
A MATLAB program for PV module
performance analysis based on real outdoor

data stored in a PostgreSQL database

Hanne Kauko

Master’s thesis

Master’s Degree Programme in Renewable Energy

University of Jyväskylä, Department of Physics

Supervisors: Robert Kenny, Joint Research Centre

Jussi Maunuksela, University of Jyväskylä

2.12.2008

Preface

I spent a five-month period, from September 2007 to February 2008, as a

trainee at the Solar Electricity Action (SOLAREC) of the Joint Research

Centre (JRC) in Ispra, Italy. This thesis is a report of the project I con-

ducted there: a MATLAB program for analyzing outdoor measurement data

of photovoltaic (PV) modules stored in a PostgreSQL database. I found this

traineeship extremely useful and highly educational. My experience in any

kind of programming was quite limited upon arrival in Ispra; however, dur-

ing my time there I developed my skills and managed to build up a fairly

functional MATLAB program for diverse data analysis.

I would like to thank Robert Kenny, my supervisor at the JRC, who

often spent several hours helping me solve problems I had – and never ran

out of proposals for improvements to the program. If it is to be believed my

trainee colleagues’ stories about their supervisors, I was very fortunate. I

would also like to acknowledge Thomas Huld (a researcher at the JRC) who

was in charge of the interface that was required between MATLAB and the

database and provided lots of computational support. Furthermore, I want

to thank Zaira Girbau-Garcia (another researcher at the JRC), who followed

on with my work and continued using the program after my period at the

JRC had finished. This made me feel like I actually had created something

useful.

Finally, I would like to acknowledge Jussi Maunuksela, my supervisor at

the University of Jyväskylä. I am very grateful for his continual support in

the writing process of this thesis and his encouragement in all stages of this

process.

i

Abstract

The outdoor measurement field of the European Solar Test In-

stallation (ESTI) at the Joint Research Centre (JRC) in Ispra, Italy,

measures the performance of PV modules under real outdoor condi-

tions over several months and years. This thesis discusses a project

where a PostgreSQL database was introduced for appropriate stor-

age for the vast amount of measurement data generated. To interface

with the database and analyze the data, a MATLAB program was

written. The analysis performed by the program involved primarily

calculation of the daily and monthly energy yields and efficiencies of

different modules, and comparison of these results with predicted re-

sults calculated from the basis of indoor generated models. This was

related to development of an energy rating method at ESTI. In addi-

tion the program compared the performance of different modules. The

results were presented both graphically and numerically in output text

files.

The program has been constructed to be a flexible tool for ana-

lyzing and comparing the performance of different modules, and to

provide valuable information about the accuracy of the energy rat-

ing method. Further developments to the program may include for

instance improvements in its computational efficiency and making it

more user-friendly.

ii

Contents

1 Introduction 1

2 Solar radiation 4

2.1 Energy from the sun . 4

2.2 Solar radiation on the earth’s surface 5

2.2.1 Extraterrestrial radiation 6

2.2.2 Components of the terrestrial radiation 7

2.3 The apparent motion of the sun 12

2.3.1 Seasonal variations in the altitude of the sun at solar

noon . 13

2.3.2 Daily variations in the position of the sun 15

3 The physics behind PV modules 17

3.1 Semiconductor physics . 18

3.1.1 Band structure and band gap energy 19

3.1.2 Doping . 23

3.1.3 The p-n junction . 24

3.2 From p-n junction to PV cells, modules and arrays 27

3.2.1 Electrical properties of a PV cell 27

3.2.2 From cells to modules and arrays 30

3.2.3 Effects of temperature and irradiance on the module

performance . 31

3.2.4 Performance measurements of PV modules 32

3.3 Different PV module technologies 33

3.3.1 Crystalline silicon technologies 33

3.3.2 Thin-film technologies 35

iii

3.3.3 A glance over the past and future of the different tech-

nologies . 37

4 Measurements on PV modules at the ESTI 39

4.1 The European Solar Test Installation (ESTI) 40

4.2 Outdoor measurements . 41

4.2.1 Testing setup . 42

4.2.2 Environmental measurements 44

4.2.3 Monitoring data . 49

4.3 Indoor performance measurements 53

4.3.1 Performance measurements at STC 54

4.3.2 Performance surface measurements 55

4.4 Energy rating . 58

4.4.1 Energy rating methods 58

4.4.2 Evaluating the ESTI energy rating method 59

5 Creating an application for outdoor data analysis 62

5.1 The database system . 62

5.2 Introduction to MATLAB . 64

5.3 Interface between MATLAB and the database 67

5.4 The MATLAB program . 68

6 Results 86

6.1 Comparing measured and predicted energy productions and

efficiencies . 87

6.1.1 C-Si module ju711 . 87

6.1.2 CIS module by71 . 90

6.2 Module comparison . 94

iv

7 Conclusions 102

Appendices 110

A Fields in the Solarec database 110

B The script and functions for analyzing data from ene-files 112

B.1 The main script: ene analysis 112

B.2 The function getdata db ene 121

B.3 The function pyran correction 124

B.4 The function data filter ene 127

C The script and functions for analyzing data from enr-files 131

C.1 The main script: enr analysis 131

C.2 The function getdata db ene 140

C.3 The function data filter enr 142

D Functions utilized by both main scripts 146

D.1 The function noct estim . 146

D.2 The function base matrix . 147

D.3 The function energycalc . 152

D.4 The function plotter . 159

D.5 The function plotter meas only 166

D.6 The function mod comparison 168

D.7 The function data writer . 174

D.8 The function month teller . 185

E Configuration file for empirical data 187

v

1 Introduction

Energy from the sun is by far the largest energy source available on the

earth: the amount of solar energy reaching the surface of the earth annually

(3.9 · 1024 J) is about ten thousand times more than the global primary energy

demand and more than all available energy sources on the earth [1, chapter 1].

Furthermore, it is inexhaustible and clean source of energy, which is essential

in the globally prevailing circumstances: the fossil fuel resources are being

rapidly depleted, population is increasing and environmental problems are

growing ever more serious. One of the most potential and versatile methods

for utilizing this vast energy source is its direct conversion into electrical

energy with photovoltaic (PV) devices.

The first PV cells were produced in 1954 [1, chapter 4], and since then

the technology has been improving, resulting in growth in the efficiency and

reduction of costs. The efficiency of a typical flat-plate PV module, i.e., the

ability of a module to convert solar energy into electrical energy, is still rela-

tively low: in laboratories efficiencies of up to 25% have been reached, but in

commercial use the efficiencies reach only 14-17% [1, chapter 4]. Neverthe-

less, considering the enormous amount of energy coming from the Sun, the

potential of PV technology in electricity production is still remarkable.

Cost has been the biggest barrier for rapid growth of PV markets so far

as the most common material for PV modules is silicon, which is expensive

to produce. On the other hand, market growth tends to bring the costs of a

novel technology down; indeed the PV technology has recently been caught

in a situation where it is not widely produced due to the high costs, and

reduction of the costs is hindered by the low level of production [2]. However,

improvements in both the module technology and the manufacturing process

are continuously decreasing costs [3]. There are also new PV technologies, for

1

instance thin films, with lower manufacuring costs awaiting wider adoption.

While new PV technologies are being developed, a reliable system for

testing the technologies is fundamental. If a module is characterised by

a reliable institution, it increases the credibility of the technology and thus

promotes its acceptance to the markets. Furthermore, testing helps to ensure

that the technologies that are accepted by the markets are superior and

mature [2].

There are several laboratories dedicated to testing PV modules, and one

example is the European Solar Test Installation (ESTI) at the Joint Re-

search Centre (JRC) in Ispra, Italy. At ESTI, a range of measurements are

performed on the modules, both indoors and outdoors. Under development

is also an energy rating method, whose objective is to be able to predict the

output of a module in a certain location by using only ambient temperature

and irradiance data for the location. Energy rating would provide a valuable

tool for ranking different module types and finding the most suitable module

type for certain environmental conditions.

This thesis is related to a project where a data analysis system was cre-

ated for outdoor measurement data of PV modules at ESTI. The system is

comprised of a database that was introduced to provide an adequate storage

for the vast amount of data received from the outdoor measurements, and a

MATLAB program, written by the author, whose purpose was to calculate

module outdoor energy yield and performance using data extracted from the

database. The program was also to be used in testing the energy rating

method of ESTI by comparing the outdoor measured energy yields with the

predicted yields. Furthermore, energy yields of different modules were to be

compared with each other.

The purpose of this thesis is to present the outdoor measurement system

2

at ESTI, the database introduced for the data storage and most significantly

the MATLAB program created for analyzing this data. The MATLAB pro-

gram and the database system as well as the interface required between

these two are discussed in chapter 5, and results obtained with the program

are covered in chapter 6. The ESTI laboratory, the relevant measurements

performed there and also the energy rating method developed at ESTI are

introduced in chapter 4. Finally, chapters 2 and 3 provide the necessary

background information about solar irradiance and the physics behind PV

modules.

3

2 Solar radiation

It is difficult to understand the operation of an electricity production system

based on photovoltaics without basic knowledge of its energy source, the

radiation received from the sun. This chapter provides a brief introduction

on this subject. Firstly, the sun itself is discussed: what it actually is, where

does its energy originate and how can we approximate the amount of its

radiation energy. Thereafter, the effect of the atmosphere on the radiation

is considered in order to be able to estimate the amount of terrestrial solar

radiation. Finally, the seasonal and daily motion of the sun, as we see it from

the surface of the earth, is discussed in order to explain how the output of a

solar collector can be maximized.

2.1 Energy from the sun

The sun is a vast and hot sphere of gas: the temperature in the interior of

the sun is approximated to be around 15 million kelvins, its diameter is 1.4

million kilometers and its mass is 2.0 · 1030 kilograms. Comparatively, for the

earth these figures are 12800 kilometers and 6.0 · 1024 kilograms, respectively.

The sun consists mainly of helium and hydrogen; by mass approximately 80%

is hydrogen and 20% is helium. [4, Chapter 7], [1, Chapter 2]

The energy of the sun emerges from fusion reactions where four hydrogen

nuclei fuse into one helium nucleus in the hot interior of the sun. In this

reaction, the mass of the reactants is more than the mass of the products,

and thus energy is released. The energy moves by radiation and convection to

the the surface of the sun, from which it radiates to the surrounding space. [1,

Chapter 2]

To approximate the sun’s radiation energy it is considered as a blackbody.

4

A blackbody is defined as a perfect emitter and a perfect absorber: it emits

more energy per unit area than any real object, and absorbs all radiation

incident on its surface, without favoring any particular frequencies. The

temperature of a blackbody can be determined from its radiant power. The

total intensity emitted by a blackbody, I (W/m2), at absolute temperature T

(K) is given by an emprirically determined law, Stefan-Boltzmann’s law [5]:

I = σT 4, (1)

where σ is the Stefan-Boltzmann constant (5.67 · 10−8 W/m2 K4). The sur-

face temperature of the Sun is estimated to be 5800 K. [5, Chapter 38], [4,

Chapter 7]

The spectral distribution of a blackbody at a certain temperature is given

by Planck’s law, which was derived after the Stefan-Boltzmann’s law from

the basis of empirical results. The Planck’s law is [5]

I(λ) =
2πhc2

λ5 (exp(hc/λkT) − 1)
(2)

where I(λ) is the spectral emittance, i.e., intensity per wavelength interval,

of a blackbody (W/m3), h is the Planck’s constant (6.626 · 10−34 Js), c is the

speed of light (2.998 · 108 m/s), k is the Boltzmann constant (1.381 · 10−23 J/K)

and λ is the wavelength (m). The spectral distribution of a blackbody at

5800 K approximates very well the actual measured spectrum of the sun, as

figure 1 illustrates. [5, Chapter 38], [4, Chapter 7]

2.2 Solar radiation on the earth’s surface

As the solar radiation reaches the atmosphere of the earth, it is scattered,

reflected and absorbed by atmospheric particles. As a result, only a portion

of the solar radiation outside the earth’s atmosphere, i.e., the extraterrestrial

5

Figure 1: The extraterrestrial spectrum and the spectrum of a blackbody at

5800 K. Image reproduced from [4] (fig. 7.2).

radiation, actually reaches the surface of the earth. This portion, the terres-

trial radiation, varies from less than 50% to 70%, depending on the position

of the sun and the clearness of the sky. In this section the extraterrestrial ra-

diation is first defined, and then the terrestrial radiation, consisting of three

components, is discussed. [4, Chapter 7]

2.2.1 Extraterrestrial radiation

The extraterrestrial radiation is defined as the radiation that passes perpen-

dicularly through an imaginary surface just outside the earth’s atmosphere.

It varies from day to day, depending on the distance between the sun and the

earth. The extraterrestrial radiation, I0 (W/m2), on each day of the year is

6

given by [4]

I0 = SC ·
[
1 + 0.034 cos

(
2π

365
n

)]
, (3)

where SC is the solar constant and n is the day number (starting from

the 1st of January). The solar constant is an estimate of the average an-

nual extraterrestrial radiation, having a generally accepted numerical value

of 1377 W/m2. [4, Chapter 7]

2.2.2 Components of the terrestrial radiation

The total terrestrial solar flux hitting for instance the surface of a solar

collector consists of three components: direct-beam, diffuse and reflected ra-

diation. Direct beam radiation is the radiation that passes in a straight line

through the atmosphere; diffuse radiation is radiation scattered by atmo-

spheric particles or moisture or reflected from clouds; and reflected radiation

is the radiation reflected from surfaces in front of the collector. [4, Chapter 7]

The amount of direct-beam radiation depends on how much attenuation

occurs on its way through the atmosphere. The direct-beam intensity is

defined in a plane perpendicular to the beam, but in the general case the

effective intensity will reduce with increasing angle of incidence (see figure 4).

The amount of attenuation depends primarily on the length of the path the

sun’s rays have travelled through the atmosphere. It is important to note that

the attenuation caused by the atmosphere does not occur for all wavelengths

equally, so the spectral distribution at the earth’s surface is not the same

as that of the extraterrstrial radiation, as it can be seen in figure 3. For

this reason, the spectral distribution will also change during the day and

depending on atmospheric conditions. The total radiation is the integral of

the intensities at all the individual wavelengths. A quantity describing the

path length of the sun’s rays through the atmosphere, and thus the solar

7

spectrum when the sun is at a certain altitude, is called the air mass ratio.

It is the ratio of the length of the actual path taken by the rays h2 and

the minimum path length h1, i.e., the path length when the sun is directly

overhead. The air mass ratio can be expressed as [4]

Air mass ratio m =
h2

h1

=
1

sin β
, (4)

where β is the altitude angle of the sun, ilustrated in figure 2. The air

mass ratio is equal to unity when the sun is directly overhead; that case is

designated as AM1 spectrum. The extraterrestrial spectrum is referred to

as AM0 spectrum. In the field of photovoltaics, AM1.5, i.e., the spectrum

when the altitude angle of the sun is 41.8◦, is often used as an estimate of the

average spectrum on the surface of the earth. The AM0 and AM1.5 spectra

are compared in figure 3. [4, Chapter 7]

Figure 2: The air mass ratio. h1 is the minimum path length for the sun’s

rays through the atmosphere and h2 is the length of the actual path, and β

is the altitude angle of the sun.

Finally, the amount of direct beam radiation can be calculated. It is an

exponential function of the attenuation parameters [4]:

IB = Ae−km, (5)

8

Figure 3: The extraterrestrial spectrum and the terrestrial AM1.5 spectrum.

Image reproduced from [1] (fig. 2.3).

where IB is the direct beam radiation on a surface normal to the rays (W/m2),

A is an ”apparent” extraterrestrial flux (W/m2), k is a dimensioless factor

known as the optical depth, and m is the air mass ratio. The values of A

and k depend on the time of the year, and usually tabulated values are used

for these parameters. When calculating the amount of direct-beam radiation

on an actual surface, the angle of incidence has to be taken into account as

well. As figure 4 shows, the angle of incidence θ is the angle between the

incoming rays and a line normal to the collector. It is a function of the tilt

angle of the collector, and the altitude and azimuth angles of the sun (see

section 2.3). The direct-beam radiation on a tilted collector, IBC (W/m2), is

calculated as follows [4]:

IBC = IB cos(θ). (6)

For the special case of horizontal surface θ = 90◦−β, where β is the altitude

9

angle of the sun. The expression (6) then becomes [4]

IBH = IB cos(90◦ − β) = IB sin(β), (7)

where IBH is the direct-beam radiation on a horizontal surface (W/m2). [4,

Chapter 7]

Figure 4: The angle of incidence θ on a collector tilted with an angle Σ.

The amount of diffuse radiation can be measured with a radiation sensor

simply by blocking out the direct beam radiation with a shading disc of the

apparent size of the sun. It is more difficult to estimate a theorethical value

for the diffuse radiation. Usually the estimates are based on the assumption

that the sky is isotropic, i.e., the diffuse radiation arrives with equal intensity

from all directions no matter where in the sky the sun happens to be, as

figure 5 illustrates. Thus the diffuse radiation on a horizontal surface, IDH

(W/m2), is a simple function of direct-beam radiation [4]:

IDH = CIB (8)

where C is the sky diffuse factor, dependent on the time of the year. Its values

can be either calculated or taken from a table. To calculate the amount of

diffuse radiation on a tilted collector – from the basis of the same assumption

of isotropic sky – one has to consider, how big portion of the sky the collector

”sees”: a horizontal collector sees the whole sky, and a vertical one sees half of

10

it. The diffuse radiation on a tilted collector, IDC (W/m2), is then calculated

as follows [4]:

IDC = IDH
1 + cos(Σ)

2
= CIB

1 + cos(Σ)

2
, (9)

where Σ is the tilt angle of the collector. [4, Chapter 7]

Figure 5: Diffuse radiation on a collector tilted with an angle Σ.

To estimate the amount of the final component, reflected radiation, broad

assumptions are needed again. The simplest models assume a large horizontal

surface in front of the solar collector, having a uniform reflectance ρ and

reflecting the radiation with equal intensity to all directions. The value for

ρ varies from 0.8 for fresh snow to 0.1 for a black, gravel roof. The reflecting

surface obviously reflects all the incident radiation – both direct-beam and

diffuse; thus the total reflected radiation is the sum of these two components

multiplied with ρ. To estimate the amount of reflected radiation hitting

a tilted collector, it again has to be considered how much of the reflected

radiation the collector receives: a horizontal surface clearly receives none of

this radiation, and a vertical surface receives half of it. Using the earlier

expressions (8) and (7), the expression for reflected radiation on a tilted

11

collector, IRC (W/m2), becomes [4]

IRC = ρ(IBH + IDH)
1 − cos(Σ)

2
= ρIB[sin(β) + C]

1 + cos(Σ)

2
. (10)

In some special occasions – for instance when the collector is surrounded by

snow – the reflected radiation can boost the collector’s performance signifi-

cantly. In most cases, however, its portion is so small it can be completely

neglected.[Chapter 7] [4]

To summarize, the total incident radiation on a solar collector tilted with

an angle Σ is the sum of these three components: direct-beam, diffuse and

reflected radiation (IBC , IDC and IRC , respectively). When calculating ra-

diation on a collector in an arbitrary location, all of them have to be taken

into account.

2.3 The apparent motion of the sun

Resulting from the motion of the earth around the sun and its own axis, the

position of the sun in the sky varies both daily and annually, as seen from

the perspective of any point on the earth’s surface. As figure 6 illustrates,

the earth travels in space on an elliptical orbit around the sun, with its axis

tilted – which furthemore causes the seasonal variations in the sun’s path

across the sky. Simultaneously the earth makes 24-hour full circles around

its axis1, causing the sun to rise and set every day. The apparent motion of

the sun complicates the work of people in the field solar energy, as maximizing

the energy production from a solar collector would require at least partial

tracking of the sun. To get familiar with the subject, this section introduces

first the seasonal variation of the altitude angle of the sun at solar noon, and

then the daily variations in the sun’s position.

1Actually, due to its elliptical orbit around the sun, the earth has to rotate 360, 99◦

around its axis each day in order to stay synchronized [4, chapter 7].

12

Figure 6: The earth’s elliptical path around the sun. The site of the earth

at solstices and equinoxes, as well as the solar declination δ at both solstices

are also indicated.

2.3.1 Seasonal variations in the altitude of the sun at solar noon

Solar noon at any location is the time of the day when the sun is at its highest

point. At that time sun shines (in the Northern Hemisphere) directly from

south, i.e., the sun is directly above the local meridian. The altitude angle

of the sun at solar noon relative to the local horizontal depends on the solar

declination at the time of the year and the latitude of the site. [4, Chapter 7]

Solar declination is defined as the angle between the plane of the equator

and a line drawn from the centre of the sun to the centre of the earth (see

figure 6). The earth’s axis is tilted with an angle of 23.45◦ – thus the solar

declination varies between the extremes of ±23.45◦ as the earth revolves

around the sun. As illustrated in figure 6, the positive extreme is reached

at summer solstice (approximately June 21) and the negative one at winter

solstice (approximately December 21). At the equinoxes the solar declination

is zero. Assuming the vernal equinox to be on day n = 81 (May 20), the

13

value for solar declination on the nth day of the year can be estimated with

a simple sinusoidal relationship [4]:

δ = 23.45◦ sin

[
360◦

365
(n − 81)

]
. (11)

The altitude angle of the sun at solar noon, βN , can now be determined using

the solar declination. According to figure 7, βN at a latitude L is [4]

βN = 90◦ − L + δ. (12)

Figure 7: The altitude angle of the sun at solar noon, βN , at latitude L and

with solar declination δ.

Knowing these angles it is easy to estimate the best possible tilt angle

for a solar collector – also the angle between the collector and the local

horizontal. Firstly, facing the collector towards equator (due south in the

Northern Hemisphere) is a good starting point, as the sun always reaches

14

its highest point in the south of each location (in the north in the Southern

Hemisphere). A suitable tilt angle would then be the angle at which the

collector would be perpendicular to the sun’s rays at solar noon. At equinoxes

the solar declination is zero, thus tilting the collector so that it is parallel to

the earth’s rotation axis (see figure 7), i.e., tilting the collector with an angle

equal to the latitude of the location, would be reasonable, at least around the

equinoxes. This is indeed a good angle to start with; though in the summer

a bit smaller, and in the winter slightly bigger angles are more optimal. [4,

Chapter 7]

2.3.2 Daily variations in the position of the sun

The position of the sun on an arbitrary day, at an arbitrary moment and

at an arbitrary location is described with two angles, azimuth angle φ and

altitude angle β, illustrated in figure 8. The azimuth angle is measured

respective to the solar noon, and its values are by convention positive before

noon, when the sun shines from the east, and negative after noon, when the

sun shines from the west (see figure 8). The altitude and azimuth angles can

be calculated using the following equations [4]:

sin β = cos L cos δ cos H + sin L sin δ (13)

sin φ =
cos δ sin H

cos β
, (14)

where H is the hour angle, that is the angle that the sun has to rotate before

it is directly over the local meridian. The values for the hour angle are also

positive in the morning, before the sun has crossed the local meridian, and

negative in the afternoon. The earth rotates 360◦ in 24 hours, i.e., 15◦ per

hour; thus the values for the hour angle are +15◦ at 11.00 a.m. and −15◦ at

1.00 p.m. etc. [4, Chapter 7]

15

Figure 8: The altitude and azimuth angles of the sun, β and φ, respectively.

O stands for observer.

A solar collector can be either fixed, or it can track the sun partially or en-

tirely: it can be rotated either on one or two axes along the motion of the sun.

Tracking increases the energy production of a solar collector significantly, but

on the other hand a tracking system is complicated and expensive to install

and maintain. Furthermore, electricity is required to run the trackers, which

reduces the overall energy production of the system. In the case of flat-plate

solar collectors, tracking has shown to have significant economical benefits

only in large systems, in regions with high (especially high direct beam) an-

nual radiation. For concentrating solar systems, however, the situation is

quite specific – for those systems tracking is necessary. [1, Chapter 2]

16

3 The physics behind PV modules

Fundamentally, the operation of photovoltaic (PV) cells is based on the pho-

toelectric effect. The photoelectric effect is the emission of electrons from

the surface of a material (usually a metal) when light strikes the surface, and

it was first discovered in 1887 by Heinrich Hertz. A correct explanation for

the effect was not found until in 1905, when Albert Einstein postulated that

light consists of quanta of light, called photons, and a photon with enough

energy can give an electron energy sufficient to escape from the potential

field of its nucleus. The number of escaped electrons depends on the number

of photons, i.e., the intensity of light, and energy of the electrons depends

on the energy of the photons. [5, Chapter 38]

To exploit the photoelectric effect for electricity production we need a

voltage difference to drive the liberated electrons – and this is where solid-

state technology enters the picture. The means for moving the mobile elec-

trons in the desired manner are provided by a p-n junction diode, that consists

of two types of semiconductors. Therefore, the first actual photovoltaic solar

cell was not built until in 1954 [1, Chapter 4], when the required solid-state

technology was available.

In this chapter the discussion starts from the properties of semiconduc-

tors, from the basis of which we can determine the maximum possible amount

of the sun’s energy that can be captured by a certain semiconductor. There-

after the p-n junction is explained, and from the p-n junction we proceed to

PV cells and further to PV modules and arrays. Some attention is also paid

to the impacts of temperature and irradiance on the performance of a PV

module. The performance measurement of a PV module is then discussed, as

in this thesis the measurements on PV modules are in the spotlight. Finally,

some of the various PV module technologies are introduced.

17

3.1 Semiconductor physics

Semiconductors are characterized by their conductivity properties, that lie

between those of conductors and insulators. The most common semiconduc-

tor is silicon, that is a group IV element in the periodic table of elements (see

figure 9). This means that it has four electrons in its outermost shell, i.e., it

has four valence electrons, which determines its electrical properties. Another

common semiconductor is germanium, that is also a group IV element. Com-

pounds of elements for instance from groups III and V (gallium and arsenic),

II and VI (cadmium and tellurium) and even I, III and VI (copper, inidium

and selenide) are also used to produce semiconductors. Here semiconductor

properties are discussed using the example of silicon. [4, Chapter 8]

Figure 9: The periodic table of the elements. Semiconductors, and elements

used as compounds to produce semiconductors, are highlighted with green.

Image reproduced from [6].

18

In pure silicon crystal, the four valence electrons of a silicon atom are

tied with strong covalent bonds to four adjacent silicon atoms. Therefore at

zero temperature silicon is a perfect insulator: there are no free electrons to

carry currents as there are in metals, but all the electrons are tied to their

nuclei. As the temperature increases, some electrons gain enough energy to

escape from the potential field of their nuclei and thus the conductivity of

silicon increases. The conductivity properties of different materials can be

described in terms of allowed energy levels and forbidden gaps between them;

this subject is covered in section 3.1.1. [4, Chapter 8], [5, Chapter 42]

Semiconductors are very sensitive to impurities. This property can be

exploited in changing their conductivity in a more favorable direction by

adding suitable impurities, which is called doping. Semiconductors can be

doped so that there is excess or shortage of electrons, to make n- or p-type

semiconductors, respectively. When p- and n-type material are brought into

contact, a p-n junction is formed. This junction has many favorable prop-

erties and is used widely in electronics, including photovoltaics. Doping and

the p-n junction are discussed in more detail in sections 3.1.2 and 3.1.3. [4,

Chapter 8], [5, Chapter 42]

3.1.1 Band structure and band gap energy

According to quantum mechanics, electrons in atoms have well-defined pos-

sible, discrete energy levels. As several atoms are brought into contact these

levels spread out into so called bands. Depending on the distance of the

atoms and the bonds between them, there might be bands of forbidden en-

ergy called band gaps between the atoms, or the bands may overlap, forming

a continuum of allowed energy states in the material. The characteristics

of insulators, conductors and semiconductors depend on their band struc-

19

ture. [7]

The bands of interest are the valence band, that is the highest completely

filled band, and the conduction band. In the valence band all the energy

states are occupied and hence its electrons are immobile, whereas in the

conduction band there are plenty of unoccupied states for electrons to move

in response to an applied electric field. To get to the conduction band,

however, an electron has to jump over a gap – the forbidden band between

the valence and conduction bands. Hence the conductivity properties of a

material are dependent on the size of this gap, called the band gap energy.

In conductors the valence and conduction bands overlap; thus there is lots

of mobile electrons to carry a current already at lower temperatures. In

insulators, the band gap energy at room temperature can be 5 eV or more,

and in semiconductors it is around 1 eV (at room temperature). For instance

silicon has a band gap energy of 1.12 eV. [5, Chapter 42]

In semiconductors not only the electrons in the conduction band can move

and carry currents, but also the vacancies they leave to the valence band,

called holes. When an electron is excited to the conduction band, a vacant

energy state, a hole, is generated to the valence band. Another electron can

move into this hole, and further a third electron may move to the vacant

state of the previous electron and so on. This apparent motion of holes in

the valence band contributes to the current like the motion of electrons in

the conduction band. When an electric field is applied, the holes in the

valence band move to opposite direction with respect to the electrons in the

conduction band, although the moving charge carriers are actually electrons

in both bands. This feature, observed in pure semiconductors, is known as

intrinsic conductivity. [4, Chapter 8], [5, Chapter 42]

Then it must be considered how an electron can obtain the required en-

20

ergy to jump to the conduction band. Thermally is obviously one way, but in

photovoltaics the energy is received from the photons of solar radiation. To

excite an electron for instance in a silicon crystal, a photon with an energy of

1.12 eV is required. The energy of a photon is related to its frequency with

the following expression [4]:

E = hν = h
c

λ
, (15)

where h is the Planck’s constant (6.626 · 10−34 Js), ν is the photon’s frequency

(Hz), λ is its wavelength (m) and c is the speed of light (2.998 · 108 m/s). The

speed of light is related to the frequency and wavelength with the expression

c = νλ. [4, Chapter 8]

Using equation 15 it can be calculated that in silicon photons with wave-

lengths shorter than 1.11 µm are able to excite an electron to the conduction

band. Photons with wavelengths longer than 1.11 µm cannot do this, but

their energy is wasted as heat. On the other hand, as only the exact amount of

1.12 eV is utilized by the excited electron, photons with wavelengths shorter

than the limit have excess energy that also heats the cell. This means that

in the case of silicon 20.2% of the sun’s energy is wasted due to photons with

too long, and 30.2% due to photons with too short wavelengths, giving a

theorethical upper limit of 49.6% for the efficiency of a single junction sili-

con solar cell (see figure 10). In real silicon solar cells, however, the highest

efficiencies that have been obtained in laboratories are in the order of 25%.

The remaining 20% is lost due to various reasons, such as [4, Chapter 8]:

• some of the photons are reflected from the surface of the cell and some

pass right through the cell

• part of the generated electron-hole pairs are recombined before they

contribute to the current

21

• the cell has some internal resistance.

Figure 10: The solar spectrum at AM1.5. Indicated are the portion of the

sun’s energy that can be exploited by a silicon solar cell (dark area), and

the portions of energy wasted for photons with excess energy (sparse stripes)

and for photons with shortage of energy (dense stripes). Image reproduced

from [4] (fig. 8.10).

Obviously, it is the size of the band gap of the material used that deter-

mines the theorethical upper limit for the efficiency of a solar cell. With lower

band gap energy, there are more photons with the ability to excite electrons

to the conduction band, resulting in a higher current; on the other hand,

there are also more photons with excess energy that is wasted as heat. With

higher band gap energy in turn, less electrons are excited, but the electrons

have more energy and there are also less photons with excess energy to be

dissipated. Thus, a smaller band gap yields more current and less voltage,

and a higher band gap gives the opposite. The optimum band gap, that re-

sults in the highest possible power and efficiency, is estimated to be between

22

1.2 eV and 1.8 eV [4, Chapter 8] – the band gap of silicon is thus slightly too

small. When new photovoltaic materials are developed, the size of the band

gap is one of the primary concerns, as it will be seen in section 3.3.

3.1.2 Doping

As it was explained earlier, semiconductors are doped to improve their con-

ductivity and to get the required ingredients for the p-n junction: the p- and

n-type semiconductors. N-type silicon is produced by introducing a small

portion of some group V element, typically phosphorus, into the silicon crys-

tal. Typically a ratio of approximately one phosphorus atom per 1000 silicon

atoms is used – already this is sufficient to change the conductivity proper-

ties of silicon significantly. A phosphorus atom takes place of a silicon atom

in the crystal lattice, and out of the five valence electrons of phosphorus,

four are tied with covalent bonds to the adjacent silicon atoms. The fifth

electron, however, is very loosely bound, and requires very little energy to

be excited to the conduction band; at room temperature the fifth electron is

most probably found in the conduction band. What the fifth electron then

leaves behind is a +15e phosphorus nucleus surrounded by 14 electrons, i.e.,

an ion with a net charge of +e. This ion is fixed in the crystal lattice – hence

there is a fixed net positive charge and a free electron towards each ion. As

group V elements donate electrons, they are called donors. This type of semi-

conductor is called an n-type semiconductor because of the mobile negative

charge carriers. [4, Chapter 8], [5, Chapter 42]

To produce p-type semiconductor, group III elements are introduced to

the semiconductor. Silicon is typically doped with boron, with approximate

concentrations of one boron atom per ten million silicon atoms. Again, each

boron atom substitutes a silicon atom in the silicon crystal, and is surrounded

23

by four silicon atoms. Boron has three valence electrons that are all bound

to the adjacent silicon atoms, but now an extra hole, a vacant energy state, is

left next to the boron atom. This hole is easily filled by electrons from nearby

atoms, and can therefore be thought as a mobile positive charge. As the hole

is filled, the boron atom having a +5e charge in its nucleus is surrounded with

alltogether six electrons – thus a fixed ion with net charge of −e is formed. As

boron atoms accept electrons, they are called acceptors. A semiconductor

doped with an acceptor is called p-type semiconductor because of its free

positive charge carriers. [4, Chapter 8], [5, Chapter 42]

It is important to remember that despite their names, p- and n-type

semiconductors are electrically neutral. The names merely refer to the type

of majority charge carriers in these materials – electrons in n-type and holes

in p-type semiconductors.

3.1.3 The p-n junction

When p- and n-type semiconductors are brought into contact, in the vicinity

of the junction electrons from the n-side diffuse to the p-side and combine

with the holes there. Doing so, electrons create immobile negative ions to

the p-side and leave immobile positive ions behind in the n-side. This gives

rise to an electric field that is directed from n-side to p-side and thus op-

poses the diffusion of electrons. Finally an equilibrium is obtained, and no

diffusion of electrons occurs any more. Consequently, the p-n junction diode

is divided into two regions: a depletion region and the quasi-neutral regions.

As illustrated in figure 11, depletion region encompasses the region in the

immediate vicinity of the junction, which is – due to the diffusion described

above – depleted from charge carriers. Quasi-neutral regions in turn cover

the regions ”far” from the junction on both sides. In these regions the space

24

charge density is assumed zero (hence the name quasi-neutral region) since no

electrons have diffused from or to these regions to create positive or negative

ions. [7, 8]

Figure 11: The p-n junction.

What is created by bringing together p- and n-type materials as described

above is called a p-n junction diode2. The current-voltage characteristics of

a diode are given by the Shockley diode equation [4]

Id = Is(e
qVd/kT − 1), (16)

where Id is the current in the diode (A), Is is a small reverse saturation cur-

rent (A), q is the electron charge (1.602 · 10−19 C), Vd is the voltage across the

terminals of the diode (V), k is the Boltzmann constant (1.381 · 10−23 J/K),

2In practice the p- and n-type materials cannot be coupled just by sticking them to-

gether, but usually the junction is produced by depositing some n-type material on the

surface of a p-type material [5, Chapter 42].

25

and T is the junction temperature (K). The current-voltage relationship of

a diode is displayed in figure 12. [4, Chapter 8]

Figure 12: The current-voltage relationship of a p-n junction diode according

to the Shockley diode equation (16). When the voltage is negative (reverse

bias), the current tends to the saturation current, and when the voltage is

positive (forward bias), the current increases rapidly.

When the voltage Vd applied across the diode is positive, i.e., the applied

electric field is directed from p-side to n-side, the diode is said to be forward

biased. In this case the electric field of the depletion region is attenuated and

therefore current flows readily across the junction: holes flow from p-side to

n-side, and electrons do vice versa. The equivalent circuit for a forward-

biased diode is shown in figure 3.1.3. When Vd is negative, the diode is

reverse biased, and the electric field of the depletion region is strengthened.

This field attempts to push electrons from p-side to n-side, and holes from

n-side to p-side. There are, however, very few free electrons in the p-side and

free holes in the n-side, and thus only the small saturation current will flow

across the diode. The saturation current results from diffusion of so-called

26

minority charge-carriers, which stand for holes in the n-side and electrons in

the p-side. [5, Chapter 42]

Figure 13: The equivalent circuit for a p-n junction diode in forward bias.

Both the official symbol (on the right) and a schematic figure of the diode

are shown.

3.2 From p-n junction to PV cells, modules and arrays

3.2.1 Electrical properties of a PV cell

When the p-n diode is exposed to light, electron-hole pairs are generated in

silicon atoms in both sides of the diode, i.e., electrons are excited from the

valence band to the conduction band, leaving holes behind. If the pairs are

generated in or reach the vicinity of the junction, they are exposed to the

electric field of the depletion region, and electrons are pulled into the n-side

and holes into p-side. As the charges cumulate on both sides of the diode, a

voltage is generated to carry a current. If the different sides of the junction

are electrically connected, electrons will flow from the n-side to the p-side,

where they recombine with holes. [4, Chapter 8]

The electrical properties of a solar cell formed like this can be thought as

27

those of a p-n junction diode in parallel with a current source, that delivers

current proportionally to the incident solar flux. The equivalent circuit for

a solar cell is shown in figure 14. To determine the current-voltage char-

acteristics of a solar cell it is first necessary to introduce two parameters

important in photovoltaics: short-circuit current ISC and open-circuit volt-

age VOC . Short-circuit current is the current delivered when the leads are

shorted together. In this situation the voltage across the diode is zero, and

thus no current flows through the diode but all the current flows through the

shorted leads. Ideally, the short-circuit current is equal to the light-generated

current. The open-circuit voltage in turn is the voltage when the leads are

not connected, and in this situation the current is clearly zero. [4, Chapter 8]

Figure 14: A simple equivalent circuit for a solar cell.

Hence, the actual current in a solar cell is the ideal current, i.e. the

short-circuit current ISC (A), minus the current that flows through the diode,

Id (A) [4]:

I = ISC − Id. (17)

To get the relation of current and voltage in a PV cell we substitute the

28

Shockley diode equation (16) to the equation (17) above. This yields [4]

I = ISC − I0(e
qVd/kT − 1), (18)

which is just the diode equation reduced from the ISC . Hence the graph

for current-voltage characteristics of a solar cell, shown in figure 15, is as

the graph for diode but inverted by convention and shifted up by ISC . The

open-circuit voltage VOC is acquired from the equation (18) by setting the

current to zero, which yields [4]

VOC =
kT

q
ln

(
ISC

I0

+ 1

)
. (19)

Figure 15: The current-voltage relationship of a solar cell (I − V curve)

accompained by power as a function of voltage.

In figure 15 also indicated are the power as a function of voltage (calcu-

lated as a product of current (equation (18)) and voltage), and the maximum

power point current and voltage (Impp (A) and Vmpp (V)). Impp and Vmpp are

29

the current and voltage combination that produces the maximum power. The

maximum power point for the I −V curve can be found using the maximum

point of the power curve, or by fitting the largest area rectangle under the

I − V curve. The maximum power Pmax (W) is calculated as a product of

Impp and Vmpp [7]:

Pmax = ImppVmpp. (20)

A parameter widely used in describing the performance of a PV module is its

maximum power at Standard Test Conditions (STC, i.e., irradiance level of

1000 W/m2, module temperature of 25 ◦C and AM1.5G spectral irradiance

distribution). Another parameter describing the module performance is the

fill factor (FF), which is the ratio of Pmax and the product of ISC and VOC [7]:

FF =
Pmax

ISCVOC

=
ImppVmpp

ISCVOC

. (21)

Thus the fill factor is the ratio of the areas of two different rectangles, and

describes how ”rectangular” the I − V curve is. Furthermore, the efficiency

of a solar cell cell is defined as [7]

η =
Pmax

Pin

, (22)

where Pin is the power of the light incident on the cell (W). [4, Chapter 8]

3.2.2 From cells to modules and arrays

As the voltage output of one PV cell is only about 0.5 V, several cells are

coupled in series in order to increase the ouput. An assembly of a number

of cells coupled (typically 36) and encapsulated in an appropriate package is

called a solar or PV module, that is the basic element for photovoltaic elec-

tricity production. The voltage output of a module is a sum of the voltages

of its cells connected in series. To increase the current, cells are connected in

30

parallel, and similarly the current output of a module is a sum of the currents

of the idividual cells connected in parallel. In the I − V curve of a module

with a number of cells connected in series and parallel the curves of individ-

ual cells simply add up along the voltage and current axes, respectively. [4,

Chapter 8]

To increase the output even more for a larger-scale electricity production

system, several modules are connected in series and parallel to form a PV

array. Again, connecting modules in series increases the voltage and connect-

ing them in parallel increases the current, and the system design determines

the most suitable combination. [4, Chapter 8]

3.2.3 Effects of temperature and irradiance on the module per-

formance

The output of a module is obviously directly proportional to the incident

irradiance; a high module temperature in turn impacts negatively on the

performance of a module. Roughly speaking, the module current is depen-

dent on the incident irradiance and independent on the module temperature,

and for the module voltage the situation is reversed. The higher the inten-

sity of radiation incident on a solar module, the more there are photons to

excite electrons in the semiconductor and hence the higher is the current; the

short circuit current is almost directly proportional to the incident irradiance.

However, as may be seen from equation (19), the open circuit voltage has

a logarithmic dependence on the ISC and thus also on the irradiance. Thus

the voltage increases only slightly with increasing irradiance. [4, Chapter 8]

When the module temperature increases, the reverse saturation current

across the p-n junction increases and the band gap energy decreases. This

results in a decrease in the module voltage: for crystalline silicon solar cells,

31

for an increase of one degree celsius in module temperature the VOC drops

by about 0.37%. On the other hand, due to the smaller band gap there are

more electrons exicted to the conduction band, and thus the module cur-

rent increases slightly: ISC increases approximately 0.05% per degree celsius.

Consequently the maximum power output drops by about 0.5% per degree

increase in temperature. Significantly, not only the ambient temperature

affects the module temperature but also the incident irradiance: as was ex-

plained in section 3.1.1, a remarkable portion of the incident irradiance is

wasted as heat. [4, Chapter 8], [1, Chapter 4]

3.2.4 Performance measurements of PV modules

Performance measurement of a photovoltaic solar module is ”the measure-

ment of the current-voltage relation, acquired at a known irradiance, temper-

ature and spectral content” [9]. In other words, it means measuring the I−V

curve. As the module is illuminated, either indoors with a solar simulator or

outdoors under real sunlight, it produces a certain current at a certain volt-

age, and to acquire all the points along the I − V curve, we need to adjust

the load in the circuit in order to vary the current in the range from ISC to

zero. This can be executed using either passive or active load.

Performance measurement passively load means increasing the load in the

circuit using typically a resistive load. Alternatively, a capacitive or diode

load can be used. According to Ohm’s law V = IR; thus by inreasing the

resistance we increase the voltage and move along the I − V curve. The

major drawback in this measurement method is its slowness: it requires a

long period of constant irradiance and temperature conditions, which can be

hard to obtain, as it will be seen in section 4. [9]

Measuring the I−V curve with an active load means varying the current

32

by applying a voltage ramp across the module. A voltage ramp stands for a

varying reverse voltage that increases more or less uniformly from 0 V to VOC .

Unlike in the case of a passive load, using an active load the performance

measurement can be executed very fast (in the order of below a millisecond),

which is desirable especially in indoor performance measurements with flash

simulators (see section 4.3). [9]

3.3 Different PV module technologies

There is a wide range of different photovoltaic technologies, and they are cat-

egorized in many different ways. The major categorization is done according

to the thickness of the layer of the photovoltaic material used. In conven-

tional crystalline silicon (c-Si) solar cells, the layer is relatively thick – in the

order of 200−500 µm. Another approach, referred to as thin-film technology,

uses layers of only 1 − 10 µm of the photovoltaic material. As the thin-film

modules recquire much less of the semiconductor material, and their manu-

facturing process is also much less energy intensive, they ought to be cheaper

to produce than the conventional c-Si modules. However, the efficiencies of

thin-film modules have so far been lower than those of the conventional ones,

and also their life-times have not been demonstrated. Nevertheless, thin-film

technology has been improving a lot making it a more and more tempting

option to replace the conventional technology. [4, Chapter 8]

3.3.1 Crystalline silicon technologies

The basis of a conventional thick c-Si cell is a wafer made of either single-

or multi-crystalline silicon. The major drawback in this technology is the

costly manufacturing process. Though silicon is one of the most abundant

elements on the earth, in nature it never excists as pure silicon but as SiO2

33

based minerals. The process for purifying the silicon is very energy-intensive,

and so are the processes for producing the single- or multi-crystalline silicon

crystal from the purified silicon. To produce single-crystalline silicon, an

ingot composed of a single silicon crystal is formed by growing it from a

purified silicon melt using a ”seed crystal” (the Czochralski process). To

produce multi-crystalline silicon, the silicon melt is cast into large crucibles.

This process is less energy-intensive than the Czochralski process, and it is

currently the most common method. An alternative approach is to grow a

silicon ribbon from molten silicon. To make wafers, the ingot and the crucible

need to be sawed into thin slices, which wastes a lot of silicon as saw dust

called kerf ; the ribbon on the other hand can be directly cut into rectangular

cells, and the kerf losses are avoided. [4, 3, Chapter 8]

Once the wafers have been produced, they are doped to form the p-n

junction. The dopants are usually added to the wafers in gaseous form.

Furthermore, some surface treatment is required for the cells to minimize

reflectance and maximize absorption of light. Finally, the electrical contacts

are attached to the cells and the individual cells are wired together, and the

whole assembly is encapsulated into an appropriate package. [4, Chapter 8]

The c-Si solar cells have reached the highest efficiencies among single-

junction solar cells so far (see following section). The theorethical upper

limit for the efficiency is almost 50%, and efficiencies of almost 25% have

been reached in laboratories, as it was already mentioned in section 3.1.1. For

modules in production, efficiencies of 14-17% have been reached. [4, Chap-

ter 8]

34

3.3.2 Thin-film technologies

The manufacturing process of thin-film modules is quite different from that

of the c-Si ones. Instead of making separate wafers, the semiconductor mate-

rials used in thin-film photovoltaics are deposited in gaseous form onto glass

or metal substrates. The whole module is made in one time: To the glass

superstrate first a transparent conductor and long metal bars that connect

the adjacent cells are attached. Subsequently the different semiconductor

layers are deposited in gaseous form, and finally the bottom conductor is at-

tached. The straightforward manufacturing process makes thin-film modules

especially suitable for mass production, which naturally brings their costs

down. [4, Chapter 8]

As the layer of the photovoltaic material is very thin in thin-film modules,

less photons are absorbed, and part of the light passes right through. This

results in smaller efficiencies as compared to c-Si modules, but also opens

up new opportunities. First of all, the semitransparent photovoltaic mate-

rial can be deposited on glass to make windows that also produce electricity.

Secondly, thin-film materials can be used to produce highly efficient multiple

junction solar cells, where two or more junctions with different bandgaps are

stacked on top of each other. The multijunction solar cells are constructed so

that the uppermost layer exploits the shortest wavelengths (highest-energy

photons) and the lowermost exploits the longest wavelengths. This is done

by choosing semiconductor materials with higher band gaps to the upper-

most layer, and materials with lower band gaps into the subsequent layers in

descending order. [4, Chapter 8]

Most of the thin-film modules are currently made of amorphous silicon (a-

Si), but also different compounds are used: Gallium Arsenide (GaAs), Cad-

mium Telluride (CdTe) and Copper Inidium Diselenide (CIS). Amorphous

35

silicon, that is silicon with very little order in the atomic arrangement, has

the advantage of the good availability of silicon. It is also very suitable for

production of multijunction modules. However, the problem with a-Si mod-

ules is that their performance degrades significantly during the first months

of operation: commercial modules have stabilized efficiencies of only 5-8%,

though in laboratories stabilized efficiencies of 13% have been reached. The

advantage of GaAs and CdTe is their close-to optimal band gaps (see sec-

tion 3.1.1), 1.43 eV for GaAs and 1.44 eV for CdTe, resulting in relatively

high efficiencies (see table 1). But these materials are not trouble-free either:

gallium is a rarer element than silicon, which lifts its costs, and cadmium in

turn is highly toxic, which causes safety problems in both manufacturing and

usage of CdTe modules. The highest efficiencies so far among single-junction

thin-films at both laboratories and industrial scale have been reached with

CIS cells and modules [10]. Furthermore, the homogenous and opaque ap-

pearance of CIS modules renders them especially suitable for building inte-

gration of PV modules, which offers new opportunities for popularization of

photovoltaics [10]. [4, Chapter 8]

The multijunction technology is also promising, and very high efficien-

cies have been reached with it. With multijunction GaAs-GaInP (Gallium

Inidium Phosphorus) solar cells, 29.5% efficiencies have been reached and

these cells are used in space applications and for concentrator PV. For mul-

tijunction a-Si, the theorethical upper limit for the efficiency is 42% and for

modules in laboratories stabilized efficiencies of 11% have been reached. [4,

Chapter 8]

36

Table 1: Different efficiency values for different module technologies. MJ

refers to multijunction. The values are received from [4].

c-Si a-Si GaAs CdTe CIS MJ GaAs MJ a-Si

Theorethical 49.6% 28% 29% 42%

Laboratory 25% 13% 20% 16% 20% 29.5% 11%

Commercial 14-17% 5-8% 9% 8-10%

3.3.3 A glance over the past and future of the different technolo-

gies

In the infancy of the terrestrial photovoltaic industry in 1970s, c-Si modules

were extremely expensive. That time there was lots of discussion about a

new technology, probably thin-film, that would overcome the costly c-Si in

near future. Now, 30 years later, c-Si is still dominating the markets with

more than 90% share. Why? [3]

The costs of c-Si modules have been progressively reducing at a rate of

20% per every doubling in the cumulative production [3]. This has been a

result of many different factors: Firstly, the efficiency of c-Si modules has

been increasing, which naturally improves their profitability. Secondly, the

wafer thickness has been decreasing, which has lead into cost reductions as

less material is required. Furthermore, the manufacturing process of c-Si

modules has developed, which encompasses for instance improvements in the

sawing technology and automation of the process, making the production

more economic. [3]

With the continuously decreasing prices and increasing production of c-Si

modules, it is hard for a new technology to penetrate to the markets. The

competing technology should have immediately high efficiency, long module

37

life-time and ability to rapidly scale up the production – a hard goal to reach

for a technology in pilot stage. However, there is still an opportunity for thin-

films and other promising technologies. The ongoing reduction in the prices

of c-Si modules will probably reach its limit within 10 years – it has already

slowed down due to the current silicon shortage. Furthermore, as discussed in

previous section, the thin-film technologies have some tempting opportunities

to offer, including for instance the multijunction technology and a better

ability for building integration, which improves their competitiveness. [3]

38

4 Measurements on PV modules at the ESTI

It is essential to thouroughly study all new module technologies being devel-

oped. Above all, the performance of the modules has to be studied under

wide range of different conditions. Other properties to be tested before the

modules can be introduced to markets are for instance their lifetime and

long-term behaviour, as well as their mechanical endurance.

There are several laboratories dedicated for testing PV modules. The

European Solar Test Installation (ESTI) at the Joint Research Centre (JRC)

in Ispra, Italy, is one of them; other laboratories are for instance the National

Renewable Energy Laboratory (NREL) in the U.S. Department of Energy

and the Laboratory of Energy, Ecology and Economy (LEEE-TISO) in the

University of Applied Sciences of Southern Switzerland (SUPSI), to mention

but a few. To guarantee the quality of their results, some of the laborato-

ries (including ESTI) are accredited according to quality standard IEC/ISO

17025: ”General requirements for the competence of testing and calibration

laboratories”. The International Organization for Standardizaton (ISO) and

the International Electrotechnical Commission (IEC, or Commission Elec-

trotechnique Internationale, CEI) are international bodiestasked with cre-

ating a specialized system for standardization. In order to be accredited,

the laboratory has to perform its tests according to internationally agreed

and standardized methods. Between the laboratory and the ISO and IEC

standards, there is a national accreditation body that audits the laboratory

and ensures that it obeys the standards. The accreditation body that for

instance ESTI uses is Cofrac3. [11, 12]

Different PV module types have earlier been ranked mainly according to

their maximum output power (Pmax) at Standard Test Conditions (STC, i.e.,

3Le Cofrac, http://www.cofrac.fr/ (5/2008)

39

irradiance level of 1000 W/m2, module temperature of 25 ◦C and AM1.5G

spectral irradiance distribution). The STC power, however, does not tell the

whole story: modules having equal STC powers may have very different long-

term energy yields, even when located in the same place. Therefore an energy

rating method has been developed for predicting the module performance and

hence providing a more reliable tool for module comparison. [13]

This chapter discusses ESTI and the different measurements performed

there. Focus is on the outdoor measurement system (section 4.2) and indoor

performance measurements at STC as well as so-called performance surface

measurements (section 4.3). Additionally the energy rating method being

developed at ESTI, that is based on the indoor performance surface mea-

surements, is introduced (section 4.4). These topics were essential in the

realized study as it will be seen later in this thesis.

4.1 The European Solar Test Installation (ESTI)

The work at ESTI takes place under the Solar Electricity Action (SOLAREC)

of the Renewable Energies Unit in the Institute of Energy (IE) of the JRC.

The primary objective of ESTI is ”to provide a sound and credible assess-

ment of all aspects of Photovoltaic Solar Energy, assisting both policymakers

and industry, but also standards organisations and national research agen-

cies.” [14]

The testing facilites of ESTI have been built up since 1977, and they

comprise for example precision calibration facilities with two Large Area

Pulsed Solar Simulators (LAPSS), an outdoor testing field and several cli-

matic chambers for accelerated lifetime testing of the modules. In 1996 ESTI

became the first solar testing and laboratory to obtain the status of accred-

ited test laboratory for Photovoltaic devices under the EN45001 scheme. In

40

2001 this became the ISO 17025 scheme. [14]

In addition to testing, ESTI is accredited for calibration of photovoltaic

devices. Field experience has lead into development of standardized test

sequences such as CEI/IEC 61215: ”Crystalline Silicon Terrestrial Photo-

voltaic (PV) Modules – Design Qualification and Type Approval”, which

enables identification of potential defects in a module type in an acceler-

ated time period. This test sequence requires eight modules taken randomly

from a production batch, or alternatively a prototype of a new design. Each

module undergoes an individual testing sequence where its electrical, opti-

cal or mechanical characteristics are tested. A similar test sequence for thin

film modules is documented in CEI/IEC 61646 : ”Thin film Terrestrial Pho-

tovoltaic (PV) Modules – Design Qualification and Type Approval”. The

actual test results are treated confidentially, but ESTI maintains a public

list of qualified module types. A module is regarded as qualified if it during

and after the test sequence meets certain criteria, such as that there is no

major visual defect (broken window, bubbles etc.) and that the degradation

of its maximum output power at STC remains within certain limits. [15]

The modules are also treated confidentially while being tested at ESTI: to

protect the name of the manufacturer the modules are assigned anonymous

code names upon their arrival to ESTI. The code name is composed of two

letters and two to three numbers, such as ju711 and by71.

4.2 Outdoor measurements

Rapid performance measurements under well-defined conditions are not suf-

ficient for describing the actual performance of a PV module. Some features

of different module technologies emerge only after a long-term measurement

period under varying environmental conditions, i.e., varying ambient tem-

41

perature, wind speed and intensity and spectral distribution of irradiation.

This is the motivation for the outdoor measurements performed at ESTI.

The present section describes the testing setup, the monitoring devices for

the modules and environment, and the monitoring data received from the

setup.

Figure 16: The outdoor measurement field of ESTI at the JRC in Ispra, Italy.

4.2.1 Testing setup

Figure 16 shows the outdoor test field of ESTI located at the Joint Research

Centre (JRC) in Ispra, Italy (45◦ 48′ 42′′ N and 08◦ 37′ 36′′ E). There are

several module racks that are equipped with adjustable supporting arms.

Previously, the inclination of the racks used for some of the long term tests

was adjusted once a season in order to keep the module plane approximately

normal to incident irradiance at solar noon, but now they are kept fixed in

accordance with the practise in the second edition of the IEC 61215 standard.

A number of environmental sensors (see section 4.2.2) are located near the

modules, and there is additionally a meteorological tower providing a wider

range of environmental data. [16]

42

The modules and the sensors (environmental sensors and the ones measur-

ing module temperatures) are connected via underground cables to the mea-

surement cabin (see figure 17). In the cabin there are two Hewlett Packard

dataloggers that measure all the electrical signals coming from the modules

and the sensors, and six Kepco bipolar power supplies that provide the ac-

tive load for measuring the I − V characteristics – thus the performance of

six modules can be measured simultaneously. To monitor the data from the

dataloggers and to control the power supplies there is a computer running

Microsoft Windows© with a dedicated software written with National In-

struments LabVIEW©4. The modules are kept at maximum power point

between the measurements.

A performance measurement is performed at regular intervals (usually

every four minutes) as long as the incident irradiance is above 50 W/m2.

Duration of a measurement is approximately 5 seconds per module (or 10,

depending on the number of points scanned), and it is performed for each

module successively; that is, the 5-second measurement is performed every

four minutes for all the modules in a certain order. At each measurement the

software records the I−V characteristics, environmental parameters (see the

following section) and the module temperature. Additionally point to point

current, voltage and irradiance values are recorded over the scan: typically

30 current, voltage and irradiance values are read during a single scan of 5

seconds duration. The software writes the data daily into three different text

files (see section 4.2.3), and the files are transferred automatically to a local

server for daily back-up. [16]

4NI LabVIEW (2008), http://www.ni.com/labview/ (5/2008)

43

Figure 17: A schematic diagram of how the modules and sensors are con-

nected to the instruments driving and recording the measurements outdoors.

Image reproduced from [16] (fig. 4.6).

4.2.2 Environmental measurements

The environmental parameters that are recorded at each measurement are

ambient temperature, wind velocity and irradiance. The environmental sen-

sors, shown in figure 18, are all located near the module racks.

Ambient temperature is measured with a PT100 temperature sensor as

shaded from the sun. PT100 is a resistance temperature detector: it is

based on platinium that produces a well-known change in resistance with

temperature. A similar device is used for measuring the module temperature

and is attached to the back of the module. [16]

The wind velocity (speed and direction) is measured with a MESA Ultra-

sonic Anemometer [16]. The operation of an ultrasonic anemometer is based

on measuring the propagation velocity of sound in air [17].

44

Figure 18: The environmental sensors used. Image reproduced from [16] (fig.

4.7).

The irradiance is measured with two different devices: a pyranometer and

a reference cell, referred to as an ESTI sensor, both mounted coplanar with

the modules. The ESTI sensor consists of two identical single-crystalline

silicon solar cells; figure 19 shows the equivalent circuit for the sensor. The

first cell is kept in short circuit to monitor the irradiance, and the second

cell remains at open circuit. The first part is connected to a precision shunt

resistor and the irradiance, GESTI (W/m2), is defined as follows [16]:

GESTI =
VSC

k
1000, (23)

where VSC is the voltage across the shunt (mV), and k is a calibration factor

(mV/Wm−2). The open-circuit voltage (VOC) measured from the second part

45

can be used to make temperature correction to the irradiance. [16]

Figure 19: The equivalent circuit of an ESTI sensor. The ammeter and the

voltmeter are excluded.

The CM11 pyranometer from Kipp & Zonen (see figure 20) is based on

a thermal detector absorbing the solar irradiance. Hence it detects all the

incident irradiance – all wavelengths and from all directions. The radiation

energy is absorbed by a black painted ceramic disc (sensing element in fig-

ure 20) equipped with a thermopile imprinted on it. The border of the disc

is in thermal contact with the pyranometer body, and the generated heat

flows through the thermopile to the body that acts as a heat sink. The ir-

radiance is determined from the temperature difference across the disc; the

thermopile converts the difference into a voltage. The detector is shielded

with two glass domes in order to prevent the effect of wind, rain and thermal

radiation losses to the temperature rise. [18]

As these two irradiance meters are based on completely different technolo-

gies, they are also very different in their properties. First of all, their spectral

responses are different: ESTI sensor detects much more narrow range of the

solar spectrum (from 350 nm to 1200 nm) than the pyranometer, whose spec-

tral range (from 305 nm to 2800 nm) is limited only by the transmittance

46

Figure 20: Approximate construction of the Kipp&Zonen CM11 pyranome-

ter. Image reproduced from [18] (fig. 1).

of the glass. The spectral response of the ESTI sensor is similar to that

of the c-Si modules, as they are based on similar technology. On the other

hand, due to the wider spectral response the irradiance value received from

the pyranometer corresponds more realistically to the actual energy received

from the sun and might therefore be more correct for calculating for instance,

module efficiencies. [16]

Another prominent difference between the ESTI sensor and the pyra-

nometer is that the former reacts much faster to rapid changes in the irra-

diance (caused by clouds moving past the sun) than the pyranometer; i.e.,

pyranometer has a much slower response time (< 15 s [18]) than the ESTI

sensor (instantaneous response). This feature is seen in figure 21, where point

to point irradiances from both devices are plotted from a single measurement

(the duration of a measurement is approximatey ten seconds), during which

irradiance has changed rapidly. In the figure the ESTI irradiance rises and

drops earlier than the pyranometer irradiance, and the changes in the latter

are also less prominent. Because of this feature the ESTI sensor is usually

47

preferred in measurements – it gives a more realistic value for the instanta-

neous irradiance. Furthermore, a pyranometer is more expensive than a c-Si

reference device and it has also a lower output signal [16].

Figure 21: The point to point irradiances recorded from ESTI sensor and

pyranometer during a measurement on 25.6.2007. The duration of a mea-

surement is approximately 5 seconds.

Since an I−V curve is defined at a specific irradiance level, large changes

– say, more than 5% – in irradiance during the 5 -second scan of an I − V

curve result in faulty curve and thus in erroneous Pmax values (see figure 22).

This problem is treated by making corrections to the data after the scan;

this is explained in more detail in the following section.

48

4.2.3 Monitoring data

The outdoor measurement system produces daily three different text files

for each module being measured: enr-, ene- and raw-files. The content of

these files is listed in tables 2-4, respectively. In the ene-files faults caused

by changes in the irradiance during a measurement have been taken into

account; in the enr-files they have not. The raw -files consist of a larger

dataset than the first two.

Table 2: The parameters in the enr-file

Parameter Explanation Units

Date Day of measurement

Time Local time on datalogger at the measurement

ESTI Irradiance from ESTI sensor,

measured at the beginning of the scan W/m2

Pyran Irradiance from pyranometer,

measured at the beginning of the scan W/m2

Tmod Module temperature ◦C

Tamb Ambient temperature ◦C

Isc Short-circuit current A

Voc Open-circuit voltage V

Pmax Maximum power W

Impp Maximum power point current A

Vmpp Maximum power point voltage V

FF Fill factor

In the enr-files there is one line for each measurement of uncorrected data.

This means that the possible changes in irradiance have not been considered,

but I−V characteristics found in the enr-file are based on the original values

49

received from the data logger. As explained in section 4.2.1, the I − V

curve scan lasts approximately 5 seconds, and in addition to current and

voltage values, point to point irradiances are recorded during the scan. The

irradiance values recorded in enr-files are those measured at the beginning of

the scan.

The ene -files were introduced in 2005 in order to correct erroneous I−V

characteristics resulting from significant changes in irradiance during the

I − V curve scan. In the ene-files there is also one line of data for each

measurement. On each line there are three different irradiance values: the

average value of the irradiances recorded during the I − V curve scan from

both ESTI sensor and pyranometer, and the minimum irradiance of the scan

from the ESTI sensor, which is used as the corrected irradiance. The I − V

curve is corrected by shifting the current values, in accordance with IEC

60891, with a coefficient proportional to the correction made to the ESTI

irradiance. The I − V characteristics found on each line of an ene-file are

extracted from the new, corrected I − V curve. In figure 22, an example of

original and corrected I − V curves is plotted. These curves are from the

same measurement as the irradiances plotted in figure 21.

The reason to correct the I−V curve according to the minimum value of

ESTI irradiance of the scan (not for instance according to the average value)

is that the power supplies always perform the I − V curve scan according to

the initial irradiance value, that is, the voltage bias used to bring the current

down is scaled according to the irradiance measured at the beginning of the

scan. If a value other than the minimum ESTI irradiance is chosen for the

correction, the corrected I −V curve might not necessarily reach the current

zero-crossing and hence the VOC . Furthermore, the reason to do the correc-

tion according to the minimum value of ESTI sensor, not pyranometer, is the

50

Table 3: The parameters in the ene-file

Parameter Explanation Units

Date Day of measurement

Time Local time on datalogger at the measurement

ESTI Irr Ave The average irradiance of the scan

from ESTI sensor W/m2

Pyran Irr Ave The average irradiance of the scan

from pyranometer W/m2

Corrected to Irr The minimum irradiance of the scan

from ESTI sensor W/m2

Irr Change The difference between minimum and

maximum value of the scan of ESTI irradiance %

ESTI Volts Ave Open circuit voltage of the ESTI sensor

(average of the scan) V

Tmod Module temperature ◦C

Tamb Ambient temperature ◦C

Isc Short-circuit current from the corrected

I − V curve A

Voc Open-circuit voltage from the corrected

I − V curve V

Pmax Maximum power from the corrected I − V curve W

Impp Maximum power point current

from the corrected I − V curve A

Vmpp Maximum power point voltage

from the corrected I − V curve V

FF Fill factor from the corrected I − V curve

51

Figure 22: The original and corrected IV-curves from the same measurement

as the irradiances plotted in figure 21.

slow response time of pyranometer – its readings may not tell the true story

about the irradiance at the time of the measurement. However, as mentioned

earlier, the pyranometer irradiance might represent more realistically the ac-

tual amount of irradiance coming from the sun. Examples of attempts at

finding a correct pyranometer value for each measurement are presented in

section 5. [19]

The body of the raw-files differs from that of the ene- and enr-files. For

each measurement there is firstly one line with nine uncorrected parameters

accompained with two corrected parameters: ESTI, Pyran, Tmod, Tamb,

Isc, Voc, Pmax, Impp, Vmpp and FF (see table 2), and Corrected to Irr

52

and Irr Change (see table 3). Additionally there is for each measurement

six columns of point to point data from the scan, explained in table 4. The

raw -files are useful when one wants to go back to individual measurements

and see what actually happened during the I − V curve scan – for instance

the graphs in figures 21 and 22 were reconstructed from raw-file data.

Table 4: The point to point data found in the raw-file.

Parameter Explanation Units

Module Volts Point to point module voltage V

Module Current Initial point to point module current A

ESTI Irr Point to point irradiance from ESTI sensor W/m2

Pyran Irr Point to point irradiance from pyranometer W/m2

ESTI Volts Point to point open circuit voltage from

ESTI sensor V

Corrected module

current Corrected point to point module current A

4.3 Indoor performance measurements

Indoor measurements at ESTI cover a wide range of different measurements

testing various module features as mentioned in section 4.1. In this sec-

tion focus is on the basic performance measurement at standard test condi-

tions (STC) and on so-called performance surface measurements. The first-

mentioned is the main characterization measurement for modules at ESTI

and the latter measurement is crucial for the energy rating method and thus

also for the analysis presented in this thesis (see sections 4.4 and 5).

The performance measurements at STC and the performance surface mea-

surements are both executed using flash solar simulators, which consist of

53

electric lamps simulating the terrestrial solar radiation. In the simulators,

xenon lamps are used as their spectrum is rather similar to that of the sun.

However, the spectrum is clearly not exactly the same as the sun, and in

steady-state solar simulators, ageing of the lamp and filter instability further

distort the similarity. Flash simulators are more common since the service life

of the lamps increases when the measurement time is minimized, although

the principal reason for using a flash simulator is economic – it is vastly ex-

pensive to construct and operate a large area steady-state solar simulator.

Nevertheless, there are some problems involved in this technique: Firstly, the

spectrum of the lamp changes as it warms up. Secondly, the flash technique

requires a fast (a few milliseconds) sweep of the I − V curve, which means

that a rapid voltage bias is applied to the module – and the high bias rate

may lead to erroneous measurement for some module types, for example,

those exhibiting large capacitance. [16]

4.3.1 Performance measurements at STC

The solar simulator used in the STC performance measurements is a Spec-

trolab Large Area Pulsed Solar Simulator (LAPSS). It contains two xenon

lamps and generates an irradiance pulse whose intensity increases rapidly,

stays approximately uniform for 1 ms and then decreases rapidly. The I −V

curve measurement is executed simultaneously with the flash from the lamp

by applying a voltage ramp across the module with a Kepco power supply.

The module being tested is placed vertically on a rack, at a distance from

the solar simulator at which the irradiance is approximately uniform on each

cell of the module and the intensity of the irradiance is 1000 W/m2 during the

peak of the pulse. The irradiance is measured using a c-Si reference cell (ESTI

sensor) placed co-planar next to the module, and the module temperature

54

is measured with a PT100 temperature sensor attached to the back of the

module, as in outdoor measurements. The measurements are performed in a

room having black surfaces to exclude the effect of reflections, and the room

temperature is kept at 25 ± 2◦C. [16]

The performance measurement at STC is performed according to stan-

dard CEI/IEC 60904-1 ”Measurement of photovoltaic current-voltage char-

acteristics”, which sets limitations for instance for the spectral response and

placement of the reference cell relative to the module being tested, and to

the accuracy of temperature, voltage and current measurements. [16, 20]

The reference cell, that is basically a c-Si cell, and the test module are

often made of different materials. Hence their spectral responses can be very

different, as figure 23 illustrates. This defect is treated by using an offset

called spectral mismatch factor for correcting the I − V curve. In the stan-

dard CEI/IEC 60904-7: ”Computation of Spectral Mismatch Error Intro-

duced in the Testing of a Photovoltaic Device” (1995) the spectral mismatch

factor is defined as ”the error in the measured ISC of a solar cell due to differ-

ences between the light source spectral irradiance and the reference spectral

irradiance, and the difference between the spectral responses of the test and

reference devices” [16]. At ESTI, the spectral mismatch factor is determined

experimentally for a particular module and reference cell combination, using

a dedicated measurement set-up. [16]

4.3.2 Performance surface measurements

In the indoor performance surface measurements of the ESTI the module

performance is measured not only at STC, but at a wide range of mod-

ule temperature and irradiance values. The solar simulator used in these

measurements is Pasan LAPSS, that consists of only one xenon lamp. It

55

Figure 23: Spectral responses of different module types (c-Si, a-Si and CIS)

and the AM1.5G spectrum. ESTI sensor spectral response is very similar to

the c-Si response. Image reproduced from [21] (fig. 3).

generates a pulse whose intensity increases rapidly to a peak and then de-

cays slowly in approximately 20 ms. The shape of the pulse is exploited in

the measurements: the I − V curve measurement is performed at different

irradiance levels by adjusting the timing of the measurement relative to the

phase of the pulse. To adjust the module temperature the module is placed

in a temperature controlled chamber having a quartz window. The module

temperature is varied from 25 ◦C to 60 ◦C, and the I−V curve measurement

is performed at different irradiances in the range of 50− 1000W/m2 at each

temperature. Similarly to the performance measurements at STC, the irra-

diance in performance surface measurements is also measured with an ESTI

sensor, placed co-planar next to the module, and the module temperature

is measured with a PT100 temperature sensor attached to the back of the

56

module.

Using these measurements a power matrix, i.e., Pmax as a function of

module temperature and irradiance, is created. Onto the power matrix a

surface is fitted (see figure 24), called the performance surface, using a three-

dimensional data-analysis software5. The fitting function is chosen arbitrar-

ily, as a compromise between good fit and a reasonable number of parameters

(usually 3-6 parameters are used); hence the function has no physical mean-

ing. This function then serves as the empirical equation for maximum power,

that is used in predicting the performance of the module in energy rating (see

the following section and section 5.4). [16, 22]

Figure 24: The performance surface for module by72. The fitting equation

and the numerical values of its coefficients, and the goodness of the fit are

also indicated.

5SYSTAT Software Inc., TableCurve3D (2002), http://www.systat.com/products/

TableCurve3D/ (5/2008)

57

4.4 Energy rating

There are great differences in energy yields of different PV module technolo-

gies, and a certain module type might suit to certain environmental condi-

tions better than some other module. The choice of the module type is of

utmost importance when planning a PV-based electricity production plant

– not forgetting the financial motives: even a 1% difference in energy pro-

duction can be worth of 4-6 euros per kWp per year [13]. Energy rating is

developed to provide a more reliable and exact tool for module comparison

than the module STC power used thus far. It stands for predicting module

performance at a certain location using a performance surface that gives the

module output as a function of environmental parameters for the location.

In this section, some methods used in energy rating are introduced, focusing

on the method being developed at ESTI. Finally, the validity of the ESTI

method for both c-Si and thin film modules is evaluated. [13]

4.4.1 Energy rating methods

There are several methods proposed for the energy rating, and the objective

of the testing laboratories and the standardization organizations is to stan-

dardize the most suitable method – a draft of IEC International Standard

61853, ”Performance Testing and Energy Rating of Terrestrial Photovoltaic

(PV) Modules”, is under development. The methods differ on how the data

is acquired for generating the power matrix and what kind of mathematical

models are used for fitting the surface [13, 23].

In some proposals, the data for the power matrix is acquired using out-

door measurement data, which has given good results in predicting module

performances [23]. In this method, however, a measurement period of ap-

proximately one year is required to cover sufficient range of irradiance and

58

temperature conditions, and the resulting performance surface is specific for

the location where it has been measured. The ESTI energy rating method

employs the performance surface generated indoors, in which case only a few

hours are needed to acquire a sufficient range of data. [22]

The performance surface determined from the indoor measurements in

the ESTI method is a function of irradiance and module temperature. As

the prediction is based on using ambient temperature and irradiance data of

a specific location, a transformation from ambient to module temperature is

required. The module temperature is estimated as follows [22]:

Tmod =
NOCT − Tref

Gref

G + Tamb, (24)

where NOCT is the Nominal Operating Cell Temperature, that is by defi-

nition the module temperature at ambient temperature of Tref = 20 ◦C and

irradiance of Gref = 800 W/m2. The method for measuring the NOCT, and

also the expression above, are described in the standard CEI/IEC 61215:

”Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualifica-

tion and type approval”. [22]

As already mentioned, only ambient temperature and irradiance data

from the location in question are required as input parameters in the ESTI

energy rating method. This is one of the greatest advantages of the method,

since historical records for the data is readily available for many locations.

This however retains the assumption that the module performance is domi-

nated by these two parameters – for instance the effect of spectral variations

and relation of direct and diffuse radiation are neglected. [22]

4.4.2 Evaluating the ESTI energy rating method

To verify the ESTI energy rating method a comparison between the predicted

and actual outdoor measured energy production is made. The predicted and

59

measured energy production values are calculated by integration from the

respective instantaneous Pmax -values received either from the performance

surface or from the outdoor measurements (see section 5 for details). For

crystalline silicon modules, the results have been good: in some studies,

the difference between the predicted and actual energy production has been

less than 1% [22]. For thin film modules, the predictions have not been as

successful [21]. Similar results were obtained in this study (see section 6).

The main reason for the poor success in energy rating of thin film modules

is that their indoor performance differs from their outdoor performance; and

once the performance surface used in energy rating is measured indoors,

this certainly affects the prediction. The discrepancy between the outdoor

and indoor performance results primarily from the instability of some thin

film materials in relation to the pre-measurement conditions [24]. At ESTI,

modules are kept in the dark prior to indoor measurements, and this leads to

a reduction in the performance for some thin film technologies, in particular

for CIS modules. While being measured outdoors, however, the modules are

continuously under light exposure and there is no such effect. One possible

solution for this problem is light-soaking, which means preconditioning the

modules by exposing them to light (20 min under intensity of 800 W/m2 and

temperature of 40 ◦C) prior to indoor measurements [24].

Another factor distorting the indoor and outdoor performance of thin

film modules and thus making the energy rating more difficult is the effect of

spectral variations. This covers differences between the spectral responses of

the PV device and the reference device, and differences between the AM1.5G

reference spectrum used in indoor measurements and the actual spectrum,

that varies in the course of each day. Thus, employing only total irradiance

and module temperature as an input in the ESTI energy rating method

60

might be insufficient: for thin film modules, a more sophisticated method

considering also the effect of spectral variations might be necessary. [21]

61

5 Creating an application for outdoor data

analysis

The outdoor measurement system executes a performance measurement for

the modules at regular intervals (usually every four minutes) throughout each

day, as long as the solar irradiance is above 50 W/m2 on the plane of the

modules. On a good day irradiance may be above this limit from 7 a.m. until

8 p.m., and up to five modules are usually measured simultaneously. Hence

a vast amount of data is generated in a short period.

To be able to make module performance analysis over long time periods

– several months or years – proper data storage is of utmost importance.

When situated in a database, all the data is found in the same place in a

well-defined order and it is easy to retrieve arbitrary datasets. To analyze

the data, a dedicated program was written with MATLAB by the author.

MATLAB was chosen for this task because of its flexibility and versatility.

This chapter discusses the database system used in our application, the basic

features of MATLAB, the interface required between the two, and finally the

actual program written with MATLAB.

5.1 The database system

Put simply, a database is a stored set of logically interrelated data. The

database system used in our setup was a relational database, in which the

data is stored in separate tables. Each table has a certain number of fields,

and the data is entered, retrieved and modified by rows, that are called

records of the table. Each row has an equal number of fields. Variables of a

field share certain common features, such as name and data type. The data

type can be for instance integer, double precision number, character string

62

or date or time, to mention but a few. [25, 26, chapter 3]

Figure 25 illustrates the structure and contents of our database, named

solarec. There was one table for each module, and each table contained the

same 29 well-defined fields. The data originated from the three output files

of the outdoor measurements (see section 4.2), and the data was transferred

to the database by Thomas Huld (researcher at the JRC), who maintained

the database.

Figure 25: A block diagram of the structure of the database solarec. A

complete list of the fields found in each table can be found in appendix A.

A database is created and modified with a database management system.

In our setup the management system used was PostgreSQL [27], which is an

open source Object-Relational Database Management System (ORDBMS).

It is an extension of the more traditional Relational Database Management

Systems (RDBMS). As enhancements to the straight relational model, the

ORDBMS supports such things as arrays (multiple values in a single col-

63

umn), inheritance (child-parent relationships between tables) and functions

(programmatic methods invoked by SQL statements). [26, chapter 3]

Interaction with the database, i.e., adding, retrieving, modifying and

removing records of data, takes place via a specific interface using query

commands in Strutured Query Language (SQL). The interfaces utilized here

for communication with the database were pgAdmin, that is an open source

adiminstration and development platform for PostgreSQL6, and a dedicated

interface for MATLAB, discussed in section 5.3. The first-mentioned was

used mainly to check from which modules and time periods there were data

in the database.

The structured query language (SQL) consists of structured statements

that resemble simple sentences in English. At the beginning of a statement

there is always a command, that is the verb of the statement, describing the

action to be taken. In addition this statement usually contains one or more

clauses, that are formal modifiers that further define the action and hence

the function of the statement. A very simple example of an SQL statement

is

SELECT date, pmax FROM by71

which selects the fields date and pmax from the table by71. [26, chapter 3]

5.2 Introduction to MATLAB

MATLAB is a high performance technical computing environment created by

The MathWorks Inc. that was founded in 1984 [28]. Currently the MATLAB

system involves five main sections7 [29]:

6pgAdmin III, http://www.pgadmin.org/ (6/2008)
7The MATLAB version used here is 7.4.0.287 (R2007 a), released in January 2007.

64

• Desktop tools and development environment, which is a set of tools

providing help for using MATLAB functions and dealing with the sys-

tem in general. Most of them are graphical user interfaces – such as

MATLAB desktop, that is illustrated in figure 26.

• The MATLAB mathematical function library containing both elemen-

tary and advanced functions.

• MATLAB language, which is a high-level matrix/array programming

language.

• A wide range of graphics tools for making highly customized 2D an 3D

graphs.

• The MATLAB external interfaces/API (Application Program Inter-

face) enabling the user to write C or Fortran routines that interact

with MATLAB.

To perform computations with MATLAB, the user writes the task using

MATLAB statements and built-in functions into an m-file – a text-file with

the extension .m – which is then executed with a single command. MATLAB

provides its own m-file editor, which simplifies the writing and evaluation

of the code. Simple calculations can be also performed directly from the

MATLAB command window.

M-files are divided according to their contents into two groups: scripts

and functions. A script simply excutes a series of MATLAB statements

without accepting inputs or returning outputs, and stores its variables into

a workspace common with other scripts and the MATLAB command line

interface. A function in turn accepts input arguments and returns output

arguments, and stores variables into its own internal workspace – a feature

65

Figure 26: The MATLAB desktop.

that makes using functions favorable when program efficiency is important.

In the program described in section 5.4, two main scripts were written to

perform the analysis, and these scripts employed several functions. [29]

Another fact to keep in mind while improving the performance of a MAT-

LAB program is that MATLAB was originally written to work with matrix

software – its basic data element is an array8. For instance minimizing the

number of for and while loops by using approporiate vector and matrix

operations instead improves the performance of the code significantly. [29]

8The name MATLAB actually comes from MATrix LABoratory.

66

5.3 Interface between MATLAB and the database

In order to connect to the database and retrieve data from it, certain tools

are required. In our application, these tools were provided by MATLAB.

PostgreSQL cannot run functions written with MATLAB, but it does sup-

port several other programming languages, such as Java, Python and C [27].

MATLAB in turn cannot directly run functions written in other program-

ming languages; therefore an interface is needed for MATLAB to be able to

interact with the database.

MATLAB provides routines to execute C or Fortran subroutines in the

form of MEX-files (MATLAB Executable), which are produced from C or

Fortran source code, but which MATLAB can directly load and execute

as if they were built-in MATLAB functions. The source code for a MEX-

file consists of two parts: the computational routine, containing the code

that performs the desired operations (in our case accessing the database)

and a gateway routine that interfaces MATLAB with the computational

routine. [29]

Suitable MEX-files were found on the internet rather than being built by

the team. An engineering organization DerTech9 had constructed a MEX-

file library (called pgmex) that provided an interface for a PostgreSQL C

library (called libpq); these libraries together provided the required access

to the database. To use the libraries from MATLAB, the MEX-file library

was saved into a new toolbox directory in MATLAB, and the C library was

saved into the directory where Windows assumed these types of libraries to

be saved.

9DerTech, LLC, http://www.dertech.com (1/2008)

67

5.4 The MATLAB program

The main tasks set for our MATLAB program are to calculate the measured

and predicted energy productions and efficiencies on a daily and monthly

basis for different PV modules, using outdoor measurement data located in

the solarec database. The predictions are based on the empirical equation

for maximum power (Pmax), received from the indoor performance surface

measurements (see section 4.3). Before the actual calculations, the data

retrieved from the database is filtered in order to eliminate faulty data points.

In the end, the program presents the results graphically and fromulates them

into text files.

The starting point for the program was another MATLAB program writ-

ten by Susana Iglesias (an earlier trainee at the JRC). The main tasks for

this former program were essentially the same though it was somewhat re-

stricted: it retrieved the data for analysis from text files, and was restricted

to analyzing data from only three different crystalline silicon modules one

at a time. Comparatively, the new program is able to analyze data from

whichever modules have data in the database, simultaneously when neces-

sary. Additionally, the former program did not include any filters.

The program encompasses two main scripts that employ several dedicated

functions. The structure of the program is illustrated in figure 27. Most of the

tasks presented in this figure are executed in separate functions instead of the

main scripts, as this clarifies the scripts and above all improves the program

performance significantly. The two main scripts are named ene analysis

and enr analysis (appendices B.1 and C.1), written for analyzing data

from ene-files and enr-files, respectively (see section 4.2). The tasks per-

formed by these scripts are slightly different, and obviously they analyze

different data, but they mainly employ the same functions. Following the

68

structure in the figure 27, the following sections describe in more detail the

contents of the program: what the scripts actually do and why, what func-

tions they employ and how the program communicates with the user at each

of the stages shown in the figure.

Figure 27: The structure of the MATLAB program.

Connecting to the database

The first task for both main scripts is to create a connection to the database,

using the above mentioned MEX-files as an interface. The actual inter-

face function used to make the connection from within MATLAB is called

69

pgconnectdb, taking as an input a string connstr containing name, host

and user of the database as follows:

connstr = 'host=emu.jrc.it dbname=solarec user=thomas';

myconn = pqconnectdb(connstr);

mystat = pqstatus(myconn)

If the connection to the database is created successfully, the interface function

pqstatus returns CONNECTION OK and mystat = 0 to the command

window of MATLAB. This code snippet is found at the beginning of both

main scripts (appendices B.1 and C.1).

Retrieving data from the database

Once the connection between MATLAB and the database is enabled the

program uses the received variable myconn to retrieve the required data

from the database. This is performed either by function getdata db ene

or getdata db enr (appendices B.2 and C.2), depending on the script

being executed (ene analysis or enr analysis, respecively).

The actual parameters that are retrieved for the analysis are fixed. The

function getdata db ene retrieves for instance date, time, corrected Pmax

and ESTI irradiance, change in ESTI irradiance and ambient and module

temperatures; the function getdata db enr in turn retrieves date and

time, the uncorrected Pmax and ESTI and pyranometer irradiances and so

forth. However, the time span (the first and the last date) as well as the num-

ber and names of the modules to be analyzed are to be defined by the user.

In this task MATLAB built-in function input is utilized: input prints

the defined question to the command window and waits for input from the

user. The functions subsequently build a string exeStr that contains an

70

SQL statement for retrieving the fixed parameters according to the limits set

by the user. To construct the string, MATLAB built-in function sprintf

is employed. The string is then used by the interface function pqexec to

access the data. The following loop of the function getdata db enr (ap-

pendix C.2) illustrates how this happens for each of the fN modules being

analyzed.

for i=1:fN

name = ['Name of the module ' num2str(i) '? '];

fmod{i} = input(name,'s'); % Cell array for names of the modules

exeStr = sprintf('SELECT date, time, pmax, irradiance esti,

irradiance pyran, t mod, t amb

FROM %s

WHERE date≥''%s'' AND date≤''%s''

ORDER BY date,time',

fmod{i},Dstart,Dend);

res(i) = pqexec(myconn, exeStr);

nFields(i) = pqnfields(res(i));

nRows(i) = pqntuples(res(i));

end

The variable res received from pqexec is used later in the function to

retrieve the data for each module row by row. The size of the dataset (number

of fields and rows of data, nFields and nRows) retrieved for each module

is displayed to the command window of MATLAB. The number of columns is

always identical for all the modules, since the same parameters are retrieved

for all the modules. The number of rows usually varies as different modules

are not measured for exactly the same time periods.

71

Correcting pyranometer irradiance

The next task to perform within the script ene analysis is to calcu-

late a corrected value for the pyranometer irradiance, employing the func-

tion pyran correction (appendix B.3). The motivation for calculating

a corrected pyranometer value was interest in seeing if it makes a difference

whether the energy predictions and efficiencies are calculated using corrected

ESTI or pyranometer irradiances. There had been no previous attempts to

make this kind of correction.

The corrected pyranometer value is calculated only for measurement

points in which the change in irradiance measured with the ESTI sensor

is less than 5%. This threshold value was chosen after examining the irradi-

ance and I − V curves of different measurement points of one module and

studying the number of measurement points discarded with different tresh-

old values. With higher threshold values the change in irradiance was so big

and the I − V curve was so distorted that correcting the pyranometer value

was not reasonabe, and with lower threshold values there were simply too

many measurement points discarded. Figure 28 shows the relative amount of

measurement points deleted with different threshold values for module ai01

for each month in 2006.

The correction to the pyranometer irradiance is made using the average

irradiance values of the measurement scan for both ESTI and pyranome-

ter irradiances, Gpyr,ave and GESTI,ave (W/m2) (see section 4.2.3), and the

minimum value of the scan for ESTI irradiance (GESTI,min) as follows:

Gpyr,corr =
Gpyr,ave

GESTI,ave

GESTI,min.

This correction is made only for measurement points having less than 2%

change in ESTI irradiance. For measurement points with a change of 2-5%

72

Figure 28: Relative amount of measurement points filtered out with different

threshold values for the relative change in ESTI irradiance for module ai01

for each month in 2006. The number of measurement days in each month is

also indicated.

the function searches for a measurement point with an irradiance change of

less than 2% within 6 steps from the measurement point considered. If it

finds such a point, it performs the correction using the Gpyr,ave and GESTI,ave

values of the new point, and the GESTI,min value of the original point. The

remaining points are set to zero. After the corrections the function displays

for each module being analyzed a histogram of the number of steps required

for a point having an irradiance change of 2-5% to find a point with less than

2% change.

73

This task is not performed within the script enr analysis, since the

ESTI and pyranometer irradiance values used by this script are uncorrected.

Calculating empirical parameters

The next task in both scripts is to calculate the empirical parameters for

comparing the measured and predicted results. At first an empirical module

temperature (Tmod,emp) is calculated using ambient temperature and irradi-

ance data in order to perform predictions from the basis of these parameters

only. For this purpose function noct estim (appendix D.1), employed by

both main scripts, was written.

The function first defines the value for NOCT (Nominal Operating Cell

Temperature) according to equation (24) introduced in section 4.4. The

function plots the difference of measured ambient and module temperatures

(Tamb and Tmod) as a function irradiance, and constructs a linear fit to this

set of points using MATLAB built-in function polyfit. The plots – an

example is shown in figure 29 – are displayed to the user. According to the

equation (24) the expression for the linear fit becomes

Tmod − Tamb =
NOCT − Tref

Gref

G, (25)

where Tref = 20 ◦C and Gref = 800 W/m2. The NOCT can thus be cal-

culated from the slope of the fit. The empirical module temperatures are

thereafter calculated using the same equation with the defined NOCT, and

irradiance and ambient temperature data. The value for NOCT is usually

around 40 − 50 ◦C [22, 4].

The function polyfit used in the fitting is based on the least-squares

method, and therefore in the actual calculations the fit does not necessarily

intercept the origin as it is should according to the equation (25) above.

74

Figure 29: Plot of the difference of ambient and module temperatures as a

function of ESTI irradiance for estimating the NOCT for module by71. The

NOCT can be calculated from the slope of the straight line according to

equation (25).

This is also seen in figure 29, and it is undoubtedly a source of error in the

calculations. In the results (see section 6), however, it is seen that the module

temperature estimations based on this method are good.

With the empirical module temperature having been calculated, the scripts

subsequently calculate the values for empirical Pmax, using the empirical

equation for Pmax(G, Tmod) received from indoor performance surface mea-

surements. Altogether four different empirical maximum powers are calcu-

lated:

• Pmax emp es, calculated using the ESTI irradiance and measured

module temperature

75

• Pmax empT es, calculated using the ESTI irradiance and empirical

module temperature

• Pmax emp py, calculated using the pyranometer irradiance and mea-

sured module temperature

• Pmax empT py, calculated using the pyranometer irradiance and em-

pirical module temperature.

The script ene analysis uses corrected and enr analysis uses uncor-

rected irradiance values. The scripts read the empirical equation for Pmax for

each module from a text file empirical data.txt (appendix E), located in

the same directory as the scripts. To read the file, MATLAB built-in func-

tion textscan is employed. In addition to the equation and its parameters,

different measured STC powers and the surface area of the module are also

retrieved from and therefore need to be written into the text file. The STC

powers are later used to calculate normalized energy productions in order to

perform module comparison (see page 82), and the module area is used in

efficiency calculations.

Filtering

At this point all the required data is available for filtering. The scope of filter-

ing is to remove defective measurement points from the dataset, originating

for example from errors in the measurement system. The functions writ-

ten to perform the filtering are data filter ene and data filter enr

(appendices B.4 and C.3); the former is employed by ene analysis and

the latter by enr analysis. The former function filters out, i.e., sets to

zero, measurement points if some of the following occurs:

1. The measured Pmax is zero.

76

2. The measured Pmax is negative.

3. One of the empirical Pmax values listed in previous section is either

negative or complex. This may occur when module temperatures are

low (near 0 ◦C), as the performance surface does not cover low temper-

atures and the fitted performance equation sometimes does not behave

well for extrapolated data.

4. The relative difference between measured and empirical Pmax is more

than 50%.

5. The ESTI irradiance has changed by more than 5% (or another thresh-

old value set by the user) during the measurement.

6. The measured Pmax is bigger than any of the STC Pmax values.

In data filter enr, the filtering is performed similarly except for the fifth

point, which is replaced with a filter taking out points in which the relative

difference between ESTI and pyranometer irradiances is more than 30%.

The measurement points that are set to zero in the filtering are all the

Pmax values (measured and empirical ones) and both irradiances. The filtered

measurement points are flagged in a separate array; the value of an element

in the array tells the reason why the point has been filtered. The number of

discarded points on each day and month are later calculated using this array,

and the results are written in the same text files as the other results in order

to evaluate how much data has been discarded and for what reasons.

Arranging the data into a base array

As explained in section 4.2, the outdoor measurement system performs all

measurements, scanning the I − V curve and recording all the parameters,

77

at regular intervals through each day. An interval divisible into 60 minutes

(typically four minutes) is always chosen, and the measurement times are

synchronized with the beginning of the hour – thus the measurement time

points of the system are always known when the interval is known. The

interval has however not always been the same. For the past couple of years

it has been set to 4 minutes, but earlier also intervals of 5 and 3 minutes

have been in use.

When several modules are measured simultaneously, which is often the

case, the system performs the measurements for the modules successively in

a certain order: starting at the well-known measurement point, it performs

the measurement for the first module (the duration of a scan for one module

is approximately 5 seconds) and then moves to the next module and repeats

the measurement for it and so on, up to the last module. The whole proce-

dure is repeated at the next measurement point. Consequently, the actual

measurement times written in the output files are slightly different for all

the modules being measured. When analyzing several modules simultane-

ously with the program, a common time stamp corresponding to the original

measurement time points of the system has to be created to simplify the

computations and to be able to make reliable module comparison. For this

task, function base matrix (appendix D.2) was written.

Firstly, the function finds out which measurement interval has been in

use in the time period being analyzed. It calculates the mode, i.e., the most

frequent, measurement interval of the whole time period, and displays the

days in the period that had this interval. The days that had an interval other

than the mode interval are also displayed, accompanied with their intervals

– when analyzing longer time periods, the measurement interval might have

changed in between. At this stage the application asks the user, whether

78

or not to use the mode measurement interval in further calculations. If

the measurement interval is not the same for the whole period the analysis

should be repeated in shorter periods with approximately equal measurement

intervals. There are often also several days with zero measurement interval,

since the function takes into account all the days between the starting and

ending dates of the time span defined in the beginning, even though there

may have been non-measurement days in between.

Table 5: An illustrative table of how the parameters of one module are located

into the base array, assuming a measurement interval of four minutes. The

actual base array is 3-dimensional – one 2D array for each module. Here only

a few parameters are shown, and their values are randomly chosen.

Date Time Pmax [W] Pmax,emp,ESTI [W] GESTI [W/m2] ...

01.06.2007 6.00 0 0 0 ...

01.06.2007 6.04 0 0 0

01.06.2007 6.08 0 0 0

...

01.06.2007 14.00 75 78 755

01.06.2007 14.04 82 84 790

...

01.06.2007 19.52 24 25 82

01.06.2007 19.56 20 22 59

01.06.2007 20.00 0 0 0

02.06.2007 6.00 0 0 0 ...

02.06.2007 6.04 0 0 0

...

Once the measurement interval is chosen, the function builds an array

79

where all the possible measurement points between 6 a.m. and 20 p.m.

reside with the chosen interval for each day concerned. The data points

from each module are then located in their correct places: if a measurement

point of a module resides within half the measurement interval from a certain

measurement point of the system, the corresponding data points are located

in accordingly with this measurement point. Table 5 illustrates the idea of

the base array.

Calculating daily and monthly values

The daily and monthly energy productions, irradiances and module temper-

atures are calculated using the function energycalc (appendix D.3). Once

ordered into the base array, where the number of measurement points within

a day is fixed, it is easy to perform calculations for the data on a daily basis

using appropriate matrix operations. The parameters to be evaluated are

extracted from the base array and reshaped into arrays having one column

for each day using the MATLAB built-in function reshape. For instance

the measured Pmax is extracted from the base array and arranged to a new

3D array in the following manner:

Pmax = reshape(base arr(:,2,:),M d,nDays,N);

The resulting 3D array has as many rows as there are measurement points

within a day (M d), as many columns as there are days (nDays) and the

number of modules being analyzed (N) as the third dimension. The daily

measured and empirical energy productions are thereafter calculated from

the corresponding maximum power values (Pmax, W) and the measurement

80

interval dt (h) defined earlier with by summation:

E =
∑

i

Pmax,idt,

where E is the daily energy production value (Wh). Finally, the monthly

energy production values are calculated by summing the daily values.

In addition to the energy productions, the function energycalc sim-

ilarly calculates the daily and monthly average module temperatures and

daily and monthly irradiations. The number of points filtered for different

reasons and the total number of measurement points are also calculated for

each day and month.

The daily values are stored into 4D arrays – one 3D array for each module

– for later use. The 3D arrays, illustrated in figure 30, have 12 rows (one

for each month) and 31 columns (one for each day of the month); the size

of the third dimension depends on the number of years being analyzed. For

simplicity the number of columns and rows is fixed although all months do

not have 31 days and there are not necessarily measurements from all of

the 12 months – thus there is usually many zeros in these 4D arrays. The

monthly values in turn are stored into 3D arrays having 12 rows, the number

of columns equal to the number of years, and the size of the third dimension

equal to the number of modules being analyzed.

Calculating efficiencies

For calculating the measured and empirical efficiencies for each measurement

point, day and month, function effcalc was written. The function uses

the irradiances, and measured and empirical maximum powers and energy

productions calculated earlier. The efficiencies are calculated as

Eff(%) =
Emodule

Esun · Amodule

· 100%, (26)

81

Figure 30: The dimensions of the 3D array used to store the different daily

values (energy productions, irradiations, average module temperatures etc.).

where Emodule is the energy or power produced by the module, Esun is the

energy or power coming from the sun per unit area and Amodule is the sur-

face area of the module. Amodule was retrieved earlier from the text file

empirical data.txt (see page 74). The daily and monthly efficiencies are

stored into 4D and 3D arrays similar to the ones introduced in the previous

section to be used later in plotting the results and writing them into text

files.

Presenting the results graphically

Three different functions were written to make three types of graphs. Both

main scripts employ these same functions. The graphs are optional for the

user: utilizing the MATLAB built-in function input, the user is asked at

each point if he or she wishes to construct certain types of graphs. Examples

of the graphs are presented in section 6.

The first function, plotter (appendix D.4), uses the 4D and 3D arrays

82

built earlier to construct bar plots where measured energy productions and

efficiencies are compared with the predicted ones on a daily and monthly

basis. This is performed for each module separately, using both irradiances.

In addition to these graphs, the function also plots daily average energy

productions and so called monthly equalized energy productions for each

month. The daily average values are calculated by dividing the monthly

total output with the number of measurement days in the month, and the

monthly equalized values are monthly outputs calculated by multiplying the

daily average value of each month with the total number of days in the

month. The purpose for plotting the monthly equalized values is to give

an estimate for the monthly energy production even if there were several

non-measurement days during the month. The program saves all the graphs

directly in png format into a folder named plots, that is created in the same

directory with the m-files of the program (if necessary). For clarification,

the names under which the different graphs are saved are displayed to the

command window.

The second function, plotter meas only (appendix D.5), also con-

structs bar plots on a daily and monthly basis, however, only for measured

values: for the measured energy productions and separately for both irradi-

ances. The energy production values used by this function are not, however,

the same as used by the previous function: these values are calculated using

maximum powers in which gaps of one or two measurement points, resulting

from filtering, are filled with average values of the surrounding measurement

points. The purpose of plotting these ”filled” energy production values is to

find out, how much the filtering has actually affected the calculated energy

productions. As earlier, the graphs are saved into the folder plots, and the

names under which they are saved are displayed to the user.

83

The third function, mod comparison (appendix D.6), constructs bar

plots in which the daily average energy productions of each month of the

different modules being analyzed are compared. Monthly irradiances and

monthly average module temperatures of the modules are also compared.

In order to compare modules of different types and sizes accurately, the

daily average energy production values of different modules are compared

as normalized to each module’s STC Pmax values (retrieved earlier from the

text file empirical data.txt). This means that the daily average energy

production values of each month and module are divided with each module’s

STC Pmax, also called watt-peak (Wp), values. In all these graphs only days

when data from all the modules is available are considered in order to make

accurate comparisons. Again, the graphs are saved into the folder plots, and

the names under which they are saved are displayed to the user.

Furthermore, the functions that make plots of daily values – plotter

and plotter meas only – use another function called month teller

(appendix D.8) which identifies the literal names of different months. The

literal names are required in the titles of the plots, and for the file names

when saving the plots.

The functions plotter and mod comparison construct several differ-

ent bar plots, each with something in common. To avoid repetition in the

code and thus improve the program performance, so called nested functions

are used within these functions to make the actual bar plots. A nested func-

tion is a function written in the same m-file with another function, and it can

be used only by this parent function. For instance in the function plotter,

the daily and monthly energy productions and efficiencies are plotted, as well

as daily average and monthly equalized energy productions. In all of these

plots the measured values are compared with the two different empirical val-

84

ues (see section 6). In context with each separate plot type, the function

defines the lengths and labels of vertical and horizontal axes, titles etc. and

passes them to the nested function called bar plotter to make the actual

plots. For more details of this method, see [29] and appendices D.4 and D.6.

Writing the results into text files

As for constructing the graphs, writing the results into text files is also op-

tional for the user. To save the calculated daily and monthly results, both

main scripts employ the function data writer (appendix D.7). The 4D

and 3D arrays where the daily and monthly values reside are first reshaped

into appropriate arrays, and then written into text files using MATLAB built-

in function fprintf. The text files are saved into a folder results, created

in the same directory with the m-files of the program (if necessary). The

user defines the names with which the text files are saved.

85

6 Results

This chapter presents results obtained with the MATLAB program described

in the previous section. Firstly, the outdoor performances of two different

modules, one crystalline Silicon (c-Si) and one thin film Copper Inidium Dis-

elenide (CIS) module, are compared with their predicted performances in

order to test the ESTI energy rating method (see section 4.1). The pre-

dicted performances have been calculated using the empirical equation for

maximum power as a function of incident irradiance and module tempera-

ture (Pmax(G, Tmod)) received for each module from the indoor performance

surface measurements (see section 4.3). Predictions based on irradiances

measured with both ESTI sensor and pyranometer are presented.

Secondly, the energy yields of three different modules – one c-Si and two

CIS – are compared with each other. These modules are shown mounted on

the test rack in figure 31.

Figure 31: The studied modules: one c-Si module and two CIS modules,

denoted by ju711, by71 and by72, respectively.

86

6.1 Comparing measured and predicted energy pro-

ductions and efficiencies

6.1.1 C-Si module ju711

The daily average measured energy productions of the c-Si module ju711 are

compared with the predicted ones for months of May to August in 2007 in

figure 32. As explained in section 5.4, the daily average energy production

is the monthly total energy production divided by the number of measure-

ment days in the month. In the two graphs in figure 32, as well as in the

later graphs, there are bars of three different colours representing the three

different energy production values:

• The blue bar represents the actual, measured energy production.

• The red bar represents the predicted energy production calculated using

measured module temperatures and irradiances.

• The yellow bar represents the predicted energy production calculated

using estimated module temperatures and measured irradiances. The

estimated module temperatures are calculated according to equation (24)

introduced in section 4.4.

In the corresponding graphs for efficiencies, the blue bar represents the mea-

sured efficiency, calculated using measured energy production values and cer-

tain irradiation values, and the red and yellow bars represent the predicted

efficiencies, calculated using the two different predicted energy production

values described above and the corresponding irradiation values. The daily

and monthly efficiencies are calculated according to the equation (26) in-

troduced in section 5.4, thus by using the input and output energies of the

module rather than by integrating instantaneous efficiencies over a day or

87

month. For instance, the daily efficiencies are calculated using the daily

energy production values of the module and the daily irradiations.

It can be seen from the graphs in the figure 32 that it does not make any

significant difference, whether the estimated or measured module tempera-

ture is used in the prediction. The differences between the two predicted

energy production values is in the order of one per mille in all the studied

months in both graphs. Similar results were obtained with all the studied

modules.

The difference between the two graphs in figure 32 is that in the upper

graph the predicted energy productions are calculated using the corrected

ESTI irradiance (see section 4.2.3) and in the lower graph using the corrected

pyranometer irradiance. Calculation of the corrected pyranometer irradiance

was explained in section 5.4. The predictions based on pyranometer irradi-

ance overestimate the energy production clearly: the predicted values are on

average 5% higher than the measured values. The predictions based on esti

irradiances in turn are on average only 2% higher than the measured values.

This was partially expected: irradiances measured with the pyranometer are

in general higher as the pyranometer ”sees” a wider portion of the solar

spectrum than the ESTI sensor (see section 4.2). However, both devices are

calibrated to give the same reading at AM1.5G; still, the pyranometer tends

to give higher readings especially in the morning and in the evening when

the altitude angle of the sun is small (equivalently, the air mass ratio is big).

Furthermore, the module and the ESTI sensor are in this case made from

the same material, thus the prediction based on the ESTI sensor is assumed

to be more realistic. Nevertheless, it is not self-evident whether the differ-

ences between the predictions are due to these reasons only or whether the

method for calculating the corrected pyranometer irradiance overestimates

88

Figure 32: The daily average measured and predicted energy production for

ju711 from May to September in 2007. In the upper graph, the predictions

are calculated using corrected ESTI irradiance and in the lower graph using

corrected pyranometer irradiance.
89

the values.

Figure 33 shows, respectively, the monthly efficiencies for ju711. Effi-

ciencies calculated using pyranometer irradiations (lower graph in figure 33)

are in general lower than the ones calculated with ESTI irradiations (upper

graph in figure 33): measured efficiencies are on average 2% higher when cal-

culated using ESTI irradiations. This makes sense, as the irradiance values

measured with the pyranometer are higher as noted previously. Furthermore,

the behaviour discovered in the previous graphs is also seen in these graphs:

predicted efficiencies based on ESTI irradiance are closer to the measured

values than the predictions based on pyranometer irradiance.

Figure 34 presents results for daily actual and predicted energy produc-

tions in June 2007. The daily energy production naturally varies significantly

due to altering environmental conditions. Again, the predictions based on

ESTI irradiance (upper graph in figure 34) are closer to the actual energy pro-

duction values than the predictions based on pyranometer irradiance (lower

graph in figure 34).

6.1.2 CIS module by71

Figures 35-37 show the corresponding results for CIS module by71: the ac-

tual and predicted daily average energy productions (figure 35) and monthly

efficiencies (figure 36) from May to August, inclusive, in 2007, and the actual

and predicted daily energy productions in June 2007 (figure 37). Again, the

predictions based on corrected ESTI irradiances and the predictions based

on corrected pyranometer irradiances are shown in separate graphs. Results

for only one CIS module are presented because the results for the other CIS

module mentioned were essentially the same.

In all of these graphs it is seen that for this module the actual outdoor

90

Figure 33: The monthly measured and predicted efficiencies for ju711 from

May to September in 2007, calculated using corrected ESTI (upper graph)

and pyranometer (lower graph) irradiances.

91

Figure 34: The daily measured and predicted energy production for ju711

in June, 2007. In the upper graph, the predictions are calculated using cor-

rected ESTI irradiance and in the lower graph using corrected pyranometer

irradiance.
92

Figure 35: The daily average measured and predicted energy production

for by71 from May to August in 2007. In the upper graph, the predictions

are calculated using corrected ESTI irradiance and in the lower graph using

corrected pyranometer irradiance.
93

measured performance is much higher than the predicted performance (based

on indoor measurements). For the daily average energy production values,

the predicted values based on ESTI irradiance are on average 11% higher

and the predicted values based on pyranometer irradiance are on average

8% higher than the measured values. The difference being smaller with

predictions based on pyranometer irradiance is explained with the higher ir-

radiance values received from the pyranometer, which was discussed already

in the previous section. The main reason for such a large difference between

the measured and predicted performance is the discrepancy between indoor

and outdoor performance of CIS modules, resulting from the effect of differ-

ent pre-measurement conditions on these modules (see section 4.4). Similar

behaviour was seen when data from other CIS modules was analyzed.

6.2 Module comparison

Table 6 displays numerical values for the measured daily average energy

productions from May to August inclusive in 2007. Included are the c-Si

module ju711 and the CIS module by71 discussed previously, and additionally

another CIS module, denoted by by72. In addition to the energy yields, the

number of measurement days and relative amount of measurement points

discarded in filtering of the data are also indicated in order to see how these

parameters affect the differences in the energy yields. The monthly average

module temperatures are also given.

According to the table, the CIS module by72 has the highest daily average

energy yield in all the months except for August, where the c-Si module has

the highest and by72 has the worst output. The c-Si module has clearly the

worst performance of all the three modules in May and June, and in July

by71 is performing worst, though the results for July are somewhat unreliable

94

Figure 36: The monthly measured and predicted efficiency for by71 from

May to August in 2007, calculated using corrected ESTI (upper graph) and

pyranometer (lower graph) irradiances.

95

Figure 37: The daily measured and predicted energy productions for by71

in June, 2007. In the upper graph, the predictions are calculated using cor-

rected ESTI irradiance and in the lower graph using corrected pyranometer

irradiance.
96

as the CIS modules were measured for only half the month. In general, it

still seems that from these four months July has been the best month for

all the modules – this can be seen also in the graphs for individual modules

in the previous sections. The reason for this is simple: in July the level

of irradiation was high. The same applies for May, which was also a good

month for all the modules.

The amount of points filtered seems to vary a lot between the modules,

which causes uncertainity in the results. Reason for this is difficult to explain,

as the weather conditions – and thus the irradiance stability – are the same for

all the modules. For instance in May, a remarkably high number of points

had been filtered from by72 as compared to the other modules. Further

examination of the data revealed that indeed the majority of the filtering

had occurred due to large changes in irradiance during the measurements.

This applied for all the modules, and for all the months, though the number

of points filtered in May for this reason was clearly the highest for by72.

The days of especially high amount of points filtered due to this reason

seemed to show low output from all the modules; thus it migh be a pure

coincidence that during the measurements of by72 the irradiance conditions

have been especially unstable. Or, there might also be some flaws in the data

acquisition or in the program that have not been detected. However, it is

obvious that this kind of filtering distorts the results towards performance at

higher irradiances.

It is important to notice that direct module comparison from the basis of

the energy production values found in the table 6 may be misleading since all

the modules are not similar. In order to compare the performance of modules

of different types and sizes accurately, in figure 38 the energy productions

have been normalized to each module’s watt-peak, i.e., the STC maximum

97

Table 6: Daily average energy productions, the number of measurement days

and relative amount of measurement points filtered out, and the monthly

average module temperatures for c-Si module ju711 and CIS modules by71

and by72 for months of May to August, 2007.

Month ju711 by71 by72

May Daily average energy yield (Wh) 270 330 348

Number of measurement days 12 10 9

Amount of points filtered (%) 10.6 14.3 20.5

Monthly average module temperature (◦C) 32.2 34.7 35.2

June Daily average energy yield (Wh) 277 288 295

Number of measurement days 30 30 30

Amount of points filtered (%) 18.0 15.2 12.3

Monthly average module temperature (◦C) 35.6 38.3 38.9

July Daily average energy yield (Wh) 365 358 367

Number of measurement days 30 14 14

Amount of points filtered (%) 9.7 9.4 15.6

Monthly average module temperature (◦C) 41.9 42.9 43.3

August Daily average energy yield (Wh) 282 274 248

Number of measurement days 28 28 25

Amount of points filtered (%) 18.5 13.5 20.1

Monthly average module temperature (◦C) 38.0 41.1 40.8

98

power. However, different watt-peak values have been measured for these

modules, and the choice of the value used in the normalization naturally

affects the results. Here, two different watt-peaks are used: one measured

indoors upon each module’s arrival to the ESTI, and one determined by

extrapolation from outdoor measurement data. Extrapolation had to be

used because the STC conditions (25 ◦C module temperature at an irradiance

of 1000 W/m2) are hardly ever met outdoors – the module temperature is

always higher than 25 ◦C at an irradiance of 1000 W/m2. Therefore the

outdoor watt-peak value was determined by linear extrapolation using the

outdoor measurement data for module temperatures, irradiances and Pmax:s.

For the c-Si module ju711, the difference between the two watt-peaks

is very small – only 1%. In turn, for the CIS modules by71 and by72 the

outdoor watt-peaks are 5% and 9% higher, respectively, than the indoor

watt-peaks. Hence in the lower graph in figure 38, where outdoor watt-peak

is used for the normalization, the differences between all the three modules

are small. In the upper graph, where the indoor watt-peak is used for the

normalization, the c-Si module has a much lower performance than the CIS

modules. Differences between the two CIS modules are rather small, but in

general by72 has performed slightly better than by71. As already seen in

table 6, August is an exception: in that month the c-Si module dominates

and additionally by72 has performed worse than by71. A reason for this

might be that in August by72 has had three days less measurements than

the other modules, and a further examination of the data revealed that these

three days were days of relatively high output for the other modules.

From the basis of both the plots and the numerical values, it seems that

the CIS modules (especially by72) are performing better than the c-Si mod-

ule. The fact that the numerical values, that have not been normalized, gave

99

Figure 38: The daily average energy productions of one c-Si (ju711) and

two CIS modules (by71 and by72) as normalized to watt-peak values (STC

Pmax:s) measured indoors as received (upper graph) and extrapolated from

outdoor data (lower graph). Included are months from May to August in

2007.
100

similar results as the plots, is explained with the close to equal watt-peak

values of these modules (indicated in figure 38). In general, thin film mod-

ules have lower efficiencies and hence lower energy yields than c-Si modules

as discussed in section 3.3. The reason for the CIS modules dominating the

c-Si module in almost every month of this study may be due to this partic-

ular c-Si module being an unusually bad module; it does not seem to have

a particularly good efficiency (similar to that of the CIS modules), as it can

be seen by comparing figures 36 and 33. Furthermore, this study covers only

the warmer summer months. The output power of a PV module has an in-

verse relationship with its temperature (see section 3.2.3), and the negative

power temperature coefficient of c-Si modules is typically about twice that

of CIS modules [19]. However, from table 6 it can be seen that ju711 has

actually had a few degrees lower module temperature than the CIS modules

– probably due to its slightly better efficiency (less energy is dissipated as

heat). Furthermore, from the basis of the module temperatures it seems that

the warmest months have been July and August, and there is no drop in the

performance of ju711 in these months. Still, to see if the temperature really

affects the discrepancies between the modules, the study should be extended

to cover also the colder winter months.

101

7 Conclusions

The purpose of this thesis was to introduce a MATLAB program developed

for analyzing outdoor measurement data of PV modules. The program was

developed to serve the outdoor measurement field of the European Solar Test

Installation (ESTI), located at the Joint Research Centre (JRC) in Ispra,

Italy. Simultaneously, a PostgreSQL database was created for storing the

measurement data, and the program therefore had to include an interface

to the database to access the data. The program was written not only to

analyze the outdoor performance of different modules but also to compare

the outdoor measured performance with a predicted performance based on

indoor measurements. This was a part of the verification of an energy rating

method of PV modules, being developed at ESTI.

In general, the program fulfilled the requirements: it is an efficient and

fairly flexible tool for analyzing and predicting the performance of different

PV modules being measured at ESTI, and also for evaluating the energy rat-

ing method. It also provided valuable information about problems with the

outdoor measurement system, as several filters had to be included in the pro-

gram to deal with erroneous measurement data. The usage and development

of the program continued after the author’s work at ESTI had finished.

It was discovered that the method used for energy rating is valid for con-

ventional crystalline silicon (c-Si) modules, but for the copper inidium dise-

lenide (CIS) modules some problems were identified. This problem has been

encountered earlier as well [21], and it results primarily from the discrepancy

between the indoor and outdoor performance of CIS modules [24]. Therefore

it has been proposed that for the energy rating to be implemented correctly

for CIS modules, a method with correct pre-conditioning of the modules prior

to the indoor measurements is required. Alternatively, the method could em-

102

ploy outdoor data for the performance surface, but as explained previously,

this would entail much longer measurement times [30].

In addition to comparing the outdoor measured performance of different

modules to their predicted performances, the program was used for directly

comparing the outdoor performance of different modules with each other. To

do this, the modules’ energy yields had to be normalized to each module’s

watt-peak value, i.e., the STC maximum power. Different watt-peak values

are measured for a module during its measurement period at ESTI, and it

was found that the choice of the watt-peak value used in the normalization

has a strong effect on the results. In the studies two CIS modules were com-

pared with a c-Si module, and when the indoor measured watt-peak values

were used for normalisation the CIS modules appeared to perform signifi-

cantly better than the c-Si module. However, when the outdoor watt-peak

values were used, the CIS modules tended to perform only slightly better.

This is due to the indoor values not being correctly pre-conditioned as dis-

cussed in the preceding paragraph. Since only the hotter summer months

were considered in this study the CIS modules would be expected to outper-

form somewhat the c-Si module as the effect of temperature on the modules

performance is different for different module technologies. For a more robust

comparison, a longer time period, ideally a full year, covering also the cooler

winter months should be considered.

Furthermore, a particular problem encountered in the outdoor measure-

ments is that irradiance sometimes changes quite significantly during the in-

dividual performance measurements of a module, resulting in distorted I−V

curves and hence faulty estimates of instantaneous maximum power. The ir-

radiance is measured with two different devices that react to the changes

in different manners: a reference cell and a pyranometer. The reference cell

103

(specifically an ESTI sensor is employed at ESTI), is often preferred as it has

a rapid response time and its spectral response is closer to that of the mod-

ules. The pyranometer in turn has a wider spectral response, and therefore

might correspond more realistically to the actual amount of energy received

from the sun. However, due to its slow response time, the instantaneous val-

ues received from the pyranometer may not be correct when the irradiance

is rapidly changing (typically 30 irradiance values are read during a single

I − V scan of 5 seconds duration). A routine was therefore created in the

program, used for calculating a corrected pyranometer value. So far very

little attention has been given to this problem in the field of outdoor per-

formance measurement of photovoltaics – and it would be interesting to go

more deeply into the subject.

Finally, some comments on possible future developments of the program.

Besides irradiance data, evaluation of other environmental data, such as am-

bient temperature and wind speed, could have been conducted as well in

order to study their effect on module performance. Then, at present, to use

and understand fully the program the user has to acquire a rather high level

of MATLAB skills. This is without a doubt a major drawback for the pro-

gram; it is generally not very user-friendly. Another clear drawback is the

simplistic method the program uses for filtering the data: the faulty mea-

surement points are merely replaced with zeros. The effect of filtering on

the final results also remains quite hidden – although the program calculates

and stores the number of filtered points, further evaluation would be neces-

sary in order to understand the impact that filtering has had. The program

is also rather sensitive to faults and irregularities in the measurement data;

to make it less sensitive the program should be tested with a wider range

of data. Finally, the program performance could surely be improved for in-

104

stance by further minimizing the number of calculations in the main scripts

and transferring them to separate functions instead.

To conclude, in the future the program should be developed to be more

efficient and robust, more sophisticated in for example its filtering methods

and more user-friendly. It could also include more evaluation of different

kinds of environmental data.

105

References

[1] V. Quaschning. Understanding Renewable Energy Systems. Earthscan

Canada, 2005.

[2] B. A. Sandén. The economic and institutional rationale of PV subsidies

[Electronic Version]. Solar Energy, 78:137–146, 2005.

[3] R. M. Swanson. A Vision for Crystalline Silicon Photovoltaics. Progress

in Photovoltaics: Research and Applications, 14:443–453, 2006.

[4] G. M. Masters. Renewable and Efficient Electric Power Systems. John

Wiley & Sons, 2004.

[5] H. D. Young and R. A. Freedman. University Physics with Modern

Physics. Pearson Addison Wesley, San Fransisco, CA, USA, 11th edition,

2004.

[6] Elements Database. Periodic Table of Elements. Retrieved August, 2008

from http://www.elementsdatabase.com/.

[7] M. A. Green. Solar Cells. Operating Principles, Technology and System

Applications. The University of New South Wales, Kensington, NSW,

Australia, 1998.

[8] Department of Physics C.R. Nave (Georgia State University and As-

tronomy). Hyperphysics, 2005. Retrieved October, 2007 from http:

//hyperphysics.phy-astr.gsu.edu/hbase/hframe.html.

[9] Discussions with E. D. Dunlop at the ESTI. 25.9.2008.

[10] A. Virtuani, W. Zaaiman, and H. Müllejans. Modified Visual Appear-

ance of Cu(In,Ga)(Se,S)2 Thin Film Solar Modules for Building Inte-

106

grated Photovoltaics. In Proceedings of the 22nd European Photovoltaic

Solar Energy Conference (EU PVSEC), Milan, Italy, 2007.

[11] International Organization for Standardization (ISO). ISO/IEC 17025:

General requirements for the competence of testing and calibration labo-

ratories. International Organization for Standardization (ISO) and In-

ternational Electrotechnical Commission (IEC), 2005.

[12] R. Kenny. A personal e-mail message, received at 23.4.2008.

[13] R. Kröni, S. Stettler, G. Friesen, D. Chianese, R. Kenny, and

W. Durisch. Energy Rating of Solar Modules. Technical report, Swiss

Federal Office of Energy (SFOE), 2005.

[14] E. Dunlop. ESTI description. Retrieved April, 2008 from http://

sunbird.jrc.it/solarec/index.htm.

[15] Solar Electricity Action (SOLAREC) European Communities. SO-

LAREC Home, 12.11.2007. Retrieved April, 2008 from http://

sunbird.jrc.it/solarec/.

[16] D. Anderson. Energy Rating of Photovoltaic Modules. PhD thesis, Uni-

versity of Strathclyde, United Kingdom, 2002.

[17] Thies Clima. Ultrasonic Anemometer 2D. Retrieved May, 2008 from

http://www.thiesclima.com/usanemo_e.htm.

[18] Kipp & Zonen, Delft, The Netherlands. Instruction Manual of the CM11

pyranometer and the CM14 albedometer, 2004.

[19] Discussions with R. Kenny at the ESTI. 9.1. and 15.1.2008.

107

[20] International Electrotechnical Commission (IEC). IEC 60904.1: Mea-

surement of photovoltaic current-voltage characteristics. International

Electrotechnical Commission (IEC), 2006.

[21] R. P. Kenny, A. Ioannides, H. Müllejans, W. Zaaiman, and E. D. Dunlop.

Performance of thin film PV modules. Thin Solid Films, 511-512:663–

672, 2006.

[22] R. P. Kenny, E. D. Dunlop, H. A. Ossenbrik, and H. Müllejans. A Prac-

tical Method for the Energy Rating of c-Si Photovoltaic Modules Based

on Standard Tests. Progress in Photovoltaics: Research and Applica-

tions, 14:155–166, 2006.

[23] R. P. Kenny, G. Friesen, D. Chianese, A. Bernasconi, and E. D. Dunlop.

Energy Rating of PV modules: comparison of methods and approach. In

Proceedings of the 3rd World Conference on Photovoltaic Solar Energy

Conversion, Osaka, Japan, 2003.

[24] A. Virtuani, D. Pavanello, R. P. Kenny, M. Nikolaeva-Dimitrova, and

E. D. Dunlop. Comparison of Indoor and Outdoor Performance Mea-

surements on CIS Thin Film Solar Modules. In Proceedings of the 22nd

European Photovoltaic Solar Energy Conference (EU PVSEC), Milan,

Italy, 2007.

[25] A. Ekonoja, T. Lahtonen, and J. Mäntylä. Henkilökohtaisen

tiedonhallinnan perusteet, 6.11.2003. Retrieved March, 2008 from

http://appro.mit.jyu.fi/doc/tiedonhallinta/.

[26] J. C. Worsley and J. D. Drake. Practical PostgreSQL. O’Reilly, 2002.

[27] PostgreSQL Global Development Group. PostgreSQL homepage, 2008.

Retrieved January, 2008 from http://www.postgresql.org.

108

[28] The MathWorks Inc. The MathWorks Home, 2008. Retrieved January,

2008 from http://www.mathworks.com.

[29] The MathWorks Inc. The MathWorks Support, 2008. Retrieved Jan-

uary, 2008 from http://www.mathworks.com/support/.

[30] R. P. Kenny, T. Huld, A. Virtuani, M. Nikolaeva-Dimitrova, and

H. Kauko. Comparison of Outdoor Performance Measurements on CIS

and c-Si Modules. Poster presented at the 23rd European Photovoltaic

Solar Energy Conference (EU PVSEC), September 2008.

109

Appendices

A Fields in the Solarec database

The following table lists the fields in the Solarec -database, accompained with

their data types. The original source files for the data are also indicated. To

see the explanations for the names of the fields, see section 4.2.3.

Table 7: The fields in the database that originate from the enr-files, accom-

pained with their data types.

Source file Field name SQL data type

enr date date

time time

irradiance esti double precision

irradiance pyran double precision

t amb double precision

t mod double precision

isc double precision

voc double precision

pmax double precision

impp double precision

vmpp double precision

fillfactor double precision

110

Table 8: The fields in the database that originate from the ene and raw-files,

accompained with their data types. The square brackets refer to (double

precision) data arrays.

Source file Field name SQL data type

ene esti irr ave double precision

pyran irr ave double precision

irr corr double precision

irr change double precision

esti voltage double precision

isc corr double precision

voc corr double precision

pmax corr double precision

impp corr double precision

vmpp corr double precision

ff corr double precision

raw vmod double precision[]

imod double precision[]

irr iv esti double precision[]

irr iv pyran double precision[]

v iv esti double precision[]

imod iv corrected double precision[]

111

B The script and functions for analyzing data

from ene-files

B.1 The main script: ene analysis

%**%

% This is the main script for analyzing outdoor ene −data

% retrieved from the database 'solarec'.

% Author: Hanne Kauko

% Date: 13.2.2008

%**%

close all

clear all

%% CONNECTING TO THE DATABASE

% Using the interface functions (pq...) to create connection to the

% database

connstr = 'host=emu.jrc.it dbname=solarec user=thomas';

myconn = pqconnectdb(connstr);

mystat = pqstatus(myconn) %#ok<NOPTS>

%% GETTING THE DESIRED DATA FROM THE DATABASE

% Using the function getdata db ene to retrieve the desired data from the

% database and arrange it to appropriate arrays.

% Here G esti is the corrected to ESTI irradiation (in W/m2).

112

[N, nYears, nRows, nDays, Dstart, Dend, mod, l, time,...

G esti, G esti av, esti change, G pyr av, Pmax, Tmod, Tamb] ...

= getdata db ene(myconn);

%% CORRECTING THE PYRANOMETER IRRADIANCE

% Using the function pyran correction to correct the value of pyranometer

% irradiance.

% Here G pyr is the corrected to pyranometer irradiation (in W/m2).

G pyr = pyran correction(G pyr av, G esti av, G esti,...

esti change, N, nRows, mod);

%% EMPIRICAL ANALYSIS

% Calculating the empirical Tmod with the function NOCT estim

% Using the corrected to ESTI irradiation

G str = 'corrected to ESTI';

Tmod emp es = NOCT estim(Tmod, Tamb, G esti, N, mod, nRows, G str);

% Using the corrected to pyranometer irradiation

G str = 'corrected to pyranometer';

Tmod emp py = NOCT estim(Tmod, Tamb, G pyr, N, mod, nRows, G str);

% To calculate the empirical Pmaxes, the empirical equation and

% parameters, as well as the module area and different STC outputs,

% must be stored in the text file 'empirical data.txt' residing in

% the same folder with the M−files.

Pmax emp es = zeros(l,1,N); Pmax emp py = zeros(l,1,N);

Pmax empT es = zeros(l,1,N); Pmax empT py = zeros(l,1,N);

Pmax STC emp = zeros(1,N);

113

Pmax STC lapss = zeros(1,N);

Pmax STC out = zeros(1,N);

Pmax STC label = zeros(1,N);

mod area = zeros(1,N);

match=0;

%Opening 'emprical data.txt' and retrieving the required data from it.

fid = fopen('empirical data.txt');

C = textscan(fid,'%s %s %f %f %f %f %f %f %f %f %f %f',...

'commentStyle','%');

[a,b,c,d,e,f] = C{3:8};

for n=1:N

for row=1:length(C{1})

if length(char(C{1}(row)))==length(mod{n}) &&...

all(char(C{1}(row))==mod{n})==1

match = 1;

Pmax eq = inline(vectorize(char(C{2}(row))),...

'Irr','T','a','b','c','d','e','f');

Pmax emp es(1:nRows(n),:,n) = ...

Pmax eq(G esti(1:nRows(n),:,n),...

Tmod(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax empT es(1:nRows(n),:,n) = ...

Pmax eq(G esti(1:nRows(n),:,n),...

Tmod emp es(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax emp py(1:nRows(n),:,n) = ...

Pmax eq(G pyr(1:nRows(n),:,n),...

Tmod(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax empT py(1:nRows(n),:,n) = ...

Pmax eq(G pyr(1:nRows(n),:,n),...

Tmod emp py(1:nRows(n),:,n),...

114

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax STC emp(n) = Pmax eq(1000,25,...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax STC lapss(n) = C{10}(row);

Pmax STC out(n) = C{11}(row);

Pmax STC label(n) = C{12}(row);

mod area(n) = C{9}(row);

end

end

end

if match==0

disp(['The empirical data for this module has not been stored',...

'in the file empirical data.txt.'])

return

end

fclose(fid);

%% FILTERING

% Using the function data filter ene to filter the data.

% The filtered points are marked in an array 'flag', and the

% value of flag(i,j) tells the reason why the point has been filtered

% according to the following:

% flag(j,i) = 1, if Pmax was zero in the original data

% flag(j,i) = 2, if Pmax<0 in the original data

% flag(j,i) = 3, if Pmax emp or Pmax empT <0 or complex in the original

% data

% flag(j,i) = 4, if abs(Pmax−Pmax emp)/max(Pmax,Pmax emp) > 0.5

% flag(j,i) = 5, if the (ESTI) irradiance has changed more than 5% during

% the measurement

% flag(j,i) = 6, if Pmax>Pmax STC max (the maximum STC Pmax) in the

% original data

115

%Calculating the maximum STC Pmax

Pmax STC max = zeros(N,1);

for n=1:N

Pmax STC max(n) = max([Pmax STC emp(n) Pmax STC lapss(n) ...

Pmax STC out(n) Pmax STC label(n)]);

end

[Pmax, Pmax emp es, Pmax empT es, Pmax emp py, Pmax empT py,...

G esti, G pyr, flag, nPoints deleted] ...

= data filter ene(Pmax, Pmax emp es, Pmax empT es, Pmax emp py,...

Pmax empT py, esti change, G esti, G pyr, Pmax STC max, N, nRows);

%% CREATING A BASE ARRAY

% Using the function 'base matrix' to create a 'base array', in which

% every possible measurement point for the concerned time period is

% included, and the data form each module recides at their correct points.

% 'base matrix' calculates the mode measurement interval for the time

% period, and uses this to create a common time stamp for all the modules

% discussed. 'nMeas day' tells the (fixed) number of measurement

% points within a day.

% Arranging the original and filtered data into an array

Data = [Pmax Pmax emp es Pmax empT es Pmax emp py Pmax empT py ...

G esti G pyr Tmod flag nPoints deleted];

[base array, nMeas day, dt in minutes] = ...

base matrix(nDays, Dstart, Dend, time, Data, N, l, nRows);

%% ENERGY CALCULATIONS

% Using the function energycalc to calculate the daily and monthly

% energies from each different Pmax, and daily and monthly irradiation.

116

% The daily sums are stored into 4−nYears arrays with the postfix day,

% consisting of 12x31 matrices. The 3rd dimension is the no of years of

% measurement and the 4th is the no of modules analyzed.

% The monthly sums are stored into 3D arrays consisting 12x(no of years)

% of matrices, 3rd dimension being the number of modules analyzed.

[E day, E month, E fill day, E fill month, E emp es day, E emp es month,...

E empT es day, E empT es month, E emp py day, E emp py month, ...

E empT py day, E empT py month, G esti day, G esti month, ...

G pyr day, G pyr month, Tmod av day, Tmod av month, flag array,...

date array]...

= energycalc (base array, nDays, nYears, Dstart, Dend,...

N, nMeas day, dt in minutes);

%% EFFICIENCY CALCULATIONS

% Calculating the efficiencies using measured outputs and corrected to

% ESTI irradiance

[Eff es, Eff es day, Eff es month] = ...

effcalc (Pmax, E day, E month, G esti, G esti day, G esti month, ...

mod area, nYears, N);

% Calculating the efficiencies using measured outputs and corrected to

% pyranometer −irradiance

[Eff py, Eff py day, Eff py month] = ...

effcalc (Pmax, E day, E month, G pyr, G pyr day, G pyr month, ...

mod area, nYears, N);

% Calculating the efficiencies using empirical outputs and corrected to

% ESTI −irradiance.

[Eff emp es, Eff emp es day, Eff emp es month] = ...

effcalc (Pmax emp es, E emp es day, E emp es month, ...

117

G esti, G esti day, G esti month, mod area, nYears, N);

[Eff empT es, Eff empT es day, Eff empT es month] = ...

effcalc (Pmax empT es, E empT es day, E empT es month, ...

G esti, G esti day, G esti month, mod area, nYears, N);

% Calculating the efficiencies using measured outputs and corrected to

% pyranometer −irradiance

[Eff emp py, Eff emp py day, Eff emp py month] = ...

effcalc (Pmax emp py, E emp py day, E emp py month, ...

G pyr, G pyr day, G pyr month, mod area, nYears, N);

[Eff empT py, Eff empT py day, Eff empT py month] = ...

effcalc (Pmax empT py, E empT py day, E empT py month, ...

G pyr, G pyr day, G pyr month, mod area, nYears, N);

%% PLOTTING THE RESULTS

Dstart vec = datevec(Dstart);

year vec = zeros(1,nYears);

for k=1:nYears

year vec(k)=Dstart vec(1)+(k−1);

end

%% Using function 'plotter' to plot the monthly and daily measured and

%% predicted energy productions and efficiencies.

% Using corrected ESTI irradiation

choice = input(['\n Do you want to make graphs where measured ',...

'\n values are compared with predicted ones,',...

'\n using values calculated with corrected ESTI irradiance',...

'\n(for each module separately) (y/n)? '],'s');

if choice=='y'

irrad str='corrected ESTI';

118

irrad fn='ESTIcorr';

plotter(E month, E emp es month, E empT es month,...

Eff es month, Eff emp es month, Eff empT es month,...

E day, E emp es day, E empT es day, Eff es day, Eff emp es day,...

Eff empT es day, mod, irrad str, irrad fn, N, year vec, nYears);

end

% Using corrected pyranometer irradiation

choice = input(['\n Do you want to make graphs where measured',...

'\n values are compared with predicted ones,',...

'\n using values calculated with corrected pyranometer irradiance',...

'\n(for each module separately) (y/n)? '],'s');

if choice=='y'

irrad str='corrected pyranometer';

irrad fn='pyr corr';

plotter(E month, E emp py month, E empT py month,...

Eff py month, Eff emp py month, Eff empT py month,...

E day, E emp py day, E empT py day, Eff py day, Eff emp py day,...

Eff empT py day, mod, irrad str, irrad fn, N, year vec, nYears);

end

%% Using function 'plotter meas only' to plot just daily and monthly energy

%% productions and irradiances, making no comparison with the predicted

%% values

% Plotting the daily and monthly energy productions, using the energy

% calculated with Pmax fill having gaps missing because of filtering

% filled with average ones.

choice = input(['\n Do you want to make graphs with',...

' measured (filled) energy production only (y/n)? '],'s');

if choice=='y'

tit = 'energy production';

119

ylbl = 'Energy [Wh]';

filename = 'meas energy';

plotter meas only(E fill day, E fill month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

% Plotting the daily and monthly corrected ESTI irradiations

choice = input(['\n Do you want to make graphs with corrected',...

'\n ESTI irradiations only (y/n)? '],'s');

if choice=='y'

tit = 'corrected ESTI irradiance';

ylbl = 'Irradiance [Wh/mˆ2]';

filename = 'ESTIcorr';

plotter meas only(G esti day, G esti month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

% Plotting the daily and monthly corrected pyranometer irradiations

choice = input(['\n Do you want to make graphs with corrected',...

'\n pyranometer irradiations only (y/n)? '],'s');

if choice=='y'

tit = 'corrected pyranometer irradiance';

ylbl = 'Irradiance [Wh/mˆ2]';

filename = 'pyr corr';

plotter meas only(G pyr day, G pyr month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

%% Using the function 'mod comparison' to make module comparison plots.

choice = input(['\n Do you want to make module',...

'comparison plots (y/n)? '],'s');

if choice=='y'

120

irrad str={'corrected ESTI', 'corrected pyranometer'};

irrad fn={'ESTIcorr','pyr corr'};

mod comparison(Pmax STC lapss, Pmax STC out,...

Pmax STC emp, Pmax STC label, E day, G esti day, G pyr day,...

Tmod av day, mod, irrad str, irrad fn, N, year vec, nYears);

end

%% SAVING THE DATA

% Using the function 'data writer' to write the daily and monthly data into

% text files.

choice = input(['\n Do you want to write the results',...

'into text−files (y/n)? '],'s');

if choice=='y'

data writer (E day, E month, E emp es day, E emp es month,...

E empT es day, E empT es month, E emp py day, E emp py month,...

E empT py day, E empT py month, ...

Eff es day, Eff es month, Eff py day, Eff py month,...

Eff emp es day, Eff emp es month, Eff emp py day,...

Eff emp py month, Eff empT es day, Eff empT es month, ...

Eff empT py day, Eff empT py month, G esti day, G esti month,...

G pyr day, G pyr month, Tmod av day, Tmod av month, flag array, ...

mod, nYears, N, date array);

end

%%

pqclear(res);

pqfinish(myconn);

B.2 The function getdata db ene

121

function [fN, fnYears, nRows, fnDays, Dstart ser, Dend ser, fmod, fl,...

ftime, fG esti cor, fG esti av, fG change, fG pyr av, ...

fPmax, fTmod, fTamb]...

= getdata db ene(myconn)

%−−%

% This function retireves the required .ene −data from the database for

% user−defined time period and set of modules

% and arranges the data into appropriate arrays.

%−−%

% Defining the time period to be analyzed

text Dstart = 'The starting date (yyyy−mm−dd) of the data analysis: ';

text Dend = 'The last date (yyyy−mm−dd) to be considered in the analysis: ';

Dstart = input(text Dstart,'s');

Dend = input(text Dend,'s');

% Converting the starting and ending dates into serial number format

Dstart ser = datenum(Dstart,'yyyy−mm−dd');

Dend ser = datenum(Dend,'yyyy−mm−dd');

fnDays = Dend ser−Dstart ser+1; % No of days in the dataset

% Converting the starting and ending dates into vector format (in order to

% calculate the no. of years of measurement)

Dstart vec = datevec(Dstart ser); Dend vec=datevec(Dend ser);

fnYears = Dend vec(1)−Dstart vec(1)+1; % No of years of measurement

% Defining the modules to be analyzed

fN = input('How many different modules are compared? ');

fmod = cell(1,fN);

res = zeros(1,fN,'uint32');

nFields = zeros(1,fN);

122

nRows = zeros(1,fN);

% Defining the data to be retrieved

for i=1:fN

name = ['Name of the module ' num2str(i) '? '];

fmod{i} = input(name,'s'); % Cell array containing names of the modules

text = ['SELECT date,time,pmax corr,irr corr,irr change,',...

'esti irr ave,pyran irr ave,t mod,t amb FROM %s',...

'WHERE date≥''%s'' AND date≤''%s'' ORDER BY date,time'];

exeStr = sprintf(text,fmod{i},Dstart,Dend);

res(i) = pqexec(myconn, exeStr);

nFields(i) = pqnfields(res(i));

nRows(i) = pqntuples(res(i));

end

%Displaying the size of the dataset

disp('Number of columns in the dataset of each module: ')

disp(nFields)

disp('Number of rows in the dataset of each module: ')

disp(nRows)

fl = max(nRows);

ftime = zeros(fl,6,fN);

fPmax = zeros(fl,1,fN);

fG esti cor = zeros(fl,1,fN);

fG esti av = zeros(fl,1,fN);

fG pyr av = zeros(fl,1,fN);

fG change = zeros(fl,1,fN);

fTmod = zeros(fl,1,fN);

fTamb = zeros(fl,1,fN);

% Retrieving the data using the variable 'res' recieved above and

% creating the time and data arrays

123

for i=1:fN

for j=1:nRows(i)

timeStr = [pqgetvalue(res(i),j−1,0) ' ' pqgetvalue(res(i),j−1,1)];

% Dates and times of each measurement:

ftime(j,:,i) = datevec(timeStr,'yyyy−mm−dd HH:MM:SS');

% Corrected Pmax (W)

fPmax(j,:,i) = pqgetvalue(res(i),j−1,2);

% Corrected to ESTI irrad., (W/m2)

fG esti cor(j,:,i) = pqgetvalue(res(i),j−1,3);

% Change in the ESTI irrad. during meas. (%)

fG change(j,:,i) = pqgetvalue(res(i),j−1,4);

% Average ESTI irrad. (W/m2)

fG esti av(j,:,i) = pqgetvalue(res(i),j−1,5);

% Average pyranometer irrad. (W/m2)

fG pyr av(j,:,i) = pqgetvalue(res(i),j−1,6);

% Module temp. (C)

fTmod(j,:,i) = pqgetvalue(res(i),j−1,7);

% Ambient temp. (C)

fTamb(j,:,i) = pqgetvalue(res(i),j−1,8);

end

end

B.3 The function pyran correction

function fG pyr cor = ...

pyran correction(fG pyr av, fG esti av, fG esti cor, festi change, ...

fN, fnRows, fmod)

%−−%

% This function calculates a corrected value for pyranometer irradiance.

% The correction is done only for measurement points, where ESTI

% irradiance has changed less than 5% (this was found a proper limit by

124

% looking the IV−curves and irradiance curves from measurements with

% different changes in the ESTI irradiance).

% If ESTI change is < 2%, the correction is done by

% G pyr cor(i) = G pyr av(i)./G esti av(i)*G esti cor(i);

% If ESTI change is between 2% and 5%, the nearest point j where

% ESTI change < 2% within 3 steps is found, and the correction is then

% done by

% G pyr cor(i) = G pyr av(j)./G esti av(j)*G esti cor(i).

%−−%

fG pyr cor = zeros(size(fG pyr av));

step count = zeros(length(fnRows),fN);

for n=1:fN

for i=1:fnRows(n)

if festi change(i,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i,1,n)./fG esti av(i,1,n)...

*fG esti cor(i,1,n);

step count(i,n)=1;

elseif 2 < festi change(i,1,n) && festi change(i,1,n) < 5

if festi change(i+1,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i+1,1,n)./...

fG esti av(i+1,1,n)*fG esti cor(i,1,n);

step count(i,n)=2;

elseif festi change(i−1,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i−1,1,n)./...

fG esti av(i−1,1,n)*fG esti cor(i,1,n);

step count(i,n)=2;

elseif festi change(i+2,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i+2,1,n)./...

fG esti av(i+2,1,n)*fG esti cor(i,1,n);

step count(i,n)=3;

elseif festi change(i−2,1,n)≤2

125

fG pyr cor(i,1,n) = fG pyr av(i−2,1,n)./...

fG esti av(i−2,1,n)*fG esti cor(i,1,n);

step count(i,n)=3;

elseif festi change(i+3,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i+3,1,n)./...

fG esti av(i+3,1,n)*fG esti cor(i,1,n);

step count(i,n)=4;

elseif festi change(i−3,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i−3,1,n)./...

fG esti av(i−3,1,n)*fG esti cor(i,1,n);

step count(i,n)=4;

elseif festi change(i+4,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i+4,1,n)./...

fG esti av(i+4,1,n)*fG esti cor(i,1,n);

step count(i,n)=5;

elseif festi change(i−4,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i−4,1,n)./...

fG esti av(i−4,1,n)*fG esti cor(i,1,n);

step count(i,n)=5;

elseif festi change(i+5,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i+5,1,n)./...

fG esti av(i+5,1,n)*fG esti cor(i,1,n);

step count(i,n)=6;

elseif festi change(i−5,1,n)≤2

fG pyr cor(i,1,n) = fG pyr av(i−5,1,n)./...

fG esti av(i−5,1,n)*fG esti cor(i,1,n);

step count(i,n)=6;

end

end

end

figure;

hist(step count(:,n),6)

tit text = ['Histogram for the steps to be taken from a point',...

126

'\n having a change in ESTI irradiance between 2%% and 5%%',...

'\n to a point with lt. 2%% change',...

'\n(%s; the total number of points is %d)'];

tit = sprintf(tit text,fmod{n},fnRows(n));

title(tit)

xlabel text = ['Number of steps (in the first bin there are',...

'the points with no steps to be taken)'];

xlabel(xlabel text)

ylabel('Count')

yMax = fnRows(n);

axis([0 6 0 yMax]);

end

B.4 The function data filter ene

function [fPmax, fPmax emp E, fPmax empT E, fPmax emp P, fPmax empT P,...

fG esti, fG pyr, fFlag, fnPoints deleted] ...

= data filter ene(fPmax, fPmax emp E, fPmax empT E, ...

fPmax emp P, fPmax empT P, fG change, fG esti, fG pyr, ...

fPmax STC max, fN, fnRows)

%−−%

% This function filters out bad data points, i.e. sets empirical and

% measured Pmaxes and irradiance to zero if there is something strange

% in the data. The filtered points are marked in an array 'flag', and the

% value of flag(i,j) tells the reason why the point has been filtered

% according to the following:

%

% flag(j,i) = 1, if Pmax was zero in the original data

% flag(j,i) = 2, if Pmax<0 in the original data

% flag(j,i) = 3, if Pmax emp or Pmax empT <0 or complex in the

127

% original data (this may occur at low temperatures if the empirical

% equation is 'bad')

% flag(j,i) = 4, if abs(Pmax−Pmax emp)/max(Pmax,Pmax emp) > 0.5

% flag(j,i) = 5, if the (ESTI) irradiance has changed more than 5%

% during the measurement

% flag(j,i) = 6, if Pmax>Pmax STC max (the maximum STC Pmax) in the

% original data

%−−%

text = ['The treshold value for the change in ESTI irradiance',...

'for filtering the data is by default 5%.'];

disp(text)

choice = input('Do you want to set another treshold (y/n)? ','s');

if choice=='y'

G th = input('Select the value for the treshold (in %): ');

else

G th = 5;

end

fFlag = zeros(size(fPmax));

fnPoints deleted = zeros(size(fPmax));

for i=1:fN

for j=1:fnRows(i)

if fPmax(j,:,i) == 0

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 1;

end

128

if fPmax(j,:,i) < 0

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 2;

end

if fPmax emp E(j,:,i)<0 | | isreal(fPmax emp E(j,:,i))==0 | | ...

fPmax empT E(j,:,i)<0 | | isreal(fPmax empT E(j,:,i))==0 ...

| | fPmax emp P(j,:,i)<0 | | isreal(fPmax emp P(j,:,i))==0 ...

| | fPmax empT P(j,:,i)<0 | | isreal(fPmax empT P(j,:,i))==0

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 3;

end

if abs(fPmax(j,:,i)−fPmax emp E(j,:,i))/...

max([fPmax(j,:,i) fPmax emp E(j,:,i)]) > 0.5 | | ...

abs(fPmax(j,:,i)−fPmax emp P(j,:,i))/...

max([fPmax(j,:,i) fPmax emp P(j,:,i)]) > 0.5

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

129

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 4;

end

if fG change(j,:,i) > G th

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 5;

end

if fPmax(j,:,i) > fPmax STC max(i)

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 6;

end

% Calculating total the number of points deleted by filtering

% (necessary to do separately, as there might be some overlapping

% in the flags)

fnPoints deleted(j,:,i) = nnz(fPmax(j,:,i)==0);

end

end

130

C The script and functions for analyzing data

from enr-files

C.1 The main script: enr analysis

%**%

% This is the main script for analyzing outdoor enr −data

% retrieved from the database 'solarec'.

% Author: Hanne Kauko

% Date: 13.2.2008

%**%

close all

clear all

%% CONNECTING TO THE DATABASE

% Using the interface functions (pq...) to create connection to the

% database

connstr = 'host=emu.jrc.it dbname=solarec user=thomas';

myconn = pqconnectdb(connstr);

mystat = pqstatus(myconn) %#ok<NOPTS>

%% GETTING THE DESIRED DATA FROM THE DATABASE

% Using the function getdata db ene to retrieve the desired data from the

% database and arrange it to appropriate arrays.

[N, nYears, nRows, nDays, Dstart, Dend, mod, l, time,...

131

G esti, G pyr, Pmax, Tmod, Tamb] = getdata db enr(myconn);

%% EMPIRICAL ANALYSIS

% Calculating the empirical Tmod with the function NOCT estim

% Using ESTI irradiation

G str = 'ESTI';

Tmod emp es = NOCT estim(Tmod, Tamb, G esti, N, mod, nRows, G str);

% Using pyranometer irradiation

G str = 'pyranometer';

Tmod emp py = NOCT estim(Tmod, Tamb, G pyr, N, mod, nRows, G str);

% To calculate the empirical Pmaxes, the empirical equation and

% parameters, as well as the module area and different STC outputs,

% must be stored in the text file 'empirical data.txt' esiding in

% the same folder with the M−files.

Pmax emp es = zeros(l,1,N); Pmax emp py = zeros(l,1,N);

Pmax empT es = zeros(l,1,N); Pmax empT py = zeros(l,1,N);

Pmax STC emp = zeros(1,N);

Pmax STC lapss = zeros(1,N);

Pmax STC out = zeros(1,N);

Pmax STC label = zeros(1,N);

mod area = zeros(1,N);

%Opening 'emprical data.txt' and retrieving the required data from it.

fid = fopen('empirical data.txt');

C = textscan(fid, '%s %s %f %f %f %f %f %f %f %f %f %f', ...

'commentStyle','%');

[a,b,c,d,e,f] = C{3:8};

for n=1:N

for row=1:length(C{1})

132

if length(char(C{1}(row)))==length(mod{n}) && ...

all(char(C{1}(row))==mod{n})==1

match = 1;

Pmax eq = inline(vectorize(char(C{2}(row))),...

'Irr','T','a','b','c','d','e','f');

Pmax emp es(1:nRows(n),:,n) = ...

Pmax eq(G esti(1:nRows(n),:,n),Tmod(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax empT es(1:nRows(n),:,n) = ...

Pmax eq(G esti(1:nRows(n),:,n),...

Tmod emp es(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax emp py(1:nRows(n),:,n) = ...

Pmax eq(G pyr(1:nRows(n),:,n),Tmod(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax empT py(1:nRows(n),:,n) = ...

Pmax eq(G pyr(1:nRows(n),:,n),...

Tmod emp py(1:nRows(n),:,n),...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax STC emp(n) = Pmax eq(1000,25,...

a(row),b(row),c(row),d(row),e(row),f(row));

Pmax STC lapss(n) = C{10}(row);

Pmax STC out(n) = C{11}(row);

Pmax STC label(n) = C{12}(row);

mod area(n) = C{9}(n);

end

end

end

if match==0

disp(['The empirical data for this module has not been stored',...

'in the file empirical data.txt.'])

return

end

133

fclose(fid);

%% FILTERING

% Calling the function data filter to filter the data.

% The filtered points are marked in an array 'flag', and the

% value of flag(i,j) tells the reason why the point has been filtered

% according to the following:

% flag(j,i) = 1, if Pmax was zero in the original data

% flag(j,i) = 2, if Pmax<0 in the original data

% flag(j,i) = 3, if Pmax emp or Pmax empT <0 or complex in the original

% data

% flag(j,i) = 4, if abs(Pmax−Pmax emp)/max(Pmax,Pmax emp) > 0.5

% flag(j,i) = 5, if abs(G esti−G pyr)/max(G esti,G pyr) > 0.3

% flag(j,i) = 6, if Pmax>Pmax STC max (the maximum STC Pmax) in the

% original data

%Calculating the maximum STC Pmax

Pmax STC max = zeros(N,1);

for n=1:N

Pmax STC max(n) = max([Pmax STC emp(n) Pmax STC lapss(n) ...

Pmax STC out(n) Pmax STC label(n)]);

end

[Pmax, Pmax emp es, Pmax empT es, Pmax emp py, Pmax empT py,...

G esti, G pyr, flag, nPoints deleted] ...

= data filter enr(Pmax, Pmax emp es, Pmax empT es, ...

Pmax emp py, Pmax empT py, G esti, G pyr, Pmax STC max, N, nRows);

%% CREATING A BASE ARRAY

% Using the function 'base matrix' to create a 'base array', in which

134

% every possible measurement point for the concerned time period is

% included, and the data form each module recides at their correct points.

% 'base matrix' calculates the mode measurement interval for the time

% period, and uses this to create a common time stamp for all the modules

% discussed. 'nMeas day' tells the (fixed) number of measurement

% points within a day.

% Arranging the original and filtered data into an array

Data = [Pmax Pmax emp es Pmax empT es Pmax emp py Pmax empT py ...

G esti G pyr Tmod flag nPoints deleted];

[base array, nMeas day, dt in minutes] = ...

base matrix(nDays, Dstart, Dend, time, Data, N, l, nRows);

%% ENERGY CALCULATIONS

% Using the function energycalc to calculate the daily and monthly

% energies from each different Pmax, and daily and monthly irradiation.

% The daily sums are stored into 4−D arrays with the postfix day,

% consisting of 12x31 matrices. The 3rd dimension is the no of years of

% measurement and the 4th is the no of modules analyzed.

% The monthly sums are stored into 3−D arrays consisting 12x(no of years)

% of matrices, 3rd dimension being the number of modules analyzed.

[E day, E month, E fill day, E fill month, E emp es day, ...

E emp es month, E empT es day, E empT es month, ...

E emp py day, E emp py month, E empT py day, E empT py month,...

G esti day, G esti month, G pyr day, G pyr month, Tmod av day, ...

flag array, date array]...

= energycalc (base array, nDays, nYears, Dstart, Dend,...

N, nMeas day, dt in minutes);

135

%% EFFICIENCY CALCULATIONS

% Calculating the efficiencies using measured outputs and ESTI irradiance

[Eff es, Eff es day, Eff es month] = ...

effcalc (Pmax, E day, E month, G esti, G esti day, G esti month, ...

mod area, nYears, N);

% Calculating the efficiencies using measured outputs and pyranometer

% irradiance

[Eff py, Eff py day, Eff py month] = ...

effcalc (Pmax, E day, E month, G pyr, G pyr day, G pyr month, ...

mod area, nYears, N);

% Calculating the efficiencies using empirical outputs and

% ESTI−irradiance

[Eff emp es, Eff emp es day, Eff emp es month] = ...

effcalc (Pmax emp es, E emp es day, E emp es month,...

G esti, G esti day, G esti month, mod area, nYears, N);

[Eff empT es, Eff empT es day, Eff empT es month] = ...

effcalc (Pmax empT es, E empT es day, E empT es month, ...

G esti, G esti day, G esti month, mod area, nYears, N);

% Calculating the efficiencies using measured outputs and pyranometer

% irradiance

[Eff emp py, Eff emp py day, Eff emp py month] = ...

effcalc (Pmax emp py, E emp py day, E emp py month, ...

G pyr, G pyr day, G pyr month, mod area, nYears, N);

[Eff empT py, Eff empT py day, Eff empT py month] = ...

effcalc (Pmax empT py, E empT py day, E empT py month, ...

G pyr, G pyr day, G pyr month, mod area, nYears, N);

%% PLOTTING THE RESULTS

136

Dstart vec = datevec(Dstart);

year vec = zeros(1,nYears);

for k=1:nYears

year vec(k)=Dstart vec(1)+(k−1);

end

%% Using function 'plotter' to plot the monthly and daily measured and

%% predicted energy productions and efficiencies.

% Using the results based on ESTI irradiance

choice = input(['\n Do you want to make graphs where measured ',...

'\n values are compared with predicted ones,',...

'\n using values calculated with ESTI irradiance',...

'\n(for each module separately) (y/n)? '],'s');

if choice=='y'

irrad str='ESTI';

irrad fn='ESTI';

plotter(E month, E emp es month, E empT es month,...

Eff es month, Eff emp es month, Eff empT es month, E day, ...

E emp es day, E empT es day, Eff es day, Eff emp es day,...

Eff empT es day, mod, irrad str, irrad fn, N, year vec, nYears);

end

% Using the results based on pyranometer irradiance

choice = input(['\n Do you want to make graphs where measured ',...

'\n values are compared with predicted ones,',...

'\n using values calculated with pyranometer irradiance',...

'\n(for each module separately) (y/n)? '],'s');

if choice=='y'

irrad str='pyranometer';

irrad fn='pyran';

plotter(E month, E emp py month, E empT py month,...

137

Eff py month, Eff emp py month, Eff empT py month, E day, ...

E emp py day, E empT py day, Eff py day, Eff emp py day,...

Eff empT py day, mod, irrad str, irrad fn, N, year vec, nYears);

end

%% Using function 'plotter meas only' to plot just daily and monthly energy

%% productions and irradiances, making no comparison with the predicted

%% values

% Plotting the daily and monthly energy productions, using the energy

% calculated with Pmax fill having gaps missing because of filtering

% filled with average ones.

choice = input(['\n Do you want to make graphs with',...

' measured (filled) energy production only (y/n)? '],'s');

if choice=='y'

tit = 'energy production';

ylbl = 'Energy [Wh]';

filename = 'meas E';

plotter meas only(E fill day, E fill month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

% Plotting the daily and monthly ESTI irradiations

choice = input(['\n Do you want to make graphs with',...

'\n ESTI irradiations only (y/n)? '],'s');

if choice=='y'

tit = 'ESTI irradiance';

ylbl = 'Irradiance [Wh/mˆ2]';

filename = 'ESTI';

plotter meas only(G esti day, G esti month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

138

% Plotting the daily and monthly pyranometer irradiations

choice = input(['\n Do you want to make graphs with',...

'\n pyranometer irradiations only (y/n)? '],'s');

if choice=='y'

tit = 'pyranometer irradiance';

ylbl = 'Irradiance [Wh/mˆ2]';

filename = 'pyr';

plotter meas only(G pyr day, G pyr month, nYears, N, mod, tit,...

ylbl, year vec, filename)

end

%% Using the function 'mod comparison' to make module comparison plots.

choice = input(['\n Do you want to make ',...

'module comparison plots (y/n)? '],'s');

if choice=='y'

irrad str={'ESTI', 'pyranometer'};

irrad fn={'ESTI','pyr'};

mod comparison(Pmax STC lapss, Pmax STC out,...

Pmax STC emp, Pmax STC label, E day, G esti day, G pyr day, ...

Tmod av day, mod, irrad str, irrad fn, N, year vec, nYears);

end

%% SAVING THE DATA

choice = input(['\n Do you want to write the results',...

' into text−files (y/n)? '],'s');

if choice=='y'

data writer (E day, E month, E emp es day, E emp es month,...

E empT es day, E empT es month, E emp py day, E emp py month,...

E empT py day, E empT py month, ...

139

Eff es day, Eff es month, Eff py day, Eff py month,...

Eff emp es day, Eff emp es month, Eff emp py day, ...

Eff emp py month, Eff empT es day, Eff empT es month, ...

Eff empT py day, Eff empT py month, G esti day, G esti month,...

G pyr day, G pyr month, Tmod av day, flag array, mod,...

nYears, N, date array);

end

%%

pqclear(res);

pqfinish(myconn);

C.2 The function getdata db ene

function [fN, fnYears, nRows, fnDays, Dstart ser, Dend ser, fmod, fl, ...

ftime, fG esti, fG pyr, fPmax, fTmod, fTamb]...

= getdata db enr(myconn)

%−−%

% This function retireves the required .enr −data from the database for

% user−defined time period and set of modules

% and arranges the data into appropriate arrays.

%−−%

% Defining the time period to be analyzed

text Dstart = 'The starting date (yyyy−mm−dd) of the data analysis: ';

text Dend = 'The last date (yyyy−mm−dd) to be considered in the analysis: ';

Dstart = input(text Dstart,'s');

Dend = input(text Dend,'s');

% Converting the starting and ending dates into serial number format

140

Dstart ser = datenum(Dstart,'yyyy−mm−dd');

Dend ser = datenum(Dend,'yyyy−mm−dd');

fnDays = Dend ser−Dstart ser+1; % No of days in the dataset

% Converting the starting and ending dates into vector number format

Dstart vec = datevec(Dstart ser); Dend vec=datevec(Dend ser);

fnYears = Dend vec(1)−Dstart vec(1)+1; % No of years of measurement

% Defining the modules to be analyzed

fN = input('How many different modules are compared? ');

fmod = cell(1,fN);

res = zeros(1,fN,'uint32');

nFields = zeros(1,fN);

nRows = zeros(1,fN);

% Defining the data to be retrieved

for i=1:fN

name = ['Name of the module ' num2str(i) '? '];

fmod{i} = input(name,'s'); % Cell array containing names of the modules

text = ['SELECT date,time,pmax,irradiance esti,irradiance pyran,',...

't mod,t amb FROM %s WHERE date≥''%s'' AND date≤''%s''',...

'ORDER BY date,time'];

exeStr = sprintf(text,fmod{i},Dstart,Dend);

res(i) = pqexec(myconn, exeStr);

nFields(i) = pqnfields(res(i));

nRows(i) = pqntuples(res(i));

end

%Displaying the size of the dataset

disp('Number of columns in the dataset of each module: ')

disp(nFields)

disp('Number of rows in the dataset of each module: ')

141

disp(nRows)

fl = max(nRows);

ftime = zeros(fl,6,fN);

fPmax = zeros(fl,1,fN);

fG esti = zeros(fl,1,fN);

fG pyr = zeros(fl,1,fN);

fTmod = zeros(fl,1,fN);

fTamb = zeros(fl,1,fN);

% Retrieving the data using the variable 'res' recieved above and

% creating the time and data arrays

for i=1:fN

for j=1:nRows(i)

timeStr = [pqgetvalue(res(i),j−1,0) ' ' pqgetvalue(res(i),j−1,1)];

% Dates and times of each measurement:

ftime(j,:,i) = datevec(timeStr,'yyyy−mm−dd HH:MM:SS');

fPmax(j,:,i) = pqgetvalue(res(i),j−1,2); % Pmax (W)

fG esti(j,:,i) = pqgetvalue(res(i),j−1,3); % ESTI irrad., (W/m2)

fG pyr(j,:,i) = pqgetvalue(res(i),j−1,4); % Pyran. irrad., (W/m2)

fTmod(j,:,i) = pqgetvalue(res(i),j−1,5); % (C)

fTamb(j,:,i) = pqgetvalue(res(i),j−1,6); % (C)

end

end

C.3 The function data filter enr

function [fPmax, fPmax emp E, fPmax empT E, fPmax emp P, fPmax empT P,...

fG esti, fG pyr, fFlag, fnPoints deleted] ...

= data filter enr(fPmax, fPmax emp E, fPmax empT E, ...

fPmax emp P, fPmax empT P, fG esti, fG pyr, fPmax STC max,...

fN, fnRows)

142

%−−%

% This function filters out bad data points, i.e. sets empirical and

% measured Pmaxes and irradiance to zero if there is something strange

% in the data. The filtered points are marked in an array 'flag', and the

% value of flag(i,j) tells the reason why the point has been filtered

% according to the following:

%

% flag(j,i) = 1, if Pmax was zero in the original data

% flag(j,i) = 2, if Pmax<0 in the original data

% flag(j,i) = 3, if Pmax emp or Pmax empT <0 or complex in the

% original data (this may occur at low temperatures if the empirical

% equation is 'bad')

% flag(j,i) = 4, if abs(Pmax−Pmax emp)/max(Pmax,Pmax emp) > 0.5

% flag(j,i) = 5, if abs(G esti−G pyr)/max(G esti,G pyr) > 0.3

% flag(j,i) = 6, if Pmax>Pmax STC max (the maximum STC Pmax) in the

% original data

%−−%

fFlag=zeros(size(fPmax));

fnPoints deleted = zeros(size(fPmax));

for i=1:fN

for j=1:fnRows(i)

if fPmax(j,:,i) == 0

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 1;

end

143

if fPmax(j,:,i) < 0

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0; fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0; fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0; fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 2;

end

if fPmax emp E(j,:,i)<0 | | isreal(fPmax emp E(j,:,i))==0 | | ...

fPmax empT E(j,:,i)<0 | | isreal(fPmax empT E(j,:,i))==0 ...

| | fPmax emp P(j,:,i)<0 | | isreal(fPmax emp P(j,:,i))==0 ...

| | fPmax empT P(j,:,i)<0 | | isreal(fPmax empT P(j,:,i))==0

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 3;

end

if abs(fPmax(j,:,i)−fPmax emp E(j,:,i))/...

max([fPmax(j,:,i) fPmax emp E(j,:,i)]) > 0.5 | | ...

abs(fPmax(j,:,i)−fPmax emp P(j,:,i))/...

max([fPmax(j,:,i) fPmax emp P(j,:,i)]) > 0.5

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 4;

end

144

if abs(fG esti(j,:,i)−fG pyr(j,:,i))/...

max([fG esti(j,:,i) fG pyr(j,:,i)]) > 0.3

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 5;

end

if fPmax(j,:,i) > fPmax STC max(i)

fPmax(j,:,i) = 0;

fPmax emp E(j,:,i) = 0;

fPmax empT E(j,:,i) = 0;

fPmax emp P(j,:,i) = 0;

fPmax empT P(j,:,i) = 0;

fG esti(j,:,i) = 0;

fG pyr(j,:,i) = 0;

fFlag(j,:,i) = 6;

end

% Calculating total the number of points deleted by filtering

% (necessary to do separately, as there might be some overlapping

% in the flags)

fnPoints deleted(j,:,i) = nnz(fPmax(j,:,i)==0);

end

end

145

D Functions utilized by both main scripts

D.1 The function noct estim

function fTmod emp = noct estim(fTmod, fTamb, fG, fN, fmod, ...

fnRows, fG str)

%−−−%

% This function calculates the values of the Nominal Operating Cell

% Temperature (NOCT) and thereafter the empirical module temperatures

% (Tmod emp) using the following empirical equation:

% 'Tmod−Tamb=((NOCT−20)/800)*G'.

%−−−%

Tplot = fTmod−fTamb;

fTmod emp = zeros(size(fTmod));

for i=1:fN

figure;

% Plotting the experimental data (ESTI irrad. vs. Tmod−Tamb)

plot(fG(fG(1:fnRows(i),:,i) 6=0,:,i),...

Tplot(fG(1:fnRows(i),:,i) 6=0,:,i),'.')

hold on;

% Least−squares fitting to the experimental data. 'Polyfit' returns

% the coefficients of the polynomial in descending powers

p = polyfit(fG(fG(1:fnRows(i),:,i) 6=0,:,i),...

Tplot(fG(1:fnRows(i),:,i) 6=0,:,i),1);

NOCT = p(1)*800+20;

y0 = p(2);

146

Tplot fit = p(1)*fG(fG(1:fnRows(i),:,i) 6=0,:,i)+y0;

% Plotting the linear fit to the same graph with the experimental

% data

plot(fG(fG(1:fnRows(i),:,i) 6=0,:,i),Tplot fit,'r−')

xlbl = sprintf('%s irradiance [W/mˆ2]',fG str);

xlabel(xlbl);

ylabel('Tmod−Tamb [ºC]');

titleStr = ...

sprintf('NOCT estimation using %s irradiance (%s)',...

fG str,fmod{i});

title(titleStr);

% Calculating empirical Tmod using the fitting coefficients

fTmod emp(1:fnRows(i),:,i) = ...

((NOCT−20)/800).*fG(1:fnRows(i),:,i)+fTamb(1:fnRows(i),:,i)+y0;

end

D.2 The function base matrix

function [fbase arr, M d, dt min] = base matrix(fnDays, fDstart ser,...

fDend ser, ftime, fData, fN, fl, fnRows)

%−−−%

% This function organizes the data into an array base array, in which

% every possible measurement point for the time period concerned is

% included, and the data for each module recides at their

% correct points.

%−−−%

% Converting the time array (containing the dates and times of the

% measurement points of all the modules) into serial number format

time ser = zeros(fl,fN);

147

for n=1:fN

time ser(:,n) = datenum(ftime(:,:,n));

end

%% Defining the measurement interval to use

% Building a vector of the days in the time period concerned

day = linspace(fDstart ser, fDend ser, fnDays); % In serial nr format

day vec = datevec(day); % In vector format

% Calculating the mode measurement interval for each day and module

% separately into an array dt ser all.

% The loop collects the measurement points within each day by finding

% out the first and last row of the day (row1 and row2), and calculates

% time interval for the day as the mode time difference between the

% the measurement points. If there is only one measurement point within

% the day, the time interval is set to 4 minutes.

dt ser all = zeros(fnDays,fN);

for n=1:fN

row1=1; row2=1;

for d=1:fnDays

while floor(time ser(row2,n))==day(d)

row2=row2+1;

if floor(time ser(row2,n)) 6=day(d)

if (row2−row1)>1

dt ser all(d,n) = ...

mode(diff(time ser(row1:(row2−1),n)));

else

dt ser all(d,n) = datenum(0,0,0,0,4,0);

end

row1=row2;

break

148

end

if row2==length(time ser)

break

end

end

end

end

% The measurement interval for each day is taken as the minimum

% interval from all the modules' intervals (disregarding zeros)

dt ser day=zeros(fnDays,1);

for d=1:fnDays

if any(dt ser all(d,:))==1

dt ser day(d)=min(dt ser all(d,dt ser all(d,:)>0));

end

end

% The daily meas. intervals as time vector:

dt vec day = datevec(dt ser day);

% The daily meas. interval in minutes:

dt min day = round(dt vec day(:,5)+dt vec day(:,6)/60);

% Calculating the mode time interval for the whole period

dt min = mode(dt min day); % In minutes

dt ser = mode(dt ser day); % As a serial number

% Communicating with the user on which time interval should be used

text = ['The mode time interval between the measurements in',...

'\n the period concerned was %d minutes',...

'\n and the days with that interval were (year month day)'];

sprintf(text,dt min)

149

disp(day vec(dt min day==dt min,1:3))

text = ['The days (year month day) when mode time interval',...

'\n was something else but %d minutes were',...

'\n (the last column tells the mode time interval for the day)'];

sprintf(text,dt min)

disp([day vec(dt min day 6=dt min,1:3) dt min day(dt min day 6=dt min)])

text = 'Perform the calculations with the mode interval (y/n)? ';

mode yn = input(text,'s');

if mode yn == 'n'

disp(['Re−perform the analysis in shorter time periods,'...

'in which the mode time interval stays approximately constant.'])

return

end

%% Creating the time stamp

% Creating a time stamp vector time stamp, in which every possible

% measurement point from the concerned time period is stored, in order

% to have a common time stamp for all the modules.

% No of measurements within an hour.

M h = 60/dt min;

% No of measurement points within a day, assuming a maximum measurement

% period of 6−20 (14 hours).

M d = M h*14;

hour = zeros(M d,1);

time stamp = zeros(fnDays*M d,1);

% Time for the earliest possible measurement.

Tstart=datenum(0,0,0,6,0,0);

150

for k=1:M d

hour(k) = Tstart+(k−1)*dt ser;

end

for d=1:fnDays

time stamp((d−1)*M d+1:d*M d,1) = fDstart ser+(d−1)+hour;

end

%% Creating the base array

% Creating a 3D array, in which all the possible measurement points and

% and data from all the modules discussed reside.

% The first column is the time stamp vector, same for all the modules.

% In the last columns of the array, the measurement points are marked

% with 1, while other elements in the columns equal to 0.

S=size(fData);

fbase arr=[repmat(time stamp,[1 1 fN]) zeros(fnDays*M d,(S(2)+1),fN)];

for n=1:fN

pointer=1;

for i=1:fnRows(n)

for j=pointer:fnDays*M d

if abs(time stamp(j)−time ser(i,n)) < dt ser/2

fbase arr(j,2:(end−1),n) = fData(i,:,n);

fbase arr(j,end,n) = 1; % Marks the measurement points

pointer = j+1;

break

end

end

end

end

151

D.3 The function energycalc

function [E d, E m, E fill d, E fill m, E emp es d, E emp es m,...

E empT es d, E empT es m, E emp py d, E emp py m,...

E empT py d, E empT py m, G es d, G es m, G py d, G py m,...

Tmod av d, Tmod av m, flag arr, date all]...

= energycalc (fbase arr, fnDays, fnYears,...

fDstart ser, fDend ser, fN, M d, dt min)

%−−%

% This function calculates the daily and monthly values: measured

% and predicted energy productions, irradiances, average module

% temperatures and number of all the flagged points as well as

% number of measurement points.

%−−%

% Distracting different variables from the base array, and arranging

% them into 3D arrays where each day has its own column.

Pmax = reshape(fbase arr(:,2,:),M d,fnDays,fN);

Pmax emp es = reshape(fbase arr(:,3,:),M d,fnDays,fN);

Pmax empT es = reshape(fbase arr(:,4,:),M d,fnDays,fN);

Pmax emp py = reshape(fbase arr(:,5,:),M d,fnDays,fN);

Pmax empT py = reshape(fbase arr(:,6,:),M d,fnDays,fN);

G es = reshape(fbase arr(:,7,:),M d,fnDays,fN);

G py = reshape(fbase arr(:,8,:),M d,fnDays,fN);

Tmod = reshape(fbase arr(:,9,:),M d,fnDays,fN);

flag = reshape(fbase arr(:,10,:),M d,fnDays,fN);

points del = reshape(fbase arr(:,11,:),M d,fnDays,fN);

meas points = reshape(fbase arr(:,end,:),M d,fnDays,fN);

152

%% Filling the gaps to the measured Pmax

% Calculating another Pmax, 'Pmax fill', where gaps of 1−2 measurement

% points have been filled with average values of the surrounding

% measurement points.

Pmax fill = Pmax;

fill count = zeros(fnDays,fN);

for n=1:fN

for d=1:fnDays

for i=1:M d

if Pmax fill(i,d,n)==0 && points del(i,d,n) 6=0

if i>1 && i<M d && Pmax fill(i−1,d,n) 6=0 &&...

Pmax fill(i+1,d,n) 6=0

Pmax fill(i,d,n) = ...

mean([Pmax fill(i−1,d,n) Pmax fill(i+1,d,n)]);

fill count(d,n) = fill count(d,n)+1;

elseif i>2 && i<M d && Pmax fill(i−2,d,n) 6=0 &&...

Pmax fill(i+1,d,n) 6=0

Pmax fill(i,d,n) = ...

mean([Pmax fill(i−2,d,n) Pmax fill(i+1,d,n)]);

fill count(d,n) = fill count(d,n)+1;

elseif i>1 && i<(M d−1) && Pmax fill(i−1,d,n) 6=0 &&...

Pmax fill(i+2,d,n) 6=0

Pmax fill(i,d,n) = ...

mean([Pmax fill(i−1,d,n) Pmax fill(i+2,d,n)]);

fill count(d,n) = fill count(d,n)+1;

end

end

end

end

end

153

%% Calculating the daily energies, irradiances and measurement points.

E = reshape((dt min/60)*sum(Pmax),fnDays,fN); % In Wh

E fill = reshape((dt min/60)*sum(Pmax fill),fnDays,fN); % In Wh

E emp es = reshape((dt min/60)*sum(Pmax emp es),fnDays,fN); % In Wh

E empT es = reshape((dt min/60)*sum(Pmax empT es),fnDays,fN); % In Wh

E emp py = reshape((dt min/60)*sum(Pmax emp py),fnDays,fN); % In Wh

E empT py = reshape((dt min/60)*sum(Pmax empT py),fnDays,fN); % In Wh

G es = reshape((dt min/60)*sum(G es),fnDays,fN); % In Wh/m2

G py = reshape((dt min/60)*sum(G py),fnDays,fN); % In Wh/m2

meas points = reshape(sum(meas points),fnDays,fN);

points del = reshape(sum(points del),fnDays,fN);

%% Calculating the daily average module temperatures

% Measurement points where Tmod=0 are disregarded

Tmod dAv = zeros(fnDays,fN);

for n=1:fN

for d=1:fnDays

Tmod dAv(d,n) = mean(Tmod(Tmod(:,d,n) 6=0,d,n)); % In C

end

Tmod dAv(isnan(Tmod dAv(:,n))==1,n)=0;

end

%% Calculating the number of flagged points for each day

flag1 = zeros(fnDays,fN);

flag2 = zeros(fnDays,fN);

flag3 = zeros(fnDays,fN);

154

flag4 = zeros(fnDays,fN);

flag5 = zeros(fnDays,fN);

flag6 = zeros(fnDays,fN);

for n=1:fN

for d=1:fnDays

% The number of elements that equal to 1 in one column of

% flag array (i.e. one day):

flag1(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−1);

% No of elements that equal to 2 per column:

flag2(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−2);

% No of elements that equal to 3 per column:

flag3(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−3);

% etc...

flag4(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−4);

flag5(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−5);

flag6(d,n) = numel(flag(:,d,n))−nnz(flag(:,d,n)−6);

end

end

%% Locating the calculated values into appropriate arrays

flag1 d vec=zeros(12*31*fnYears,fN);

flag2 d vec=zeros(12*31*fnYears,fN);

flag3 d vec=zeros(12*31*fnYears,fN);

flag4 d vec=zeros(12*31*fnYears,fN);

flag5 d vec=zeros(12*31*fnYears,fN);

flag6 d vec=zeros(12*31*fnYears,fN);

meas points d vec=zeros(12*31*fnYears,fN);

points del d vec=zeros(12*31*fnYears,fN);

E d vec = zeros(12*31*fnYears,fN);

E fill d vec = zeros(12*31*fnYears,fN);

155

E emp es d vec = zeros(12*31*fnYears,fN);

E empT es d vec = zeros(12*31*fnYears,fN);

E emp py d vec = zeros(12*31*fnYears,fN);

E empT py d vec = zeros(12*31*fnYears,fN);

G es d vec = zeros(12*31*fnYears,fN);

G py d vec = zeros(12*31*fnYears,fN);

Tmod dAv vec = zeros(12*31*fnYears,fN);

% Creating date arrays for all possible dates in the years to be

% considered, and for all the dates in the measurement points.

start date = datevec(fDstart ser);

y start = start date(1);

days in 12months = repmat((1:31)',12*fnYears,1);

months in 1year = ...

reshape((repmat((1:12)',fnYears,31))',12*31*fnYears,1);

year array = zeros(fnYears*12*31,1);

for y=1:fnYears

year array(1+(y−1)*31*12:y*31*12) = ...

ones(12*31,1)*(y start+y−1);

end

date all =[year array months in 1year days in 12months];

date meas = datevec(fDstart ser:fDend ser);

% Locating the calculated daily values into correct dates in 2D

% (12*31*nYears)xN −arrays

pointer=1;

for i=1:fnDays

for j=pointer:12*31*fnYears

if all(date meas(i,1:3)==date all(j,:))==1

E d vec(j,:) = E(i,:);

E fill d vec(j,:) = E fill(i,:);

E emp es d vec(j,:) = E emp es(i,:);

156

E empT es d vec(j,:) = E empT es(i,:);

E emp py d vec(j,:) = E emp py(i,:);

E empT py d vec(j,:) = E empT py(i,:);

G es d vec(j,:) = G es(i,:);

G py d vec(j,:) = G py(i,:);

Tmod dAv vec(j,:) = Tmod dAv(i,:);

flag1 d vec(j,:) = flag1(i,:);

flag2 d vec(j,:) = flag2(i,:);

flag3 d vec(j,:) = flag3(i,:);

flag4 d vec(j,:) = flag4(i,:);

flag5 d vec(j,:) = flag5(i,:);

flag6 d vec(j,:) = flag6(i,:);

meas points d vec(j,:) = meas points(i,:);

points del d vec(j,:) = points del(i,:);

pointer=j+1;

break

end

end

end

% Reshaping the 2D (12*31*nYears)xN −arrays into 4D 31x12x(nYears)xN

% ones...

E d arr = reshape(E d vec,31,12,fnYears,fN);

E fill d arr = reshape(E fill d vec,31,12,fnYears,fN);

E emp es d arr = reshape(E emp es d vec,31,12,fnYears,fN);

E empT es d arr = reshape(E empT es d vec,31,12,fnYears,fN);

E emp py d arr = reshape(E emp py d vec,31,12,fnYears,fN);

E empT py d arr = reshape(E empT py d vec,31,12,fnYears,fN);

G es d arr = reshape(G es d vec,31,12,fnYears,fN);

G py d arr = reshape(G py d vec,31,12,fnYears,fN);

Tmod dAv arr = reshape(Tmod dAv vec,31,12,fnYears,fN);

E d = zeros(12,31,fnYears,fN);

157

E fill d = zeros(12,31,fnYears,fN);

E emp es d = zeros(12,31,fnYears,fN);

E empT es d = zeros(12,31,fnYears,fN);

E emp py d = zeros(12,31,fnYears,fN);

E empT py d = zeros(12,31,fnYears,fN);

G es d = zeros(12,31,fnYears,fN);

G py d = zeros(12,31,fnYears,fN);

Tmod av d = zeros(12,31,fnYears,fN);

flag arr = zeros(12*31*fnYears,8,fN);

%...and into 12x31x(nYears)xN ones.

for n=1:fN

for y=1:fnYears

E d(:,:,y,n) = E d arr(:,:,y,n)';

E fill d(:,:,y,n) = E fill d arr(:,:,y,n)';

E emp es d(:,:,y,n) = E emp es d arr(:,:,y,n)';

E empT es d(:,:,y,n) = E empT es d arr(:,:,y,n)';

E emp py d(:,:,y,n) = E emp py d arr(:,:,y,n)';

E empT py d(:,:,y,n) = E empT py d arr(:,:,y,n)';

G es d(:,:,y,n) = G es d arr(:,:,y,n)';

G py d(:,:,y,n) = G py d arr(:,:,y,n)';

Tmod av d(:,:,y,n) = Tmod dAv arr(:,:,y,n)';

end

% The flagged points, as well as the number of measurement points

% and points deleted are arranged into one array

flag arr(:,:,n) = [flag1 d vec(:,n) flag2 d vec(:,n) ...

flag3 d vec(:,n) flag4 d vec(:,n) flag5 d vec(:,n) ...

flag6 d vec(:,n) points del d vec(:,n) meas points d vec(:,n)];

end

%% Calculating the monthly values

158

E m = zeros(12,fnYears,fN);

E fill m = zeros(12,fnYears,fN);

E emp es m = zeros(12,fnYears,fN);

E empT es m = zeros(12,fnYears,fN);

E emp py m = zeros(12,fnYears,fN);

E empT py m = zeros(12,fnYears,fN);

G es m = zeros(12,fnYears,fN);

G py m = zeros(12,fnYears,fN);

Tmod av m = zeros(12,fnYears,fN);

for n=1:fN

for y =1:fnYears

for m=1:12

E m(m,y,n) = sum(E d(m,:,y,n)); % In Wh

E fill m(m,y,n) = sum(E fill d(m,:,y,n)); % In Wh

E emp es m(m,y,n) = sum(E emp es d(m,:,y,n)); % In Wh

E empT es m(m,y,n) = sum(E empT es d(m,:,y,n)); % In Wh

G es m(m,y,n) = sum(G es d(m,:,y,n)); % In Wh/m2

E emp py m(m,y,n) = sum(E emp py d(m,:,y,n)); % In Wh

E empT py m(m,y,n) = sum(E empT py d(m,:,y,n)); % In Wh

G py m(m,y,n) = sum(G py d(m,:,y,n)); % In Wh/m2

Tmod av m(m,y,n) = ...

mean(Tmod av d(m,Tmod av d(m,:,y,n) 6=0,y,n)); % In C

end

Tmod av m(isnan(Tmod av m(:,y,n))==1,y,n)=0;

end

end

D.4 The function plotter

function plotter(Var1 m, Var2 m, Var3 m, Eff1 m, Eff2 m, Eff3 m,...

159

Var1 d, Var2 d, Var3 d, Eff1 d, Eff2 d, Eff3 d,...

fmod, G str, G fn, fN, year, fnYears)

%−−%

% This function makes the different plots where measured results are

% compared with the predicted ones. To make the plots, the function

% uses a nested function 'bar plotter'.

%−−%

close all

disp(['The plots will be saved in a ''plots'', ',...

'created in the current directory if necessary.'])

mkdir('plots');

%% Monthly energy output and efficiency comparison between measured

%% and predicted values

% Plotted for each module and year separately.

ylbl en = 'Energy [Wh]';

ylbl eff = 'Efficiency (%)';

xlbl m = 'Month';

x1 month = 1:12;

x2 month = 1.25:12.25;

x3 month = 1.5:12.5;

disp(['The monthly energy production plots ',...

'will be saved as '' monthly outputs '', '])

disp(['with module name as prefix and irradiance type ',...

'(ESTI, pyr, ESTIcorr, pyr corr) and year as postfixes. '])

disp(['The monthly efficiency plots will be saved as ',...

160

''' monthly eff '', with the same affixes.'])

for n=1:fN

for k=1:fnYears

% Writing the title for each plot

tit en = sprintf(['Monthly measured and predicted ',...

'energy production \n (%s, %d, predicted with %s',...

' irradiation)'],fmod{n},year(k),G str);

tit eff = sprintf(['Monthly measured and predicted ',...

'efficiencies \n(%s, %d, predicted with %s irradiation)'],...

fmod{n},year(k),G str);

% Wtiting the path and filename for each plot

fn eff = sprintf('plots\\%s monthly eff %s %d',...

fmod{n},G fn,year(k));

fn en = sprintf('plots\\%s monthly outputs %s %d',...

fmod{n},G fn,year(k));

% Making the plots using 'bar plotter'

bar plotter (Var1 m(:,k,n), Var2 m(:,k,n), Var3 m(:,k,n),...

x1 month, x2 month, x3 month, tit en, fn en,...

ylbl en, xlbl m);

bar plotter(Eff1 m(:,k,n), Eff2 m(:,k,n), Eff3 m(:,k,n), ...

x1 month, x2 month, x3 month, tit eff, fn eff, ...

ylbl eff, xlbl m);

end

end

%% Daily average and monthly 'equalized' output comparison between

%% measured and predicted values

% The daily average means just the daily average energy production

% for each month.

% In the 'monthly equalized' comparison, the daily average energy

% production of each month is multiplied with the no of days in the

161

% month in order to get an approximation for the monthly energy

% production if there were measurements on every day of the month.

disp(['The monthly equalized output plots will be saved as ',...

''' monthly equalized '', with the same affixes.'])

disp(['The daily average energy production plots will be saved ',...

'as '' daily av '', with the same affixes.'])

day count=zeros(12,fnYears,fN);

Var1 Dave=zeros(12,fnYears,fN);

Var2 Dave=zeros(12,fnYears,fN);

Var3 Dave=zeros(12,fnYears,fN);

Var1 eq=zeros(12,fnYears,fN);

Var2 eq=zeros(12,fnYears,fN);

Var3 eq=zeros(12,fnYears,fN);

days month=[31 28 31 30 31 30 31 31 30 31 30 31];

for n=1:fN

for k=1:fnYears

for i=1:12

% Calculating the number of measurement days within each

% month (it's enough to check the nonzero days in measured

% outputs in 'Var1 d')

day count(i,k,n) = nnz(Var1 d(i,:,k,n));

if day count(i,k,n) 6=0

% Calculating the daily average outputs

Var1 Dave(i,k,n) = Var1 m(i,k,n)./day count(i,k,n);

Var2 Dave(i,k,n) = Var2 m(i,k,n)./day count(i,k,n);

Var3 Dave(i,k,n) = Var3 m(i,k,n)./day count(i,k,n);

% Calculating the monthly equalized outputs

Var1 eq(i,k,n) = Var1 Dave(i,k,n).*days month(i);

Var2 eq(i,k,n) = Var2 Dave(i,k,n).*days month(i);

162

Var3 eq(i,k,n) = Var3 Dave(i,k,n).*days month(i);

end

end

% Writing the title for each plot

tit Dav = sprintf(['Daily average measured and predicted ',...

'energy production \n (%s, %d, predicted with ',...

'%s irradiation)'],fmod{n},year(k),G str);

tit Meq = sprintf(['Monthly equalized measured and ',...

'predicted energy outputs \n',...

'(%s, %d, predicted with %s irradiation)'],...

fmod{n},year(k),G str);

% Wtiting the path and filename for each plot

fn Meq = sprintf('plots\\%s monthly equalized %s %d',...

fmod{n},G fn,year(k));

fn Dav = sprintf('plots\\%s daily av %s %d',...

fmod{n},G fn,year(k));

% Making the plots using 'bar plotter'

bar plotter (Var1 Dave(:,k,n), Var2 Dave(:,k,n), ...

Var3 Dave(:,k,n), x1 month, x2 month, x3 month,...

tit Dav, fn Dav, ylbl en, xlbl m);

bar plotter (Var1 eq(:,k,n),Var2 eq(:,k,n),Var3 eq(:,k,n),...

x1 month, x2 month, x3 month, tit Meq, fn Meq,...

ylbl en, xlbl m);

end

end

%% Daily outputs and efficiencies

% One graph per month, for each module and year separately.

disp(['The daily energy production plots will be saved as ',...

''' daily outputs '' with the same affixes, ',...

'accompained with the name of the month.'])

163

disp(['The daily efficiency plots will be saved as ',...

''' daily eff '' with the same affixes.'])

x1 day=1:31;

x2 day=1.25:31.25;

x3 day=1.5:31.5;

xlbl d='Day';

for n=1:fN

for k=1:fnYears

for i=1:12

plot yes = any(Var1 d(i,:,k,n));

if plot yes==1

j = int2str(i);

month = month teller(j);

% Writing the title for each plot

tit en = ...

sprintf(['Daily measured and predicted ',...

'energy production of %s in %s %d \n',...

'(predicted with %s irradiation)'],...

fmod{n},month,year(k),G str);

tit eff = ...

sprintf(['Daily measured and predicted ',...

'efficiencies of %s in %s %d \n',...

'(predicted with %s irradiation)'],...

fmod{n},month,year(k),G str);

% Wtiting the path and filename for each plot

fn en = sprintf('plots\\%s daily outputs %s %s %d',...

fmod{n},G fn,month,year(k));

fn eff = sprintf('plots\\%s daily eff %s %s %d',...

fmod{n},G fn,month,year(k));

% Making the plots using 'bar plotter'

bar plotter(Var1 d(i,:,k,n), Var2 d(i,:,k,n), ...

164

Var3 d(i,:,k,n),x1 day, x2 day, x3 day,...

tit en, fn en, ylbl en, xlbl d);

bar plotter(Eff1 d(i,:,k,n),...

Eff2 d(i,:,k,n), Eff3 d(i,:,k,n),...

x1 day, x2 day, x3 day, tit eff, fn eff,...

ylbl eff, xlbl d);

end

end

end

end

%% Bar plotter

function bar plotter(Var1, Var2, Var3, x1, x2, x3, tit, fn,...

ylbl, xlbl)

% This nested function does the bar plots, where measured and

% empirical energy outputs and efficiencies are compared.

figure;

Max = max([max(Var1) max(Var2) max(Var3)]);

ymax = Max + Max/10;

xmax = x3(end)+0.25;

bar(x1,Var1,0.25,'b');

hold on;

bar(x2,Var2,0.25,'r');

hold on;

bar(x3,Var3,0.25,'y');

title(tit,'fontsize',14);

legend('Measured','Predicted, using T {mod}',...

'Predicted, using T {amb}','Location','South');

xlabel(xlbl,'fontsize',14);

165

ylabel(ylbl,'fontsize',14);

axis([0.75 xmax 0 ymax]);

set(gca,'FontSize',14);

grid on;

print(gcf,'−dpng',fn)

end

end

D.5 The function plotter meas only

function plotter meas only(Var d, Var m, fnYears, fN, fmod,...

tit str, ylbl, year, fn)

close all

disp(['The module comparison plots will be saved in a folder ',...

'''plots'', created in the current directory if necessary.'])

mkdir('plots');

monthly = sprintf(['\n The monthly plots will be saved as ',...

''' monthly %s '', \n with the module name as prefix ',...

'and year as postfix'],fn);

disp(monthly)

daily = sprintf(['\n The daily plots will be saved as ',...

''' daily %s '', \n with the same affixes'],fn);

disp(daily)

% Monthly plots

166

x month = 1:12;

for n=1:fN

for y=1:fnYears

figure

ymax = max(Var m(:,y,n)) + max(Var m(:,y,n))/10;

bar(x month,Var m(:,y,n),'b');

colormap cool

tit = sprintf('Monthly %s for %s, in %d',...

tit str,fmod{n},year(y));

title(tit,'fontsize',14);

xlabel('Month','fontsize',14);

ylabel(ylbl,'fontsize',14);

axis([0.5 12.5 0 ymax]);

set(gca,'FontSize',14);

grid on;

path = sprintf('plots\\%s monthly %s %d',...

fmod{n},fn,year(y));

print(gcf,'−dpng',path)

end

end

% Daily plots

x day = 1:31;

for n=1:fN

for y=1:fnYears

for m=1:12

plot yes = any(Var d(m,:,y,n));

if plot yes==1

figure

j = int2str(m);

month = month teller(j);

ymax = max(Var d(m,:,y,n)) + max(Var d(m,:,y,n))/10;

167

bar(x day,Var d(m,:,y,n),'b');

colormap cool

tit = sprintf('Daily %s for %s, in %s %d',...

tit str,fmod{n},month,year(y));

title(tit,'fontsize',14);

xlabel('Month','fontsize',14);

ylabel(ylbl,'fontsize',14);

axis([0.5 31.5 0 ymax]);

set(gca,'FontSize',14);

grid on;

path = sprintf('plots\\%s daily %s %s %d',...

fmod{n},fn,month,year(y));

print(gcf,'−dpng',path)

end

end

end

end

D.6 The function mod comparison

function mod comparison (Pmax STClps, Pmax STCo, Pmax STCe, ...

Pmax STClbl, E d, Irr1 d, Irr2 d, Tmod av d,...

fmod, irr str, irr fn, fN, year, fnYears)

%−−%

% This function makes the plots where energy outputs, average module

% temperatures and irradiances of the different modules are compared.

% Energy outputs are compared as relative to three different STC

% power values: LAPSS, outdoor and performance surface STC power value.

% The plots are made using a nested function 'bar plotter'.

%−−%

168

close all

disp(['The module comparison plots will be saved in a folder ',...

'''plots'', created in the current directory if necessary.'])

mkdir('plots');

disp(['The plots where relative outputs of the modules are ',...

'compared, are saved as ''mod comp '', '])

disp('with the used STC power, number of modules and year as postfixes.')

disp(['The plots where irradiances are compared, ',...

'are saved as ''irr comp '', with the used irradiance,'])

disp(' number of modules and year as postfixes.')

disp(['The plots where module temperatures are compared, ',...

'are saved as ''tmod comp '', '])

disp('with the number of modules and year as postfixes.')

%% Disregarding the days, when there were no measurements from all the

%% modules

% In order to be able to compare the modules properly, the value of

% considered variable (output energy/irradiance/module temperature) is

% set to zero for all the modules, if it is zero for some of the modules.

days meas=zeros(12,fnYears);

for i=1:fnYears

for j=1:12

for k=1:31

if all(E d(j,k,i,:))==0

Irr1 d(j,k,i,:) = 0;

169

Irr2 d(j,k,i,:) = 0;

E d(j,k,i,:) = 0;

Tmod av d(j,k,i,:) = 0;

else

days meas(j,i) = days meas(j,i)+1;

end

end

end

end

disp(['Number of days in each month, when there were measurement ',...

'data from all the modules: '])

disp(days meas)

%% Calculating the daily average values

Irr1 Dav=zeros(12,fnYears,fN); Irr2 Dav=zeros(12,fnYears,fN);

E normLPS Dav=zeros(12,fnYears,fN);

E normLBL Dav=zeros(12,fnYears,fN);

E normO Dav=zeros(12,fnYears,fN);

E normE Dav=zeros(12,fnYears,fN);

Tmod Dav=zeros(12,fnYears,fN);

legend LPS = cell(1,fN);

legend LBL = cell(1,fN);

legend O = cell(1,fN);

legend E = cell(1,fN);

for n=1:fN

for i=1:fnYears

% Calculating the daily average values for months where there

% were measurements.

170

loc nnz = find(days meas(:,i) 6=0);

Irr1 Dav(loc nnz,i,n) = ...

sum(Irr1 d(loc nnz,:,i,n),2)./days meas(loc nnz,i);

Irr2 Dav(loc nnz,i,n) = ...

sum(Irr2 d(loc nnz,:,i,n),2)./days meas(loc nnz,i);

E normLPS Dav(loc nnz,i,n) = ...

sum(E d(loc nnz,:,i,n),2)./...

(days meas(loc nnz,i)*Pmax STClps(n));

E normLBL Dav(loc nnz,i,n) = ...

sum(E d(loc nnz,:,i,n),2)./(days meas(loc nnz,i)...

*Pmax STClbl(n));

E normO Dav(loc nnz,i,n) = ...

sum(E d(loc nnz,:,i,n),2)./...

(days meas(loc nnz,i)*Pmax STCo(n));

E normE Dav(loc nnz,i,n) = ...

sum(E d(loc nnz,:,i,n),2)./...

(days meas(loc nnz,i)*Pmax STCe(n));

Tmod Dav(loc nnz,i,n) = ...

sum(Tmod av d(loc nnz,:,i,n),2)./days meas(loc nnz,i);

end

% Writing legends for the graphs

legend LPS{n} = sprintf('%s, STC Pmax=%3.1fW',...

fmod{n},Pmax STClps(n));

legend LBL{n} = sprintf('%s, STC Pmax=%3.1fW',...

fmod{n},Pmax STClbl(n));

legend O{n} = sprintf('%s, STC Pmax=%3.1fW',...

fmod{n},Pmax STCo(n));

legend E{n} = sprintf('%s, STC Pmax=%3.1fW',...

fmod{n},Pmax STCe(n));

end

% Writing titles for the graphs

tit LPS = sprintf(['Daily average energy production ',...

171

'relative to indoor measured STC power']);

tit LBL = sprintf(['Daily average energy production ',...

'relative to STC power \n rated by the manufacturer (label)']);

tit O = sprintf(['Daily average energy production ',...

'relative to outdoor STC power']);

tit E = ['Daily average energy production relative to ',...

'performance surface STC−power'];

tit irr1 = sprintf('Daily average %s irradiations',irr str{1});

tit irr2 = sprintf('Daily average %s irradiations',irr str{2});

tit Tmod = 'Monthly average module temperatures';

% Writing filenames for the graphs

fn LPS='mod comp STC LAPSS ';

fn LBL='mod comp STC label ';

fn O='mod comp STC out ';

fn E='mod comp STC emp ';

fn irr1=sprintf('irr comp %s ',irr fn{1});

fn irr2=sprintf('irr comp %s ',irr fn{2});

fn Tmod='tmod comp ';

% Writing y−axis labels for the graphs

ylbl E='[Wh/W {peak}]';

ylbl I='Irradiation [Wh/mˆ2]';

ylbl Tmod='Temperature [ˆoC]';

% Making the graphs using 'bar plotter'

bar plotter(E normLPS Dav, tit LPS, fn LPS, ylbl E, legend LPS);

bar plotter(E normLBL Dav,tit LBL,fn LBL,ylbl E, legend LBL);

bar plotter(E normO Dav,tit O,fn O,ylbl E, legend O);

bar plotter(E normE Dav, tit E, fn E,ylbl E, legend E);

bar plotter(Irr1 Dav, tit irr1, fn irr1, ylbl I, fmod);

bar plotter(Irr2 Dav, tit irr2, fn irr2, ylbl I, fmod);

bar plotter(Tmod Dav, tit Tmod, fn Tmod, ylbl Tmod, fmod);

172

%% Module comparison bar plots

function bar plotter(Var, tit str, fn, ylbl, leg)

% This nested function does the module comparison bar plots.

bar color={'b' 'r' 'g' 'y'};

s=1/(fN+1);

x=zeros(12,fN);

for ii=1:fnYears

hold off

figure

for nn=1:fN

hold on

x(:,nn)=(1+(nn−1)*s):(12+(nn−1)*s);

bar(x(:,nn),Var(:,ii,nn),s,bar color{nn});

end

xmax=x(end,end)+s;

Max = max(max(Var(:,ii,:)));

ymax = Max + Max/10;

axis([0.75 xmax 0 ymax]);

tit=sprintf('%s (%d)',tit str,year(ii));

title(tit,'fontsize',14);

legend(leg,'Location','South');

xlabel('Month','fontsize',14);

ylabel(ylbl,'fontsize',14);

set(gca,'FontSize',14);

box on;

grid on;

path=sprintf('plots\\%s%dmod %d',fn,fN,year(ii));

173

print(gcf,'−dpng',path)

end

end

end

D.7 The function data writer

function data writer (E d, E m, E emp es d, E emp es m,...

E empT es d, E empT es m, E emp py d, E emp py m,...

E empT py d, E empT py m, ...

Eff es d, Eff es m, Eff py d, Eff py m,...

Eff emp es d, Eff emp es m, Eff emp py d, Eff emp py m,...

Eff empT es d, Eff empT es m, Eff empT py d, Eff empT py m,...

G es d, G es m, G py d, G py m,...

Tmod d, Tmod m, flag arr, fmod, fnYears, fN, date arr)

%−−−%

% This function writes the daily and monthly data into text files.

%−−−%

disp(['The plots will be saved in a folder ''results'', ',...

'created in the current directory if necessary.'])

mkdir('results');

%% Writing the daily values

flag1 Darray = reshape(flag arr(:,1,:),12*31*fnYears,fN);

flag2 Darray = reshape(flag arr(:,2,:),12*31*fnYears,fN);

flag3 Darray = reshape(flag arr(:,3,:),12*31*fnYears,fN);

174

flag4 Darray = reshape(flag arr(:,4,:),12*31*fnYears,fN);

flag5 Darray = reshape(flag arr(:,5,:),12*31*fnYears,fN);

flag6 Darray = reshape(flag arr(:,6,:),12*31*fnYears,fN);

points del Darray = reshape(flag arr(:,7,:),12*31*fnYears,fN);

meas points Darray = reshape(flag arr(:,8,:),12*31*fnYears,fN);

G es Darray=zeros(12*31*fnYears,fN);

G py Darray=zeros(12*31*fnYears,fN);

E Darray=zeros(12*31*fnYears,fN);

E emp es Darray=zeros(12*31*fnYears,fN);

E empT es Darray=zeros(12*31*fnYears,fN);

E emp py Darray=zeros(12*31*fnYears,fN);

E empT py Darray=zeros(12*31*fnYears,fN);

Eff es Darray=zeros(12*31*fnYears,fN);

Eff py Darray=zeros(12*31*fnYears,fN);

Eff emp es Darray=zeros(12*31*fnYears,fN);

Eff empT es Darray=zeros(12*31*fnYears,fN);

Eff emp py Darray=zeros(12*31*fnYears,fN);

Eff empT py Darray=zeros(12*31*fnYears,fN);

T Darray=zeros(12*31*fnYears,fN);

Array day=zeros(12*31*fnYears,22,fN);

for n=1:fN

for y=1:fnYears

G es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(G es d(:,:,y,n)',12*31,1);

G py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(G py d(:,:,y,n)',12*31,1);

E Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(E d(:,:,y,n)',12*31,1);

E emp es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(E emp es d(:,:,y,n)',12*31,1);

175

E empT es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(E empT es d(:,:,y,n)',12*31,1);

E emp py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(E emp py d(:,:,y,n)',12*31,1);

E empT py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(E empT py d(:,:,y,n)',12*31,1);

Eff es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff es d(:,:,y,n)',12*31,1);

Eff py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff py d(:,:,y,n)',12*31,1);

Eff emp es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff emp es d(:,:,y,n)',12*31,1);

Eff empT es Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff empT es d(:,:,y,n)',12*31,1);

Eff emp py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff emp py d(:,:,y,n)',12*31,1);

Eff empT py Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Eff empT py d(:,:,y,n)',12*31,1);

T Darray(1+(y−1)*12*31:y*12*31,n) ...

= reshape(Tmod d(:,:,y,n)',12*31,1);

end

Array day(:,:,n)=[G es Darray(:,n) G py Darray(:,n) ...

E Darray(:,n) E emp es Darray(:,n) E empT es Darray(:,n)...

E emp py Darray(:,n) E empT py Darray(:,n)...

Eff es Darray(:,n) Eff emp es Darray(:,n) ...

Eff empT es Darray(:,n) Eff py Darray(:,n) ...

Eff emp py Darray(:,n) Eff empT py Darray(:,n) T Darray(:,n)...

flag1 Darray(:,n) flag2 Darray(:,n) flag3 Darray(:,n)...

flag4 Darray(:,n) flag5 Darray(:,n) flag6 Darray(:,n)...

points del Darray(:,n) meas points Darray(:,n)];

end

176

fn = input(['\n Filename in which you want to store the daily ',...

'results \n (module name will be added as a postfix)? '],'s');

for n=1:fN

filename=sprintf('results\\%s %s.txt',fn,fmod{n});

fid = fopen(filename,'wt');

% Writing the header to the file 'filename'

fprintf(fid,['%% Date \t G esti[Wh/m2] \t G pyr[Wh/m2] ',...

'\t E[Wh] \t E emp esti[Wh] \t E empT esti[Wh] \t',...

'E emp pyr[Wh] \t E empT pyr[Wh] \t Eff esti(%%) \t',...

'Eff emp esti(%%) \t Eff empT esti(%%) \t Eff pyr(%%) \t',...

'Eff emp pyr(%%) \t Eff empT pyr(%%) \t Aver.Tmod[C] \t',...

'F1 \t F2 \t F3\t F4 \t F5 \t F6 \t nPoints deleted \t',...

'nMeas points \n']);

% Writing the data to the file 'filename'

for i=1:12*31*fnYears

fprintf(fid,['%d/%02d/%02d \t %8.2f \t %8.2f \t %6.2f ',...

'\t %6.2f \t %6.2f \t %6.2f \t %6.2f \t %5.2f \t ',...

'%5.2f \t %5.2f \t %5.2f \t %5.2f \t %5.2f \t %5.2f ',...

'\t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %d \n'],...

date arr(i,:),Array day(i,:,n));

end

% Adding explanations to the text file

fprintf(fid,...

'\n%% G esti = Daily total irradiation from ESTI sensor \n');

fprintf(fid,...

'%% G pyr = Daily total irradiation from pyranometer \n');

fprintf(fid,...

'%% E = Daily total measured energy production \n');

fprintf(fid,...

['%% E emp esti = Daily total predicted energy production, ',...

'calculated using ESTI irradiation and measured ',...

'module temperatures. \n']);

fprintf(fid,...

177

['%% E empT esti = Daily total predicted energy production, ',...

'calculated using ESTI irradiation and empirical ',...

'module temperatures. \n']);

fprintf(fid,...

['%% E emp pyr = Daily total predicted energy production, ',...

'calculated using pyranometer irradiation and ',...

'measured module temperatures. \n']);

fprintf(fid,...

['%% E empT pyr = Daily total predicted energy production, ',...

'calculated using pyranometer irradiation and ',...

'empirical module temperatures. \n']);

fprintf(fid,...

['%% Eff esti = Daily efficiency, calculated using ',...

'measured energy production and ESTI irradiance. \n']);

fprintf(fid,...

['%% Eff emp esti = Daily efficiency, calculated using ',...

'predicted energy production (calculated with measured ',...

'module temperatures) and ESTI irradiance. \n']);

fprintf(fid,['%% Eff empT esti = Daily efficiency, calculated ',...

'using predicted energy production (calculated with ',...

'empirical module temperatures) and ESTI irradiance. \n']);

fprintf(fid,...

['%% Eff pyr = Daily efficiency, calculated using ',...

'measured energy production and pyranometer irradiance. \n']);

fprintf(fid,...

['%% Eff emp pyr = Daily efficiency, calculated using ',...

'predicted energy production (calculated with measured ',...

'module temperatures) and pyranometer irradiance. \n']);

fprintf(fid,...

['%% Eff empT pyr = Daily efficiency, calculated using '...

'predicted energy production (calculated with empirical ',...

'module temperatures) and pyranometer irradiance. \n']);

fprintf(fid,...

178

'%% Aver.Tmod = Daily average module temperature. \n');

fprintf(fid,...

'\n%% F1 = No of Pmax==0 −elements in the original data \n');

fprintf(fid,...

'%% F2 = No of Pmax<0 −elements in the original data \n');

fprintf(fid,...

['%% F3 = No of Pmax emp or Pmax empT <0 or ',...

'complex −elements in the original data \n']);

fprintf(fid,['%% F4 = No of ',...

'abs(Pmax−Pmax emp)/max(Pmax,Pmax emp)>0.5 −elements ',...

'in the original data \n']);

fprintf(fid,...

['%% F5 = No of irr change>(given treshold value) ',...

'−elements in the original data (ene analysis) / ',...

'No of abs(G esti−G pyr)/max(G esti,G pyr)>0.3 ',...

'−elements in the original data (enr analysis) \n']);

fprintf(fid,...

'%% F6 = No of Pmax>Pmax STC −elements in the original data \n');

fprintf(fid,...

'%% nPoints deleted = the no of points deleted in filtering \n');

fprintf(fid,...

'%% nMeas points = the original number of measurement ',....

'points in the unfiltered data \n');

fclose(fid);

end

%% Writing the monthly values

G es Marray=zeros(12*fnYears,fN);

G py Marray=zeros(12*fnYears,fN);

E Marray=zeros(12*fnYears,fN);

E emp es Marray=zeros(12*fnYears,fN);

E empT es Marray=zeros(12*fnYears,fN);

179

E emp py Marray=zeros(12*fnYears,fN);

E empT py Marray=zeros(12*fnYears,fN);

Eff es Marray=zeros(12*fnYears,fN);

Eff py Marray=zeros(12*fnYears,fN);

Eff emp es Marray=zeros(12*fnYears,fN);

Eff empT es Marray=zeros(12*fnYears,fN);

Eff emp py Marray=zeros(12*fnYears,fN);

Eff empT py Marray=zeros(12*fnYears,fN);

T Marray=zeros(12*fnYears,fN);

flag1 Marray=zeros(12*fnYears,fN);

flag2 Marray=zeros(12*fnYears,fN);

flag3 Marray=zeros(12*fnYears,fN);

flag4 Marray=zeros(12*fnYears,fN);

flag5 Marray=zeros(12*fnYears,fN);

flag6 Marray=zeros(12*fnYears,fN);

points del Marray=zeros(12*fnYears,fN);

meas points Marray=zeros(12*fnYears,fN);

Array month=zeros(fnYears*12,24);

year array=zeros(12*fnYears,1);

month array = repmat((1:12)',fnYears,1);

for n=1:fN

for m=1:12*fnYears

flag1 Marray(m,n) = sum(flag1 Darray((m−1)*31+1:m*31,n));

flag2 Marray(m,n) = sum(flag2 Darray((m−1)*31+1:m*31,n));

flag3 Marray(m,n) = sum(flag3 Darray((m−1)*31+1:m*31,n));

flag4 Marray(m,n) = sum(flag4 Darray((m−1)*31+1:m*31,n));

flag5 Marray(m,n) = sum(flag5 Darray((m−1)*31+1:m*31,n));

flag6 Marray(m,n) = sum(flag6 Darray((m−1)*31+1:m*31,n));

points del Marray(m,n) ...

= sum(points del Darray((m−1)*31+1:m*31,n));

180

meas points Marray(m,n) ...

= sum(meas points Darray((m−1)*31+1:m*31,n));

end

end

for y=1:fnYears

year array(1+(y−1)*12:y*12)=ones(12,1)*(date arr(1,1)+y−1);

end

for n=1:fN

G es Marray(:,n) = reshape(G es m(:,:,n),12*fnYears,1);

G py Marray(:,n) = reshape(G py m(:,:,n),12*fnYears,1);

E Marray(:,n) = reshape(E m(:,:,n),12*fnYears,1);

E emp es Marray(:,n) = reshape(E emp es m(:,:,n),12*fnYears,1);

E empT es Marray(:,n) = reshape(E empT es m(:,:,n),12*fnYears,1);

E emp py Marray(:,n) = reshape(E emp py m(:,:,n),12*fnYears,1);

E empT py Marray(:,n) = reshape(E empT py m(:,:,n),12*fnYears,1);

Eff es Marray(:,n) = reshape(Eff es m(:,:,n),12*fnYears,1);

Eff emp es Marray(:,n) = ...

reshape(Eff emp es m(:,:,n),12*fnYears,1);

Eff empT es Marray(:,n) = ...

reshape(Eff empT es m(:,:,n),12*fnYears,1);

Eff py Marray(:,n) = reshape(Eff py m(:,:,n),12*fnYears,1);

Eff emp py Marray(:,n) = ...

reshape(Eff emp py m(:,:,n),12*fnYears,1);

Eff empT py Marray(:,n) = ...

reshape(Eff empT py m(:,:,n),12*fnYears,1);

T Marray(:,n) = reshape(Tmod m(:,:,n),12*fnYears,1);

Array month(:,:,n) = [month array year array G es Marray(:,n) ...

G py Marray(:,n) E Marray(:,n) E emp es Marray(:,n) ...

E empT es Marray(:,n) E emp py Marray(:,n)...

E empT py Marray(:,n) Eff es Marray(:,n) ...

181

Eff emp es Marray(:,n) Eff empT es Marray(:,n) ...

Eff py Marray(:,n) Eff emp py Marray(:,n) ...

Eff empT py Marray(:,n) T Marray(:,n) ...

flag1 Marray(:,n) flag2 Marray(:,n) flag3 Marray(:,n) ...

flag4 Marray(:,n) flag5 Marray(:,n) flag6 Marray(:,n)...

points del Marray(:,n) meas points Marray(:,n)];

end

fn = input(['\n Filename in which you want to store the monthly ',...

'results \n (module name will be added as a postfix)? '],'s');

for n=1:fN

filename = sprintf('results\\%s %s.txt',fn,fmod{n});

fid = fopen(filename,'wt');

% Writing the header to the file 'filename'

fprintf(fid,['%% Month \t G esti[Wh/m2] \t G pyr[Wh/m2] \t',...

'E[Wh] \t E emp esti[Wh] \t E empT esti[Wh] \t',...

'E emp pyr[Wh] \t E empT pyr[Wh] \t Eff esti(%%) \t',...

'Eff emp esti(%%) \t Eff empT esti(%%) \t Eff pyr(%%)',...

'\t Eff emp pyr(%%) \t Eff empT pyr(%%) \t Aver.Tmod[C]',...

'\t F1 \t F2 \t F3 \t F4 \t F5 \t F6 \t ',...

'nPoints deleted \t nMeas points \n']);

% Writing the data to the file 'filename'

for i=1:12*fnYears

fprintf(fid,['%02d/%d \t %8.2f \t %8.2f \t %7.2f \t',...

'%7.2f \t %7.2f \t %7.2f \t %7.2f \t %5.2f \t',...

'%5.2f \t %5.2f \t %5.2f \t %5.2f \t %5.2f \t',...

'%5.2f \t %d \t %d \t %d \t %d \t %d \t %d \t',...

'%d \t %d\n'],Array month(i,:,n));

end

% Adding explanations to the text file

fprintf(fid,...

'\n%% G esti = Monthly total irradiation from ESTI sensor \n');

fprintf(fid,...

182

'%% G pyr = Monthly total irradiation from pyranometer \n');

fprintf(fid,...

'%% E = Monthly total measured energy production \n');

fprintf(fid,...

['%% E emp esti = Monthly total predicted energy ',...

'production, calculated using ESTI irradiation and ',...

'measured module temperatures. \n']);

fprintf(fid,...

['%% E empT esti = Monthly total predicted energy ',...

'production, calculated using ESTI irradiation and ',...

'empirical module temperatures. \n']);

fprintf(fid,...

['%% E emp pyr = Monthly total predicted energy ',...

'production, calculated using pyranometer irradiation ',...

'and measured module temperatures. \n']);

fprintf(fid,...

['%% E empT pyr = Monthly total predicted energy ',...

'production, calculated using pyranometer irradiation ',...

'and empirical module temperatures. \n']);

fprintf(fid,...

['%% Eff esti = Monthly efficiency, calculated using ',...

'measured energy production and ESTI irradiance. \n']);

fprintf(fid,...

['%% Eff emp esti = Monthly efficiency, calculated using ',...

'predicted energy production (calculated with measured ',...

'module temperatures) and ESTI irradiance. \n']);

fprintf(fid,['%% Eff empT esti = Monthly efficiency, ',...

'calculated using predicted energy production ',...

'(calculated with empirical module temperatures) ',...

'and ESTI irradiance. \n']);

fprintf(fid,...

['%% Eff pyr = Monthly efficiency, calculated using ',...

'measured energy production and pyranometer irradiance. \n']);

183

fprintf(fid,...

['%% Eff emp pyr = Monthly efficiency, calculated using ',...

'predicted energy production (calculated with measured ',...

'module temperatures) and pyranometer irradiance. \n']);

fprintf(fid,...

['%% Eff empT pyr = Monthly efficiency, calculated using '...

'predicted energy production (calculated with empirical ',...

'module temperatures) and pyranometer irradiance. \n']);

fprintf(fid,...

'%% Aver.Tmod = Monthly average module temperature. \n');

fprintf(fid,...

'\n%% F1 = No of Pmax==0 −elements in the original data \n');

fprintf(fid,...

'%% F2 = No of Pmax<0 −elements in the original data \n');

fprintf(fid,...

['%% F3 = No of Pmax emp or Pmax empT <0 or ',...

'complex −elements in the original data \n']);

fprintf(fid,['%% F4 = No of ',...

'abs(Pmax−Pmax emp)/max(Pmax,Pmax emp)>0.5 −elements ',...

'in the original data \n']);

fprintf(fid,...

['%% F5 = No of irr change>(given treshold value) ',...

'−elements in the original data (ene analysis) / ',...

'No of abs(G esti−G pyr)/max(G esti,G pyr)>0.3 ',...

'−elements in the original data (enr analysis) \n']);

fprintf(fid,...

'%% F6 = No of Pmax>Pmax STC −elements in the original data \n');

fprintf(fid,...

'%% nPoints deleted = the no of points deleted in filtering \n');

fprintf(fid,...

'%% nMeas points = the original number of measurement ',....

'points in the unfiltered data \n');

fclose(fid);

184

end

D.8 The function month teller

function [fcurrentmonth] = month teller(jj)

%−−%

%This function gives the name of the current month

%−−%

fcurrentmonth='0';

switch jj

case '1',

fcurrentmonth='JANUARY';

case '2',

fcurrentmonth='FEBRUARY';

case '3',

fcurrentmonth='MARCH';

case '4',

fcurrentmonth='APRIL';

case '5',

fcurrentmonth='MAY';

case '6',

fcurrentmonth='JUNE';

case '7',

fcurrentmonth='JULY';

case '8',

fcurrentmonth='AUGUST';

case '9',

fcurrentmonth='SEPTEMBER';

case '10',

fcurrentmonth='OCTOBER';

case '11',

185

fcurrentmonth='NOVEMBER';

case '12',

fcurrentmonth='DECEMBER';

otherwise,

disp('THE MONTH NUMBER IS NOT VALID,IT SHOULD BE BETWEEN 1 AND 12');

return

end

186

E Configuration file for empirical data

Below is the text file from which the program retrieves the empirical equa-

tion for maximum power as a function of irradiance and module temperature

(Pmax(G, Tmod)) and its coefficients (a-f). In addition different STC Pmax

values used in module comparison and the module surface area used in cal-

cuating efficiencies are retrieved from this file. Here the columns have been

rearranged in order to fit the data to the page; in the original file, the columns

of each row are on the same line.

% This file contains the indoor performance surface equation

% and parameters for calculating the empirical Pmax,

% as well as the module area, and LAPSS and outdoor STC powers

% for calculating relative outputs to perform module comparison.

% !NOTE!: In the empirical equation, all the parameters

% (a,b,c,d,e,f) must excist, allthough part of them were zeros.

% The different STC powers (outdoor, LAPSS, label) are used to

% perform module comparison in terms of relative (Wh/Wp) outputs.

% If some of the values are not known, assign them to unity.

% Empirical equation

by71 a+b*Irr+c*log(T)+d+e+f

by72 a+b*Irr+c*T.*log(T)+d+e+f

hr706 a+b*Irr+c*log(T)+d+e+f

ju711 a+b*Irr+c*T+d+e+f

ai01 a+b*Irr+c*log(T)+d*Irr.^2+e*(log(T)).^2+f*Irr.*log(T)

dn09 a+b*Irr+c*log(T)

187

a b c

20.48933 0.069211135 -6.1469094

2.316871 0.0654907 -0.021921053

1.7579569 0.0075692241 -0.5038663

5.3191675 0.075535083 -0.17738281

-21.393925 0.09083602 11.132581

18.737608 0.062444719 -5.4242185

d e f Module area[m2]

0 0 0 0.7308

0 0 0 0.7308

0 0 0 0.09

0 0 0 0.70625

-9.7387338E-7 -1.5077081 -0.01048595 0.491056

0 0 0 0.717002

Pmax_STC_LAPSS[W] Pmax_STC_out[W] Pmax_STC_label[W]

79.1 83.314 75

76.1 83.199 75

8.9 9.1 1

82.8 81.80 80

1 1 1

1 1 1

188

