HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 75-91

FROM PROCEDURES TO OBJECTS: A RESEARCH AGENDA
FOR THE PSYCHOLOGY OF OBJECT-ORIENTED
PROGRAMMING EDUCATION

Jorma Sajaniemi Marja Kuittinen
Department of Computer Science an Department of Computer Science and
Statistics, University of Joensuu Statistics, University of Joensuu

Joensuu, Finland Joensuu, Finlan

Abstract: Programming education has experienced a shift fraperative and procedural
programming to object-orientation. This shift hameb motivated by educators’ desire to
please the information technology industry and ipidib students; it is not motivated by
research either in psychology of programming ocamputer science education. There are
practically no results that would indicate that bug shift is desirable, needed in the first
place, or even effective for learning programmiltpreover, there has been an implicit
assumption that classic results on imperative amatgdural programming education and
learning apply to object-oriented programming (OGR)well. We argue that this is not the
case and call for systematic research into the dnmehtal cognitive and educational issues
in learning and teaching OOP. We also present aaesh agenda intended to improve the
understanding of OOP and OOP education.

Keywords: programming education, procedural programming, cbjeriented
programming, psychology of programming.

INTRODUCTION

During the last 10 years, programming educationexgerienced a shift from imperative and
procedural programming to object-oriented prograngm{OOP). This shift has been
motivated by educators’ desire to please the infion technology industry, on one hand,
and potential students on the other. Object-ortemtaand Java have been spreading as the
most important implementation platform for new, \Ahesed applications with widespread
visibility among computer users, which has credtedillusion that the worgrogramming
equals Java OOP. Thus, students want to learn fiawa the very beginning of their
programming studies. Teachers’ selection of thet frogramming language is dominated by
student demand and a willingness to provide stisdenth marketable skills (de Raadt,
Watson, & Toleman, 2002), that is, Java programm¥igh the current drop in enroliments
to academic computing programs (Cassel, McGettfiakzdial, & Roberts, 2007) educators’

© 2008 Jorma Sajaniemi and Marja Kuittinamd the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151354

75

Sajaniemi & Kuittinen

thirst for pleasing potential students will probabhly increase. Moreover, many companies
want to hire students who know how to program waJand educators may think that if an
institute is not teaching Java, its reputation agihiose companies is damaged.

It should be noted that the shift to object-or@ioin in education is not motivated by
psychology of programming or computer science etilucaesearch: There are practically no
results that would indicate that such a shift isiddle, needed in the first place, or even
effective for learning programming (Lister et &006). Yet, learning programming should be
the most important issue—not learning the pectikgiof a single paradigm or a certain
language. Note that “learning programming” does medér to imperative or procedural—
neither functional nor logic—programming, but ldaghprogramming in a way that can be
applied in many programming paradigms and manyraragiing languages.

Indeed, we are surprised to find out that the @dongnconsequences of the shift to object-
orientation had not been studied before the shiftl only superficially even after it. There
are some studies on the misunderstanding of objgmtted (OO) concepts but the
development of OOP skills and comprehension of ©@cepts have not been studied. There
has been an implicit assumption that classic reswibh imperative and procedural
programming education and learning (see Robins,nRRee, & Rountree, 2003, and
Winslow, 1996, for reviews) also apply to OOP, imat fear that this is not always the case.
OOP is so much more complicated than imperativepaadedural programming—both at the
concrete notational level and at a more abstrauteqmual level—that there are good grounds
to question whether the classic results can bergkred to object-orientation.

What this means in practice is that educationatitutions around the world are
implementing curricula and teaching methods thatret based on research, but on intuition.
There are practically no theories on the developraéprogramming skills or comprehension
of programming concepts in the OO case. It is nadeo that educators are fighting against
high dropout rates from (e.g., Kinnunen & Malmi0B) and poor learning outcomes in (e.g.,
McCracken et al., 2001) programming courses. ReBelns offered educators various
pedagogic tricks (e.g., Bennedsen & Caspersen,; Kléde, Ventura, Phelps, & Egert 2006;
S. Cooper, Dann, & Pausch, 2003; Holliday & Luginbw2004; Hsia, Simpson, Smith, &
Cartwright, 2005; Koélling & Henriksen, 2005; Lopéterrejon & Schulman, 2004; Mahmoud,
Dobosiewicz, & Swayne, 2004; Marrero & Settle, 208hanmugasundaram, Juell, & Hill,
2006; Truong, Bancroft, & Roe, 2005; Utting, 200B)it the lack of solid psychological and
educational theories makes a holistic approach ssipte.

This paper presents a case for systematic reseitoh the comprehension of
programming and the development of skills in the @@@adigm. In order to understand the
huge shift from imperative and procedural prograngmio object-orientation, we start by
comparing these paradigms at three of the five dosntnat du Boulay (1989) presents as
issues that a learner must mastertationsof the particular language, tim®tional machine
that describes how programs in the particular lagguare executed, and tbdentation,
describing what programs are for and what can bee deith them. Differences between
programming paradigms in du Boulay’s two remainidgmains, structures (abstract
solutions to standard problems) gmégmatics(the skills of planning, developing, testing,
debugging, etc.), are more complicated and willlb®treated in this paper. It is clear that if
differences in the basic constructs—notations,omati machine, and orientation—make the

76

From Procedures to Objects

applicability of classic results to object-oriemdat dubious, then differences in more
complicated issues will make the situation evens&or

This paper is structured as follows. First, weluaok at the differences between
imperative and procedural programming versus OO# waspect to notations, notional
machine, and orientation. Then, we will review gesé literature and see how it supports our
claims. Finally, we will present a research ageiod€®OP.

THE NOTATIONAL REVOLUTION

Notations needed in Java programs do differ rentdykérom those of imperative and
procedural programmifg This is partially due to the larger number of gramming
concepts needed, but also due to the structuteeqfava language (Radenski, 2006).

For example, consider the algorithm for simplerusteraction in Figure 1, given in a
natural language, English. The pseudo code vedditins algorithm is given in Figure 2, and
a Pascal program for the same task in Figure 3n(feopopular textbook of its time, D.
Cooper & Clancy, 1982, p. 15). Even though the tara differ in their level of formality,
they look strikingly similar. When we compare thatural language version (that should be
in a notation familiar to students) in Figure 1the Pascal version (that the students should
learn to understand), the new notations and tlae@Iconcepts are

= “program,” name of the program: program

= interaction ports needed: input/output

= “integer” and the variable name: variables

= “write,” “writeln,” and “readIn”; input/output

= “var,” “begin,” “end,” and punctuation: languagensgx.

The first two of these are required by the langydmt are simple to students (this is a
program with input and output); the next two aretjwhat the students are learning (the
concepts of variable and input/output); the lasé @m something cryptic required by the
language. Parts required by the language vary toenlanguage to another. For example, in
Python there would be no special punctuation orestant brackets and the program line
would not be needed.

Now, let us turn to the Java version of the samgnam given in Figure 4, which must
be stored in a file with a certain name, Interacjava. (We assume the existence of another
class for user input stored in the file Input.jav@mpared with Figure 1, the new notations
and the related concepts are:

= “public”: visibility
“class,” name of the class: classes and objects
= “static”: access rights
= “void”: return values
= “main”: program
= method name and its argument: methods and theinsegts
= “String,” “[],” “System,” and “Input”: predefinedlasses
= “int” and the variable name: variables

77

Sajaniemi & Kuittinen

= “println,” and “readInt”: input/output
= punctuation: language syntax

This list is much longer than the correspondirgl for Pascal. And, what is more
important, it contains a large number of difficalbncepts that are not required for the
solution of the problem, but by the structure af tanguage: classes and objects, visibility,
access rights, method definitions and calls, ahdmevalues.

Tell the user that this is an interactive program.
Ask the user to enter an integer value.

Get the number from the user.

Tell the user what the entered number was.

Figure 1: An example program in English

write "This program interacts with its user.'
write 'Please enter an integer value.'

read Number

write 'The number you entered was:'

write Number

Figure 2. The example program in pseudo code.

program Interactive (input, output);
var Number: integer;

begin
writeln ("This program interacts with its user.");
writeln (‘Please enter an integer value.');
readln (Number);
write (‘The number you entered was:");
writeln (Number)

end.

Figure 3: The example program in Pascal

public class Interactive {
public static void main(String[] args) {

int Number;
System.out.printin("This program interacts with its user.");
System.out.printin("Please enter an integer value.");
Number = Input.readint();
System.out.print("The number you entered was:");
System.out.printin(Number);

Figure 4. The example program in Java

78

From Procedures to Objects

One may argue that this example program favoreriative programming and that the
first programs used in OOP courses do not contagwrhuch input and output. Even if that
were the case, the first Java program will consdimost all of the above concepts.

Thus, the shift to object-orientation and Java megle a revolution at the notational
level, even though this might not be obvious &tfsight: The lengths of the programs in
Figures 3 and 4 are practically the same, yet tiraber of new notations and concepts is
remarkably higher in the Java case. This rise igloe to the programming problems that are
solved, but rather to the requirements of the laggwsed.

THE NOTIONAL MACHINE REVOLUTION

In order to be able to understand what individwaistructs of a programming language mean
and how programs written in that language workudent must understand how the notional
machine (du Boulay, O’'Shea, & Monk, 1981) undedyitnat language works. Programs
cannot be understood as strings of characters stigients must understand, for example,
what a variable is and how it is affected by assignts. A more thorough understanding of
programming includes, for instance, knowledge gdidgtl uses of variables and control
structures (Détienne, 2002), which also relies opr@per understanding of the notional
machine. The machine needed for understandingrgtepfograms should be simple, or else
learning programming becomes hard (du Boulay efi8B1).

In the procedural approach, instruction typicatarts with the imperative constructs:
variables, input/output, conditionals, and loopaamstructs. The notional machine needed to
explain these notions consists of

= variable: location or slot with a name and contents

= input/output: two devices connecting variablesxtemal world
= program execution: a program counter referring ¢ergain point at the program.

A notional machine that consists of the abovespariclearly capable of executing the
program in Figure 3 and can be used in teachindjrétesteps in imperative programming.
An extension to this notional machine is neededmpointers are included:
= pointer: contents of a variable may be the locatibanother variable.

Further extensions are needed when procedurasterduced:
= procedure call: a call stack

= parameter: room for parameters in the call stackl grarameter-passing
mechanisms

= return value: mechanism for return value, possith room for it in the call stack.

It should be noted that these extensions are daliyipatible with the initial notional machine
and they can be introduced gradually along with ititeoduction of new programming
language constructs.

In contrast to the procedural approach, OOP requia much larger and more
complicated notional machine from the very begignih notional machine that is capable of
executing the program in Figure 4 must containoélthe following parts (see the list of
concepts of the program given in the previous eati

79

Sajaniemi & Kuittinen

= object: a heap for objects
= method: a call stack

= parameter: room for parameters in the call stackl grarameter-passing
mechanisms

= return value: mechanism for return value, possiti room for it in the call stack
= variable: location or slot with a name and contéimtshe call stack)
= input/output: two devices connecting variablesxtemal world

= object reference: contents of a variable or a patammay be the location of an
object in the heap

= program execution: a program counter referring ¢ergain point at the program.

Moreover, there are concepts that are needed éoegh they are not directly expressed in
the notional machine: visibility and access rigtescerning validity of the program, and the
relationship between classes and objects concethmgelationship between the program
text and the object heap.

Compared with the notional machine in the procaldoase, the difference is huge. The
OO notional machine described above and needethéosimple program in Figure 4 is not
only larger than the corresponding notional macmeeded for the equivalent program in
Figure 3, but it is much larger than the total oxdil machine in the procedural case.
Furthermore, the notional machine for OOP descriakdve does not even contain parts
needed to describe other OO constructs that areatiypintroduced in the first programming
course: subclasses and inheritance, implicit cilgiperclass constructors, and polymorphism.

One might argue that there is no need for studemtsnderstand notations and the
notional machine completely—students can simply @sitle unnecessary parts as boiler
plates when first learning. The problem with thigking is that novices have no means to
decide which issues are unnecessary and which lmeuattended to when reading or writing
programs. The use of boiler plate code mystifiemy@mming and obscures concepts that
should be learned. Programming should not be taagh& copy-and-paste art that only
incidentally results in a correctly functioning gram, but rather as a clearly defined activity
that deals with unambiguous constructs. Otherwigecentral concepts remain blurred.

In summary, the shift to object-orientation andalaas made a revolution at the notional
machine level. Not only is the size of the requinetional machine much larger than in the
procedural case, but the initial notional machimeded in order to understand the first
programs is much more complicated, as well.

THE ORIENTATION REVOLUTION

Sajaniemi, Ben-Ari, Byckling, Gerdt, and Kulikova006) have studied example programs in
elementary programming textbooks among three pnognag paradigms: procedural,
object-oriented, and functional. They found majdfedences in the programming problem
types used in these various programming paradidims.most important issue in procedural
programming textbooks is the functionality of praps: Example programs compute
meaningful values based on input and print the ltedor users through simple output
mechanisms. OOP textbooks deal with data modelngrne hand, and demonstrate specific

80

From Procedures to Objects

language features on the other. Even though megsag®ng structures may be complex,
their net effects are trivial from the user's persjve. Finally, functional programming
textbooks stress data manipulation techniques. ,Tthesorientation (i.e., what programs are
for) is very different in these paradigms.

This finding also means that students’ tasks dferednt depending on the programming
paradigm used for learning. In procedural prograngnstudents try to write programs that
do meaningful actions and computations, whereas ifP @@dents concentrate on creating
conceptual model$or (usually concrete) data. Détienne (1997) ndtes when novices
design OO programs, the activity of finding classessumes their attention; they think about
functionality only late in the design activity. Elfwimi and Schweikert (2006) found that
students have problems in understanding objecti@iion and incorporating OO concepts
into problem solving. Students tend to spend mione trying to understand objects and less
time on problem solving. Thus, the shift to objedentation has made a revolution at the
orientation level and regarding students’ tasksrogramming.

RESEARCH SUPPORT

In the previous sections, we have demonstratedthieashift from imperative and procedural
programming education to OOP has denoted a rewolut the complexity of notations,
concepts and the notional machine needed, andeirotiientation and tasks carried out by
students as programming exercises. In this seatierwill look at research literatutand see
what it says about this revolution.

Imperative and Procedural Programming

Classic works on programming education and the hpspgy of novice and expert
programming (e.g., Brooks, 1983; Corritore & Wiebeck, 1991; Davies, 1993; Gilmore &
Green, 1984; Letovsky, 1986; Pennington, 1987; iRerl& Martin, 1986; Rist, 1989;
Soloway & Spohrer, 1989; see also Robins et aD32@nd Winslow, 1996, for excellent
reviews) are primarily based on imperative and, some extent, also procedural
programming—in many cases Pascal programming, wkialhy we used Pascal in Figure 3.
It is evident from this literature that learningogramming is challenging even in the
imperative case. Novices often have problems utalelsg basic concepts, such as
variables and basic imperative control structuisn¢David Kolikant & Haberman, 2001;
Samurcay, 1989; Spohrer, Soloway, & Pope, 1989)+-tha they have problems in
understanding the basic notional machine requivedriperative programming.

Novices’ knowledge about the imperative parts oigpamming languages has been
found to be at first fragile (Perkins & Martin, 198 such as inert knowledge that students
cannot readily master, or misplaced knowledge negrgo inappropriate contexts. As a
consequence, students have problems in applying #rowledge even though the
knowledge itself may be correct. From a cognitiverspective, the causes of fragile
knowledge include a sparse network of association®ng-term memory, that is, weak
connections between different concepts, and unifiereintiation of language commands.
Yet, the hardest part of learning is not in gragpthe syntax and semantics of some

81

Sajaniemi & Kuittinen

language, but in adopting ways to construct lapyegram units that are needed to solve the
problem at hand (see, e.g., Winslow, 1996).

A specific source of problems is the limited capaof working memory (Anderson,
2000, p. 176). Even when writing simple imperatpregrams consisting of just a few lines,
expert programmers—Ilet alone novices—often canmon fa complete mental representation
of the program in their working memory. Even wilie thelp of external representations, the
number of simultaneously needed details easily edsd¢he limitations of human working
memory (Green, Bellamy, & Parker, 1987). Highly momical chunking of knowledge is
therefore crucial for good performance in programgniBecause novices’ programming
knowledge is fragile, efficient chunking is difficdor them.

In summary, educational and psychological resedrth novice imperative and
procedural programming indicates that even the keistpmperative notional machine is
challenging for students to learn, students’ knolg&eis fragile, and students have serious
problems in combining basic constructs of a prognémy language to form larger,
meaningful structures.

Object-Oriented Programming

Very little psychological and educational reseaggists for novice OOP. Most papers (e.g.,
Bennedsen & Caspersen, 2004; Bierre et al., 2006Cd®per et al.,, 2003; Holliday &
Luginbuhl, 2004; Hsia et al.,, 2005; Kolling & Heksen, 2005; Lopez-Herrejon &
Schulman, 2004; Mahmoud et al,. 2004; Marrero &I8e2005; Shanmugasundaram et al.,
2006; Truong et al., 2005; Utting, 2006) introdu@ious pedagogic techniques and tips,
such as visualization tools or curriculum changeghout consideration for educational or
psychological theories. Some (e.g., Bednarik & @irken, 2007; Romero, Lutz, Cox, & du
Boulay, 2002) study the use of such tools in thetext of an OOP language but not relating
their findings to OO concepts or the OO paradigmlyQrery few articles (see Tables 1 and
2) analyze object-orientation from a cognitive dueational perspective, that is, increase the
field’s understanding of OOP learning and how ffedts from the imperative and procedural
cases. We will next review these results.

Davies, Gilmore, and Green (1995) asked novices experts to sort cards containing
short fragments of a large OO program library aodnél that experts tended to focus on
functional relations whereas novices were much neoreerned with objects and inheritance
relations. Thus, novices’ mental representationsthef structure of large OO programs
concentrates on objects and inheritance, thahigl@ements that do not exist in the procedural
case. Corritore and Wiedenbeck (1999) and WieddénbRamalingam, Sarasamma, and
Corritore (1999) have studied novices and expeartaprehending short procedural and OO
programs and found that, in the OO case, the dvieradtion of programs is understood better
than details of, for example, control flow; yet lwiprocedural programs, comprehenders’
knowledge is more balanced. These results inditatieprogrammers’ mental representations
of procedural and OO programs do differ qualitdgivAs the nature of mental representations
is strongly related with learning programming, tHiading proposes the existence of
fundamental differences between learning proceguogramming and learning OOP.

Eckerdal and Thuné (2005) have studied novicederstanding of class and object and
found several categories of conception of theseams. Détienne (1997), Holland, Griffiths,

82

From Procedures to Objects

and Woodman (1997), Ragonis and Ben-Ari (2005), Beifl and Hazzan (2006) have found
that students have severe misconceptions abouariuertal OO concepts, such as classes and
inheritance. Fleury (2000) has found several miseptions concerning the construction and
use of objects in Java. In procedural programmmigconceptions about parameter passing
(Fleury, 1991) and recursion (Levy, 2001) have beend; in imperative programming only
fragile knowledge instead of misconceptions haslveported. In consequence, problems in
learning seem to have different roots in OOP thamperative programming.

Table 1. Psychological and Educational Research on OOP: i®#presentation

Topic of
investigation

Expert
performance

Novice performance Cognitive

development

Programming
education

Notional machine/
structure

Notional machine/
detailed contents

Notional machine/
misconceptions

OO programs/
structure

Davies et al.
(1995)

Davies et al. (1995)

OO programs/
detailed contents

Wiedenbeck et al.
(1999)

Corritore and
Wiedenbeck
(1999)

OO programs/
misconceptions

OOP/ structure

OOP/ detailed
contents

Eckerdal and Thuné
(2005)

Mead et al.
(2006)

OOP/
misconceptions

Détienne (1997);
Fleury (2000);
Holland et al. (1997);
Ragonis and Ben-Ari
(2005); Teif and
Hazzan (2006)

Table 2. Psychological and Educational Research on OOPIs$kill Strategies

Topic of Expert Novice performance Cognitive Programming
investigation performance development education
Program

comprehension

Tracing and Lister et al. (2004); Thomas et al.
debugging Vainio and Sajaniemi (2004)

(2007)

Program design

Détienne (1997);
Lee and
Pennington
(1994);
Pennington et
al. (1995);
Rosson and
Gold (1989)

Détienne (1997)

83

Sajaniemi & Kuittinen

Mead et al. (2006) have compared cognitive problemearning procedural and OOP and
developed a set of central concepts in the forfamthor concept graphs” for both paradigms.
The two graphs differ considerably, providing mexédence for the assumption that learning
procedural programming and learning OOP are vdfgrént in nature.

Thomas, Ratcliffe, and Thomasson (2004) found shadents did not perform better in
tracing OO code fragments when they were provideth weady-made partial object
diagrams, nor did they draw their own diagrams nasten in a follow-up test. On the other
hand, Lister et al. (2004) found that many studemtse able to track values of numeric
variables on paper, and Vainio and Sajaniemi (200@ihd that students were able to draw
values of primitive types, but not object referenctaken together, these results imply that
students have more problems in making externaksgmtations of OO parts than imperative
parts of the notional machine, that is, the OO am@l machine is even more poorly
understood by students than the imperative notiorzadhine.

In her state-of-art review of empirical researchobject-oriented design, Détienne (1997)
examined the processes involved in designing inQ@i@& paradigm and in the procedural
paradigm. Among other things, she reports on figsliof Lee and Pennington (1994),
Pennington, Lee, and Rehder (1995), and RossorGattl(1989) concerning the differences
between OO designers and procedural designers.e9ign@érs seem to base their solutions on
the problem domain itself, whereas procedural desgyuse generic programming constructs
for structuring their solutions. Thus, the oveigbproach in program design differs between
procedural and OO programming, and teaching srexkdowledge this difference.

Discussion

Even though studies into OOP are few, the abovdtsasiake it clear that both OOP itself and
learning OOP are very different from their imperatiand procedural counterparts: Mental
representation of programs is different, probleragehdifferent roots, conceptual contents of
knowledge are different, the level of understandthg underlying notional machine is
different, and the overall approach to program giess different. These differences are so
fundamental to learning that we dare to claim thatclassic educational and cognitive results
of novice imperative and procedural programminguithaot be used in the OO context.

Furthermore, the number of educational and cogngitudies of learning OOP is small.
Lister et al. (2006) studied several popular claahsut learning OOP and found practically
no evidence for them in scientific literature. Neit do we know of any results that would
provide evidence for the desirability or efficien@f replacing imperative/procedural
programming education by object-orientation. On tleatrary, Chen, Monge, and Simon
(2006) found no effects of the first programmingamigm and later design skills; Détienne
(1997), Pennington et al. (1995), and Sharp andfy@ri(1999) found positive transfer
effects of traditional structured and proceduradrapches to OO design.

PROPOSAL FOR RESEARCH AGENDA

Tables 1 and 2 draw together OOP research desciibéite previous section. We have
tabulated research articles according to two dimoess the first describing the cognitive

84

From Procedures to Objects

content or skill targeted in an investigation, seeond telling whether the investigation deals
with experts’ performance, novices’ performance pooblems, development of novices’

mental representations and skills, or ways to iw@rthis development with educational

techniques. The tables make it clear that largasasee totally neglected: Even the most
researched areas—novices’ misconceptions in OOR/Ikdge and experts’ program design
processes—have been studied in only a few papers.

If novices are to be helped in their struggles mvlgarning OOP, it is necessary to know
their problems and misconceptions as well as wkpérs know and how they apply their
knowledge. Only then can efficient teaching methaasl contents that have a strong
cognitive basis be devised. Many studies in trad#l programming have compared expert
and novice performance and mental representatibis, providing information on what
distinguishes experts from novices. In the OO domsiich studies are rare; only two studies
in Tables 1 and 2 (Davies et al., 1995; Détien®8,7) cover both experts and novices. We
therefore suggest that research iexpert and novice differencebould be carried out in all
cognitive aspects listed in the tables.

A notable gap in Table 1 covers the OO notionatimree. There are no studies on
experts’ or novices’' understanding of the notiomachine behind OOP; neither are there
studies on teaching a viable notional machine tmlestts. Some suggestions have been
presented for visualizing OO program execution.(é€gies & Gries, 2002; Moreno, Myller,
Sutinen, & Ben-Ari, 2004; Sajaniemi, Byckling, & @k, 2006), but their correspondence to
experts’ or novices’ mental representations orrte#ficiency in providing a mental model of
a correct notional machine has not been studiedeirail. In a recent study (Sajaniemi,
Kuittinen, & Tikansalo, 2007), students were foundbe poor in visualizing relationships
between objects and method calls during prograncugia and students’ understanding of
these relationships (i.e., the structure of théonal OO machine) was found to contain many
errors. We therefore suggest teaperts’ mental representations of the notional @&rhine
should be studied in detail. Moreover, effectivays to convey this knowledge to novices
should also be investigated.

Another gap in Tables 1 and 2 is the lack of ssidnto the cognitive development of
novices’ mental representations and skills. In ptdesupport learning by teaching, steps in
cognitive development must first be known. Basigritive activities—such as chunking—
do, of course, appear in the context of OOP as. wisivever, the building of the notional
machine, construction of OOP knowledge, and detailevelopment of OOP skills and
strategies presumably have components that aréfisgecOOP. We therefore suggest that
novices’ cognitive development in OGRould be studied.

Investigations of mental representations of OOgmms (Corritore & Wiedenbeck,
1999; Wiedenbeck et al., 1999) have probed paatitg knowledge with yes/no questions
divided into categories determined by the reseaschgriori. Such a method reveals whether
participants possess knowledge in those categbuei does not reveal what other types of
knowledge they might have. As a consequence, exadtents of experts’ mental
representations of OO programs are largely unknamahteachers have only vague ideas of
how to best explain important program elements #a&ir relationships to students. We
therefore call foexploratory research into experts’ mental repreaéinhs of OO programs.

Studies in cognitive processes, such as skills strategies, cover mainly experts’
program design. In imperative programming, reseanth experts’ and novices’ program

85

Sajaniemi & Kuittinen

comprehension has increased our understanding efctmprehension processes and,
moreover, of the mental representations of impeggirograms and imperative programming
knowledge. The structure of OO programs differaraech from imperative and procedural

programs that one may presume that their comprérengrocesses do also differ

considerably. Again, some elements (e.g., hypathdsven comprehension) are the same,
but issues related to program structure can benessuo differ. We therefore suggest
research intexperts’ and novices’ OO program comprehension @sees.

Finally, results of the research suggested abadesammarized in Table 3 should be
utilized in devising effective methods for teachi@@P. However, we do not include this
work in the research agenda proposal for two reaséirstly, the right time for such
educational-oriented research will come only aftere is a large body of results obtained
from the research agenda. Secondly, it may welhbe effective ways to transfer experts’
mental representations, skills and strategies tteaat partially revealed during the earlier
research covered by the agenda.

Table 3. Proposal for Research Agenda in OOP and OOP Educati

Performance Development

Topic of Expert Expert vs. Novice Cognition Education
investigation Novice
Mental
representation of ¢ ° i i
notional machine
Mental
representation of i b b
OO programs
Mental
representation of i i
OOP
Program

. [] [] [] []
comprehension
Tracing and o .
debugging
Program design ° °

CONCLUSION

In programming education, there has been a majftristthe programming paradigm used in
the first courses. To please industry and studediscators have moved from imperative and
procedural programming to object-orientation withstudying its necessity or consequences
and without studying how OOP education should beiezh out. Moreover, classic results
from imperative and procedural programming havenbeged as such even though their
applicability in the OO case can be questioned. ®hdt from imperative/procedural

86

From Procedures to Objects

programming to object-orientation is so revolutigninat the use of research results obtained
in the imperative and procedural cases is doulmfiihe OO case. The number of notations
and concepts needed, the size of the notional maakiquired, and the whole orientation of

programming are so different that the basic assimptused in imperative and procedural
programming research do not necessarily hold fgeadmrientation. Even though some

results may apply in object-orientation, there iseged to find out on what occasions this
happens to be the case.

There is a lack of systematic research into thldmental cognitive and educational
issues in learning and teaching OOP. Lister e(20106, p. 160) conclude their paper by
noting that “our community needs to discuss—andatkeb-this issue,” but we claim that the
computer science education research community &ed psychology of programming
community need to rigorously study these issues. fifor that purpose, we have presented a
research agenda comprising

= Constructing a model of the OOP expegkperts’ mental representations of the
notional OO machine; exploratory research into espenental representations of
OO programs

= Understanding the differences between OOP expatts novices:experts’ and
novices’ differences in mental representationsgram comprehension processes,
skills and strategies within OOP

= Fostering OOP novices’ cognitive developmerdvices’ cognitive development in
OOP; ways to convey the notional OO machine toces/i

High dropout rates from OOP courses and poor iegroutcomes pose problems to
students, educators, and educational institutibhese problems can be attacked only with
rigorous research into the psychological and edurattissues involved.

ENDNOTES

1. Imperative and procedural programming are oftersictamed synonyms, but in this papmperativerefers
to programming with variables, assignment, and Enmperative control structures, such as sequence,
iteration, and conditionals, wherga®ceduralcovers procedures, parameters and recursion, also.

2. Here we are interested in differences that arerentieto object-orientation and the way object-efat
concepts are implemented in Java. We do not teaat groblems that occur within the imperative pafts
Java, for example, that using “=" as the assignnopetrator makes some students to confuse assignment
with mathematical equality.

3. In this literature review, we look at programminglyo Thus, we do not include system design litexatu
even though we do include program design literature

REFERENCES

Anderson, J. R. (2000 ognitive psychology and its implicati® (3" ed.). New York: Worth Publishers.
Bednarik, R., & Tukiainen, M. (2007). Analysing amderpreting quantitative eye-tracking data in stedies
of programming: Phases of debugging with multieresentations. In J. Sajaniemi, M. Tukiainen, R.
Bednarik, & S. Nevalainen (Eds.Proceedings of the 19th Annual Workshop of the lirdggy of

87

Sajaniemi & Kuittinen

Programming Interest Grougpp. 158-172). Joensuu, Finland: University of doen Department of
Computer Science and Statistics.

Ben-David Kolikant, Y., & Haberman, B. (2001). Adiing “black boxes” instead of opening “zipper&:
method of teaching novices. IMICSE '01: Proceedings of the Sixth Annual Conference on latiow
and Technology in Computer Science Educafjgm 41-44). New York: ACM Press.

Bennedsen, J., & Caspersen, M. E. (2004). Progragimicontext: A model-first approach to CS1SIGCSE
'04: Proceedings of the 35th SIGCSE Technical Swinpo on Computer Science Educatigp. 477—
481). New York: ACM Press.

Bierre, K., Ventura, P., Phelps, A., & Egert, CO@8). Motivating OOP by blowing things up: An exsecin
cooperation and competition in an introductory Jancggramming course. BIGCSE '06: Proceedings of the
37th SIGCSE Technical Symposium on Computer Sdighazation(pp. 354—358). New York: ACM Press.

Brooks, R. E. (1983). Towards a theory of the cahpnsion of computer progranisternational Journal of
Man-Machine Studied 8, 534-554.

Cassel, L. B., McGettrick, A., Guzdial, M., & Rolb®rE. (2007). The current crisis in computing: \Vae the
real issues? ISIGCSE '07: Proceedings of the 38th SIGCSE TechBigaposium on Computer Science
Education(pp. 329-330). New York: ACM Press.

Chen, T.-Y., Monge, A., & Simon, B. (2006). Relaiship of early programming language to novice gateer
design. InSIGCSE '06: Proceedings of the 37th SIGCSE Techr@ganposium on Computer Science
Education(pp. 495-499). New York: ACM Press.

Cooper, D., & Clancy, M. (1982Dh! Pascal!New York: W. W. Norton & Company.

Cooper, S., Dann, W., & Pausch, R. (2003). Teachbjgcts-first in introductory computer scienceSIGCSE
'03: Proceedings of the 34th SIGCSE Technical Sywmpo on Computer Science Educatigp. 191—
195). New York: ACM Press.

Corritore, C. L., & Wiedenbeck, S. (1991). What dwvices learn during program comprehension?
International Journal of Human-Computer Interactj@ 199-222.

Corritore, C. L., & Wiedenbeck, S. (1999). Mentabresentations of expert procedural and objectiarie
programmers in a software maintenance teg&rnational Journal of Human-Computer Studigg 61-83.

Davies, S. P. (1993). Models and theories of prognang strategylnternational Journal of Man-Machine
Studies39, 237-267.

Davies, S. P., Gilmore, D. J., & Green, T. R. @98). Are objects that important? Effects of exigertand
familiarity on classification of object-orientedam Human-Computer Interactio0, 227-248.

Détienne, F. (1997). Assessing the cognitive camseces of the object-oriented approach: A survesnubirical
research on object-oriented design by individuatstaamslinteracting with Computer®, 47—72.

Détienne, F. (200250ftware design: Cognitive aspedt®ndon: Springer-Verlag.

de Raadt, M., Watson, R., & Toleman, M. (2002). dizenge trends in introductory programming courses.|
Cohen & E. Boyd (Eds.Rroceedings of Informing Science and IT Educati@mf€rence(pp. 329-337).
Santa Rosa, CA, USA: Informing Science Institute.

du Boulay, B. (1989). Some difficulties of learnitgprogram. In E. Soloway & J. C. Spohrer (EdStudying
the novice programmepp. 283-299). Hillsdale, NJ, USA: Lawrence ErliveAssociates.

du Boulay, B., O'Shea, T., & Monk, J. (1981). Thiadk box inside the glass box: Presenting computing
concepts to novicetnternational Journal of Man-Machine Studjdsgl, 237-249.

Ebrahimi, A., & Schweikert, C. (2006). Empiricalidy of novice programming with plans and obje8i$&sCSE
Bulletin, 38(4), 52-54.

Eckerdal, A., & Thuné, M. (2005). Novice Java pangmers’ conceptions of “object” and “class”, and
variation theory. INTICSE '05 Proceedings of the 10th Annual SIGCSE Conferenckmovation and
Technology in Computer Science Educafigm 89-93). New York: ACM Press.

Fleury, A. E. (1991). Parameter passing: The rilestudents constru@IGCSE Bulletin, 23), 283—-286.

88

From Procedures to Objects

Fleury, A. E. (2000). Programming in Java: Studsmstructed rules. I8IGCSE '00: Proceedings of the 31st
SIGCSE Technical Symposium on Computer Scienceafiolu¢pp. 197—-201). New York: ACM Press.

Gilmore, D. J., & Green, T. R. G. (1984). Compredien and recall of miniature programisternational
Journal of Man-Machine Studig®l, 31-48.

Green, T. R. G., Bellamy, R. K. E., & Parker, J. (#987). Parsing and gnisrap: A model of device Usé&.
M. Olson, S. Sheppard, & E. Soloway (Ed&jmpirical studies of programmers: Second worksmm
132-146). Norwood, NJ, USA: Ablex Publishing Compan

Gries, P., & Gries, D. (2002). Frames and foldéksteachable memory model for JavBhe Journal of
Computing Sciences in Collegé&3(6), 182—-196.

Holland, S., Griffiths, R., & Woodman, M. (1997)vaiding object misconception&SIGCSE Bulletin29(1),
131-134.

Holliday, M. A., & Luginbuhl, D. (2004). CS1 assesnt using memory diagrams. IBIGCSE ’'04:
Proceedings of the 35th SIGCSE Technical Symposiut@omputer Science Educati¢op. 200-204).
New York: ACM Press.

Hsia, J. I, Simpson, E., Smith, D., & CartwrigRt, (2005). Taming Java for the classroomSIGCSE '05:
Proceedings of the 36th SIGCSE Technical Symposiut@omputer Science Educatigop. 327-331).
New York: ACM Press.

Kinnunen, P., & Malmi, L. (2006). Why students dropt CS1 course? IfCER '06: Proceedings of the 2006
International Workshop on Computing Education Reseépp. 97-108). New York: ACM Press.

Kolling, M., & Henriksen, P. (2005). Game programignin introductory courses with direct state matapan.
In ITICSE '05: Proceedings of the 10th Annual SIGCSihf€rence on Innovation and Technology in
Computer Science Educatigpp. 59—63). New York: ACM Press.

Lee, A., & Pennington, N. (1994). The effects obgmamming on cognitive activities in designternational
Journal of Human-Computer Studjd$), 577-601.

Letovsky, S. (1986). Cognitive processes in progmomprehension. In E. Soloway & S. lyengar (Eds.),
Empirical studies of programme(pp. 58—79). Norwood, NJ: Ablex Publishing Company

Levy, D. (2001). Insights and conflicts in discugsrecursion: A case stud@gomputer Science Educatioht,
305-322.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, Wamer, J., Lindholm, M., McCartney, R., Mostréom,E],
Sanders, K., Seppdalg, O., Simon, B., & Thomas2004). A multi-national study of reading and tragin
skills in novice programmerS&IGCSE Bulletin36(4), 119-150.

Lister, R., Berglund, A., Clear, T., Bergin, J.,rda-Doxas, K., Hanks, B., Hitchner, L., Luxton-Rei A.,
Sanders, K., Schulte, C., & Whalley, J. L. (200Besearch perspectives on the objects-early debate.
SIGCSE Bulletin38(4), 146-165.

Lopez-Herrejon, R. E., & Schulman, M. (2004). Usimgeractive technology in a short Java course: An
experience report. INTICSE '04: Proceedings of the 9th Annual SIGCSEf€e@nce on Innovation and
Technology in Computer Science Educa(pp. 203—-207). New York: ACM Press.

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2D0Redesigning introductory computer programming
with HTML, JavaScript, and Java. 8IGCSE '04: Proceedings of the 35th SIGCSE TechS8igaposium
on Computer Science Educatifpp. 120-124). New York: ACM Press.

Marrero, W., & Settle, A. (2005). Testing first: phmasizing testing in early programming coursedTI€SE
'05: Proceedings of the 10th Annual SIGCSE Confegeon Innovation and Technology in Computer
Science Educatio(pp. 4-8). New York: ACM Press.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, B5uzdial, M., Hagan, D., Ben-David Kolikant, Y., Lexx
C., Thomas, L., & Utting, I. (2001). A multi-natiah multi-institutional study of assessment of
programming skills of first-year CS studer8$GCSE Bulletin33(4), 125-140.

Mead, J., Gray, S., Hamer, J., James, R., Sorv&Jair, C. S., & Thomas, L. (2006). A cognitivepapach to
identifying measurable milestones for programmikig acquisition. SIGCSE Bulletin38(4), 182—-194.

89

Sajaniemi & Kuittinen

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M2004). Visualizing programs with Jeliot 3. VI '04:
Proceedings of the Working Conference on AdvandsabYVInterfacegpp. 373—-376). New York: ACM.

Pennington, N. (1987). Comprehension strategiggagramming. In G. M. Olson, S. Sheppard, & E. 8alp
(Eds.),Empirical studies of programmers: Second worksfgp 100-113). Norwood, NJ, USA: Ablex
Publishing Company.

Pennington, N., Lee, A., & Rehder, B. (1995). Cdigei activities and levels of abstraction in proged and
object-oriented desigituman-Computer InteractioilQ, 171-226.

Perkins, D. N., & Martin, F. (1986). Fragile knodtge and neglected strategies in novice programmeis.
Soloway & S. lyengar (Eds.Empirical studies of programmer®p. 213—-229). Norwood, NJ, USA:
Ablex Publishing Company.

Radenski, A. (2006). “Python first”: A lab-baseditial introduction to computer science. IRICSE ’'06:
Proceedings of the 11th Annual SIGCSE Conferencemovation and Technology in Computer Science
Education(pp. 197-201). New York: ACM Press.

Ragonis, N., & Ben-Ari, M. (2005). A long-term irstigation of the comprehension of OOP concepts by
novices.Computer Science Educatialb, 203—-221.

Rist, R. S. (1989). Schema creation in programnfiggnitive Sciengel3, 389-414.

Robins, A., Rountree, J., & Rountree, N. (2003)arnéng and teaching programming: A review and distan.
Computer Science EducatialB, 137-172.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2D0Co-ordination of multiple external represerdas
during Java program debugging.Rroceedings of the IEEE 2002 Symposia on HumanriCelwmputing
Languages and Environmer(fgp. 207-214). Los Alamitos, CA, USA: IEEE Compueciety Press.

Rosson, M. B., & Gold, E. (1989roblem-solution mapping in object-oriented desityew York: IBM T. J.
Watson Research Center.

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt,, R Kulikova, Y. (2006). Roles of variables in tlere
programming paradigm&omputer Science Educatial6, 261-279.

Sajaniemi, J., Byckling, P., & Gerdt, P. (2006). thfghor-based animation of OO programs.SwitVis '06:
Proceedings of the ACM Symposium on Software \fistign (pp. 173—-174). New York: ACM Press.

Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2Q0A study of the development of students’ visuatians of
program state during an elementary object-orieptegramming course. IflCER '07: Proceedings of the
Third International Workshop on Computing Educatiesearch{pp. 1-15). New York: ACM Press.

Samurcay, R. (1989). The concept of variable ing@mmming: Its meaning and use in problem-solving by
novice programmers. In E. Soloway & J. C. SpohEas(), Studying the novice programmép. 161—
178). Hillsdale, NJ, USA: Lawrence Erlbaum Asscesat

Shanmugasundaram, V., Juell, P., & Hill, C. (200&)owledge building using visualizations. IIRICSE '06:
Proceedings of the 11th Annual SIGCSE Conferencemovation and Technology in Computer Science
Education(pp. 23—-27). New York: ACM Press.

Sharp, H., & Griffyth, J. (1999). The effect of preus software development experience on undersigritie
object-oriented paradigniournal of Computers in Mathematics and Sciencefieg 18, 245-265.

Soloway, E., & Spohrer, J. C. (Eds.). (198Sjudying the novice programmetillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Spohrer, J. C., Soloway, E., & Pope, E. (1989).calfplan analysis of buggy Pascal programs. Indogay
& J. C. Spohrer (Eds.Studying the novice programmgop. 355-399). Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Teif, M., & Hazzan, O. (2006). Partonomy and taxmyoin object-oriented thinking: Junior high school
students’ perceptions of object-oriented basic epteSIGCSE Bulletin38(4), 55-60.

Thomas, L., Ratcliffe, M., & Thomasson, B. (2008¢affolding with object diagrams in first year pragming
classes: Some unexpected resultsSIBCSE '04: Proceedings of the 35th SIGCSE TechBigaposium
on Computer Science Educatifpp. 250-254). New York: ACM Press.

90

From Procedures to Objects

Truong, N., Bancroft, P., & Roe, P. (2005). Leagnto program through the web. INiCSE '05 Proceedings
of the 10th Annual SIGCSE Conference on Innovadiath Technology in Computer Science Education
(pp. 9-13). New York: ACM Press.

Utting, |. (2006). Problems in the initial teachiofprogramming using Java: The case for repladRfgE with
J2ME. InITICSE '06: Proceedings of the 11th Annual SIGC®Bf€rence on Innovation and Technology
in Computer Science Educati¢op. 193-196). New York: ACM Press.

Vainio, V., & Sajaniemi, J. (2007). Factors in no&iprogrammers’ poor tracing skills. ITICSE '07:
Proceedings of the 12th Annual Conference on Inti@wand Technology in Computer Science Education
(pp. 236—-240). New York: ACM Press.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., &itGe, C. L. (1999). A comparison of the
comprehension of object-oriented and procedurabnams by novice programmerkteracting with
Computersl11, 255-282.

Winslow, L. E. (1996). Programming pedagogy: A psyjogical overviewSIGCSE Bulletin28(3), 17—-22.

Authors’ Note

All correspondence should be addressed to:
Jorma Sajaniemi

University of Joensuu

P.O. Box 111

FI-80101 Joensuu

Finland

saja@cs.joensuul.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

91

