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Abstract

The electronic shell structures of triangular, hexagonal and round graphene quantum dots (flakes)
were studied using mainly a simple tight-binding method (TB). Density functional calculations
demonstrated that the electronic structure near Fermi energy and at the bottom of the band is
correctly described with this simple TB, where only the p, -orbitals perpendicular to the graphene
plane are included. The results show that for triangular flakes at the bottom and at the top of the p,
band a super shell structure, similar to that of free electrons confined in a triangular cavity, is seen
and near the Fermi level, the shell structure is that of free massless particles. Also close to E¢
triangles with armchair edges have an additional set of levels (“ghost states”) absent for the zigzag
edged flakes studied, while the latter exhibit prominent edge states at Es. These “ghost states™ are a
result of the graphene band structure and the plane wave solution of the wave equation and so
triangles with armchair edge can be used as building blocks to produce other types of flakes that
also support these ghost states. Edge roughness has only a small effect on the band structure of the
triangular flakes but quite significant effect on all the other types of flakes studied. In round flakes
the states close to the Fermi energy are strongly dependent on the flake radius, and are always
localized on the zigzag parts of the edge.
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1 Introduction

Electronic transport through small quantum dots is dominated by the existence of discrete electron
levels which cause conductance peaks whenever the level coincides with the Fermi level of the
leads connected to the dot. If the quantum dot has a high symmetry, the levels will bunch in electron
shells like in atoms. In the case of semiconductor quantum dot the shell structure has been observed
in circular dots [1]. However, it is known that in two-dimensional systems also other geometries,
especially the equilateral triangles [2], show clear shell structure. Moreover, in a triangle the
modulation between the shells show as a persistent supershell structure [2].

Graphene offers a unique opportunity to make triangular and hexagonal quantum dots and to study
their electronic structure. The main purpose of this research was to study the possibility of
observing the supershell structure in triangular graphene quantum dots in the region where the
electron have properties of massless particles. For comparisons also hexagonal and circular
quantum dots were studied.

This thesis consists of three separate publications concerning the electronic properties of graphene
and a short introductional part, in which some basics about the used research method and graphene
itself as a material are introduced as well as a short summary of the results is given.

The first report [A] (appendix A) is a shorter letter type of publication, where only triangular
graphene flakes are studied. In this letter also the accuracy of the simple tight-binding method with
only one electron per atom was compared to the widely used density functional theory where all
valence electrons are included. The results showed that indeed the simple tight-binding model
describes correctly the electronic structure close to the Fermi level. This shorter study was
published in Physical Review B (2008).

The second report [B] (appendix B) was published in New Journal of Physics (2008) and is a
wider study about different types of graphene flakes concentrating on the “near Fermi energy” area
of the energy distribution. This research also goes deeper into studying the specific electronic shell
structures and compares them between the different types of flakes: triangular, hexagonal and
round.

The third paper [C] (appendix C) is a conference report which deepens the understanding of the
supershell structure of graphene triangles and studies also quantum dots made with external
potential in a large graphene sheet.

Next a brief presentation about the research subject —graphene, is given. Following that, the used
research method —tight-binding (TB) is introduced and a short summary of the results is given. The
heart of this thesis: the actual research and the results in detail are at the end as appendices (reports)
A,BandC.



2 About Graphene

Graphite is an allotropic form of common coal. It consists of layers that are confined to each other
very loosely (Figure 1a). In these layers the atoms are organized in a hexagonal “honey comp”
pattern and a separate this kind of layer is called graphene (Figure 1b). Also carbon nanotubes,
which are nowadays widely under investigation, can be considered to be graphene wrapped to a
roll, as well as fullerines, that are ball-shaped graphene with pentagons in addition to hexagons in
their lattice structure. Graphene is also famous for its extreme strength of tension.
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Figure 1: The structure of graphite (a) and the lattice structure of a single graphene sheet (b).

The thing that has made graphene so interesting is the recent experimental success in
manufacturing it [3]-[6]. Particularly interesting is the band structure near Fermi energy: electrons
and holes behave like massless particles (Dirac fermions) although their velocity is quite slow. This
is a result of the linear dispersion relation [7]. Graphene, being just a single atomic layer, is in a
sense two dimensional infinite confining potential for electrons. Due to this, flakes made of it are
intriguing two dimensional quantum dots, which have even further peculiar features because of the
honey comp structure. The two dimensional, one-layer essence of graphene gives fascinating
starting point for theoretical researchers: Because of this one-layer property and the lattice structure,
the sp” hybridized bonds of graphene leave in a sense one electron (bond) per atom free. These p,
electrons, perpendicular to the graphene plain are known to be the reason for the captivating band
structure where the valence and the conduction bands meet at the corners of the hexagonal Brillouin
zone (Figure 2) [8] [9]. Now, this basis allows different theoretical approaches, such as the tight-
binding, to be applied in researches.

To understand the band structure it is worth mentioning that the Fermi surface consists of discrete
set of these corner points of the hexagonal Brillouin zone (points of high k-value). Due to this, the
density of states (DOS) has a zero weight (and zero band gap) at the Fermi energy (E¢). Every one
of the crossover regions has an hourglass-like shape and this leads to the linear, isotropic dispersion
relation in the conduction band, but only in a small energy region close to Ey.
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Figure 2: The tight-binding density of states (for p, electrons) of an infinite graphene sheet (in
arbitrary units). Inset: Tight-binding band structure of graphene showing the points at
where the valence and conduction bands meet at the Brillouin zone boundary.

Due to its structure, there are two quite stable directions, graphene can be cut into: “zigzag” (zz)
and “armchair” (ac) (Figure 3). This feature enhances the interest since, as shall be shown later in
the results, the type of the edge quite largely determines the electronic properties of the graphene
flakes. In addition to this, the triangular and hexagonal shapes can be cut from infinite graphene
sheet exactly along these directions. Already in nanoribbons made of graphene, the cutting direction
has been shown to play a crucial role in their physical properties [10] [11].

These properties of graphene, in addition to the shape effects of the flakes cut out of it, set an
intriguing ground for this research to be carried out.

armchair

Figure 3: The two stable cutting directions of equilateral triangles of graphene: armchair (ac)
and zigzag (zz).



3 Tight-Binding (Hiickel Model)

Tight-binding (TB), in a nut shell, is a simplified method for defining quantum mechanical
variables. It can be applied in cases where the free electron model does not work and the electrons
can be considered to be mainly confined (localized) to the atomic sites. The starting point for TB
model is a single isolated atom, for which the electronic states are discrete energy levels. After this
a solid or a lattice is considered to be formed by bringing together a large number of these atoms.
The atomic states will then split due to the interactions between atoms and because of the amount of
the atoms this leads to a quasi-continuous band of states. The closer to each other the atoms are
forced the grater the interactions become and hence the wider the bands get. Thus these bands can
also result from the overlap and interactions of the atomic orbitals including the possibility of free-
electron-like behaviour. About this and tight-binding in general (infinite case) can be read for
example in [8].

In the case under study, how ever, there is only a finite lattice with N atoms in it. Also the interest
is mainly in the wave functions of the lattice level rather than in the level of atomic wave functions.
So as a starting point it is assumed that the electron wave function ®; for the jth atom is known and
the total wave function ¥ is taken as the linear combination of all these atomic states ®;, which are
so being considered to be the basis vectors:

N
Y = Zlch)j (1)
=
Now the basic Schrodinger equation gives:
HY = E¥Y (2)
leading to the following:
N N
21 HCjCDj = Zl: ECjCDj (3)
= =

If this is now multiplied from left by @; and integrated, it becomes:
N N

ZCj I(Di*Hq)j dv = ZCJ'E ,[q)i*(bj dv
J=1 j=1

giving the simplified form:

N

J;Cj (Hjj — ES;j) =0 (4)
that applies for all ; and where:

H; = [0, H®; dv and (5a)

S = Jo;"®; dv (5b)

This simple model above is called the Hiickel model.

Now, since in graphene the relevant p, electrons are perpendicular to the graphene plain, their
interactions with the neighbouring atoms are directionally independent and consequently they can
be considered as s-type electrons (in the atomic ®@; level). It can also be assumed that:
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- the overlap between atomic sites can be neglected: S;; = 0, when i # j

- only the nearest neighbour interactions are relevant: Hj; # 0 only if 1 and j are nearest
neighbours or i =

- the on-site energy can be set to zero: H; = 0.

This way the problem culminates to a very basic matrix form, where the Hamiltonian matrix of the
system becomes (6):

H; = -t ifiand; are nearest neighbours (6)
0  otherwise

Here the hopping parameter t determines the width of the bands and, as mentioned, the on-site
energy is set to be zero (Ef = 0). In the calculations the units are chosen to be according tot = 1.
Because of this the TB bands will reach from -3 to +3 (as it is in Figure 2). In reality for graphene
the actual t corresponds to about t = 2,6eV.

In real life cutting finite flakes from infinite graphene sheets breaks the covalent bonds and leads
to dangling bonds at the edges of the flakes. These edges then have to be passivated for example
with hydrogen. This kind of a passivation, how ever, has only a small effect on the p, electronic
states, since also the covalent bonding with hydrogen involves sp” hybridized orbitals. For that
reason the effects of the dangling bonds can be neglected and treat the edge atoms in the same way
as bulk atoms following Areshkin et al [9]. In addition to this, the interactions with possible
substrate will also be neglected and the graphene flakes will be treated as isolated two dimensional
quantum dots.

In this research, all the eigen values of the Hamiltonian matrix problem above ((4) - (6)) are
relevant, since the interest of this research is both at the bottom and at the middle (Fermi energy) of
the energy distribution. In the calculations the amount of atoms in the triangular flakes ranged from
about 5 000 to about 44 000, making the length of the sides of these triangles to range from about
15nm to about 45nm. The amount of atoms in the studied hexagons was in between 2000 — 10000
and in the round flakes about 4900 — 5300.

As it shall be shown in the following first report (appendix A), this extremely simple TB model
agrees remarkably well with the results given by the full density functional theory (DFT)
calculations. Still it is good to notice that this model does not take into account the possible spin-
polarization of the edge states with high degeneracy [12].

4 Summary of Results

After verifying that the used Hiickel model is applicable in this research (compared to the
conventional density functional theory) the following findings and notations were done.

The DOS close to Fermi energy is independent of the size of the triangles and armchair-edged
hexagons but depends strongly on the size of the zigzag-edged hexagons and the round flakes.
Zigzag-edged triangles have edge states with high density of states at Fermi energy E¢ whereas the
armchair-edged triangles have additional set of “ghost states” close to the Fermi energy. These
ghost states are results of the interplay between the graphene band structure and the plane wave
solution of the wave equation and are distributed evenly in energy. The same ghost states appear in
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all the graphene flakes that can be constructed from same sized equilateral armchair triangles with
additional rows of atoms in between them. Near the Fermi energy electrons in triangular flakes
behave as free massless particles, whereas at the bottom and at the top of the band a supershell
structure, similar to that of free electrons in a triangular cavity, is seen. Edge roughness has only a
small effect on the level structure of the triangular flakes but this effect is remarkably enhanced on
the other types of flakes. Edge roughness was studied by removing a fraction of edge atoms
randomly.

Also hexagonal flakes can be constructed to have zigzag or armchair edges. In the case of the
armchair edge, the shell structure is distinct and scalable with size (as it is in the case of triangular
flakes). But for the zigzag-edged hexagons the shell structure is strongly dependent on the size of
the flake.

In the case of the round flakes, a shell structure of a circular cavity could be expected. However,
the level structure close to Fermi energy is dominated by edge states that appear in the zigzag
regions of the edge. The lengths and distribution of these regions vary with the diameter of the flake
and consequently the level structure is very sensitive to the size of the flake.

I edge
'. states |

massless electrons o it
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Figure 4: Upper panel: Tight-binding density of states of the largest graphene triangle studied with
44097 atoms and zigzag edges. The discrete energy levels have been smoothened with
Gaussians. The peak at zero energy corresponds to the edge states localized at zigzag
edges. The lower panels show detailed density of states as a function of the wave number
at the bottom of the band (left) and just above the Fermi level (right). The dashed line
shows the analytical result for a triangular cavity.
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In triangular graphene flakes the shell structure at the bottom of the band, as well as close to the
Fermi level, could be described with an analytic solution of particles in a triangular cavity. The only
difference was that at the Fermi level the Schrodinger equation had to be replaced with the Klein-
Gordon (or Dirac) equation. Figure 4 shows that the solution of the tight-binding model for
triangular graphene flakes can indeed be quantitatively described with the analytic model and that in
both cases the shell structure has a long wave-length modulation known as the super-shell structure.
One of the findings in this thesis was that very large and perfect triangles are needed in order to see
the supershell structure close to the Fermi level. The main reason for this is the emerging
nonlinearity and anisotropy of the energy bands when the energy increases well above the Fermi
energy.

The results of this thesis were obtained for isolated graphene flakes and the interaction with
substrate or electric leads, which probably could have effects on the shell structure, have not been
considered. It has been shown with transport spectroscopy through semiconductor quantum dots
[13], however, that the shell structure calculated for this kind of free dots [14] can actually be
captured with weak connections to leads. A more direct measurement of the electronic states would
be scanning tunnelling microscopy (STM). It has already been used in studying suspended graphene
[15]. So, on a proper surface, it is possible that STM spectroscopy could actually reveal the detailed
structures of the electron wave functions got in this theoretical research.

5 Publications and Authors Contributions

[A] Publication A: J Akola, H P Heiskanen and M Manninen, Edge-dependent selection rules in
magic triangular graphene flakes, Phys. Rev. B 77, 193410 (2008).

The author of this thesis has performed all tight-binding computations, made analysis of the
results and prepared part of the figures. He has also taken part of writing the manuscript. The
density functional computations were made by J. Akola.

[B] Publication B: H P Heiskanen, M Manninen and J Akola, Electronic structure of triangular,
hexagonal and round graphene flakes near Fermi level, New J. Phys. 10, 103015 (2008).

The author is mainly responsible of this paper. He has taken active part in planning the research
and the structure of the manuscript. He has made all the computations and analyses needed and
written the manuscript.

[C] Publication C: M Manninen, H P Heiskanen and J Akola, Electronic shell and supershell
structure in graphene flakes, Eur. Phys. J. D (DOI: 10.1140/epjd/e2008-00282-0)

The author has a small but important contribution to this publication. He has performed the

computations for the large, 44000 atom, triangle and some of those for spherical flakes. The
author did not take part in writing this publication.
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PHYSICAL REVIEW B 77, 193410 (2008)

Edge-dependent selection rules in magic triangular graphene flakes

J. Akola, H. P. Heiskanen, and M. Manninen
NanoScience Center, Department of Physics, P.O. Box 35, FI-40014 University of Jyviskyld, Jyviskyld, Finland
(Received 20 March 2008; published 27 May 2008)

The electronic shell and supershell structure of triangular graphene quantum dots has been studied using
density functional and tight-binding methods. The density functional calculations demonstrate that the elec-
tronic structure close to the Fermi energy is correctly described with a simple tight-binding model, where only

the p, orbitals perpendicular to the graphene layer are included. The results show that (i) both at the bottom and
at the top of the p, band, a supershell structure similar to that of free electrons confined in a triangular cavity
is seen, (ii) close to the Fermi level, the shell structure is that of free massless particles, (iii) triangles with
armchair edges show an additional sequence of levels (“ghost states™) absent for triangles with zigzag edges
while the latter exhibit edge states, and (iv) the observed shell structure is rather insensitive to the edge

roughness.

DOLI: 10.1103/PhysRevB.77.193410

Recent experimental success in manufacturing single
layer graphene flakes on various surfaces'™* has made
graphene a new playground for theoretical and computa-
tional physics,> and more and more experimental results
are emerging.'%!> Most of the recent interest has been fo-
cused in the effects caused by the peculiar band structure of
graphite near the Fermi level (ep): Electrons and holes be-
have as massless particles (Dirac fermions) due to the linear
dispersion relation although their velocity is very small.!?

The triangular shape of two-dimensional clusters is par-
ticularly interesting because, in the case of free electrons, it
supports perhaps the most persistent and regular supershell
structure of all systems.'* Furthermore, the triangular shape
is preferred in two-dimensional metallic systems'>!¢ and in
plasma clusters.!” For tetravalent elements, triangular clus-
ters have been observed in silicon.!® It is reasonable to ex-
pect that such shapes can be observed also for carbon, and
this is supported further by the fact that equilateral triangles
of graphene can be cut with the two most stable edge struc-
tures, the zigzag edge and the armchair edge.

In this Brief Report, we wish to point out that finite
graphene flakes (or quantum dots) have an intriguing energy
spectrum close to the Fermi level. We have performed
electronic structure calculations for triangular graphene
flakes using the density functional theory (DFT) for all the
valence electrons and a tight-binding (TB) approach that
considers only the carbon p, electrons (Hiickel model). Our
results show that already in small triangular flakes
(N=300, L=5 nm), the electronic levels close to € can be
understood as those of free massless electrons confined in a
triangular cavity. Especially, we demonstrate that the edge
structure has a selective role in the electronic shell structure:
The zigzag edge prohibits a whole sequence of localized
states inside the cluster although it supports edge states. This
leads to well-defined edge-dependent selection rules that are
based on an analytical model. Recently, Yamamoto et al.'®
addressed the presence (absence) of edge states at € in zig-
zag (armchair) triangles of graphene, and the effect on the
optical absorption, but the simple principles of the underly-
ing energy spectrum have remained unexplained.

It is well known that the atomic p, electrons perpendicular
to the graphene plane are responsible for the captivating

1098-0121/2008/77(19)/193410(4)
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band structure shown in Fig. 1 with the valence and the
conduction bands meeting at the corners of the hexagonal
Brillouin zone.?*2! The Fermi surface consists of a discrete
set of these points of high-k value, and the resulting density
of states (DOS) has a zero weight at €. The crossover re-
gions have locally hourglass-like shapes, which results in the
linear and isotropic electron dispersion relation in the con-
duction band (€> €;=0) but only in a small energy interval.
Since the atomic p, electrons are perpendicular to the
graphene plane, their interaction with the neighboring atoms
does not have any directional dependence and, consequently,
they can be described as s-type electrons in the TB model.
By neglecting also the differential overlap between atomic
sites, the system can be described with the traditional Hiickel

model
—t, if
Hij= 0’

where the hopping parameter ¢ (resonance integral) deter-
mines the width of the bands and the on-site energy is chosen
to be e=0. We choose to present our results in units #=1.
The resulting TB bands (Fig. 1) reaches from -3 to +3 (in
real graphene, our unit ¢ corresponds to about 2.6 eV).

A conceptual cutting of a finite graphene flake breaks co-
valent bonds, yielding edges with dangling bonds. We con-
sider the dangling bonds to be passivated, say, with hydro-
gen. Since the covalent bonding with hydrogen involves sp?
hybridized orbitals, the passivation is expected to have only
a small effect on the perpendicular p, electron states. There-
fore, we neglect this effect in our TB model and follow
Areshkin et al.>' and treat the edge atoms in the same footing
as bulk atoms. Moreover, we will completely neglect the
interaction of graphene with the possible substrate and treat
the graphene flake as an isolated two-dimensional cluster or
quantum dot. As we shall see, the results of the simple TB
model agree well with those of the full DFT calculation.

It has been shown that at the bottom of the valence band,
the TB model exactly gives the free electron states for a
triangular lattice,?? and the same is true also for the hexago-
nal graphene. Consequently, at the bottom (and at the top),

i,j mnearest neighbors

otherwise

©2008 The American Physical Society
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FIG. 1. (Color) Crossover of the valence and conduction bands
at the Fermi energy (top) and the density of states (bottom, p, elec-
trons) of an infinite graphene sheet.

the energy levels are expected to show the same shell struc-
ture as free electrons in a triangular cavity, which is deter-
mined by the equation®3?*

€= eo(n® + m* —nm), (1)

where €,=8m%2/3m,L?, with L being the length of the tri-
angle side. The quantum numbers must satisfy m=1 and
n=2m. Determination of the electron effective mass in the
graphene lattice for the TB model gives eo=4772t/9_N, where
N is the number of atoms in the triangle (L=3d\VN/2 for a
large triangle, d is the nearest-neighbor distance).

The shell structure manifests itself as a regular variation
of DOS, which can be determined by the Gaussian convolu-
tion of the discrete levels. Figure 2 shows DOS close to the
bottom of the valence band obtained from the above equation
and compared to the TB model for two graphene triangles,
one with 10 000 atoms (zigzag edge) and the other with 9918
atoms (armchair edge). The profiles are clearly similar and
exhibit the beating pattern of the supershell structure.?® Note
that DOS is plotted as a function of e+ 3¢, making the shells
equidistant. Figure 2 shows also the electron densities corre-
sponding to the six lowest energy levels (for degenerate
states, we show the sum of the density). The density patterns
are identical to those of free electrons confined in a triangle'®
or wave modes in triangular resonators.?®

The Fermi level of graphene consists of two equivalent
points at the border of the Brillouin zone (see Fig. 1), where
the conduction and valence bands open as circular cones,
resulting a linear dispersion relation for electrons
€(k)=Ctik, where C is the velocity. Thus, it is to be expected
that the electron dynamics is not determined by the
Schrodinger equation but by the wave equation of massless
particles (or the Dirac equation). For free particles confined

PHYSICAL REVIEW B 77, 193410 (2008)

TB vs. cavity

DOS

FIG. 2. (Color) Upper panel: DOS at the bottom of the TB band
shown as a function of g= e+ 3t. Blue: zigzag triangle with 10 000
atoms; red: armchair triangle with 9 918 atoms; and black: result for
free electrons in a triangular cavity. Lower panel: Electron densities
of the six lowest energy levels.

in a triangle, the energy levels are still determined by Eq. (1),
but now it results in the square of the energy, i.e.,

—_—

€= €\n> +m* —nm, (2)

where €, =2t/ V3N. Itis interesting to note that these energy
levels were actually computed for the wave equation much
earlier than for the Schrodinger equation.”

Figure 3 shows TB-DOS above the Fermi energy for two
large triangles (~10 000 atoms) with zigzag and armchair
edges and compares them to the levels of free massless elec-
trons [Eq. (2)]. The results are the following. (i) Each energy
level has an additional degeneracy of two due to the two
equivalent points at €. (ii) The zigzag triangle shows the
levels of Eq. (2) with index values m=1 and n=2m, while
the armchair edge shows all the levels where n=m= 1. (iii)
The states are much less dense than at the bottom of the band
and Eq. (2) describes only the lowest states accurately. (iv)
Due to the sparseness of the states, no supershell oscillations
are visible for the massless particles (although the supershell
structure of ordinary electrons is clearly seen in Fig. 2). (v)
The zigzag edge supports particularly visible edge states?’-?8
that appear at € as a prominent peak. The number of these
states equals the number of the outermost edge atoms in
zigzag triangles, which is N=N.

In order to compare our results to a more realistic calcu-
lation, we have performed DFT calculations for triangular
CyHs, (zigzag) and CssgHg, (armchair) flakes with the
cPMD program.”’ The DFT calculations use a plane wave
basis set (E.,=50 Ry), pseudopotentials,®® and a general-
ized gradient-corrected Perdew—Burke—Ernzerhof approxi-
mation for the exchange-correlation energy.’! The resulting
DFT-DOS of all valence electrons is plotted in Fig. 3(b) for
both systems, and they show overall features characteristic

193410-2
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FIG. 3. (Color) Upper panel: TB-DOS at the Fermi level dis-
played as a function of energy (red and blue curves) compared to
the density of levels of Eq. (2) (black curves). The zigzag triangle
has 10 000 atoms and the armchair triangle 9918 atoms. Lower
panel: DOS of the full DFT calculation for the triangular C3,;Hs;
(zigzag, red) and Cs30Hgo (armchair, blue) flakes. The inset shows
the levels above the Fermi surface where the zigzag spectrum is
shaded.

for graphite. The zigzag edge states at € are visible and the
closest conduction states obey the simple analytical model of
Eq. (2). The even-numbered peaks are split for the armchair
triangle, which is a result reproduced by TB (the splitting
reduces with increasing system size).

The lowest conduction states that are labeled in Fig. 3
show fascinating details and the electron densities of two
such states are visualized in Fig. 4. For comparison, we show
the same states and/or orbitals calculated for a large triangle
with the TB model (4920 C atoms) and for a small triangle
calculated with the DFT method (330 C atoms). The internal
structure (symmetry) of the states is clearly similar, and
therefore, it is independent of the triangle size and the model
used. The states close to the Fermi level appear very different
from those at the bottom of the band (Fig. 2). They are not
simple densities of massless particles confined in a triangle
since the density profile does not decay to zero at the edges.
The corresponding electron levels are close to the Brillouin
zone boundary, having large k values and the wave functions
have pronounced oscillations with wavelengths that are re-
lated to the unit cell size. These oscillations guarantee that
the wave function will be formally zero at the edges but the
corresponding pseudowave function of the massless particle
does not necessarily show the same behavior. An interesting
feature in Fig. 4 is that the states have simple geometric
structure of triangular symmetry. The size (number) of the

PHYSICAL REVIEW B 77, 193410 (2008)

FIG. 4. (Color) Electron density of the [(a) and (b)] third and
[(c) and (d)] fifth energy levels above the Fermi energy in armchair
triangles (ghost states, labeled in Fig. 3, each has a degeneracy
two). (a) and (c) are computed for a large TB triangle of 4920 C
atoms, while (b) and (d) are DFT results for a C33gHg molecule.

triangles decreases (increases) with increasing energy, i.e.,
the pattern repeats itself. These “ghost states” are completely
absent for the zigzag triangles, and they correspond to quan-
tum numbers of Eq. (2) that are not allowed for free electrons
in a triangular box [i.e., 2m=n=m=1 in Eq. (2)].

Figure 5 shows the electron densities corresponding to the
“normal” low energy states that obey the standard selection
rules (m=1 and n=2m). Again, the electron density does
not necessarily vanish at the edges of the triangle. The cor-
responding states for the armchair and zigzag triangles dis-
play obvious differences despite the fact that they involve the
same set of quantum numbers (and energy).

Finally, we want to note that a small roughness of the

FIG. 5. (Color) Electron density (TB model) of the [(a) and (b)]
second and [(c) and (d)] fourth energy levels above the Fermi en-
ergy (labeled in Fig. 3) for armchair and zigzag triangles of 4920
and 5181 C atoms, respectively.
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edge does not remove the peculiar states shown in Fig. 4 or
change the shell structure close to the Fermi level. These
ghost states form a triangular network, and it would be inter-
esting to study if they can exist also in the graphene flakes
with hexagonal, parallelogram, or trapezoidal shapes.

In conclusion, we have computed the electronic structure
of triangular graphene flakes and shown that the DOS profile
close to € is independent of the triangle size, and it can be
described with the simple TB model. The zigzag flakes ex-
hibit well-known edge states and the armchair triangles show
an additional set of ghost states (different selection rules)
where the corresponding electron density makes a triangular

PHYSICAL REVIEW B 77, 193410 (2008)

pattern. In large triangles of 5000—10 000 C atoms, the en-
ergy levels can be accurately described by considering free
massless particles confined in a triangular cavity. Presum-
ably, the electronic states near the Fermi surface are not sen-
sitive to the dielectric substrate, and we expect that these
fascinating wave functions can be observed with scanning
tunneling microscopy.

This work has been supported by the Academy of Finland.
The DFT calculations were performed on IBM-SP4+ plat-
forms at the John von Neumann Institute for Computing
(NIC), Forschungszentrum Jiilich, Germany.
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Abstract. The electronic shell structure of triangular, hexagonal and round
graphene quantum dots (flakes) near the Fermi level has been studied using a
tight-binding method. The results show that close to the Fermi level the shell
structure of a triangular flake is that of free massless particles, and that triangles
with an armchair edge show an additional sequence of levels (‘ghost states’).
These levels result from the graphene band structure and the plane wave solution
of the wave equation, and they are absent for triangles with a zigzag edge.
All zigzag triangles exhibit a prominent edge state at €r, and few low-energy
conduction electron states occur both in triangular and hexagonal flakes due to
symmetry reasons. Armchair triangles can be used as building blocks for other
types of flakes that support the ghost states. Edge roughness has only a small
effect on the level structure of the triangular flakes, but the effect is considerably
enhanced in the other types of flakes. In round flakes, the states near the Fermi
level depend strongly on the flake radius, and they are always localized on the
zigzag parts of the edge.
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1. Introduction

Nearly free electrons trapped by a high-symmetry potential exhibit a shell structure that arises
from the symmetry-induced degeneracy and bunching of energy levels of different radial modes.
Such a level structure has been observed in metallic clusters and semiconductor quantum
dots (for reviews see [1, 2]). Usually, the shell structure is associated with a spherical or
circular symmetry, but it exists also, for example, in three-dimensional icosahedral [3] and two-
dimensional triangular clusters [4]. The shell structure is a single-particle property and can be
understood on the basis of the jellium model of delocalized electrons [5] or the tight-binding
(TB) approach [6].

In two-dimensional systems, the most interesting confinement geometries for electrons are
a circle, hexagon and triangle. Obviously, the circle has the highest symmetry of these and
the triangle the lowest. Surprisingly, however, it is the triangle that has the most persistent
shell structure and also a regular supershell structure [7]. The triangular shape is preferred in
two-dimensional metallic systems [4, 8, 9], in plasma clusters [10], and it is observed also in
semiconducting silicon clusters [11].

The shell structure of quantum dots and metal clusters is caused by nearly free conduction
electrons. In the case of graphene, the situation is different due to the peculiar band structure.
The Fermi surface consists of a set of discrete points, and the electron (hole) dispersion relation
of the conduction (valence) band is linear. Recent experiments have shown that nanometre-sized
graphene flakes can be produced on various surfaces [12]-[18], which has induced a significant
amount of theoretical interest [19]—[30].

In this paper, we show that finite graphene flakes (or quantum dots) have an interesting
energy spectrum close to the Fermi level. The most common edges of graphene are the so-called
armchair and zigzag edges. It turns out that the energy spectrum of graphene flakes depends
strongly on the type of the edge, and that flakes of similar size and shape can exhibit distinctly
different electronic structure (selection rules). In an earlier report [31], we reported results for
triangular graphene flakes and showed that a simple TB model that considers only the carbon
p. electrons produces a similar shell structure to a full electronic structure calculation with all
the valence electrons (based on density functional theory, (DFT)). Moreover, the results showed
that the electronic levels close to the Fermi energy can be understood as those of free massless
electrons confined in a triangular cavity. Herein, we shall further investigate the peculiarities
of the graphene electronic structure that are caused by the geometry and edge structure of the
flake.
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Figure 1. The DOS (p. electrons) of an infinite graphene sheet for the TB method
used. Inset: cross-over of the valence and conduction bands at the Fermi energy.

The atomic p, electrons perpendicular to the graphene plane are responsible for the band
structure shown in figure 1, where the valence and the conduction bands meet at the corners
of the hexagonal Brillouin zone [32, 33]. The Fermi surface consists of a discrete set of these
points of high-k value, and the resulting density of states (DOS) has a zero weight (as well
as zero band gap) at the Fermi energy €. The dispersion relation is linear in the near vicinity
of the Fermi level. Since the atomic p, electrons are perpendicular to the graphene plane their
interaction with the neighboring atoms does not have any directional dependence and the TB
model can be reduced to the traditional Hiickel model

-t if i, j nearest neighbors,
H;j = { 0, otherwise, (1

where the hopping parameter ¢ (resonance integral) determines the width of the bands and the
on-site energy is chosen to be ep = 0. We present our results in units # = 1 (in real graphene our
unit # corresponds to about 2.6 eV). It is important to note that the simple TB model becomes
equivalent to that of the free electron model when the electron wavelength becomes much larger
than the interatomic distance [6]. This is valid at the bottom of the valence band where the
free electron model gives the correct shell and supershell structure [31]. The situation is more
complicated near the Fermi level where the electron wavelength ascribes to the interatomic
distance. However, as we shall see, also there the level structure can be understood in terms of
the free electron model, but now for massless electrons.

In the following, we consider graphene flakes that are cut out from a perfect infinite
graphene sheet and neglect the effects of the substrate as well as the passivation of dangling
bonds. The passivation, say with hydrogen, involves sp? hybridized orbitals and is expected to
have only a marginal effect on the perpendicular p, electron states [32, 33]. This approximation
was supported by our earlier work where we compared the full DFT calculations of hydrogen
passivated graphene flakes with the results of the simple Hiickel model without passivation [31].
Note, however, that our simple model cannot account for possible spin-polarization of the edge
states with large degeneracy [34].

New Journal of Physics 10 (2008) 103015 (http://www.njp.org/)


http://www.njp.org/

4 10P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

2. Triangular graphene flakes

The Fermi level of graphene consists of two equivalent points at the border of the Brillouin
zone (see figure 1) where the conduction and valence bands open as circular cones resulting in
a linear dispersion relation for electrons € (k) = C#k, where C is the velocity. Thus, it is to be
expected that the electron dynamics is not determined by the Schrodinger equation but by the
equation of massless particles (Klein—Gordon or Dirac equation). The simple wave equation for
a triangular cavity has an analytic solution [35] which gives the energy eigenvalues

€Enm = €1V N>+ m? —nm, (2)

where m and n are positive integers with n > 2m. The state with » = 2m is nondegenerate,
whereas states with n > 2m have a degeneracy 2. In our case €, =27¢/+/3N, N being
the number of atoms. In the case of the Schrédinger equation (i.e. electrons with mass),
the exact solution gives € o« n’>+m? —nm, i.e. equation (2) without the square root. It is
interesting to note that the exact solution for the wave equation was presented by Lame
already in 1852 [36], as noted by Krishnamurthy who studied the corresponding solution of
the Schrodinger equation [37]. The corresponding wave functions can be found in [38].

The eigenvalues of equation (2) are solutions of the wave equation for massless particles,
for example, for elastic waves, for electromagnetic waves or for the positive energy solutions
of the Klein—Gordon equation. We want to emphasize that we have not shown that they are
solutions of the Dirac equation where the boundary conditions are tricky for a cavity [21, 30, 39].
However, our numerical solutions of the TB problem for large triangular flakes are in excellent
agreement with those of equation (2).

The electronic DOS of a finite system (flake) consists of a set of discrete energy levels.
Instead of plotting the level structure it is more useful to study the density of levels since it
points out more clearly the exact and nearly exact degeneracies of levels as well as the shell
structure, which manifests itself as a regular variation of the level density. It is thus useful to
define a continuous DOS by using a Gaussian convolution of the discrete levels ¢;:

1 Z e—(e—ei)z/%z, 3)

o221
where o is the width of the Gaussian.

Figure 2 shows TB-DOS above the Fermi energy for three graphene triangles
(~22000, 15000 and 5600 atoms) with armchair and zigzag edges and compares them with
the DOS of free massless electrons (see equation (2)). For armchair flakes, the comparison
includes now additional (forbidden) index values m = n. The results are the following: (i) each
energy level has an additional degeneracy of two due to the two equivalent points at eg. (ii)
The zigzag triangle shows the levels of equation (2) with index values m > 1 and n > 2m,
whereas the armchair edge shows also those where » =m. We call these additional states
(where n =m) ‘ghost states’. (iii)) Equation (2) describes only the lowest states accurately
and is more successful for larger triangles. (iv) Due to the sparseness of the states, supershell
oscillations of the massless particles become visible only in the large triangles (although they are
already visible at the bottom of the band in small triangles [31]). (v) The zigzag edge supports
particularly visible edge states [41, 42] that appear at €r as a prominent peak (figure 2). The
number of these states equals the number of the outermost edge atoms in zigzag triangles, which
is N = +/N. We shall return to the edge states in section 6.

gle) =
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Figure 2. TB-DOS above the Fermi energy for triangular flakes (red curves),
compared to the DOS of equation (2) (blue curves). The sizes of the triangles
are given as numbers of atoms. Note that the triangles showing the geometries
are much smaller. The energy is in units of # for the largest armchair and zigzag
triangles, respectively. For the smaller sizes, the energy has been scaled by the
square root of the number of atoms in order to get the peaks at the same positions.

Graphene ribbons with armchair edge show DOS with or without a gap, depending on
width of the ribbon [42]. In the case of triangular flakes with armchair edges no such effect was
seen. The only size dependence observed was the scaling of the energy levels with the flake size.

The lowest conduction states that are numbered in figure 2 show fascinating details, and
the electron densities of such states are visualized in figure 3. The abovementioned ghost states
(left, labeled by odd indices) show an interesting feature as they have a simple geometric pattern
of triangular symmetry. The size (number) of the triangles decreases (increases) with increasing
energy, i.e. the pattern repeats itself. These ghost states are completely absent for the zigzag
triangles, and they correspond to quantum numbers of equation (2) not allowed for free electrons
in a triangular box (i.e. n = m (with extra degeneracy) in equation (2)). Previously, we calculated
the same states for a smaller armchair triangle with a DFT method (330 C atoms, 60 passivating
H atoms) [31]. The internal structure (symmetry) of the states was clearly similar, and therefore,
the phenomenon is independent of the triangle size and the model used. We shall discuss the
ghost states in detail in section 4.

Figure 3 (right) shows the electron densities corresponding to the ‘normal’ low energy
states that obey the standard selection rules (m > 1 and n > 2m). Again, the electron density
does not necessarily vanish at the edges of the triangle. Interestingly, the corresponding states
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Figure 3. LEFT FOUR: electron density of (a) the 1st, (b) 3rd, (c) 5th and
(d) 7th energy levels above the Fermi energy in armchair triangles (‘ghost states’,
labeled in figure 2). Each level has a degeneracy of two. RIGHT FOUR: electron
density of ((a) and (b)) the 2nd and ((c) and (d)) the 4th energy levels above the
Fermi energy (labeled in figure 2) for armchair and zigzag triangles of 4920 and
5181 C atoms, respectively. Color scale from blue to red, blue corresponds to
vanishing density. Each figure shows the sum of the densities of the degenerate
states.

for the armchair and zigzag triangles (with the same energy and quantum numbers n and
m) display nearly an anticorrelation: the maxima in zigzag triangles are minima in armchair
triangles and vice versa. Overall, the states close to the Fermi level appear very different from
those at the bottom of the band. They are not simple densities of massless particles confined in a
triangular cavity since the density profile does not decay to zero at the edges. The corresponding
electron levels are close to the Brillouin zone boundary, having large k-values, and the wave
functions have pronounced oscillations with wavelengths that are related to the hexagonal unit
cell size. These oscillations enable the wave function to be formally zero at the edges, but the
corresponding pseudowave function of the massless particle does not necessarily vanish.

3. Hexagonal graphene flakes

Similar TB calculations were performed for hexagonal graphene flakes with armchair and
zigzag edges. The comparison between hexagonal and triangular flakes is based on hexagons
that were cut from the corresponding triangles (taking the corners off). In general, the level
structure is more complicated but some similarities with the triangular flakes can be found. We
observe the following results: (i) the zigzag edge supports edge states (see section 6), whereas
the armchair edge results in a gap at €. (ii) The electron DOSs near er display the main
amplitude at the edges/corners both for the zigzag and armchair edges. (iii) For the zigzag flake,
the number of states near the Fermi level depends on the size of the flake. (iv) Hexagonal flakes
display few states that have exactly the same electron density as the original triangles (cutting
off the corners). (v) In most cases, the electron densities are different than in the corresponding
triangular flakes or hexagons with the other type of edge. It is also worth mentioning that at the
bottom of the valence band the (p,) electrons act as free particles not seeing the atomic lattice,
which is a case similar to triangles. This makes the supershell structure visible at the bottom of
the valence band, but it is not as clear as in the triangular graphene flakes.

New Journal of Physics 10 (2008) 103015 (http://www.njp.org/)


http://www.njp.org/

7 10P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0g9¢09% o:
0990909 ®

Zigzag
10 086 atoms
AN |
| 3786 atoms [| 3750 atoms
L ) /\/\f/\ ﬂ A M A A
| 2814 atoms [ 2400 atoms
EIrITew
0 0.05 0.1 0.15 02 0 0.05 0.1 0.15 0.2

Energy (arbitrary units)

Figure 4. TB-DOS of the hexagonal flakes with armchair (left panel) and zigzag
(right panel) edge. The energy is in units of ¢ for the largest hexagons. For the
smaller sizes, the energy has been scaled by the square root of the number of
atoms (scaling factor = 4/ N;/N,, where N, is the number of atoms in flake 1
and N, atoms in flake 2). The geometries are shown as small hexagons.

Figure 4 shows the DOS of hexagonal flakes. In the armchair panel (left), the DOS has
been scaled by size in order to get the peaks to coincide near the Fermi level. The scaling factor
+/Ni/N; is the same as in the case of triangles. In the zigzag flakes, the scaling does not bring
the peaks at the same positions. This is a special feature that does not exist in triangular flakes.
In general, the zigzag flakes have a peak and the armchair flakes display a gap at €, which is the
case for triangles also. The hexagonal armchair flakes display states near the Fermi level that
are in a sense universal: they do not depend on the size of the flake (cf triangles, figure 2). The
armchair flakes do not exhibit any states that could be regarded as ghost states suggesting that
these are characteristic for the armchair triangles only. However, as will be shown in section 4, a
slight modification of the hexagonal flakes changes the situation. We also note that the DOS near
the Fermi energy has some peaks that coincide with the ones of the triangles, and there is one
state that is common in all the triangular and hexagonal flakes: the peak ‘2’ in figures 2 and 4.
Furthermore, the states that have exactly the same energies in armchair triangles and hexagons
display similar electron densities due to the common symmetry properties (figures 5(e) and (f)).

4. Ghost states

The hexagonal armchair flakes of section 3 do not exhibit the peculiar ghost states. The reason
is that our flakes obey the armchair construction exactly: the corners are those of a perfect
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Figure 5. Electron density corresponding ((a) and (b)) the first peak before the
peak ‘2’ in figure 4) and ((c) and (d)) the peak ‘2’ for the armchair (upper) and
zigzag (lower) hexagons. (e) and (f) show a state that occurs both in the armchair-
edged hexagon and triangle (peak ‘6’ in figure 2). Color scale from blue to red,
blue corresponds to vanishing density.

honeycomb pattern. However, the ghost states will reappear if the flakes are built differently.
This can be understood by studying a triangular armchair flake with ghost states (figures 6(a)
and (b)). The boundary conditions of the TB problem require that the wave function is zero at
the (imaginary) lattice sites just outside the triangle. Now, we can put two triangles together as
in the rhombus-shaped flake shown in figure 6(c)), and add an additional row of atoms between
the triangles. This system has naturally the same ghost states as the original triangle. Similarly,
we can construct hexagonal flakes with ghost states as shown in figure 6(d), and it is clear that
any shape consisting of equilateral triangles can exhibit ghost states. The only requirement is
that an additional row of lattice sites (atoms) is added at the interface of the triangles. The ghost
states in different triangles are then completely decoupled although they appear as continuous
wave functions, and the wave function is exactly zero at the interface. This is also the reason
why the ghost state pattern repeats itself: the high-index (large n = m) ghost states are the same
in large triangles as the low-index ghost states in small triangles, and the energy is exactly the
same if the side length L of the large triangle is commensurate with that of the small triangle.

At this point, it is important to note that the hexagonal flakes constructed according to the
prescription above do not have perfect corners. Instead of the armchair edge just bending over,
they have a small region of zigzag edge at the corners. Similarly, the extra row of atoms in the
rhombus shown in figure 6 results in the corners not following the armchair construction. The
ghost states disappear if the rhombus is made by merging two triangles together without an
additional row of atoms.

The appearance of ghost states in the TB model reflects the balance between the graphene
band structure and the free electron states in two-dimensional systems. Figure 6(e) shows the
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Figure 6. Ghost states in ((a) and (b)) armchair triangles, and the corresponding
ghost states (2nd and 1st) in (c) an imperfectly built rhombus and (d) hexagon.
The extra rows of atoms are marked with the narrow white lines. (¢) shows
a standing wave solution of the wave equation in an infinite two-dimensional
(hexagonal) system. The small and large triangles in (¢) demonstrate how the
ghost states (1st and 4th) appear in triangular flakes.

combined density of two degenerate plane waves for free electrons, which can be expressed as
n(x, y) = sin® gx +sin’ (%qx + «/§qy) +sin? (%qx - ﬁqy). 4)

This density has a clear similarity of that of the ghost states, except that the rapid oscillations
from atom to atom are absent. Again, we want to remind readers that the (pseudo) wave function
of these ‘Dirac fermions’ above the Fermi energy does not need to be zero at the edge of the
triangular cavity since the rapid oscillations take care of this boundary condition. Thus, also
solutions where the derivative of the pseudowave function is zero are allowed.

5. Edge roughness

The effect of edge roughness was studied for triangular and hexagonal flakes. We removed
randomly 10, 38 or 50% of edge atoms and studied how it affected the DOS and electron
densities of the states near €. The atom removal process avoided situations where the possible
remaining atom had only one nearest-neighbor, and such atoms were taken out.

The results are collected in figure 7 which shows the TB-DOS above the Fermi energy
(upper panel) and the electron density of the 2nd conduction electron state (peak ‘2°, lower
panel). Especially in the case of hexagonal flakes, the edge roughness has a noticeable effect
on DOS and electron densities. Already a small edge roughness causes the degeneracy of the
states to break up, and for example, removal of only 10% of edge atoms in the zigzag-edged
hexagonal flake results in a significant perturbation, and the electron density pattern of the intact
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Figure 7. Upper panels: effect of the edge roughness on TB-DOS for an armchair
triangle (left) and zigzag hexagon (right). Lower panels: effect of the edge
roughness on the electron density of the 2nd conduction electron state for
armchair and zigzag flakes. Triangular flake with (a) armchair edge and (b)
zigzag edge. Hexagonal flake with (c) armchair edge and (d) zigzag edge. From
left to right: intact edge, 10, 38, and 50 percent of the edge atoms removed. Color
scale from blue to red, blue corresponds to vanishing density.

flake cannot be identified anymore. The changes are less dramatic for triangular flakes, and the
pattern of the 2nd conduction state is always recognizable. The DOS curves indicate that the
states closest to e are the most robust against edge roughness. Finally, the electron density of
the corresponding states seems to avoid the rough parts of the edge in the case of armchair edge
and favor them in the case of zigzag edge.
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Figure 8. TB-DOS of round graphene flakes (upper panel) and electron densities
(lower panel) of the first conduction electron state above er (marked with a
tick in the DOS panels). The flake diameters (D) are (left to right): 91, 92, 93,
and 94 times the nearest-neighbour distance corresponding to 4980, 5118, 5238,
and 5338 atoms, respectively. Color scale from blue to red, blue corresponds to
vanishing density.

6. Round graphene flakes

Finally, we have studied round (circular) graphene flakes. Round flakes were cut out of a
graphene sheet as follows: the center was chosen to be a high-symmetry point (an atom or a
center of a hexagon), and all the atoms inside a chosen radius were included. After this, all
the edge atoms with only one nearest-neighbour were removed. The number of atoms is thus
determined by the chosen radius and center. Figure 8 shows the TB-DOS above the Fermi
level for four round graphene flakes with almost the same diameter and ~5000 atoms. Based
on the triangular and hexagonal graphene flakes, one might expect that the shell structure is
independent of the size. Figure 8 demonstrates that this is clearly not the case. On the contrary,
the level structure is very sensitive to the flake diameter. This can be understood by inspecting
the structure of the low-energy wave functions (lower panel in figure 8). The states above the
Fermi energy are localized close to the flake edges, and therefore, they experience the detailed
edge geometry.

The edge of a circular flake comprises not only the simple armchair and zigzag segments,
but also more complicated parts. Figure 8 shows the electron density of the lowest state above
the Fermi level. In all cases, the electron density is concentrated in the zigzag regions. The
length and distribution of the zigzag segments vary with the flake diameter (size). This causes
the energy of the corresponding state to be different for each round flake. The same argument
applies for all the low-energy states since they have marked amplitudes at the edges, and it
explains the strong size-dependence of DOS. The edge states have large degeneracy (or near
degeneracy) as seen as a large peak at zero energy in the plots of the DOS in figures 2, 4
and 8(b). This can cause spin-polarization in a partially filled case due to Hund’s first rule, but
this is out of the reach of our simple model.
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Figure 9. Electron density of the edge states (DOS peak at €f) for (a) a zigzag
triangle (5622 atoms, 72 states), (b) zigzag hexagon (3750 atoms, 18 states),
and (c) round flake (5118 atoms, 12 states). Color scale from blue to red, blue
corresponds to vanishing density.

The edge states are visible in the zigzag triangles and hexagons, and they appear as a
prominent peak (DOS) at the Fermi energy. For triangles, all the edge states have zero energy,
1.e. they are exactly at the Fermi level. The hexagon edge states are also concentrated at the
Fermi energy, but they have a small dispersion. The situation is significantly different in round
flakes due to the fact that the lengths of the zigzag regions are very small. This leads to a
situation where the electrons become localized and their energy increases. Figure 9 shows the
total electron density of edge states in these three cases: in the case of triangles, the edge states
bend smoothly around the corners of the triangle, but for hexagons they are already pushed out
from the corners. The round flakes exhibit edge states that are localized in narrow regions and
penetrate much deeper inside the flake.

7. Conclusions

We have computed the electronic structure of triangular, hexagonal and round graphene flakes
by using a TB method that considers the carbon p, electrons. We observe that the DOS close to
the Fermi energy e is independent of the size of the triangles and armchair-edged hexagons, but
depends strongly on the size of the zigzag hexagons and round flakes. The triangles with zigzag
edge exhibit the well-known edge states, whereas the armchair triangles show an additional
set of ‘ghost states” which result from the interplay between the graphene band structure and
the plane wave solutions of the wave equation. The same ghost states will emerge in any flake
of graphene that can be constructed from equilateral armchair triangles of the same size with
additional rows of atoms in the boundaries.

Also hexagons can be constructed with armchair or zigzag edges. In the case of the
armchair edge, the shell structure is clear and scalable with the flake size (cf triangles). However,
for the zigzag edge the shell structure of the hexagonal confinement is disturbed by the edge
states, and the level structure above the Fermi energy depends on the size of the hexagon.

For round graphene dots, one might expect the shell structure of a circular cavity. However,
the low-energy level structure (above €r) is dominated by the edge states that appear in the
zigzag regions of the edge, and the lengths and distribution of such segments vary with the flake
diameter. Consequently, the level structure is very sensitive to the size of the circular graphene
flake.
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The effect of the edge roughness on shell structure was studied by removing a fraction
of atoms randomly. In the armchair triangles, the shell structure is simple and scalable, and
the roughness has only a small effect on the low energy states. For the zigzag hexagons, the
low-energy levels are edge-related, and already a small roughness removes the shell structure.

We have obtained our results for free graphene flakes and not considered the interaction
with substrate or electric leads which evidently could have effects on the shell structure.
However, transport spectroscopy through semiconductor quantum dots [43] has shown that the
shell structure calculated for free dots [44] can indeed be captured with weak connections
to leads. A more direct measurement of the electronic states would be scanning tunneling
microscopy (STM) which has already been used to study suspended graphene [45]. It is possible
that on a proper surface, STM spectroscopy could reveal the detailed structures of the electron
wave functions.
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Abstract. We use a simple tight-binding (TB) model to study electronic properties of free graphene flakes.
Valence electrons of triangular graphene flakes show a shell and supershell structure which follows an
analytical expression derived from the solution of the wave equation for triangular cavity. However, the
solution has different selection rules for triangles with armchair and zigzag edges, and roughly 40 000 atoms
are needed to see clearly the first supershell oscillation. In the case of spherical flakes, the edge states of
the zigzag regions dominate the shell structure which is thus sensitive to the flake diameter and center. A
potential well that is made with external gates cannot have true bound states in graphene due to the zero
energy band gap. However, it can cause strong resonances in the conduction band.

PACS. 73.21.La Quantum dots — 81.05.Uw Carbon, diamond, graphite — 61.48.De Structure of car-
bon nanotubes, boron nanotubes, and closely related graphitelike systems — 81.05.Uw Carbon, diamond,

graphite

1 Introduction

Electrons confined in a finite cluster of atoms with spher-
ical symmetry exhibit a shell structure [1,2]. In large
enough clusters, the shells representing different classical
periodic orbits can interfere forming a supershell struc-
ture [3,4] that has been observed in large alkali metal clus-
ters [5]. The supershell structure is especially visible in a
two-dimensional triangular cavity which has only two clas-
sical periodic orbits [6]. The triangular cavity is interesting
also due to the fact that the Schrodinger equation and the
wave equation are exactly solvable in that system [7-9],
and it has been shown that triangular shapes are preferred
in two-dimensional nearly free electron systems [10-12].
Recently, experiments have shown that single layer
graphene flakes can be prepared on inert surfaces where
the graphene-surface interaction is weak [13-18]. Since the
manipulation of graphene on different substrates is still a
fast developing area, it is not out of question that graphene
flakes with accurate shape and size can be eventually pro-
cessed on a substrate where the interaction is so weak
that it does not affect the graphene electronic levels close
to the Fermi point. Hence, we study ideal free graphene
flakes neglecting the interaction with the substrate. The
experiments have inspired a wealth of theoretical studies
of graphene [19-32], but according to our knowledge the
shell and supershell structure of large graphene flakes has
not been addressed except in our recent work [33].
Electronic structure calculations based on the density
functional theory (DFT) have shown that the energy levels
close to the Fermi level, which consists of discrete points in

# e-mail: Matti.Manninen@phys.jyu.fi

graphene, are determined by the p electrons perpendicular
to the graphene plane (for a review see [34]). A simple
tight-binding (TB) model with only one electron per site
and only the nearest-neighbour hopping describes well the
electronic structure close to the Fermi points as suggested
by Wallace already in 1947 [35]. The TB Hamiltonian used
is then the simple Hiickel model

| —t,it 4,j nearest neighbours
Hij = { 0, otherwise, 1

where the hopping parameter ¢ (resonance integral) de-
termines the width of the bands and the on-site energy
is chosen to be e = 0. We present our results in units
t = 1 which in real graphene corresponds to ~2.6 eV.
In reality, the flake edges are either passivated (e.g. with
hydrogen) or reconstructed in order to remove dangling
bonds. The passivation is not expected to affect the per-
pendicular p-states, and we can simply neglect the exis-
tence of such atoms. This has been also validated by our
recent DFT calculations [33]. At the bottom of the valence
band the TB model results in free-electron-like states with
nearly constant density of states (DOS). This allows us to
compare these “normal” free-electron states with those of
the “massless electrons” at the bottom of the conduction
band calculated for the exactly same geometry.

The paper is organized as follows: in Section 2 we
discuss the shell and supershell structure in triangular
graphene flakes, in Section 3 we show how the edge geom-
etry dominates the shell structure in circular flakes, and in
Section 4 we describe quantum dots that have been made
with external potentials in an infinite graphene sheet. Sec-
tion 5 gives the conclusions.
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Fig. 1. Upper panel: TB-DOS (p. electrons) of a graphene tri-
angle with 44 097 atoms and zigzag edges. The discrete energy
levels have been smoothened with Gaussians. The peak at zero
energy corresponds to the edge states. The lower panels show
TB-DOS as a function of the wave number at the bottom of
the band (left) and above the Fermi level (right). The dashed
line shows the analytical result of equation (3). The wave num-
bers are: Q = /e + 3 and ¢ = ¢, where ¢ is the energy in units
of t = 1. The Gaussian widths have been adjusted in the lower
panels in order to show the individual energy levels.

2 Shell structure of triangular graphene flakes

In a triangular cavity with hard walls and a constant po-
tential inside, the two-dimensional Schrdodinger equation
has an exact solution [8] with energy levels

€nm = co(n® +m? — nm), (2)
where ¢y depends on the particle mass and the size of
the cavity, and m and n are integers with n > 2m > 1.
Figure 1 shows the density of states calculated with the
TB model (TB-DOS) for a large graphene triangle of
44097 atoms which has a zigzag edge. In such a large
triangle, DOS is similar to that of an infinite graphene
sheet except for the appearance of the edge states which
appear as a sharp peak at zero energy. A detailed study
of the energy levels at the bottom of the valence band re-
veals that the level structure is nearly exactly described
with the analytical formula of equation (2). TB-DOS and
equation (2) produce the same curve shown in the lower
left corner of the figure. Note that TB-DOS is plotted here
as a function of the wave number defined as Q = v/e + 3t
(the bottom of the band is —3t). The regular oscillation as
a function of ) corresponds to the shell structure and the
peak amplitude variation (breathing) marks the supershell
structure [6]. Triangles with an armchair edge show a sim-
ilar supershell structure at the bottom of the band [33].
At the bottom of the conduction band, close to e = 0,
the dispersion relation of the electron energy is linear,
e(k) = chk, where c¢ is the electron velocity. This means
that the electrons behave as massless particles. If we con-
sider the conduction electrons as free particles, we cannot

solve the energy eigenvalues from the Schrodinger equa-
tion but should use the relativistic Dirac equation [34].
However, we choose here a simpler approach and make
an ansatz that the energy eigenvalues are solutions of the
Klein-Gordon wave equation with positive energy eigen-
values. This immediately gives

(3)

which is the same as for normal electrons apart of the
square root dependence of the quantum numbers and a dif-
ferent prefactor. The numerical solutions of the TB prob-
lem for triangles with a zigzag edge, indeed, show that the
energy eigenvalues become more-and-more accurately de-
scribed with those of equation (3) when the triangle size
increases. Figure 1 (lower right panel) compares the result
of the ansatz of equation (3) with the full TB calculation
for the large triangle. The agreement is nearly perfect up
to e = 0.1 (corresponding to 0.25 eV), and the discrepancy
at larger energies is due to the increasing nonlinearity and
anisotropy of the energy bands.

The results suggests that the supershell structure of
the triangular cavity appears in zigzag-edged triangular
graphene flakes, but the flake should have at least ca.
40000 atoms (i.e., L > 40 nm) before the first supershell
oscillation becomes clearly visible. We remark that in the
case of armchair edge, equation (3) is still valid, but also
indices with m = n are allowed [33]. More detailed re-
sults for smaller triangles are described in reference [36],
where we also show that the shell structure is quite robust
against edge roughness in the close vicinity of the Fermi
level.

€n,m = €1 \/Tl2 +m? — nm),

3 Shell structure in circular graphene flakes

In the case of a two-dimensional cavity with circular sym-
metry, the energy levels of the Schrédinger equation are
determined by the zeroes of the Bessel functions B; with
integer values j. The TB model gives corresponding results
at the bottom of the valence band, because the electrons
are well represented by nearly free electrons. Following the
ideas presented for the triangles one would expect that the
energy levels close to the bottom of the conduction band
could be determined similarly. However, in this case, the
detailed geometry of the edge (perimeter) has a dominant
role in determining the energy levels above the Fermi level,
and the energy spectrum is very sensitive to the number
of atoms in the circular dot, as shown in Figure 2. The
circular flakes have been obtained by cutting a circle out
of an infinite graphene sheet. Note, that the actual edge
geometry depends not only on the radius but also on the
site of the center.

The reason for the size-sensitivity can be traced
back to the edge states which are present in graphene
constructions with zigzag edges. In circular dots, the
perimeter has short regions of zigzag segments that are
mixed with other motifs (especially armchair). This rough-
ness causes edge states with different energies, which is in
sharp contrast to the zigzag triangles where all the edge
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DOS

Fig. 2. (Color online) Geometry of a circular dot cut
out from a graphene sheet (left) showing electrons
density of the state indicated with an arrow (black
is zero density, yellow high density). The three curves
(right) show TB-DOS just above the Fermi energy for
three circular flakes with different positions of the cir-
cle’s centre and with 3868 (bottom curve), 3864 (mid-
dle curve), and 3868 atoms (top curve), respectively,

energy

states have exactly zero energy in the TB model. Figure 2
shows the electron density of one such state with density
maximas at the surface.

Usually, the shell structure is determined by the overall
shape of the confining potential in metallic and semicon-
ductor quantum dots, and the detailed atomic structure
does not play any role due to the fact that the electron
wave length is much larger than the interatomic spacing.
This is not the case in the circular graphene flakes. Al-
though the wavelength of the “Dirac electron” is still much
larger than the interatomic spacing, the tendency for lo-
calization of electrons close to the zigzag edges destroys
the simple shell structure, and different circular flakes re-
sult in qualitatively different electron levels as shown in
Figure 2.

4 Quantum dots prepared with external
potential

So far, we have studied free graphene flakes where the
electron confinement is determined by the flake edges. In
semiconductor heterostructures, quantum dots are usually
prepared by confining the delocalized conduction electrons
in a small region with external gates (for a review see [37]).
It is expected that a similar technique can be applied in
the future also for the two-dimensional gas of “Dirac elec-
trons” in graphene. External gates form nearly harmonic
confinement close to the center of the quantum dot. An-
other possibility for supported graphene flakes could be
to modify the atomic structure of the substrate so that
different regions would comprise different elements, and,
consequently, cause different interaction with the adsor-
bate. In this case, the resulting potential well could be
more of the square-well-type than harmonic.

The situation is different for an external confinement
(infinite graphene sheet) than for a finite flake with edges.
Since there is no band gap in graphene, an external
potential well cannot bind an electron as demonstrated
in Figure 3. In addition, this differs considerably from
the quantum dots manufactured from semiconductor het-
erostructures, where bound electronic states can exist in-
side the band gap of the semiconductor in question.

We have studied the effect of an external confine-
ment by using a large hexagonal graphene flake with
4902 atoms. An external potential was added at the center

demonstrating the sensitivity of the level structure on
edge geometry.

/ Fermi level '/

Fig. 3. (Color online) The upper panel shows an external
square well potential in graphene and schematically the lin-
ear energy bands in different regions. Electrons cannot be lo-
calized by the potential, because a conduction electron inside
the well (dashed line) can move out as a valence electron. The
two figures in the middle display a square-shaped and circu-
lar Gaussian potential wells in a hexagonal graphene flake. The
lower two figures illustrate the electron densities of a resonance
state above the Fermi level (dotted line in the upper panel).

of the flake. We considered three different external poten-
tials: a circular well, a square-shaped well, and a smooth
Gaussian potential with circular symmetry. Surprisingly,
the results are qualitatively similar irrespective of the type
of the attractive potential. Bound states appear at the bot-
tom of the valence band where the electrons act as normal
free electrons. In the more interesting region close to the
Fermi level, no bound states can be observed. However,
above the Fermi level all the potentials result in strong
resonances with a large enhancement of the wave function
amplitude within the potential well region. Figure 3 shows
the densities of the wave functions for two such resonances.
The wave functions do not decay to zero outside the po-
tential well but reach a small and uniform amplitude that
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goes all the way to the flake edge (the small amplitude is
not visible Fig. 3).

For a potential barrier, the penetration of a wave func-
tion inside an apparently forbidden region is often referred
to as the Klein paradox [34], which has its origin in the
Dirac theory of massless fermions. As Figure 3 shows for
the TB (band structure) model, the wave function pene-
tration inside the “forbidden region” is a natural conse-
quence of the missing band gap: an electron that appears
on the conduction band on one side of the step continues
as a valence electron on the other side.

5 Conclusions

We have studied the possibility of observing electronic
shell and supershell structure in free graphene flakes. For
this purpose, we have used a simple tight-binding model
with one electron per atomic site (p. electrons). Despite
its simplicity, the TB model describes the key features of
the graphene band structure close to the Fermi points.

In large triangular flakes with zigzag edges, the shell
structure of the “Dirac electrons” in the conduction band
is the same as for free electrons in a triangular cavity. The
analytical expression gives the energy levels accurately up
to ~0.25 eV above the Fermi energy, and the number of
shells within this region depends on the number of atoms
in the triangle. A triangle of ca. 40 000 atoms (L > 40 nm)
shows already the first supershell oscillation.

In the case of circular graphene flakes, the shell struc-
ture above the Fermi level is dominated by the states that
are localized close to the zigzag regions of the edges. This
makes the shell structure very sensitive, not only to the
radius of the circular flake (number of atoms) but also to
the location of the center.

Potential wells which are created on an infinite
graphene sheet with external potentials (e.g. external
gates, inhomogeneous substrate) cannot localize electrons.
This is a consequence of the missing band gap in the
graphene band structure. However, such potential wells
cause resonance states above the Fermi level, which can
strongly affect the conductance of narrow graphene strips.

This work has been supported by the Academy of Finland.
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