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Abstract

Koponen, Timo, 1979–
Fermionic superfluidity in optical lattices
Jyväskylä: University of Jyväskylä, 2008
(Research report/Department of Physics, University of Jyväskylä,
ISSN 0075-465X; 11/2008)
ISBN 978-951-39-3403-3

This is a study of the theory of ultracold atomic Fermi gases, especially in
optical lattices, i.e. periodic potentials created with laser light. Superfluidity
is studied especially in the case of spin population imbalanced Fermi gases
and phase diagrams are calculated from mean field theory. The Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO) phase is shown to occupy a larger region of the
phase diagram than previously predicted for purely harmonically trapped sys-
tems. Methods for detecting the FFLO phase are suggested. As another topic,
excitations in a superfluid Fermi gas, their signatures and use in sensor appli-
cations are studied.

The thesis is divided in chapters in the following way: Chapter 1 is an intro-
duction to the research field of ultracold quantum gases, including references
to some of the most important experiments done with the fermionic isotopes.
Chapter 2 is an introduction to optical lattices and their major experimen-
tal characteristics. Chapter 3 deals with extensions of BCS-theory, mainly the
FFLO and the detection of the phases predicted by the extensions. In chap-
ter 4 I discuss excitations in BCS-like states and their applications in sensing
electro-magnetic fields. Chapter 5 contains the conclusions.

Keywords fermi gases, superfluidity, optical lattices, BCS-theory, FFLO phase
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Chapter 1

Ultracold atomic gases

1.1 On quantum statistics

In classical physics, even identical particles are distinguishable. This means
that if there were two completely identical particles in a confined volume, such
as a box, we could attach a virtual label to them at some point in time, and by
following their trajectories we would always know which one is which. In
thermal equilibrium, the energy distribution of a large number of such parti-
cles would follow the Maxwell-Boltzmann distribution. However, in quantum
mechanics such a distinction is impossible. Even if we were to label two iden-
tical particles at a given instant in time, according to quantum mechanics we
would not be able to distinguish between them at any other time, because the
concept of trajectory does not exist in quantum mechanics. Thus, in the context
of quantum mechanics, identical particles are indistinguishable. As a result,
their energy distribution is not the Maxwell-Boltzmann type.

It has turned out that in the three-dimensional world, in terms of energy distri-
butions, or statistics, there are two kinds of particles. This is more a postulate of
many-body quantum mechanics than a consequence, but the following expla-
nation may shed light on the concept: whereas a classical system is described
fully by listing at any point in time the positions and momenta of all the parti-
cles in it, a quantum mechanical system is completely described by giving its
wave function at any point in time. The wave function is a function of all the
observable variables (called quantum numbers) of the system, whose value is a
complex number. In a simplified system these variables are the positions of all
the particles. The absolute value of the wave function squared gives the prob-
ability of finding the system in a given configuration. Because no probabilities
can change as a result of swapping the positions of two completely identical
particles, the wavefunction (usually denoted by Ψ) must have the following
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Chapter 1. Ultracold atomic gases

property:
|Ψ(x1, x2)|

2 = |Ψ(x2, x1)|
2,

i.e. the probability of finding particle 1 in location x1 and particle 2 in loca-
tion x2 must be the same as finding the particles in the opposite positions. In a
three-dimensional system there are two ways in which this is possible, either
Ψ(x1, x2) = Ψ(x2, x1) orΨ(x1, x2) = −Ψ(x2, x1). As a convention, particles whose
wavefunction obeys the former are called bosons and the latter fermions. Ex-
periments have confirmed that all the known particles (such as quarks, elec-
trons, or protons) belong to either one of these groups. Related to this property
of the wavefunction, these two types of particles have their own energy distri-
butions, known as the Bose-Einstein distribution for bosons and Fermi-Dirac
distribution for fermions.

The antisymmetry of the wavefunction gives a very distinct characteristic for
fermions: as Ψ(x1, x2) = −Ψ(x2, x1) it follows that Ψ(x1, x1) = −Ψ(x1, x1), which
means that Ψ(x1, x1) = 0 for identical fermions. This is a mathematical way of
saying that the probability of finding two identical fermions in the same quan-
tum state is zero, which is a fundamental property of many-body quantum
mechanics, known as the Pauli exclusion principle. The exclusion principle is
a very black-and-white kind of effect; the particles simply can not occupy the
same state. In some sense this principle divides particles in two classes that are
fermions and non-fermions, i.e. particles that obey the Pauli principle and the
ones that do not.

For composite particles, i.e. particles composed of a bound state of two or more
particles, the statistics is inherited in the following way: a composite of an odd
number of fermions is a fermion, a composite of an even number of fermions
is a boson. A composite of any number of bosons is a boson. Since quarks are
fermions, protons and neutrons, being composed of three quarks, are fermions.
As electrons are also fermions, the number of fermions in a neutral atom is 2Z+

N, Z being the number of protons andN the number of neutrons. Therefore the
number of neutrons alone determines the type the atom is. So, even though the
electron cloud determines all the chemical properties of the atom, the collective
behaviour of a cold dilute gas of one isotope is determined by the neutrons in
the nucleus.

Originally the study of ultracold atomic gases can be traced back to Satyen-
dra Nath Bose who, together with Albert Einstein, put forward the theory of
Bose-Einstein condensation in the 1920s [1, 2]. An essential feature of their
prediction is that a cloud of bosonic particles would, if cooled down below a
critical temperature, condense as what is nowadays known as a Bose-Einstein
condensate (BEC). In this state, there is a macroscopic population of particles
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1.2. Cooling and trapping

in a single quantum state, thereby creating a kind of coherent matter wave. Al-
though this state was observed with superfluid liquid helium, the strong inter-
actions present in the system prevent the observation of a pure BEC, and there-
fore a condensate of non-interacting particles lacked satisfactory experimental
proof until 1995, when the research groups of Carl Wieman and Eric Cornell
at Boulder and Wolfgang Ketterle at MIT managed to cool clouds of rubidium
(Wieman-Cornell) and sodium (Ketterle) atoms below their critical tempera-
tures and observe their condensation [3, 4]. Since then, atomic BECs have been
created and observed in numerous laboratories all around the world.

1.2 Cooling and trapping
Alkali atoms, that is atoms with just one electron occupying the outermost
shell, are the ones commonly used for atom gas experiments. These elements
are, in the order of increasing mass, hydrogen, lithium, sodium, potassium,
rubidium, and cesium. In the ground state the inner shells are closed and thus
they have no net angular momentum, and the outermost electron is in an s-
orbit, also with no angular momentum. The outermost electron is the reason
to the common use of alkali atoms in the experiments; because of the singly
occupied shell, the atoms have suitable transitions with optical wavelengths,
that can be utilized for cooling. A typical trapping scheme utilizes the hyper-
fine interaction, which is the coupling between the electronic spin and the spin
of the nucleus and the dependence of the energies of the hyperfine states on
the external magnetic field, called the Zeeman effect. The hyperfine states are
characterized by their total spin F, which can have the values I ± 1/2, where
I is the nuclear spin, and their hyperfine magnetic moment mF, ranging from
−F to F. In the absence of an external magnetic field, there is an energy differ-
ence between states F = I − 1/2 and F = I + 1/2, called hyperfine splitting,
but the states with same F are degenerate. As the magnetic field couples to
both the nuclear and electron spin, the states with different mF become non-
degenerate and split into levels called Zeeman sublevels. The corresponding
energy splitting is called Zeeman splitting. It is important that the energy for
some hyperfine states increases with the increasing magnetic field while for
others it decreases. The former are called low field seeking and the latter high
field seeking states, see figure 1.1. For weak magnetic fields the energy of all
hyperfine states is linear as a function of the field strength.

Magnetic trapping of neutral atoms relies on the application of the Zeeman ef-
fect to trap atoms prepared in a low-field-seeking hyperfine state. In a magneto-
optical trap (MOT) two magnetic coils in an anti-Helmholtz configuration are
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FIGURE 1.1: Schematic picture of the Zeeman effect for nuclear spin I = 1.
The hyperfine manifold with F = 1/2 has two states and the one with F =

3/2 four. In a weak magnetic field the Zeeman splitting is much less than
the hyperfine splitting, i.e. the energy difference of the hyperfine manifolds.
Hyperfine states for which the energy increases as a function of magnetic field
are low field seekers and those with decreasing energy high field seekers.

used to create a magnetic field with an amplitude minimum in the center of
the system. The problem with such a setup is that the field actually vanishes in
the center, allowing atoms to lose their orientation and flip to other hyperfine
states, consequentially letting them escape the trap. In the original BEC experi-
ments this was overcome by rotating the trap, thereby creating a pseudopoten-
tial with a maximum in the center (Boulder) or by “plugging” the hole in the
center by a laser beam (MIT). Another way of trapping atoms magnetically is
the Ioffe-Pritchard trap, which consists of two parallel coils with currents flow-
ing in the same direction and four bars, known as Ioffe bars, carrying current
parallel to the axis of the coils.

Atoms can also be trapped in optical traps operating on the principle of atom
polarizability and its interaction with the electric field. As explained in more
detail in the chapter on optical lattices, depending on the detuning of the laser,
atoms are attracted to the locations of lowest or highest intensity of the electric
field and can therefore be trapped in the middle of intersecting laser beams.
All-optical trapping is experimentally convenient because there are no mag-
netic fields interfering with the so called Feshbach fields, explained below.

Atoms trapped in a MOT are cooled by laser cooling, which can be explained
by the following picture: assume two laser beams, one propagating to the right
and the other to the left, and assume there is an atom moving to the right in
the field created by the lasers. The frequency of the lasers is tuned just below
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1.3. Atom-atom interactions

FIGURE 1.2: Successive cooling cycles in evaporative cooling. The height of
the trapping potential is lowered and the gas is allowed to thermalize.

a transition between the ground and an excited state of the atom. Because of
the Doppler effect, the atom experiences the frequency of the left moving pho-
tons as higher than that of the right moving ones, and the absorption rate of
the former is higher than that of the latter. Though the atom decays back to
the ground state by spontaneous emission, in this process the photon has a
higher energy (the energy of the transition) than the initial absorbed photon.
The energy difference is given by a loss in kinetic energy of the atom, leading
to cooling. In a MOT, cooling is realized by three pairs of laser beams in per-
pendicular directions. The minimum temperature reachable by this method is
of the order 100 µK, not low enough for realizing a BEC. This can be improved
by using a so called Sisyphus cycle to achieve temperatures of the order 1 µK
[5].

In order to cool the sample even more, a process called evaporative cooling is
used. As a simplified picture, this can be understood as lowering the “edge” of
the trapping potential, causing the atoms with the most kinetic energy, i.e. the
hottest atoms, to escape and letting the gas thermalize. Repeating this process
allows the cooling of the sample to very low temperatures, even as low as
10 nK. Because evaporative cooling works by deliberately letting some atoms
escape the trap, it causes significant atom losses during the process; 90 % of
the initial sample might be lost in the cooling. Therefore the largest possible
number of atoms in the beginning of the process is desirable.

1.3 Atom-atom interactions
An essential feature of ultracold atom gases is their diluteness: with densities
below 1020 m−3, the interparticle distance is larger than 100 nm, 100 to 1000
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Chapter 1. Ultracold atomic gases

times longer than in a solid. This extreme diluteness means that two-body col-
lisions are the dominant form of interaction and processes involving three or
more atoms can be neglected. Thus the physics involved can mostly be derived
from the two-body scattering theory.

The real interaction potential between two atoms is a van der Waals type po-
tential, with hard core repulsion at distances r 6 rc and attraction proportional
to r−6 with r >> rc, shown in figure 1.3. This potential has a number of bound
states. However, the use of this potential is not practical in calculations because
of its complicated form. Because we are interested in many-body phenomena
in low temperatures, i.e. with low scattering energies, we can afford to approx-
imate the potential with an effective pseudopotential of the form given by

V(r)ψ(r) = gδ(r)

[
∂

∂r
(rψ(r))

]
r=0

, (1.1)

with g = 4π h2a/m, where a is called the s-wave scattering length andm is the
mass of the atom. All features of the low-energy scattering of two particles,
such as atoms, are described by the single parameter a. The intriguing fea-
ture of the scattering process is that a can be controlled with an external mag-
netic field, using a phenomenon known as the Feshbach resonance [6, 7, 8].
In the scattering process a molecular state can couple resonantly to the free
state through a virtual process. Depending on the energy difference of the free
state and the molecular state, which can be controlled by the magnetic field,
the scattering length can have any value. The s-wave scattering length, as a
function of the magnetic field, is shown schematically in figure 1.4.

The Feshbach resonance offers an invaluable tool for choosing the strength
of the effective interaction and even whether it is attractive or repulsive, by
applying a magnetic field. This is one of the key features in making ultracold
atom gases a suitable “test bench” for ideas and models concerning many-
body quantum mechanics, especially superfluidity and superconductivity.

1.4 Superfluidity
Perhaps the most remarkable phenomenon related to ultracold temperatures
is the superfluidity of a BEC. Superfluid is a fluid that flows without any fric-
tion. The most well known appearance of superfluidity happens in certain
metals when cooled to temperatures of a few kelvins, where the conduction
electrons of the metal enter a superfluid state and the metal becomes a super-
conductor, a conductor with no electric resistance. In fact superconductivity is
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simply superfluidity of charged particles. Because superconducting materials
have a vast number of applications, from electronics to mass transport, finding
a theory to describe them completely is the Holy Grail of solid state physics.
Although the superconductivity of conventional metals is well understood in
terms of the theory by Bardeen, Cooper and Schrieffer (BCS) [10] and its ex-
tensions [11, 12, 13], the so called high temperature superconductivity [14, 15],
exhibited by some ceramic compounds, continues to elude even qualitative
descriptions on the microscopic level.

One motivation for studying atom gases is the possibility of understanding su-
perconductivity better. However, as the charge carriers in solids are electrons,
i.e. fermions, it makes sense to use the fermionic isotopes for these studies. Be-
cause fermions as such do not, by definition, form a BEC, their superfluidity
is slightly more complicated. This phenomenon comes about by the formation
of composite bosons, for which the condensation is possible. The most usual
mechanism for this is pairing; as explained above, two fermionic particles to-
gether form a bosonic particle.

Because of the Pauli exclusion principle, it is not possible for two identical
fermions in the same quantum state to form a pair. This is why experiments
with fermionic isotopes are performed with a mixture of two different hyper-
fine states, allowing pairing between atoms in different states. There are two
pairing mechanisms for the atoms. The simpler pairing mechanism is due to
the interaction directly, as the potential always has bound states. Atoms in
such a state are bound in space and form a molecule. The other pairing mech-
anism is the BCS paradigm, where fermions with a weak attractive interaction
form non-local pairs, called Cooper pairs. While the molecule is simply a two-
body state, the BCS state is a true many-body state where the pairs have lower
energy than free particles due to interactions with all the other particles. A
major part of this thesis deals with generalizations of the BCS pairing to more
complicated systems.

The first evidence of molecules of ultracold fermionic atoms was reported
in 2003 [16, 17, 18, 19] and later in the same year Bose condensates of these
molecules were observed [20, 21, 22, 23]. The first experimental evidence of
pairing on the attractive side of the resonance was shown in 2004 [24, 25, 26,
27]. The pairing gap was measured in the same year by radiofrequency spec-
troscopy [28, 29]. In 2005 the phase transition to a superfluid state was ob-
served by measuring heat capacity as a function of temperature [30]. In the
same year the MIT group observed quantized vortices in a cooled down sam-
ple of fermionic atoms, thereby proving that the sample was in a superfluid
state [31].
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Chapter 2

Optical lattices

2.1 The laser fields forming the lattice
An optical lattice is a one-, two-, or three-dimensional periodic potential for
atoms, created with the use of counterpropagating laser beams. In order to
discuss the physical properties of optical lattices, I will explain them from the
point of view of classical electromagnetism. The electric field of a beam prop-
agating in the x-direction is of the form

E0A(r,ϕ)ei(kx−ωt), (2.1)

where r is the radial distance from the beam, ϕ is the polar angle, ω is the
frequency of the beam, k is its wave number, A(r,ϕ) is the amplitude of the
beam, and E0 is a unit vector with dimensions V/m. Summing such a wave
with another one, propagating to the opposite direction, gives a total field of

E0A(r,ϕ)
(
ei(kx−ωt) + ei(−kx−ωt)

)
= 2E0A(r,ϕ)e−iωt cos(kx), (2.2)

which is a standing wave along the x-axis.

Though atoms themselves are electrically neutral, they do interact with exter-
nal electric fields due to polarization. This means that an external field dis-
places the positively charged nucleus and the center of mass of the nega-
tively charged electron cloud relative to each other, making the atom an electric
dipole. The total electric force acting on an atomic dipole is [32]

F(r) = q

(
E(r +

δr

2
) − E(r −

δr

2
)

)
≈ q

(
1
2
δr · ∇E(r) +

1
2
δr · ∇E(r)

)
, (2.3)

where q is the charge of the nucleus, r is the position of the atom, and δr

is the relative displacement of the positive and negative charges. Noting that
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Chapter 2. Optical lattices

qδr = p, the dipole moment of the atom, and assuming the polarization is
linear, p = αE, this is more clearly written as

F(r) = (p · ∇)E(r) = α(E(r) · ∇)E(r). (2.4)

From standard vector calculus it follows that (E · ∇)E = 1
2∇E2 − E × ∇ × E,

and since ∇ × E = −∂B/∂t, which averaged over time gives zero, it can be
seen that the total force acting on the atom is proportional to the gradient of
the square of the electric field. Therefore the atoms experience the standing
electromagnetic wave created by the lasers as a potential of the form

V(r) = −α
E2

2
∝ I cos2(kx), (2.5)

where the intensity I = |A|2. Thus the laser beams act as a one-dimensional pe-
riodic potential for the polarizable atoms, with the period d = λ/2, where λ is
the wavelength of the laser. Adding another such potential in an orthogonal di-
rection makes the lattice potential two-dimensional, and adding a third one in
the remaining orthogonal direction makes the lattice fully three-dimensional.

The sign of the atomic polarizability α depends on the frequency of the laser,
compared to the transitions of the atom. Ifω is slightly detuned from an atomic
transition between states |g〉 and |e〉, with energy difference  hω0, the polariz-
ability is inversely proportional to  h(ω0 − ω) [33]. Thus, if the laser is blue
detuned (ω > ω0), α < 0 and the atoms are attracted to the nodes of the field.
Conversely, with a red detuned laser, where ω < ω0, the polarizability is pos-
itive and the atoms are attracted to maxima of the field.

If all the angles between the lasers are 90° and the wavelengths identical, the
lattice is a cubic lattice. Varying either the angles or some of the wavelengths
yields different symmetries, but this study is limited to the case of a simple
cubic lattice.

The energies in lattice experiments scale with the lattice recoil energy ER,

ER =
 h2k2

l

2m
, (2.6)

where kl is the wavenumber of the laser andm is the mass of the atom. When
discussing optical lattices, it is typical to give all energies in the units of the
recoil energy. This is an extremely low energy scale. A typical experimental
setup uses a 1064 nm laser with 6Li atoms [34], which gives ER ≈ 2 · 10−29 J or
10−10 eV. The energy scale is therefore 10 orders of magnitude lower than the
energy scales involved in the excitations of electrons in atoms.

10



2.2. Lattice potential and tunnelling

2.2 Lattice potential and tunnelling
A simplistic view of the effect of the lattice potential on a single atom can be
given as follows: the center of each lattice site resembles a harmonic oscillator
potential, with a non-degenerate ground state. The wavefunction of an atom
occupying this state is localized around the center and decays exponentially
outside the lattice site. Depending on the depth of the lattice potential, usually
denoted with s ∝ I, the wavefunction has some overlap with the neighbour-
ing sites, thereby allowing tunnelling between these sites. The lattice depths
commonly employed in experiments are such that tunnelling further than the
nearest neighbour is negligible, the atom is well localized in the lattice site.
Band structures are given by the standard tight binding model [35], and the
bandgap between the lowest band and the first excited band is much larger
than the typical energies of the atoms in the systems.

Including interactions, the system is well described by the nearest-neighbour
Hubbard model, with the interaction energy of two atoms occupying the same
point-like lattice site being U and the energy associated with a single atom
tunnelling to the next site J. The Hubbard model is widely used in the field of
solid state physics, where the tunnelling energy is usually denoted with t.

2.2.1 Harmonic confinement

Since for a typical laser beam the intensity profile perpendicular to the direc-
tion of propagation is not constant, but rather a Gaussian function, V(r) in-
creases as r is further away from the center axis of the beam. This is both
a blessing and a curse. Without this confinement, the lattice potential alone
could not trap a cloud of atoms, but the atoms would escape by tunnelling
away from the center, and thus this property makes experimental setups eas-
ier to construct. On the other hand, as the potential has neither the elliptical
symmetry of a pure harmonic trap, nor the translational symmetry of a lattice,
accurate theoretical models are difficult to create.

2.3 Measuring the momentum distribution
An important aspect of optical lattice experiments are the so called time of
flight (TOF) measurements [33]. As the lattice Hamiltonian has translational
invariance, according to the Bloch theorem [35], its eigenfunctions are of the
form uq(r)eiq·r, where uq(r) is a function with lattice periodicity. When the
atoms are released from the lattice, i.e. the lattice is switched off nearly in-
stantaneously, the wavefunction of an atom becomes a superposition of plane
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Chapter 2. Optical lattices

waves with real momenta equal to

pn =  hq + 2n hk,

where n is an integer and k is a reciprocal lattice vector, with length |k| = 2π/λ,
where λ is the wavelength of the laser. The factor of 2 results from the fact
that the lattice potential is of the form cos2, with a period equal to half the
wavelength of the laser. After time t, the atom is at position

xn =
pn

m
t =

 hq + 2n hk

m
t.

If an atom is detected at any of the equally spaced positions xn, it has had to
come from the state with lattice momentum  hq. This is often used as a tool to
map the momentum distribution in a lattice to a position distribution, which
can be measured with particle detectors.

In contrast, if the lattice potential is switched off adiabatically, i.e. slowly, its
wavefunction retains only the plane wave part corresponding to q. In this case
each Bloch state is mapped onto a unique momentum state in free space, and
a state in the nth band will be mapped to the nth Brillouin zone.

2.4 Experiments with fermions in optical lattices
Several interesting experiments have already been performed with fermionic
atoms in optical lattices. One is the observation of fermionic superfluidity in
an optical lattice, by the MIT group [34]. This experiment was done with a
mixture of equal amounts of atoms in the two lowest hyperfine states of 6Li. A
cooled-down sample was loaded into a three-dimensional optical lattice and
brought into the BCS-BEC crossover regime by using the Feshbach resonance
centered at 834 G. In this strongly interacting regime the atoms form localized
pairs, which were observed in the following way: the confining potential was
switched off and an absorption image taken after a time of flight of 6.5 ms.
The images show clear peaks at the locations corresponding to reciprocal lat-
tice vectors, which proves that there was strong coherence through the sample.
Strong coherence is characteristic for a superfluid, thereby proving the sample
was in a superfluid state. Furthermore, the distance from the first order peaks
to the zero-momentum peak corresponds to a pair of atoms carrying momen-
tum equal to the reciprocal lattice vector. The experiment also demonstrated
that increasing the lattice depth beyond 6ER destroys this coherence. A sim-
plified explanation is that atoms become strongly localized in the deep lattice
sites.
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The observation of superfluidity was preceded by experiments in the ETH
Zürich in 2004 and 2005 [36, 37]. In the first experiment the group observed
Fermi surfaces and demonstrated that the shape of the surface and its de-
pendence on density corresponds to an ideal Fermi gas occupying the lowest
Bloch band of a simple cubic lattice. In the latter experiment, molecule forma-
tion was observed and the binding energy of the molecules measured with
radiofrequency spectroscopy. In a later experiment the ETH group explored
the center of mass dynamics of a cloud of fermionic atoms in a lattice [38]. In
the experiment the center of the harmonic trap (superimposed on the lattice
as explained above) was displaced, causing the cloud to oscillate in the trap.
It was found that the oscillation period depended on the interaction strength
between the atoms; with strong interactions the oscillation was much slower.
This can be understood with the following picture: weakly interacting atoms
tunnel from site to site as single atoms with tunneling strength J, but strongly
interacting atoms form pairs, which tunnel as a second order process, with ef-
fective tunneling rate J2/U, where U is the interaction strength [39]. The most
recent experiment reported by the same group is the observation of a fermionic
Mott insulator [40]. This state is formed by repulsively interacting atoms with
one atom in each lattice site. Because of the strong repulsive interaction, the
energy cost of having two atoms in the same lattice site is large and therefore
the system is in an incompressible state where tunnelling is suppressed. The
experiment showed how the incompressibility of the system, the percentage of
doubly occupied lattice sites, and the rise of a gapped mode in the excitation
spectrum are connected, thereby confirming the observation of a fermionic
Mott insulator.

The third group in the world to experiment with fermionic atoms in opti-
cal lattices so far is in Mainz, Germany. They observed strong anticorrelation
peaks in the density-density correlation function of atomic shot noise from a
Fermi gas released from an optical lattice [41]. Because fermions in a lattice oc-
cupy different Bloch states due to the Pauli exclusion principle, their momenta
upon release assume values  hq1 + 2n1 hk and  hq2 + 2n2 hk, where q1 6= q2

and k is the lattice wavevector. Thus, after a time of flight t, their distance is
d = (q1 − q2 + 2k(n1 − n2)) ht/m. The measured correlation function showed
clear dips at distances which are integer multiples of 2k ht/m, as expected for
a degenerate Fermi gas. This fermionic antibunching is a true quantum statis-
tical phenomenon and the observation is a clear proof of the quantum nature
of the system. This group has also reported on an experiment with repulsively
interacting fermionic atoms in a lattice [42]. This experiment also showed evi-
dence of the Mott insulating phase.
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Chapter 3

Imbalanced pairing and superfluidity in optical
lattices

The object of study in this work is a two-component atomic Fermi gas. Al-
though the components do not represent different spin states per se, as dis-
cussed in chapter 1, they are usually referred to as spin up (↑) and spin down
(↓) atoms. The many body Hamiltonian of the system is

H =
∑

σ=↑,↓

∫
ψ†

σ(x)

(
−

 h2

2m
∇2 + Vσ(x)

)
ψσ(x)d3x

+
1
2

∫ ∫
ψ
†
↑(x)ψ†

↓(x
′)U(x, x ′)ψ↓(x

′)ψ↑(x)d3x ′d3x,

(3.1)

where ψ↑ and ψ↓ are fermionic field operators, Vσ(x) is the external potential
felt by component σ, and U(x, x ′) is the two-body potential. This Hamiltonian
already takes into account that three-body processes are extremely unlikely
because of the diluteness of the gas and can thus be neglected.

The standard way to deal with the complex two-body interaction potential
U(x, x ′) is to use an effective interaction where the details of the short wave-
length part of the potential have been integrated out [43, 5]. In this approxima-
tion the potential takes the form

U(r) =
4π h2a

m
δ(r)

[
∂

∂r
(r·)
]

r=0
, (3.2)

where r is the separation of the atoms,m is the mass of the atoms, and a is the
s-wave scattering length. The interaction part therefore reduces to

2π h2a

m

∫
ψ
†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x)d3x. (3.3)
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Finally the Hamiltonian has the form

H =
∑

σ

∫
ψ†

σ(x)

(
−

 h2

2m
∇2 + Vσ(x)

)
ψσ(x)d3x

+
1
2

4π h2a

m

∫
ψ
†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x)d3x.

(3.4)

The lattice potentialV(x) is of the formVx cos2(kxx)+Vy cos2(kyy)+Vz cos2(kzz).
In the case of a single atom, the eigenfunctions of the lattice are Bloch wave
functions [35]. The Bloch functions can be represented in the basis of Wannier
functions that are localized in each lattice site. Thus the field operators can be
expanded in the Wannier basis and keeping only the lowest vibrational states,
the Hamiltonian can be written as the single-band Fermi-Hubbard Hamilto-
nian, given below [44].

3.1 Hubbard model
The Fermi-Hubbard Hamiltonian is

H− µ↑N↑ − µ↓N↓ = −
∑

n

(
µ↑ĉ

†
↑nĉ↑n + µ↓ĉ

†
↓nĉ↓n

)
+U

∑
n

ĉ
†
↑nĉ

†
↓nĉ↓nĉ↑n

−
∑

σ∈{↑,↓}

Jσx

∑
〈n,m〉x

+Jσy

∑
〈n,m〉y

+Jσz

∑
〈n,m〉z

 ĉ†σmĉσn,

(3.5)

where n runs through all the lattice sites and 〈n, m〉x means a nearest neigh-
bour pair in the x-direction, etc. The values of U and J are given by

U = −
8√
π

a

λ

(
2sxsyszE3

R
 h2

mλ2

) 1
4

Jσi = ERe
−

π2√si
4

((
π2si

4
−

√
si

2

)
−

1
2
si(1 + e−

√
si)

)
,

(3.6)

where si is the lattice height in recoil energies in direction i and a is the “back-
ground” scattering length, i.e. the scattering length of the atoms in free space
[45]. Here I have explicitly assumed that the potential experienced by the atoms
does not depend on spin. This assumption does not change the functional form
of the equations.
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3.1. Hubbard model

The full Hubbard Hamiltonian in three dimensions can only be solved for very
small lattice sizes. In fact, since the size of the matrix representation of the
Hamiltonian scales as 4M, where M is the number of lattice sites, the full di-
agonalization for lattices with more than 12 sites is not feasible, regardless of
the number of geometric dimensions. There are different ways to counter this
limitation; this work uses the mean field approach. An arbitrary operator Â
can be written in the form Â =

〈
Â
〉

+ δÂ, where δÂ represents fluctuations
around the mean value,

〈
Â
〉
. A product of two operators, Â and B̂, is therefore

written as

ÂB̂ =
(〈
Â
〉

+ δÂ
) (〈

B̂
〉

+ δB̂
)

=
〈
Â
〉 〈
B̂
〉

+
〈
Â
〉
δB̂+ δÂ

〈
B̂
〉

+ δÂδB̂ (3.7)

Assuming the fluctuations to be small, the second order fluctuation term, δÂδB̂,
can be neglected. The exclusion of second order fluctuation terms is the core
of the mean field approximation. This approach fails to give good results in a
system where fluctuations are important and it can fail completely if the fluctu-
ations play a dominant role, as is usually the case in one-dimensional systems
[46]. Having thrown out the product of fluctuations, we can rewrite this as〈

Â
〉 〈
B̂
〉

+
〈
Â
〉
δB̂+ δÂ

〈
B̂
〉

=
〈
Â
〉 〈
B̂
〉

+
〈
Â
〉 (
B̂−

〈
B̂
〉)

+
(
Â−

〈
Â
〉) 〈

B̂
〉

=
〈
Â
〉
B̂+ Â

〈
B̂
〉

−
〈
Â
〉 〈
B̂
〉

.
(3.8)

We can now use this result for the four-operator product in (3.5) by Â = ĉ
†
↑nĉ

†
↓n

and B̂ = ĉ↓nĉ↑n to get

ĉ
†
↑nĉ

†
↓nĉ↓nĉ↑n = ĉ

†
↑nĉ

†
↓n〈ĉ↓nĉ↑n〉+ 〈ĉ†↑nĉ

†
↓n〉ĉ↓nĉ↑n − 〈ĉ†↑nĉ

†
↓n〉〈ĉ↓nĉ↑n〉. (3.9)

Now U〈ĉ†↑nĉ
†
↓n〉 is the order parameter of the mean field theory. As a second

approximation let us assume its form is a plane wave,

U〈ĉ†↑nĉ
†
↓n〉 = ∆e−2iq·n, (3.10)

where ∆ > 0. This is equivalent with the standard BCS-theory in the limit of
q = 0. This form of order parameter was first considered by Fulde and Ferrel
[47] and Larkin and Ovchinnikov [48, 49]. The amplitude of the order param-
eter, ∆, plays a special role in the theory as the energy gap for quasiparticle
excitations in the ground state of the system, as shown below.

17
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The Hamiltonian is now in the form

H− µ↑N↑ − µ↓N↓ = −
∑

n

(
µ↑ĉ

†
↑nĉ↑n + µ↓ĉ

†
↓nĉ↓n

)
+

∑
n

(
∆e2iq·nĉ

†
↑nĉ

†
↓n + ∆e−2iq·nĉ↓nĉ↑n −

∆2

U

)
−

∑
σ

∑
α∈{x,y,z}

Jσα

∑
〈n,m〉α

ĉ†σmĉσn.

(3.11)

It is convenient to write the Hamiltonian in the (quasi-)momentum representa-
tion, i.e. represent the operators in the plane wave basis. This essentially means
doing a Fourier transform on (3.11) by

ĉ↑n =
1√
M

∑
k

eik·nĉ↑k

ĉ
†
↑n =

1√
M

∑
k

e−ik·nĉ
†
↑k

ĉ↓n =
1√
M

∑
k

eik·nĉ↓k

ĉ
†
↓n =

1√
M

∑
k

e−ik·nĉ
†
↓k,

(3.12)

whereM is the (finite) number of lattice sites and k runs through the reciprocal
lattice. The density terms transform as

∑
n

ĉ
†
↑nĉ↑n =

∑
n

(
1√
M

∑
k

e−ik·nĉ
†
↑k

)(
1√
M

∑
k ′

eik ′·nĉ↑k ′

)

=
1
M

∑
n

∑
k,k ′

ei(k ′−k)·nĉ
†
↑kĉ↑k ′ =

∑
k

ĉ
†
↑kĉ↑k,

(3.13)

where the following identity is used:

1
M

∑
n

ei(k ′−k)·n = δk,k ′ . (3.14)

This equation holds for all reciprocal lattice vectors k, k ′.
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3.1. Hubbard model

Similarly, the interaction term becomes∑
n

(
∆e2iq·nĉ

†
↑nĉ

†
↓n

)
=

1
M

∑
n,k,k ′

(
∆e2iq·ne−ik·nĉ

†
↑ke

−ik ′·nĉ
†
↓k ′

)
=

1
M

∑
n,k,k ′

(
∆ei(2q−k−k ′)·nĉ

†
↑kĉ

†
↓k ′

)
=

∑
k,k ′

(
1
M

∑
n

ei(2q−k−k ′)·n

)
︸ ︷︷ ︸

=δk+k ′ ,2q

∆ĉ
†
↑kĉ

†
↓k ′

=
∑

k

∆ĉ
†
↑k+qĉ

†
↓−k+q.

(3.15)

The nearest neighbour hopping term gives rise to a cosine dispersion, for ex-
ample the x-direction looks like∑

〈n,m〉x

(
ĉ
†
↑mĉ↑n + ĉ†↓mĉ↓n

)
=

∑
n

(
(ĉ†↑n+(1,0,0) + ĉ†↑n−(1,0,0))ĉ↑n + (ĉ†↓n+(1,0,0) + ĉ†↓n−(1,0,0))ĉ↓n

)
=

1
M

∑
n,k,k ′

e−i((k−k ′)·n)
(
eikx + e−ikx

)︸ ︷︷ ︸
=2 cos kx

(
ĉ
†
↑kĉ↑k ′ + ĉ†↓kĉ↓k ′

)
=

∑
k

2 coskx

(
ĉ
†
↑kĉ↑k + ĉ†↓kĉ↓k

)
.

(3.16)

Finally, we have arrived at the mean field Hubbard Hamiltonian in momentum
space,

Ĥ =
∑

k

(
ξ↑kĉ

†
↑kĉ↑k + ξ↓kĉ

†
↓kĉ↓k

+ ∆ĉ†↑k+qĉ
†
↓−k+q + ∆ĉ↓−k+qĉ↑k+q

)
−
∆2

U
,

(3.17)

where ξσk = εσk − µσ =
∑

α 2Jσα(1 − cos(kα)) − µσ. Note that in order to get
the dispersion correspond to that of a free particle in the limit of small k, the
following terms have been added to the Hamiltonian:

2
∑

α

∑
k

(
Jσαĉ

†
σkĉσk

)
=

∑
α

2JσαNσ. (3.18)
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3.2 Bogoliubov transformation
The Hamiltonian in (3.17) can be written in an equivalent form as

Ĥ =
∑

k

(
ξ↑k+qĉ

†
↑k+qĉ↑k+q + ξ↓−k+q(1 − ĉ↓−k+qĉ

†
↓−k+q)

+ ∆ĉ†↑k+qĉ
†
↓−k+q + ∆ĉ↓−k+qĉ↑k+q

)
−
∆2

U
.

(3.19)

Now the operator part can be expressed as a matrix:∑
k

(
ξ↑k+qĉ

†
↑k+qĉ↑k+q − ξ↓−k+qĉ↓−k+qĉ

†
↓−k+q

+ ∆ĉ†↑k+qĉ
†
↓−k+q + ∆ĉ↓−k+qĉ↑k+q

)
=∑

k

(
ĉ
†
↑k+q ĉ↓−k+q

)(
ξ↑k+q ∆

∆ −ξ↓−k+q

)(
ĉ↑k+q

ĉ
†
↓−k+q

)
.

(3.20)

The essential point in this representation is that it is a sum of independent 2×2
matrices that can be diagonalized separately. It is due to this feature that the
mean field approach under discussion is the most simple and straightforward
way to address superfluidity in a lattice theoretically.

Let us now derive a Bogoliubov transformation, B, for the terms of (3.20). The
requirements are that B diagonalizes the matrix and that B is canonical, i.e. it
preserves the fermionic anticommutation relations. Without any loss of gener-
ality B can be assumed real in this case. Denoting the new basis operators as
γ̂+ and γ̂−, we have(

γ̂+,k

γ̂
†
−,k

)
= B

(
ĉ↑k+q

ĉ
†
↓−k+q

)
=

(
B11ĉ↑k+q + B12ĉ

†
↓−k+q

B21ĉ↑k+q + B22ĉ
†
↓−k+q

)
(3.21)

and we require

B

(
ξ↑k+q ∆

∆ −ξ↓−k+q

)
B−1 =

(
E+,k,q 0

0 −E−,k,q

)
. (3.22)

It should be pointed out that the sign in front of E− is a choice of notation at
this point and does not affect the results. From the anticommutation relations
it follows that

1 = {γ̂+,k, γ̂†+,k} = {B11ĉ↑ + B12ĉ
†
↓,B11ĉ

†
↑ + B12ĉ↓} = B2

11 + B2
12

1 = {γ̂−,k, γ̂†−,k} = {B21ĉ
†
↑ + B22ĉ↓,B21ĉ↑ + B22ĉ

†
↓} = B2

21 + B2
22

0 = {γ̂+,k, γ̂−,k} = {B11ĉ↑ + B12ĉ
†
↓,B21ĉ

†
↑ + B22ĉ↓} = B11B21 + B12B22.

(3.23)
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3.2. Bogoliubov transformation

These conditions imply B2
11 = B2

22, B2
12 = B2

21, and B11B21 + B12B22 = 0, which
has several physically equivalent solutions that differ only by the locations of
minus signs. It is now possible to choose

B =

(
u −v

v u

)
, (3.24)

where u, v ∈ R and u2 + v2 = 1. This form satisfies all the requirements given
above. Because B is a unitary matrix, it is enough to solve the eigenvalue prob-
lem of the Hamiltonian and the columns of B are the eigenvectors. The eigen-
values are

λ± =
ξ↑k+q − ξ↓−k+q

2
±

√(
ξ↑k+q + ξ↓−k+q

2

)2

+ ∆2, (3.25)

and therefore

E±,k = Ek ±
δξk

2
:=

√(
ξ↑k+q + ξ↓−k+q

2

)2

+ ∆2 ± ξ↑k+q − ξ↓−k+q

2
. (3.26)

For comparison with the standard BCS theory it is good to note that if both
species experience the same potential, i.e. the single particle dispersions are
identical, ε↑k = εk = ε↓k, and in addition q = 0, this reduces to

E±,k =

√(
εk −

µ↑ + µ↓

2

)2

+ ∆2 ± µ↓ − µ↑

2
. (3.27)

When µ↑ = µ↓, the minimum value of both E+ and E− is ∆, which shows that
quasiparticle excitations have a minimum energy, i.e. energy gap, the magni-
tude of which is ∆.

For further applications, it is relevant to know the values of u2, v2, and uv; they
are

u2
k =

1
2

(
1 +

ξ↑k+q + ξ↓−k+q

2Ek

)
v2

k =
1
2

(
1 −

ξ↑k+q + ξ↓−k+q

2Ek

)
ukvk = −

∆

2Ek

.

(3.28)

The Hamiltonian can now be written in the form

Ĥ =
∑

k

((
γ̂
†
+,k γ̂−,k

)(E+,k 0
0 −E−,k

)(
γ̂+,k

γ̂
†
−,k

)
+ ξ↓−k+q

)
−
∆2

U
, (3.29)
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with E± defined in (3.26). The operators γ̂± are called quasiparticle operators.
The idea of the quasiparticle picture is that whereas the original system is com-
posed of real particles which interact, and therefore do not occupy energy
eigenstates, the Bogoliubov transformation gives an equivalent Hamiltonian
that describes non-interacting quasiparticles. The quasiparticles, although not
actual particles in the traditional sense (they are in fact superpositions of a
particle of one species and a hole of the other), behave like fermions because
the anticommutation relations are preserved by the canonical transformation.
Thus the system is now described as an ideal Fermi gas with dispersions given
by E+ and E−:

Ĥ =
∑

k

(
E+,kγ̂

†
+,kγ̂+,k + E−,kγ̂

†
−,kγ̂−,k + ξ↓−k+q − E−,k

)
−
∆2

U
, (3.30)

where the additional E− appears because of the normal ordering.

3.3 Self-consistent crossover equations

It is now possible to derive a set of equations from which ∆, µ↑, and µ↓ can be
solved. These equations are called crossover equations. To start with the num-
ber equations, note that the following holds for the total number of particles in
either one of the spin components: Nσ =

∑
k

〈
ĉ
†
σ,kĉσ,k

〉
. It is straightforward

to use the inverse of the Bogoliubov transformation U to write the particle op-
erators as linear combinations of the quasiparticle operators as

(
ĉ↑k+q

ĉ
†
↓−k+q

)
= B−1

(
γ̂+,k

γ̂
†
−,k

)
= B†

(
γ̂+,k

γ̂
†
−,k

)
=

(
uk vk

−vk uk

)(
γ̂+,k

γ̂
†
−,k

)
=

(
ukγ̂+,k + vkγ̂

†
−,k

ukγ̂
†
−,k − vkγ̂+,k

)
.

(3.31)
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Thus we arrive at

N↑ =
∑

k

〈
ĉ
†
↑kĉ↑k

〉
=

∑
k

〈
ĉ
†
↑k+qĉ↑k+q

〉
=

∑
k

〈(
ukγ̂

†
+,k + vkγ̂−,k

)(
ukγ̂+,k + vkγ̂

†
−,k

)〉
=

∑
k

〈
u2

kγ̂
†
+,kγ̂+,k + v2

kγ̂−,kγ̂
†
−,k + ukvkγ̂−,kγ̂+,k + ukvkγ̂

†
+,kγ̂

†
−,k

〉
=

∑
k

u2
k

〈
γ̂
†
+,kγ̂+,k

〉
+ v2

k

〈
γ̂−,kγ̂

†
−,k

〉
=

∑
k

u2
knF(E+,k) + v2

knF(−E−,k).

(3.32)

Note that expectation values of type 〈γ̂+,kγ̂−,k〉 are automatically zero. A sim-
ilar equation holds for the number of down particles:

N↓ =
∑

k

〈
ĉ
†
↓kĉ↓k

〉
=

∑
k

〈(
ukγ̂

†
−,k − vkγ̂+,k

)(
ukγ̂−,k − vkγ̂

†
+,k

)〉
=

∑
k

u2
k

〈
γ̂
†
−,kγ̂−,k

〉
+ v2

k

〈
γ̂+,kγ̂

†
+,k

〉
=

∑
k

u2
knF(E−,k) + v2

knF(−E+,k).

(3.33)

Using the original definition of the order parameter, U〈ĉ†↑nĉ
†
↓n〉 = ∆e−2iq·n, it
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is possible to derive the so called gap equation :

∆e−2iq·n

U
=
〈
ĉ
†
↑nĉ

†
↓n

〉
=

〈∑
k,k ′

e−i(k+k ′)·nĉ
†
↑kĉ

†
↓k ′

〉

=

〈∑
k,k ′

e−i(k+k ′)·n
(
uk−qγ̂

†
+,k−q + vk−qγ̂−,k−q

)
·

(
−v−k ′+qγ̂+,−k ′+q + u−k ′+qγ̂

†
−,−k ′+q

)〉

=
∑
k,k ′

e−i(k+k ′)·n

(
− uk−qv−k ′+q

〈
γ̂
†
+,k−qγ̂+,−k ′+q

〉
︸ ︷︷ ︸

∝δk ′ ,−k+2q

+ u−k ′+qvk−q

〈
γ̂−,k−qγ̂

†
−,−k ′+q

〉
︸ ︷︷ ︸

∝δk ′ ,−k+2q

)

= e−2iq·n
∑

k

uk−qvk−q (1 − nF(E+,k−q) − nF(E−,k−q)) .

(3.34)

Finally, in the limit of q = 0, after substituting −∆/2Ek for uv and dividing by
∆, the gap equation is

1 = −U
∑

k

1 − nF(E+,k) − nF(E−,k)

2Ek

. (3.35)

Since U was defined as negative, the prefactor on the right hand side of the
equation is positive.

The number equations (3.32) and (3.33), and the gap equation (3.35) together
are equivalent with the standard BCS-Leggett theory. In the balanced case,
where N↑ = N↓, it is possible to choose µ↑ = µ↓ by hand and eliminate one of
the number equations. If the interactions are weak, i.e. |U| is small, the chemi-
cal potential can be approximated with the Fermi energy. However, when the
interaction strength increases, the chemical potential has to be solved from the
number equation in order to get the correct results.

The calculation becomes more involved once non-zero values for q are al-
lowed. In this case it is more feasible to solve ∆ and q by minimizing the
relevant free energy, as described in the next section.
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3.4 Thermodynamics
To derive thermodynamical quantities of a physical system we need a parti-
tion function describing the system. In this case we use the grand canonical
partition function,

ZG = Tre−βĤ =
∑

γ

〈γ|e−βĤ|γ〉, (3.36)

where the sum goes through the quasiparticle basis (i.e. the basis where the
quasiparticle occupation numbers are good quantum numbers) of the Hilbert
space and β = 1/kBT . The Hamiltonian is of the form

Ĥ =
∑

k

(
E+,kγ̂

†
+,kγ̂+,k + E−,kγ̂

†
−,kγ̂−,k

)
+ C, (3.37)

where C =
∑

k (ξ↓−k+q − E−,k) − ∆2/U. As a constant, C is factored out of the
expectation value and we get

ZG = e−βC
∑

γ

〈γ|e−β
∑

k(E+,kγ̂†
+,kγ̂+,k+E−,kγ̂†

−,kγ̂−,k)|γ〉. (3.38)

Let us denote n̂+,k = γ̂
†
+,kγ̂+,k and n̂−,k = γ̂

†
−,kγ̂−,k. Since the Hamiltonian

is diagonal in quasiparticle representation, all commutators between n̂±,k and
n̂±,k ′ are zero for all k, k ′ and the exponential of the sum can be written as a
product of exponentials,

ZG = e−βC
∑

γ

〈γ|
∏

k

e−βE+,kn̂+,ke−βE−,kn̂−,k |γ〉. (3.39)

Because the quasiparticle occupation numbers are well defined in each state
|γ〉, it holds that e−βE±,kn̂±,k |γ〉 = e−βE±,kn±,k,γ |γ〉, where n±,k,γ stands for the
occupation number of a quasiparticle of type ± in state k in |γ〉. Thus the par-
tition function is

ZG = e−βC
∑

γ

∏
k

e−βE+,kn+,k,γe−βE−,kn−,k,γ . (3.40)

The sum over γ runs through every combination of possible occupation num-
bers exactly once. Therefore this can be written as a product of sums over dif-
ferent occupation numbers for state k:

ZG = e−βC
∏

k

∑
n+,k

e−βE+,kn+,k

∑
n−,k

e−βE−,kn−,k

 . (3.41)
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Since the quasiparticles are fermions, the possible occupation numbers for a
given k-state are 0 and 1, giving

ZG = e−βC
∏

k

(
1 + e−βE+,k

) (
1 + e−βE−,k

)
. (3.42)

Thus the thermodynamic grand potential is

Ω = −
1
β

lnZG = −
1
β

ln

(
e−βC

∏
k

(
1 + e−βE+,k

) (
1 + e−βE−,k

))
, (3.43)

which reduces to

Ω = −
∆2

U
+

∑
k

(
ξ↓−k+q − E−,k −

1
β

ln
((

1 + e−βE+,k
) (

1 + e−βE−,k
)))

. (3.44)

The core of the (mean field) theory of phase transitions is as follows: the free
energy of the system depends on the order parameter, and in thermodynamic
equilibrium the order parameter takes the value that minimizes the free en-
ergy. For the normal gas-liquid-solid -type situation, the order parameter is
density, and temperature and pressure are fixed parameters. For a dilute Fermi
gas in an optical trap, described by the theory presented here, the order pa-
rameter is 4-dimensional: ∆ is the amplitude and q gives the magnitude and
direction of the wave vector in the plane wave form. The fixed parameters are
temperature, and depending on the situation, either the chemical potentials µ↑
and µ↓ or the total particle numbers, N↑ and N↓, as explained below.

Because the gas is trapped in a harmonic trap and is not in a particle bath, the
total particle numbers, N↑ and N↓ are constant in the experiment. Since the
time scale of spin relaxation is much larger than the time scale of the experi-
ment, the atoms are prevented from converting their spin. In this situation the
atom distribution assumes a form where the chemical potential is a constant
throughout the trap. The grand potential Ω(∆, q,µ↑,µ↓) is considered to de-
pend directly on µ↑ and µ↓ and is therefore the energy to minimize when the
local particle number is not fixed. Such a situation rises naturally for example
when using the local density approximation (LDA), covered below.

There are situations where it is viable to consider the particle density of the
system to be homogeneous, such as a very shallow trap, or a higher order
trap, which more closely resembles a box. In this case µ↑ and µ↓ are no longer
fixed and the relevant thermodynamic quantity to minimize is the Helmholtz
free energy F. This can be calculated from the grand potential with

F = Ω+ µ↑n↑ + µ↓n↓, (3.45)
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where n↑ and n↓ are numbers of atoms per lattice site. These quantities are of-
ten called filling fractions or filling factors. Because of the single band model,
it is not possible to have more than one atom of one species in a single lattice
site and thus the filling factors are bounded between 0 and 1. When minimiz-
ing F it is important to take care that the chemical potentials satisfy the num-
ber equations (3.32) and (3.33). Numerically this means that for every (∆, q)

-pair, before the value of F can be calculated, the number equations must be
solved first. Since in the interacting case µ↑ and µ↓ are not independent, and
the value of µ↑ affects the correct value of µ↓ and vice versa, the equations
have to be solved iteratively until both chemical potentials have converged.
This process actually takes the bulk of the computation time needed by the
multi-dimensional minimization of F.

There are three qualitatively different values for (∆, q), namely (∆ > 0, q = 0),
(∆ > 0, |q| > 0), and (∆ = 0).

It can be said that the situation where ∆ > 0 and q = 0 represents two phases,
depending on the polarization P, defined as

P =
n↑ − n↓

n↑ + n↓
, (3.46)

where n↑ and n↓ are filling factors as defined above. For P = 0 this situation
represents the classic BCS state. When P 6= 0, this is breached pair (BP) or
Sarma phase. There is some debate in the literature [50, 51, 52] on whether
BP is a stable phase. For a fixed chemical potential difference, the mean field
gap equation (3.35) has a non-zero solution, but this solution corresponds to a
maximum of the free energy and thus in this scheme BP is not a stable phase.
However, when the densities and not the chemical potentials are fixed, the
solution of the gap equation corresponds to a minimum of the free energy and
thereby to a stable phase. Bedaque et al. pointed out that this solution might
still be energetically unfavorable, when compared to a phase separation, see
below [53]. As opposed to the calculations of Bedaque et al. our results show
that in the lattice this model gives a stable BP phase in a large part of the phase
diagram, see figure 3.1, even when the phase separation is taken into account.
It was suggested by a recent quantum Monte Carlo study that in fact both the
schemes described above will give the same physics [54].

In the BP phase, the leftover atoms in the majority component form an un-
paired region or “breach” around the smaller Fermi surface, shown in figure
3.2. The transition between BCS and BP is continuous, i.e. there is no phase
transition between these two. Indeed, BCS is the P → 0 limit of BP. With higher
polarizations, however, it is possible that the difference of chemical potentials
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FIGURE 3.1: Temperature-polarization phase diagram for a Fermi gas in an
optical lattice. The average filling fraction in this diagram is 0.2. The color
coding of the different phases is: blue: BCS/BP, red: phase separation, yel-
low: FFLO, white: normal state. These results were published in publication
III. The Hubbard parameters are U = −0.26ER and J = 0.07ER. The values
for temperatures correspond to 6Li atoms in a lattice created by lasers with
wavelength 1030 nm.

is so large that in fact the gap in the quasiparticle spectrum disappears. Such
a state is often called a gapless superfluid. It is important to note that in the
scheme where the filling factors are fixed, BP can be stable for an arbitrarily
small polarization and only a part of the BP region is actually gapless. It should
be noted that it is customary to talk about a polarized or density imbalanced
gas when dealing with any polarization other than 0. A system with n↑ = n↓
is unpolarized or balanced.

The phase with ∆ > 0 and |q| > 0 is known as the Fulde-Ferrel-Larkin-
Ovchinnikov phase. For pairing, the non-zero FFLO momentum q shifts the
Fermi surfaces relative to each other, causing pairing between atoms with mo-
menta k and −k + 2q. Compared to BP, this leaves an asymmetric breach in
momentum space, schematically drawn in figure 3.3. This breach might not
even encircle the smaller surface. The q → 0 limit of FFLO is BP, but there is a
second order phase transition between these phases.

When either the temperature or polarization is too high, it is energetically fa-
vorable for the system to be in the normal non-superconducting phase, behav-
ing like an ideal Fermi gas. The occupation number of a single particle state
with energy ξk is given by nF(ξk).

It is also possible for a polarized system to minimize its free energy by sepa-
rating into regions of unpolarized superfluid and polarized normal fluid. Such
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FIGURE 3.2: Unpaired region (breach) of majority atoms around the rectan-
gular Fermi surface of minority atoms.

FIGURE 3.3: Asymmetric unpaired region of majority atoms.
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FIGURE 3.4: A schematic diagram of phase separation into an unpolarized
BCS state and polarized normal state.

a setup is typically called phase separation and was first studied theoretically
in the context of Fermi gases by Bedaque et al. [53]. The free energy analysis is
the following: assume that there are N↑ atoms in the majority component and
N↓ atoms in the minority component, in a lattice with M lattice sites. Assume
also that the BCS phase occupies the fraction x of the total volume of the lattice
and that there are NBCS atoms from both species in the BCS phase. This means
that there are N↑ − NBCS majority component atoms and N↓ − NBCS minority
component atoms in the normal phase, occupying a total number of (1 − x)M

lattice sites, see figure 3.4. The free energy of the system in total is therefore

Ftotal =xFBCS

(
n↑ =

NBCS

xM
,n↓ =

NBCS

xM

)
+ (1 − x)Fnormal

(
n↑ =

N↑ −NBCS

(1 − x)M
,n↓ =

N↓ −NBCS

(1 − x)M

)
.

(3.47)

There are actually two free variables in this scheme: x andNBCS. It would seem
natural that NBCS always assumes its maximum value, N↓, putting all the mi-
nority atoms in the paired phase, but this does not minimize the free energy
of the phase separated system. Some minority atoms are always unpaired. No
boundary effects are incorporated into the theory, and therefore the results tell
us nothing of the distribution of these phases in the volume.

3.5 Density effects and the van Hove singularity
For standard mean-field BCS-type superfluidity in the single band Hubbard
model in 3D, the effect of density is quite simple: the gap attains its maximum
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FIGURE 3.5: The BCS gap ∆ as a function of the average filling fraction of
atoms, in the units of hopping energy in a 3D lattice with U/J ≈ 3.7. The
gap is largest at half filling. The curve is symmetric due to the particle-hole
symmetry.

value at half filling and goes to zero as the density approaches either zero or
unity. This is because for densities below half filling, the BCS gap scales with
the increasing Fermi energy, and, on the other hand, because of the particle-
hole symmetry, the same limit should be arrived at while approaching half
filling from above. Also, as the density per spin component approaches unity,
tunnelling in the lowest band is suppressed because of Pauli blocking. In fact,
with one fermion of each species in each lattice site, the system becomes a band
insulator, where any tunnelling requires an excitation to a higher band. The
BCS pairing gap is plotted in figure 3.5 as a function of density. It has been sug-
gested that because this treatment neglects any interactions between the pairs,
it exaggerates the pairing gap for high densities [55]. The pairing paradigm
can also be approached from a different perspective by simply solving the two-
body SchrÃ¶dinger equation and excluding the Pauli blocked modes from the
wavefunction. This method gives a binding energy for the pairs that is maxi-
mized with filling factors below half filling [56].

Another remarkable feature of a lattice potential is the Van Hove singularity.
The following derivation may help to understand the problem. Assuming a
dispersion relation ε(k), the total number of states N(E) below energy E is
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given by

N(E) =

∫
ε(k)6E

gk dk, (3.48)

where gk is the density of states in momentum space. Because ε is a smooth
function, the integral can be rewritten in terms of surfaces of constant energy
E ′, integrated from 0 to E. Assuming the energy difference between two such
surfaces is ∆E, their distance s(k) at point k in the direction perpendicular to
the inner surface, i.e. to the direction of ∇ε, follows to first order the follow-
ing equation: ∆E = |∇ε(k)|s(k). If the energy is split into M equally spaced
intervals, each with the thickness ∆E = E/M, their total volume NM(E) is

M−1∑
n=0

 ∫
ε(k)=n∆E

s(k)gk dk

 =

M−1∑
n=0

 ∫
ε(k)=n∆E

∆E

|∇ε(k)|
gk dk

 . (3.49)

Now N(E) can be written as

N(E) = lim
M→∞NM(E) =

E∫
0

 ∫
ε(k)=E ′

gk

|∇ε|
dk

dE ′ (3.50)

and the density of states at energy E as

g(E) =
dN(E)

dE
=

∫
ε(k)=E

gk

|∇ε|
dk. (3.51)

The Van Hove singularity means a point where |∇ε| = 0, thus causing a di-
vergence in the integrand in (3.51). Note that the surface of constant energy E
has one dimension less than the momentum space. This means that in a one-
dimensional problem there is no surface integral and therefore the divergence
is directly in the density of states. In comparison, in a three-dimensional lattice
the divergence is integrable, i.e. the integral converges and g(E) itself is always
finite, but it has a corner or a “kink” at the locations of Van Hove singularities.

In an ultracold Fermi gas in an optical lattice the Van Hove singularity causes
interesting effects when the Fermi energy equals the energy of the singularity.
Because the Fermi energy is determined by the filling fraction, and vice versa,
this can be seen as a density effect. The dispersion relation in an n-dimensional
cubic lattice is, assuming the hopping energy is J in all directions:

ε(k) =

n∑
i=1

2J (1 − cos(ki)) (3.52)
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and

|∇ε| =

√√√√ n∑
i=1

4J2 sin2(ki). (3.53)

In such a lattice, the singularity plays a prominent role when the density is just
high enough for a point of the Fermi surface to reach the edge of the first Bril-
louin zone, i.e when the Fermi surface contains a point with one component
of k equal to π and the rest equal to 0. At such a point ε(k) = 4J regardless of
dimensions, and because µ = ε(k) for the points on the Fermi surface, µ = 4J
when the singularity is reached. However, the shape of the Fermi surface with
µ = 4J depends on the dimension. In 1D this is the chemical potential of a full
lattice, which is a band insulator in the single band model. In 2D it corresponds
to half filling while in 3D the filling factor is about 0.21 for one species.

In addition to the singularity, density affects the shape of the Fermi surface in
all dimensions higher than one. With very small filling factors, i.e. when only
the lowest part of the cosine dispersion is populated, the surface is almost
spherical. When the density is increased, the shape of the surface becomes
more like a square (in 2D) or octahedron (in 3D). These shapes are reached
at µ = 4J, as explained above. Beyond this, the shape bulges and finally fills
up the first Brillouin zone. The shapes in the 2D case are shown in figure 3.6. In
a strict sense, the concept of Fermi surface does not exist in an interacting sys-
tem, but the interaction strengths used in this work are weak enough to only
slightly distort the edge of the surface, making it fuzzy. Thus arguments re-
lated to Fermi surfaces can be used to qualitatively understand the behaviour
of the system even in the interacting case. Of course, these arguments are valid
only close to zero temperature, because higher temperatures smear the edges.

In a density imbalanced system, an effect can also be seen when the density
of one of the components (usually the majority species) is at the Van Hove
singularity. This effect presents itself as a change in the curvature of the FFLO-
normal phase boundary, shown in figure 3.7. For example, in a 3D lattice, when
the filling factors of the majority and minority species are on different sides
of the singularity, the shapes of the Fermi surfaces are different, reducing the
pairing gap. In the phase diagram, this is seen in the growth of the critical dif-
ference of the chemical potentials as a function of the average chemical poten-
tial: when µaver approaches half filling, dδµC/dµaver > 0, but the slope is much
smaller in the region between the dashed lines, where µ↑ > 4J but µ↓ < 4J. In
2D, this effect is so strong that between the points where µ↑ = 4J and µ↓ = 4J,
the critical chemical potential difference is reduced.
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FIGURE 3.6: Fermi surfaces in a 2D cubic lattice, with increasing density.

3.6 Phase diagrams of a homogeneous system

Phase diagrams for a homogeneous system, i.e. one with constant filling fac-
tors n↑ and n↓ throughout the system, were calculated as follows: for each
point of the phase diagram, the densities were calculated from polarization as
n↑ = (1 + P/2)n and n↓ = (1 − P/2)n, where n is the average density desired.
Then the Helmholtz free energy (3.45) was minimized in each point, all the
time making sure that the number equations (3.32) and (3.33) were satisfied.
After the minimum free energy as a function of ∆ and q was calculated in each
point and thus the stable phase determined in accordance with the descrip-
tion of each phase given above, this free energy was compared with the free
energy of a phase-separated state. One such diagram, with average filling frac-
tion of 0.2, is shown in figure 3.1. Although this density is far from half filling
and therefore does not produce the largest possible superfluid area, it shows
a very “lattice-like” behaviour because of the proximity to the 3D Van Hove
singularity.

The temperature-polarization phase diagram in figure 3.1 shows all the possi-
ble phases. In a density balanced system, with P = 0, the stable phase at zero
temperature is BCS. The value of ∆ at T ,P = 0 is often denoted with ∆0. The
BCS critical temperature, i.e. the temperature at which the system undergoes a
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phase transition between BCS and normal state is usually called TC. The ratio
of ∆0/kBTC is a numerical constant that depends on the dispersion relation of
the system; for a box potential this constant is approximately 1.764 [57]. The
highest polarization that allows superfluidity is called critical polarization, PC,
and it depends on temperature. In this phase diagram PC is 0.35, but with a
higher interaction strength the mean field theory would allow critical polar-
izations as high as 1. At the time of writing there are no experimental results
on the critical polarization in a 3D lattice.

Figure 3.8 shows a ground state phase diagram of a polarized Fermi gas in
an optical lattice. The highest critical polarization for FFLO is above the aver-
age filling fraction of 0.2. This is due to the shapes of the Fermi surfaces: as
explained above, at this density the 3D Fermi surface closely resembles an oc-
tahedron. The free energy advantage of FFLO compared to e.g. BP is that in
the optimal FFLO configuration the magnitude of q is such that the Fermi sur-
faces of majority and minority atoms touch, and as two octahedra touch at one
point so that one is within the other, they automatically touch on a larger area.
Optimally their corners touch, leading to half the surface area of the smaller oc-
tahedron to touch the larger one. Not surprisingly, numerical analysis shows
that the FFLO free energy is always lowest at such a configuration, i.e. q is
along one of the axes. When either the temperature increases from zero or the
average density per component is moved away from 0.21, this effect decreases.
With similar arguments, the same effect is expected to appear in a 2D lattice at
half filling.

It is possible to further expand this analysis with the same theory by allow-
ing a phase separation into FFLO and normal state. Compared to the phase
separation of BCS and normal state, this would add more complexity to the
calculation, because n↑ need not equal n↓ in the FFLO phase. Because this
would increase the computation time by more than a factor of 10, doing the
calculation is beyond the scope of this study.

Phase diagrams allowing the possibility of FFLO and phase separation have
been calculated for a Fermi gas in free space [58, 59]. FFLO appears in a smaller
area of the phase diagrams in these systems than it does in the lattice. This is
probably due to shapes of the Fermi surfaces, as explained above. It has been
predicted that FFLO is stable also in a one-dimensional lattice [60, 61, 62].

3.7 Harmonic confinement
As explained above in the context of optical lattices, there is always a harmonic
potential superimposed on the lattice. The simple homogeneous density mean
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FIGURE 3.7: Phase diagrams with constant chemical potentials in 3D, 2D,
and 1D lattices, from top to bottom, as functions of µaver = (µ↑ + µ↓)/2 and
δµ = µ↑ − µ↓. The solid line is the critical value of δµ for BCS and the circles
represent δµC for FFLO. The isolated circles falling on the solid line are con-
vergence errors due to the numerical method. All the diagrams are at T = 0.
The declining dashed lines show where µ↑ = 4J, i.e. the Van Hove singular-
ity of the majority component. The inclining dashed line in the 3D diagram
shows where µ↓ = 4J and the horizontal dotted lines correspond to the shell
structures in figure 3.9. The lower dimensional systems were simulated with
a 3D lattice with reduced hopping strength(s) in the orthogonal direction(s).
These results were originally published in publication IV.
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FIGURE 3.8: Ground state (T = 0) phase diagram for a Fermi gas in an opti-
cal lattice. This diagram displays data originally published in publication III.
The calculation was done with the same parameters as in figure 3.1. Here the
regions are: BCS on the P = 0 line (blue), phase separation (PS, red), FFLO
with |q| > 0 (FFLO, yellow), and normal phase (NORMAL, white).

field theory presented above cannot take into account this additional potential,
but the so called local density approximation (LDA) can. The idea is to define
a new local chemical potential µ ′(r) so that

µ = µ ′(r) + V(r), (3.54)

where V(r) is the harmonic potential, is a constant. Because both the species
experience the same harmonic confinement, the difference in chemical poten-
tials is also a constant, independent of position. The scheme works in the fol-
lowing way: assign the values for the chemical potentials in the origin, µ↑ and
µ↓, and divide the system in equal sized cells. In each cell, find the stable phase
by minimizing the free energy with fixed chemical potentials µ ′↑ = µ↑ − V(r)

and µ ′↓ = µ↓−V(r) using the center of the cell as r. These calculations are done
as if the cell size was infinite. The number of particles in each cell is calculated
directly from filling factors given the number equations (3.32) and (3.33), mul-
tiplied by the real cell size and the total numbers by summing up the cells.
There are no boundary effects or correlations between the cells included in the
description.

The fact that there can only be one fermion of any species in a lattice site pro-
duces very interesting shell structures. This is because in the lattice, the results
depend qualitatively on the average density, as shown in figure 3.5. For ex-
ample, if there are a lot of particles overall in the trap, the chemical potential
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FIGURE 3.9: Shell structures for an ultracold gas in a 3D optical lattice, cal-
culated with LDA. In each figure, the black dashed line shows the local aver-
age density, (n↑ + n↓)/2, the red dash-dotted line the difference of densities,
n↑ − n↓, the blue solid line the pairing gap ∆ in units of the hopping param-
eter, and the black dots the FFLO wavevector q. The differences in chemical
potentials are (in units of the hopping parameter): top left, 0, top right, 1.6,
bottom left, 1.7, and bottom right, 1.4.

in the center will be very high and the filling factors in the center are close to
unity. This means that there is no superfluidity in the center but rather a core
of normal gas. As the local density is reduced away from the center, the core
is surrounded by shells of different phases, such as FFLO and BCS. Finally at
the edge the gas is too dilute for superfluid phases and the outermost shell is
in the normal phase. All such structures can be read directly from the phase
diagrams in figure 3.7 as they correspond to horizontal lines in the diagrams.
Typical shell structures are shown in figure 3.9.

FFLO-like order parameter oscillations have also been predicted for trapped
systems without the lattice [63, 64, 65]. It has also been suggested that in a
two-dimensional lattice in harmonic confinement, the order parameter would
oscillate radially with low densities and axially with high densities [66].
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3.8 Detection
Recognizing different phases is not as straightforward in a quantum gas as
it is in a solid state system. Measuring temperature-conductivity curves of a
metal wire is already well established, whereas measuring just the tempera-
ture of a dilute cloud is still a challenge. Therefore schemes for detecting the
different phases have to be thought out carefully. Superfluidity in itself can be
confirmed by observing quantized vortices [31], and the value of the pairing
gap can be measured with radio frequency spectroscopy [28, 29]. Phase sepa-
ration of a population imbalanced gas into regions of unpolarized and polar-
ized gases can be detected for instance by imaging both species independently
[67, 68] or by observing the difference of the density profiles by phase contrast
imaging [69].

At the time of writing, the FFLO phase has not been observed unequivocally in
any system, although there are some experiments [70, 71, 72, 73, 74, 75] in solid
state systems that suggest the existence of this state. Even though some quan-
tities are hard to measure, ultracold Fermi gases seem to be the best candidate
for directly observing FFLO. Due to the form of the order parameter, FFLO has
several unique signatures, such as differences in the momentum distributions
of the two species, shown in publications II and III. Clear signals in the density
noise correlations have also been predicted, as FFLO creates “empty” areas in
momentum space where the signal drops to zero [76, 77]. The characteristic
oscillations of the order parameter have also been suggested to be observable
with radio frequency spectroscopy [78] and the superfluid density of the FFLO
phase has been predicted to differ dramatically from that of the BCS phase [79],
which could be used to differentiate between these phases.
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Chapter 4

Response to density perturbations: dimensional
effects and application as a sensor

4.1 Linear response
Many spectroscopic methods function by creating a perturbation in the system
and measuring the response to that perturbation. The response to a perturba-
tion that couples directly to the density of the system is known as density
response. For weak perturbations, the theory of linear response is enough to
describe the process. Formally the Hamiltonian operator in this situation is of
the form

Ĥ = Ĥ0 + Ĥext = Ĥ0 +

∫
n̂(r)φext(r, t)dr, (4.1)

where φext(r, t) is the external perturbation. The response to this perturbation
is a change in density, formally given by

δρ(r, t) = 〈n̂(r, t)〉Ĥ − 〈n̂(r, t)〉Ĥ0
. (4.2)

Taking into account only terms linear in φ, the following equation can be de-
rived in frequency-momentum space [80]:

δρ(q,ω) = χ(q,ω)φext(q,ω). (4.3)

Here χ(q,ω) is the susceptibility of the gas to perturbations of this kind. This
means that to solve the problem completely, it is enough to solve χ. It should
be noted that unlike in the previous chapter, q does not refer to the FFLO
wavevector, it is simply the momentum. To calculate χ in a way that takes
into account collective behaviour and not just quasiparticle excitations is not
straightforward. The calculation is more involved than for example the deriva-
tions of the previous chapter and therefore beyond the scope of this thesis. For
a derivation the reader is referred to [81], here I will only give a brief overview
of the formalism.
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Chapter 4. Response to density perturbations: dimensional effects and
application as a sensor

The method used is the generalized random phase approximation that as-
sumes the system to be in the BCS state. Therefore regarding the equations
of the previous chapter, the FFLO wavevector is zero and the chemical poten-
tials are equal, µ↑ = µ = µ↓. In order to derive an equation for χ, let us define
the following matrices:

L0(q,ω) =


L0

1111 L0
1121 L0

1211 L0
1221

L0
1112 L0

1122 L0
1212 L0

1222
L0

2111 L0
2121 L0

2211 L0
2221

L0
2112 L0

2122 L0
2212 L0

2222

 , (4.4)

Ã(q) =

(
u2

q uqvq

−uqvq −v2
q

)
, (4.5)

and

B̃(q) =

(
v2

q −uqvq

uqvq −u2
q

)
. (4.6)

With the components L0
ijkl given by

L0
ijkl(q,ω) =

∑
q ′

(
Ãij(q + q ′)Ãkl(q

′) (nF(Eq) − nF(Eq ′ − Eq))

Eq ′ − Eq+q ′ +  h(ω+ iδ)

+
B̃ij(q + q ′)B̃kl(q

′) (nF(Eq) − nF(Eq ′ − Eq))

Eq ′ − Eq+q ′ −  h(ω+ iδ)

+
Ãij(q + q ′)B̃kl(q

′) (nF(Eq) + nF(Eq ′ − Eq) − 1)

Eq ′ + Eq+q ′ −  h(ω+ iδ)

+
B̃ij(q + q ′)Ãkl(q

′) (nF(Eq) + nF(Eq ′ − Eq) − 1)

Eq ′ + Eq+q ′ +  h(ω+ iδ)

)
.

(4.7)

Here iδ is a convergence factor related to the complex integral. In a numerical
calculation, δ has to have a non-zero value for the calculation to converge.
This produces a finite line width, which is heuristically similar to that of an
experiment. Although L0 is a 4 × 4 matrix, it is shown in [81] that it only has
six independent elements, denoted in the following way:

a = L1111 = L2222

b = L1212 = −L1221 = −L2112 = L2121

c = L1112 = −L1121 = L1222 = −L2122

c̄ = L1211 = −L2111 = L2212 = −L2221

d = L1122

d̄ = L2211.

(4.8)

42



4.2. Sound velocity and the Bogoliubov-Anderson phonon

The susceptibility is given by

χ(q,ω) =
x1 + x4

1 −U(x1 + x4)
, (4.9)

where U is the interaction parameter and x is the solution of(
1+UL0) x = L̂, (4.10)

where

L̂ =


a− b

2c
2c̄
a− b

 . (4.11)

The formalism in itself is independent of the single particle dispersion, which
enters only in the quasiparticle energies E and Bogoliubov coefficients u and
v.

4.2 Sound velocity and the Bogoliubov-Anderson phonon

A Fermi gas has two kinds of possible excitations in response to a perturbation:
collective and single (quasi)particle. The collective excitation in a superfluid
Fermi gas is known as the Bogoliubov-Anderson phonon and its dispersion is
shown in figure 4.1. The phonon is not gapped, meaning that it can be excited
with energy below 2∆, which is the threshold for breaking the Cooper pairs.
Close to k = 0 the dispersion is linear, i.e. group velocity dω/dk of the phonon
is constant. This is the physical velocity of the phonon and it corresponds to
the velocity of sound in the system. All the results are for a balanced mixture,
with n↑ = n↓.

In publication I we have calculated the dependence of the velocity of sound on
several variables in an optical lattice. Perhaps the most interesting one is den-
sity, because of the Van Hove singularity. As a function of density, the speed of
sound has a minimum at total filling fraction n = 0.42, as shown in figure 4.2.
This is due to the fact that the density of states, and therefore compressibility,
has a maximum at the location of the singularity. Qualitatively this can be un-
derstood in the following way: with more states of the same energy available
to scatter to, the system is easier to compress, and therefore collective modes
do not travel fast. Interactions weaken this effect because the edge of the Fermi
surface is smeared.
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FIGURE 4.1: The dispersion of the Bogoliubov-Anderson phonon in a three-
dimensional lattice, calculated from the location of the peak in (q,ω) space.
In the long-wavelength, small-q limit the dispersion is linear, but saturates
towards the edge of the first Brillouin zone.
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FIGURE 4.2: Speed of sound in a three-dimensional lattice as a function of
total filling fraction, for different interaction strengths. The top curve corre-
sponds to a non-interacting Fermi gas, and the lower ones to increasing in-
teraction strength: 2.5, 3.3, 4.0, 5.0, and 6.6, from top to bottom, in the units of
U/J. The minimum corresponds to the Van Hove singularity where EF = 4J.
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4.3. Application as a sensor

The dependence of the speed of sound on the filling fraction changes qual-
itatively with the effective dimensionality of the lattice. The cubic symme-
try can be broken by adjusting the hopping strengths in different directions
by changing the lattice heights: for a cubic lattice, sx = sy = sz, whereas
sx = sy < sz corresponds to a situation where the system consists of two-
dimensional sheets, often called “pancakes”, with suppressed tunnelling be-
tween them. On the other hand, with sx = sy > sz, the lattice resembles a
set of parallel tubes, where tunnelling along the tubes, i.e. in the z-direction,
is stronger than in the orthogonal directions. The shape of the filling fraction -
speed curve depends qualitatively on these ratios, as shown in figures 4.3 and
4.4. In the cubic symmetric case there is a local minimum at the location of the
three-dimensional van Hove singularity, whereas in the case of pancakes, the
location of the minimum shifts towards half filling, the location of the two-
dimensional singularity. In the case of (effectively) one-dimensional tubes, the
speed along the symmetry axis increases monotonously with the increasing
filling fraction, which is qualitatively reasonable: with higher density the col-
lective mode propagates faster.

4.3 Application as a sensor

Ultracold atomic Bose gases have been used in the detection of magnetic fields
[82, 83] on atom chips [84, 85, 86]. The measurement works by trapping and
cooling the gas in the vicinity of a chip with an electric circuit, and measuring
the changes of the center-of-mass location of the cloud, caused by the mag-
netic field of the circuit. Such a setup offers a combination of sensitivity and
resolution presently unavailable by other methods [83].

Applying a superfluid Fermi gas as a sensor allows an extra degree of tun-
ability in the form of the pairing gap. Since the minimum energy needed to
break a Cooper pair is 2∆, the energy required to excite two quasiparticles
just above the pairing gap, a perturbation with frequency below 2∆/ h can not
create quasiparticles. This could be exploited in experiments in the following
way: the value of ∆ is adjusted with Feshbach resonance and gradually low-
ered. Each time 2∆/ h goes below a frequency present in the signal, the number
of quasiparticles excited goes up sharply. The quasiparticles can be detected
for example by radio-frequency spectroscopy [87, 88, 28, 89].

The idea is described on the following model: the perturbation consists of a
superposition of modes with frequencies ωi and therefore the magnetic field
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FIGURE 4.3: Speed of sound in a lattice with cubic symmetry broken by sx =

sy < sz. The figure on the left shows speed along x, i.e. in the plane parallel to
the pancakes, and the one on the right the speed along the z-axis. The curves
correspond to different ratios of sx/sz: (from top to bottom) 1.0, 0.83, 0.71,
0.62, and 0.5.
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FIGURE 4.4: Speed of sound in a lattice with cubic symmetry broken by sx =

sy > sz. The figure on the left shows speed in the direction of the tubes, z,
and the other one speed orthogonal to the tubes. The curves correspond to
different ratios of sx/sz: (from top to bottom) 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0.
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4.3. Application as a sensor

FIGURE 4.5: A schematic figure of the Fermi sensor. When the frequency of
the magnetic field is below 2∆/ h, quasiparticles are not excited. If ∆ is low-
ered enough, the same frequency can create quasiparticles, which can be de-
tected.

has the spectrum
B(ω, q) =

∑
i

Aiδ(ω−ωi)ϕi(q). (4.12)

The wavevector dependence ϕ(q) is due to the geometry of the perturbation
and it is independent of frequency, which ensures thatϕi(q) is the same for all
modes, i.e.ϕi(q) = ϕ(q). Since neutral atoms in hyperfine statemF experience
the magnetic field as a potential of strength

V = gµBmFB, (4.13)

where µB = e h/2m is the Bohr magneton and g ≈ 2 is the Landé factor, this
field creates density perturbations in the gas. These perturbations are of the
form

δρ(q,ω) = χ(q,ω)ϕ(q)
∑

i

Aiδ(ω−ωi). (4.14)

To understand the behaviour of this system as a sensor it is enough to study
the dynamical structure factor S(q,ω):

S(q,ω) = −
1
π

Imχ(q,ω). (4.15)
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FIGURE 4.6: The dynamic structure S(q,ω) as a function of frequency ω for
two values of momentum, q = 0.2kF and q = 0.4kF. Here 2∆ ≈ 0.13EF. The
amplitude of the phonon peak is much larger than that of the quasiparticle
continuum for the smaller momentum. With the larger momentum the fre-
quency of the phonon is very close to the pairing gap and the peak connects
with the continuum.

Because the present micro traps do not contain an optical lattice, all the calcula-
tions presented herein are done for a system with the single particle dispersion
ε(k) =  h2k2/2m. The results are presented in Fermi units, where the unit of en-
ergy is the Fermi energy EF and the unit of momentum is the Fermi wavevector
kF =

√
2mEF/ h2. Also S is given in arbitrary units.

Because it may be possible the observe the quasiparticles independently of the
phonon, for example with radiofrequency spectroscopy, we present some of
the results in two forms: the full signal, and the same signal with frequencies
below 2∆/ h removed. This is particularly effective with small q, since for low
momenta the phonon peak is separate from the quasiparticle continuum and
has very high amplitude, as shown in figure 4.6.

The results of a scan of values of ∆ between 0 and 0.1 are shown in figure
4.7. The perturbation signal is the sum of four frequencies, S = A1S(q,ω1) +

A2S(q,ω2) +A3S(q,ω3) +A4S(q,ω4), plotted as a function of the pairing gap
∆, with all the amplitudes Ai equal to one.

In publication V we have also shown that the detection of the spin of single
electron should be feasible with this method, provided that the gas can be
trapped within 500 nm of the chip.
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FIGURE 4.7: Dynamic structure factor as a function of pairing gap∆, summed
for frequencies 0.03, 0.06, 0.09, and 0.12 (in the units of EF/ h). The dots show
the full calculation and the solid line the results with the signal suppressed
for  hω < 2∆. Here q = 0.4kF.
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Chapter 5

Conclusions

The mean field theory presented in this thesis is one of the first steps towards
understanding the behaviour of a spin population imbalanced ultracold Fermi
gas in a three-dimensional optical lattice. The results show that the Fulde-
Ferrel-Larkin-Ovchinnikov state benefits energetically from the shape of the
Fermi surface in a square lattice and thus FFLO fills a large area in the corre-
sponding phase diagram. It has also been shown that the local density approx-
imation predicts very interesting shell structures to appear when the lattice is
combined with a harmonic trap. Thus FFLO is likely to be easier to observe in
an optical lattice than with just a harmonic trap.

In the second part I have studied some dynamical properties of ultracold Fermi
gases, both with and without an optical lattice. The results show how a dimen-
sional crossover between effectively one-, two-, and three-dimensional lattices
is reflected in the speed of sound. The last publication included in the thesis
suggests a qualitatively new detection method for magnetic and electric fields,
utilizing the pairing gap of superfluid Fermi gas.

There are at least three directions in which the theory for ultracold Fermi gases
in optical lattices could be expanded. One is the inclusion of correlation effects
beyond mean field, another is connecting these correlations with a finite tem-
perature and the third is a more careful treatment of the underlying harmonic
potential. Although theoretical methods exist already for doing some of these
in a one-dimensional lattice, implementing them for three-dimensional lattices
remains a challenge for the future.
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