

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 26–46

 26

USABILITY ASSESSMENT OF A UML-BASED FORMAL
MODELING METHOD USING A COGNITIVE DIMENSIONS

FRAMEWORK

Abstract: Conceptual models communicate the important aspects of a problem domain
to stakeholders. The quality of the models is highly dependent on the usability of the
modeling method used. This paper presents a survey conducted on a method that
integrates the use of a semiformal notation, namely the Unified Modeling Language
(UML) and a formal notation, namely B. The survey assessed the usability of the method
by using the grounded theory, the Cognitive Dimensions of Notations (CD) framework,
and several criteria suggested by the International Organization for Standardization
(ISO). Ten participants responded to the survey. The results suggest that the method is
accessible to users when the principles and roles of each notation are obvious and well
understood, and when there is strong support from the environment. Supported by the
findings, a usability profile based on CD for designing a method that integrates
semiformal and formal notations is proposed.

Keywords: empirical assessment, semiformal and formal notations, cognitive
dimensions (CD), grounded theory, usability.

INTRODUCTION

Modeling is vital in the development and maintenance of software systems. It allows the
characteristics of the existing and future systems to be captured and understood. The
modeling process produces models where the requirement specification is one of them.
Software requirement specification is a conceptual model that establishes the connection
between the user’s needs of a system and the software solution to meet them. It is an abstract,

© 2008 Rozilawati Razali, Colin Snook, Michael Poppleton, & Paul Garratt, and the Agora Center, University of
Jyväskylä. URN:NBNfi:jyu-200804151351

Rozilawati Razali
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Colin Snook
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Michael Poppleton
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Paul Garratt
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Usability Evaluation of a UML-Based Formal Method

 27

clear, precise, and unambiguous conception of a system, which is developed by using the
appropriate notations. Some examples of notations used in conceptual modeling include
semiformal notations such as entity-relationship diagram (ERD; Chen, 1976) and Unified
Modeling Language (UML; Object Management Group [OMG], 2008), and formal notations
such as Z (Spivey, 1992) and B (Abrial, 1996). In addition, there are also notations that
integrate both semiformal and formal, such as UML and Z (Martin, 2003).

Formal notations such as Z and B use mathematical symbols to describe a system. The
notations have three components: rules for determining the grammatical well-formedness of
sentences (syntax); rules for interpreting sentences in a precise, meaningful way within the
domain considered (semantics); and rules for inferring useful information (proof theory), which
provides the basis for automated analysis of a model (van Lamsweerde, 2000). Formal
notations therefore have the ability to increase a model’s precision and consistency, which is
necessary especially for critical systems (Hinchey, 2002). However, the notations are regarded
as being difficult to comprehend, due to the usage of unfamiliar symbols and underlying rules
of interpretation that are not apparent to many practitioners (Carew, Exton, & Buckley, 2005).
On the other hand, semiformal notations such as ERD and UML provide abstract graphical
representations for illustrating system elements. They are semiformal because, although they
possess some formal aspects such as support the iterative refinement process, they cannot be
used to verify or predict the vast majority of system characteristics (Alexander, 1996). As a
result, an accurate and consistent model cannot be guaranteed. Nonetheless, the notations are
perceived as more accessible, since it is easier to visualize the mapping of graphical symbols to
the real-world objects they represent (Bauer & Johnson-Laird, 1993).

By integrating formal and semiformal notations, it may be that practitioners can produce a
model that is accurate, consistent, and more accessible to them. One possible approach to this
integration is to combine the formal notation of B and the semiformal notation of UML. A
method called UML-B (Snook & Butler, 2006) is one such product. The rationale of this
integration is that B has strong industrial supporting tools, such as Atelier-B (ClearSy
Systems Engineering [ClearSy], n.d.) and B-Toolkit (B-Core Limited [B-Core], 2002), and
UML has become the de facto standard for system development (Pender, 2003).

This paper presents an investigation into the usability of UML-B. Usability in this context
means the understandability/comprehensibility, learnability, operability, and attractiveness of the
method. The assessment was conducted by using the grounded theory and a usability evaluation
framework, namely the Cognitive Dimensions of Notations (CD; Green, 1989; Green & Petre,
1996), with several usability criteria suggested by the International Organization for
Standardization (ISO, 2003, 2004). The following section provides the background of the paper,
which includes a brief description of CD and UML-B. Later, the survey is presented. The final
section concludes the paper with a summary of the main findings and future work.

BACKGROUND

Cognitive Dimensions

The CD framework provides a comprehensive vocabulary for discussing the usability of
programming languages, tools, and environments. It was originally proposed as a broad-brush

Razali, Snook, Poppleton, & Garratt

28

discussion tool, offering a vocabulary to discuss the usability tradeoffs that occur when
designing programming environments (Green, 1989; Green & Petre, 1996). Nevertheless, it is
also applicable beyond the programming environment. Since its proposal, the CD framework
has been used as a basis of usability evaluation for several notations, such as UML (Cox,
2000; Kutar, Britton, & Barker, 2002), C# (Microsoft Corporation [Microsoft], 2008)
programming language (Clarke, 2001), spreadsheet application (Tukiainen, 2001), and Z
notation and tools (Triffitt & Khazaei, 2002).
 The framework is generally seen as a tool that aids the usability evaluation of information-
based artifacts (Green & Blackwell, 1998). The aim of the framework is to provide general
guidelines that can be used to evaluate the usability and suitability of an artifact for a particular
setting. An artifact is analyzed based on a usability profile that contains a CD set. The profile
guides the evaluation of the artifact for a particular user activity. The framework distinguishes
six main types of user activity (Blackwell & Green, 2003): incrementation, transcription,
modification, exploratory design, searching and exploratory understanding. Each of these user
activities is supported by a specific usability profile.
 Table 1 provides the 14 dimensions in the CD framework, with summarized descriptions.
Although the dimensions are conceptually independent, many of the dimensions are pairwise
interdependent (Green & Blackwell, 1998). This means although any given pair can be treated as
independent, a change in one dimension usually requires a change in some other dimension. For
example, reducing a notation’s viscosity may not affect its closeness of mapping, but it is likely to
affect other dimensions, such as increasing the abstraction gradient. The framework considers this
situation a matter of making compromises or tradeoffs in artifact designs.

Table 1. The CD Framework (drawn from Green, 1989).

Dimension Description

Abstraction gradient Level of grouping mechanism enforced by the notation

Closeness of mapping Mapping between the notation and the problem domain

Consistency Similar semantics are presented in a similar syntactic manner

Diffuseness Complexity or verbosity of the notation to express a meaning

Error-proneness Tendency of the notation to induce mistakes

Hard mental operations Degree of mental processes required for users to understand the notation and to
keep track of what is happening

Hidden dependencies Relationship between two entities such that one of them is dependent on the other
but the dependency is not fully visible

Premature commitment Enforcement of decisions prior to information needed and task ordering constraints

Progressive evaluation Ability to evaluate own work in progress at any time

Provisionality Flexibility of the notation for users to play with ideas

Role-expressiveness Purpose of an entity and how it relates to the whole component is obvious and can
be directly implied

Secondary notation Ability to use notations other than the official semantics to express extra
information or meaning

Viscosity Degree of effort required to perform a change

Visibility/Juxtaposibility Ability to view every component simultaneously or view two related components
side by side at a time

Usability Evaluation of a UML-Based Formal Method

 29

 In essence, CD provides a framework for assessing the usability of building and
modifying information structures. Because usability depends on the structure of the notation
and the supporting tools provided by the environment, the dimensions are indeed applicable
to the whole system.

UML-B

UML-B (Snook & Butler, 2006) is a graphical formal modeling notation and method based on
UML (OMG, 2008) and B (Abrial, 1996). It uses UML’s Class and Statechart diagrams as the
graphical representation of its model. The Class diagram shows the structure and the
relationships between system entities. The Statechart diagrams are attached to classes to
describe their behavior. A notation, µB (micro B) that is based on B notation, is used for textual
constraints and actions for the diagrams. µB has an object-oriented style dot notation that is
used to show ownership of entities, namely attributes and operations by classes. The modeling
environment of UML-B includes Rational Rose (IBM Software [IBM], n.d.) and a translator
called U2B (Snook & Butler, 2006). Rational Rose provides the environment for the UML-B
model development while U2B is a tool that translates a UML-B model to a B model so that it
can be verified by B tools, such as Atelier-B (ClearSy, n.d.) and B-Toolkit (B-Core, 2002).
 Figures 1 and 2 illustrate examples of a Class diagram and a Statechart diagram of a UML-B
model, respectively. The Class diagram shows the entities and relationships involved in an
Auction System. Two main classes, namely USER and AUCTION, are connected through seller
and highest_bidder relationships. The Statechart diagram shows the states and transitions
(operations) of the AUCTION class with the respective textual constraints specified using µB.

Figure 1. An example of a Class diagram of UML-B.

Razali, Snook, Poppleton, & Garratt

30

Figure 2. An example of a Statechart diagram of UML-B.

 The comprehensibility of the notation used in a UML-B model has been assessed in
previous work (Razali, Snook, Poppleton, Garratt, & Walters, 2007). The assessment was
conducted as a controlled experiment that compared a UML-B model and a B model for
model interpretation task. The measure of interest used in the experiment was efficiency in
performing the task, that is, accuracy over time. The results suggest with 95% confidence that
a UML-B model could be up to 16% (overall comprehension) and 50% (comprehension for
modification task) easier to understand than the corresponding B model. The subjects
commented that the UML-B model made it easier and quicker to understand the scenario and
the relationships between operations; easy to develop, especially on computers; and more
logical to developers. Nevertheless, the model was said to be useful only with good tool
support. The UML-B model was also regarded as being quite “messy,” since the information
was scattered around the Class and Statechart diagrams.

SURVEY

The controlled experiment described briefly in the previous section evaluated the notation
comprehensibility in terms of how easy it is to understand a UML-B model from the
perspective of users who interpret the model. The results of the experiment suggest that the
UML-B model is more comprehensible than the B model. The findings however cannot
suggest by any means that the notation is also usable from the perspective of developers who
use UML-B for modeling. Neither could they determine whether or not the notation suits the
developers’ common needs and expectations.

The following subsections present a further survey conducted on UML-B. The survey
assessed the usability of the notation used in UML-B from developers’ perspectives,
especially from the point of view of users who have only recently started to use it. Since

Usability Evaluation of a UML-Based Formal Method

 31

usability depends on the notation and its environment, the evaluation included the tools that
accompany the method, namely Rational Rose (IBM, n.d.) and U2B (Snook & Butler, 2006),
whenever appropriate.

Objectives and Methods

The survey was qualitative in nature. Despite the fact that some of the data were quantified
using an ordinal scale, the bulk of the analysis was interpretative. This type of analysis was
carried out due to the problem at hand, that is, the survey attempted to understand the nature
of experience of using UML-B. Since little is known about the UML-B method, the survey
aimed to explore and gain novel understandings of its use through qualitative data and
analysis. The analysis allows the intricate details about the phenomena, such as feelings,
emotions, and thoughts to be extracted and analyzed.

Many different approaches to qualitative data are employed in the social sciences
(Cassell & Symon, 1994; Denzin & Lincoln, 1994; Westbrook, 1994). We adopted one
approach, namely the grounded theory (Glaser & Strauss, 1967; Strauss & Corbin, 1998).
There are two variations in the approach, which are based on different directions taken by its
originators, namely Glaser (1992) and Strauss and Corbin (1998). This survey employed
Strauss’ approach because it is more systematic and directive. In particular, it contains more
formal models and procedures to generate theories. It also encourages a qualitative study to
have a research question so that the researcher can stay focused amid the masses of data. In a
qualitative study, the research question should be broad and open-ended.

The theory in the grounded theory approach is derived from data, systematically gathered
and analyzed through the process. This approach was chosen because, unlike the controlled
experiment conducted previously, this survey was not based on any specific theory. The
grounded theory approach allows the study to be initiated without a preconceived theory in
mind: The researcher can start with a phenomenon and allow the theory to emerge from the
collected data. Because the theory is drawn from data, it is likely to offer insight, enhance
understanding, and provide a meaningful guide to action (Strauss & Corbin, 1998). It is believed
that the theory generated from this approach is more likely to resemble the reality, as compared
to theory derived by merging concepts based on how one thinks things ought to work.

The survey aimed to formulate tentative theories of the usability of integrated methods,
(combined semiformal and formal notations) such as UML-B, based on the understanding
obtained from the qualitative analysis using the grounded theory approach. While a single
study can never embrace all possible situations, the survey sought to provide some
preliminary evidence of the integrated method’s likely strengths and weaknesses when used
under certain defined conditions. It was also intended to identify any threats that could hinder
the method’s usability and any opportunities that could improve the method further. The
tentative theories could act as a basis for further investigation and analysis.

One of the subjective comments obtained from the earlier controlled experiment was that
UML-B was seen as easy to develop, particularly on computers. The method also was
deemed to be useful only with good tool support. These hypotheses were given by subjects
who dealt with the already-developed UML-B model, not the process of modeling. This
could suggest, therefore, that the hypotheses might not be true from developers’ perspectives

Razali, Snook, Poppleton, & Garratt

32

for modeling purposes. As a result, the survey included these hypotheses in its investigation
of the phenomenon through the following broad research questions:

� Do individuals who develop a model using the UML-B method perceive them (i.e.,
the method and the model) as usable (easy to understand, easy to learn, easy to
operate, and attractive)?

� What are the characteristics of the UML-B method and UML-B model that affect
their usability from the modeling perspective?

Materials

The survey instrument was developed based on the ideas proposed in the CD usability
framework (Green, 1989). The framework was adopted because it captures a significant
number of psychology and human–computer interaction (HCI) aspects that focus particularly
on the notational design. The framework comprises 14 dimensions (see Table 1), which acted
as the response variables in the survey.

The questions for the survey were constructed by following the proposed CD questionnaire
(Blackwell & Green, 2000). The advantage of using a standard instrumentation, as proposed by
the CD questionnaire, is that it has been assessed for validity and reliability by the authors. The
CD framework is widely used by other researchers investigating the usability of notations, such
as UML diagrams (Kutar et al., 2002) and Z (Triffitt & Khazaei, 2002), and so it provides a
mechanism to compare the results of this survey with the results of other similar studies.

The CD questionnaire is intended to present the dimensions in general terms,
applicable to all information artifacts, rather than presenting descriptions specialized to a
specific system under consideration. The questionnaire was therefore tailored and modified
slightly to reflect the characteristics of UML-B. Moreover, the questions for the survey
were designed to include a set of answers using an ordinal scale together with the open-
ended questions. This approach allowed the survey to obtain some quantitative measures
rather than exclusively qualitative measures.

In addition to the CD framework, the questions on the survey were also constructed based
on the usability criteria proposed by the International Organization for Standardization (ISO,
2003, 2004): understandability, learnability, operability, and attractiveness. There were 20
questions on the survey: 14 reflecting the dimensions of the CD framework, 5 representing
the ISO’s usability criteria, and 1 designed to gather suggestions for improvement. The 14
questions on CD were also mapped to at least one usability criterion of ISO. The mapping
was based on the definition stated in the standard. The questions on the survey were
presented in random order without following a specific sequence of dimensions. To ensure
the questions were purposeful and concrete, the general guidelines on survey question
construction were followed (Kitchenham & Pfleeger, 2002).

The questions used an ordinal scale that provided the respondents with five potential levels
of agreement, from –2 (very difficult) to 2 (very easy). An uneven number of levels were used
because, by allowing for a neutral opinion, uneven numbers contribute to the achievement of
better results (Bonissone, 1982). In addition to the selection on the scale, justification for the
answer given was also required through open-ended questions, such as Why? or Which part?
This acted as the qualitative data, which were used together with the quantitative data on the
scale for the analysis. There were also questions that required an answer of Yes, No or Not sure.

Usability Evaluation of a UML-Based Formal Method

 33

The survey questions and raw data can be found in Razali (2007). As an overview of the
questions, Figure 3 provides some examples of the survey questions. The first question
concerns the visibility and juxtaposability dimension, which also relates to the
operability/attractiveness criteria of the ISO. The second question involves the hard mental
operations dimension that also implies the ISO’s understandability/learnability criteria.

The CD framework describes the necessary conditions for usability based on the structural
properties of a notation, the properties and resources of an environment, and the type of user
activity: incrementation, transcription, modification, exploratory design, searching and
exploratory understanding (Blackwell & Green, 2003). In particular, it addresses whether the
users’ intended activities are adequately supported by the structure of the notation used and its
environment. For the survey, the identified users’ intended activity was exploratory design, in
which the users employed UML-B (notation and environment) to design a conceptual model.
The survey questions and analysis therefore were tailored towards this aspect.

The survey questions were reviewed by a focus group prior to distribution. There were
four people involved in the process. The purpose of the review was to identify any missing or
unnecessary questions as well as to identify any ambiguous questions and instructions.

Participants

Ten participants responded to the survey. They were master’s students of a software
engineering program at the University of Southampton, who registered for the Critical
Systems1 course in spring 2006. They were chosen due to their potential contribution towards
the development of usability theory for integrated methods such as UML-B. Specifically, they
were selected because they received formal training on B (9 hours) and UML-B (1 hour)
during the course. They also had completed courses on the object-oriented technology and
formal methods of developing at some points in their studies. Basic knowledge of those
aspects is necessary to develop a UML-B model. Moreover, the participants had some
practical experience in using UML-B and its tools before participating in the survey. In
particular, they used the method to develop a model of a system as part of their coursework
towards the end of the Critical Systems course.

Figure 3. Examples of the survey questions from Razali (2007).

If you need to compare different parts of your UML-B model (e.g., between diagrams or windows of
different operations, etc.), how easy is it to view them at the same time in Rational Rose?

Very difficult Very Easy
 -2 -1 0 1 2

Why?

Do you find any complex or difficult tasks to work out in your head when modeling your UML-B model?

No Not Sure Yes

If Yes, what are they? If No or Not Sure, why?

Razali, Snook, Poppleton, & Garratt

34

The survey adhered to the university’s ethical policies and guidance for conducting
research involving human participants. The participants were aware that the survey was
intended for research purposes. They were motivated to participate as it helped them in
exploring the method in addition to providing a space for reflection on their learning prior to
their course examination.

The subjects were in the final semester of their master’s program. They therefore had a
reasonable amount of experience and knowledge in software development. Some of them had
some professional work experience in this area. They are the next generation of professionals,
thus they represented closely the population under study: software developers who are new
users of the UML-B method.

Results and Analysis

The survey adopted the grounded theory approach for the data analysis. In addition to
capturing the informants’ experiences of using UML-B, the survey aimed to formulate
tentative theories on the usability of such integrated methods in general. The theory in the
approach denotes a set of discrete categories that are systematically connected through
statements of relationship. The categories in essence are abstract concepts that describe the
phenomenon under study, whereas the statements of relationship are the interrelated
properties of those categories.

Employing the grounded theory approach entails a number of coding and analysis
processes. The first one applied was open coding where the responses were examined for
objects of interest based on the stated research questions. The technique used was
microanalysis (Strauss & Corbin, 1998). The analysis focused on identifying major themes or
categories and how often they emerged in the data under varying conditions. The idea was to
form a theoretical framework, thus the analysis involved the formulation of general
categories rather than ones specific to any individual cases. For example, issues of using
Rational Rose (IBM, n.d.) and running U2B (Snook & Butler, 2006) were conceptualized as
Availability and Usefulness of Supporting Tools. The analysis did not intend to specifically
delineate every single limitation of the tools. Rather, the objective was to identify and
propose a set of categories that can be used as a basis for examining the usability of other
similar methods in future.

After completing open coding, an axial coding process was conducted. Axial coding
involves moving to a higher level of abstraction by identifying relationships between
categories based on their properties. This forms the basis for the theory construction. The
properties for the categories were derived by having queries such as what, why, how and
when during the analysis process. For example, respondents mentioned the issue of learning
UML and B several times in their answers. Therefore, Learnability of Notations and Tools
was recognized as one of the categories. On the other hand, it is necessary to know what
aspect of the notations and their tools was easy or difficult to learn, when and why they
happened, in order to understand the phenomenon. To answer the queries, evidence was
obtained and accumulated from various parts of the questionnaire. This included both the
quantitative (ordinal scale) and qualitative (subjective) data. The use of CD framework and
ISO’s usability criteria that shaped the dimensions of usability investigation facilitated the
identification of the categories and properties.

Usability Evaluation of a UML-Based Formal Method

 35

The following paragraphs list the categories and elaborate their properties. The properties
(reasoning based on CD and ISO usability criteria) that support the statements are stated in
the parentheses in the paragraphs. The properties were grouped into categories based on the
respondents’ qualitative answers and data on the ordinal scales (for details, see Razali, 2007).

Category 1: Model Structure and Organization. The UML portion of UML-B allows the
system properties and behaviors to be illustrated using the Class and Statechart diagrams.
Each diagram represents the system from a specific perspective. For example, the Class
diagram shows the attributes and relationships between entities in the system while the
Statechart diagram delineates the states and transitions involved in the system operations. In
modeling a UML-B model, the users employ the diagrams to illustrate the system properties
from these perspectives.

The diagrams are equipped with formal semantics, where the characteristics and
behaviors of the systems are more precisely specified. Formal semantics in the form of B
syntax are added at different parts of the diagrams so that the diagrams and semantics can be
transformed to a B model. For example, the global variables and invariants are placed at the
Class diagram level while the conditions and effects of the behaviors are placed at the
Statechart diagram level. Despite being scattered throughout several parts of the model, the
method has the ability to transform the diagrams and consolidate the semantics as a single B
model through its tool, namely U2B.

Despite being logical, having the formal semantics at different parts of the model causes
an accessibility issue for the users. They need to switch to different parts of the model to
specify the formal semantics. Rational Rose supports the display of multiple windows at one
time. However, having to deal with several displayed windows simultaneously in Rational
Rose seems to be a problem (Property: visibility and juxtaposibility dimension). The users
have to view not only the windows that display the Class and Statechart diagrams but also the
pop-up windows that carry the semantics for each of the diagrams. In fact, some of these
windows have to be on top of each other due to limited screen space. This leads the users to
overlook certain aspects of the model and to become prone to errors (Property: error
proneness dimension). The users can view and subsequently check the model using B tools
by translating it to a B model using U2B at any modeling stage they like (Property:
progressive evaluation dimension). However, having to transform the model, particularly
while formulating and synthesizing ideas, has been regarded as a “noise.” In addition, model
transformation at early stages, where many aspects have yet to be carefully thought through,
will generate error messages in B tools. And starting modeling with many generated errors
can be a daunting experience, especially to new users.

This finding supports the comment obtained from the controlled experiment where the
UML-B model had been regarded as messy. The messiness is caused not only by the
scattered information but also the display of multiple windows simultaneously. The structure
of the model does affect its accessibility for both model reading and development, even on
the computer screen. The cognitive psychology theory that underpins this phenomenon is that
humans have a limited amount of information that can be processed at one time. The way
material is organized and presented has an effect (Chandler & Sweller, 1992). When the
related information is separated on the page or screen, users have to use cognitive resources
to search and integrate it. Users are less able to hold the separated information in working

Razali, Snook, Poppleton, & Garratt

36

memory simultaneously, especially if the information has a high intrinsic cognitive load
(Sweller & Chandler, 1994). In general, a formal notation such as B syntax is high in intrinsic
cognitive load because it involves concurrent interactions between its syntactical and
semantic characteristics.

Because a UML-B model always involves the use of more than one UML diagram that
carries the respective B syntax, the issue of scattered information is seen as unavoidable.
However, the effect of split-attention can be reduced if the modeling tool allows more
convenient and less distracting switching to and viewing different parts of the model.

Category 2: Availability and Usefulness of Supporting Tools. Rational Rose and U2B are
the main supporting tools in UML-B. These tools have been useful in some aspects (Property:
consistency dimension; secondary notation dimension; Learnability and Utility of U2B). On
the other hand, several problems in user-friendliness were discovered by the users. For
example, Rational Rose does not support some changes automatically, which causes the
modification process to be unnecessarily tedious (Property: viscosity dimension). If a variable
name is changed in the Class diagram, the change is not reflected in other parts, such as in the
Statechart diagram or in the semantics where the variable name is used. A similar situation
applies to variable deletion. Thus, the changes have to be done manually by visiting the
respective parts of the model.

U2B in general has received a fairly good acceptance among the users. This is due to its
obvious role, that is, to transform a UML-B model into a B model. By executing several simple
steps, the users can generate a B model and execute the verification task using B tools (Property:
progressive evaluation dimension). This is the reason why the tool is seen as easy to learn and
use (Property: Learnability and Utility of U2B). The automatic transformation has alleviated
some pains that would occur when modeling a B model from scratch. At the very least, it
provides basic structures for the B model, which the users could extend further by adding more
details. However, in order to keep the U2B simple, it does not contain a verification feature; the
user would need to return to the B tools to achieve verification. As a result, no matter how
simple to use, U2B, or even Rational Rose, does not support any type of checking. This means
users have to transform the UML-B model to a B model and run it in B tools each time they
change an idea, even if it involves only a minor change. Otherwise, there is no way to be sure
whether or not the change is acceptable. The generated B model will contain numerous types of
errors from the simplest to the most complex, which can only be recognized during model
verification using B tools. Because of this reason, users feel that the method is less supportive
for experimenting with ideas (Property: provisionality dimension). Users would benefit from
having some simple checking abilities, such as unused variables and typing errors of B syntax at
the modeling and transformation levels. This could act as the frontline checking to eliminate
minor errors before pursuing more extensive verification in B tools. Rather than introducing all
types of errors at once, evolutionary phases of checking could make the verification task less
daunting and troublesome for the users. Because the tool currently lacks these elements, it does
not fully meet the users’ expectation (Property: Learnability and Utility of U2B).

This finding supports the comment obtained from the controlled experiment where
several subjects in the experiment believed that the method is useful only with good tool
support. Although the necessary tools are available, there are several aspects that should be
improved in order to increase their utility (Property: Future Improvement). Perhaps a more

Usability Evaluation of a UML-Based Formal Method

 37

seamless modeling environment should be created so that users do not have to perform
several individual and intricate steps during modeling.

Category 3: Learnability of Notations and Tools. The successful use of UML-B relies on
the fact that users have to be familiar with UML and B. Otherwise, the integration of both
notations could not be understood or valued. From the results of the survey (Razali, 2007), it
has been found that it is difficult if not impossible to obtain the understanding of the notations
used in both UML and B at the same time (Property: Learnability of UML-B). Even though the
users have been exposed to UML and B for some time, a level of mental burden still occurs
during the process (Property: hard mental operations dimension). Having to think, integrate,
and harmonize two styles of modeling from two different methods seems to be problematic.

The model transformation provided by U2B also requires some learning (Property:
Learnability of UML-B). A UML-B model, in essence, carries two types of semantics:
explicit B syntax specified by the users in the UML diagrams that U2B transforms as it is in
the B model, and implicit B syntax that U2B implies and generates automatically from the
diagrams. For example, behaviors of the operations have to be specified by the users using
the B syntax in the UML diagrams whereas classes and associations in the diagrams are
translated automatically as the respective sets and variables in the B model. Users have to
understand these transformations and why they are accomplished in such ways (Property:
Learnability and Utility of U2B; hidden dependencies dimension), since it affects the way
they should do the modeling (Property: closeness of mapping dimension). Moreover, learning
of how to do modeling in Rational Rose is also required (Property: Learnability of UML-B).

Modeling the UML diagrams is regarded as quite straightforward (Property: role
expressiveness-diagram dimension; error proneness-diagram dimension), which eases the
process of describing what is intended (Property: diffuseness dimension; closeness of mapping
dimension). Despite the fact that B modeling imposes some task ordering and requires users to
define and group things beforehand, the diagrams have somehow diluted the effects (Property:
premature commitment dimension; abstraction gradient dimension). Perhaps these factors help
to explain why a UML-B model is seen as more approachable than a B model and, thus, UML-
B is preferred for formal modeling (Property: Operability and Attractiveness of UML-B).

On the other hand, specifying the UML diagrams with the correct formal semantics is
perceived as difficult and error-prone (Property: error proneness-syntax dimension; hard mental
operations dimension). Shallow understanding of how the formal semantics should work with
the UML diagrams, lack of comprehensive documentation on the method (Property: Usefulness
of Documentation), and the need to grasp the underlying principles of the employed methods
and tools mentioned above have downgraded the operability of the method (Property:
Operability and Attractiveness of UML-B). To attract new users to the method, a more
comprehensive documentation should be readily available (Property: Future Improvement).
The documentation should cover more of the practical aspects of the method and its tools
(Property: Usefulness of Documentation), rather than just theory. Currently, the available
documentation on the method is not helping the users much in this aspect (Property:
Accessibility of UML-B)

Category 4: Functionality of Notations. Rational Rose provides specification windows in
each diagram for specifying the semantics. There are two types of diagrams involved in

Razali, Snook, Poppleton, & Garratt

38

UML-B, thus the users are provided with two types of specification windows. One is in the
Class diagram and the other is in the Statechart diagram. Regardless of the location, U2B is
able to extract the semantics and treat them accordingly as a B model.

The semantics in the Statechart diagram are transformed as a nested condition under the
primary condition, which is obtained from the Class diagram. In many cases, the semantics of
the Statechart diagram can also be placed directly in the specification windows of the Class
diagram. If the users know the states and transitions involved in the operations, they can specify
it literally as a series of conditions in the specification windows of the Class diagram. Despite
providing an alternative in modeling, the flexibility somehow has made the role of the semantics
in the Statechart diagram, or even the Statechart diagram itself, unclear to some users (Property:
role expressiveness-diagram dimension; role expressiveness-syntax dimension). The users seem
to prefer specifying the full semantics in the Class diagram, since it is more obvious and
straightforward. Such a process could also reduce the mental burden of having to work with two
different diagrams at the same time (Property: visibility and juxtaposibility dimension; hard
mental operations dimension). Moreover, the generated nested conditions from the Statechart
diagram tend to complicate the B model. Because the only end product that actually matters is
the transformed B model, users prefer to have a simple and quick solution to achieve it.

More clear roles and boundaries should be set between the formal semantics of the Class
diagram and the Statechart diagram. The explanation of the roles and responsibilities of each
part of the diagrams and semantics should be stated succinctly in the documentation, which is
currently lacking in the method (Property: Usefulness of Documentation). It may be better if
some principles and controls can be placed on how a UML-B model should be modeled.
Although it may reduce the flexibility in modeling, it could at least guide the users based on
what should and should not be done. It can also avoid redundancy. This is particularly true
for new users, who often have no idea how to start and pursue the modeling. Furthermore, the
transformation of formal semantics from the Statechart diagram to a B model could be
smoothed further so that no unnecessary complication is introduced to users.

Discussion

The data from the survey suggest that UML-B is appealing to users who opt into B modeling
while yet prefer working with standard development style of UML. This is particularly true
when users are familiar with UML and have the capacity to appreciate what formal notations,
such as B, could offer. The graphical modeling environment alleviates the difficulty of
developing a formal model from scratch by stimulating the formulation of ideas through the use
of visual objects at the abstraction level. On the other hand, users are faced with the challenge
of having to grasp the underlying principles of each unique notation, as well as to understand
how both notations work together to achieve the integration objectives. Each notation’s roles
and functionality at different parts of a model should be understood, which can easily be
achieved only if the distinction between them is clear. Users are also required to learn and
become familiar with the individual tools that accompany each notation, which in general
should provide the necessary support.

Based on the findings, the survey generated the following tentative theories of the
usability of integrated methods that combine semiformal and formal notations. The categories
that contribute to the formulation of the theories are stated in the parentheses.

Usability Evaluation of a UML-Based Formal Method

 39

Theory 1: The integration of semiformal and formal notations requires the
understanding of principles and roles of both notations as well as the rules of the
integration. The principles, roles, and rules ought to be obvious to users
(Categories 3 and 4).

Theory 2: The integration of semiformal and formal notations requires strong
support from the environment. Supporting tools and comprehensive
documentation should be not only available but also useful, easy-to-learn, and
easy-to-use (Categories 1, 2, and 3).

Unlike the other categories, Category 1: Model Structure and Organization is not

explicitly stated in the theories, although it is included. It is indirectly implied in Theory 2
with a similar effect as Category 2: Availability and Usefulness of Supporting Tools. This is
because the incident may depend on the environment by which the method is supported
(Rational Rose). Perhaps only the current environment has the problem of managing scattered
information and multiple windows. As the data are quite limited, more observation is
required on this aspect, particularly within different environments.

In terms of the CD framework, goals for designing integrated methods such as UML-B
were identified. The design goals were proposed based on the nature of semiformal and formal
notations, and the motivation behind the integration. The individual notations (semiformal and
formal) have their own strengths and weaknesses, which are enhanced through the integration
effort. In addition, the design goals were based on the common types of user activity involved
in using such methods. In general, there are two major user activities: exploratory design,
where users implement such methods to create a new model, and modification, where users use
the methods to make changes and enhancements to an existing model.

Table 2 illustrates the recommended CD profile for designing methods that combine
semiformal and formal notations. The profile proposes the desired level for each dimension that
integrated methods and their notations (a combination of semiformal and formal) should aim to
achieve after the integration. The High and Low indicate whether the dimension should be
increased or reduced respectively, when such methods are designed. For example, method
designers are recommended to aim at increasing progressive evaluation and reducing hidden
dependencies. The Moderate indicates that although the dimension is desired at a certain level
(High or Low), it may be traded off to suit more important dimensions or the two user
activities. For instance, secondary notation is very useful for a Modification activity since it
provides users with additional informal information. It thus may be needed (High) to improve
the model comprehensibility, especially for formal (mathematical) models. However,
secondary notation may cause exploratory design activity to be a bit cumbersome, because
users are obliged to provide informal information about the elements in the model in addition to
the official notation. Moreover, the two user activities require a model to be less resistant to
change (low viscosity). By having secondary notation, any alterations to the model can be
difficult because the changes are also required for the additional information. Therefore,
secondary notation may be traded off (Moderate instead of High) for achieving low viscosity
and facilitating the two activities. Diffuseness may need to be traded off (Moderate instead of
Low) for achieving low premature commitment. Premature commitment is one dimension
that designers may aim to reduce because it can be problematic for both exploratory design and

Razali, Snook, Poppleton, & Garratt

40

Table 2. Proposed CD Profile for Designing Integrated Methods of Semiformal and Formal Notations.

Dimension Desired Level

Abstraction gradient Low*

Closeness of mapping High*

Consistency High**

Diffuseness Moderate (instead of Low)*

Error-proneness Low*

Hard mental operations Low*

Hidden dependencies Low

Premature commitment Low*

Progressive evaluation

Provisionality High

Role-expressiveness High*

Secondary notation Moderate (instead of High)

Viscosity Low

Visibility/Juxtaposibility High

Note: High means to increase; Low means to reduce; Moderate suggests a possible
trade-off among dimensions;
*Semiformal notations support formal notations to achieve the desired level (otherwise,
the level will be opposite);
**Formal notations support semiformal notations to achieve the desired level (otherwise,
the level will be opposite).

modification activities. To reduce the need for users to look ahead and make a decision
before sufficient information is available during the activities, the notation may need to be
verbose, or fuller. It is up to method designers to decide the best compromise based on their
methods’ context of use and needs.

There are dimensions that specifically affect a particular notation more than the other. By
integrating the notation with the other notation, it is believed that its usability can be
improved. A single asterisk in Table 2 indicates a dimension that affects formal notations,
which semiformal notations help to reduce the effect. On the other hand, two asterisks denote
a dimension that semiformal notations lack, which formal notations help to overcome. For
example, it is generally known that formal notations such as B syntax involve high, hard
mental operations, which causes comprehension difficulties. The use of intuitive graphical
symbols in semiformal notations with formal notations often reduces the effect. Similarly,
semiformal notations in general lack mechanisms for a systematic progressive evaluation,
which formal notations can normally offer. Without such interplay between the two types of
notations, the integration is not worth the effort. After all, the motivation of such integrated
methods is to allow one notation’s limitations to be compensated by the strengths of the
other. The following paragraphs elaborate how both notations cooperate to achieve the
desired level for dimensions other than those described above.

Abstraction gradient: Formal notations impose abstractions, since users need to define and
group elements into logical entities (High). Moreover, to reduce viscosity, users may need to

Usability Evaluation of a UML-Based Formal Method

 41

introduce abstractions so that any changes required would be easier. Integrating the graphical
symbols of semiformal notations with formal notations may alleviate the effect, since the
grouping of elements becomes more apparent (Low).

Closeness of mapping: The mapping of a problem domain is not quite straightforward using
formal notations, due to the notations’ unfamiliar symbols and underlying rules of
interpretation (Low). The graphical symbols in semiformal notations may however facilitate
the mapping, as they generally resemble objects in the real world (High).

Consistency: The formality in formal notations enforces a consistency that semiformal
notations solely could not assure (Low). Semiformal notations together with formal notations
could enable a consistent graphical formal model to be developed (High).

Diffuseness: The textual aspect of formal notations that is similar to natural language may
cause a description to be fuller. In contrast, the graphical symbols in semiformal notations
could normally carry meanings in simpler forms. The combination of textual and graphical
symbols may enable the description to be short and precise (Low or Moderate).

Error-proneness: The unfamiliar mathematical symbols in formal notations frequently induce
mistakes (High). The accessibility of graphical symbols in semiformal notations may reduce
the tendency of making errors (Low).

Premature commitment: Formal notations normally require users to look ahead in order to
obtain the right abstractions (High). Incorporating the graphical symbols of semiformal
notations into formal notations may reduce the effect, since they permit the visualization of
possible interacting entities (Low).

Role-expressiveness: The roles of mathematical symbols in formal notations are not so
obvious to many users due to their complex interpretation rules (Low). On the other hand, the
graphical symbols in semiformal notations are mainly intuitive. By combining the graphical
symbols together with the mathematical symbols, users may be helped to grasp the roles of
the latter (High).

The remaining dimensions without a single or double asterisk in Table 2 involve factors
other than the notations used. The dimensions are provisionality, hidden dependencies,
secondary notation, viscosity and visibility/juxtaposibility. Based on the findings of the
survey, it is believed that the environment in which the notations reside plays a major role in
achieving the desired levels for these dimensions. This environment includes the structure of
the model and the tools that support the notations. This claim is worth investigating in future.

The tentative theories and the proposed CD profile may not be conclusive, and they
should be validated and refined further in future investigations. However, they can act as the
first step in understanding the nature of integrated methods such as UML-B and provide a
meaningful guide to better design.

Validity

Threats to validity are influences that may limit the ability to draw conclusions from the data.
The following paragraphs discuss some threats of this survey.

Selection of Respondents. The respondents were students in the university where the
research was conducted. Therefore, their answers might have been biased (positively or

Razali, Snook, Poppleton, & Garratt

42

negatively). On the other hand, the respondents were considered the most appropriate
candidates for this study because they have been trained on B and UML-B. This knowledge is
necessary for using UML-B. In fact, the participants also had some experience in using
UML-B and thus were able to contribute more fully to the survey. Moreover, they were
independent users, who had no personal interest with the technologies involved or direct
contact with the research. To reduce the threat, the subjects were advised to give opinions and
comments as sincerely as possible.

Students as Respondents. The respondents of this survey were students. They may have not
represented software developers, since they are less experienced. However, the respondents
were in the final semester of their master’s program and had a reasonable amount of
experience and knowledge of software development. Half of the students had some
professional working experience. Thus they were seen as valid respondents for the survey as
new users with developer’s experience.

Sample Size and Response Rate. The survey questionnaire was distributed to all 14 master’s
students of software engineering at the University of Southampton who registered for the
Critical Systems course in spring 2006. Thirteen students responded to the survey. Due to a
technical problem, only 10 responses were considered for analysis. Although the number was
quite small, a response rate of 70% was considered appropriate for an initial attempt.
Moreover, as a qualitative study, the quality of the data is the focus, rather than strictly the
quantity. Brief identity screening was done on the four students who were not included. No
particular pattern was identified that could have potentially biased the results.

Non-committal Responses. Using an uneven number of levels for the ordinal scale leaves
open the possibility of noncommittal responses, with the medians representing “neither –nor”
or “not sure.” Although such incidents could be seen in the data, they did not happen often
and no pattern was detected in either the questions or by respondents.

Toy Problem. Due to time and resource constraints, the modeling task given to the respondents
was not large and may have not represented real software systems. However, the task was
believed to be sufficient for the respondents to experience modeling using UML-B. In fact, the
task required the respondents to explore most of the functionality provided by the method.

Analysis Process. The grounded theory approach encourages the gathering of further data
after analyzing the first gathered data. In fact, data collection and analysis should be repeated
several times so that more incidents are captured and validated until the theory saturates
(Strauss & Corbin, 1998). Due to time and resources constraints, the data collection and
analysis for the survey were conducted only once, and the findings presented here reflect one
set of data. However, the survey will be repeated in the future.

Nature of Study. Surveys and qualitative measures by their nature are retrospective.
Therefore, there was a risk that the respondents reported based on what they thought they did
rather than what they actually did. Advising the respondents to complete the survey
questionnaire as soon as they completed the modeling task could have reduced this threat,
because the respondents would have had a clearer memory of what they found during the
task. The respondents submitted the questionnaire together with their completed models at
the end of the course.

Usability Evaluation of a UML-Based Formal Method

 43

Heterogeneity of Respondents. The respondents might have different abilities and experiences.
Thus, there was a risk that the results might have been affected by individual differences. As a
qualitative study, the variation however could provide richer data for the analysis.

Familiarity of Respondents. The respondents were taught formally on B for about 9 hours
and on UML-B for 1 hour. They were then required to complete a modeling task using UML-
B within a month period. The results may have been different if the respondents were given
more time and training. The aim of the survey was to capture the experience of using UML-B
from new users’ perspectives. Therefore, the allocated time frame and training were seen as
adequate and realistic for the purpose of this research. The results may also have been
influenced by the respondents’ knowledge of UML obtained from their previous working
experience and studies, which varied considerably.

CONCLUSION

This paper has presented a survey conducted on a method that integrates the use of
semiformal and formal notations, namely UML-B. The survey assessed the usability of the
notation used in the method and its modeling environment by using the CD framework with
several usability criteria suggested by the ISO. The data analysis was conducted using the
grounded theory approach. The findings indicated that the dual characteristics of the method
bring to users several implications, both positive and negative. Combining semiformal and
formal notations allows the potential of individual notation to be strengthened, while each
notation’s limitations can be compensated by the other. However, the integration, in essence,
brings to the designers the loads of two individual notations, which are actually quite
different in many ways. Users therefore need strong support from the environment to lessen
the burden that lies beneath the integration effort. The support involves not only the tools that
aid the modeling process but also resources for learning the method. Based on the findings, we
proposed a usability profile based on CD for designing integrated methods such as UML-B.

Some of the findings of the investigation are now being fed into the next generation of
UML-B development2. The findings of the survey can be improved further by extending the
survey to a large number of users. This will help enhance the current understanding of the
method and discovering other factors that might affect its use. The tentative theories and the
proposed CD profile of integrated methods (combined semiformal and formal notations)
discussed in this paper can also be validated and refined further by applying them to examine
other similar methods. This allows the derivation of more concrete theories and guidelines
that can be used to design and improve the usability of such methods in future.

ENDNOTES

1. Electronics Computer Science (ECS), COMP3011 Critical Systems,
http://www.ecs.soton.ac.uk/syllabus/COMP3011.html
2. EU Framework VI project: Rigorous Open Development Environment for Complex Systems (RODIN)
http://rodin.cs.ncl.ac.uk/

Razali, Snook, Poppleton, & Garratt

44

REFERENCES

Abrial, J. R. (1996). The B-Method: Assigning programs to meanings. Cambridge, UK: Cambridge University Press.

Alexander, P. (1996). Best of both worlds (formal and semi-formal software engineering). IEEE Potentials, 14,
29–32.

Bauer, M., & Johnson-Laird, P. (1993). How diagrams can improve reasoning. Psychological Science, 4, 372–378.

B-Core Limited [B-Core]. (2002). The B-Toolkit. Retrieved April 18, 2008, from http://www.b-
core.com/ONLINEDOC/BToolkit.html

Blackwell, A. F., & Green, T. R. G. (2000). A cognitive dimensions questionnaire optimised for users. In A. F.
Blackwell & E. Bilotta (Eds.), Proceedings of the 12th Workshop of the Psychology of Programming
Interest Group (PPIG ’00; pp. 137–154). Cosenza, Italy: Memoria.

Blackwell, A., & Green. T. (2003). Notational systems: The cognitive dimensions of notations framework. In
J. M. Carroll (Ed.), HCI models, theories and frameworks: Toward a multidisciplinary science (pp. 103–
134). San Francisco: Morgan Kaufmann.

Bonissone, P. (1982). A fuzzy sets based linguistic approach: Theory and application. In M. Gupta &
E. Sanchez (Eds.), Approximate reasoning in decision analysis (pp. 329–339). New York: North-Holland
Publishing Company.

Carew, D., Exton, C., & Buckley, J. (2005). An empirical investigation of the comprehensibility of requirements
specifications. In G. Kadoda (Ed.), Proceedings of the 4th International Symposium on Empirical Software
Engineering (ISESE ’05; pp. 256–266). Noosa Heads, Australia: IEEE Computer Society.

Cassell, C., & Symon, G. (1994). Qualitative methods in organizational research. Thousand Oaks, CA, USA: Sage.

Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British
Journal of Educational Psychology, 62, 233–246.

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM Transactions on Database
Systems, 1, 9–37.

Clarke, S. (2001). Evaluating a new programming language. In G. Kadoda (Ed.), Proceedings of the 13th
Workshop of the Psychology of Programming Interest Group (PPIG ’01; pp. 275–289). Bournemouth, UK:
Bournemouth University.

ClearSy Systems Engineering [ClearSy]. (n.d.). Atelier B, the industrial tool to efficiently deploy the B Method.
Retrieved April 18, 2008, from http://www.atelierb.eu/index_en.html

Cox, K. (2000). Cognitive dimensions of use cases: Feedback from a student questionnaire. In A. F. Blackwell
& E. Bilotta (Eds.), Proceedings of the 12th Workshop of the Psychology of Programming Interest Group
(PPIG ’00; pp. 99–122). Cosenza, Italy: Memoria.

Denzin, N., & Lincoln, Y. (1994). Handbook of qualitative research. Thousand Oaks, CA, USA: Sage.

Glaser, B. (1992). Basics of grounded theory analysis: Emergence vs. forcing. Mill Valley, CA, USA:
Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research.
London, UK: Weidenfeld and Nicolson.

Green, T. R. G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Eds.), People and
computers V (pp. 443–460). Cambridge, UK: Cambridge University Press.

Green, T. R. G., & Blackwell, A. F. (1998, September). Design for usability using cognitive dimensions.
Tutorial session at the British Computer Society Conference on Human Computer Interaction (BCS-HCI
’98). Sheffield, UK.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A cognitive
dimensions framework. Journal of Visual Languages and Computing, 7, 131–174.

Usability Evaluation of a UML-Based Formal Method

 45

Hinchey, M. G. (2002). Confessions of a formal methodist. In P. A. Lindsay (Ed.), Proceedings of the 7th
Australian Workshop on Safety-Related Programmable Systems (SCS ’02; pp. 17–20). Adelaide, Australia:
Australian Computer Society.

IBM Software [IBM]. (n.d.). Rational Rose. Retrieved April 18, 2008, from http://www-
306.ibm.com/software/awdtools/developer/rose/index.html

International Organization for Standardization [ISO]. (2003, July). Software engineering, product quality—Part
3: Internal metrics (Standard No. 9126-3). Geneva, Switzerland: ISO.

International Organization for Standardization [ISO]. (2004, March). Software engineering, product quality—
Part 4: Quality in use metrics (Standards No. 9126-4). Geneva, Switzerland: ISO.

Kitchenham, B. A. & Pfleeger, S. L. (2002). Principles of survey research: Part 3: Constructing a survey
instrument. SIGSOFT Software Engineering Notes, 27(2), 20–24.

Kutar, M., Britton, C., & Barker, T. (2002). A comparison of empirical study and cognitive dimensions analysis
in the evaluation of UML diagrams. In J. Kuljis, L. Baldwin, & R. Scoble (Eds.), Proceedings of the 14th
Workshop of the Psychology of Programming Interest Group (PPIG ’02; pp. 1–14). Brunel, UK: Brunel
University College.

Martin, S. (2003). The best of both worlds integrating UML with Z for software specifications, Journal of
Computing and Control Engineering, 14, 8–11.

Microsoft Corporation [Microsoft]. (2008). Visual C# Developer Center. Retrieved April 18, 2008, from
http://msdn.microsoft.com/vcsharp/

Object Management Group [OMG]. (2008). Introduction to OMG’s unified modeling language (UML).
Retrieved April 18, 2008, from http://www.omg.org/gettingstarted/what_is_uml.htm

Pender, T. (2003). UML Bible. Indianapolis, IN, USA: Wiley.

Razali, R. (2007). UML-B Survey questionnaires and responses. (Electronics and Computer Science, University
of Southampton Tech. Rep., ID code 13322). Retrieved April 18, 2008, from
http://eprints.ecs.soton.ac.uk/13322

Razali, R., Snook, C. F., Poppleton, M. R., Garratt, P. W., & Walters, R. J. (2007). Experimental comparison
of the comprehensibility of a UML-based formal specification versus a textual one. In B. Kitchenham,
P. Brereton, & M. Turner (Eds.), Proceedings of the 11th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’07; pp. 1–11). Keele, UK: British Computer Society.

Snook, C., & Butler, M. (2006). UML-B: Formal modelling and design aided by UML. ACM Transactions on
Software Engineering and Methodology, 15(1), 92–122.

Spivey, J. M. (1992). The Z notation: A reference manual (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.

Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing
grounded theory (2nd ed.). Thousand Oaks, CA, USA: Sage.

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.

Triffitt, E., & Khazaei, B. (2002). A study of usability of Z formalism based on cognitive dimensions. In
J. Kuljis, L. Baldwin, & R. Scoble (Eds.), Proceedings of the 14th Workshop of the Psychology of
Programming Interest Group (PPIG ’02; pp. 15–28). Brunel, UK: Brunel University College.

Tukiainen, M. (2001). Evaluation of the cognitive dimensions questionnaire and some thoughts about the
cognitive dimensions of spreadsheet calculation. In G. Kadoda (Ed.), Proceedings of the 13th Workshop of
the Psychology of Programming Interest Group (PPIG ’01; pp. 291–301). Bournemouth, UK:
Bournemouth University.

van Lamsweerde, A. (2000). Formal specification: A roadmap. In Proceedings of the Conference on the Future
of Software Engineering (pp. 147–159). New York: ACM Press.

Westbrook, L. (1994). Qualitative research methods: A review of major stages, data analysis techniques, and
quality controls. Library and Information Science Research, 16, 241–245.

Razali, Snook, Poppleton, & Garratt

46

Authors’ Note

The authors gratefully acknowledge the COMP3011 (spring 2006) students who participated
in this study.

All correspondence should be addressed to:
Rozilawati Razali or Colin Snook
Dependable Systems and Software Engineering Group (DSSE)
School of Electronics and Computer Science (ECS)
University of Southampton
SO17 1BJ United Kingdom
rr04r@ecs.soton.ac.uk or rozila_razali@yahoo.co.uk or cfs@ecs.soton.ac.uk

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

