ∂2

∂k2
1

+
∂2

∂k2
2
− ... − ∂2

∂k2
n

)N

(2π)n/2
∞∫

0

f (r)rn−1

(1 + r2)N

Jn−2
2

(kr)

(kr)(n/2)−1
dr.

(A4.2)
The ratio of two successive terms un+1/un in the infinite series for 1F2 is (a +
n)x/[(n + 1)(b + n)(c + n)] which tends to zero as n → ∞ for any finite x. Thus,

the series for 1F2 converges absolutely and uniformly with respect to x and the same

is true of its derivatives (provided that neither b or c is a negative integer or zero

when the series diverges). Therefore,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
1F2(a; b, 1

2 n; 1
4 k2)

=
(b − 1)!(1

2 − 1)!
(a − 1)!

(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
∞

∑
s=0

(a + s − 1)!(1
2 k)2s

(b + s − 1)!(1
2 n + s − 1)!s!

=
(b − 1)!(1

2 n − 1)!
(a − 1)!

∞

∑
s=0

(a + s − 1)!(1
2 k)2s−2

(b + s − 1)!(1
2 n + s − 2)!(s − 1)!

.
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The term for s = 0 disappears so that, by replacing s by s + 1 we obtain(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
1F2(a; b, 1

2 n; 1
4 k2)

=
(b − 1)!(1

2 n − 1)!
(a − 1)!

∞

∑
s=0

(a + s − 1)!(1
2 k)2s

(b + s)!(1
2 n + s − 1)!s!

(a + s − b − s)

=
a − b

b 1F2(a; b + 1, 1
2 n; 1

4 k2).

Hence, (
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)N

1F2(a; b, 1
2 n; 1

4 k2)

=
(a − b)(a − b − 1)...(a − b − N + 1)

b(b + 1)...(b + N − 1) 1F2(a; b + N, 1
2 n; 1

4 k2). (A4.3)

In the first term of equation (A4.1) a = 1
2(q + n), b = 1

2(q + n) − N + 1 so that

a − b = N + 1 with the result that the right hand side of the equation vanishes. For

the second term of equation (A4.1), consider, with b > 0(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

=
(b + 1

2 n − 1)!b!
(a − 1)!

∞

∑
s=0

(a + s − 1)!k2b+2s−2

4s−1(b + 1
2 n − 2 + s)!(b + s − 1)!s!

as above. Hence,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2) =
(b + 1

2 n − 1)!b!
(a − 1)!

×
[

(a − 1)!4k2b−2

(b + 1
2 n − 2)!(b − 1)!

+
∞

∑
s=0

(a + s − 2)!(a − 1)k2b+2s−2

4s−1(b + 1
2 n − 2 + s)!(b + s − 1)!s!

]
from which is evident that(

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(1; b + 1
2 n, b + 1; 1

4 k2) = (b + 1
2 n − 1)4bk2b−2

(A4.4)
and (

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

= 4b(b + 1
2 n − 1)k2b−2

1F2(a − 1; b + 1
2 n − 1, b; 1

4 k2), a �= 1.

Consequently, if a �= 1 or 2, then since(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
kq = q(q + n − 2)kq−2
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for all q except those for which q + n = 2, 0,−2,−4, ...,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

= 42b(b − 1)(b + 1
2 n − 1)(b + 1

2 n − 2)k2b−4
1F2(a − 2; b + 1

2 n − 2, b − 1; 1
4 k2)

where, in deriving this result, since it cannot be assumed that b − 1 > 0, with

b = N − 1
2 q − 1

2 n we impose the condition q = 2m (m = 0, 1, 2, ...). Thus, using

equation (A4.4) we can write(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)N

k2N−q−n
1F2(N; N − 1

2 q, N + 1 − 1
2 q − 1

2 n; 1
4 k2)

=

(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
4N−1 (N − 1

2 q − 1
2 n)!(N − 1

2 q − 1)!k−q−n+2

(−1
2 q − 1

2 n + 1)!(−1
2 q)!

1F2(1;−1
2 q + 1,−1

2 q − 1
2 n + 2; 1

4 k2) =
(N − 1

2 q − 1
2 n)!(N − 1

2 q − 1)!4Nk−q−n

(−1
2 q − 1

2 n)!(−1
2 q − 1)!

.

(A4.5)
Using equations (A4.5) and (A4.3) in equations (A4.1) and (A4.2) we find that

F(k) =
(N − 1

2 q − 1
2 n)!(1

2 q + 1
2 n − N − 1)!

(−1
2 q − 1

2 n)!(−1
2 q − 1)!

2q+n(−1)Nπn/2k−q−n.

Finally, using the formula

z!(−z)! =
πz

sin πz
we have

(N − 1
2 q − 1

2 n)!(1
2 q + 1

2 n − N − 1)! =
π

sin π(1
2 q + 1

2 n − N)

=
(−1)Nπ

sin 1
2 π(q + n)

= (1
2 q + 1

2 n − 1)!(−1
2 q − 1

2 n)!(−1)N

so that

F(k) =
(1

2 q + 1
2 n − 1)!

(−1
2 q − 1)!

2q+nπn/2k−q−n.

We can write this result using the Gamma function notation where

m! = Γ(m + 1) =
∞∫

0

tm exp(−pt)dt

which generalizes to values of m which are non-integer. Then,

F(k) =
Γ
(

q+n
2

)
Γ
(− q

2

) 2q+nπn/2k−q−n.
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Hence, in the case when n = 1,

F(k) = F1[rq] =
Γ
(

1+q
2

)
Γ
(− q

2

) 21+q√πk−q−1

or

F1

[
1

r1−q

]
= 2q√π

Γ
( q

2

)
Γ
(

1−q
2

) 1
kq

and thus,

F−1
1

[
1

(ik)q

]
=

α1(q)
r1−q

where

α1(q) =
1

(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) .

For n = 2

F2 [rq] =
Γ
(

q+2
2

)
Γ
(− q

2

) 2q+2πk−q−2

or

F2

[
1

r2−q

]
= 2qπ

Γ
( q

2

)
Γ
(
1 − q

2

) 1
kq

and hence,

F−1
2

[
1

(ik)q

]
=

α2(q)
r2−q

where

α2(q) =
1

(2i)qπ

Γ
(
1 − q

2

)
Γ
( q

2

) .

Thus, in general, ignoring scaling by α1(q), α2(q), α3(q), ...,

F−1
n

[
1

(ik)q

]
∼ 1

rn−q , n = 1, 2, 3, ...



YHTEENVETO (SUMMARY IN FINNISH)

Sähkömagneettinen sirontateoria on oleellinen, jotta voidaan ymmärtää vuorovaiku-

tusta sähkömagneettisten aaltojen ja epähomogenisten dielektristen materiaalien

välillä. Teoria avaa teknisen tiedon koskien suurta määrää sähkömagneettisia jär-

jestelmiä, esimerkiksi optiikasta radio- ja mikroaaltokuvannukseen. Tarkkojen sironta-

mallien kehittäminen on erityisen tärkeätä kuvanymmärtämisen alalla ja tulkittaessa

sirontatapausten synnyttämiä sähkömagneettisia signaaleja. Tätä päämäärää varten

on olemassa joukko menettelytapoja, joita voidaan käyttää. Suhteellisen yksinker-

taisia geometrisia konfiguraatioita varten käytetään likiarvometodeja kehittämään

muuntamista kohdetasosta (missä sirontatapaukset tapahtuvat) kuvatasolle (missä

tapahtuu jonkinasteinen sirontakenttä). Yleisin likiarvo on heikko sirontalikiarvo, jo-

ka ei ota huomioon monien sirontavuorovaikutusten vaikutusta. Tämän väitöskirjan,

jonka nimi on Sähkömagneettisen sironnan ja käänteisen sironnan ratkaisujen käyt-

täminen digitaalisten signaalien ja kuvien analyysissä ja prosessoinnissa, ensimmäi-

nen osa tutkii tämän likiarvon käyttöä sähkömagneettisten kuvannusjärjestelmien

mallinnuksessa. Seuraavaksi väitöstyössä tarkastellaan lähestymistapaa, joka perus-

tuu voimakkaaseen sirontajärjestelmään, johon kuuluu sirontakentän autokorrelaa-

tio kehitettävissä käänteisissä sirontaratkaisuissa. Kun sirontavuorovaikutukset tule-

vat enenevästi monimutkaisemmiksi (esim. monet sironnat satunnaisvälineissä), de-

terministisen sirontateorian sovellukset tulevat vaikeiksi käyttää käytännössä. Näi-

nollen käänteinen sirontaongelma ei välttämättä tule hyvin esitetyksi. Tästä syystä

tarkastellaan useita muita lähestymistapoja, jotka sisältävät tilastollisten mallien

kehittämisen itse sirontakentälle mieluummin kuin sirontajalle. Väitöskirjassa tutki-

taan diffuusion käyttöä, joka perustuu malleille ratkaista käänteinen sirontaongelma,

kun esiintyy voimakkaita sirontaprosesseja, esim. monisirontaa satunnaisvälineistä.

Seuraavaksi lähestymistapaa laajennetaan ja käsittelään välitapausta mallintamalla

sirontaprosesseja käyttäen murtolukuista diffuusioyhtälöä. Lopuksi esitetään mata-

lataajuinen sirontatoria, joka johtaa esitykseen, että valo ja muut korkeataajuinen

sähkömagneettisten aaltojen kentät voidaan heikosti difrahoida (taivuttaa) mata-

lataajuisella sirontakentällä. Tämä johtaa uuteen tulkintaan gravitaatiolinssistä, jo-

ta tutkitaan kysymyksen kautta, miksi näkyvässä spektrissä havaitut Einsteinin

renkaat ovat sinisiä.
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