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Jyväskylä October 28, 2005
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In this introductory part these articles will be referred to [A], [B] and [C], whereas

other references will be numbered as [1], [2]...

The author of this dissertation has actively taken part in research of the joint

paper [B].



5

1. Introduction

In this thesis we study approximation problems for certain stochastic integrals

driven by a diffusion (Xt)t∈[0,T ] defined as a solution of

X i
t = xi

0 +

∫ t

0

bi(Xu)du +

d
∑

j=1

∫ t

0

σij(Xu)dW j
u , i ∈ {1, . . . , d} ,

where x0 ∈ R
d, (Wt)t∈[0,T ] is a d-dimensional Brownian motion and the vector b and

matrix σ satisfy certain assumptions. Suppose a Borel-function f : R
d → R and a

representation

f(XT ) = V0 +

d
∑

k=1

∫ T

0

Nk
udXk

u a.s.

for some predictable stochastic process (Nu)u∈[0,T ] and some V0 ∈ R. The approxi-

mation of the random variable f(XT ) − V0, in another words the approximation of

the stochastic integral
∑d

k=1

∫ T

0
Nk

udXk
u , can be motivated by problems in stochastic

finance. Maybe, the best known example of this kind is given by a European call op-

tion with strike price K > 0 and the expiration date T . This option gives its holder

the right, but not the obligation, to buy the stock at time T for a price K. Let XT

denote the price of the underlying stock at time T . The holder exercises the option if

XT −K > 0 and gains the amount of XT −K. If XT −K ≤ 0, then the holder has no

interest in exercising the option. In case of this example the trader has to pay, at time

T , to the holder an amount of f(XT ), where f(x) := (x − K)+ = max {0, x − K}.
Let us now assume that the market consists of d stocks and the prices of the stocks

at time t ∈ [0, T ] are given by the d-dimensional stochastic process X = (Xt)t∈[0,T ]

and that a trader sells an option with pay-off function f(XT ). The following two

questions naturally arise:

(1) How much should the buyer (holder) of the option pay for the option?

(2) How should the trader generate the amount f(XT ) until time T ?

Assume that the trader has sold the option at price V0 and he is trying to gain

the amount f(XT ) by using a dynamic trading strategy (N, R) = (Nt, Rt)t∈[0,T ] in

the stocks X, where the process N = (Nt)t∈[0,T ] denotes the number of stocks hold

by the trader at time t and R = (Rt)t∈[0,T ] is some riskless asset, for example a

bank account, where we assume that we are in the discounted setting (i.e. the

interestrate is equal to zero). The value of the traders portfolio at time t is given by
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Vt :=
∑d

k=1 Nk
t Xk

t + Rt. The cumulative gains or losses from trading in the stocks

up to time t are given by the stochastic integral
∑d

k=1

∫ t

0
Nk

udXk
u and the amount

of money that the trader has spent to his portfolio up to time t, using the strategy

(N, R), is given by Ct := Vt −
∑d

k=1

∫ t

0
Nk

udXk
u . If the Ct is constant as function of t,

Ct = V0 ∈ [0,∞), we say that the strategy (N, R) is self-financing with initial capital

V0 i.e. after time zero the trader does not introduce anymore ”new” money to the

strategy and he does not take money out. A self-financing strategy is completely

described by V0 and N since the initial capital and number of the stocks held by the

trader determine V and hence also R. Moreover we have that

f(XT ) = VT = V0 +
d
∑

k=1

∫ t

0

Nk
udXk

u a.s. (1.1)

where V0 is the initial capital of the strategy. It is clear that in practice the continuous

strategy (1.1) has to be replaced by a discretely adjusted one. This leads to an

approximation of a continuously adjusted portfolio by a discretely adjusted one. In

mathematical terms this means that we deal with the approximation problem

d
∑

k=1

∫ T

0

Nk
udXk

u ≈
d
∑

k=1

n
∑

i=1

Nk
ti−1

(Xk
ti
− Xk

ti−1
),

where 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = T is a certain time-net (t0, . . . , tn−1 are the

trading times of the writer of the option). The risk originating from the replacement

of the continuous strategy by the discrete strategy is described by the difference

f(XT ) − VT =
d
∑

k=1

∫ t

0

Nk
udXk

u −
d
∑

k=1

n
∑

i=1

Nk
ti−1

(Xk
ti
− Xk

ti−1
).

The size of the difference will be measured in L2 which corresponds to some kind

of mean-variance hedging (cf. [18]). Of course, there are other possible measures

for this difference. For example, one could use Lp-norms for 2 < p < ∞ and one

gets (under certain conditions) better distributional tail-estimates than the L2-norm

gives (cf. [10]). One could also look for strategies that maximize the probability

of successful hedge like in [4] or use more general risk-measure as in [5], where the

trader’s risk aversion is described by convex functions. Also a distributional approach

can be used to study the approximation error, for this see [17] and [12].

We will measure the risk of the above approximation with respect to L2 and ap-

proximate continuously adjusted portfolio by self-financing discretely adjusted ones.
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Our interest lies in the rate of convergence of the approximation as the approxima-

tion error is minimized over all time-nets with at most n+1 time-knots. This means

that we are interested in the quantity

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
∑

k=1

∫ T

0

Nk
udXk

u −
d
∑

k=1

n
∑

i=1

Nk
ti−1

(Xk
ti
− Xk

ti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

(1.2)

as n tends to infinity, where

Tn := {(ti)m
i=0 : 0 = t0 < t1 < · · · < tm = T, m ≤ n}.

The following chapters give an overview of the work done in this thesis. We shall

use the standard assumptions from stochastic calculus, i.e. we assume a complete

probability space (Ω,F , P) and for T > 0 a right continuous filtration (Ft)t∈[0,T ]

generated by a standard d-dimensional Brownian motion W = (Wt)t∈[0,T ] such that

FT = F and F0 contains all null-sets of F (cf. [15]).

2. One-dimensional case

In this section we consider the one-dimensional case, d = 1, take T = 1 and

assume that the underlying diffusion X is given by

Xt = x0 +

∫ t

0

σ(Xu)dWu, t ∈ [0, 1], a.s.

where W = (Wt)t∈[0,1] is the standard Brownian motion and σ(x) = 1 and x0 = 0

or σ(x) = x and x0 = 1. In the first case, X is the Brownian motion W and in the

second case the geometric Brownian motion S = (St)t∈[0,1] given by

St := eWt−
t
2 .

For a random variable g(S1) we shall write in the following f(W1) with

f(x) = g(ex− 1
2 ). (2.1)

Our main tool in the 1-dimensional case is the family of Hermite polynomials defined

by

hn(x) :=
1√
n!

(−1)nDne−
x2

2

e−
x2

2

.

They form a complete orthonormal system in the Hilbert-space

L2(γ) :=

{

f : R → R : f is a Borel-function and ||f ||2L2(γ) :=

∫

R

f 2(x)dγ(x) < ∞
}

,

(2.2)
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where γ is the standard Gaussian measure on the real line:

dγ(x) = e−
x2

2
dx√
2π

.

The above choice of the process X as the Brownian motion or the geometric Brownian

motion allows us to exploit Hermite polynomial expansions i.e. the random variable

f(W1) can be represented as a sum of Hermite polynomials

f(W1) =
∞
∑

k=0

αkhk(W1),

where f ∈ L2(γ) and
∑

∞

k=0 α2
k < ∞. Using the above expansion of f(W1) we are able

to transform the calculation of the approximation rate to a completely deterministic

problem.

Under the assumption that f ∈ L2(γ) we know that

f(W1) = Ef(W1) +

∫ 1

0

∂

∂x
F (u, Xu)dXu a.s.,

where

F (t, x) := E(f(W1)|Xt = x) for t ∈ [0, 1) and

for x ∈ R if X is the Brownian motion and x ∈ (0,∞) if X is the geometric Brownian

motion. Now the quantity (1.2) takes the form

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

.

2.1. A lower estimate for the approximation rate.

For non-linear functions g : (0,∞) → R with g(x) =
∫ x

0
K(s)ds (for the connec-

tion of functions f and g cf. equation (2.1) above), where K is a Borel-function of at

most polynomial growth, and equidistant time-nets (ti)
n
i=0 = (i/n)n

i=0, it was shown

by Zhang [20] (see also [13]) that there is a constant Cg > 0 such that

1

Cgn1/2
≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ Cg

n1/2

(2.3)

for n = 1, 2, . . . and X = S. Later on, Gobet and Temam showed that one does

not always have the rate n−1/2 for equidistant nets. In [11] they gave examples of
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functions fη such that

1

Cηnη
≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(fη(W1) −Efη(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ Cη

nη

for n = 1, 2, . . ., X = S, η ∈ [1
4
, 1

2
) and some Cη > 0. Geiss [9] considered the problem

with general deterministic time-nets, not only equidistant ones and proved that the

hedging error for a simple discretized delta-hedging strategy is, up to multiplicative

constants, equivalent to hedging error if the strategy is optimized i.e.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

(2.4)

and

inf
vi−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

vi−1(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

, (2.5)

where vi−1 are certain Fti−1
measurable random variables, are equivalent up to mul-

tiplicative constants. The equivalence of (2.4) and (2.5) implies that it is enough

to consider only the error produced by the natural approximation arising from the

definition of the stochastic integral

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
).

Moreover, it is shown in ref. [9] that the approximation error for any deterministic

time-net can be completely controlled by the help of the function

HX(f, u) :=

∣

∣

∣

∣

∣

∣

∣

∣

(

σ2 ∂2

∂x2
F

)

(u, Xu)

∣

∣

∣

∣

∣

∣

∣

∣

L2

, u ∈ [0, 1).

In particular, it was derived that for a large class of random variables f(W1) ∈ L2

the optimal convergence rate is n−1/2 if one optimizes over time-nets of cardinality

n + 1:

Theorem 1. [8, Lemma 4.14, Proposition 4.16]

Let f(W1) ∈ L2 and X is the Brownian motion or the geometric Brownian motion.

Assume that supu∈[0,1) HX(f, u) > 0 and that there are C ∈ (0,∞) and α ∈ (1,∞)

with

HX(f, u) ≤ C
[

α + log
(

1 + 1
1−u

)]α
(1 − u)

(2.6)
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for all u ∈ [0, 1). Then

0 < inf
n

√
n

[

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

]

≤ sup
n

√
n

[

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

]

< ∞.

Remark 2.

In Theorem 1, the condition supu∈[0,1) HX(f, u) > 0 is equivalent with the assumption

that there are no constants c0, c1 ∈ R such that f(W1) = c0 + c1X1 a.s.

Using Theorem 1 it follows that in the case of Zhang [20] (equation (2.3)) the

equidistant time-nets give the optimal approximation rate. By Theorem 1 it can be

also proved that for the examples given by Gobet and Temam [11], one has the rate

n−1/2 in case the time-nets are optimized. Thus the approximation by equidistant

time-nets is not necessarily the optimal approximation.

This yields to the natural question whether the upper bound from Theorem 1

is valid for all random variables f(W1) ∈ L2 without an additional assumption like

(2.6). In the article [A] this problem is solved by a dynamic programming type

argument. Theorem 3 shows the existence of random variables f(W1) ∈ L2 such

that the quantity

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(fβ(W1) −Efβ(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

tends to zero as slowly as one wishes:

Theorem 3. [A, Theorem 1.3]

For each sequence β = (βn)∞n=1 of positive real numbers, βn ↘ 0, there exists a

function fβ ∈ L2(γ) such that

inf
τ∈Tn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(fβ(W1) −Efβ(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≥ βn (2.7)

for n = 1, 2, . . . and X is the Brownian motion or the geometric Brownian motion.

Remark 4. The functions fβ from Theorem 3 are defined through their Hermite

polynomial expansions and thus not explicitly known.
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We finish this chapter by two comments on possible future work connected to

the results considered above:

• In stochastic finance, also random time-nets are used for the discrete time

hedging. In [7] these random time-nets are considered and it has been shown

that, as for deterministic time-nets, one gets the general lower bound n−1/2

for the approximation rate. The following question is open: Is it possible to

construct examples like in Theorem 3 for the random time-nets or do the

random time-nets guarantee a general upper bound for the approximation

rate valid for all f(W1) ∈ L2?

• In all the above references, except in [10], the approximation error is mea-

sured with respect to L2. It is of interest to obtain similar results in case

the L2-norm is replaced by an Lp-norm for p > 2.

2.2. Smoothness of f vs. approximation rates.

In this chapter we deal with the connection between the approximation properties

of f(W1) measured by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

and the fractional smoothness of f expressed in terms of the Besov spaces Bθ
2,q(γ)

which are defined by the real interpolation method (cf. [1] and article [B]) as

Bθ
2,q(γ) := (L2(γ), D1,2(γ))θ,q,

where L2(γ) is the standard Gaussian L2-space defined in (2.2) and D
1,2(γ) is the

corresponding Sobolev space defined as

D
1,2(γ) : =







f : R → R : f =
∞
∑

k=0

αkhk, ||f ||
D1,2(γ) :=

(

∞
∑

k=0

α2
k +

∞
∑

k=1

α2
kk

)
1
2

< ∞







=
{

f : R → R : f ∈ L2(γ) ∩ P,
(

||f(W1)||2L2 + ||f ′(W1)||2L2

)
1
2 < ∞

}

,

where P is the set of all polynomials and D denotes the completion of the set D.

A first connection in this direction is presented in [6] in terms of the spaces

Bθ
2,∞(γ) = (L2(γ), D1,2(γ))θ,∞. The results in [6, Theorems 2.8 and 2.9] imply, as

explained in [6, page 349],
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Theorem 5. [6]

Let θ ∈ (0, 1), f ∈ L2(γ), and W be the Brownian motion. Then the following

assertions are equivalent:

(1) f ∈ Bθ
2,∞(γ).

(2) There is a C > 0 such that, for all n = 1, 2, ... and τn := (i/n)n
i=0 = (tni )n

i=0,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Wtni−1

)(Wtni
− Wtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ Cn−
θ
2 . (2.8)

Moreover, f ∈ D
1,2(γ) if and only if

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Wtni−1

)(Wtni
− Wtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ Cn−
1
2 .

Theorem 5 will be extended by Theorem 6 below by considering the approxima-

tion with respect to both the Brownian motion and the geometric Brownian motion

and allowing q ∈ [1,∞] instead of q = ∞.

Theorem 6. [B, Theorem 3.4]

Let q ∈ [1,∞], θ ∈ (0, 1), and X be the Brownian motion or the geometric Brownian

motion. Then

1

C
‖f‖Bθ

2,q(γ)

≤ ‖f‖L2(γ)+

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
θ
2
−

1
q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Xtni−1

)(Xtni
− Xtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

)∞

n=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

lq

≤ C‖f‖Bθ
2,q(γ)

where C = C(θ, q) ≥ 1, τn := (i/n)n
i=0 = (tni )n

i=0 and ||·||lq is a sequence space norm.

For example, in [11] there are natural examples of functions f such that

lim
n→∞

n
θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Stni−1

)(Stni
− Stni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

∈ (0,∞) (2.9)

for certain θ ∈ (0, 1), where τn = (i/n)n
i=0 = (ti)

n
i=0 are the equidistant nets. Now one

might ask the question: under what conditions is there a limit as in (2.9)? Theorem

6 shows that limits of type (2.9) for certain θ ∈ (0, 1) require

f ∈ Bθ
2,∞(γ) \

⋃

q∈[1,∞)

Bθ
2,q(γ).



13

In fact, (2.9) gives
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Xtni−1

)(Xtni
− Xtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ C

n
θ
2

and f(W1) 6∈ Bθ
2,q(γ) for all q ∈ [1,∞) since

lim inf
n

n
θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Xtni−1

)(Xtni
− Xtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

> 0

by (2.9). This shows that a limit as in (2.9) does not exist in general, but requires

f ∈ Bθ
2,∞(γ).

Let us now assume that f ∈ Bθ
2,q(γ) and discuss the problem to find time-nets

0 = t
(n)
0 < · · · < t

(n)
n = 1 that minimize

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (tni−1, Xtni−1

)(Xtni
− Xtni−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

up to a multiplicative constant as n → ∞. These time-nets are introduced, for

example, in [9, Chapter 6] and Theorem 7 implies that this choice is precisely deter-

mined by the spaces Bθ
2,2(γ). As we will see the typical property of the time-nets τn

realizing the rate n−1/2 is that their knots concentrate more and more close to the

time-horizon (see Figure 1. below).

Theorem 7. [B, Theorem 3.2]

Let θ ∈ (0, 1), f ∈ L2(γ), and X be either the Brownian motion or the geometric

Brownian motion. Then the following assertions are equivalent:

(i) f ∈ Bθ
2,2(γ).

(ii) There is a C2 > 0 such that, for all τ = (ti)
n
i=0 ∈ T ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (ti−1, Xti−1

)(Xti − Xti−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ C2 sup
i=1,...,n

(ti − ti−1)
1
2

(1 − ti−1)
1−θ
2

.

(iii) There is a C3 > 0 such that, for all n = 1, 2, ...,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(f(W1) −Ef(W1)) −
n
∑

i=1

∂

∂x
F (t

(n,θ)
i−1 , X

t
(n,θ)
i−1

)(X
t
(n,θ)
i

− X
t
(n,θ)
i−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ C3√
n
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where the nets τ θ
n are given by

t
(n,θ)
i := 1 −

(

1 − i

n

)
1
θ

.

0.2 0.4 0.6 0.8 1
Equidistant net

0.2

0.4

0.6

0.8

1

Optimal net

Figure 1. Equidistant nets vs. Optimizing nets for θ = 3/4.

3. Multi-dimensional case

In the final chapter we work in the multi-dimensional setting, d = 1, 2, 3, . . . We

start with the diffusion (Yt)t∈[0,T ], T > 0, given as unique solution of

Y i
t = yi

0 +

∫ t

0

b̂i(Yu)du +
d
∑

j=1

∫ t

0

σ̂ij(Yu)dW j
u , i = 1, . . . , d, a.s.

where

b̂i(x), σ̂ij(x) ∈ C∞

b (Rd)

and σ̂σ̂T , where (σ̂σ̂T )ij(x) =
∑d

k=1 σ̂ik(x)σ̂jk(x), is uniformly elliptic i.e.

d
∑

i,j=1

(σ̂σ̂T )ij(x)ξiξj ≥ λ ||ξ||2 , for all x, ξ ∈ R
d and some λ > 0.



15

The reason to start with this process is that under the above assumptions the process

Y has a transition density Γ with appropriate tail estimates (cf. [2] and [3]) needed

to prove our results.

The process X is now defined in two cases by

(Bm) Xt := Yt,

(gBm) Xt := eYt ,

where we set ey := (ey1, . . . , eyd) for y ∈ R
d. The first case is related to the Brownian

motion and the second one is close to the geometric Brownian motion. Now for some

vector b and matrix σ the process X is of form

X i
t = xi

0 +

∫ t

0

bi(Xu)du +

d
∑

j=1

∫ t

0

σij(Xu)dW j
u , i = 1, . . . , d, a.s.

where x0 ∈ R
d. We notice that here we also allow a drift term in the underlying

diffusion process for our approximation problem (which is sometimes remarked, but

not carried out, in the literature).

The multi-dimensional case was studied before by Zhang [20] and Temam [19] for

equidistant nets. For certain C1-functions Zhang established the rate n−1/2. On the

other side, Temam proved the rate n−1/4 for the European digital option. The article

[C] improves, for example, the approximation rate of the European digital option in

the multi-dimensional case from n−1/4 to n−1/2 by replacing the equidistant nets by

general deterministic nets. From Theorem 8 below it follows for a certain class of

functions f that one gets the L2-approximation rate of n−1/2 by optimizing over all

deterministic nets of cardinality n + 1.

To present our result we assume, for some q ∈ [2,∞) and C > 0, that

|f(x)| ≤ C (1 + ||x||q) , x ∈ E,

where f : E → R is a Borel-function and the set E is defined by

E :=







R
d, in case (Bm)

(0,∞)d, in case (gBm).

The functions Qi : R
d → R for i = 1, . . . , d are defined by

Qi(x) :=







1, in case (Bm)

xi, in case (gBm)
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and the random variable f(XT ) has a representation

f(XT ) = F (0, X0) +
d
∑

k=1

∫ T

0

∂

∂xk

F (u, Xu)dXk
u a.s.

where F (t, x) := E(f(ZT )|Zt = x) with Z = (Zt)t∈[0,T ] being a solution of

Z i
t = xi

0 +

d
∑

j=1

∫ t

0

σij(Zu)dW j
u , i = 1, . . . , d, a.s.

Using this notation we have

Theorem 8. [C, Theorem 1]

Assume that for all x ∈ E
∣

∣

∣

∣

∂s

∂q
xβ∂r

xα

σij(x)

∣

∣

∣

∣

≤ C1
Qi(x)

Qq
β(x)Qr

α(x)
, q + r = s, q, r, s ∈ {0, 1, 2} ,

|bi(x)| ≤ C1Qi(x) and (σσT )ii(x) ≥ 1
C1

Q2
i (x) for i ∈ {1, . . . , d} and some fixed

C1 > 0. Moreover, assume that

sup
α,β
E[(σσT )αα(Xt)(σσT )ββ(Xt)

∣

∣

∣

∣

∂2

∂xαxβ

F (t, Xt)

∣

∣

∣

∣

2
]

≤ C2

(T − t)2θ
, θ ∈ [0, 1), (3.1)

for some C2 > 0. Then



E sup
t∈[0,T ]

∣

∣

∣

∣

∣

n
∑

i=1

d
∑

k=1

∫ tηi ∧t

tηi−1∧t

(

∂

∂xk

F (u, Xu) −
∂

∂xk

F (tηi−1, Xtηi−1
)

)

dXk
u

∣

∣

∣

∣

∣

2




1
2

≤ D1√
n

,

where

τ η
n :=

(

T

(

1 −
(

1 − i

n

)
1

1−η

))n

i=0

and







η = 0, θ ∈ [0, 1
2
)

η ∈ (2θ − 1, 1), θ ∈ [1
2
, 1)

and D1 > 0 depends at most on η, C1, C2, d and T .

In addition assume that

inf
u∈(r,s)

H2(u) = CH > 0, (3.2)

for some 0 ≤ r < s < T , where H is defined by

H2(u) := E d
∑

α,β,i,k=1

(σσT )αβ(Xu)(σσT )ik(Xu)
∂2

∂xαxi

F (u, Xu)
∂2

∂xβxk

F (u, Xu), u ∈ [0, T ).

(3.3)

Then we have following two cases:
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(1) If θ ∈ [0, 3/4), then we have for any sequence of time-nets 0 = tn0 ≤ tn1 ≤
. . . ≤ tnn = T with supi=1,...,n(t

n
i − tni−1) ≤ Cτ/n, Cτ > 0, that

lim inf
n→∞

√
n



E sup
t∈[0,T ]

∣

∣

∣

∣

∣

n
∑

i=1

d
∑

k=1

∫ tni ∧t

tni−1∧t

(

∂

∂xk

F (u, Xu) −
∂

∂xk

F (ti−1, Xti−1
)

)

dXk
u

∣

∣

∣

∣

∣

2




1
2

(3.4)

≥ 1

D2

.

(2) If θ ∈ [3/4, 1), then we have that

lim inf
n→∞

√
n



E sup
t∈[0,T ]

∣

∣

∣

∣

∣

n
∑

i=1

d
∑

k=1

∫ tη,n
i ∧t

tη,n
i−1∧t

(

∂

∂xk

F (u, Xu) −
∂

∂xk

F (tη,n
i−1, Xtη,n

i−1
)

)

dXk
u

∣

∣

∣

∣

∣

2




1
2

(3.5)

≥ 1

D2
.

The constant D2 > 0 depends at most on C1, C2, CH , d and T .

We finish by some remarks concerning Theorem 8. The same results as in [9]

can be proved for the multi-dimensional case under the additional assumptions, for

example, that σ̂ is a diagonal matrix and that the process X does not have a drift. In

the general multi-dimensional case the results from [9] cannot be straightforwardly

extended because part of the arguments from the 1-dimensional case do not seem to

apply in the multi-dimensional situation. The restriction θ ∈ [0, 3/4) in item (1) of

Theorem 8 contradicts the intuitive understanding since larger θ should correspond

to a worse approximation, however, we need the restriction for technical reason (but

believe that it can be removed). Moreover, in reference [9] in the 1-dimensional

case it has been shown that the error can be completely controlled by a certain

deterministic function and that the optimal convergence rate is n−1/2 when optimized

over deterministic nets of cardinality n + 1. The candidate for this function in the

multi-dimensional case seems to be the function H defined in (3.3). Hence, for the

future work, it would be worthy to clarify where this function H guarantees the

same results as in [9], which would remove the restriction θ ∈ [0, 3/4) in item (1) of

Theorem 8.
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