

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 75–91

75

FROM PROCEDURES TO OBJECTS: A RESEARCH AGENDA
FOR THE PSYCHOLOGY OF OBJECT-ORIENTED

PROGRAMMING EDUCATION

Abstract: Programming education has experienced a shift from imperative and procedural
programming to object-orientation. This shift has been motivated by educators’ desire to
please the information technology industry and potential students; it is not motivated by
research either in psychology of programming or in computer science education. There are
practically no results that would indicate that such a shift is desirable, needed in the first
place, or even effective for learning programming. Moreover, there has been an implicit
assumption that classic results on imperative and procedural programming education and
learning apply to object-oriented programming (OOP) as well. We argue that this is not the
case and call for systematic research into the fundamental cognitive and educational issues
in learning and teaching OOP. We also present a research agenda intended to improve the
understanding of OOP and OOP education.

Keywords: programming education, procedural programming, object-oriented
programming, psychology of programming.

INTRODUCTION

During the last 10 years, programming education has experienced a shift from imperative and
procedural programming to object-oriented programming (OOP). This shift has been
motivated by educators’ desire to please the information technology industry, on one hand,
and potential students on the other. Object-orientation and Java have been spreading as the
most important implementation platform for new, Web-based applications with widespread
visibility among computer users, which has created the illusion that the word programming
equals Java OOP. Thus, students want to learn Java from the very beginning of their
programming studies. Teachers’ selection of the first programming language is dominated by
student demand and a willingness to provide students with marketable skills (de Raadt,
Watson, & Toleman, 2002), that is, Java programming. With the current drop in enrollments
to academic computing programs (Cassel, McGettrick, Guzdial, & Roberts, 2007) educators’

© 2008 Jorma Sajaniemi and Marja Kuittinen, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151354

Jorma Sajaniemi
Department of Computer Science and

Statistics, University of Joensuu
Joensuu, Finland

Marja Kuittinen
Department of Computer Science and

Statistics, University of Joensuu
Joensuu, Finland

Sajaniemi & Kuittinen

76

thirst for pleasing potential students will probably only increase. Moreover, many companies
want to hire students who know how to program in Java and educators may think that if an
institute is not teaching Java, its reputation among those companies is damaged.
 It should be noted that the shift to object-orientation in education is not motivated by
psychology of programming or computer science education research: There are practically no
results that would indicate that such a shift is desirable, needed in the first place, or even
effective for learning programming (Lister et al., 2006). Yet, learning programming should be
the most important issue—not learning the peculiarities of a single paradigm or a certain
language. Note that “learning programming” does not refer to imperative1 or procedural—
neither functional nor logic—programming, but learning programming in a way that can be
applied in many programming paradigms and many programming languages.
 Indeed, we are surprised to find out that the cognitive consequences of the shift to object-
orientation had not been studied before the shift, and only superficially even after it. There
are some studies on the misunderstanding of object-oriented (OO) concepts but the
development of OOP skills and comprehension of OO concepts have not been studied. There
has been an implicit assumption that classic results on imperative and procedural
programming education and learning (see Robins, Rountree, & Rountree, 2003, and
Winslow, 1996, for reviews) also apply to OOP, but we fear that this is not always the case.
OOP is so much more complicated than imperative and procedural programming—both at the
concrete notational level and at a more abstract conceptual level—that there are good grounds
to question whether the classic results can be generalized to object-orientation.
 What this means in practice is that educational institutions around the world are
implementing curricula and teaching methods that are not based on research, but on intuition.
There are practically no theories on the development of programming skills or comprehension
of programming concepts in the OO case. It is no wonder that educators are fighting against
high dropout rates from (e.g., Kinnunen & Malmi, 2006) and poor learning outcomes in (e.g.,
McCracken et al., 2001) programming courses. Research has offered educators various
pedagogic tricks (e.g., Bennedsen & Caspersen, 2004; Bierre, Ventura, Phelps, & Egert 2006;
S. Cooper, Dann, & Pausch, 2003; Holliday & Luginbuhl, 2004; Hsia, Simpson, Smith, &
Cartwright, 2005; Kölling & Henriksen, 2005; Lopez-Herrejon & Schulman, 2004; Mahmoud,
Dobosiewicz, & Swayne, 2004; Marrero & Settle, 2005; Shanmugasundaram, Juell, & Hill,
2006; Truong, Bancroft, & Roe, 2005; Utting, 2006), but the lack of solid psychological and
educational theories makes a holistic approach impossible.
 This paper presents a case for systematic research into the comprehension of
programming and the development of skills in the OO paradigm. In order to understand the
huge shift from imperative and procedural programming to object-orientation, we start by
comparing these paradigms at three of the five domains that du Boulay (1989) presents as
issues that a learner must master: notations of the particular language, the notional machine
that describes how programs in the particular language are executed, and the orientation,
describing what programs are for and what can be done with them. Differences between
programming paradigms in du Boulay’s two remaining domains, structures (abstract
solutions to standard problems) and pragmatics (the skills of planning, developing, testing,
debugging, etc.), are more complicated and will not be treated in this paper. It is clear that if
differences in the basic constructs—notations, notional machine, and orientation—make the

From Procedures to Objects

77

applicability of classic results to object-orientation dubious, then differences in more
complicated issues will make the situation even worse.
 This paper is structured as follows. First, we will look at the differences between
imperative and procedural programming versus OOP with respect to notations, notional
machine, and orientation. Then, we will review research literature and see how it supports our
claims. Finally, we will present a research agenda for OOP.

THE NOTATIONAL REVOLUTION

Notations needed in Java programs do differ remarkably from those of imperative and
procedural programming2. This is partially due to the larger number of programming
concepts needed, but also due to the structure of the Java language (Radenski, 2006).
 For example, consider the algorithm for simple user interaction in Figure 1, given in a
natural language, English. The pseudo code version of this algorithm is given in Figure 2, and
a Pascal program for the same task in Figure 3 (from a popular textbook of its time, D.
Cooper & Clancy, 1982, p. 15). Even though the notations differ in their level of formality,
they look strikingly similar. When we compare the natural language version (that should be
in a notation familiar to students) in Figure 1 to the Pascal version (that the students should
learn to understand), the new notations and the related concepts are

� “program,” name of the program: program
� interaction ports needed: input/output
� “integer” and the variable name: variables
� “write,” “writeln,” and “readln”: input/output
� “var,” “begin,” “end,” and punctuation: language syntax.

 The first two of these are required by the language, but are simple to students (this is a
program with input and output); the next two are just what the students are learning (the
concepts of variable and input/output); the last one is something cryptic required by the
language. Parts required by the language vary from one language to another. For example, in
Python there would be no special punctuation or statement brackets and the program line
would not be needed.
 Now, let us turn to the Java version of the same program given in Figure 4, which must
be stored in a file with a certain name, Interactive.java. (We assume the existence of another
class for user input stored in the file Input.java). Compared with Figure 1, the new notations
and the related concepts are:

� “public”: visibility
� “class,” name of the class: classes and objects
� “static”: access rights
� “void”: return values
� “main”: program
� method name and its argument: methods and their arguments
� “String,” “[],” “System,” and “Input”: predefined classes
� “int” and the variable name: variables

Sajaniemi & Kuittinen

78

� “println,” and “readInt”: input/output
� punctuation: language syntax

 This list is much longer than the corresponding list for Pascal. And, what is more
important, it contains a large number of difficult concepts that are not required for the
solution of the problem, but by the structure of the language: classes and objects, visibility,
access rights, method definitions and calls, and return values.

Figure 1: An example program in English.

Figure 2: The example program in pseudo code.

Figure 3: The example program in Pascal.

Figure 4: The example program in Java.

Tell the user that this is an interactive program.
Ask the user to enter an integer value.
Get the number from the user.
Tell the user what the entered number was.

write 'This program interacts with its user.'
write 'Please enter an integer value.'
read Number
write 'The number you entered was:'
write Number

program Interactive (input, output);
 var Number: integer;
begin
 writeln ('This program interacts with its user.');
 writeln ('Please enter an integer value.');
 readln (Number);
 write ('The number you entered was:');
 writeln (Number)
end.

public class Interactive {
 public static void main(String[] args) {
 int Number;
 System.out.println("This program interacts with its user.");
 System.out.println("Please enter an integer value.");
 Number = Input.readInt();
 System.out.print("The number you entered was:");
 System.out.println(Number);
 }
}

From Procedures to Objects

79

 One may argue that this example program favors imperative programming and that the
first programs used in OOP courses do not contain this much input and output. Even if that
were the case, the first Java program will contain almost all of the above concepts.
 Thus, the shift to object-orientation and Java has made a revolution at the notational
level, even though this might not be obvious at first sight: The lengths of the programs in
Figures 3 and 4 are practically the same, yet the number of new notations and concepts is
remarkably higher in the Java case. This rise is not due to the programming problems that are
solved, but rather to the requirements of the language used.

THE NOTIONAL MACHINE REVOLUTION

In order to be able to understand what individual constructs of a programming language mean
and how programs written in that language work, a student must understand how the notional
machine (du Boulay, O’Shea, & Monk, 1981) underlying that language works. Programs
cannot be understood as strings of characters only; students must understand, for example,
what a variable is and how it is affected by assignments. A more thorough understanding of
programming includes, for instance, knowledge of typical uses of variables and control
structures (Détienne, 2002), which also relies on a proper understanding of the notional
machine. The machine needed for understanding the first programs should be simple, or else
learning programming becomes hard (du Boulay et al., 1981).
 In the procedural approach, instruction typically starts with the imperative constructs:
variables, input/output, conditionals, and looping constructs. The notional machine needed to
explain these notions consists of

� variable: location or slot with a name and contents
� input/output: two devices connecting variables to external world
� program execution: a program counter referring to a certain point at the program.

 A notional machine that consists of the above parts is clearly capable of executing the
program in Figure 3 and can be used in teaching the first steps in imperative programming.
 An extension to this notional machine is needed when pointers are included:

� pointer: contents of a variable may be the location of another variable.

 Further extensions are needed when procedures are introduced:
� procedure call: a call stack
� parameter: room for parameters in the call stack and parameter-passing

mechanisms
� return value: mechanism for return value, possibly with room for it in the call stack.

It should be noted that these extensions are fully compatible with the initial notional machine
and they can be introduced gradually along with the introduction of new programming
language constructs.
 In contrast to the procedural approach, OOP requires a much larger and more
complicated notional machine from the very beginning. A notional machine that is capable of
executing the program in Figure 4 must contain all of the following parts (see the list of
concepts of the program given in the previous section):

Sajaniemi & Kuittinen

80

� object: a heap for objects
� method: a call stack
� parameter: room for parameters in the call stack and parameter-passing

mechanisms
� return value: mechanism for return value, possibly with room for it in the call stack
� variable: location or slot with a name and contents (in the call stack)
� input/output: two devices connecting variables to external world
� object reference: contents of a variable or a parameter may be the location of an

object in the heap
� program execution: a program counter referring to a certain point at the program.

Moreover, there are concepts that are needed even though they are not directly expressed in
the notional machine: visibility and access rights concerning validity of the program, and the
relationship between classes and objects concerning the relationship between the program
text and the object heap.
 Compared with the notional machine in the procedural case, the difference is huge. The
OO notional machine described above and needed for the simple program in Figure 4 is not
only larger than the corresponding notional machine needed for the equivalent program in
Figure 3, but it is much larger than the total notional machine in the procedural case.
Furthermore, the notional machine for OOP described above does not even contain parts
needed to describe other OO constructs that are typically introduced in the first programming
course: subclasses and inheritance, implicit calls of superclass constructors, and polymorphism.
 One might argue that there is no need for students to understand notations and the
notional machine completely—students can simply put aside unnecessary parts as boiler
plates when first learning. The problem with this thinking is that novices have no means to
decide which issues are unnecessary and which must be attended to when reading or writing
programs. The use of boiler plate code mystifies programming and obscures concepts that
should be learned. Programming should not be taught as a copy-and-paste art that only
incidentally results in a correctly functioning program, but rather as a clearly defined activity
that deals with unambiguous constructs. Otherwise, the central concepts remain blurred.
 In summary, the shift to object-orientation and Java has made a revolution at the notional
machine level. Not only is the size of the required notional machine much larger than in the
procedural case, but the initial notional machine needed in order to understand the first
programs is much more complicated, as well.

THE ORIENTATION REVOLUTION

Sajaniemi, Ben-Ari, Byckling, Gerdt, and Kulikova (2006) have studied example programs in
elementary programming textbooks among three programming paradigms: procedural,
object-oriented, and functional. They found major differences in the programming problem
types used in these various programming paradigms. The most important issue in procedural
programming textbooks is the functionality of programs: Example programs compute
meaningful values based on input and print the results for users through simple output
mechanisms. OOP textbooks deal with data modeling on one hand, and demonstrate specific

From Procedures to Objects

81

language features on the other. Even though message passing structures may be complex,
their net effects are trivial from the user’s perspective. Finally, functional programming
textbooks stress data manipulation techniques. Thus, the orientation (i.e., what programs are
for) is very different in these paradigms.
 This finding also means that students’ tasks are different depending on the programming
paradigm used for learning. In procedural programming, students try to write programs that
do meaningful actions and computations, whereas in OOP students concentrate on creating
conceptual models for (usually concrete) data. Détienne (1997) notes that when novices
design OO programs, the activity of finding classes consumes their attention; they think about
functionality only late in the design activity. Ebrahimi and Schweikert (2006) found that
students have problems in understanding object-orientation and incorporating OO concepts
into problem solving. Students tend to spend more time trying to understand objects and less
time on problem solving. Thus, the shift to object-orientation has made a revolution at the
orientation level and regarding students’ tasks in programming.

RESEARCH SUPPORT

In the previous sections, we have demonstrated that the shift from imperative and procedural
programming education to OOP has denoted a revolution in the complexity of notations,
concepts and the notional machine needed, and in the orientation and tasks carried out by
students as programming exercises. In this section, we will look at research literature3 and see
what it says about this revolution.

Imperative and Procedural Programming

Classic works on programming education and the psychology of novice and expert
programming (e.g., Brooks, 1983; Corritore & Wiedenbeck, 1991; Davies, 1993; Gilmore &
Green, 1984; Letovsky, 1986; Pennington, 1987; Perkins & Martin, 1986; Rist, 1989;
Soloway & Spohrer, 1989; see also Robins et al., 2003, and Winslow, 1996, for excellent
reviews) are primarily based on imperative and, to some extent, also procedural
programming—in many cases Pascal programming, which is why we used Pascal in Figure 3.
It is evident from this literature that learning programming is challenging even in the
imperative case. Novices often have problems understanding basic concepts, such as
variables and basic imperative control structures (Ben-David Kolikant & Haberman, 2001;
Samurçay, 1989; Spohrer, Soloway, & Pope, 1989)—that is, they have problems in
understanding the basic notional machine required for imperative programming.
 Novices’ knowledge about the imperative parts of programming languages has been
found to be at first fragile (Perkins & Martin, 1986), such as inert knowledge that students
cannot readily master, or misplaced knowledge migrated to inappropriate contexts. As a
consequence, students have problems in applying their knowledge even though the
knowledge itself may be correct. From a cognitive perspective, the causes of fragile
knowledge include a sparse network of associations in long-term memory, that is, weak
connections between different concepts, and underdifferentiation of language commands.
Yet, the hardest part of learning is not in grasping the syntax and semantics of some

Sajaniemi & Kuittinen

82

language, but in adopting ways to construct larger program units that are needed to solve the
problem at hand (see, e.g., Winslow, 1996).
 A specific source of problems is the limited capacity of working memory (Anderson,
2000, p. 176). Even when writing simple imperative programs consisting of just a few lines,
expert programmers—let alone novices—often cannot form a complete mental representation
of the program in their working memory. Even with the help of external representations, the
number of simultaneously needed details easily exceeds the limitations of human working
memory (Green, Bellamy, & Parker, 1987). Highly economical chunking of knowledge is
therefore crucial for good performance in programming. Because novices’ programming
knowledge is fragile, efficient chunking is difficult for them.
 In summary, educational and psychological research into novice imperative and
procedural programming indicates that even the simplest imperative notional machine is
challenging for students to learn, students’ knowledge is fragile, and students have serious
problems in combining basic constructs of a programming language to form larger,
meaningful structures.

Object-Oriented Programming

Very little psychological and educational research exists for novice OOP. Most papers (e.g.,
Bennedsen & Caspersen, 2004; Bierre et al., 2006; S. Cooper et al., 2003; Holliday &
Luginbuhl, 2004; Hsia et al., 2005; Kölling & Henriksen, 2005; Lopez-Herrejon &
Schulman, 2004; Mahmoud et al,. 2004; Marrero & Settle, 2005; Shanmugasundaram et al.,
2006; Truong et al., 2005; Utting, 2006) introduce various pedagogic techniques and tips,
such as visualization tools or curriculum changes, without consideration for educational or
psychological theories. Some (e.g., Bednarik & Tukiainen, 2007; Romero, Lutz, Cox, & du
Boulay, 2002) study the use of such tools in the context of an OOP language but not relating
their findings to OO concepts or the OO paradigm. Only very few articles (see Tables 1 and
2) analyze object-orientation from a cognitive or educational perspective, that is, increase the
field’s understanding of OOP learning and how it differs from the imperative and procedural
cases. We will next review these results.
 Davies, Gilmore, and Green (1995) asked novices and experts to sort cards containing
short fragments of a large OO program library and found that experts tended to focus on
functional relations whereas novices were much more concerned with objects and inheritance
relations. Thus, novices’ mental representations of the structure of large OO programs
concentrates on objects and inheritance, that is, on elements that do not exist in the procedural
case. Corritore and Wiedenbeck (1999) and Wiedenbeck, Ramalingam, Sarasamma, and
Corritore (1999) have studied novices and experts comprehending short procedural and OO
programs and found that, in the OO case, the overall function of programs is understood better
than details of, for example, control flow; yet with procedural programs, comprehenders’
knowledge is more balanced. These results indicate that programmers’ mental representations
of procedural and OO programs do differ qualitatively. As the nature of mental representations
is strongly related with learning programming, this finding proposes the existence of
fundamental differences between learning procedural programming and learning OOP.
 Eckerdal and Thuné (2005) have studied novices’ understanding of class and object and
found several categories of conception of these concepts. Détienne (1997), Holland, Griffiths,

From Procedures to Objects

83

and Woodman (1997), Ragonis and Ben-Ari (2005), and Teif and Hazzan (2006) have found
that students have severe misconceptions about fundamental OO concepts, such as classes and
inheritance. Fleury (2000) has found several misconceptions concerning the construction and
use of objects in Java. In procedural programming, misconceptions about parameter passing
(Fleury, 1991) and recursion (Levy, 2001) have been found; in imperative programming only
fragile knowledge instead of misconceptions has been reported. In consequence, problems in
learning seem to have different roots in OOP than in imperative programming.

Table 1. Psychological and Educational Research on OOP: Mental Representation

Topic of
investigation

Expert
performance

Novice performance Cognitive
development

Programming
education

Notional machine/
structure

Notional machine/
detailed contents

Notional machine/
misconceptions

OO programs/
structure

Davies et al.
(1995)

Davies et al. (1995)

OO programs/
detailed contents

Corritore and
Wiedenbeck
(1999)

Wiedenbeck et al.
(1999)

OO programs/
misconceptions

OOP/ structure
OOP/ detailed
contents

 Eckerdal and Thuné
(2005)

 Mead et al.
(2006)

OOP/
misconceptions

 Détienne (1997);
Fleury (2000);
Holland et al. (1997);
Ragonis and Ben-Ari
(2005); Teif and
Hazzan (2006)

Table 2. Psychological and Educational Research on OOP: Skills and Strategies.

Topic of
investigation

Expert
performance

Novice performance Cognitive
development

Programming
education

Program
comprehension

Tracing and
debugging

 Lister et al. (2004);
Vainio and Sajaniemi
(2007)

 Thomas et al.
(2004)

Program design Détienne (1997);
Lee and
Pennington
(1994);
Pennington et
al. (1995);
Rosson and
Gold (1989)

Détienne (1997)

Sajaniemi & Kuittinen

84

 Mead et al. (2006) have compared cognitive problems in learning procedural and OOP and
developed a set of central concepts in the form of “anchor concept graphs” for both paradigms.
The two graphs differ considerably, providing more evidence for the assumption that learning
procedural programming and learning OOP are very different in nature.
 Thomas, Ratcliffe, and Thomasson (2004) found that students did not perform better in
tracing OO code fragments when they were provided with ready-made partial object
diagrams, nor did they draw their own diagrams more often in a follow-up test. On the other
hand, Lister et al. (2004) found that many students were able to track values of numeric
variables on paper, and Vainio and Sajaniemi (2007) found that students were able to draw
values of primitive types, but not object references. Taken together, these results imply that
students have more problems in making external representations of OO parts than imperative
parts of the notional machine, that is, the OO notional machine is even more poorly
understood by students than the imperative notional machine.
 In her state-of-art review of empirical research on object-oriented design, Détienne (1997)
examined the processes involved in designing in the OO paradigm and in the procedural
paradigm. Among other things, she reports on findings of Lee and Pennington (1994),
Pennington, Lee, and Rehder (1995), and Rosson and Gold (1989) concerning the differences
between OO designers and procedural designers. OO designers seem to base their solutions on
the problem domain itself, whereas procedural designers use generic programming constructs
for structuring their solutions. Thus, the overall approach in program design differs between
procedural and OO programming, and teaching should acknowledge this difference.

Discussion

Even though studies into OOP are few, the above results make it clear that both OOP itself and
learning OOP are very different from their imperative and procedural counterparts: Mental
representation of programs is different, problems have different roots, conceptual contents of
knowledge are different, the level of understanding the underlying notional machine is
different, and the overall approach to program design is different. These differences are so
fundamental to learning that we dare to claim that the classic educational and cognitive results
of novice imperative and procedural programming should not be used in the OO context.
 Furthermore, the number of educational and cognitive studies of learning OOP is small.
Lister et al. (2006) studied several popular claims about learning OOP and found practically
no evidence for them in scientific literature. Neither do we know of any results that would
provide evidence for the desirability or efficiency of replacing imperative/procedural
programming education by object-orientation. On the contrary, Chen, Monge, and Simon
(2006) found no effects of the first programming paradigm and later design skills; Détienne
(1997), Pennington et al. (1995), and Sharp and Griffyth (1999) found positive transfer
effects of traditional structured and procedural approaches to OO design.

PROPOSAL FOR RESEARCH AGENDA

Tables 1 and 2 draw together OOP research described in the previous section. We have
tabulated research articles according to two dimensions: the first describing the cognitive

From Procedures to Objects

85

content or skill targeted in an investigation, the second telling whether the investigation deals
with experts’ performance, novices’ performance or problems, development of novices’
mental representations and skills, or ways to improve this development with educational
techniques. The tables make it clear that large areas are totally neglected: Even the most
researched areas—novices’ misconceptions in OOP knowledge and experts’ program design
processes—have been studied in only a few papers.
 If novices are to be helped in their struggles when learning OOP, it is necessary to know
their problems and misconceptions as well as what experts know and how they apply their
knowledge. Only then can efficient teaching methods and contents that have a strong
cognitive basis be devised. Many studies in traditional programming have compared expert
and novice performance and mental representations, thus providing information on what
distinguishes experts from novices. In the OO domain, such studies are rare; only two studies
in Tables 1 and 2 (Davies et al., 1995; Détienne, 1997) cover both experts and novices. We
therefore suggest that research into expert and novice differences should be carried out in all
cognitive aspects listed in the tables.
 A notable gap in Table 1 covers the OO notional machine. There are no studies on
experts’ or novices’ understanding of the notional machine behind OOP; neither are there
studies on teaching a viable notional machine to students. Some suggestions have been
presented for visualizing OO program execution (e.g., Gries & Gries, 2002; Moreno, Myller,
Sutinen, & Ben-Ari, 2004; Sajaniemi, Byckling, & Gerdt, 2006), but their correspondence to
experts’ or novices’ mental representations or their efficiency in providing a mental model of
a correct notional machine has not been studied in detail. In a recent study (Sajaniemi,
Kuittinen, & Tikansalo, 2007), students were found to be poor in visualizing relationships
between objects and method calls during program execution and students’ understanding of
these relationships (i.e., the structure of the notional OO machine) was found to contain many
errors. We therefore suggest that experts’ mental representations of the notional OO machine
should be studied in detail. Moreover, effective ways to convey this knowledge to novices
should also be investigated.
 Another gap in Tables 1 and 2 is the lack of studies into the cognitive development of
novices’ mental representations and skills. In order to support learning by teaching, steps in
cognitive development must first be known. Basic cognitive activities—such as chunking—
do, of course, appear in the context of OOP as well. However, the building of the notional
machine, construction of OOP knowledge, and detailed development of OOP skills and
strategies presumably have components that are specific to OOP. We therefore suggest that
novices’ cognitive development in OOP should be studied.
 Investigations of mental representations of OO programs (Corritore & Wiedenbeck,
1999; Wiedenbeck et al., 1999) have probed participants’ knowledge with yes/no questions
divided into categories determined by the researchers a priori. Such a method reveals whether
participants possess knowledge in those categories but it does not reveal what other types of
knowledge they might have. As a consequence, exact contents of experts’ mental
representations of OO programs are largely unknown and teachers have only vague ideas of
how to best explain important program elements and their relationships to students. We
therefore call for exploratory research into experts’ mental representations of OO programs.
 Studies in cognitive processes, such as skills and strategies, cover mainly experts’
program design. In imperative programming, research into experts’ and novices’ program

Sajaniemi & Kuittinen

86

comprehension has increased our understanding of the comprehension processes and,
moreover, of the mental representations of imperative programs and imperative programming
knowledge. The structure of OO programs differs so much from imperative and procedural
programs that one may presume that their comprehension processes do also differ
considerably. Again, some elements (e.g., hypothesis-driven comprehension) are the same,
but issues related to program structure can be assumed to differ. We therefore suggest
research into experts’ and novices’ OO program comprehension processes.
 Finally, results of the research suggested above and summarized in Table 3 should be
utilized in devising effective methods for teaching OOP. However, we do not include this
work in the research agenda proposal for two reasons. Firstly, the right time for such
educational-oriented research will come only after there is a large body of results obtained
from the research agenda. Secondly, it may well be that effective ways to transfer experts’
mental representations, skills and strategies are at least partially revealed during the earlier
research covered by the agenda.

Table 3. Proposal for Research Agenda in OOP and OOP Education.

 Performance Development

Topic of
investigation

Expert Expert vs.
Novice

Novice Cognition Education

Mental
representation of
notional machine

• •
 • •

Mental
representation of
OO programs

• •
 •

Mental
representation of
OOP

 •
 •

Program
comprehension • • • •

Tracing and
debugging

 •
 •

Program design
 •

 •

CONCLUSION

In programming education, there has been a major shift in the programming paradigm used in
the first courses. To please industry and students, educators have moved from imperative and
procedural programming to object-orientation without studying its necessity or consequences
and without studying how OOP education should be carried out. Moreover, classic results
from imperative and procedural programming have been used as such even though their
applicability in the OO case can be questioned. The shift from imperative/procedural

From Procedures to Objects

87

programming to object-orientation is so revolutionary that the use of research results obtained
in the imperative and procedural cases is doubtful in the OO case. The number of notations
and concepts needed, the size of the notional machine required, and the whole orientation of
programming are so different that the basic assumptions used in imperative and procedural
programming research do not necessarily hold for object-orientation. Even though some
results may apply in object-orientation, there is a need to find out on what occasions this
happens to be the case.
 There is a lack of systematic research into the fundamental cognitive and educational
issues in learning and teaching OOP. Lister et al. (2006, p. 160) conclude their paper by
noting that “our community needs to discuss—and debate—this issue,” but we claim that the
computer science education research community and the psychology of programming
community need to rigorously study these issues first. For that purpose, we have presented a
research agenda comprising

� Constructing a model of the OOP expert: experts’ mental representations of the
notional OO machine; exploratory research into experts’ mental representations of
OO programs

� Understanding the differences between OOP experts and novices: experts’ and
novices’ differences in mental representations, program comprehension processes,
skills and strategies within OOP

� Fostering OOP novices’ cognitive development: novices’ cognitive development in
OOP; ways to convey the notional OO machine to novices

 High dropout rates from OOP courses and poor learning outcomes pose problems to
students, educators, and educational institutions. These problems can be attacked only with
rigorous research into the psychological and educational issues involved.

ENDNOTES

1. Imperative and procedural programming are often considered synonyms, but in this paper imperative refers
to programming with variables, assignment, and simple imperative control structures, such as sequence,
iteration, and conditionals, whereas procedural covers procedures, parameters and recursion, also.

2. Here we are interested in differences that are inherent to object-orientation and the way object-related
concepts are implemented in Java. We do not treat Java problems that occur within the imperative parts of
Java, for example, that using “=” as the assignment operator makes some students to confuse assignment
with mathematical equality.

3. In this literature review, we look at programming only. Thus, we do not include system design literature
even though we do include program design literature.

REFERENCES

Anderson, J. R. (2000). Cognitive psychology and its implications (5th ed.). New York: Worth Publishers.
Bednarik, R., & Tukiainen, M. (2007). Analysing and interpreting quantitative eye-tracking data in the studies

of programming: Phases of debugging with multiple representations. In J. Sajaniemi, M. Tukiainen, R.
Bednarik, & S. Nevalainen (Eds.), Proceedings of the 19th Annual Workshop of the Psychology of

Sajaniemi & Kuittinen

88

Programming Interest Group (pp. 158–172). Joensuu, Finland: University of Joensuu, Department of
Computer Science and Statistics.

Ben-David Kolikant, Y., & Haberman, B. (2001). Activating “black boxes” instead of opening “zippers”: A
method of teaching novices. In ITiCSE ’01: Proceedings of the Sixth Annual Conference on Innovation
and Technology in Computer Science Education (pp. 41–44). New York: ACM Press.

Bennedsen, J., & Caspersen, M. E. (2004). Programming in context: A model-first approach to CS1. In SIGCSE
’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (pp. 477–
481). New York: ACM Press.

Bierre, K., Ventura, P., Phelps, A., & Egert, C. (2006). Motivating OOP by blowing things up: An exercise in
cooperation and competition in an introductory Java programming course. In SIGCSE ’06: Proceedings of the
37th SIGCSE Technical Symposium on Computer Science Education (pp. 354–358). New York: ACM Press.

Brooks, R. E. (1983). Towards a theory of the comprehension of computer programs. International Journal of
Man-Machine Studies, 18, 534–554.

Cassel, L. B., McGettrick, A., Guzdial, M., & Roberts, E. (2007). The current crisis in computing: What are the
real issues? In SIGCSE ’07: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (pp. 329–330). New York: ACM Press.

Chen, T.-Y., Monge, A., & Simon, B. (2006). Relationship of early programming language to novice generated
design. In SIGCSE ’06: Proceedings of the 37th SIGCSE Technical Symposium on Computer Science
Education (pp. 495–499). New York: ACM Press.

Cooper, D., & Clancy, M. (1982). Oh! Pascal! New York: W. W. Norton & Company.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science. In SIGCSE
’03: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education (pp. 191–
195). New York: ACM Press.

Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during program comprehension?
International Journal of Human-Computer Interaction, 3, 199–222.

Corritore, C. L., & Wiedenbeck, S. (1999). Mental representations of expert procedural and object-oriented
programmers in a software maintenance task. International Journal of Human-Computer Studies, 50, 61–83.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39, 237–267.

Davies, S. P., Gilmore, D. J., & Green, T. R. G. (1995). Are objects that important? Effects of expertise and
familiarity on classification of object-oriented code. Human-Computer Interaction, 10, 227–248.

Détienne, F. (1997). Assessing the cognitive consequences of the object-oriented approach: A survey of empirical
research on object-oriented design by individuals and teams. Interacting with Computers, 9, 47–72.

Détienne, F. (2002). Software design: Cognitive aspects. London: Springer-Verlag.

de Raadt, M., Watson, R., & Toleman, M. (2002). Language trends in introductory programming courses. In E.
Cohen & E. Boyd (Eds.), Proceedings of Informing Science and IT Education Conference (pp. 329–337).
Santa Rosa, CA, USA: Informing Science Institute.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C. Spohrer (Eds.), Studying
the novice programmer (pp. 283–299). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: Presenting computing
concepts to novices. International Journal of Man-Machine Studies, 14, 237–249.

Ebrahimi, A., & Schweikert, C. (2006). Empirical study of novice programming with plans and objects. SIGCSE
Bulletin, 38(4), 52–54.

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers’ conceptions of “object” and “class”, and
variation theory. In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 89–93). New York: ACM Press.

Fleury, A. E. (1991). Parameter passing: The rules the students construct. SIGCSE Bulletin, 23(1), 283–286.

From Procedures to Objects

89

Fleury, A. E. (2000). Programming in Java: Student-constructed rules. In SIGCSE ’00: Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science Education (pp. 197–201). New York: ACM Press.

Gilmore, D. J., & Green, T. R. G. (1984). Comprehension and recall of miniature programs. International
Journal of Man-Machine Studies, 21, 31–48.

Green, T. R. G., Bellamy, R. K. E., & Parker, J. M. (1987). Parsing and gnisrap: A model of device use. In G.
M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical studies of programmers: Second workshop (pp.
132–146). Norwood, NJ, USA: Ablex Publishing Company.

Gries, P., & Gries, D. (2002). Frames and folders: A teachable memory model for Java. The Journal of
Computing Sciences in Colleges, 17(6), 182–196.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. SIGCSE Bulletin, 29(1),
131–134.

Holliday, M. A., & Luginbuhl, D. (2004). CS1 assessment using memory diagrams. In SIGCSE ’04:
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (pp. 200–204).
New York: ACM Press.

Hsia, J. I., Simpson, E., Smith, D., & Cartwright, R. (2005). Taming Java for the classroom. In SIGCSE ’05:
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (pp. 327–331).
New York: ACM Press.

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? In ICER ’06: Proceedings of the 2006
International Workshop on Computing Education Research (pp. 97–108). New York: ACM Press.

Kölling, M., & Henriksen, P. (2005). Game programming in introductory courses with direct state manipulation.
In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (pp. 59–63). New York: ACM Press.

Lee, A., & Pennington, N. (1994). The effects of programming on cognitive activities in design. International
Journal of Human-Computer Studies, 40, 577–601.

Letovsky, S. (1986). Cognitive processes in program comprehension. In E. Soloway & S. Iyengar (Eds.),
Empirical studies of programmers (pp. 58–79). Norwood, NJ: Ablex Publishing Company.

Levy, D. (2001). Insights and conflicts in discussing recursion: A case study. Computer Science Education, 11,
305–322.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004). A multi-national study of reading and tracing
skills in novice programmers. SIGCSE Bulletin, 36(4), 119–150.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly, A.,
Sanders, K., Schulte, C., & Whalley, J. L. (2006). Research perspectives on the objects-early debate.
SIGCSE Bulletin, 38(4), 146–165.

Lopez-Herrejon, R. E., & Schulman, M. (2004). Using interactive technology in a short Java course: An
experience report. In ITiCSE ’04: Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 203–207). New York: ACM Press.

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2004). Redesigning introductory computer programming
with HTML, JavaScript, and Java. In SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education (pp. 120–124). New York: ACM Press.

Marrero, W., & Settle, A. (2005). Testing first: Emphasizing testing in early programming courses. In ITiCSE
’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (pp. 4–8). New York: ACM Press.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Ben-David Kolikant, Y., Laxer,
C., Thomas, L., & Utting, I. (2001). A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE Bulletin, 33(4), 125–140.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., & Thomas, L. (2006). A cognitive approach to
identifying measurable milestones for programming skill acquisition. SIGCSE Bulletin, 38(4), 182–194.

Sajaniemi & Kuittinen

90

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. In AVI ’04:
Proceedings of the Working Conference on Advanced Visual Interfaces (pp. 373–376). New York: ACM.

Pennington, N. (1987). Comprehension strategies in programming. In G. M. Olson, S. Sheppard, & E. Soloway
(Eds.), Empirical studies of programmers: Second workshop (pp. 100–113). Norwood, NJ, USA: Ablex
Publishing Company.

Pennington, N., Lee, A., & Rehder, B. (1995). Cognitive activities and levels of abstraction in procedural and
object-oriented design. Human-Computer Interaction, 10, 171–226.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice programmers. In E.
Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 213–229). Norwood, NJ, USA:
Ablex Publishing Company.

Radenski, A. (2006). “Python first”: A lab-based digital introduction to computer science. In ITICSE ’06:
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (pp. 197–201). New York: ACM Press.

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP concepts by
novices. Computer Science Education, 15, 203–221.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389–414.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13, 137–172.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2002). Co-ordination of multiple external representations
during Java program debugging. In Proceedings of the IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (pp. 207–214). Los Alamitos, CA, USA: IEEE Computer Society Press.

Rosson, M. B., & Gold, E. (1989). Problem-solution mapping in object-oriented design. New York: IBM T. J.
Watson Research Center.

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three
programming paradigms. Computer Science Education, 16, 261–279.

Sajaniemi, J., Byckling, P., & Gerdt, P. (2006). Metaphor-based animation of OO programs. In SoftVis ’06:
Proceedings of the ACM Symposium on Software Visualization (pp. 173–174). New York: ACM Press.

Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2007). A study of the development of students’ visualizations of
program state during an elementary object-oriented programming course. In ICER ’07: Proceedings of the
Third International Workshop on Computing Education Research (pp. 1–15). New York: ACM Press.

Samurçay, R. (1989). The concept of variable in programming: Its meaning and use in problem-solving by
novice programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 161–
178). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

Shanmugasundaram, V., Juell, P., & Hill, C. (2006). Knowledge building using visualizations. In ITICSE ’06:
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (pp. 23–27). New York: ACM Press.

Sharp, H., & Griffyth, J. (1999). The effect of previous software development experience on understanding the
object-oriented paradigm. Journal of Computers in Mathematics and Science Teaching, 18, 245–265.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Spohrer, J. C., Soloway, E., & Pope, E. (1989). A goal/plan analysis of buggy Pascal programs. In E. Soloway
& J. C. Spohrer (Eds.), Studying the novice programmer (pp. 355–399). Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Teif, M., & Hazzan, O. (2006). Partonomy and taxonomy in object-oriented thinking: Junior high school
students’ perceptions of object-oriented basic concepts. SIGCSE Bulletin, 38(4), 55–60.

Thomas, L., Ratcliffe, M., & Thomasson, B. (2004). Scaffolding with object diagrams in first year programming
classes: Some unexpected results. In SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education (pp. 250–254). New York: ACM Press.

From Procedures to Objects

91

Truong, N., Bancroft, P., & Roe, P. (2005). Learning to program through the web. In ITiCSE ’05: Proceedings
of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(pp. 9–13). New York: ACM Press.

Utting, I. (2006). Problems in the initial teaching of programming using Java: The case for replacing J2SE with
J2ME. In ITICSE ’06: Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (pp. 193–196). New York: ACM Press.

Vainio, V., & Sajaniemi, J. (2007). Factors in novice programmers’ poor tracing skills. In ITiCSE ’07:
Proceedings of the 12th Annual Conference on Innovation and Technology in Computer Science Education
(pp. 236–240). New York: ACM Press.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A comparison of the
comprehension of object-oriented and procedural programs by novice programmers. Interacting with
Computers, 11, 255–282.

Winslow, L. E. (1996). Programming pedagogy: A psychological overview. SIGCSE Bulletin, 28(3), 17–22.

Authors’ Note

All correspondence should be addressed to:
Jorma Sajaniemi
University of Joensuu
P.O. Box 111
FI-80101 Joensuu
Finland
saja@cs.joensuu.fi

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

