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Tekijä: Tytti Saksa
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Tämän Pro gradu -tutkielman aiheena ovat Navierin ja Stokesin yhtälöt,
jotka ovat nesteiden ja kaasujen liikettä kuvaavia osittaisdifferentiaaliyhtälöi-
tä. Fysikaalisesti ne ovat liikkeessä olevan nesteen tai kaasun nopeuskentän
ja paineen väliset tasapainoyhtälöt. Mielenkiintoista näissä yhtälöissä on se,
että vaikka ne voidaan muotoilla varsin yksinkertaisesti, niihin liittyy useita
ratkaisemattomia ongelmia. Navierin ja Stokesin yhtälöt on nimetty rans-
kalaisen insinöörin Claude-Louis Navierin ja irlantilaisen matemaatikon ja
fyysikon Sir George Gabriel Stokesin mukaan. Yhtälöillä on lukuisia sovel-
luksia. Niitä käytetään mm. ilmatieteessä, merentutkimuksessa ja lääketie-
teessä. Nesteiden ja kaasujen liikkeiden lisäksi yhtälöillä voidaan mallintaa
esimerkiksi lämmön johtumista.

Tässä tutkielmassa keskitytään puristumattomiin, viskooseihin nesteisiin
ja kaasuihin. Puristumattomuudella tarkoitetaan sitä, että nesteen tai kaasun
tiheys ei muutu ajan tai paikan suhteen. Viskoosilla nesteellä tai kaasulla on
sisäistä kitkaa, joka syntyy siitä, että aineen osaset liikkuvat toistensa suh-
teen. Myös viskoosittomia nesteitä ja kaasuja tarkastellaan tässä tutkielmas-
sa. Viskoosittomassa tapauksessa Navierin ja Stokesin yhtälöt saavat yksin-
kertaisemman muodon, jolloin yhtälöitä nimitetään usein Eulerin yhtälöiksi.

Tutkielman ensimmäisessä osassa johdetaan Eulerin liikeyhtälö, Navierin
ja Stokesin liikeyhtälö sekä näihin liikeyhtälöihin liitettävä massan säilymi-
sen yhtälö. Mainitut liikeyhtälöt seuraavat Newtonin toisesta laista. Myös
muutamia esimerkkejä virtauksista, jotka toteuttavat Eulerin tai Navierin ja
Stokesin yhtälöt, annetaan. Eulerin yhtälöstä johdetaan Bernoullin yhtälö,
joka on nopeuden ja paineen yhtälö tietyllä virtaviivalla.

Tutkielman toisessa osassa tarkastellaan Stokesin yhtälöitä, Navierin ja
Stokesin yhtälöiden staattista muotoa sekä täydellisiä Navierin ja Stokesin
yhtälöitä. Kutakin mainittua osittaisdifferentiaaliyhtälöryhmää vastaavalle
reunaehto-ongelmalle määritellään ns. heikko ratkaisu. Ajatuksena on, että
kyseessä oleva yhtälö kerrotaan puolittain sopivalla testifunktiolla, sen jäl-
keen integroidaan yhtälön kummatkin puolet määrittelyalueen yli ja suorite-



taan osittaisintegrointi termeille, jotka sisältävät tuntemattomien derivaat-
toja. Näin saadaan yhtälö, jossa derivaatat ovat niin ikään siirtyneet tun-
temattomilta funktioilta testifunktiolle. Näin voidaan lisäksi lieventää tun-
temattomien funktioiden sileysvaatimuksia. Ratkaisua, joka toteuttaa edellä
kaavaillun yhtälön, sanotaan alkuperäisen reunaehto-ongelman heikoksi rat-
kaisuksi.

Tutkielmassa esitetään vaihtoehtoisia ns. heikkoja muotoiluja kullekin
reunaehto-ongelmalle. Lisäksi näytetään, että nämä muotoilut todella ovat
vaihtoehtoisia, eli jos jokin funktio ratkaisee näistä yhden, se ratkaisee myös
toisen, ja päinvastoin. Stokesin yhtälöiden sekä Navierin ja Stokesin yhtä-
löiden staattisen tapauksen reunaehto-ongelmille osoitetaan heikkojen rat-
kaisujen olemassaolo, kun reuna-arvona on nolla ja avaruuden dimensio on
korkeintaan neljä. Vähintään yhden ratkaisun olemassaolo staattiselle ongel-
malle todistetaan Galerkinin metodia käyttäen. Myös joitakin yksikäsittei-
syystuloksia osoitetaan mainituille olemassaoleville ratkaisuille. Täydellisten
Navierin ja Stokesin yhtälöiden tapauksessa heikoille ratkaisuille esitetään
eräs olemassaolotulos. Tämän olemassaolevan heikon ratkaisun yksikäsittei-
syys on avoin ongelma. Yksikäsitteisyys tunnetaan sen sijaan sellaisessa funk-
tioiden joukossa, jossa ratkaisun olemassaolosta ei tiedetä.
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1 Introduction

The Navier-Stokes equations, that are a system of partial differential equa-
tions describing the movement of liquids and gases, play a great part in
mathematical research of today. The interesting point is that despite their
simple formulation and the rich variety of their applications many problems
related to their solutions still remain open.

The Navier-Stokes equations have their history in fluid mechanics which
is a branch of physics exploring liquids and gases. Liquids and gases together
are called fluids. The history of fluid mechanics goes back to the ancient time
when Archimedes formulated the laws for floatage around 200 B.C. and the
Romans built long aquaeducti around 300 B.C. Not much research on the
topic were carried out until the Renaissance.

Leonardo da Vinci (1452-1519) derived the equation of conservation of
mass in the case of one-dimensional steady flow. Isaac Newton (1642-1727)
came up with the laws of motion and the law of viscosity of linear fluids. Then
problems with forces affecting on fluid or with velocity could be considered.
Newton’s work launched the research on ideal fluids without inner friction.
Many mathematicians of the 18th century derived beautiful results for this
ideal flow. Swiss mathematician and physicist Leonard Euler (1707-1783)
developed the differential equations of motion of fluid, known as the Euler
equations, in 1755. He also developed the integrated form of them that is now
called Bernoulli’s equation after Daniel Bernoulli (1700-1782). Meanwhile,
engineers developed their own, purely experimental field of hydraulics.

In the end of the 19th century, the theoretical and experimental researches
on the motion of fluids converged. Osborne Reynolds published an important
report on flow in a pipe in 1883. French engineer and physicist Claude-Louis
Navier (1785-1836) and Irish mathematician and physicist Sir George Gabriel
Stokes (1819-1903) successfully combined the Newtonian viscosity terms with
the equations of motion. During that time, these equations were not highly
valued because of their complicity for an arbitrary flow.

German engineer Ludwig Prandtl (1875-1953) observed that in flows with
small viscosity the fluid can be divided into two different parts which can be
examined separately. Near the boundary, there is a layer where the viscosity
is notable. In the other part of fluid, the effect of viscosity is negligible such
that the fluid can be considered as an ideal fluid. This so-called boundary
layer theory is one of the most important tools in the modern fluid mechanics.
It might also give some hints for mathematical approach to the unsolved
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problems. We refer to [7] for the historical notes of fluid mechanics.
The Navier-Stokes equations have many applications related to fluid me-

chanics. They are applied for example in meteorology, hydrology, oceanog-
raphy, and medical research on breathing and blood circulation. They are
applied not only in the movement of fluids but also in other phenomena.
Heat conduction is often modelled by an incompressible flow. They are also
applied in magneto-hydrodynamics combined with the Maxwell equations.
The research of today is also focused on phenomena where domains have free
boundaries governed by surface tension, for example surface waves and the
shape of rising bubbles [4].

In this thesis, we are interested in the incompressible, viscous flow. The
Navier-Stokes equations for this flow are represented in the following form{

Dtu+ u ·Du− η∆u = −Dp+ f

div u = 0
(1.1)

where u is the velocity vector field, p the pressure, f the external force and
η the viscosity constant. The first equation in (1.1) comes from Newton’s
second law and the second from the conservation law of mass. In the case of
inviscid flow, we have η = 0. In this case, equation (1.1) becomes the Euler
equations.

We call equation (1.1) the evolution Navier-Stokes equations, provided
that Dtu 6= 0. From the computational and analytical point of view, a
simpler system of equations, known as the Stokes equations, is important.
It is obtained when we set Dtu = 0 and u · Du = 0 in equation (1.1). The
steady-state Navier-Stokes equations are obtained when we set Dtu = 0 in
equation (1.1).

The preliminaries are given in the second section of this thesis. The pre-
liminaries include the notations, the definitions and the preliminary results.
In the third section, we represent the derivation for the law of conserva-
tion of mass, the Euler equations and the Navier-Stokes equations. We also
study the physical significance of the equations and give some examples of
the solutions.

The fourth section is divided into four subsections. In the first subsec-
tion, we give the preliminaries. We define the auxiliary spaces for the discus-
sion. In the remaining three subsections, we study the Stokes equations, the
steady-state Navier-Stokes equations and the evolution Navier-Stokes equa-
tions respectively. We only consider the case where the domain is bounded.
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We define the weak solutions to the Stokes equations, the steady-state Navier-
Stokes equations and the evolution Navier-Stokes equations. We represent
alternative variational problems for these equations. We show the existense of
a weak solution to the Stokes equations and to the steady-state Navier-Stokes
equations in the case where we have zero boundary value and the dimension
of the space is less than or equal to four. The existence of at least one weak
solution to the steady-state equations is proved by Galerkin method. For
these existing weak solutions, we prove some uniqueness results. For the
evolution Navier-Stokes equations, we represent some existence results and
discuss the uniqueness.

2 Preliminaries

2.1 Notation

First we introduce some notations that will be used.
In the thesis, we denote by Ω an open, bounded set in Rn. The boundary

of Ω is denoted by ∂Ω.
Let u : Ω→ R, x ∈ Ω. The partial derivative of u is

∂

∂xi
u(x) = lim

h→0

u(x1, . . . , xi + h, . . . , xn)− u(x1, . . . , xi, . . . , xn)

h
.

We write Diu for ∂
∂xi
u. For higher derivatives, we use notation

Dαu(x) =
∂|α|u

∂xα1
1 . . . ∂xαnn

where α = (α1, α2, . . . , αn) is the multi-index, |α| = α1 + . . . + αn. For the
gradient of u, we write

Du = (D1u, . . . , Dnu).

Throughout the thesis, Du = Dxu denotes the gradient of u with respect
to the spatial variable x ∈ Rn, and Dtu denotes the partial derivative with
respect to the time variable t, t ≥ 0. We denote

∆u =
n∑
i=1

DiDiu.
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Let then u : Ω→ R3, u(x) = (u1(x), u2(x), u3(x)). The rotor (or curl) of
u is

rotu = (D2u3 −D3u2, D3u1 −D1u3, D1u2 −D2u1).

The divergence of u is

div u = D1u1 +D2u2 +D3u3.

The vector product of the two vectors ξ = (ξ1, . . . , ξ1) and η = (η1, . . . , ηn)
is

ξ × η = (ξ2η3 − ξ3η2, ξ3η1 − ξ1η3, ξ1η2 − ξ2η1).

We say that u : Ω→ R is of class

Ck(Ω)

if all the derivatives Dαu, |α| ≤ k, exist and are continuous. The space
of functions that are infinite times differentiable is denoted by C∞(Ω). We
denote

Ck(Ω) = {u ∈ Ck(Ω) : Dαu is uniformly continuous for all |α| ≤ k}.

Thus if u ∈ Ck(Ω), then Dαu continuously extends to Ω for each multi index
α, |α| ≤ k. We denote

C∞(Ω) =
∞⋂
k=0

Ck(Ω).

The boundary ∂Ω is Ck if for each point x0 ∈ ∂Ω there exist r > 0 and a
function γ : Rn−1 → R in Ck such that we have

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, . . . , xn−1)}.

A domain Ω is of class Ck if its boundary ∂Ω is Ck.
The support of a function φ is the set spt(φ) = {x ∈ Ω : φ(x) 6= 0}. We

denote
D(Ω) = {φ ∈ C∞(Ω) : spt(φ) is compact and in Ω},

and
D(Ω) = {φ ∈ C∞(Ω) : spt(φ) is compact and in Ω}.

We denote the space of linear continuous functions from X to Y by

L(X, Y ).

The dual space of vector space X is denoted by X ′ unless we define a
special notation. We will write 〈·, ·〉 to denote the duality pairing between
X ′ and X.
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2.2 Equations

A partial differential equation is an equation of a function and some of its
partial derivatives where the function is unknown. Let us give a precise
definition.

Definition 2.1. The presentation of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0, x ∈ Ω (2.1)

is called a partial differential equation (PDE) of the order k where

F : Rnk × Rnk−1 × · · · × Rn × R× Ω→ R

is given and
u : Ω→ R

is unknown and
Dku(x) = {Dαu(x) : |α| = k}.

Definition 2.2. The presentation of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0, x ∈ Ω (2.2)

is called a system of partial differential equations of the order k where

F : Rmnk × Rmnk−1 × · · · × Rmn × Rm × Ω→ Rn

is given and
u : Ω ⊂ Rn → Rm, u = (u1, . . . , um)

is unknown.

Definition 2.3. We say that u ∈ Ck(Ω) is a classical solution of equation
(2.1) if the equation holds for all x ∈ Ω.

Partial differential equations can be classified by their linearity as follows.

Definition 2.4. Given functions φα and f .

1. Partial differential equation (2.1) is called linear if it has the form∑
|α|≤k

φα(x)Dαu = f(x).

If f ≡ 0 the PDE is said to be homogeneous.
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2. PDE (2.1) is called semilinear if it has the form∑
|α|=k

φαD
αu+ φ0(Dk−1u, . . . , Du, u, x) = 0.

3. PDE (2.1) is quasilinear if it has the form∑
|α|=k

φα(Dk−1u, . . . , Du, u, x)Dαu+ φ0(Dk−1u, . . . , Du, u, x) = 0.

4. PDE (2.1) is called fully nonlinear if it depends nonlinearly upon the
highest order derivatives.

Example 2.1. Let us give some examples of systems of partial differential
equations.

1. Maxwell equations 
DtE = rotB

DtB = − rotE

divB = divE = 0.

2. Euler equations {
Dtu+ u ·Du = −Dp

div u = 0.

3. Navier-Stokes equations{
Dtu+ u ·Du−∆u = −Dp

div u = 0.

The Maxwell equations are linear and the others nonlinear. The Euler equa-
tions are quasilinear and the Navier-Stokes equations semilinear systems of
partial differential equations.
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2.3 Preliminary results

We recall some preliminary results. Let us begin with the Gauss-Green the-
orem.

Theorem 2.1 (Gauss-Green). Let Ω ⊂ R3 be bounded. Suppose ∂Ω is C1

and u ∈ C1(Ω). Then ∫
∂Ω

u νi dS =

∫
Ω

Diu dx

where ν : ∂Ω→ R3 is the unique outward unit.

Theorem 2.2 (Gauss). Let Ω ⊂ R3 be bounded. Suppose ∂Ω is C1 and
u : Ω→ R3 with ui ∈ C1(Ω). Then∫

∂Ω

u · ν dS =

∫
Ω

div u dx.

Theorem 2.3. Suppose ∂Ω is C1. Let u, v ∈ C1(Ω). Then∫
Ω

vDiu dx =

∫
∂Ω

uv νi dS −
∫

Ω

uDiv dx.

Theorem 2.4 (Stokes). Let S ⊂ R3 be a bounded C2 smooth surface with
the boundary ∂S that is C2. Let u : S → R3 with ui ∈ C1(S). Then∫

∂S

u · ds̄ =

∫
S

rotu · ν dS

where ∫
∂S

u · ds̄ =

∫ 1

0

u(γ(t)) · γ′(t) dt

and γ : [0, 1]→ ∂S is a closed contour.

2.4 Sobolev spaces

Let us start with the Lebesgue space Lp.

Definition 2.5. Let Ω ⊂ Rn be a bounded set. Let 1 ≤ p <∞. We denote

Lp(Ω) = {u : Ω→ R : u is Lebesgue measurable, ‖u‖Lp(Ω) <∞}

7



and

L∞(Ω) = {u : Ω→ R : u is Lebesgue measurable, ‖u‖L∞(Ω) <∞}.

The norms above are defined as

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|p dx
)1/p

(2.3)

and
‖u‖L∞(Ω) = ess supx∈Ω|u(x)|. (2.4)

Theorem 2.5. The spaces Lp(Ω) (1 ≤ p <∞) equipped with norm (2.3) and
L∞(Ω) equipped with (2.4) are complete normed spaces (Banach spaces).

Theorem 2.6. The space L2(Ω) with the scalar product

(u, v) =

∫
Ω

u(x)v(x) dx

is a Hilbert space.

Theorem 2.7 (Minkowski). Let 1 ≤ p ≤ ∞. If u ∈ Lp(Ω) and v ∈ Lp(Ω),
then u+ v ∈ Lp(Ω) and

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Theorem 2.8 (Hölder). Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ such that 1
p

+ 1
q

= 1

(or p = 1 and q = ∞ or vice versa). If u ∈ Lp(Ω) and v ∈ Lq(Ω), then
uv ∈ L1(Ω) and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω) ‖v‖Lq(Ω).

Definition 2.6. A function u, locally integrable on Ω, is said to have a weak
derivative of order α if there exists a locally integrable function v such that

(u,Dαφ) = (−1)|α|(v, φ) ∀ φ ∈ D(Ω).

Definition 2.7. Let m be an integer, and 1 ≤ p ≤ ∞. The Sobolev space,
denoted by Wm,p(Ω), consists of all locally integrable functions u : Ω → R
such that for each multi index α with |α| ≤ m, Dαu exists in the weak sense
and belongs to Lp(Ω).
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Theorem 2.9. Wm,p(Ω) with the norm

‖u‖Wm,p(Ω) =

∑
|k|≤m

‖Dku‖pLp(Ω)

1/p

is a Banach space.

Theorem 2.10. Wm,2(Ω) = Hm(Ω) with the scalar product

((u, v))Hm(Ω) =
∑
|k|≤m

(Dku,Dkv)

is a Hilbert space.

Definition 2.8. The closure of D(Ω) in Wm,p(Ω) is

Wm,p
0 (Ω) = {u ∈ Wm,p(Ω) : ∃ {ui}∞i=1 ⊂ D(Ω)

such that ‖u− ui‖Wm,p(Ω) → 0 as i→∞}.

When p = 2 we denote Wm,2
0 (Ω) = Hm

0 (Ω).

Definition 2.9. We denote the dual space of H1
0 (Ω) by H−1(Ω). The norm

in H−1(Ω) is defined by

‖f‖H−1(Ω) = sup{〈f, u〉 : u ∈ H1
0 (Ω), ‖u‖H1

0 (Ω) ≤ 1}.

We need also the product spaces of the spaces introduced above. We de-
note them in the usual way {Lp(Ω)}n, {Wm,p(Ω)}n, {Hm(Ω)}n and {D(Ω)}n.
The first three of them are equipped with product norm

sup
i
‖ui‖X

where u = (u1, . . . , un) ∈ Xn. This norm is equivalent to norm

( n∑
i=1

‖ui‖2
X

)1/2
. (2.5)

We will use norm (2.5) in our discussion.
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If X is a scalar product space with scalar product (·, ·)X then

n∑
i=1

(ui, vi)X , (2.6)

is a scalar product in Xn. Then( n∑
i=1

(ui, ui)X
)1/2

,

gives norm (2.5).
D(Ω) is not a normed space, and thus neither is {D(Ω)}n.
We now give a type of Poincaré inequality.

Theorem 2.11. Let Ω ⊂ Rn be a bounded domain. In the ith direction we
have

‖u‖L2(Ω) ≤ c(Ω) ‖Diu‖L2(Ω) ∀ u ∈ H1
0 (Ω). (2.7)

For the proof of Theorem 2.11 we refer to the book of Foiaş [3].

Remark 2.1. When Ω ⊂ Rn is a bounded domain, Poincaré inequality (2.7)
implies that

‖u‖L2(Ω) ≤ c(Ω) ‖Du‖L2(Ω) ∀ u ∈ H1
0 (Ω) (2.8)

because ‖Diu‖L2(Ω) ≤ ‖Du‖L2(Ω) always. Usually we use (2.8).

From inequality (2.8), it follows that we can define another norm equiv-
alent to ‖·‖H1(Ω) in H1

0 (Ω).

Proposition 2.1. Let Ω ⊂ Rn be a bounded domain. In H1
0 (Ω) the norm

defined by

‖u‖ =

(
n∑
i=1

‖Diu‖2
L2(Ω)

)1/2

(2.9)

and norm ‖·‖H1(Ω) are equivalent.

As a consequence of Proposition 2.1, H1
0 (Ω) is a Hilbert space also with

scalar product

((u, v)) =
n∑
i=1

(Diu,Div). (2.10)

In the thesis we denote the norm of H1
0 (Ω) by ‖·‖ and the scalar product by

((·, ·)).
We have the following inequality.
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Lemma 2.1. Let u, v ∈ H1
0 (Ω). Then

|((u, v))| ≤ c(n)‖u‖‖v‖.

Proof. Let u, v ∈ H1
0 (Ω). Then

|((u, v))| = |
n∑
i=1

(Diu,Div)| ≤
n∑
i=1

|(Diu,Div)|

≤
n∑
i=1

‖Diu‖L2(Ω)‖Div‖L2(Ω)

≤

(
n∑
i=1

‖Diu‖L2(Ω)

)(
n∑
i=1

‖Div‖L2(Ω)

)

≤ n

(
n∑
i=1

‖Diu‖2
L2(Ω)

)1/2

n

(
n∑
i=1

‖Div‖2
L2(Ω)

)1/2

= n2‖u‖‖v‖.

We now give the trace theorem.

Theorem 2.12 (Trace Theorem). Let 1 ≤ p <∞. Assume that Ω is bounded
with C1 boundary ∂Ω. Then there exists a bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that

1. Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω),

2. ‖Tu‖Lp(∂Ω) ≤ c‖u‖W 1,p(Ω), for each u ∈ W 1,p(Ω), with the constant c
depending only on p and Ω.

For the proof of Theorem 2.12, we refer to [2, p. 258]. The operator T is
often called the trace operator and Tu the trace of u on ∂Ω.

Theorem 2.13. Let 1 ≤ p < ∞. Assume that Ω is bounded and ∂Ω is C1

smooth. Let u ∈ W 1,p(Ω). Then

u ∈ W 1,p
0 (Ω) if and only if Tu = 0 on ∂Ω.
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For the proof of Theorem 2.13, we refer to [2, p. 259]. Notice that Theorem
2.13 implies that the kernel of T equals to W 1,p

0 (Ω):

kerT = W 1,p
0 (Ω).

We use these theorems in the case when p = 2.

Theorem 2.14 (Riesz Representation Theorem). Let H be a real Hilbert
space with inner product (·, ·), and let H ′ denote its dual space. Then for
each u′ ∈ H ′ there exists a unique element u ∈ H such that

〈u′, v〉 = (u, v) ∀ v ∈ H.

The mapping u′ 7→ u is a linear isomorphism of H ′ onto H.

Definition 2.10. We say that a sequence {um}∞m=1 ⊂ X converges weakly
to u ∈ X, written

um ⇀ u,

if
〈u′, um〉 → 〈u′, u〉

for each bounded linear functional u′ ∈ X ′.

Theorem 2.15 (Weak Compactness). Let X be a reflexive Banach space
and suppose that the sequence {um}∞m=1 ⊂ X is bounded. Then there exists
a subsequence {umj}∞j=1 ⊂ {um}∞m=1 and u ∈ X such that

umj ⇀ u.

3 Derivation of Equations

In this section, we derive the Euler equations, the Navier-Stokes equations,
and the equation of conservation of mass. We also derive the Bernoulli’s
equation and give some examples of solutions to the equations, and some
physical illustrations. We refer to [5] for the details of the derivation.
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3.1 Euler equations

We are studying the motion of fluids. Fluids are considered to be continuous.
We are not interested in single molecules but in bigger elements with a great
amount of molecules. Then we may perceive the properties of fluid, such as
density and pressure, in a realistic way. We are not interested in the density
of one molecule and one point has no density because its volume is zero.
Considering the fluid as a continuum, we mean that a certain property is
defined at every point of the space considered. Then, for example, density in
a point x can be illustrated as follows. Consider small x-centered balls with
radius ε, B(x, ε), and the average density of these balls, ρB(x,ε), and define
the value of density of fluid in x as a limit of values ρB(x,ε) as ε tends to zero.

3.1.1 Conservation of mass

We derive the equation of conservation of mass in the case of an arbitrary
flow in three dimensions. In the end of the derivation we consider the case of
incompressible fluid which means that the density of the fluid does not vary
in time or place.

We consider the space Ω ⊂ R3 where the whole fluid is. We now fix a
bounded domain V ⊂ Ω into which and out of which the fluid may flow
freely. We assume that the boundary ∂V of V is smooth.

We will give two separate representations for the loss of mass through the
boundary ∂V .

Suppose that the density of the fluid in every point is given by the function
ρ : Ω × [0,∞) → (0,∞), ρ(x, t) = ρ(x1, x2, x3, t), where V ⊂ Ω ⊂ R3 and
ρ ∈ C1(Ω × [0,∞)). We know that the mass of substance fragmented by a
density function ρ in V is

mV (t) :=

∫
V

ρ(x, t) dx

where mV : [0,∞)→ R is the mass of fluid inside V at the moment t.
The change of this mass is the time derivative d

dt
mV . If the mass increases

in time, this change is positive and more substance flows into V . Likewise, if
the mass decreases in time, the change is negative, and some substance flows
out of V . Thus, the mass flowing out of V in a unit time is − d

dt
mV .

Because ρ is supposed to be C1 and V is compact, we obtain by the

13



following lemma that

− d
dt
mV (t) = − d

dt

∫
V

ρ(x, t) dx = −
∫
V

Dtρ(x, t) dx. (3.1)

Lemma 3.1. Let V ⊂ R3 be a bounded domain and let f ∈ C1(V × [0,∞)).
Then for all t ≥ 0,

d
dt

∫
V

f(x, t) dx =

∫
V

Dtf(x, t) dx.

Proof. The proof is based on the definition of derivative. Let V and f be as
in the lemma. We obtain

1
h

(∫
V

f(x, t+ h) dx−
∫
V

f(x, t) dx

)
=

∫
V

1
h

(f(x, t+ h)− f(x, t))︸ ︷︷ ︸
=:gh(x,t)

dx

where gh(x, t) −→ Dtf(x, t) uniformly as h→ 0. Thus Dtf(x, t) is integrable
and

d
dt

∫
V

f(x, t) dx = lim
h→0

∫
V

gh(x, t) dx =

∫
V

lim
h→0

gh(x, t) dx =

∫
V

Dtf(x, t) dx.

Consider now the mass flowing out of V in another way. Suppose that
we know the velocity field at a point x at the moment t as a function u :
R3 × [0,∞)→ R3,

u(x, t) = u(x1, x2, x3, t) = (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t))

where u is supposed to belong to C1(R3× [0,∞)). Now the product function
ρu gives the flow field of the mass of the fluid. The overall mass flowing
through ∂V in time t is the flux of vector field ρu through ∂V ,∫

∂V

ρu · dS̄ :=

∫
∂V

(ρu) · ν dS.

Using Gauss’ divergence theorem, Theorem 2.2, we obtain∫
∂V

ρu · dS̄ =

∫
V

div(ρu) dx. (3.2)

14



Thus, it follows from (3.1) and (3.2) that

−
∫
V

Dtρ dx =

∫
V

div(ρu) dx,

that is ∫
V

(Dtρ+ div(ρu)) dx = 0. (3.3)

We obtain
Dtρ+ div(ρu) = 0, (3.4)

by the following lemma. We call equation (3.4) the equation of conservation
of mass.

Lemma 3.2. Let f : Ω→ R be continuous. If
∫
A
f dx = 0 for all measurable

subsets A ⊂ Ω, then
f ≡ 0.

Proof. Assume that there exists a point x0 ∈ Ω such that

f(x0) 6= 0.

We may assume that f(x0) > 0. Then, by continuity of f , there exists ε > 0
such that f(x) > 1

2
f(x0) for all x ∈ B(x0, ε). We obtain that∫
B(x0,ε)

f dx >

∫
B(x0,ε)

1
2
f(x0) dx > 0.

This contradicts with the assumption. Therefore, f ≡ 0.

In the case of incompressible fluid, the density function ρ is identically
a constant and thus its derivatives are zero. For the incompressible fluid,
equation (3.4) becomes

div u = 0. (3.5)

This is the equation of conservation of mass for the incompressible flow.
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3.1.2 Euler’s equation

Euler’s equation follows from Newton’s second law which says that the force
affecting on a body equals to its mass times its acceleration.

Suppose that pressure at a point x is given by the function p : Ω×[0,∞)→
R, p(x, t) = p(x1, x2, x3, t), where p ∈ C1(Ω× [0,∞)). The force affecting on
the volume V by the pressure is then given by

−
∫
∂V

pν dS.

Considering the ith direction, we obtain by integration by parts

−
∫
∂V

pνi dS = −
∫
V

Dip dx =

∫
V

−Dip dx, i = 1, 2, 3.

Thus, in the ith direction, the force affecting on one unit volume is amount
of −Dip.

We consider now one unit volume and the ith direction. According to
Newton’s second law (F = ma), we have

ρ d
dt
ui = −Dip, i = 1, 2, 3 (3.6)

where d
dt
ui is the acceleration of one fluid particle moving about space. We

are now considering the incompressible fluid, thus we may assume the density
to be a constant. Let ρ = 1. Then the equation of motion is of the form

d
dt
ui = −Dip, i = 1, 2, 3. (3.7)

The velocity field u is now depending not only on time but also on how
the certain particle (point) moves in the space. Assume that the position
of the point in the set Ω is given by the function φ : Ω × [0,∞) → Ω,
φ(x, t) = (φ1(x, t), φ2(x, t), φ3(x, t)) in C1(Ω× [0,∞)) with φ(x, 0) = x. Then
the velocity in the ith direction is the same as the rate of change of the
position in the same direction

ui(φ1(x, t), φ2(x, t), φ3(x, t), t) = d
dt
φi(x, t).

The acceleration of a particle is the total derivative of u:
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d
dt
ui(φ1(x, t), φ2(x, t), φ3(x, t), t)

=
3∑
j=1

Djui(φ1(x, t), φ2(x, t), φ3(x, t), t) d
dt
φj(x, t)

+Dtui(φ1(x, t), φ2(x, t), φ3(x, t), t)

=
3∑
j=1

Djui(φ1(x, t), φ2(x, t), φ3(x, t), t)uj(φ1(x, t), φ2(x, t), φ3(x, t), t)

+Dtui(φ1(x, t), φ2(x, t), φ3(x, t), t).

Thus, we obtain

d
dt
ui = Dtui +

3∑
j=1

ujDjui. (3.8)

Substituting this derivative to equation of motion (3.7), we obtain

Dtui +
3∑
j=1

ujDjui = −Dip, i = 1, 2, 3. (3.9)

If there are external forces acting on fluid, they are added to the right
hand side. Euler’s equation for the incompressible flow is then expressed in
the form

Dtui +
3∑
j=1

ujDjui = −Dip+ fi, i = 1, 2, 3 (3.10)

where f = (f1, f2, f3) : Ω × [0,∞) → R3 denotes the overall external force
field acting on the fluid.

Consider the flow in the gravitational field. In the case of incompressible
fluid the density is a positive constant and we can simply divide equation
(3.6) by ρ to obtain

d
dt
ui = −Di(

p

ρ
). (3.11)

If the fluid is in the gravitational field, it is also affected by force ρg where
g ∈ R3 is the gravitational constant. The force ρg must be added to the right
hand side of the equation of motion. And since equation (3.11) is already
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divided by ρ, we add only the constant g = (g1, g2, g3) componentwise. Thus,
in the gravitational field, Euler’s equation for the incompressible fluid is

Dtui +
3∑
j=1

ujDjui = −Di(
p

ρ
) + gi, i = 1, 2, 3.

We have derived above two types of equalities for the incompressible
inviscid flow in three dimensions: the equation of the conservation of mass
and Euler’s equation. We obtain the following equations, known as the Euler
equations:

Dtu1 +
3∑
j=1

ujDju1 = −D1p+ f1, (3.12a)

Dtu2 +
3∑
j=1

ujDju2 = −D2p+ f2, (3.12b)

Dtu3 +
3∑
j=1

ujDju3 = −D3p+ f3, (3.12c)

div u = 0, (3.12d)

which in the form of vector is

Dtu+ u ·Du = −Dp+ f, (3.13a)

div u = 0. (3.13b)

In the following, we give some examples of solutions to boundary value
problems of the Euler equations. Of course, u = constant and p = constant
are solutions to the equations (when boundary values are not set and f ≡ 0).
Keeping in mind that in the derivation of the Euler equations we did not take
into account the inner friction in fluid, we may expect the easy examples not
to include such flows where the points (particles) move to each other. For
example, if the fluid rotates uniformly around a fixed axis the points do not
move to each other.

Example 3.1. Let u : R2 → R2 be defined as u(x1, x2) = (−ωx2, ωx1) where
ω is a positive constant, and let p : R2 → R, p = 1

2
ω2|x|2 and f ≡ 0. Then

{u, p} is a solution to the Euler equations (3.13).
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Let us show this. Denote u1(x1, x2) = −ωx2 and u2(x1, x2) = ωx1. All
the functions here are infinite times differentiable. We have

Dtui = 0, i = 1, 2,

Du1 = (0,−ω), Du2 = (ω, 0),

Dp = (ω2x1, ω
2x2).

And thus,
u ·Du = (−ω2x1,−ω2x2) = −Dp(x1, x2),

and
div u = D1u1 +D2u2 = 0 + 0 = 0.

Thus, {u, p} is a (classical) solution to equation (3.13).
We could also restrict the problem to a ball with radius R, if we demand

that the velocity field is also defined on the boundary (u(x1, x2) = (−ωx2, ωx1)
on ∂B(0, R)).

Example 3.1 may be extended to a three-dimensional flow where the third
component is a constant or linearly increasing.

Example 3.2. Let u : R3 × [0, T ] → R3 be defined as u(x1, x2, x3) =
(−ωx2, ωx1, u0+at) where ω and a are positive constants and u0 is a constant
velocity at the moment t = 0. Let p : R3 → R, p = 1

2
ω2(x2

1 + x2
2) − ax3 and

f(x1, x2, x3) ≡ 0. Then, {u, p} is a solution to the Euler equations (3.13).
In this case,

Dtui = 0, i = 1, 2, Dtu3 = a,

Du1 = (0,−ω, 0), Du2 = (ω, 0, 0), Du3 = (0, 0, 0),

Dp = (ω2x1, ω
2x2,−a).

And because Dtu3 = a = −D3p and u · Du3 = 0, we see that {u, p} is a
(classical) solution.

To image the situation where the flow would happen as above, we may
think a vertically situated cylinder which is rotating uniformly and falling
down at the same time, the fluid being inside of it. The following picture
shows the path of a point at distance 1 from the rotating axis when the
acceleration a is zero.
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We now consider the adiabatic flow. Adiabatic flow is a process where
heat energy conserves. In practice there is no heat change between the differ-
ent parts of the fluid nor between the fluid and the surroundings. Considering
the rate of change in entropy in adiabatic flow, we have

d
dt
s = 0

where s : Ω × [0,∞) → R is the entropy and depends on how the particle
moves in the space. We have

d
dt
s(φ1(x, t), φ2(x, t), φ3(x, t), t)

=
3∑
j=1

Djs(φ1(x, t), φ2(x, t), φ3(x, t), t) d
dt
φj(x, t)

+Dts(φ1(x, t), φ2(x, t), φ3(x, t), t)

=
3∑
j=1

Djs(φ1(x, t), φ2(x, t), φ3(x, t), t)uj(φ1(x, t), φ2(x, t), φ3(x, t), t)

+Dts(φ1(x, t), φ2(x, t), φ3(x, t), t).
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Thus

d
dt
s = Dts+

3∑
j=1

uj Dj s.

We calculate the equation of continuation for the entropy.

Dt(ρs) + div(ρsu) = Dtsρ+ sDt + ρs div u+ v ·D(ρs)

= Dtsρ+ sDt + ρs div u+ ρu ·Ds+ su ·Dρ
= s(Dtρ+ ρ div u+ u ·Dρ︸ ︷︷ ︸

=0

) + ρ(Dts+ u ·Ds︸ ︷︷ ︸
=0

)

= 0.

In a usual case, the entropy is constant throughout the fluid and we have

s = constant.

3.1.3 Bernoulli’s equation

Let us change a little bit the expression of Euler’s equation. We start with
the following lemma.

Lemma 3.3. Let u ∈ C1. Then

1
2
D|u|2 = u× rotu+ u ·Du.

Proof. Let u ∈ C1(Ω) and let x ∈ Ω. Since

rotu(x) = (D2u3(x)−D3u2(x), D3u1(x)−D1u3(x), D1u2(x)−D2u1(x)).

we have

u× rotu = (u2(rotu)3 − u3(rotu)2, u3(rotu)1 − u1(rotu)3,

u1(rotu)2 − u2(rotu)1)

= (u2(D1u2 −D2u1)− u3(D3u1 −D1u3),

u3(D2u3 −D3u2)− u1(D1u2 −D2u1),

u1(D3u1 −D1u3)− u2(D2u3 −D3u2)).

Because u ·Dui = u1D1ui+u2D2ui+u3D3ui, we obtain for the ith component
of the right hand side

(u× rotu)i + u ·Dui = u1(x)Diu1(x) + u2(x)Diu2(x) + u3(x)Diu3(x)

= 1
2
Diu

2(x),
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because

1
2
Diu

2(x) = 1
2
Di(u

2
1(x) + u2

2(x) + u2
3(x))

= 1
2
· 2(u1(x)Diu1(x) + u2(x)Diu2(x) + u3(x)Diu3(x))

= u1(x)Diu1(x) + u2(x)Diu2(x) + u3(x)Diu3(x).

Proposition 3.1. If u ∈ C2, p ∈ C2 and f ≡ 0, we have

Dt rotu− rot(u× rotu) = 0. (3.14)

If Dtu = 0, we have moreover

Deu(1
2
|u|2 + p) = 0,

where the partial derivative is taken in the direction of vector u.

Proof. By Lemma 3.3 and from the vector form of Euler’s equation (3.9)

Dtu+ u ·Du = −Dp, (3.15)

we obtain
Dtu+ 1

2
D|u|2 − u× rotu = −Dp. (3.16)

For a C2 smooth function f , rot(Df) = 0. Because u ∈ C2 and p ∈ C2, we
may take rot for the both sides of the equation to obtain

rot(Dtu+ 1
2
D|u|2 − u× rotu) = rot(−Dp),

that is
rot(Dtu) + 1

2
rot(D|u|2)︸ ︷︷ ︸

=0

− rot(u× rotu) = − rot(Dp).︸ ︷︷ ︸
=0

Thus, we have
Dt rotu− rot(u× rotu) = 0.

Next we consider a steady flow which means, that the velocity does not
change in time, that is, Dtu = 0. Equation (3.16) takes the form

1
2
D|u|2 − u× rotu = −Dp.
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Denote a unit vector giving the direction of the velocity in a certain point
in the space by eu. Taking a scalar product the both sides of equation above
with this vector eu, we obtain

(1
2
D|u|2 − u× rotu) · eu = (−Dp) · eu

that is
1
2
(D|u|2) · eu − (u× rotu) · eu = −Dp · eu

Because the vectors u × rotu and eu are perpendicular to each other, their
scalar product is zero. By the definition of partial derivative with respect to
eu, we have

1
2

(D|u|2) · eu︸ ︷︷ ︸
=Deu |u|2

− (u× rotu) · eu︸ ︷︷ ︸
=0

= −Dp · eu︸ ︷︷ ︸
=Deup

,

and we finally obtain
1
2
Deu|u|2 +Deup = 0,

that is
Deu(1

2
|u|2 + p) = 0.

Thus by Proposition 3.1, we have

1
2
|u|2 + p = constant (3.17)

along a line determined by the direction of the velocity. This line is called
the stream line. Equation (3.17) is called Bernoulli’s equation.

Remark 3.1. In Example 3.1, we introduced the function pair {u, p} mod-
elling an uniformly rotating flow where the stream lines are origin-centered
circles. We see that Bernoulli’s equation (3.17) holds in the case of uniform
rotation.

3.1.4 Momentum flux

We now consider the momentum of fluid. Consider again one unit volume.
The momentum is given by

ρu. (3.18)

The change in the momentum in time t is

Dt(ρui) = ρDtui +Dtρ ui, i = 1, 2, 3. (3.19)
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Substituting to (3.19) equation of conservation of mass (3.4) and Euler’s
equation (3.9), we obtain

Dt(ρui) = −Dip− ρ
3∑
j=1

ujDjui −
3∑
j=1

Dj(ρuj)ui

= −Dip−
3∑
j=1

(ρujDjui + uiDj(ρuj))

= −Dip−
3∑
j=1

Dj(ρuiuj).

We now have the following system of equations

Dt(ρu1) = −D1p−D1(ρu1u1) −D2(ρu1u2)−D3(ρu1u3)

Dt(ρu2) = −D1(ρu2u1) −D2p−D2(ρu2u2)−D3(ρu2u3)

Dt(ρu3) = −D1(ρu3u1) −D2(ρu3u2)−D3p−D3(ρu3u3)

To use a more simplified notation, we observe that these equations form a
matrix-alike system with term −Dip only on the diagonal. Denote

Tij = p δij + ρuiuj,

Then
3∑
j=1

DjTij =
3∑
j=1

Dj(p δij + ρuiuj) = Dip+
3∑
j=1

Dj(ρuiuj),

and we may write

Dt(ρui) = −
3∑
j=1

DjTij.

By integrating over some volume V , we obtain

Dt

∫
V

(ρui) dx =

∫
V

Dt(ρui) dx =

∫
V

−
3∑
j=1

DjTij dx = −
∫
∂V

3∑
j=1

Tijνj dS,

using integration by parts.
From this, we may see that the left hand side of the equation gives the

amount of momentum flowing into the fixed volume V in unit time, and the
integrand on the right hand side is the flux of the ith component of momentum
through unit surface area.
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3.1.5 Conservation of circulation

Consider the integral

I =

∫
γ

u · ds̄ =

∫ 1

0

u(γ(s, t), t) · d
ds
γ(s, t) ds (3.20)

where γ : [0, 1] × [0,∞) → R3 is a closed contour in C2. We assert that the
value of this integral does not depend on time.

Proposition 3.2. If p ∈ C2 and Euler’s equation (3.15) holds, then we have

d
dt

∫
γ

u · ds̄ = 0.

Proof. By Lemma 3.1, we obtain

d
dt

∫
γ

u · ds̄ =

∫ 1

0

Dt(u(γ(s, t), t) · d
ds
γ(s, t)) ds

=

∫ 1

0

d
dt
u(γ(s, t), t) · d

ds
γ(s, t) ds+

∫ 1

0

u(γ(s, t), t) · d
dt

d
ds
γ(s, t) ds

=

∫
γ

d
dt
u · ds̄+

∫ 1

0

u(γ(s, t), t) · d
dt

d
ds
γ(s, t) ds

By Euler’s equation (3.15) and by Stokes’s theorem, Theorem 2.4, we obtain
from the first integral on the right hand side that∫

γ

d
dt
u · ds̄ =

∫
γ

(Dtu+ u ·Du) · ds̄

=

∫
γ

(−Dp) · ds̄ =

∫
Sγ

rot(−Dp)︸ ︷︷ ︸
=0

·dS̄γ = 0.
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Let us calculate the second integral in the equation above.∫ 1

0

u(γ(s, t), t) · d
dt

d
ds
γ(s, t) ds =

3∑
i=0

∫ 1

0

ui(γ(s, t), t) d
ds

d
dt
γ(s, t)︸ ︷︷ ︸

=ui(γ(s,t),t)

ds

=
3∑
i=0

∫ 1

0

ui(γ(s, t), t) d
ds
ui(γ(s, t), t) ds

=
3∑
i=0

∫ 1

0

d
ds

(
1
2
u2
i (γ(s, t), t)

)
ds

=
3∑
i=0

(
1
2
u2
i (γ(s, t), t)

) ∣∣∣1
0

= 0.

Thus, we conclude that
d
dt

∫
γ

u · ds̄ = 0.

Thus the integral (3.20) does not depend on time, and it is constant:∫
γ

u · ds̄ = constant. (3.21)

Equation (3.21) is the equation of conservation of circulation.

3.2 Navier-Stokes equations

In this subsection, we derive the Navier-Stokes equations for the incompress-
ible fluid.

In this case, we need to assume that u ∈ C2. Using the same notation
as in previous subsection in the case of momentum flux, we express Euler
equations in the form

Dt(ρui) = −
3∑
j=1

DjTij (3.22)

where
Tij = p δij + ρuiuj
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is the momentum flux density tensor. We did not take into account the effect
of viscosity in the case of the Euler equations. Now we need another term
describing the viscosity. This term is added to the momentum flux density
tensor. Denote this term first by −σij and the new momentum flux density
tensor by

T ∗ij = Tij − σij.
The tensor σij is to be found out by seeking a suitable tensor. Because

of the fact that different particles move with different velocities, there occurs
friction between particles which is called viscosity. Viscous forces in a fluid
depend on the rate at which the fluid velocity is changing over small distance.
Consider the velocity at the moment t at the distance e away from the viewing
point x. We may approximate it with a Taylor series

ui(x+ e, t) = ui(x, t) +Dui(x, t) · e+ . . . .

Usually the approximation by the first derivatives is enough, and thus

ui(x+ e, t) ≈ ui(x, t) +Dui(x, t) · e.

The affecting term is Dui(x, t) · e because there is no friction when u is a
constant. Assuming that the properties are same in every direction we may
choose e1, e2, e3. We have indeed

Dui(x, t) · ej = Djui(x, t)

= 1
2
(Djui(x, t)−Diuj(x, t)) + 1

2
(Djui(x, t) +Diuj(x, t)).

In the uniform rotation (see Example 3.1) around the x3-axis, the velocity
field is of the form

u(x, t) = (−ωx2, ωx1, 0).

We have

rotu(x) = (D2u3(x)−D3u2(x), D3u1(x)−D1u3(x), D1u2(x)−D2u1(x))

= (0, 0, 2ω).

We obtain the same result in the rotation around any axis and thus the
second term is a constant for the uniform rotation. Since the particles do
not move to each other in the case of uniform rotation, there is no viscosity.
Thus, the second term does not affect. We have left the symmetrical term

1
2
(Djui(x, t) +Diuj(x, t)).

27



Taking into account the possibility of compressibility, the most usual
tensor to satisfy our demand is of the form

σij = a div u δij + b(Djui +Diuj)

where a and b are real numbers. (The term div u δij leads in a term ∆u which
is zero in the case of uniform rotation.)

Generally, the constants a and b are replaced by η and ζ such that

σij = η(Djui +Diuj − 2
3

div u δij) + ζ div u δij.

The constants η and ζ are called constants of viscosity, and they are both
positive (not be shown here). We refer to Landau [5, p. 48] for the details of
the constants of viscosity.

Replacing in Euler’s equation (3.22) tensor Tij with the tensor T ∗ij, we
obtain

Dt(ρui) = −
3∑
j=1

DjT
∗
ij = −

3∑
j=1

Dj(Tij − σij)

= −
3∑
j=1

DjTij +
3∑
j=1

Djσij

= −Dip−
3∑
j=1

Dj(ρuiuj)

+
3∑
j=1

Dj(η(Djui +Diuj − 2
3

div u δij) + ζ div u δij)

= −Dip−
3∑
j=1

Dj(ρuiuj) + η
3∑
j=1

DjDjui︸ ︷︷ ︸
=∆ui

+ η
3∑
j=1

DjDiuj︸ ︷︷ ︸
=Di

P3
j=1Djuj=Di div u

−2
3
ηDi div u+ ζDi div u

= −Dip−
3∑
j=1

Dj(ρuiuj) + η∆ui + (ζ + 1
3
η)Di div u.
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In the case of incompressible flow, we have div u = 0. Thus

3∑
j=1

Dj(ρuiuj) = ρ(
3∑
j=1

uiDjuj +
3∑
j=1

ujDjui)

= ρ(ui

3∑
j=1

Djuj︸ ︷︷ ︸
=div u=0

+
3∑
j=1

ujDjui)

= ρu ·Dui.

We also have Dt(ρui) = ρDtui. Combining these to the equation above we
finally obtain

ρDtui = −Dip− ρu ·Dui + η∆ui.

Choosing ρ to be one and rearranging the terms, we obtain

Dtui + u ·Dui − η∆ui = −Dip, i = 1, 2, 3. (3.23)

Equation (3.23) is the Navier-Stokes equation for the viscous incompressible
flow. The external forces affecting on the fluid can be added on the right
hand side as in the case of Euler’s equation.

The pressure can be eliminated from the Navier-Stokes equation in the
same way as from Euler’s equation, assuming now that u ∈ C3. We first write
the equation in the form of vector

Dtu+ u ·Du− η∆u = −Dp. (3.24)

By Lemma 3.3, we obtain

Dtu+ 1
2
D|u|2 − u× rotu− η∆u = −Dp. (3.25)

Taking rot on both sides of equation (3.25), we obtain

Dt rotu− rot(u× rotu)− η∆ rotu = 0.

Combining the Navier-Stokes equation with the equation of conservation
of mass, we obtain the following system of partial differential equations,
known as the Navier-Stokes equations:
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Dtu1 + u ·Du1 − η∆u1 = −D1p+ f1 (3.26a)

Dtu2 + u ·Du2 − η∆u2 = −D2p+ f2 (3.26b)

Dtu3 + u ·Du3 − η∆u3 = −D3p+ f3 (3.26c)

div u = 0. (3.26d)

that is

Dtu+ u ·Du− η∆u = −Dp+ f (3.27a)

div u = 0. (3.27b)

Remark 3.2. We recall Example 3.1 with u(x1, x2) = (−ωx2, ωx1) (ω > 0
constant), f ≡ 0 and p = 1

2
ω2(x2

1 +x2
2). We took this case of uniform rotation

into account while deriving these equations. Observing that ∆u = (0, 0), we
see that there is no affection of friction. In this case, the Navier-Stokes
equations (3.27) are reduced to Euler equations (3.13).

Similarly, Example 3.2 is an example of a solution to the Navier-Stokes
equations (3.27) in the three-dimensional Euclidean space.

Example 3.3. Let Ω = R × (0, a) ⊂ R2. Let the velocity fields on the
boundaries be u(x1, a) = (u0, 0) and u(x1, 0) = (0, 0), and let f ≡ 0. If
p ≡ constant and u(x1, x2) = (u0

a
x2, 0) in R× (0, a), then {u, p} is a classical

solution to the boundary value problem of Navier-Stokes equations (3.27).
Clearly, u, p ∈ C∞(Ω). We have

Du1(0,
u0

a
), Du2 = (0, 0),

∆u = (0, 0),

Dp = (0, 0).

Clearly u ·Du = 0. Thus (3.27a) is satisfied, div u = 0 and on the boundaries

u(x1, 0) = (0, 0),

u(x1, a) = (u0, 0).

Example 3.3 above illustrates a flow between two parallel planes (or lines)
from which the first one is stationary and the second one is moving at the
constant velocity u0 to the direction of x1-axis.
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Example 3.4. Let Ω = R × (−a, a) ⊂ R2, the velocity at the bound-
ary u(x1,±a) = (0, 0) and f ≡ 0. Then the function pair {u, p}, where
u(x1, x2) = (1

2
(a2 − x2

2), 0) and p(x1, x2) = (p1 − ηx1, p2) with constants p1

and p2, is a classical solution to the the boundary value problem of Navier-
Stokes equations (3.27).

Clearly, u, p ∈ C∞(Ω). We have

Dtu = (0, 0),

Du1 = (0,−x2), Du2 = (0, 0),

∆u = (−1, 0),

Dp = (−η, 0).

Clearly, u ·Du = 0. Thus, (3.27a) is satisfied, div u = 0 and on the boundary

u(x1,±a) = (0, 0).

Example 3.4 above models a flow between two parallel planes. The same
kind of solutions is obtained in three dimensions illustrating a flow in a pipe.

Example 3.5. Let Ω = R × B(0, h) ⊂ R3, the velocity at the boundary
u(x1, x2, x3) = (0, 0, 0) for all x2

2 + x2
3 = a2, and f ≡ 0. Then the function

pair {u, p} where u(x1, x2, x3) = (1
4
(a2 − x2

2 − x2
3), 0, 0) and p(x1, x2, x3) =

(p1 − ηx1, p2, p3) (p1, p2, p3 constants) is a classical solution to the Navier-
Stokes equations (3.27).

u, p ∈ C∞(Ω). We have

Dtu = (0, 0, 0),

Du1 = (0,−1
2
x2,−1

2
x3), Du2 = (0, 0, 0), Du3 = (0, 0, 0)

∆u = (−1, 0, 0),

Dp = (−η, 0, 0).

Clearly, u ·Du = 0. Thus (3.27a) is satisfied, div u = 0 and on the boundary,
where x2

2 + x2
3 = a2, we have

u(x1, x2, x3) = (0, 0, 0).
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4 Existence of Weak Solutions

In this section, we discuss the solvability of the Navier-Stokes equations in
general. We define the weak solutions of the Stokes equations, the steady-
state Navier-Stokes equations and the full Navier-Stokes equations. We in-
troduce some results for the existence and smoothness of the solutions. For
the details, we refer to [6].

4.1 Preliminaries

First we build up the basic theory on the spaces that we work with.
Consider the following space

E(Ω) = {u ∈ {L2(Ω)}n : div u ∈ L2(Ω)}. (4.1)

We set
(u, v)E(Ω) = (u, v) + (div u, div v) ∀ u, v ∈ E(Ω) (4.2)

where (u, v) =
∑n

i=1(ui, vi). Here the derivatives of u are supposed to exist in
a weak sense. Our goal is to prove a theorem according to which, if u ∈ E(Ω),
then the value of the normal component u ·ν can be defined on the boundary
∂Ω.

The space E(Ω) is an auxiliary space needed in the proofs in this intro-
duction part. We give some elementary results for it. Some results are not
proved, but we refer to some references for the proofs.

We denote by E0(Ω) the closure of {D(Ω)}n in E(Ω).

Lemma 4.1. E(Ω) equipped with (·, ·)E(Ω) is a Hilbert space.

Proof. First, we show that (·, ·)E(Ω) : E(Ω) × E(Ω) → R is a scalar product
on E(Ω). It is clearly linear and symmetric. We have also defined E(Ω) such
that (u, v)E(Ω) <∞ for all u, v ∈ E(Ω) and thus (·, ·)E(Ω) is well-defined.

We need to show that E(Ω) is a complete normed space with the associ-
ated norm

‖u‖E(Ω) =
(
(u, u)E(Ω)

)1/2
. (4.3)
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Let (um)m be a Cauchy sequence in E(Ω). Then

‖um − un‖2
E(Ω) =

n∑
i=1

(uim − uin, uim − uin) + (div(um − un), div(um − un))

=
n∑
i=1

‖uim − uin‖2
L2(Ω) + ‖div um − div un‖2

L2(Ω).

Thus, ‖uim − uin‖L2(Ω) → 0 and ‖div um − div un‖L2(Ω) → 0 as n,m → ∞.
Therefore, {um}m is a Cauchy sequence in {L2(Ω)}nand {div um}m is a
Cauchy sequence in L2(Ω). Because L2(Ω) is a Banach space, there exists
functions u = (u1, . . . , un) ∈ {L2(Ω)}n and g ∈ L2(Ω) such that

‖uim − ui‖L2(Ω) → 0 and ‖div um − g‖L2(Ω) → 0,

as m→∞.
We want to show that div u = g, that is

(u,Dφ) = −(g, φ) ∀ φ ∈ D(Ω).

By Hölder’s inequality in Theorem 2.8, we have

|(u,Dφ)− (um, Dφ)| = |(u− um, Dφ)| ≤ ‖u− um‖L2(Ω)‖Dφ‖L2(Ω) → 0,

as m→∞. We obtain

(u,Dφ) = lim
m→∞

(um, Dφ) = lim
m→∞

(−(div um, φ)) = −(g, φ).

Thus, we have div u = g ∈ L2(Ω). Thus u ∈ E(Ω), and ‖ um−u‖E(Ω) → 0
as m→∞.

We state Theorem 4.1 below. We observe that the functions with compact
support in E(Ω) are dense in E(Ω) and thus it may be assumed that u ∈ E(Ω)
has a compact support. The rest of proof of Theorem 4.1 is by regularization
for Ω = Rn, and for general set an additional result is needed, too. We refer
to [6, p. 6] for the complete proof.

Theorem 4.1. Let Ω be a C1 smooth open set in Rn. Then the set of vector
functions belonging to {D(Ω)}n is dense in E(Ω).

Now we state the trace theorem.
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Theorem 4.2. Let Ω be an open bounded set that is C2 smooth. Then there
exists a linear continuous operator γν ∈ L(E(Ω), H−1/2(∂Ω)) such that

γνu = the restriction of u · ν to ∂Ω, ∀ u ∈ {D(Ω)}n. (4.4)

In addition, the following formula is true for all u ∈ E(Ω) and for all w ∈
H1(Ω):

(u,Dw) + (div u,w) = 〈γνu, γ0w〉 (4.5)

where γ0 ∈ L(H1(Ω), L2(∂Ω)) such that

γ0w = the restriction of w to ∂Ω, ∀ w ∈ H1(Ω) ∩ C2(Ω),

and H1/2(∂Ω) := γ0(H1(Ω)) and H−1/2(∂Ω) = L(H1/2(∂Ω),R) is the dual
space of H1/2(∂Ω).

Remark 4.1. The space γ0(H1(Ω)) = H1/2(∂Ω) is a subspace of L2(∂Ω)
(actually known to be a dense subspace [6, p. 9]), with the scalar product
(u, v) =

∫
∂Ω
u(x)v(x) dS. Theorem 4.2 gives us a functional γνu in the dual

space H−1/2(∂Ω) for each suitable u such that

〈γνu, φ〉 =

∫
∂Ω

u · ν φ dS, ∀ φ ∈ H1/2(∂Ω).

Proof of Theorem 4.2. We follow the proof of Theorem 1.2 in [6]. Let φ ∈
H1/2(∂Ω) and let then w ∈ H1(Ω) such that γ0w = φ where the function
γ0 : H1(Ω) → L2(∂Ω) is given by Theorem 2.12. We first show that there
exists a linear continuous functional of the dual H−1/2(∂Ω) that is defined
by formula (4.5). Then we check the properties of this functional.

Let u ∈ E(Ω), and define Lu : H1/2(∂Ω)→ R,

Lu(φ) := (u,Dw) + (div u,w).

The linearity of Lu is clear. We will prove that this functional is independent
of the choice of w:

Let w1 and w2 be two functions in H1(Ω) such that γ0w1 = γ0w2 = φ.
Define w = w1 − w2. Then γ0w = 0 and thus w ∈ ker γ0 that is the space
H1

0 (Ω) by Theorem 2.13. Thus there is a sequence of functions {wm}∞m=1 ⊂
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D(Ω) converging to w in H1(Ω). We have

(div u,wm) + (u,Dwm) =

∫
Ω

div u(x)wm(x) dx+
n∑
i=1

∫
Ω

ui(x)Diwm(x) dx

=

∫
Ω

div u(x)wm(x) dx

+
n∑
i=1

[ ∫
∂Ω

ui(x)wm(x)νi dS︸ ︷︷ ︸
=0, wm∈D(Ω)

−
∫

Ω

Diui(x)wm(x) dx
]

=

∫
Ω

div u(x)wm(x) dx−
∫

Ω

n∑
i=1

Diui(x)︸ ︷︷ ︸
=div u(x)

wm(x) dx

= 0.

Taking the limit, we obtain

|(div u,wm − w)| ≤ ‖div u‖L2(Ω)‖wm − w‖L2(Ω)

≤ ‖div u‖L2(Ω)‖wm − w‖H1(Ω) → 0,

as m → ∞, because u ∈ E(Ω) and thus div u ∈ L2(Ω). We also obtain by
equality (2.8) in Remark 2.1

|(ui, Diwm −Diw)| ≤ ‖ui‖L2(Ω)‖Di(wm − w)‖L2(Ω)

≤ ‖ui‖L2(Ω)‖wm − w‖H1(Ω) → 0,

as m→∞, because ui ∈ L2(Ω). Thus

(div u,w) + (u,Dw) = 0,

and we have

(div u,w1) + (u,Dw1) = (div u,w2) + (u,Dw2).

We also know that there exists an operator σ ∈ L(H1/2(∂Ω), H1(Ω)) such
that γ0 ◦ σ is the identity [6, p. 9], and we choose now w = σφ. Then σ is a
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continuous linear operator for which ‖σφ‖H1(Ω) ≤ c1‖φ‖H1/2(∂Ω). We have

|Lu(φ)| = |(u,Dw) + (div u,w)|

≤
n∑
i=1

|(ui, Diw)|+ |(div u,w)|

≤
n∑
i=1

‖ui‖L2(Ω)‖Diw‖L2(Ω) + ‖div u‖L2(Ω)‖w‖L2(Ω)

≤
n∑
i=1

‖ui‖L2(Ω)‖w‖H1(Ω) + ‖div u‖L2(Ω)‖w‖H1(Ω)

=

(
n∑
i=1

‖ui‖L2(Ω) + ‖div u‖L2(Ω)

)
‖w‖H1(Ω)

≤ c0‖u‖E(Ω)‖w‖H1(Ω)

= c0c1‖u‖E(Ω)‖φ‖H1/2(∂Ω).

The mapping φ 7→ Lu(φ) is linear and continuous from H1/2(∂Ω) to R. Thus
there exists a linear mapping g = g(u) in the dual space H−1/2(∂Ω) for which

〈g, φ〉 = Lu(φ).

The linearity of mapping u 7→ g(u) is clear, and by calculation above, we
have

‖g‖H−1/2(∂Ω) ≤ c0c1‖u‖E(Ω),

and thus, g is also continuous.
Define γνu = g(u). Then equation (4.5) is satisfied. The conclusion (4.4)

in Theorem 4.2 follows from Lemma 4.2 below.

Lemma 4.2. Let u ∈ {D(Ω)}n. Then

γνu = the restriction of u · ν to ∂Ω.

Proof. Let u ∈ {D(Ω)}n and w ∈ C∞(Ω). Then by Theorem 2.12 γ0w =
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w|∂Ω, and we have

Lu(γ0w) = (u,Dw) + (div u,w)

=

∫
Ω

n∑
i=1

uiDiw +Diuiw dx =
n∑
i=1

∫
Ω

Di(uiw) dx

=
n∑
i=1

∫
∂Ω

uiwνi dS

=

∫
∂Ω

(u · ν)w dS =

∫
∂Ω

(u · ν)(γ0w) dS

Thus for mapping u · ν ∈ H−1/2(∂Ω) we have 〈u · ν, φ〉 = Lu(φ) for all φ in
γ0(C∞(Ω)). But we know that γ0(C∞(Ω)) is a dense subset of H1/2(∂Ω) =
γ0(H1(Ω)). Thus there exists a sequence {φm}∞m=1 ⊂ γ0(C∞(Ω)) such that
‖φ − φm‖H1/2(Ω) → 0, as m → ∞ for each φ ∈ H1/2(∂Ω). By continuity of

u · ν and Lu we have for all φ ∈ H1/2(∂Ω)

Lu(φ) = lim
m→∞

Lu(φm) = lim
m→∞

〈u · ν, φm〉 = 〈u · ν, φ〉.

Because on the other hand Lu(φ) = 〈γνu, φ〉, we obtain γνu = u · ν|∂Ω.

Theorem 4.3. The kernel of γν is equal to E0(Ω).

For the proof of Theorem 4.3, we refer to [6, p. 12].
Next, we introduce some auxiliary spaces. The basic auxiliary space is

V = {u ∈ {D(Ω)}n : div u = 0}.

The other spaces are the closures of V in {L2(Ω)}n and in {H1
0 (Ω)}n:

H = {u ∈ {L2(Ω)}n : ∃ {ui}∞i=1 ⊂ V
such that ‖u− ui‖L2(Ω) → 0 as i→∞}

V = {u ∈ {H1
0 (Ω)}n : ∃ {ui}∞i=1 ⊂ V

such that ‖u− ui‖H1
0 (Ω) → 0 as i→∞}.

Let Ω be an open set in Rn, and let p ∈ D′(Ω). For any v ∈ V , we have

〈Dp, v〉 =
n∑
i=1

〈Dip, vi〉 =
n∑
i=1

−〈p,Divi〉 = −〈p,
n∑
i=1

Divi〉 = −〈p, div v︸︷︷︸
=0

〉 = 0.

We have now proved part of Theorem 4.4 below.
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Theorem 4.4. Let Ω be an open set of Rn and f = (f1, . . . , fn), fi ∈
D′(Ω), i = 1, . . . , n. Then

f = Dp for some p ∈ D′(Ω)

in a weak sense, if and only if

〈f, v〉 = 0 ∀ v ∈ V .

Theorem 4.5. Let Ω be a bounded C1 smooth open set in Rn.

1. If p ∈ D′(Ω) has all its first-order weak derivatives Dip, i = 1, . . . , n
in L2(Ω), then p ∈ L2(Ω) and

‖p‖L2(Ω) ≤ c(Ω)‖Dp‖L2(Ω).

2. If p ∈ D′(Ω) has all its first-order weak derivatives Dip, i = 1, . . . , n
in H−1(Ω), then p ∈ L2(Ω) and

‖p‖L2(Ω) ≤ c(Ω)‖Dp‖H−1(Ω)

where H−1(Ω) is the dual space of H1
0 (Ω).

For the proofs of Theorems 4.4 and 4.5, we refer to [6, p. 14].
The inequalities in Theorem 4.5 are inequalities of Poincaré type in the

dual space D′(Ω). Here the dual space of L2(Ω) is denoted by L2(Ω) that
makes sense by Riesz representation theorem, Theorem 2.14.

Remark 4.2. 1. If f ∈ {H−1(Ω)}n and 〈f, v〉 = 0, for all v ∈ V, then
f = Dp in a weak sense with p ∈ L2(Ω).

2. If f ∈ {L2(Ω)}n and (f, v) = 0, then f = Dp in a weak sense with
p ∈ H1(Ω).

Proof. Let f ∈ {H−1(Ω)}n. Then f ∈ D′(Ω). Because 〈f, v〉 = 0 for all
v ∈ V , by Theorem 4.4 f = Dp for some p ∈ D′(Ω) in a weak sense that is

〈f,Dφ〉 = −〈p, φ〉 ∀ φ ∈ D(Ω).

Because Dp = f ∈ {H−1(Ω)}n, p has all its first-order weak derivatives
Dip, i = 1, . . . , n in H−1(Ω), and thus by Theorem 4.5 p ∈ L2(Ω).

In the second case, 〈f, v〉 = 0 for all v ∈ V , and thus by Theorem 4.4
f = Dp for some p ∈ D′(Ω) in a weak sense. Because Dp = f ∈ {L2(Ω)}n, p
has all its first-order weak derivatives Dip, i = 1, . . . , n in L2(Ω), and thus,
by Theorem 4.5, p ∈ L2(Ω). Since Dp ∈ {L2(Ω)}n, we have p ∈ H1(Ω).
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We want to give useful characterizations for the spaces H and V we
introduced before. These characterizations actually show the reasons for
studying them.

Theorem 4.6. Let Ω be a C1 smooth open bounded set.

H⊥ = {u ∈ {L2(Ω)}n : u = Dp, p ∈ H1(Ω)}
H = {u ∈ {L2(Ω)}n : div u = 0, γνu = 0}

where u = Dp in the weak sense and div u = 0 in the weak sense.

Proof. Let u ∈ H⊥, that is (u, v) = 0 for each v ∈ H. Then (u, v) = 0 for
each v ∈ V . By Theorem 4.4 there exists p ∈ D′(Ω) such that u = Dp in
the weak sense. But u ∈ {L2(Ω)}n, and thus, by Theorem 4.5, p belongs to
L2(Ω) and further into H1(Ω).

Conversely, if p ∈ H1(Ω), u = Dp ∈ {L2(Ω)}n weakly, we have for each
v ∈ V

(u, v) = −(p, div v) = 0.

Let then u ∈ H. By the definition of space H, u ∈ {L2(Ω)}n, and there
exists a sequence of functions {um}∞m=1 ⊂ V such that ‖u− um‖L2(Ω) → 0 as
m→∞. This convergence implies that, as m→∞, we have

(um, φ)→ (u, φ) ∀ φ ∈ {D(Ω)}n.

Because each um ∈ V , we have div um = 0 and thus

0 = −(div um, φ) = (um, Dφ) ∀ φ ∈ D(Ω).

By Hölder’s inequality we have

|(um − u,Dφ)| ≤ ‖um − u‖L2(Ω) ‖Dφ‖L2(Ω),

and thus, because Dφ ∈ L2(Ω), by letting m→∞, we obtain

(u,Dφ) = 0 ∀ φ ∈ D(Ω).

Thus div u = 0 in the weak sense, and u ∈ E(Ω). In addition

‖u− um‖E(Ω) = ‖u− um‖L2(Ω),

and thus um converges to u in E(Ω). Thu,s u ∈ E0(Ω). Now for the function
γν given by trace theorem 4.2, we have by Theorem 4.3 that u ∈ ker γν .
Therefore, γνu = 0.

We refer to [6, p. 16] for the rest of the proof.
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Remark 4.3. If Ω is any open set in Rn, then

H⊥ = {u ∈ {L2(Ω)}n : u = Dp, p ∈ L2
loc(Ω)}.

Next, we characterize the space V .

Theorem 4.7. Let Ω be an open bounded C1 smooth set in Rn. Then

V = {u ∈ {H1
0 (Ω)}n : div u = 0}

where div u = 0 in the weak sense.

Proof. Let u ∈ V . Then, there exists a sequence {um}∞m=1 ⊂ V such that
‖u− um‖H1

0 (Ω) → 0 as m→ 0. Indeed, we have

‖div u− div um‖L2(Ω) = ‖div(u− um)‖L2(Ω)

= ‖
n∑
i=1

Di(u− um)i‖L2(Ω)

≤
n∑
i=1

‖Di(u− um)i‖L2(Ω)

≤
n∑
i=1

‖(u− um)i‖H1
0 (Ω).

As in the proof of Theorem 4.6, we have convergence in the weak sense.
Finally, because div um = 0, div u = 0 in the weak sense.

We refer to [6, p. 18] for the rest of the proof.

Let us introduce some embedding theorems.

Proposition 4.1. Let Ω be C1 smooth and bounded, and let u ∈ H1
0 (Ω).

Then

1. if n = 2,

‖u‖Lq(Ω) ≤ c(q,Ω)‖u‖H1
0 (Ω) ∀ q, 1 ≤ q <∞.

2. if n ≥ 3,
‖u‖

L
2n
n−2 (Ω)

≤ c(Ω)‖u‖H1
0 (Ω).
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Theorem 4.8. Let Ω be a C1 smooth bounded open set of Rn, and let 1 ≤
p < n. Then, the embedding

W 1,p(Ω) ⊂ Lq(Ω),

is compact for any q, for which 1 ≤ q < p∗ = np
n−p . If p ≥ n, this embedding

is compact for any q, 1 ≤ q <∞.

For the proof of Proposition 4.1, we refer to [2, p. 270] and for the proof
of Theorem 4.8 to [2, p. 272].

The space V is contained in H, is dense in H and the injection is contin-
uous [6, p. 248]. We denote the dual spaces of H and V by H ′ and V ′. H ′

can be identified with a dense subspace of V ′ [6], and by Riesz representation
theorem, we may identify H and H ′.

V ⊂ H ≡ H ′ ⊂ V ′

where each space is dense in the following one and the injections are contin-
uous.

As a consequence of previous identifications, the scalar product in H of
f ∈ H and u ∈ V is the same as the scalar product of f and u in the duality
between V ′ and V :

〈f, u〉 = (f, u) ∀ f ∈ H, ∀ u ∈ V. (4.6)

For each u ∈ V , the mapping v 7→ ((u, v)) is linear and continuous on V .
Thus there exists Au ∈ V ′ such that

〈Au, v〉 = ((u, v)) ∀ v ∈ V. (4.7)

This mapping u 7→ Au is known to be linear, continuous, an isomorphism
from V onto V ′ (Ω bounded) [6].

Let a, b be two extended real numbers, −∞ ≤ a, b ≤ ∞, X a Banach
space and 1 ≤ p <∞. We denote

Lp(a, b;X) = {u : [a, b]→ X : ‖u‖Lp(a,b;X) <∞}

where the norm is defined by

‖u‖Lp(a,b;X) =
(∫ b

a

‖u(t)‖pX dt
)1/p

.
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And we write

L∞(a, b;X) = {u : [a, b]→ X : ‖u‖L∞(a,b;X) <∞},

with the norm
‖u‖L∞(a,b;X) = ess supt∈[a,b]‖u(t)‖X .

We also have the space

C([a, b];X) = {u : [a, b]→ X : f continuous, sup
t∈[a,b]

‖u(t)‖X <∞}.

Lemma 4.3. Let X be a Banach space with its dual space X ′ and let u and
g be in L1(a, b;X). Then, the following are equivalent

1. u is almost everywhere equal to a primitive function of g

u(t) = ξ +

∫ t

0

g(s) ds, ξ ∈ X, a.e. t ∈ [a, b].

2. for each test function φ ∈ D(a, b),∫ b

a

u(t)φ′(t) dt = −
∫ b

a

g(t)φ(t) dt

where φ′(t) = d
dt
φ.

3. for each η ∈ X ′
d
dt
〈u, η〉 = 〈g, η〉

in the weak sense on (a, b).

If the items above are satisfied for u and g, then u is a.e. equal to a
continuous function from [a, b] to X.

For the proof of Lemma 4.3, we refer to [6, p. 250].
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4.2 Stokes equations

The Stokes equations are the linearized stationary form of the full Navier-
Stokes equations. In this subsection we consider the variational problem
for the Stokes equations and sketch the proof for the existence of the weak
solution.

Let us give a formulation of the Stokes problem with boundary condition
u = 0.

Let f ∈ L2(Ω) be a vector-valued function in Ω. We seek a vector-valued
function u = (u1, . . . , un) and a scalar function p, which are defined in Ω and
satisfy

−µ∆u+Dp = f in Ω, (4.8a)

div u = 0 in Ω, (4.8b)

u = 0 on ∂Ω. (4.8c)

Example 4.1. Let f ≡ 0. Let u ≡ 0 and p = constant. Then, u, p solve the
boundary value problem (4.8).

Remark 4.4. The examples of the uniform rotation (Examples 3.1 and 3.2)
do not give solutions to the Stokes problem. These examples show that there
are very simple flows to which the Stokes equations can not be applied.

Then we study the variational problem for the Stokes equations (4.8).
The definition includes the space V we introduced in subsection 4.1.

Definition 4.1. Let f ∈ {L2(Ω)}n. The problem to find a function u such
that

u ∈ V and µ((u, v)) = (f, v) ∀ v ∈ V, (4.9)

is called the variational problem for equation (4.8).

In the following, we show that if there exists smooth functions f , u and
p satisfying (4.8), then f , u and p solve (4.9). We take a scalar product of
(4.8a) with a function v ∈ V ⊂ {H1

0 (Ω)}n. We obtain

(−µ∆u+Dp, v) = (f, v),

that is
µ(−∆u, v) + (Dp, v) = (f, v).
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By integrating by parts, we have that

(−∆u, v) =
n∑
i=1

∫
Ω

−∆uivi dx =
n∑
i=1

∫
Ω

−
n∑
j=1

DjDjuivi dx

= −
n∑

i,j=1

∫
∂Ω

Djui vi︸︷︷︸
=0 on ∂Ω

νj dS −
∫

Ω

DjuiDjvi dx


=

n∑
i,j=1

∫
Ω

DjuiDjvi dx =
n∑
i=1

n∑
j=1

(Djui, Djvi)

=
n∑
i=1

((ui, vi)) = ((u, v)),

and that

(Dp, v) =
n∑
i=1

∫
Ω

Dipvi dx

=
n∑
i=1

∫
∂Ω

p vi︸︷︷︸
=0

νi dS −
∫

Ω

pDivi dx


= −

∫
Ω

p
n∑
i=1

Divi dx = −
∫

Ω

p div v︸︷︷︸
=0

dx = 0.

Thus, we obtain
µ((u, v)) = (f, v) ∀ v ∈ V .

Recalling that V is the closure of V in {H1
0 (Ω)}n and observing that

both sides of the equation above depend linearly and continuously on v for
the {H1

0 (Ω)}n topology, we conclude that this equation is also valid for each
v ∈ V by continuity:

Let v ∈ V . Then, there exists a sequence {vm}∞m=1 ⊂ V such that ‖v −
vm‖ → 0 as m→∞. Define L(v) = µ((u, v))− (f, v). Then by Lemma 2.1,
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we obtain

|L(v)− L(vm)| = |µ((u, v))− (f, v)− µ((u, vm)) + (f, vm)|
= |µ((u, v − vm)) + (f, vm − v)|
≤ µ|((u, v − vm))|+ |(f, vm − v)|

≤ µ

n∑
i=1

|((ui, vi − vim))|+
n∑
i=1

|(f i, vim − vi)|

≤ µ

n∑
i=1

c‖ui‖‖vi − vim‖+
n∑
i=1

‖f i‖L2(Ω) ‖vim − vi‖L2(Ω)︸ ︷︷ ︸
≤‖vi−vim‖

≤ C‖v − vm‖ → 0,

as m→ 0.
If Ω is of class C2, then u ∈ {H1

0 (Ω)}n because of (4.8c). And because
div u = 0 in Ω, by (4.8b), we have by Theorem 4.7, that u ∈ V . Thus, u
solves the variational problem (4.9).

Definition 4.2. The function u ∈ {H1
0 (Ω)}n satisfies (4.8) in the weak sense

if the following holds.

∃ p ∈ L2(Ω) s.t. µ
n∑

i,j=1

(Djui, Djφi)− (p, div φ) = (f, φ) ∀ φ ∈ {D(Ω)}n,

(4.10a)

(u,Dφ) = 0 for all φ ∈ D(Ω), (4.10b)

γ0u = 0. (4.10c)

Then u is a weak solution to (4.8).

Lemma 4.4. Let Ω be an open bounded set of class C2. Then the following
are equivalent:

1. u satisfies variational problem (4.9).

2. u belongs to {H1
0 (Ω)}n and satisfies (4.8) in the weak sense, i.e. u

satisfies (4.10).
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Proof. First, assume that u ∈ V satisfies (4.9). Because V ⊂ {H1
0 (Ω)}n

each ui ∈ H1
0 (Ω) = ker γ0 (by Theorem 2.13). Thus, γ0u = 0 in H1/2(∂Ω).

Because u ∈ V by Theorem 4.7 we have div u = 0 in the weak sense in Ω.
In addition, we have −µ((u, v)) + (f, v) = 0 for all v ∈ V where the left
hand side is linear and continuous for all v ∈ H1

0 (Ω). Thus, there exists
µ∆u+ f ∈ H−1(Ω) ∈ D′(Ω) for which

〈µ∆u+ f, v〉 = 0 ∀ v ∈ V ⊂ V.

By Remark 4.2, there exists p ∈ L2(Ω) such that

µ∆u+ f = Dp in the weak sense in Ω.

Thus, u ∈ {H1
0 (Ω)}n and u satisfies (4.10).

Then, suppose that u ∈ {H1
0 (Ω)}n satisfies (4.8) in the weak sense. By

Theorem 4.7 and by (4.10b) u ∈ V . And (4.10a) implies by Theorem 4.4,
that

〈µ∆u+ f, v〉 = 0 ∀ v ∈ V .
We saw above that this implies that u satisfies (4.9).

Remark 4.5. This variational problem (4.9) was introduced by Jean Leray.
Remarkable on it is that now we only have to find u, because the existence of
p follows by Theorem 4.4.

If Ω is not smooth, Theorem 4.7 might not hold.

Theorem 4.9. For any f ∈ {L2(Ω)}n, problem (4.9) has a unique solution u.
Moreover, there exists a function p ∈ L2

loc(Ω) such that (4.10a) and (4.10b)
are satisfied. If Ω is an open bounded set of class C2, then p ∈ L2(Ω) and
(4.10) is satisfied by u and p.

We prove Theorem 4.9 by the projection theorem, Theorem 4.10, below.
We refer to [6, p. 24] for the proof of Theorem 4.10.

Theorem 4.10 (Projection Theorem). Let W be a separable real Hilbert
space with norm ‖·‖W and let a(u, v) be a bilinear continuous form on W×W ,
which is coercive i.e., there exists α > 0 such that

a(u, u) ≥ α‖u‖2
W ∀ u ∈ W.

Then, for each l in W ′, which is the dual space of W , there exists one and
only one u ∈ W such that

a(u, v) = 〈l, v〉 ∀ v ∈ W.
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Proof of Theorem 4.9. V is a separable Hilbert space as a subspace of the
separable metric space {H1

0 (Ω)}n, µ > 0 and

µ((u, u)) = µ‖u‖2 ∀ u ∈ V

where µ((·, ·)) : V × V → R is a bilinear continuous form. f defines a
linear and continuous form on V by 〈f, v〉 = (f, v). Thus, by the Projection
theorem, Theorem 4.10, there exists a unique u ∈ V satisfying

µ((u, v)) = 〈f, v〉 ∀ v ∈ V.

The conclusion in Theorem 4.9 follows from Lemma 4.4.

Remark 4.6. The linear operator v 7→ a(u, v) is continuous on W . Hence,
there exists an element of W ′ depending on u, denoted by A(u), such that

a(u, v) = 〈A(u), v〉 ∀ v ∈ W.

By projection theorem, a(u, v) = 〈l, v〉 for l ∈ W ′, and thus, we have

〈l, v〉 = 〈A(u), v〉 ∀ v ∈ W.

This is equivalent to
A(u) = l in W ′.

As a consequence of Theorem 4.9, we have the existence result for the
following Stokes problem. For the proof, we refer to [6, p. 31].

Theorem 4.11. Let Ω be an open bounded set of class C2 in Rn. Given
f ∈ {H−1(Ω)}n and φ ∈ H1/2(∂Ω). Then, there exists u ∈ H1(Ω) and
p ∈ L2(Ω) such that the problem

−µ∆u+Dp = f in Ω, (4.11a)

div u = 0 in Ω, (4.11b)

u = φ on ∂Ω. (4.11c)

is solved in the weak sense and u is unique.
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4.3 Steady-state Navier-Stokes equations

We now represent the steady-state Navier-Stokes equations with the bound-
ary value problem.

Let Ω be a C1 smooth, bounded open set in Rn with boundary ∂Ω. Let
f ∈ {L2(Ω)}n. We look for functions u = (u1, . . . , un) and p, which are
defined in Ω and satisfy

−µ∆u+ u ·Du+Dp = f in Ω, (4.12a)

div u = 0 in Ω (4.12b)

u = 0 on ∂Ω. (4.12c)

As in the case of the Stokes equations, we will formulate the variational
problem for the equations (4.12). But now there is the nonlinear term u ·Du
with which we have difficulties.

If f , u and p are smooth functions satisfying problem (4.12), then u ∈ V
and for each v ∈ V ,

µ((u, v)) + b(u, u, v) = (f, v)

where

b(u, v, w) =
n∑
i=1

n∑
j=1

∫
Ω

uiDivj wj dx.

But for u and v in V , the expression b(u, u, v) does not necessarily make
sense. In the following, we study some properties of the form b.

Definition 4.3. Denote

Ṽ = the closure of V in {H1
0 (Ω)}n ∩ {Ln(Ω)}n,

with the norm
‖u‖H1

0 (Ω) + ‖u‖Ln(Ω).

Remark 4.7. If Ω is bounded, we have by Proposition 4.1

‖u‖L2(Ω) ≤ c‖u‖H1
0 (Ω)

for n = 2, and
‖u‖Ln(Ω) ≤ c′‖u‖

L
2n
n−2 (Ω)

≤ c‖u‖H1
0 (Ω)

for n = 3, 4, because 2n
n−2
≥ n for n = 3, 4. Thus, Ṽ = V for n = 2, 3, 4.

The form b is trilinear, that is linear with respect to u, v and w, on V
and Ṽ .
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Lemma 4.5. The form b is defined and trilinear continuous on

{H1
0 (Ω)}n × {H1

0 (Ω)}n ×
(
{H1

0 (Ω)}n ∩ {Ln(Ω)}n
)

where Ω ⊂ Rn is any open set.

Proof. Let u, v ∈ {H1
0 (Ω)}n and w ∈ {H1

0 (Ω)}n ∩ {Ln(Ω)}n. Let n ≥ 3. By

Proposition 4.1, we have ui ∈ L
2n
n−2 (Ω). We also have Divj ∈ L2(Ω) and

wj ∈ Ln(Ω), 1 ≤ i, j ≤ n. By Hölder’s inequality in Theorem 2.8,

|
∫

Ω

uiDivj wj dx| ≤
∫

Ω

|uiDivj wj dx|

≤
(∫

Ω

|Divj|2dx
)1/2

(∫
Ω

|ui|
2n
n−2 dx

)n−2
2n
(∫

Ω

|wj|n dx
)1/n

= ‖Divj‖L2(Ω)‖ui‖
L

2n
n−2 (Ω)

‖wj‖Ln(Ω)

≤ c(Ω)‖vj‖H1
0 (Ω)‖ui‖H1

0 (Ω)‖wj‖H1
0 (Ω)∩Ln(Ω).

Thus,

|b(u, v, w)| = |
n∑

i,j=1

∫
Ω

uiDivj wj dx|

≤
n∑

i,j=1

|
∫

Ω

uiDivj wj dx|

≤
n∑

i,j=1

c(Ω)‖vj‖H1
0 (Ω)‖ui‖H1

0 (Ω)‖wj‖H1
0 (Ω)∩Ln(Ω)

≤ c(Ω, n)‖v‖H1
0 (Ω)‖u‖H1

0 (Ω)‖w‖H1
0 (Ω)∩Ln(Ω).

Thus, b is continuous, and well-defined. The linearity of b is trivial.
Let then n = 2. Now {H1

0 (Ω)}2 ∩ {L2(Ω)}2 = {H1
0 (Ω)}2. In this case,

we have, by Proposition 4.1, ui ∈ L4
loc(Ω), Divj ∈ L2(Ω) and wj ∈ L4

loc(Ω),
1 ≤ i, j ≤ 2. By Hölder’s inequality, we have uiDivj wj in L1

loc(Ω), and

|
∫

Ω

uiDivj wj dx| ≤
∫

Ω

|uiDivj wj dx|

≤ ‖Divj‖L2(Ω)‖ui‖L4(Ω)‖wj‖L4(Ω)

≤ c(Ω)‖vj‖H1
0 (Ω)‖ui‖H1

0 (Ω)‖wj‖H1
0 (Ω).
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Corollary 4.1. The form b is defined, trilinear and continuous on V ×V ×Ṽ ,
when Ω ⊂ Rn is any open set. If Ω is bounded and n = 2, 3, 4, b is trilinear
continuous on V × V × V .

Lemma 4.6. For any open set Ω,

1. b(u, v, v) = 0 for all u ∈ V , v ∈ Ṽ .

2. b(u, v, w) = −b(u,w, v) for all u ∈ V , v, w ∈ Ṽ .

Proof. By continuity, it suffices to show the first item for u ∈ V and v ∈ V ,
because V is dense in V and V is dense in Ṽ . For such u and v, we obtain
by integrating by parts∫

Ω

uiDivj vj dx =

∫
Ω

uiDi(
v2
j

2
) dx

=

∫
∂Ω

ui
v2
j

2︸︷︷︸
=0

νi dS −
∫

Ω

Diui
v2
j

2
dx,

and thus

b(u, v, v) =
n∑

i,j=1

(
−
∫

Ω

Diui
v2
j

2
dx
)

= −1
2

n∑
j=1

∫
Ω

n∑
i=1

Diui v
2
j dx

= −1
2

n∑
j=1

∫
Ω

div u︸ ︷︷ ︸
=0

v2
j dx = 0.

The second claim follows from the first one. Let u ∈ V , v, w ∈ Ṽ . Then
v + w ∈ Ṽ . We have

0 = b(u, v + w, v + w) = b(u, v, v + w) + b(u,w, v + w)

= b(u, v, v)︸ ︷︷ ︸
=0

+b(u, v, w) + b(u,w, v) + b(u,w,w)︸ ︷︷ ︸
=0

= b(u, v, w) + b(u,w, v),

and the claim follows.

50



Definition 4.4. Let f ∈ {L2(Ω)}n. The problem to find a function u such
that

u ∈ V and µ((u, v)) + b(u, u, v) = (f, v) ∀ v ∈ Ṽ , (4.13)

is the variational problem for equation (4.12).

If u, p and f are smooth functions that satisfy equation (4.12), then they
satisfy problem (4.13).

Conversely, if u ∈ V satisfies (4.13), then

〈−µ∆u+
n∑
i=1

uiDiu− f, v〉 = 0 ∀ v ∈ V

where ∆u ∈ H−1(Ω), f ∈ {L2(Ω)}n and uiDiu ∈ L
n
n−1 (Ω), since ui ∈

L
2n
n−2 (Ω) by 4.1 and Diu ∈ L2(Ω). In the case where n is arbitrary, we obtain

by Theorem 4.4 and a further regularization argument that p ∈ L1
loc(Ω) [6,

p. 163], such that (4.12a) is satisfied in the weak sense. u belonging to V
implies that u satisfies (4.12b) and (4.12c) in the weak and the trace theorem
senses.

Definition 4.5. The function u ∈ {H1
0 (Ω)}n satisfies (4.12) in the weak

sense if

∃ p ∈ L1
loc(Ω) s.t. µ((u, φ)) + (u ·Du, φ)− (p, div φ) = (f, φ) ∀ φ ∈ {D(Ω)}n,

(4.14a)

(u,Dφ) = 0 for all φ ∈ D(Ω), (4.14b)

γ0u = 0. (4.14c)

Then u is a weak solution to (4.12).

Lemma 4.7. The following are equivalent.

1. u satisfies variational problem (4.13).

2. u satisfies problem (4.14).

Proof. Let us prove the case n ≤ 4. In these cases, we may replace require-
ment p ∈ L1

loc(Ω) in (4.14a) with p ∈ L2(Ω).
Because Ω is supposed to be bounded and n ≤ 4, we have by Remark

4.7, that V = Ṽ . Thus, problem (4.13) becomes

u ∈ V and µ((u, v)) + b(u, u, v) = (f, v) ∀ v ∈ V. (4.15)
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Thus, there exists µ∆u− u ·Du+ f ∈ {D′(Ω)}n, such that

〈µ∆u− u ·Du+ f, v〉 = 0 ∀ v ∈ V ⊂ V.

In the case of the Stokes problem, we already observed that µ∆u ∈ H−1(Ω)
and f ∈ H−1(Ω). Because the norms of {H1

0 (Ω)}n and {H1
0 (Ω)}n∩{Ln(Ω)}n

are equivalent (now when Ω is bounded and n ≤ 4), we have by Proposition
4.1, as in the proof of Lemma 4.5

|b(u, v, w)| ≤ c(n)‖v‖H1
0 (Ω)‖u‖H1

0 (Ω)‖w‖H1
0 (Ω).

And thus, −u ·Du is linear and continuous for H1
0 (Ω) topology, and thus, it

belongs to H−1(Ω). By Remark 4.2, there exists p ∈ L2(Ω) such that

µ∆u− u ·Du+ f = Dp,

in the weak sense, that is

µ((u, φ)) + (u ·Du, φ)− (p, div φ) = (f, φ) ∀ φ ∈ {D(Ω)}n,

or

µ
n∑

i,j=1

∫
Ω

DjuiDjφi dx+
n∑

i,j=1

∫
Ω

ujDjuiφi dx−
∫

Ω

p div φ dx =
n∑

i,j=1

∫
Ω

fiφi dx

∀ φ ∈ {D(Ω)}n. Equations (4.14b) and (4.14c) follow as in the case of the
Stokes problem.

In the other direction, we obtain easily that

〈µ∆u− u ·Du+ f, v〉 = 0 ∀ v ∈ V .

But this holds also for each v ∈ V by a similar continuity argument as in the
case of the Stokes problem.

For the solution of the variational problem for the steady-state Navier-
Stokes equations (4.13), we have the following existence result.

Theorem 4.12. Let Ω be a bounded set in Rn and let f be given in H−1(Ω).
Problem (4.13) has at least one solution u ∈ V and there exists p ∈ L1

loc(Ω)
such that (4.14) holds.
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Proof. We prove the case n ≤ 4. In this case, we have Ṽ = V . The general
result is proved in Temam [6, p. 164].

V is a separable Hilbert space as a subspace of the separable space
{H1

0 (Ω)}n.
On the other hand, V is the closure of V in {H1

0 (Ω)}n topology, 〈V〉 = V .
There exists an independent set {wk}k∈N ⊂ V such that 〈{wk}k∈N〉 = V .

If every independent set {wi}i∈J of V with 〈{wi}i∈J〉 = V were uncountable,
it would contradict with the separability of V .

Define um =
∑m

i=1 ci,mwi, ci,m ∈ R such that

µ((um, wk)) + b(um, um, wk) = 〈f, wk〉, k = 1, . . . ,m.

Let Xm = 〈{w1, . . . , wm}〉. Define P = Pm by

(Pm(u), v)Xm = µ((u, v)) + b(u, u, v)− 〈f, v〉 ∀ u, v ∈ Xm.

Pm is then continuous since everything on the right hand side is continuous
for u. Furthermore

(Pm(u), u)Xm = µ‖u‖2 + b(u, u, u)︸ ︷︷ ︸
=0

−〈f, u〉

≥ µ‖u‖2 − ‖f‖V ′‖u‖
= ‖u‖(µ‖u‖ − ‖f‖V ′).

Choosing k > 1
µ‖f‖V ′

when ‖f‖V ′ > 0 and any k > 0 when ‖f‖V ′ = 0, we

have
(Pm(u), u)Xm ≥ k(µk − ‖f‖V ′) > 0.

Thus, we may apply Lemma 4.8 below and we know that there exists um ∈
Xm such that Pm(um) = 0. This implies

µ((um, wk)) + b(um, um, wk)− 〈f, wk〉 = (Pm(um), v)X = (0, v)X = 0,

for each v in Xm. Thus

µ((um, wk)) + b(um, um, wk) = 〈f, wk〉, k = 1, . . . ,m. (4.16)

Multiply (4.16) by ck,m and sum up the equations over k. Then, we have

m∑
k=1

ck,m[µ((um, wk)) + b(um, um, wk)− 〈f, wk〉] = 0,
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that is

µ((um,
m∑
k=1

ck,mwk)) + b(um, um,
m∑
k=1

ck,mwk)− 〈f,
m∑
k=1

ck,mwk〉 = 0.

We defined um =
∑m

k=1 ck,mwk, and thus, we have

µ‖um‖2 + b(um, um, um) = 〈f, um〉. (4.17)

But b(um, um, um) = 0, because um ∈ V , and 〈f, um〉 ≤ ‖f‖V ′‖um‖. Thus,
we have by (4.17)

‖um‖ ≤
1

µ
‖f‖V ′ .

{um}m is therefore a bounded sequence in V which is reflexive as a Hilbert
space. In a reflexive Hilbert space, every bounded sequence has a subsequence
that converges weakly in the space concerned. Thus by Theorem 2.15, there
exists u in V such that

〈g, um〉 → 〈g, u〉 for each g ∈ V ′.

By Theorem 4.8, the embedding V ⊂ {L2(Ω)}n is compact, that is ‖u‖L2(Ω) ≤
c‖u‖V . Furthermore, for each bounded sequence {um}∞m=1 ⊂ V , there exists
a subsequence {umj}∞j=1 and u ∈ {L2(Ω)}n such that

‖umj − u‖L2(Ω) → 0,

as j →∞.
By the observations above and by Lemma 4.9 below, if we let j → ∞

with the subsequence in (4.16), we find that

µ((u,wk)) + b(u, u, wk) = 〈f, wk〉, (4.18)

for any wk, k = 1, 2, 3, . . .. Equation (4.18) is also true for any v that is a
linear combination of wk. These linear combinations are dense in V and the
terms in equation (4.18) are continuous on V and thus (4.18) holds also for
each v ∈ V . Then u is a solution of problem (4.13), and by Lemma 4.7, u
satisfies (4.14).
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Remark 4.8. The procedure used in the proof of Theorem 4.12 in which
we find a proper approximate solution in increasing set of finite-dimensional
subspaces Xm of V and then be able to pass the limit, is called the Galerkin
method. The Galerkin method approximation is also used in finite element
analysis solving the equations numerically and is well adapted to finite ele-
ment applications [1].

Lemma 4.8. Let X be finite dimensional Hilbert space with scalar product
(·, ·)X and norm ‖·‖X . Let P be a continuous mapping from X to itself such
that

(P (ξ), ξ)X > 0 for every ξ with ‖ξ‖X = k > 0.

Then there exists ξ0 ∈ X such that ‖ξ0‖X ≤ k and

P (ξ0) = 0.

Proof. The proof follows from the Brouwer fixed point theorem. Suppose
that P has no zero in the closed ball B of radius k and centered at origin.
Define the mapping S

S(ξ) = −k P (ξ)

‖P (ξ)‖X
.

This S is continuous, since P is continuous, and it clearly maps B to itself,
and B is convex and compact as a closed subset of a finite dimensional
Banach space X. Thus, S satisfies the assumptions of the Brouwer fixed
point theorem, and S has a fixed point ξ0 ∈ B such that

−k P (ξ0)

‖P (ξ0)‖X
= ξ0,

for which ‖ξ0‖X = ‖−k P (ξ0)
‖P (ξ0)‖X

‖X = k, and on the other hand

‖ξ0‖2
X = (ξ0, ξ0)X = (−k P (ξ0)

‖P (ξ0)‖X
, ξ0) = −k (P (ξ0), ξ0)

‖P (ξ0)‖X
,

and thus,
‖ξ0‖2

X︸ ︷︷ ︸
≥0

‖P (ξ0)‖X︸ ︷︷ ︸
≥0

= − k︸︷︷︸
>0

(P (ξ0), ξ0)︸ ︷︷ ︸
>0

,

and we have a contradiction. Therefore, the proof of Lemma 4.8 is finished.
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Lemma 4.9. If ul converges to u in {L2(Ω)}n strongly, then

b(ul, ul, v)→ b(u, u, v) ∀ v ∈ V . (4.19)

Proof. By Lemma 4.6, b(u, u, v) = −b(u, v, u), u, v ∈ V . Thus because
v ∈ V ⊂ V and ul ∈ V , we have

b(ul, ul, v) = −b(ul, v, ul) = −
n∑

i,j=1

ul,iul,jDivj dx.

Because ‖ul,i − ui‖L2(Ω) → 0 by assumption and Divj ∈ L∞(Ω), we have

|
∫

Ω

ul,iul,jDivj dx−
∫

Ω

uiujDivj dx|

= |
∫

Ω

(ul,iul,j − uiuj)Divj dx|

≤ ‖Divj‖L∞(Ω)︸ ︷︷ ︸
=:M<∞

∫
Ω

|ul,iul,j − uiuj| dx

= M

∫
Ω

|ul,iul,j − ul,jui + ul,jui − uiuj| dx

≤M

∫
Ω

|ul,j||ul,i − ui|+ |ui||ul,j − uj| dx

= M

∫
Ω

|ul,j||ul,i − ui| dx+

∫
Ω

|ui||ul,j − uj| dx

≤M‖ul,j‖L2(Ω)‖ul,i − ui‖L2(Ω) +M‖ui‖L2(Ω)‖ul,j − uj‖L2(Ω).

But ul,j ∈ L2(Ω) and ui ∈ L2(Ω), and thus, the expression above converges
to 0 as l→∞. This implies (4.19) in Lemma 4.9.

For the uniqueness of the solution of (4.13), we only have the following
result [6, p. 167].

Theorem 4.13. If n ≤ 4 and µ is sufficiently large or f sufficiently small
such that

µ2 > c(n)‖f‖V ′ , (4.20)

then there exists a unique solution u of (4.13). c(n) is a constant from the
estimate for the form b in the proof of Lemma 4.5.
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Proof. In this case n ≤ 4, we have V = Ṽ . Furthermore, if u satisfies (4.15),
it satisfies (4.13). Choosing v = u in (4.15), we have

µ((u, u)) + b(u, u, u)︸ ︷︷ ︸
=0

= 〈f, u〉 ≤ ‖f‖V ′‖u‖.

Thus, for any solution u of problem (4.15), we have

‖u‖≤ 1

µ
‖f‖V ′ .

Let then u1 and u2 be two solutions of (4.15). Define u = u1 − u2. We
have

µ((u1, v)) + b(u1, u1, v) = 〈f, v〉 ∀ v ∈ V,
and

µ((u2, v)) + b(u2, u2, v) = 〈f, v〉 ∀ v ∈ V.
We obtain

µ((u, v)) + b(u1, u1, v) + (−b(u1, u2, v)︸ ︷︷ ︸
=b(u1,u,v)

+ b(u1, u2, v))− b(u2, u2, v)︸ ︷︷ ︸
=b(u,u2,v)

= 0 ∀ v ∈ V,

and thus
µ((u, v)) + b(u1, u, v) + b(u, u2, v) = 0 ∀ v ∈ V.

Let us choose again v = u. We have b(u1, u, u) = 0 and obtain

µ‖u‖2 + b(u, u2, u) = 0.

For b(u, u2, u), we have the estimate

|b(u, u2, u)| ≤ c(n)‖u2‖‖u‖2.

From the observations above, we obtain (u2 is a solution)

µ‖u‖2 ≤ c(n)‖u2‖‖u‖2 ≤ c(n)

µ
‖f‖V ′‖u‖2.

And finally,

(µ− c(n)

µ
‖f‖V ′)‖u‖2 ≤ 0.

But by assumption (4.20), we conclude that ‖u‖ = 0. And hence, u1 = u2

a.e.
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In the case of lower dimensions, we have a strong result for the regularity
of the solution. For the proof of Proposition 4.2 below, we refer to [6, p. 172].

Proposition 4.2. Let Ω be an open set of class C∞ in R2 or R3. Let f
be given in C∞(Ω). Then any solution {u, p} of equation (4.12) belongs to
C∞(Ω)× C∞(Ω).

4.4 Evolution Navier-Stokes equations

Let us first study the linear case of the evolution Navier-Stokes equations.
Let Ω be an open, bounded, C1 smooth set in Rn, let T > 0 be fixed. Denote
Q = Ω× (0, T ). Let us formulate the boundary value problem:

To find a vector function u : Ω × [0, T ] → Rn, a scalar function p :
Ω× [0, T ]→ R such that

Dtu− µ∆u+Dp = f in Ω× (0, T ), (4.21a)

div u = 0 in Ω× (0, T ), (4.21b)

u = 0 on ∂Ω× [0, T ], (4.21c)

u(x, 0) = u0(x) in Ω. (4.21d)

Here, f : Ω× [0, T ]→ R3 and u0 : Ω→ R3 are given.
Suppose that u and p are classical solutions of (4.21), u ∈ C2(Q) and

p ∈ C1(Q). Let v ∈ V . As in the case of the Stokes equations, we obtain by
taking the scalar product of (4.21a) with v the following equality:

(Dtu, v) + µ((u, v)) = (f, v) ∀ v ∈ V .

By continuity, this equation holds for each v ∈ V also.
By Lemma 3.1, we have

d
dt

(u, v) =
n∑
i=1

d
dt

∫
Ω

uivi dx =
n∑
i=1

∫
Ω

Dt(uivi) dx

=
n∑
i=1

∫
Ω

(Dtui)vi dx = (Dtu, v).

We define the following problem.
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Definition 4.6. For f and u0 given, f ∈ L2(0, T ;V ′), u0 ∈ H, to find u
satisfying

u ∈ L2(0, T ;V ), (4.22a)
d
dt

(u, v) + µ((u, v)) = 〈f, v〉 ∀ v ∈ V, (4.22b)

u(0) = u0. (4.22c)

Another alternative formulation of problem (4.21) is:
For f and u0 given, f ∈ L2(0, T ;V ′), u0 ∈ H, to find u satisfying

u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ′), (4.23a)

u′ + µAu = f on (0, T ) in the weak sense, (4.23b)

u(0) = u0. (4.23c)

Lemma 4.10. The following are equivalent.

1. u satisfies problem (4.22).

2. u satisfies problem (4.23)

Proof. By representations (4.6) and (4.7), we may write (4.22b) as

d
dt
〈u, v〉 = 〈f − µAu, v〉 ∀ v ∈ V. (4.24)

Since A is linear and continuous from V to V ′ and u ∈ L2(0, T ;V ), the
function Au belongs to L2(0, T ;V ′). Thus, f−µAu ∈ L2(0, T ;V ′). By (4.24)
and Lemma 4.3, the weak time derivative of u, u’, belongs to L2(0, T ;V ′).
Furthermore, by Lemma 4.3, the equality (4.24) implies that

u′ = f − µAu

in the weak sense.
Conversely, if u satisfies (4.23), we see easily that u satisfies (4.22b) for

all v ∈ V .

Remark 4.9. By Lemma 4.3, u ∈ L2(0, T ;V ) solving the weak problems
is almost everywhere equal to an absolutely continuous function from [0, T ]
to V ′. Any function satisfying (4.22a) and (4.22b) is, after modification on
a set measure zero, a continuous function from [0, T ] into V ′. Therefore,
condition (4.22c) makes sense.
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For the existence of the weak solution of problem (4.23), we have the
following two theorems proved in [6].

Theorem 4.14. For given f and u0, f ∈ L2(0, T ;V ′), u0 ∈ H, there exists
a unique function u which satisfies (4.23). Moreover,

u ∈ C([0, T ];H).

The following theorem shows in which sense the solutions of equation
(4.23) given by Theorem 4.14 solve equation (4.21).

Theorem 4.15. Let the assumptions be as in Theorem 4.14. Then, there
exists functions u and p defined in Q such that the function u defined by
Theorem 4.14, and p satisfy (4.21a) in the weak sense in Q. Furthermore,
(4.21b) is satisfied in the weak sense, and (4.21d) is satisfied in the sense
that

u(t)→ u0 in L2(Ω) as t→ 0.

Consider now the full Navier-Stokes equations and the case n ≤ 4. In its
classical formulation, the initial boundary value problem of the full Navier-
Stokes equations is the following:

To find a vector function u : Ω × [0, T ] → Rn and a scalar function
p : Ω× [0, T ]→ R such that

Dtu− µ∆u+ u ·Du+Dp = f in Ω× (0, T ), (4.25a)

div u = 0 in Ω× (0, T ), (4.25b)

u = 0 on ∂Ω× (0, T ), (4.25c)

u(x, 0) = u0(x), in Ω. (4.25d)

Functions f and u0 are given and defined on Ω× [0, T ] and Ω respectively.
We formulate the following problem (4.25), introduced by Jean Leray.

Definition 4.7. Let f ∈ L2(0, T ;V ′) and u0 ∈ H be given. To find u
satisfying

u ∈ L2(0, T ;V ), (4.26a)
d
dt

(u, v) + µ((u, v)) + b(u, u, v) = 〈f, v〉 ∀ v ∈ V, (4.26b)

u(0) = u0. (4.26c)
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In the following, we show that if u satisfies equation (4.25) then u solves
problem (4.26) of it. Assume that u and p are the classical solutions of (4.25),
u ∈ C2(Q), p ∈ C1(Q). Then u ∈ L2(0, T ;V ), and for each v ∈ V , we obtain
similarly to the case above that

d
dt

(u, v) + µ((u, v)) + b(u, u, v) = 〈f, v〉.

By continuity, this holds for each v ∈ V .

Lemma 4.11. Assume that u belongs to L2(0, T ;V ) (n ≤ 4). Then, the
function Bu defined by

〈Bu(t), v〉 = b(u(t), u(t), v) ∀ v ∈ V, a.e. t ∈ [0, T ],

belongs to L1(0, T ;V ′).

We refer to [6] for the the proof.
Problem (4.26) is also stated as follows:
Let f and u be given with f ∈ L2(0, T ;V ′) and u0 ∈ H. To find u

satisfying

u ∈ L2(0, T ;V ), u′ ∈ L1(0, T ;V ′), (4.27a)

u′ + µAu+Bu = f on (0, T ) in the weak sense, (4.27b)

u(0) = u0. (4.27c)

In the following, we show that if u satisfies problem (4.26) then it satisfies
problem (4.27), and vice versa. Let u satisfy (4.26a) and (4.26b). Then, by
(4.6) and (4.7), we may write (4.26b) as

d
dt
〈u, v〉 = 〈f − µAu−Bu, v〉 ∀ v ∈ V.

Since Au ∈ L2(0, T ;V ′), as in the linear case, the function f − µAu − Bu
belongs to L1(0, T ;V ′) by Lemma 4.11. Lemma 4.3 implies that

u′ ∈ L1(0, T ;V ′),

u′ = f − µAu−Bu in the weak sense,

Then, u is almost everywhere equal to a continuous function from [0, T ] into
V ′. Thus condition (4.26c) makes sense.

The converse is seen easily.
For the full Navier-Stokes equations we have the following existence result.

For the proof we refer to [6].
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Theorem 4.16. Let n ≤ 4. Let f and u be given with f ∈ L2(0, T ;V ′)
and u0 ∈ H. Then there exists at least one function u satisfying (4.27).
Moreover,

u ∈ L∞(0, T ;H)

and u is weakly continuous from [0, T ] into H, that is, ∀ v ∈ H, t 7→ (u(t), v)
is a continuous scalar function.

Remark 4.10. Theorem 4.16 does not say anything about the existence of
p.

In the two-dimensional case, the solution u of problems (4.26) and (4.27)
given by Theorem 4.16 is unique. Moreover u is almost everywhere equal to
a function continuous from [0, T ] into H and u0(t)→ u0 in H as t→ 0.

In the three-dimensional case, the uniqueness of the solution u given by
Theorem 4.16 is not known. The uniqueness has been shown in a class of
functions where the existence is not known.
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