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ABSTRACT

Kudryashova, Elena V.
Cycles in continuous and discrete dynamical systems: Computations, computer-
assisted proofs, and computer experiments
Jyväskylä: University of Jyväskylä, 2009, 79 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 107)
ISBN 978-951-39-3666-2 (PDF), 978-951-39-3533-4 (nid.)
Finnish summary
Diss.

The present work is devoted to calculation of periodic solutions and bifurcation
research in quadratic systems, Lienard system, and nonunimodal one-dimensional
discrete maps using modern computational capabilities and symbolic computing
packages.

In the first Chapter the problem of Academician A.N. Kolmogorov on lo-
calization and modeling of cycles of quadratic systems is considered. For the
investigation of small limit cycles (so-called local 16th Hilbert’s problem) the
method of calculation of Lyapunov quantities (or Poincaré-Lyapunov constants)
is used. To calculate symbolic expressions for the Lyapunov quantities the Lya-
punov method to the case of nonanalytical systems was generalized. Following
the works of L.A. Cherkas and G.A. Leonov, the symbolic algorithms for trans-
formation of quadratic systems to special Lienard systems were developed. For
the first time general symbolic expressions of first four Lyapunov quantities for
Lienard systems are obtained. The large limit cycles (or "normal" limit cycles) for
quadratic and Lienard systems with parameters corresponding to the domain of
existence of a large cycle, obtained by G.A. Leonov, are presented. Visualization
on the plane of parameters of a Lienard system of the domain of parameters of
quadratic systems with four limit cycles, obtained by S.L. Shi, is realized.

The second Chapter of the thesis is devoted to nonunimodal one-dimensional
discrete maps describing operation of digital phase-locked loop (PLL).Qualitative
analysis of PLL equations helps one to determine necessary system operating
conditions (which, for example, include phase synchronization and clock skew
elimination). In this work, application of the qualitative theory of dynamical sys-
tems, special analytical methods, and modern mathematical packages has helped
us to advance considerably in calculation of bifurcation values and to define nu-
merically fourteen bifurcation values of the DPLL’s parameter. It is shown that
for the obtained bifurcation values of a nonunimodal map, the effect of conver-
gence similar to Feigenbaum’s effect is observed.

Keywords: limit cycles, Kolmogorov’s problem, Lyapunov quantities, four limit
cycles of two-dimensional dynamical systems, Lienard system, phase
locked loops, period-doubling bifurcations, bifurcation parameters
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INTRODUCTION AND THE STRUCTURE OF THE WORK

This work is devoted to calculation of periodic solutions and bifurcation research
in quadratic systems, Lienard system, and nonunimodal one-dimensional dis-
crete maps using modern computational capabilities and symbolic computing
packages.

The study of such systems is an actual problem and has great importance
for various areas of applied research: biology, mechanics, electronics. For ex-
ample, consideration of various population models in biology leads to the study
of quadratic systems [Murray, 2003; Mark Kot, 2001; Rockwood, 2006], and the
Lienard system describes dynamics of various mechanical and electronic systems
[Andronov, Vitt & Khaiken, 1966; Leonov, 2006]. In such models, limiting peri-
odic solutions [Leonov, 2006; Leonov, 2009; Kuznetsov, 2008] are of great impor-
tance. The one-dimensional discrete maps considered arise in analysis of opera-
tion of digital phase locked loops [Gardner, 1966; Lindsey, 1972; Lindsey & Chie,
1981; Leonov, Reitmann & Smirnova, 1992; Leonov, Ponomarenko & Smirnova,
1996; Leonov, 2002; Leonov, 20081; Kroupa, 2003; Best, 2003; Abramovitch, 2002],
where there arises the problem of determination of a sequence of bifurcation pa-
rameters of the system resulting in chaotic behavior [Osborn, 1980; Lapsley et al.,

1997; Leonov & Seledzhi, 2002; Leonov & Seledzhi, 2005; Banerjee & Sarkar, 2006;
Banerjee & Sarkar, 2008].

The first chapter is devoted to the problem of Academician A.N. Kolmogorov
[Arnold, 2005] on localization and modeling of cycles of quadratic systems. The
first part of the chapter deals with small limit cycles (so-called local 16th Hilbert’s
problem [Yu, 2005; Yu & Han, 2005; Li, 2003; Chavarriga & Grau, 2003; Gine,
2007; Leonov, 2008; Christopher & Lloyd, 1996]). For this purpose, the method
of calculation of Lyapunov quantities (or Poincaré-Lyapunov constants) is used
[Bautin, 1952; Serebryakova, 1959; Lynch, 2005; Kuznetsov, 2008]. These con-
stants determine stability and instability in a small neighborhood of weak focus,
and the above-mentioned method had been suggested in the classical works of
H. Poincaré [Poincaré, 1885] and A.M. Lyapunov [Lyapunov, 1892]. To calculate
symbolic expressions for the Lyapunov quantities, in the work we generalize Lya-
punov method to the case of nonanalytical systems and realize the algorithm in
Matlab symbolic calculation package, in order to provide effective analysis of the
Lyapunov quantities and for convenience of further computational study of limit
cycles. We follow the works of L.A. Cherkas [Cherkas, 1976] and G.A. Leonov
[Leonov, 1998; Leonov, 2006; Leonov, 2007; Leonov, 2008], and reduce quadratic
systems to special Lienard system. The corresponding symbolic algorithms were
developed. With the help of the developed algorithm, for the first time general
symbolic expressions of first four Lyapunov quantities for Lienard system have
been obtained. Following the classical Bautin’s method, we show that small per-
turbations allow one to get either a pair of small limit cycles such that each of
these cycles surrounds one of two equilibria or three small limit cycles surround-
ing one equilibrium of a quadratic system and the corresponding Lienard system.
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It should be noted that calculation of the Lyapunov quantities is also re-
lated to an important problem of engineering mechanics on the behavior of a
dynamical system when its parameters are close to the boundary of the stabil-
ity domain. According to Bautin’s work [Bautin, 1952], "dangerous" and "safe"
boundaries are to be distinguished; small violation of such boundaries results in
small (reversible) or irreversible changes of state of the system. Such changes
correspond, for example, to the scenarios of "soft" and "stiff" oscillation excita-
tion, considered by A.A. Andronov [Andronov & Leontovich, 1956; Andronov,
Vitt & Khaiken, 1966]. In this case, a planar autonomous system is considered
in a neighborhood of an equilibrium whose linearization has a pair of complex
conjugate eigenvalues (critical case). If the stability boundary is crossed in the
direction from negative real parts of the eigenvalues to positive ones and the
first nonzero Lyapunov quantity is negative, then there appears a unique stable
limit cycle that is retracted to a point at the reverse change of parameters, which
corresponds to "safe" boundary. On the contrary, if the first nonzero Lyapunov
quantity is positive, then, under small perturbations, a trajectory may go far away
from the equilibrium, which corresponds to "dangerous" boundary.

The second part of the first chapter is devoted to study of large limit cycles
(or "normal" limit cycles; this term has been introduced by L.M. Perko [Perko,
1990] for cycles that can be seen by means of numerical procedures). In this case,
conversion to a Lienard system allows us to use Leonov’s method [Leonov, 2009]
of asymptotic integration and construction of a family of transverse curves for
analytical determination of the domain of existence of a large cycle. It should
be noted that such a reduction helps to reduce the problem of search for large
limit cycles for a quadratic system with three small limit cycles to modeling of
Lienard system that is determined by two coefficients. Such a consideration in
this paper has resulted in formation of domains on the plane of two coefficients
which correspond to the existence of four limit cycles in a quadratic system and in
visualization of known Shi results [Shi, 1980]. In this work, the above-mentioned
technique allowed us to extend results from [Leonov, Kuznetsov & Kudryashova,
2008] on the existence of large limit cycles.

The results of our study allowed us to discover the effect of "trajectory rigid-
ity" of a system when strong flattening complicates numerical localization of a
limit cycle. We also consider scenarios of "destruction" of large cycles as param-
eters approach the boundaries of parameter domains that correspond to the ex-
istence of a cycle. Results of the first chapter were presented in joint reports at
international conferences [Kudryashova et al., 2008; Leonov et al., 2008], included
into a plenary report [Leonov, Kuznetsov & Kudryashova, 20081], and partially
published in the article [Leonov, Kuznetsov & Kudryashova, 2008], included into
an appendix and containing other approaches to calculation of Lyapunov quanti-
ties. The results of this chapter were also published in part in the article [Leonov,
Kuznetsov & Kudryashova, 2009].

The second chapter of the thesis is devoted to nonunimodal one-dimensional
discrete maps describing operation of digital phase-locked loop (PLL). Digital
PLLs are widely used in computer architecture and telecommunications [Baner-
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jee & Sarkar, 2006; Zoltowski, 2001; Mannino et al., 2006; Leonov & Seledzhi, 2005;
Dalt, 2005; Hussain & Boashash, 2002; Kudrewicz & Wasowicz, 2007; Kennedy,
Rovatti & Sett, 2000]. Qualitative analysis of PLL equations helps one to deter-
mine necessary system operating conditions (which, for example, include phase
synchronization and clock skew elimination) [Gardner, 1966; Lindsey, 1972; Lind-
sey & Chie, 1981; Nash, 1994; Leonov & Seledzhi, 2005; Lapsley et al., 1997;
Kroupa, 2003; Best, 2003; Abramovitch, 2002; Solonina, Ulahovich & Jakovlev,
2000; Shahgildyan et al., 1989; Shakhtarin, 1977; Shakhtarin & Arkhangelśkiy,
1977]. In one of the first works dealing with analysis of digital PLLs [Osborne,
1980], an algorithm for study of periodic solutions was considered; it was shown
that even a simple discrete model of PLL includes bifurcation phenomena re-
sulting in occurrence of new stable periodic solutions and change of their period.
Further, the works [Belykh & Lebedeva, 1983; Belykh & Maksakov, 1979] devoted
to such systems included a model of transition to chaos through period-doubling
bifurcations. Integration and development of these ideas in the works [Leonov
& Seledzhi, 2002; Leonov & Seledzhi, 2005] has resulted in construction of a bi-
furcation tree of transition to chaos through period-doubling bifurcations. For
this purpose, the first few bifurcation parameter values were obtained analyti-
cally, while calculation of subsequent bifurcation values and chaos analysis were
based on computer modeling. The calculations have revealed an effect similar to
Feigenbaum’s effect for unimodal maps [Feigenbaum, 1978; Feigenbaum, 1980;
Vul, Sinai & Khanin, 1984; Campanin & Epstain, 1981; Hu & Rudnick, 1982; Lan-
ford, 1982; Kuznetsov, 2001].

In this work, application of the qualitative theory of dynamical systems,
special analytical methods [Leonov & Seledzhi, 2002; Leonov & Seledzhi, 2005],
and modern mathematical packages has helped us to advance considerably in
calculation of bifurcation values and to define numerically fourteen bifurcation
values of the system parameter. It is shown that for the obtained bifurcation val-
ues of a nonunimodal map, the effect of convergence similar to Feigenbaum’s
effect is observed. The work also demonstrates opportunities of Microsoft Ex-
cel modeling of digital PLLs. The article "Discrete Phase-Locked Loop Systems
and Spreadsheets" by Kudryashova et al. in the journal "Spreadsheets in Edu-
cation (eJSiE)" is presented in the appendix and covers this issue. The results of
this chapter were also partially published in the article [Kudryashova, 2009] and
discussed in joint reports at various international conferences [Kudryashova &
Leonov, 2005; Kudryashova & Seledzhi, 2007; Kudryashova & Kuznetsov, 2009;
Leonov, Kuznetsov & Kudryashova, 20081; Leonov et al., 2009].

The present work is based on more than 10 published papers and reports
at international conferences which were mentioned above. In these papers, the
statements of problems are due to the supervisor, while computational proce-
dures, algorithms, and computer modeling are due to the author.



1 COMPUTATION OF LIMIT CYCLES FOR

POLYNOMIAL SYSTEMS AND KOLMOGOROV’S

PROBLEM

1.1 Introduction

Many applied problems such as oscillations of electronic generators and elec-
trical machines, dynamics of populations, critical and admissible boundaries of
stability, and also purely mathematical problems such as Hilbert’s sixteenth prob-
lem and the center-and-focus problem stimulated the study of cycles for two-
dimensional dynamical systems [Shilnikov, Turaev & Chua, 2001; Bautin & Leon-
tovich, 1976; Andronov, Vitt & Khaiken, 1966; Andronov & Leontovich, 1956;
Blows & Perko, 1990; Perko, 1990; Anosov et al., 1997, and others]. At present,
there are many well-known results on existence and computation of limit cycles,
but the problem of localization of limit periodic solutions for two-dimensional
autonomous systems is still far from being solved in the general case even for
Lienard system and quadratic systems.

V.I. Arnold writes (translated from [Arnold, 2005] into English): "To es-
timate the number of limit cycles of square vector fields on plane, A.N. Kol-
mogorov had distributed several hundreds of such fields (with randomly cho-
sen coefficients of quadratic expressions) among a few hundreds of students of
Mechanics and Mathematics Faculty of MGU as a mathematical practice. Each
student had to find the number of limit cycles of his/her field. The result of this
experiment was absolutely unexpected: not a single field had a limit cycle! It is
known that a limit cycle persists under a small change of field coefficients. There-
fore, the systems with one, two, three (and even, as has become known later,
four) limit cycles form an open set in the space of coefficients, and so for a ran-
dom choice of polynomial coefficients, the probability of hitting in it is positive.
The fact that this did not occur suggests that the above-mentioned probabilities
are, apparently, small."

For study of small and large limit cycles, various analytical and numerical
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methods are used. But while large limit cycles can be obtained with the help of
computer modeling, small limit cycles can be effectively studied only by analyt-
ical methods. Thereby, Kolmogorov’s problem on the study of limit cycles for
differential systems can be divided into two parts.

While computation of small limit cycles is a very difficult task, it is possible
to analytically construct small cycles in the neighborhood of an equilibrium for
the critical case of linearization of the system when there is a nonzero Lyapunov
quantity [Bautin, 1949]. Therefore, computation of the Lyapunov quantities is one
of the central problems in the study of small cycles [Poincaré, 1885; Lyapunov,
1892; Cherkas, 1976; Marsden & McCracken, 1976; Lloyd, 1988; Yu, 1998; Yu &
Han, 2005; Lynch, 2005; Roussarie, 1998; Reyn, 1994; Li, 2003; Chavarriga & Grau,
2003; Gine, 2007; Gasull, Guillamon & Manosa, 1997; Christopher & Li, 2007; Yu
& Chen, 2008; Kuznetsov & Leonov, 2007].

While general form of the first and second Lyapunov quantities had been
computed for two-dimensional real autonomous systems (in terms of coefficients
of the right-hand side of the system) in the 40-50s of the last century [Bautin,
1949; Bautin, 1952; Serebryakova, 1959], the general form of the third Lyapunov
quantity has been computed significantly later with the help of a special new
algorithm and symbolic computation [Leonov, Kuznetsov & Kudryashova, 2008].

There are no general schemes for study of large (normal-amplitude or large-
amplitude) limit cycles for polynomial systems. There are different schemes de-
pending on the type of an investigated system. Examples of numerical compu-
tation of large limit cycles for specific systems can be found in many papers (see,
e.g., [Cherkas, 1976; Perko, 1990; Shi, 1980] and others). There are also some ana-
lytical conditions of the existence of large limit cycles (see, e.g., [Shi, 1980; Leonov,
2009]). Following the work [Leonov, 2009], with the help of a method of asymp-
totic integration of trajectories for a Lienard system, the region of parameters of a
Lienard system having large limit cycles can be determined. In [Shi, 1980], condi-
tions of existence of four limit cycles for a quadratic system were obtained. With
the help of reduction of a quadratic system into a Lienard system, the domain
of parameters of a Lienard system corresponding to Shi’s conditions has been
determined.

In the present chapter, the method of Lyapunov quantities is applied to the
study of small and large limit cycles. We extended the classical Lyapunov method
for calculating Lyapunov quantities to the case of nonanalytic systems. Appli-
cation of the classical analytic method and modern software tools for symbolic
computing allowed us to obtain formulas for Lyapunov quantities in a general
form. The program code for computation of Lyapunov quantities in mathemati-
cal package MatLab is presented. This result can be used for constructing small
limit cycles.

It was discovered that, for study of large limit cycles of quadratic systems,
it is useful to reduce such systems to Lienard system of special type. Reduction
of a quadratic system into a Lienard system is described. The computation of
the first four Lyapunov quantities for a Lienard system is presented. We present
results of computer experiments for the domain of parameters where large limit
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cycles exist obtained by Leonov [Leonov, 2009]. Using small perturbations and
an algorithm for constructing small limit cycles for a Lienard system with pa-
rameters from this domain, it is possible to construct systems with four cycles:
three small limit cycles surround the zero equilibrium, and one large limit cycle
surrounds another equilibrium. Large limit cycles for quadratic and Lienard sys-
tems with parameters corresponding to the described domain are presented. The
peculiarities of behavior of trajectories and difficulties of modeling which were
observed in computer experiments are formulated. A visualization on the plane
of parameters of a Lienard system of the conditions of the existence of four limit
cycles for a quadratic system obtained by S.L. Shi [Shi, 1980] is presented. Thus,
Kolmogorov’s problem on the study of limit cycles in quadratic systems can be
solved by means of computer modeling.

1.2 Calculation of small limit cycles

Calculation of small limit cycles for a dynamical system in the neighborhood of
an equilibrium is a very difficult problem. However, in the case where there is
a nonzero Lyapunov quantity, small cycles can be obtained with the help of the
algorithm for constructing of small limit cycles [Bautin, 1949; Lynch, 2005; Lloyd
& Pearson, 1997]. Thus, Kolmogorov’s problem for small limit cycles reduces to
the problem of computation of the Lyapunov quantities.

At present, there exist various methods for determining Lyapunov quanti-
ties. Computer realizations of these methods allow us to find Lyapunov quanti-
ties in the form of symbolic expressions which depend on expansion coefficients
of the right-hand sides of the equations of the system [Bautin, 1952; Serebryakova,
1959; Li, 2003; Lynch, 2005]. These methods differ in complexity of algorithms
and compactness of the obtained symbolic expressions.

The first method for finding Lyapunov quantities was suggested by Poincaré
[Poincaré, 1885]. This method consists of sequential constructing time-indepen-
dent holomorphic integrals for approximations of the system. Further, different
methods for computation that use the reduction of a system to normal forms,
were developed in [Yu & Chen, 2008; Li, 2003].

Another approach to computation of Lyapunov quantities is connected with
construction of approximations of a solution (as a finite sum of powers of the
initial data) in the original Euclidean system of coordinates and in a time domain
[Leonov, 2008; Kuznetsov & Leonov, 2008]. In [Leonov, Kuznetsov & Kudryasho-
va, 2008], the formula of the third Lyapunov quantity has been obtained by means
of this approach.

In the present work, in order to compute Lyapunov quantities, we will use
another approach, which is related to finding approximations of a solution of the
system. We write the system in polar coordinates and apply procedures for recur-
rent construction of approximations of solutions. This approach to computation
of Lyapunov quantities is known as the classical Lyapunov method [Lyapunov,
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1892]. Here this approach is extended to the case of nonanalitical systems.

1.2.1 Classical Lyapunov method

Following the work [Lyapunov, 1892], consider a system of two autonomous dif-
ferential equations

dx

dt
= −y + f (x, y),

dy

dt
= x + g(x, y),

(1)

where x, y ∈ R , and the functions f (·, ·) and g(·, ·) have continuous partial
derivatives of (n + 1)st order in a small neighborhood of the point (x, y) = (0, 0),

f (·, ·), g(·, ·) : R × R → R ∈ C
(n+1), (2)

in which we consider solutions.
Assume that the expansions of the functions f , g have the following form:

f (x, y) =
n

∑
k+j=2

fkjx
kyj + o

(
(|x| + |y|)n

)
,

g(x, y) =
n

∑
k+j=2

gkjx
kyj + o

(
(|x| + |y|)n

)
.

(3)

In polar coordinates,
x = r cos(θ), y = r sin(θ),

the system takes the form

ṙ cos θ − θ̇r sin θ = −r sin θ + f (r cos θ, r sin θ),

ṙ sin θ + θ̇r cos θ = r cos θ + g(r cos θ, r sin θ).

We multiply the obtained equations by cos(θ) and sin(θ), add, and subtract to get
the relations

ṙ = f (r cos θ, r sin θ) cos θ + g(r cos θ, r sin θ) sin θ,

θ̇ = 1 − f (r cos θ, r sin θ) sin θ

r
+

g(r cos θ, r sin θ) cos θ

r
.

(4)

We note that the functions f (r cos θ, r sin θ) and g(r cos θ, r sin θ) contain only terms
whose order in r is not less than two. Thus, we can divide the first equation by
r for r 6= 0, and then extend the result by continuity to r = 0. Following [Bautin
& Leontovich, 1976], we see that, for all sufficiently small r, i.e., in some neigh-
borhood of the equilibrium, we have θ̇ 6= 0, and θ increases (rotation is counter-
clockwise) as time increases (θ̇ > 0), and we can replace the system of equations
(4) by one equation

dr

dθ
=

f (r cos θ, r sin θ) cos θ + g(r cos θ, r sin θ)sinθ

1 − f (r cos θ, r sin θ) sin θ

r
+

g(r cos θ, r sin θ) cos θ

r

. (5)



16

Write equation (5) in the form

dr

dθ
= R(r, θ).

By (2), (3), the function R(r, θ) is a sufficiently smooth periodic function of θ with
period 2π for sufficiently small r. Moreover, R(0, θ) = 0, i.e., r = 0 is a solution
of equation (5). Therefore, the function R(r, θ) can be expressed as a finite sum of
degrees of r plus a reminder. Let us introduce the notation

Rrk(θ) =
1
k!

∂kR(η, θ)

∂kη
|η=0.

Then it follows from (2) that

R(r, θ) =
n

∑
k=1

Rrk(θ)rk +
rn+1

(n + 1)!
∂n+1R(θ, η)

∂ηn+1 |η=rθR(θ,r), 0 ≤ θR(θ, r) ≤ 1.

By (2), the function

rn+1

(n + 1)!
∂n+1R(θ, η)

∂ηn+1 |η=rθR(θ,r), 0 ≤ θR(θ, r) ≤ 1,

is smooth in θ for sufficiently small r; moreover, this function is equal to o(rn) uni-
formly in θ on the finite interval θ ∈ [0, 2π]. Thus, we can represent the function
R(r, θ) in the following form:

dr

dθ
= R(r, θ) = rR1(θ) + r2R2(θ) + ... + rnRn(θ) + o(rn), (6)

where Ri is a periodic function of θ of period 2π. We will consider the solution of
equation (6) which is equal to r0 if θ = θ0 :

r = f (θ; θ0, r0).

This solution is the polar equation of the trajectory of system (1) that passes
through a point with polar coordinates (θ0, r0). The right-hand sides of system
(1) are sufficiently smooth. Then the function f (θ; θ0, r0) is a sufficiently smooth
function of θ0 and r0 [Hartman, 1984]. Since r = 0 is a solution of (5), we have

f (θ; θ0, 0) ≡ 0. (7)

From the theorem on continuous dependence on initial conditions and from (7)
it is possible to make the following conclusion [Bautin & Leontovich, 1976]: all
trajectories of system (1) that pass through a sufficiently small neighborhood of
the origin of coordinates cross each of half-lines θ = const, 0 ≤ θ ≤ 2π.

Therefore, we will consider the solution

r = f (θ; 0, r0).
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Since f (θ; 0, r0) is smooth, the above solution is a series of degrees of r0:

r = f (θ; 0, r0) = u1(θ)r0 + u2(θ)r0
2 + u3(θ)r0

3 + ... + un(θ)r0
n + o

(
r0

n
)
.

Here o
(
r0

n
)

is a continuously differentiable function of θ in the considered inter-
val. Inserting the obtained representation into (6) and equating the expressions
at the same powers of r0, we obtain equations for determining the ui(θ) one by
one:

u̇1(θ) = R1(θ)u1(θ),
u̇2(θ) = R1(θ)u2(θ) + R2(θ)u1

2(θ),
u̇3(θ) = R1(θ)u3(θ) + R2(θ)u1(θ)u2(θ) + R3(θ)u1

3(θ),
...
u̇n(θ) = R1(θ)un(θ) + . . . + Rn(θ)u1

n(θ).

(8)

From the condition
f (θ; 0, r0) = r0

it obviously follows that

u1(0) = 1, ui>1(0) = 0.

Hence, we can successively define ui(θ) from the recurrent differential equa-
tions (8).

If we take θ = 2π in the solution r = f (θ; 0, r0), then we get the values
corresponding to the first (after the initial point) intersection of a trajectory with
the positive semiaxis:

r = r(2π, 0, r0) = α1r0 + α2r0
2 + α3r0

3 + ... + αnr0
n + o

(
r0

n
)
, αj = uj(2π).

(9)
It is easy to see that α1 = 1 and α2 = 0.

Let n = 2m + 1. If α2 = ... = α2m = 0, then α2m+1 is called the mth Lyapunov
quantity.

Note that, according to the Lyapunov theorem, the first nonzero coefficient
of the expansion r(2π, 0, r0) is always an odd number, and for sufficiently small
initial data r0, the sign of α2m+1 (of the Lyapunov quantity) determines the qual-
itative behavior (winding or unwinding) of the trajectory

(
x(t, h), y(t, h)

)
on the

plane [Lyapunov, 1892].
For the further research, we will need expressions of the first four Lyapunov

values. The described classical Lyapunov method for computation of Lyapunov
quantities has been programmed in mathematical package MatLab.

For calculation of the mth Lyapunov quantity we need the expansion of
the right-hand side of the system up to (2m + 1)th order [Leonov, Kuznetsov &
Kudryashova, 2008]. For example, for calculation of the third Lyapunov quantity,
we have to consider a system with n = 7.

With the help of the following computer code, expressions of a necessary
number of Lyapunov quantities for a quadratic system in the general form can be
obtained.
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1 % Computation of N Lyapunov quantities in general form
2 % for the quadratic system
3 % \dot x = -y + f(x,y)
4 % \dot y = x + g(x,y)
5 % with the expansion of the right-hand side of the system
6 % up to (2N+1)th order
7

8 clear all
9 syms x y h v r

10

11 N = 3;
12 NS =2*N+1;
13

14 % Define the functions f(x,y),g(x,y) for the system of (NS)th order
15 % \dot x = f(x,y),
16 % \dot y = g(x,y).
17

18 fxy=0; gxy=0;
19 fxy_n(2:NS,1) = 0*x*y;
20 gxy_n(2:NS,1) = 0*x*y;
21

22 for n=2:NS
23 for iy=0:n
24 ix = n - iy;
25 fxy_n(n,1)=fxy_n(n,1)+
26 +sym([’f’,int2str(ix),int2str(iy)],’real’)*x^ix*y^iy;
27 gxy_n(n,1)=gxy_n(n,1)+
28 +sym([’g’,int2str(ix),int2str(iy)],’real’)*x^ix*y^iy;
29 end;
30 fxy = fxy + fxy_n(n);
31 gxy = gxy + gxy_n(n);
32 end;
33

34 % turn to the polar coordinate system
35 frv = subs(fxy, [x y], [r*cos(v) r*sin(v)]);
36 grv = subs(gxy, [x y], [r*cos(v) r*sin(v)]);
37 dr = frv*cos(v)+grv*sin(v);
38 dv = simplify(1 - frv*sin(v)/r+grv*cos(v)/r);
39 Rrv = dr/dv;
40

41 % Computation of coefficients R_k(0)
42 Rv(1:NS) = 0*h;
43 for i=1:NS
44 Rv(i) = subs((diff(Rrv,r,i)/factorial(i)),r,’0’);
45 end;
46

47 % Generation of symbolic representation of series of solution rvh_s
48 rv_s(1:NS) = 0*h; rvh_s = 0*h;
49 for n=1:NS
50 rv_s(n) = sym([’rv_’,int2str(n)],’real’);
51 rvh_s = rvh_s + rv_s(n)*h^n;
52 end
53

54 % Generation of symbolic representation of series of the right part
55 % Rvr_s = Rv_1*r + Rv_2*r^2 + ... + Rv_n*r^n
56 Rv_s(1:NS) = 0*h; Rvr_s = 0*r;
57 for n=1:NS
58 Rv_s(n) = sym([’Rv_’,int2str(n)],’real’);
59 Rvr_s = Rvr_s + Rv_s(n)*r^n;
60 end
61

62 % Define the right part in series of h from coefficients
63 uv_Rrs(1:NS) = 0*h;
64 uvh_Rrs = subs(Rvr_s, r, rvh_s);
65

66 for n=1:NS
67 uv_Rrs(n)=simplify(subs(diff(uvh_Rrs,’h’,n)/factorial(n),h,’0’));
68 end
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69

70 uvh_Rrs = simplify(subs(uvh_Rrs,rv_s(1),’1’));
71 uv_Rrs = simplify(subs(uv_Rrs,rv_s(1),’1’));
72 uvh_Rrs = simplify(subs(uvh_Rrs,Rv_s(1),’0’));
73 uv_Rrs = simplify(subs(uv_Rrs,Rv_s(1),’0’));
74

75 uv(1:NS) = 0*v;
76 rv(1:NS)=0*v; rv(1) = 1;
77 rv_cur = rv(1)*h;
78 Lv(1:NS) = 0*v; Lv(1) = 1;
79

80 for i=2:NS
81 uv_rs = subs(uv_Rrs(i),Rv_s,Rv);
82 uv(i)= subs(uv_rs,rv_s, rv);
83 Iv = int(uv(i),v);
84 I_v0 = Iv - subs(Iv,v,’0’);
85 rv(i) = simplify(I_v0);
86 rv_cur = rv_cur + rv(i)*h^i;
87 Lv(i) = simplify(subs(rv(i),’v’,’2*pi’));
88 end;
89

90 L(1:N)=0*x; %Column of Lyapunov quantities for the computation
91 G(1:N)=0*x; %Column of coefficients which will be nulled
92

93 for i=1:N
94 L(i) = Lv(2*i +1);
95 for n=1:i -1
96 L(i) = subs(L(i),[’g’,num2str(2*n),’1’],G(n),0);
97 end ;
98 L(i) = simplify(L(i));
99 G(i) = solve(L(i),[’g’,num2str(2*i),’1’]);

100 end ;

For the first time, the expressions for the first and second Lyapunov quanti-
ties had been obtained by N. Bautin [Bautin, 1952] and N. Serebryakova [Sere-
bryakova, 1959], respectively. In [Leonov, Kuznetsov & Kudryashova, 2008],
which can be found in the included articles, formulas for the first three Lyapu-
nov quantities are presented.

1.2.1.1 Perturbation of the system and small cycles

According to representation (9), we have

r = r0 + α3r0
3 + α5r0

5 + o
(
r0

5).

Suppose that α3 = 0, and the first nonzero Lyapunov quantity is α5 > 0.
Following Bautin’s method [Bautin, 1952] described in the included article

[Leonov, Kuznetsov & Kudryashova, 2008], we can perturb the coefficient α3 > 0
so that for the perturbed system, the following conditions will be valid:

α̃3 < 0, α̃5 > 0.

Then, for sufficiently small initial data r0
I , trajectories of the perturbed system

will spiral in, and for some initial data r0
I I (r0

I I
>> r0

I), trajectories will spi-
ral out. Thus, we can obtain an unstable small limit cycle (Fig. 1) near the zero
equilibrium.
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FIGURE 1 Unstable limit cycle.

Similarly, one can perturb the coefficient α1 (Lyapunov 0th quantity) and
obtain a second small limit cycle.

This procedure for construction of small cycles can be extended to the case
of a larger number of zero Lyapunov quantities [Lynch, 2005; Lloyd & Pearson,
1997].

1.2.1.2 Computation of Lyapunov quantities for the Lienard system

For the study of limit cycles of quadratic systems, it was found useful to re-
duce quadratic systems into Lienard system. In computer experiments, results
of which are presented later, formulas for the first four Lyapunov quantities for a
Lienard system are used. Thereby, the expression of the forth Lyapunov quantity
is presented only for a Lienard system.

Consider a Lienard system,

ẋ = −y,
ẏ = x + gx1(x)y + gx0(x),

or the equivalent Lienard equation,

ẍ + x + ẋgx1(x) + gx0(x) = 0.

Let gx1(x) = g11x + g21x2 + . . . and gx0(x) = g20x2 + g30x3 + . . . .
Then

L1 = −π

4
(g20g11 − g21).

If g21 = g20g11, then L1 = 0 and

L2 =
π

24
(3g41 − 5g20g31 − 3g40g11 + 5g20g30g11).
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If g41 =
5
3

g20g31 + g40g11 −
5
3

g20g30g11, then L2 = 0 and

L3 = − π

576
(70g3

20g30g11 + 105g20g51 + 105g2
30g11g20 + 63g40g31

−63g11g40g30 − 105g30g31g20 − 70g3
20g31 − 45g61 − 105g50g11g20 + 45g60g11).

If g61 is determined from the equation L3 = 0, then

L4 =
π

17280
(945g81 + 4158g2

20g40g31 + 2835g20g30g51 − 5670g20g30g11g50

−4158g2
20g30g11g40 + 2835g20g11g70 + 1215g30g11g60 + 1701g40g11g50

−4620g3
20g11g50 − 8820g3

20g30g31 + 1701g30g40g31 + 2835g20g50g31

−2835g20g2
30g31 − 1701g2

30g11g40 + 8820g3
20g2

30g11 + 3080g5
20g11g30

+2835g20g3
30g11 + 4620g3

20g51 − 1701g40g51 − 945g11g80

−3080g5
20g31 − 1215g60g31 − 2835g20g71).

To obtain the described formulas, it is enough to omit the corresponding
coefficients in the program code presented earlier.

In the further symbolic calculations, the following functions for computa-
tion of Lyapunov quantities are used.

1

2 % Function is useful for computation of a coefficient in the series
3 function coef = fCoefInSeries(fx,n,x_val)
4 coef = (subs(diff(fx,’x’,n),’x’,x_val))/factorial(n);

Function for computation of the first Lyapunov quantity for a Lienard sys-
tem.

1

2 % Computation of the first Lyapunov quantity for the Lienard system,
3 % where G(x) = x + (the terms of high orders)
4 function L1 = fLs_L1_FxGx(Fx,Gx)
5 g20 = fCoefInSeries(Gx,2,0);
6 g11 = fCoefInSeries(-Fx,1,0);
7 g21 = fCoefInSeries(-Fx,2,0);
8 % First Lyapunov quantity
9 L1 = -1/4*pi*(g20*g11-g21)

Function for computation of the second Lyapunov quantity for a Lienard
system.

1

2 % Computation of the second Lyapunov quantity for the Lienard system,
3 % where G(x) = x + (the terms of high orders)
4 function L2 = fLs_L2_FxGx(Fx,Gx)
5 g20 = fCoefInSeries(Gx,2,0);
6 g30 = fCoefInSeries(Gx,3,0);
7 g40 = fCoefInSeries(Gx,4,0);
8 g11 = fCoefInSeries(-Fx,1,0);
9 g31 = fCoefInSeries(-Fx,3,0);

10 g41 = fCoefInSeries(-Fx,4,0);
11 % Second Lyapunov quantity
12 L2 = 1/24*pi*(3*g41-5*g20*g31-3*g40*g11+5*g20*g30*g11);
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Function for computation of the third Lyapunov quantity for a Lienard sys-
tem.

1

2 % Computation of the third Lyapunov quantity for the Lienard system,
3 % where G(x) = x + (the terms of high orders)
4 function L3 = fLs_L3_FxGx(Fx,Gx)
5 g20 = fCoefInSeries(Gx,2,0);
6 g30 = fCoefInSeries(Gx,3,0);
7 g40 = fCoefInSeries(Gx,4,0);
8 g50 = fCoefInSeries(Gx,5,0);
9 g60 = fCoefInSeries(Gx,6,0);

10

11 g11 = fCoefInSeries(-Fx,1,0);
12 g31 = fCoefInSeries(-Fx,3,0);
13 g51 = fCoefInSeries(-Fx,5,0);
14 g61 = fCoefInSeries(-Fx,6,0);
15

16 % Third Lyapunov quantity
17 L3 = -1/576*pi*(70*g20^3*g30*g11+105*g20*g51+105*g30^2*g11*g20
18 +63*g40*g31-63*g11*g40*g30-105*g30*g31*g20-70*g20^3*g31
19 -45*g61-105*g50*g11*g20+45*g60*g11);

1.2.2 Transformation between quadratic and Lienard systems

For the study of limit cycles for quadratic systems it was found useful to reduce
them to Lienard system of special type. For example, to solve the local 16th
Hilbert’s problem, it is necessary to have the possibility of finding symbolic zeros
of Lyapunov quantities. For the Lienard system, this procedure is not difficult.
It is impossible to find symbolic independent zeros of Lyapunov quantities (at
which only one Lyapunov quantity is equal to zero) for cubic systems, and there
are no methods to reduce them into Lienard system. For this reason, the local
16th Hilbert’s problem in the general case has not been solved for cubic systems.

To solve Kolmogorov’s problem, we consider conversion between quadratic
and Lienard systems [Cherkas, 1973; Leonov, 1997; Leonov, 1998; Leonov, 2006;
Leonov, 2007; Leonov, 2008].

1.2.2.1 Reduction of a quadratic system to a Lienard system

Consider a two-dimensional polynomial quadratic system in the general form:

ẋ = a1x2 + b1xy + c1y2 + α1x + β1y + d1,
ẏ = a2x2 + b2xy + c2y2 + α2x + β2y + d2.

(10)

Following the paper [Petrovskii, 2009], we state a definition of a limit cycle for
system (10).
Definition A closed integral line is called a limit cycle if all its points are regular, and

some other integral line approaches it asymptotically.

For limit cycles of quadratic systems, the following result is well known:
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Lemma 1 (Ye Yian-Qian, 1986) Let C be a limit cycle for a quadratic system. Then in

the domain limited by the limit cycle, there is a unique singular point (focus).

From this it follows that in the study of limit cycles of quadratic system, we may
shift the origin of coordinates (x, y) to a singular point and assume, without loss
of generality, that d1 = d2 = 0.

We also assume that system (10) is nontrivial, i.e., that no linear change of
variables µx + νy can reduce one of the equations in new variables to an equation
whose right-hand side is a function of one variable (in this case, this equation is
integrable, and the system obviously has no limit cycles).

Now, following [Cherkas, 1973; Leonov, 1997], we prove a lemma.

Lemma 2 A nontrivial quadratic system

ẋ = α1x + β1y + a1x2 + b1xy + c1y2,
ẏ = α2x + β2y + a2x2 + b2xy + c2y2 (11)

can be reduced to a Lienard system

ẋ = −y,
ẏ = −F(x)y + G(x)

(12)

with the help of a nonsingular transformation.
A detailed description of this statement can be found in [Leonov, Kuznetsov

& Kudryashova, 2008] in the included articles. Let us consider some results nec-
essary for Kolmogorov’s problem.
Proposition 1 Without loss of generality, we may assume that c1 = 0, in system (11).

For the proof of this result, consider a nonsingular change of variables

x = x̃ + νy,

where ν ∈ R , ν 6= 0 such that c̃1 = 0 [Leonov, 1997].

1

2 % Reduction of quadratic system
3 % dx = al1*x+bt1*y+a1*x^2+b1*x*y+c1*y^2
4 % dy = al2*x+bt2*y+a2*x^2+b2*x*y+c2*y^2
5 % into quadratic system in simple form, where c1=0
6

7 function [a1,b1,c1,al1,bt1,a2,b2,c2,al2,bt2]
8 = fDefSimpleQs(a1,b1,c1,al1,bt1,a2,b2,c2,al2,bt2)
9 syms v

10 if (c1 ~= 0)
11 if (a2 ~= 0) %else x->y y->x
12 fv = ((solve(’-a2*v^3+(a1-b2)*v^2+(b1-c2)*v+c1’)));
13 for i=1:3 % looking for real solution
14 v_s = eval(fv(i));
15 % check on real number
16 if ( (v_s*conj(v_s)) == real(v_s)*real(v_s))
17 v_s = real(v_s);
18 a1=a1-v_s*a2;
19 b1=-2*v_s^2*a2+(2*a1-b2)*v_s+b1;
20 c1=0;
21 al1=al1-v_s*al2;
22 bt1=v_s*al1+bt1-v_s*(v_s*al2+bt2);
23 break;
24 end;
25 end;
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26 else % x->y y->x
27 warning(’c1~=0, a2=0 => x->y y->x’)
28 a1_save=a1; b1_save=b1; c1_save=c1; al1_save=al1; bt1_save=bt1;
29 a1=c2; b1=b2; c1=a2; al1=bt2; bt1=al2;
30 a2=c1_save; b2=b1_save; c2=a1_save; al2=bt1_save; bt2=al1_save;
31 end;
32 end;

Further we assume that c1 = 0.
Introducing a proper notation, we write the system in the form

ẋ = α1x + β1y + a1x2 + b1xy = p0(x) + p1(x)y,
ẏ = α2x + β2y + a2x2 + b2xy + c2y2 = q0(x) + q1(x)y + q2(x)y2.

(13)

Let us note that, due to the nontriviality, |b1| + |β1| 6= 0; otherwise, the first
equation is integrable, and the system obviously has no cycle (thus, p1(x) is not
equally identical to zero).
Proposition 2 [Leonov, 1997] For b1 6= 0, the straight line

p1(x) = β1 + b1x = 0 (14)

is either invariant or transversal for system (13).

Proof The proof follows from the equality

(β1 + b1x)• = b1[(β1 + b1x)y + a1x2 + α1x],

where x = −β1

b1
(here the symbol • means the derivative with respect to the

system).
Proposition 3 For x such that

p1(x) = b1x + β1 6= 0,

system (13) can be reduced to a Lienard system (12), where

F(x) = −(p′0 − p0p′1p−1
1 + q1 − 2p0q2p−1

1 )p1(x)−1eφ(x),

G(x) = (p0q1 − q0p1 − p2
0q2p−1

1 )p1(x)−2e2φ(x),

and φ(x) is a primitive of the function
(
− q2(x)p1(x)−1

)
.

The given transformation is obviously valid also for more general form of
the polynomials pi, qi [Christopher, Lloyd & Pearson, 1995].
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1

2 % Function for reduction of quadratic system with c1=0
3 % dx = al1*x+bt1*y+a1*x^2+b1*x*y
4 % dy = al2*x+bt2*y+a2*x^2+b2*x*y+c2*y^2
5 % into Lienard system
6 % dx = -y
7 % dy = -fx*y+gx
8 % with the functions
9 % fx = (A*x^2+B*x+C)/p1^(-1)*exp(phi)

10 % gx = (C1*x^4+C2*x^3+C3*x^2+x)/p1^(-2)*exp(2*phi)
11

12 function [fx,gx,fx_n,gx_n,p1,phi]
13 =fLsFromQs(a1,b1,al1,bt1,a2,b2,c2,al2,bt2)
14 syms x y ’real’
15

16 dx = al1*x+bt1*y+a1*x^2+b1*x*y;
17 dy = al2*x+bt2*y+a2*x^2+b2*x*y+c2*y^2;
18

19 p0 = subs(dx,y,0);
20 p1 = diff(dx,y);
21

22 q0 = subs(dy,y,0);
23 q1 = subs(diff(dy,y),y,0);
24 q2 = diff(dy,y,2)/2;
25

26 phi = simplify(p1^(-1)*abs(exp(int(q2/(-p1),x))));
27 % If (a,b) is not contain 1, then exp(int(1/(x-1),a,b))=abs(b-a)
28

29 fx_n = -(diff(p0,x)- p0*diff(p1,x)*p1^(-1)+q1-2*p0*q2*p1^(-1))*p1;
30 fx_n = collect(simplify(fx_n),x);
31 fx = fx_n*p1^(-1)*phi;
32

33 gx_n = (p0*q1-q0*p1-p0^2*q2*p1^(-1))*p1;
34 gx_n = collect(simplify(gx_n),x);
35 gx = gx_n*p1^(-1)*phi^2;

Let us note that a limit cycle cannot have common points with an invariant
curve (by the definition of a limit cycle) or with the transverse curve p1(x) = 0. It
follows that the specified reduction to a Lienard system is nonsingular in terms
of consideration of limit cycles. The reasoning and results described above prove
Lemma 2. To apply the method of Lyapunov quantities and obtain analytical
conditions of existence of small limit cycles, let us consider the case of a complex
focus or a center for a quadratic system in which the matrix of first approximation
of system (13) at the point (0, 0),

A(0,0) =

(
α1 β1

α2 β2

)

has two purely imaginary eigenvalues, i.e., the following conditions hold:

α1 + β2 = 0, ∆ = α1β2 − β1α2 > 0. (15)

Proposition 4 [Leonov, Kuznetsov & Kudryashova, 2008] If condition (15) is ful-

filled, then system (13) can be reduced to the form

ẋ = −y + a1x2 + b1xy, b1 ∈ {0, 1},
ẏ = x + a2x2 + b2xy + c2y2.

(16)
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Let us find symbolic expressions for parameters of the Lienard system (12) ob-
tained from the simplified quadratic system (16).

1

2 % Function for transformation of a quadratic system
3 % with c1=0, al1=0, bt1=-1, al2=1, bt0=0
4 % dx = -y+a1*x^2+b1*x*y
5 % dy = +x+a2*x^2+b2*x*y+c2*y^2
6 % into a Lienard system
7 % dx = -y
8 % dy = -fx*y+gx
9 % with the functions

10 % fx = (A*x+B)*x/p1^(-1)*exp(phi)
11 % gx = (C1*x^3+C2*x^2+C3*x+1)*x/p1^(-2)*exp(2*phi)
12

13 function[A,B,q,C1,C2,C3,fx,gx,p1,phi]
14 =fLsFromSimpleQs(a1,b1,a2,b2,c2)
15 syms x y ’real’
16

17 dx = -y + a1*x^2 + b1*x*y;
18 dy = x + a2*x^2 + b2*x*y + c2*y^2;
19

20 p0 = subs(dx,y,0);
21 p1 = diff(dx,y);
22

23 q0 = subs(dy,y,0);
24 q1 = subs(diff(dy,y),y,0);
25 q2 = diff(dy,y,2)/2;
26

27 phi = simplify(p1^(-1)*abs(exp(int(q2/(-p1),x))));
28 %If (a,b) is not contain 1, then exp(int(1/(x-1),a,b))=abs(b-a)
29

30 fx_n = -(diff(p0,x)-p0*diff(p1,x)*p1^(-1)+ q1-2*p0*q2*p1^(-1))*p1;
31 fx_n = collect(simplify(fx_n),x);
32 fx = fx_n*p1^(-1)*phi;
33 gx_n =(p0*q1- q0*p1 - p0^2*q2*p1^(-1))*(-p1);% denominator (-p1)^3
34 gx_n = collect(simplify(gx_n),x);
35 gx = gx_n*(simple(-p1^(-1))*phi^2);
36

37 q = -c2;
38 A= subs(diff(fx_n,x,2)/factorial(2),’x’,0);
39 B= subs(diff(fx_n,x,1)/factorial(1),’x’,0);
40

41 C1= simplify(subs(diff(gx_n,x,4)/factorial(4),’x’,0));
42 C2= simplify(subs(diff(gx_n,x,3)/factorial(3),’x’,0));
43 C3= simplify(subs(diff(gx_n,x,2)/factorial(2),’x’,0));

Often, a Lienard system is considered in the form

ẋ = y,
ẏ = −F(x)y − G(x),

(17)

with the following functions F(x), G(x):

F(x) = (Ax + B)x|x + 1|q−2,

G(x) = (C1x3 + C2x2 + C3x + 1)x
|x + 1|2q

(x + 1)3 .
(18)

If b1 = 1 for the simplified quadratic system (16), formulas of Proposition 3
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give us the following formulas for parameters of the Lienard system (18):

A = 2c2a1 − b2 − a1,

B = 1 − b2 + 2c2 − 2a1,

q = − c2

b1
,

C1 = b2a1 − c2a2
1 − a2,

C2 = 2 + b2a1 − a1 + b2 − 2a2 − 2c2a1,

C3 = b2 − a2 − c2 − a1 + 3.

1.2.2.2 The reverse conversion of a Lienard system to a quadratic system

Consider the Lienard system (17) with the functions (18). Note that the matrix
of first approximation A(xsp,ysp) of system (17) at the stationary point (xsp = 0,
ysp = 0) has two purely imaginary eigenvalues.

The Lienard system (17) can be reduced to a quadratic system with coeffi-
cients

b1 = 1, c1 = 0, α1 = 1, β1 = 1, c2 = −q, α2 = −2, β2 = −1,

a1 = 1 +
B − A

2q − 1
,

a2 = −(q + 1)a2
1 − Aa1 − C1,

b2 = −A − a1(2q + 1),

if for the coefficients A, B, q, C1, C2, C3, the relations

C1 =
2(A − B)(B + A(2q − 2))

(2q − 1)2 +
(A − B)(B(q − 1) − A(3q − 2))

(2q − 1)2 + C3 − 2 (19)

C2 =
3(A − B)(B + A(2q − 2))

(2q − 1)2 +
2(A − B)(B(q − 1) − A(3q − 2))

(2q − 1)2 + 2C3 − 3

(20)
are satisfied.

A proof of this statement is presented in the included article [Leonov, Kuzne-
tsov & Kudryashova, 2008].
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1

2 % Function for conversion of parameters
3 % A,B,q,C1,C2,C3 of Lienard system
4 % into parameters a1,b1,c1,al1,bt1,a2,b2,c2,al2,bt2
5 % of quadratic system
6 % dx = a1*x^2 + b1*x*y +c1*y^2+ al1*x + bt1*y;
7 % dy = a2*x^2 + b2*x*y +c2*y^2+ al2*x + bt2*y;
8

9 function [a1,b1,c1,al1,bt1,a2,b2,c2,al2,bt2]=
10 = fDefQsFromLs(A,B,q,C1,C2,C3)
11

12 a1=0; b1=0; c1=0; al1=0; bt1=0;
13 a2=0; b2=0; c2=0; al2=0; bt2=0;
14

15 eq1 = simplify(eval(((B-A)/(2*q-1)^2)*((1-q)*B+(3*q-2)*A)-
16 -(2*C2-3*C1-C3)));
17 eq2 = simplify(eval(((B-A)/(2*q-1)^2)*(B+2*(q-1)*A)-(C2-2*C1-1)));
18

19 if or(eq1 == 0, eq2 == 0)
20 return;
21 end;
22

23 b1 = 1; c1 = 0; al1 = 1; bt1=1;
24 c2 = -q; al2 = -2; bt2 = -1;
25 a1 = 1 + (B-A)/(2*q-1);
26 a2 = -(q+1)*a1^2-A*a1-C1;
27 b2 = -A-a1*(2*q+1);

The described conversions between quadratic and Lienard systems allow us
to obtain expressions of Lyapunov quantities and their zeros that are useful for
study.

1.2.2.3 Study of a Lienard system

For experiments, the nontrivial Lienard system (17) with

A 6= B, AB 6= 0, q 6= 1
2

has been considered.
Consider the zero equilibrium xsp = 0. Let L1 = 0 and assume that (19), (20) are
satisfied. Then

L2(xsp) =
π(A − B)(5A − 4B − 2Bq)(2BA − B2 − 4q3 − 1 − B2q + 3q)

24B(2q − 1)2 . (21)

This result can be obtained with the help of the following code. The func-
tions f Ls_L1_FxGx, f Ls_L1_FxGx, f Ls_L1_FxGx which were described above
for computation of Lyapunov quantities are used.
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1

2 clear all
3 syms A B q C1 C2 C3 x ’real’
4

5 % we can consider absolute value abs(1+x)=1+x in the zero equilibrium
6 Fx = (A*x+B)*x*(1+x)^(q-2);
7 Gx = (C1*x^3+C2*x^2+C3*x^1+1)*x*(1+x)^(2*q)/(1+x)^3;
8

9 L1 = fLs_L1_FxGx(Fx,Gx);
10 Eq1 = ((B-A)/(2*q-1)^2)*((1-q)*B+(3*q-2)*A) -(2*C2-3*C1-C3);
11 Eq2 = ((B-A)/(2*q-1)^2)*(B+2*(q-1)*A) - (C2-2*C1-1);
12

13 [C1_s C2_s C3_s] = solve(Eq1 ,Eq2, L1, C1, C2, C3);
14 L2 = subs(fLs_L2_FxGx(Fx,Gx),[C1 C2 C3],[C1_s C2_s C3_s], 0)

From (21) it follows that the condition L2 = 0 is satisfied if

either (5A − 4B − 2Bq) = 0 or (2BA − B2 − 4q3 − 1 − B2q + 3q) = 0.

But, if

(2BA − B2 − 4q3 − 1 − B2q + 3q) = 0,

then L3 = 0. This can be proved if, after the previous calculations, we compute

15

16 A_s = -(-B^2-4*q^3-1-B^2*q+3*q)/(2*b)
17 L3 = subs(fLs_L3_FxGx(Fx,Gx),[C1 C2 C3 A],[C1_s C2_s C3_s A_s], 0)

Therefore, let for equation (17), the conditions L1 = 0, (19), and (20) be
satisfied. In addition, let the following condition be valid:

5A − 2Bq − 4B = 0. (22)

Then L2(xsp) = 0, and for the values C1, C2, C3, which are determined by equa-
tions (19), (20) and condition (22), we obtain the following formulas:

C1 = (q + 3)
B2

25
− (1 + 3q)

5
,

C2 =
(

B2 − 10q + 5
) 3

25
,

C3 =
3(3 − q)

5
.

(23)

For the value L3(xsp) determined by the obtained values C1, C2, C3, we have the
formula

L3(xsp) = −πB(q + 2)(3q + 1)[5(q + 1)(2q − 1)2 + B2(q − 3)]

20000
. (24)
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1

2 clear all
3 syms A B q C1 C2 C3 x ’real’
4

5 % in the zero equilibrium x = 0
6 % we can consider abs(1+x) = (1+x)
7 Fx = (A*x+B)*x*(1+x)^(q-2);
8 Gx = (C1*x^3+C2*x^2+C3*x^1+1)*x*(1+x)^(2*q)/(1+x)^3;
9 A_s = 2/5*B*(q + 2);

10 L1 = subs(fLs_L1_FxGx(Fx,Gx), A, A_s);
11 Eq1 = subs(((B-A)/(2*q-1)^2)*((1-q)*B+(3*q-2)*A)-
12 -(2*C2-3*C1-C3),A,A_s);
13 Eq2 = subs(((B-A)/(2*q-1)^2)*(B+2*(q-1)*A) - (C2-2*C1-1),A,A_s);
14

15 [C1_s C2_s C3_s] = solve(Eq1 ,Eq2, L1, C1, C2, C3)
16 L3=simplify(subs(fLs_L3_FxGx(Fx,Gx),[A C1 C2 C3],
17 [A_s C1_s C2_s C3_s],0))

For the Lienard system (17), for which conditions (19) and (20) are valid,
L1 = L2 = 0, and L3 6= 0, parameters A, C1, C2, C3 can be expressed via parame-
ters B and q.

Thus, we have obtained symbolic expressions of Lyapunov quantities for a
Lienard system. The algorithm for conversion of a Lienard system into a quadratic
system allows us to obtain symbolic expressions for Lyapunov quantities for a
quadratic system.

Thus, in the context of Kolmogorov’s problem, application of the described
algorithms for calculation of Lyapunov quantities and the method of construc-
tion of small limit cycles allow us to determine a class of quadratic systems with
three small limit cycles and to begin search for large limit cycles in a domain of
parameters B and q.

1.3 Computation of large limit cycles

The term "normal" limit cycle was introduced by L.M. Perko [Perko, 1990] for
cycles that can be seen by means of numerical procedures. Now the term "large"
cycle is more often used for such cycles.

Large limit cycles for some quadratic systems can be obtained with the help
of computer modeling. Consider the quadratic system

ẋ = y − x + xy,

ẏ =
1
4

y2 − xy − x2 + α2x + 2y,
(25)

where α2 is a parameter.

A plot of a large cycle for system (25) can be obtained, for example, in math-
ematical package MatLab. For computation, it is necessary to determine an addi-
tional function.
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1

2 function dz = qsys(t,z)
3 global a1 b1 c1 al1 bt1 a2 b2 c2 al2 bt2
4 dz = zeros(2,1);
5 dz(1) = a1*z(1)^2 + b1*z(1)*z(2) + c1*z(2)^2 + al1*z(1) + bt1*z(2);
6 dz(2) = a2*z(1)^2 + b2*z(1)*z(2) + c2*z(2)^2 + al2*z(1) + bt2*z(2);

In computer experiments it is useful to determine following function for
construction of trajectory painted in three different colors.

1

2 % Function for construction of trajectory, painted in three different
3 % colors.
4 function f = fPlotTrajectory(X,Y,Color1,Color2,Color3)
5 lenTr = length(X); lenTr3 = round(lenTr/3);
6 lenColor1 = round(lenTr3); lenColor2 = round(2*lenTr3);
7 plot(X(1:lenColor1),Y(1:lenColor1),Color1);
8 hold on;
9 plot(X(lenColor1:lenColor2),Y(lenColor1:lenColor2),Color2);

10 hold on;
11 plot(X(lenColor2:length(X)),Y(lenColor2:length(Y)),Color3);

With the help of the following code, a plot of a large limit cycle for sys-
tem (25) with α2 = −1000 can be obtained.

1

2 % Code for construction of a plot of a large limit cycle for system
3 % dx = a1*x^2+b1*x*y+c1*y^2+al1*x+bt1*y,
4 % dy = a2*x^2+b2*x*y+c2*y^2+al2*x+bt2*y.
5 % Functions qsys and fPlotTrajectory are used.
6

7 clear all;
8 global a1 b1 c1 al1 bt1 a2 b2 c2 al2 bt2
9

10 % Parameters of the system
11 a1 = 0; b1 = 1; c1 = 0; al1 = -1; bt1 = 1;
12 a2 = -1; b2 = -1; c2 = 1/4; al2 = -1000; bt2 = 2;
13

14 % Options for computation
15 RelTol_value = 2.22045e-014;
16 AbsTol_value = 1e-16;
17 options = odeset(’RelTol’,RelTol_value,’AbsTol’,AbsTol_value);
18 figure(’Name’,’Large limit cycle for a quadratic system’);
19

20 % Initial data for the "unwinding" trajectory
21 x0_out =-0.1; y0_out = 0; T_out = 12;
22 % Computation of the "unwinding" trajectory
23 [T1,Z1] = ode45(@qsys,[0 T_out],[x0_out y0_out],options);
24 % Plotting of the "unwinding" trajectory
25 fPlotTrajectory(Z1(:,1),Z1(:,2),’red’,’green’,’blue’);
26 hold on;
27

28 % Initial data for the "winding" trajectory
29 x0_in =6; y0_in = 0; T_in = 5;
30 % Computation of the "unwinding" trajectory
31 [T2,Z2] = ode45(@qsys,[0 T_in],[x0_in y0_in],options);
32 % Plotting of the "winding" trajectory
33 fPlotTrajectory(Z2(:,1),Z2(:,2),’red’,’green’,’blue’);
34 hold on; grid on;
35 hold off;

The result of code execution is shown in Fig. 2.
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FIGURE 2 Large limit cycle for a quadratic system. Example 1.

FIGURE 3 Large limit cycle for a quadratic system. Example 2.
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There are two trajectories in Fig. 2. Both trajectories start in red color, end in
blue color, and form a stable limit cycle.

Large limit cycles for system (25) with the parameter α2 = −500, α2 = −100
and α2 = −30 are presented in Fig. 3, Fig. 4, Fig. 5, correspondingly.

FIGURE 4 Large limit cycle for a quadratic system. Example 3.

It is not always easy to obtain a plot of a large limit cycle for a system for
which such cycle exists. In each case, it is necessary to find the corresponding ini-
tial data for trajectories, time and options are needed for calculating. For example,
Lienard systems require higher accuracy of calculations, and, consequently, more
time.

However, at first there arises the problem of determining classes of systems
for which it is possible to obtain a large limit cycle. Some theoretical and nu-
merical approaches were considered in [Shi, 1980; Blows & Perko, 1990; Blows &
Lloyd, 1984; Cherkas, 1976; Christopher & Li, 2007; Lynch, 2005; Leonov, 2006;
Leonov, 2007; Leonov, 2008; Leonov, 2009].

Following the paper [Leonov, 2009], let us describe how to apply the method
of asymptotic integration of trajectories for a Lienard system in the search of the
region of parameters of a Lienard system where large limit cycles exist.
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FIGURE 5 Large limit cycle for a quadratic system. Example 4.

1.3.1 Method of asymptotic integration

Consider the method of asymptotic integration of trajectories for the Lienard
equation

ẍ + F(x)ẋ + G(x) = 0. (26)

Denote y = ẋ, then system (26) can be rewritten as following first-order equation

dy

dx
y + F(x)y + G(x) = 0. (27)

Suppose that in the interval (a, b) representation

F(x) = F0 + F1(x), F0 6= 0, lim
x→a

F1(x) = 0,

G(x) = G1x + G2(x), lim
x→a

G2(x) = 0
(28)

is valid. Then consider approach of the system (27) in the interval (a, b)

dyapp

dx
yapp + F0yapp + G1x = 0. (29)

The solution yapp(x) of the equation (29), by virtue of (28), is an approach of the
solution y(x) of initial nonlinear system (27) with initial data (x0, yapp(x0)) for x0

close to a.
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Passing from (29) back to the equation of the second order we obtain

ẍ + F0ẋ + G1x = 0. (30)

Introduce a new variables

λ =
−F0

2
,

∆ = −(
F2

0

4
− G1).

If condition

∆ = −(
F2

0

4
− G1) > 0 (31)

is valid, then solution (30) can be rewritten in the following form:

x = eλ(C1 sin(
√

∆ t) + C2 cos(
√

∆ t)) (32)

else
x = C1e−λ+

√
−∆ + C2e−λ−

√
−∆. (33)

For reduction of functions in the equation (27) to the form (28) we will use the
change of variables x = D(z), where D(z) : (az, bz) → (a, b) is a monotonous
smooth function.

Denote

F̃(z) =
dD(z)

dz
F(D(z)),

G̃(z) =
dD(z)

dz
G(D(z)).

Then we obtain following equation

dy

dz
+ F̃(z) +

G̃(z)

y
= 0, z ∈ (az, bz). (34)

Here, for the functions F̃(z) and G̃(z) representation (28) is valid for monotonous
increasing function D(z) at z → az, and for monotonous decreasing function D(z)
at z → bz.

1.3.2 Investigation of large cycles for quadratic and Lienard systems

Consider described above special class of Lienard system, which can be obtained
from nontrivial quadratic system (11) with the zero equilibrium, such that c1 =
0 (it is always possible to obtain by replacement x → x + νy at a1 6= 0 or by
reassignment x ↔ y) and b1β1 6= 0.

In this case, system (11) can be transformed to Lienard system (17) with
the functions (18). Taking into account (14), functions F(x), G(x) in (18) can be
rewritten as:

F(x) = (Ax2 + Bx + C)|x + 1|q−2,

G(x) = (C1x4 + C2x3 + C3x2 + C4x + C5)
|x + 1|2q

(x + 1)3 .
(35)
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From [Li, 2003; Lynch, 2005; Yu, 2005; Yu & Chen, 2008], it is known that if
L1(0) = L2(0) = 0 and L3(0) 6= 0, then using small perturbations of parameters
of a quadratic system and, consequently, of system (17), it is possible to determine
classes of systems having tree small limit cycles in a neighborhood of the point
x = y = 0.

In this case we have conditions (23) for C1, C2, C3, condition (24) for L3, and

A =
2
5

B(q + 2), C4 = 1, C5 = 0. (36)

For such Lienard system (and corresponding quadratic system) can be an-
alytically obtained estimations of domain of parameters (B, q), corresponding to
the existence of a large cycle on the left side from discontinuity line x = −1. It is
important to notice that obtained domain expands the class of quadratic systems,
considered by Shi [Shi, 1980].

For the further studying of this domain we will use numerical procedures
and the method of asymptotic integration. Let’s use in the Lienard equation the
change of variables x = −w − 2 (symmetric map with respect to discontinuity
line x = −1). Then, grouping coefficients at the degrees of (1 + w), we will
obtain

ẅ + F(w)ẇ + G(w) = 0,

F(w) = (Ãw(1 + w)2 + B̃w(w + 1) + C̃w)|w + 1|q−2,

G(w) = (C̃w1(1 + w)4 + C̃w2(1 + w)3 + C̃w3(1 + w)2 + C̃w4(1 + w) + C̃w5)
|w + 1|2q

(w + 1)3 .

(37)
Here, taking into account conditions (23), (24), (36) we have

Ãw =
2
5

B(2 + q),

B̃w =
1
5

B(3 + 4q),

C̃w =
1
5

B(−1 + 2q),

C̃w1 =
1
25

((3 + q)B2 − 15q − 5),

C̃w2 =
1
25

((4q + 9)B2 − 35 − 30q),

C̃w3 =
1
25

((6q + 9)B2 − 30 − 15q),

C̃w4 =
1
25

B2(3 + 4q),

C̃w5 =
1
25

B2q.

These formulas can be obtained with the help of following code.
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1

2 clear all
3 syms A B q C1 C2 C3 C4 C5 x w
4 syms wC1 wC2 wC3 wC4 wC5 wD1 wD2 wD3 wD4 wD5 wA wB wC wDA wDB wDC
5

6 A = solve(5*A-4*B-2*B*q,A);
7 C1 =(B^2*q - 15*q + 3*B^2 - 5)/25;
8 C2 =(3*(B^2 - 10*q + 5))/25 ;
9 C3 =9/5 - (3*q)/5;

10

11 Fx = (A*x+B)*x*abs(x+1)^(q-2);
12 Gx = (C1*x^3+C2*x^2+C3*x^1+1)*x*abs(x+1)^(2*q)/(x+1)^3;
13

14 Fw = factor(subs(Fx,x,-w-2));
15 numFw = simplify(Fw/abs(w+1)^(q-2));
16 vA = subs(diff(numFw,w,2)/factorial(2),w,0);
17 vB = subs(diff(numFw,w,1)/factorial(1),w,0);
18 vC = subs(diff(numFw,w,0)/factorial(0),w,0);
19

20 Gw = -factor(subs(Gx,x,-w-2));
21 numGw = simplify(Gw/(abs(w+1)^(2*q)/(w+1)^3));
22 vC1 = subs(diff(numGw,w,4)/factorial(4),w,0);
23 vC2 = subs(diff(numGw,w,3)/factorial(3),w,0);
24 vC3 = subs(diff(numGw,w,2)/factorial(2),w,0);
25 vC4 = subs(diff(numGw,w,1)/factorial(1),w,0);
26 vC5 = subs(diff(numGw,w,0)/factorial(0),w,0);
27

28 Fw_Z = (vA*w^2+vB*w+vC);
29 Fw_Zn = collect((wDA*(1+w)^2+wDB*(1+w)+wDC),w);
30 w2 = subs(diff(Fw_Zn-Fw_Z,w,2)/factorial(2),’w’,0,0);
31 w1 = subs(diff(Fw_Zn-Fw_Z,w,1)/factorial(1),’w’,0,0);
32 w0 = subs(diff(Fw_Zn-Fw_Z,w,0)/factorial(0),’w’,0,0);
33 fC = solve(w2,w1,w0,wDA,wDB,wDC);
34 wA = factor(fC.wDA)
35 wB = factor(fC.wDB)
36 wC = factor(fC.wDC)
37

38 Gw_Z = (vC1*w^4+vC2*w^3+vC3*w^2+vC4*w+vC5);
39 Gw_Zn=collect(wD1*(1+w)^4+wD2*(1+w)^3+wD3*(1+w)^2+wD4*(1+w)+wD5,w);
40 w4 = subs(diff(Gw_Zn-Gw_Z,w,4)/factorial(4),’w’,0,0);
41 w3 = subs(diff(Gw_Zn-Gw_Z,w,3)/factorial(3),’w’,0,0);
42 w2 = subs(diff(Gw_Zn-Gw_Z,w,2)/factorial(2),’w’,0,0);
43 w1 = subs(diff(Gw_Zn-Gw_Z,w,1)/factorial(1),’w’,0,0);
44 w0 = subs(diff(Gw_Zn-Gw_Z,w,0)/factorial(0),’w’,0,0);
45

46 fC = solve(w4,w3,w2,w1,w0,wD1,wD2,wD3,wD4,wD5);
47 wC1 = factor(fC.wD1)
48 wC2 = factor(fC.wD2)
49 wC3 = factor(fC.wD3)
50 wC4 = factor(fC.wD4)
51 wC5 = factor(fC.wD5)

Note that, in according to formulas (23), (24), (36), for studying of existence
of cycles it is enough to consider B with one sign only. Let’s consider further

B < 0,

B/A > 1 and q ∈ (−1, 0).

Note that in these conditions function G(w) has one zero (i.e. one equilib-
rium of system) on the right side from discontinuity line w = −1.
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Let’s rewrite the equation (37) in the form

ẇ = y,
ẏ = −F(w)y − G(w).

(38)

Applying various replacements w = D(z) we will use described above
method of asymptotic reduction of the system (38) to the system

ż = y,
ẏ = −F̃0y − G̃1z.

(39)

As before we will denote

∆ = −(
F̃2

0

4
− G̃1),

λ =
−F̃0

2
.

Fix some numbers a > −1 and δ > 0, and consider sufficiently large numbers R

and R̃. Then the following lemmas take place.
1) For w ∈ (−1, +∞) in the equation (37) change the variables

w = D(z) = z
1

q+1 − 1 : z ∈ (0, +∞) ր w ∈ (−1, +∞),

and obtain

F̃(z) =
1

(q + 1)
(Ãw + B̃wz

− 1
q+1 + C̃wz

− 2
q+1 ),

G̃(z) =
1

(q + 1)
z(C̃w1 + z

− 1
q+1 C̃w2 + z

− 2
q+1 C̃w3 + z

− 3
q+1 C̃w4 + z

− 4
q+1 C̃w5).

(40)

Here

F̃0 =
Ãw

(q + 1)
,

G̃1 =
C̃w1

(q + 1)
.

Lemma 3 Let ∆ > 0. Then for the solution of system (38) with initial data

w(0) = a, y(0) = R

there exists a number T > 0 such that

w(T) = a, y(T) < 0,

w(t) > a, ∀ t ∈ (0, T),

R exp
(

λπ√
∆
− δ

)
< |y(T)| < R exp

(
λπ√

∆
+ δ

)
.
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2) For w ∈ (−1, 0) in the equation (37) change the variables

w = D(z) = z
1

q−1 − 1 : z ∈ (1, +∞) ց w ∈ (−1, 0),

and obtain

F̃(z) =
1

(q − 1)
(Ãwz

2
q−1 + B̃wz

1
q−1 + C̃w),

G̃(z) =
1

(q − 1)
z(z

4
q−1 C̃w1 + z

3
q−1 C̃w2 + z

3
q−1 C̃w3 + z

4
q−1 C̃w4 + C̃w5).

(41)

Here

F̃0 =
C̃w

(q − 1)
,

G̃1 =
C̃w5

(q − 1)
.

Lemma 4 Let ∆ < 0. Then for the solution of system (38) with initial data

w(0) = a, y(0) = −R̃

there exists a number T > 0 such that

w(T) = a, 0 < y(T) < δR̃,

w(t) ∈ (−1, a), ∀ t ∈ (0, T).

Here the forms of functions F̃(z) and G̃(z) are well adapted to asymptotic analysis
of trajectories with large initial conditions since the terms

z
− k

q+1 and z
k

q−1 , k = 1, . . . , 4,

are infinitesimal at infinity, and omitting these terms, it is possible to pass to anal-
ysis of second-order equations with constant coefficients.

These lemmas imply the following theorem.

Theorem 1 Let

B2
< −5(q + 1)(3q + 1) (42)

is valid. Then system (17) has a limit cycle in the half-plane {x < −1, y ∈ R1}.

Thus, small perturbations and the conditions described in Theorem 1 determine
classes of systems (17) and (11) with four limit cycles.

The region of parameters B, q for which condition (42) is satisfied is pre-
sented in Fig. 6. The region bounded by lines in Fig. 6 corresponds to the lines of
reversed sign of the third Lyapunov quantity.

For constructing of this region the following procedure can be determined.
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FIGURE 6 Region of parameters for computer modeling of large limit cycles for
quadratic and Lienard systems.

1

2 function d=plotd(fxy,x,y,xd,yd,color)
3 for xi=1:length(xd)
4 for yi=1:length(yd)
5 if (subs( subs(fxy,[x y],[xd(xi) yd(yi)]))> 0)
6 plot( xd(xi), yd(yi),’--rs’,’LineWidth’,1,’Color’,color);
7 hold on;
8 end;
9 end;

10 end;
11 end;

Then the region in Fig. 6 can be constructed with the help of following code.

1

2 clear all
3 syms B q
4 q_min = -2; q_max = 2; q_step = 0.03;
5 B_min = -2; B_max = 2; B_step = 0.03;
6 Bq = -B^2-5*(q+1)*(3*q+1);
7 plotd(Bq, B, q, [B_min:B_step:B_max], [q_min:q_step:q_max],’red’);
8 hold on; grid on;
9 hold off;

Thus, using small perturbations and the algorithm for constructing small
cycles for a Lienard system with parameters from this region, it is possible to
construct systems with four cycles: three small cycles around the zero equilib-
rium and one large cycle around another equilibrium.
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1.3.3 Computer modeling of large limit cycles

The computer modeling and computational experiments were performed with
the help of mathematical package MatLab R2008b. For construction of trajecto-
ries of quadratic systems and Lienard system of the form (17), built-in functions of
approximate solution of differential equations of ode packet MatLab were used.
However, in each case it is necessary to match individual parameters which are
necessary for computing the trajectories of motion, such as absolute and relative
accuracy, original and maximal steps, and the computing interval. For construc-
tion of phase portraits of some unstable cycles, it was necessary previously to
study the system at inverse time. It is also essential that even on a powerful com-
puter, computation of one trajectory for certain values of parameters requires a
considerable time. For example, the study of the region of parameters of the Lien-
ard system that correspond to the existence of four cycles requires a few months
of computer time (approximately a month of pure machine time on dual cores
Pentium 4).

FIGURE 7 Limit cycle of a Lienard system.

Thus, even by using modern powerful hardware and special-purpose math-
ematical packages, study of systems of differential equations with the help of
computer modeling takes a lot of time.

The most illustrative example of a large unstable limit cycle (Fig. 7) in a
neighborhood of the nonzero stationary point for the Lienard system was ob-
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FIGURE 8 Limit cycle of a Lienard system. Flattening domain.

FIGURE 9 Stable limit cycle of a quadratic system (point P1).

tained for the system with parameters B = 0.01 and q = −0.6 (corresponding to
the point P1 in Fig. 6).
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FIGURE 10 Stable and unstable limit cycles of quadratic systems (points P1 and P’1).

We indicate two trajectories starting near the cycle situated in the center of
the red domain. The first trajectory winds around a stationary point, and the
second trajectory unwinds and goes away from the cycle.

In the right-hand side of the graph, intensive "flattening" of trajectories in a
neighborhood of the straight line x = −1 is observed.

This effect of "trajectory rigidity" complicates calculations considerably, es-
pecially for Lienard system in a neighborhood of straight line x = −1.

A scaled-up picture of the flattening domain (indicated in Fig. 7 by dotted
line) is represented in Fig. 8.

For the above Lienard system, we obtained the corresponding quadratic
system using the conversion of the Lienard system into a quadratic system. The
large limit cycle for the indicated quadratic system is shown in Fig. 9.

Note that the two halves of the region in Fig. 6 are symmetric [Leonov,
Kuznetsov & Kudryashova, 2008]. They differ by the sign of the third Lyapu-
nov quantity. If B > 0, we have L3 < 0, and if B < 0, we have L3 > 0. Thus, for
a quadratic system with B > 0, we can obtain a stable large limit cycle, and with
B < 0, we can obtain an unstable large limit cycle. For a Lienard system with
B > 0, we can obtain an unstable large limit cycle and with B < 0, we can obtain
a stable large limit cycle.

Symmetry can be seen in Fig. 10, where the left picture shows a stable large
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FIGURE 11 Increase of the size of a limit cycle of a quadratic system (points
P2, P3, P4, P5).

limit cycle for the quadratic system which corresponds to the point P1 from Fig. 6.
In the right picture of Fig. 10, we show an unstable large limit cycle for the point
P′1 from Fig. 6.

It is clear that stable cycles are easier to simulate than unstable ones. Because
of symmetry, we can model limit cycles for quadratic systems with B > 0 and for
Lienard system with B < 0.

In computer experiments, some dependence of change of the cycle size on
change of parameters of system has been found. Let us describe what happens to
a large limit cycle if we take systems with parameters B, q near the region border.

Increase of the size of a limit cycle of quadratic systems which correspond
to points P2, P3, P4, P5 is shown in Fig. 11. A small change of value of parameter
q leads to increase of the size of a cycle.

The same effect is shown in Fig. 12, Fig. 13, Fig. 14, where limit cycles for
points P6, P7, P8 are presented. For all three points, parameter B is equal to 0.01.
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FIGURE 12 Limit cycle of a quadratic system (point P6).

FIGURE 13 Limit cycle of a quadratic system (point P7).

In Fig. 12, the cycle corresponds to a system with q = −0.9 and has size smaller
than 104. In Fig. 13 and Fig. 14, where q = −0.99 and q = −0.999, correspond-
ingly, one can observe cycles with size larger than 105.

Note that the further approach to the top and bottom borders of the domain
in Fig. 6 is accompanied by increase of complexity of calculations. It is neces-
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FIGURE 14 Limit cycle of a quadratic system (point P8).

FIGURE 15 Limit cycle of a quadratic system (point P9).

sary to increase accuracy of calculations, and the time of constructing of cycles
accordingly increases.
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FIGURE 16 Limit cycle of a quadratic system (point P10).

FIGURE 17 Disappearing of cycles of a quadratic system (points P11 and P12).
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FIGURE 18 Limit cycle of a quadratic system (point P13).

FIGURE 19 Limit cycle of a quadratic system (point P14).

Now we describe the deformation of a limit cycle of a system with param-
eters B, q close to the right border of region from Fig. 6. Due to the symmetry of
the region, the same happens near the left border.

Fig. 15 presents a stable large cycle of a quadratic system with parameters
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FIGURE 20 Limit cycle of a quadratic system (point P15).

FIGURE 21 Limit cycle of a Lienard system (point P’2).

corresponding to B = 1.1, q = −0.65. This system corresponds to the point P9,
and order of the cycle is 104.

In Fig. 16, we show a cycle with order 1010. This cycle was constructed for a
quadratic system with parameters B = 1.2, q = −0.65 (point P10).

From the figures one can conclude that the size of a cycle has increased in
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FIGURE 22 Limit cycle of a Lienard system (point P’9).

FIGURE 23 Unwinding trajectory of a Lienard system (point P’10).

comparison with the size of a cycle in Fig. 15.
In Fig. 17, we can see how a limit cycle disappears. In the left picture, the

unwinding trajectory with order 1011 corresponds to a quadratic system with pa-
rameters B = 1.21, q = −0.65 (point P11). In the right picture unwinding trajec-
tory with parameters B = 1.25, q = −0.65 (point P12) is shown.

The further approach to the left and right borders of the domain from Fig. 6
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is accompanied by quick increase of the cycle, and it becomes impossible to con-
struct a cycle by means of built-in possibilities of MatLab.

We can note one more feature of trajectories: the speed of winding of tra-
jectories decreases with increase of |q|. Consider the points P13 (Fig. 18), P14
(Fig. 19), and P15 (Fig. 20). In Fig. 18, trajectories reach the area of the cycle faster,
while in Fig. 20 trajectories at first have some turns, and only then reach the area
of the cycle. It follows from this that modeling of cycles from the lower part of
the area requires more time.

As was stated earlier, it is more difficult to construct a limit cycle for the
Lienard system. But all the described effects are observed for Lienard system
too. In Fig. 21, we show a stable cycle for a Lienard system with parameters B =
−0.01, q = −0.35 (point P′2). The size of the cycle has also increased compared
with the size of the cycle in Fig. 7.

In Fig. 22, we show a stable limit cycle for a Lienard system with parameters
B = −1.1, q = −0.65 (point P′9).

In Fig. 23, we can see only one unwinding trajectory for a Lienard system
with parameters B = −1.2, q = −0.65 (point P′10). The order of the cycle is
more than 1010. Thus, by means of computer modeling, we have studied the
region of parameters of a Lienard system for which the existence of large limit
cycles was proved by G.A. Leonov. Large cycles for Lienard and quadratic sys-
tems with parameters from the specified domain are obtained. As a result of the
performed research, we have established the presence of a "trajectory rigidity" ef-
fect, when major flattening complicates numerical localization of a limit cycle. We
have also shown scenarios of "destruction" of large cycles related to approaching
the boundaries of the coefficients domain. These results were partly presented
at international conferences [Kudryashova et al., 2008; Leonov et al., 2008], were
included in the plenary report [Leonov, Kuznetsov & Kudryashova, 20081], and
were partly published in the article [Leonov, Kuznetsov & Kudryashova, 2008].

1.3.4 Visualization of results of S.L. Shi

For a long time, it was believed that the maximal number of limit cycles of a
quadratic system is three. This belief was based on a paper by Petrovskii and
Landis [Petrovskii & Landis, 1957], which later turned out to be erroneous [Petro-
vskii & Landis, 1959]. Probably, S.L. Shi [Shi, 1980] was the first one to produce
an example of a quadratic system with four limit cycles.

In [Shi, 1980] the following quadratic system was considered:

ẋ = λx − y + lx2 + (5a + δ)xy + ny2,
ẏ = x + ax2 + (3l + 5n + (δ(l + n) + 8ǫ)/a)xy,

(43)

and the following theorem was stated.

Theorem 2 If

a(2a2 + 2n2 + ln)(a(5l + 6n) − 3(l + 2n)(l + n2)) 6= 0,
δa(2a2 + 2n2 + ln) > 0, δǫ < 0, ǫλ < 0,
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0 < |λ| << |ǫ| << |δ| << 1,
3a2 − l(l + 2n) < 0,

25a2 + 12n(l + 2n) < 0,
l(3l + 5n)2 − 5a2(3l + 5n) + na2

< 0,
a2(5l + 8n) − ((2l + 5n)2 + 15a2)(25a2 + 3n(2l + 5n)) > 0,

then there are three limit cycles around the origin (0,0), and there is a limit cycle around

the equilibrium point (0, 1/n).

The system with parameters

l = −10, a = 1, δ = −10−13, ǫ = 10−52, λ = −10−240,

was offered as an example of system with four limit cycles. No representation of
the region of all parameters corresponding to conditions of Theorem 2 has been
obtained.

A descriptive representation of the region of parameters satisfying Theorem
2 was constructed in the present work with the help of conversion of system (43)
into a Lienard system. At first, system (43) was converted into a quadratic system
of form (16), and then into a Lienard system.

The following function is used to determine the matrix of coefficients for the
quadratic system.

1

2 % This function is used to determine the
3 % matrix of coefficients [c11 c12 c13 c14 c15; c21 c22 c23 c24 c25]
4 % from the quadratic system
5 % dx = c11*x^2+ c12*x*y +c13*y^2 + c14*x+ c15*y;
6 % dy = c21*x^2+ c22*x*y +c23*y^2 + c24*x+ c25*y;
7 function coeffsQsys = fDefCoefQs(dx,dy)
8 syms x y
9 c14 = simplify(subs(diff(subs(dx,y,0),x),x,0));

10 c24 = simplify(subs(diff(subs(dy,y,0),x),x,0));
11 c15 = simplify(subs(diff(subs(dx,x,0),y),y,0));
12 c25 = simplify(subs(diff(subs(dy,x,0),y),y,0));
13 c11 = simplify(diff(subs(dx,y,0)/x,x));
14 c21 = simplify(diff(subs(dy,y,0)/x,x));
15 c13 = simplify(diff(subs(dx,x,0)/y,y));
16 c23 = simplify(diff(subs(dy,x,0)/y,y));
17 c12 = simplify(diff(diff(dx,x),y));
18 c22 = simplify(diff(diff(dy,x),y));
19 coeffsQsys = [c11 c12 c13 c14 c15; c21 c22 c23 c24 c25];

The following function is used to replace variables in the quadratic system.

1

2 % In quadratic system \dot_x= dx, \dot_y = dy
3 % we do replacement
4 % x_new = x*h1+y*v1;
5 % y_new = x*h2+y*v2;
6 % and have got a new quadratic system
7 % dx_new = 1/h1 * (dx-v1*dy); dy_new = 1/v2 * (dy-h2*dx)
8 function [dx_new, dy_new] = fReplaceInQs(dx,dy,h1,v1,h2,v2)
9 syms x y

10 dx_new = simplify(subs(dx,[x y],[x*h1+y*v1 x*h2+y*v2])/h1 -
11 - v1*subs(dy,[x y],[x*h1+y*v1 x*h2+y*v2])/h1);
12 dy_new = simplify(subs(dy,[x y],[x*h1+y*v1 x*h2+y*v2])/v2 -
13 - h2*subs(dx,[x y],[x*h1+y*v1 x*h2+y*v2])/v2);
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The following code can be used to conversion of the quadratic system (43)
into a Lienard system.

1

2 % Transformation of the quadratic system, considered in [Shi, 1980],
3 % dot_x = l*x^2+ (5*a+delta)*(x*y) +n*y^2 + lambda*x-y
4 % dot_y = a*x^2+ (3*l+5*n+(delta*(l+n)+8*eps)/a)*(x*y) + x
5 % into Lienard system
6 % dot_x = y
7 % dot_y = -F*y-G
8 clear all
9 syms a l n x y k a1 b1 c1 al1 bt1 a2 b2 c2 al2 bt2

10

11 % Consider the quadratic system, described in [Shi, 1980], where
12 % parameters delta =-10^(-13), eps =10^(-52) and lambda =-10^(-240)
13 % are small disturbances of the system.
14 % So, for our task we can suppose, that
15 delta=0; eps = 0; lambda = 0;
16

17 dx = l*x^2+ (5*a+delta)*(x*y) +n*y^2 + lambda*x-y;
18 dy = a*x^2+ (3*l+5*n+(delta*(l+n)+8*eps)/a)*(x*y) + x;
19

20 % Following [Leonov, Kuznetsov & Kudryashova, 2008],
21 % consider transformation of investigated system into
22 % a quadratic system in the simple form
23 % dx = a1*x^2 + x*y + x + y;
24 % dy = a2*x^2 + b2*x*y +c2*y^2-2*x-y;
25

26 % 1.Transformation of system into a quadratic system, where c1 = 0.
27 % Following [Leonov, Kuznetsov & Kudryashova, 2008], Proposition 1,
28 % consider replacement x_new=x + k*y; y_new = y
29 [dx,dy] = fReplaceInQs(dx,dy,1,k,0,1);
30 % Determine value of k for which c1=0:
31 Qs = fDefCoefQs(dx,dy);
32 k_tmp_array = solve(Qs(1,3),k);
33 % For symbolic computation in MatLab
34 % consider the first solution as Real value
35 k_tmp = k_tmp_array(1);
36 % So, we have got quadratic system, where c1=0
37 dx = subs(dx, k, k_tmp);
38 dy = subs(dy, k, k_tmp);
39

40 % 2. Transformation into a quadratic system,
41 % where al2=-2al1^2/bt1.
42 % Following [Leonov, Kuznetsov & Kudryashova, 2008], Proposition 2,
43 % consider replacement x_new = x; y_new = k*x + y,
44 % where k = -al1/bt1+(-al1^2-bt1*al2)^(1/2)/bt1
45 Qs = fDefCoefQs(dx,dy);
46 [dx,dy] = fReplaceInQs(dx,dy,1,0,-Qs(1,4)/Qs(1,5)+ (-(Qs(1,4))^2 -
47 - Qs(1,5)*Qs(2,4))^(1/2)/Qs(1,5),1);
48

49 % 3. Transformation into a quadratic system,
50 % where bt1 = 1, al2 = -2 and b1 = 1,
51 % Following [Leonov, Kuznetsov & Kudryashova, 2008], Proposition 3,
52 % we have b1<>0, then consider replacement x_new = k*x; y_new = m*y,
53 % where k = bt1/b1, m = al1/b1
54 Qs = fDefCoefQs(dx,dy);
55 [dx,dy] =fReplaceInQs(dx,dy,Qs(1,5)/Qs(1,2),0,0,Qs(1,4)/Qs(1,2));
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56

57 % So, we have got a quadratic system in the simple form
58 % dx = a1*x^2 + b1*x*y + x + y, b1=1;
59 % dy = a2*x^2 + b2*x*y + c2*y^2 - 2*x - y;
60 % For transformation into Lienard system,
61 % we will return to determining of parameters of quadratic system
62 Qs = fDefCoefQs(dx,dy);
63 [a1 b1 c1 al1 bt1 a2 b2 c2 al2 bt2]=[Qs(1,1) Qs(1,2) Qs(1,3) Qs(1,4)
64 Qs(1,5) Qs(2,1) Qs(2,2) Qs(2,3) Qs(2,4) Qs(2,5)];
65

66 % Transformation into a Lienard system
67 Fx = (-b2+2*c2*a1-a1)*x+(1-b2+2*c2-2*a1)*x*abs(x+1)^(-c2) /(x+1)^2;
68 Gx = -((-b2*a1+c2*a1^2+a2)*x^3 + (-2-b2*a1+a1-b2+2*a2+2*c2*a1)*x^2 +
69 + (a2+c2+a1-3-b2)*x -1)*x *abs(x+1)^(2*(-c2))/(x+1)^3;

Thus, for parameters of system (43) satisfying Theorem 2, the corresponding
parameters B and q of a Lienard system were found. The obtained region of
parameters of a Lienard system is presented in Fig. 24.

FIGURE 24 Region of parameters of a Lienard system for which there exist four limit
cycles satisfying the results of S.L. Shi for quadratic systems.

The visualization constructed in the present paper allows us to see (Fig. 24)
that the domain obtained by theoretical methods in [Shi, 1980] completely lies in
the domain obtained by theoretical methods in [Leonov, 2009].
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1.4 Conclusion of Chapter 1

The use of classical analytical methods and modern software tools for symbolic
computing enables one to obtain formulas for calculation of Lyapunov quantities
in the general form. Using the described algorithms for computation of Lyapunov
quantities and a method of constructing small limit cycles allows one to solve
Kolmogorov’s problem about small limit cycles.

We present large limit cycles for quadratic and Lienard systems with pa-
rameters corresponding to the domain obtained by G.A. Leonov [Leonov, 2009],
where large limit cycles exist. Using small perturbations and an algorithm for
constructing small limit cycles for a Lienard system with parameters from this
domain, it is possible to construct systems with four cycles: three small limit cy-
cles around the zero equilibrium and one large limit cycle around another equilib-
rium. Visualization on the plane of parameters of a Lienard system correspond-
ing to the conditions of S.L. Shi [Shi, 1980] is obtained. Using analytical methods
and computer modeling allows us to solve Kolmogorov’s problem about large
limit cycles.

Thus, Kolmogorov’s problem about study of limit cycles can be solved by
means of computer modeling.



2 COMPUTER MODELING OF BIFURCATIONS OF A

DISCRETE MODEL OF PHASE-LOCKED LOOPS

The study of limit cycles for discrete dynamical systems has a long history and
important applications in various areas of research. The following nonlinear dif-
ference equation of the first order:

x(t + 1) = rx(t)(1 − x(t)), t ∈ N, r > 0, (44)

was introduced by Pierre Verhulst in 1845 as a mathematical model of population
dynamics within a closed environment that takes into account internal competi-
tion [Schuster, 1984]. Logistic equation (44), which can be generalized to the form

x(t + 1) = f (x(t)), x ∈ R, t ∈ N, (45)

has an extremely complex limiting structure of solutions and was intensively
studied in the second part of the 20th century [Sharkovsky, 1995; Li & Yorke, 1975;
Sharkovsky et al., 1997; May, 1976; Metropolis, M. Stein & P. Stein, 1973; Feigen-
baum, 1978; Weisstein, 1999]. In particular, in equation (44), period-doubling
bifurcations were discovered.

Surprisingly, while solutions to a linear multidimensional discrete equation

x(t + 1) = Ax(t), x ∈ Rn, t ∈ N,

and its continuous analogue

ẋ = Ax(t), x ∈ Rn, t ∈ R

(where A is a constant n × n matrix), to a large extent, possess similar behavior,
solutions to equation (45) and its continuous one-dimensional analogue

ẋ = f (x(t)), x, t ∈ R,

bear qualitatively different structure (see for example [Leonov & Seledzhi, 2002;
Neittaanmäki & Ruotsalainen, 1985; Keller, 1977; Marsden & McCracken, 1976]).
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One of examples of a nonlinear difference equation which are important in
applications is the following equation of the first order:

x(t + 1) = x(t) − α sin x(t) + γ, t ∈ N, (46)

where α and γ are nonnegative parameters. Over the last 40 years, many authors
conducted rigorous studies of equation (46) both as a pure mathematical object
[Arnold, 1983; Jakobson, 1971] and as a mathematical model of a Phase-locked
loop [Osborne, 1980; Gupta, 1975; Lindsey, 1972; Lindsey & Chie, 1981].

Equation (46) with γ = 0 describes a wide class of Digital Phase-locked
loops (DPLLs) with the sinusoidal characteristic of phase detector [Banerjee &
Sarkar, 2005-2008; Leonov et al., 1992; Leonov et al., 1996; Leonov, 2001; Leonov,
2002; Leonov & Seledzhi, 2005]. Osborne [Osborne,1980] pioneered in the use of
exact methods, such as the Contraction Mapping Theorem, applicable to the di-
rect study of nonlinear effects in this system. However, even the exact methods
used by Osborne, while revealing what then appeared as multiple cycle slipping,
followed by a divergent behavior of iterations, did not allow for a precise inter-
pretation of nonlinear effects discovered at transition from global asymptotic sta-
bility to chaos through period doubling bifurcations [Leonov & Seledzhi, 2005].

The research and development of mathematical theory of DPLLs for array
processors are commonly used in radio engineering, communication, and com-
puter architecture [Banerjee & Sarkar, 2005–2008; Zoltowski, 2001; Mannino et

al., 2006; Hussain & Boashash, 2002; Kudrewicz & Wasowicz, 2007; Gardner,
1966; Lindsey, 1972; Lindsey & Chie, 1981; Leonov, Reitmann & Smirnova, 1992;
Kuznetsov, Leonov & Seledzi, 2006; Leonov, Ponomarenko & Smirnova, 1996;
Lapsley et al., 1997; Kroupa, 2003; Best, 2003; Abramovitch, 2002]. For example,
such digital control systems exhibit high efficiency in eliminating clock skew -
an undesirable phenomenon arising in parallel computing [Leonov & Seledzhi,
2002; Leonov & Seledzhi, 2005]. DPLLs have gained widespread recognition and
preference over their analog counterparts because of their ability to deal with
this phenomenon effectively. From a mathematical perspective, this gives rise
to a problem associated with the analysis of global stability of nonlinear differ-
ence equations that serve as mathematical models of discrete phase-locked loops
[Leonov, 2001]; that is, the analysis can be formulated in terms of parameters for
such systems.

The present chapter is devoted to study of bifurcations of discrete system
(46) with γ = 0 and to computation of bifurcation parameters. Using the qual-
itative theory of dynamical systems, special analytical methods, and advanced
mathematical packages designed to work with long numbers allowed us to suc-
ceed in computation of bifurcation values of parameter of the investigated sys-
tem. The first 14 bifurcation values are calculated with good accuracy. Also it is
shown that for the obtained bifurcation values of investigated system, which is
not a unimodal map, an effect of convergence similar to famous Feigenbaum’s
effect is observed.
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2.1 Digital phase-locked loops

The nonlinear dynamics of different nonlinear electronic systems is studied by re-
searchers for at least three decades. Occurrence of such complex behaviors as bi-
furcation, chaos, intermittency etc. in electronic systems has been revealed from
these studies [Banerjee & Sarkar, 2008; Kilias et al., 1995; Chen, Chau & Chan,
1999; Giannakopoulos & Deliyannis, 2005]. In addition, control chaos and bifur-
cation in electronic circuits and systems is an active area of research [Chen, Hill
& Yu, 2003; Collado & Suarez, 2005].

By controlling chaos and bifurcation, one can suppress chaotic behavior
where it is unwanted (e.g. in power electronics and mechanical systems). On
the other hand, in electronic systems one can harness the richness of chaotic be-
havior in chaos based electronic communication system. Possibility of exploiting
the chaotic signal in chaos based secure communication system has boosted up
the research on the chaotic dynamics of electronic circuits and systems [Kennedy,
2000].

Owing to potential application in synchronous communication system and
rich nonlinear dynamical behavior, PLL is probably the most widely studied sys-
tem among all electrical systems [Gardner, 1966; Kudrewicz & Wasowicz, 2007].
At the advent of digital communication systems, DPLLs have rapidly replaced
the conventional analog PLLs because they overcome the problems of sensitivity
to DC drift, periodic adjustment, and the building of higher order loops [Lindsey
& Chie, 1981].

FIGURE 25 Functional block diagram of a ZC2 − DPLL, [Banerjee & Sarkar, 2008].

DPLLs are widely used in frequency demodulators, frequency synthesizers,
data and clock synchronizers, modems, digital signal processors, and hard disk
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drives to name a few [Banerjee & Sarkar, 2008; Zoltowski, 2001; Mannino et al.,

2006]. A DPLL is a discrete time nonlinear feedback controlled system whose
nonlinear behavior is complicated, and it poses exact solutions only in particular
cases. To understand the complete behavior of a DPLL, it is necessary to resort
to modern nonlinear dynamical tools of bifurcation and chaos theories. Also in
this regard bifurcation control of DPLL has not been explored yet. The study of
nonlinear dynamics of DPLL has two fold applications. First, using the insight
of nonlinear behaviors of DPLLs, an optimum DPLL system can be designed.
Second, by characterizing the chaos from DPLLs, one can explore the possibility
of using DPLLs in chaos based secure electronic communication systems. Thus,
research of nonlinear dynamics of DPLLs is an important problem.

There are different types of DPLLs: positive zero crossing DPLLs (ZC1-
DPLL) [Bernstein, Liberman & Lichtenberg, 1989; Banerjee & Sarkar, 2005; Baner-
jee & Sarkar, 20051; Banerjee & Sarkar, 2008; Leonov & Seledzhi, 2005], uniform
sampling DPLL [Zoltowski, 2001], bang-bang DPLLs [Dalt, 2005], and tanlock
DPLLs [Hussain & Boashash, 2002].

In the present paper, we will consider a discrete dynamical system which
describes the nonlinear dynamics of dual sampler based zero crossing DPLLs
(ZC2-DPLL). Unlike ZC1-DPLL, in a ZC2-DPLL sampling is done at the positive
and negative zero crossings of the input signal [Banerjee & Sarkar, 20081]. For this
particular sampling technique, it has a wide frequency acquisition range in com-
parison with a ZC1-DPLL, and that is why ZC2-DPLLs have drawn the attention
of researchers for a long time [Majumdar, 1979; Frias & Rocha, 1980; Banerjee &
Sarkar, 2006].

Following [Banerjee & Sarkar, 20081; Majumdar, 1979; Leonov & Seledzhi,
2002], we formulate the equation of DPLL. Fig. 25 shows the block diagram of a
ZC2-DPLL. It contains two positive edge triggered samplers. Input signal is fed
directly into sampler-1, and a π shifted version of input signal is fed into sampler-
2. Let e(t) be the noise-free analog input signal to the system with a phase angle
θi(t) relative to the loop DCO phase. Then the system equation can be written as

e(t) = A0sin [ω0t + θi(t)] ,

where θi(t) = (ωi − ω0)t + θ0. Here A0 is the amplitude, and ωi and θ0 are the
angular frequency and phase of the input signal, respectively. ω0 is the nominal
angular frequency of the DCO having time period T. Writing the sampled version
of e(t) at the kth sampling instant (SI) t(k) as x(k), one can write the output signals
of sampler-1 and sampler-2, respectively, as follows [Majumdar, 1979]:

x1(k′) = A0sin[ω0t(k′) + θi(k′)], k′ = 2k,

x1(k”) = A0sin[ω0t(k”) + θi(k”) − π], k” = (2k + 1),

where k = 0, 1, 2, 3 . . .. Here sampling instants (SIs) are occurring at the end of
each half period of the DCO.

The sequence x(k), k = 0, 1, 2, . . ., is filtered digitally by a loop digital filter
(LDF). The transfer function of LDF in a first order loop is written as a constant
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gain G1 (s/volt). The LDF output sequence is given by yk = G1x(k). The se-
quences y(k) are used to control the next half period of the DCO. The kth half
period T′(k) of DCO can be written as

T′(k) = T(k)/2 = t(k + 1) − t(k),

in terms of the kth and (k + 1)st SIs, respectively. DCO period T(k + 1) at that
instant is governed by the relation

T(k + 1) =
T

2
− y(k).

In case t(0) = 0 , we get

t(k) =
kT

2
−

k−1

∑
i=0

y(i).

Thus, the sampler output at the kth instant is

x(k) = A0sin[φ(k)],

where

φ(k) = θi(k) − ω0

k−1

∑
i=0

y(i)

is the phase error between the input signal and the DCO output at t(k).
Then, the equation for the phase of the ZC2-DPLL can be written as

φ(k + 1) = φ(k) + π(z − 1) − 1
2

zK1sinφ(k), (47)

where z has been substituted in place of (ωi/ω0) and K1 = A0ω0G1 is the closed
loop gain of ZC2-DPLL.

2.2 Analytical investigation

In engineering DPLL’s practice, the case of initial frequency of master and local
generators coincidence is very important [Banerjee & Sarkar, 20081; Leonov &
Seledzhi, 2002]. For this instance, in (47),

z = (ωi/ω0) = 1,

and the equation for DPLL can be given by

σ(t + 1) = σ(t) − r sin σ(t), t ∈ N, (48)

where r =
1
2

A0ω0G1 is a positive number [Leonov & Seledzhi, 2002].

One of the first works dedicated to analysis of system (48) belongs to Os-
borne. In [Osborne, 1980], was considered the algorithm of investigation of pe-
riodic solutions, and it was shown that even in a simple discrete model of PLL,
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the bifurcation phenomenon involved to arising of new stable periodical solu-
tions and to changing of their period are observed. Later, in the papers [Belykh
& Maksakov, 1979; Belykh & Lebedeva, 1983] for such systems, a model of transi-
tion to chaos through a cascade of period-doubling bifurcations was considered.
Association and development of these ideas in the works [Leonov & Seledzhi,
2002; Leonov & Seledzhi, 2005] has allowed to construct bifurcation tree of tran-
sition to chaos through a cascade of period doubling (Fig. 26).

FIGURE 26 Seledzhi’s bifurcation tree.

FIGURE 27 Seledzhi’s bifurcation tree. Enlarged domains.

In computer modeling of Seledzhi’s bifurcation tree the following function
can be used.
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1

2 % Function for construction of a plot of dependence limit values from
3 % parameter r for the system x(t+1)=x(t)-r*sin(x(t))
4

5 function bf = fBifTree(beg_r, end_r, step_r, x0, Iter, color)
6 j=1;
7 for r= beg_r:step_r:end_r
8 x=x0;
9 for i=1:Iter

10 x= x-r*sin(x);
11 end
12 res(j,:) = [r x];
13 j=j+1;
14 end
15

16 plot(res(1:length(res),1),res(1:length(res),2),color);

With the help of following code, bifurcation tree for the discrete dynamical
system (48) can be constructed.

1

2 % Constructing of bifurcation tree for the discrete dynamical system
3 % x(t+1)= x(t) - r sin(x(t)) for initial data x0=x1 and x0=x2
4

5 clear all
6 j = 1;k = 1;
7 beg_r = 0.01; end_r = 3.7; step_r = 0.001;
8 Iter = 1000; n = 8;
9 x1 = 1; color1 = ’.red’;

10 x2 = -1; color2 = ’.blue’;
11

12 for j=1:n
13 fBifTree(beg_r, end_r, step_r, x1, Iter+j, color1);
14 hold on;
15 end
16

17 for j=1:n
18 fBifTree(beg_r, end_r, step_r, x2, Iter+j, color2);
19 hold on;
20 end
21

22 grid on;
23 hold off;

In [Leonov & Seledzhi, 2002], it was proved that system (48) is globally
asymptotically stable for r ∈ (0, 2).

Following the works [Osborne, 1980; Leonov & Seledzhi, 2002], let us con-
sider behavior of periodic solutions of system (48) for r ≥ 2.

Let r ∈ (2, r1), where r1 is the root of the equation

√
r2 − 1 = π + arccos

1
r

.

Then the following theorem takes place.

Theorem 3 If r ∈ (2, r1) and σ(0) ∈ [−π, π], then σ(t) ∈ [−π, π] for all t = 1, 2, ....

This theorem determines system (48) as a map of the interval [−π, π] into itself
for r ∈ (2, r1).
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For r < 2, equation (48) is global asymptotically stable: σ(t) with any initial
conditions σ(0) aspire to the states of equilibrium σ = 2π j, j ∈ Z, t 7→ +∞.

The value r = 2 is the first point of bifurcation. For r > 2 all the stationary
points become Lyapunov unstable. There is an asymptotically stable, symmetric
with respect to σ = 0, solution with period 2 for r ∈ (2, π).

Let σ(t + 1) = −σ(t), then 2σ(t) = r sin(σ(t)), and the symmetric solutions
of equation (48) with period 2 have the properties:

σ(2j) = σ(0), j ∈ Z,

σ(2j + 1) = −σ(0), j ∈ Z,

where the initial conditions of σ(0) satisfy equality

2σ(0) = r sin(σ(0)). (49)

Equation (49) in the interval [−π, π] has two roots for all r > 2: σ(0) and −σ(0).
For r ∈ (π, β), where β =

√
π2 + 2 ≈ 3.445229, there are two asymptotically

stable solutions with period 2 which satisfy the relation

σ(t + 1) = σ(t) ± π.

From here it follows that
π = r sin(σ(t)).

Then, the first periodic solution of period 2 for r ∈ (π, β) has the properties

σ(2j) = σ(0), ∀j ∈ Z,

σ(2j + 1) = σ(0) − π, ∀j ∈ Z,

where the initial conditions of σ(0) satisfy the equality

sin(σ(0)) =
π

r
. (50)

The second periodic solution of period 2 for r ∈ (π, β) has the properties

σ(2j) = σ(0), ∀j ∈ Z,

σ(2j + 1) = σ(0) + π, ∀j ∈ Z,

where the initial conditions of σ(0) satisfy the equality

sin(σ(0)) = −π

r
. (51)

Equations (50), (51) have on [−π, π] two roots for all r > 2.
According to analytical investigations described above, the following is known:
For r = r1 = 2, the first bifurcation occurs. The global asymptotic stability

of the stationary set vanishes, and a globally asymptotically stable cycle of period
2 appears.
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FIGURE 28 Plot of the function f (x) = λx(1 − x), λ = 3.7.

The second bifurcation value r = r2 = π value corresponds to bifurcation
of splitting: the globally stable cycle of period 2 loses its stability, and two locally
stable cycles of period 2 appear. Note that for the first time, this phenomena was
described in [Leonov & Seledzhi, 2002]: a cycle of some period T loses its stability,
and two cycles of the same period T appear.

For r = r3 =
√

π2 + 2 ≈ 3.4452, the third bifurcation occurs: two cycles of
period 2 lose stability, and two 4-periodical cycles appear.

In Fig. 29, we show an enlarged domain of the bifurcation tree where the
second and third bifurcations are clearly seen.

Further transition to chaos through a cascade of period-doubling bifurca-
tions takes place.

Note that the phenomenon of transition to chaos through a cascade of period-
doubling bifurcations is well studied for the whole class of maps of an interval
into itself. In 1975 M. Feigenbaum noticed that for the equation

xn+1 = λx(1 − x),

the following is observed: if

λn − λn−1

λn+1 − λn
= δn,

then
lim

n→∞
δn = 4.6692...,

where λn−1, λn, λn+1 are consecutive bifurcation values.
He performed similar calculations with another logistical map, and found

a geometric progression with the same denominator. After that, the hypothesis
that δ does not depend on the type of a specific map was born.
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It was found that the convergence is universal for one-dimensional one-
parameter families of maps of an interval into itself [Campanin & Epstain, 1981;
Ostlund et al., 1983; Lanford, 1982; Hu & Rudnick, 1982]. The value δ = 4.6692...
is the famous Feigenbaum’s constant. The Renorm-group Theory explains this
phenomenon for the class of unimodal maps (continuous map an interval into
itself which has a unique critical point in the interval and is strictly monotonous
on either side of extremum (Fig. 28)) and for some special cases [Feigenbaum,
1980; Vul, Sinai & Khanin, 1984; Cvitanovich, 1989; Bensimon, Jensen & Kadanoff,
1986; Kuznetsov, 2001; Shirkov, Kazakov & Vladimirov, 1988].

FIGURE 29 Plot of the function f (x) = x − rsin(x), r = 2.5.

The calculations obtained in the present work allow us to show that, for
system (48), the effect of convergence similar to Feigenbaum’s effect is observed.

Note that for the function f (x) = x − rsin(x), which has two critical points
(x1, f (x1)) and (x2, f (x2)) in the interval [−π, π] (Fig. 29), and for the function
f ( f (x)) = f (x)− rsin( f (x)) (Fig. 30) we have for r > 2:

f (x1) 6= x1, f (x1) 6= x2, f ( f (x1)) 6= x1, f ( f (x1)) 6= x2.

2.3 Computer modeling

First numerical calculations of bifurcation values of parameter r for system (48)
are presented in [Osborne, 1980; Banerjee & Sarkar, 2006; Leonov & Seledzhi,
2002]. An included article [Abramovich et al., 2005] is devoted to the possibility
of investigation of bifurcation behavior for (48) by using Microsoft Excel.
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FIGURE 30 Plot of the function f ( f (x)) = f (x) − rsin( f (x)), r = 2.5.

In [Leonov & Seledzhi, 2002; Leonov & Seledzhi, 2005], methods for analysis
of behavior of periodic trajectories of the system were developed. They allowed
to justify the using of computational procedures for calculating the following bi-
furcation values. With the help of these analytical methods and specialized math-
ematical packages, the first 14 bifurcation values of parameter r were obtained.

The algorithm for computation is based on application of the method of
multipliers [Vul, Sinai & Khanin, 1984; Kuznetsov, 2001].

The multiplier of a periodic trajectory of period T for a discrete dynamical
system

xn+1 = f (xn, r)

can be written as

MT(r) =
T

∏
i=1

f ′(xi(r), r),

where xi(r), i = 1, . . . , T, are the points (limit values) which form a stable periodic
trajectory of period T. The multiplier is responsible for the stability of the cycle:
for r = rT for which

MT(rT) = −1,

there occurs a period-doubling bifurcation at which the periodic trajectory of pe-
riod T loses stability and there appears a periodic trajectory of period 2T.

With a good accuracy, exact values of the first 14 bifurcation values of pa-
rameter r for initial data σ(0) = 1 for system (48) were obtained. For computa-
tion, multipliers of all periods 4, 16, 32, ..., 8192, for each value of parameter r

greater than the analytically obtained r3, with small step were calculated. This
allowed to avoid admission of bifurcation values.



67

TABLE 1 Values of bifurcation parameters and Feigenbaum’s numbers for a discrete
dynamical system.

Number of Period of bifurcation Bifurcation Feigenbaum’s
bifurcation (before / after) parameter, number,

j rj δj

1 1/2 2
2 1/2 π 3.7597337326
3 2/4 3.445229223301312 4.4874675842
4 4/8 3.512892457411257 4.6240452067
5 8/16 3.527525366711579 4.6601478320
6 16/32 3.530665376391086 4.6671765089
7 32/64 3.531338162105000 4.6687679883
8 64/128 3.531482265584890 4.6690746582
9 128/256 3.531513128976555 4.6691116965
10 256/512 3.531519739097210 4.6690257365
11 512/1024 3.531521154835959 4.6686408913
12 1024/2048 3.531521458080261 4.6678177276
13 2048/4096 3.531521523045159 4.6657974003
14 4096/8192 3.531521536968802

The values are obtained under the condition of convergence of limiting val-
ues up to 15 signs after comma:

|σ(t)− σ(t + T)| < 10−15.

The specified condition demands t = 2 × 108 iterations.
Table (1) shows the first 14 calculated bifurcation values of parameter r for

system (48).
As was said earlier, the bifurcation parameter r = r2 = π does not corre-

spond to period-doubling bifurcation. There is a bifurcation of splitting of the
cycle: the cycle of period 2 loses its stability, and two locally stable cycles of pe-
riod 2 appear.

For the calculated bifurcation values of parameters rj (Table 1), with the help
of the relation

δj =
rj − rj−1

rj+1 − rj
,

the values of Feigenbaum’s numbers δj are calculated. They are presented in the
last column of Table 1.

Note that the obtained Feigenbaum’s numbers δj have a good convergence
to Feigenbaum’s constant δ = 4.6692016.... Thus, for system (48) an effect of
convergence of bifurcation values of parameter r similar to Feigenbaum’s effect
is observed.
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2.4 Conclusion of Chapter 2

Application of qualitative theory of dynamical systems, special analytical meth-
ods [Leonov & Seledzhi, 2002; Leonov & Seledzhi, 2005], and modern mathemat-
ical packages has helped to promote considerably in calculation of bifurcation
values of parameter for a one-dimensional discrete system describing operation
of digital phase-locked loop. Numerically calculated fourteen bifurcation values
of parameter of the investigated system are presented. It is shown that for the ob-
tained bifurcation values of nonunimodal map, an effect of convergence similar
to Feigenbaum’s effect is observed.

The results described in this chapter are continuation of research presented
in the included article [Abramovich et al., 2005] and have been partially presented
in [Kudryashova, 2009], and at the international conferences [Kudryashova &
Leonov, 2005; Kudryashova & Seledzhi, 2007; Kudryashova et al., 2008].



YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa, ”Rajajaksot jatkuvissa ja diskreeteissä järjestelmissä”, käsi-
tellään jaksollisten ratkaisujen laskemista sekä bifurkaatioita neliöllisissä tehtä-
vissä, Lienardin järjestelmissä ja ei-unimodaalisissa yksiulotteisissa diskreeteissä
kuvauksissa käyttäen nykyaikaisia laskentamahdollisuuksia ja symbolisen las-
kennan ohjelmistoja.

Ensimmäisessä luvussa tarkastellaan akateemikko A.N. Kolmogorovin teh-
tävää neliöllisten järjestelmien rajajaksojen paikallistamiselle ja simuloinnille.
Pienten rajajaksojen tutkimisessa (niin sanottu lokaali Hilbertin 16. ongelma) käy-
tetään Lyapunovin suureiden (eli Poincaren ja Lyapunovin vakioiden) laskenta-
menetelmiä. Lyapunovin suureiden symbolisten lausekkeiden laskemiseksi työs-
sä yleistettiin Lyapunovin ei-analyyttisille järjestelmille tarkoitettu menetelmä.
L.A. Cherkasin ja G.A. Leonovin töitä seuraten kehitettiin symboliset algorit-
mit, joilla neliölliset järjestelmät muunnetaan erityisiksi Lienardin järjestelmik-
si. Ensimmäistä kertaa saatiin muodostettua yleiset symboliset lausekkeet neljäl-
le ensimmäiselle Lyapunovin suureelle Lienardin järjestelmissä. Työssä esitetään
suurten rajajaksojen (eli ”normaalien” rajajaksojen) simulaatiotuloksia neliöllisil-
le ja Lienardin järjestelmille, joiden parametrit kuuluvat G.A. Leonovin löytämäl-
le suuren rajajakson olemassaolon alueelle. Työssä toteutetaan myös S.L. Shin
löytämän neljän rajajakson neliöllisten järjestelmien parametrialueen muunnos
Lienardin järjestelmän kaksiulotteiseksi parametrialueeksi ja visualisoidaan sitä
tasossa.

Toisessa luvussa tarkastellaan ei-unimodaalisia yksiulotteisia diskreettejä
kuvauksia, jotka kuvaavat tietokonearkkitehtuureissa ja tietoliikenteessä laajasti
käytettyjen digitaalisten vaihelukitusjärjestelmien toimintaa. Vaihelukitusjärjes-
telmien yhtälöiden laadullinen analyysi auttaa määrittämään tarvittavat toimin-
taedellytykset (esimerkiksi, taajuuden synkronisointi ja kellovääristymien korjaa-
minen). Käyttämällä dynaamisten järjestelmien laadullista teoriaa, erityisiä ana-
lyyttisiä menetelmiä ja nykyaikaisia matemaattisia ohjelmistoja edistyttiin huo-
mattavasti bifurkaatioarvojen laskemisessa ja onnistuttiin määräämään numee-
risesti vaihelukitusjärjestelmän parametrien neljätoista bifurkaatioarvoa. Työssä
myös osoitettiin, että saaduille ei-unimodaalisen kuvauksen bifurkaatioarvoille
on ominaista suppeneminen, joka muistuttaa Feigenbaumin ilmiötä.
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