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ABSTRACT

Price, Gavin 
Numerical magnitude representation in developmental dyscalculia: 
Behavioural and brain imaging studies. 
Jyväskylä: University of Jyväskylä, 139 p. 
(Jyväskylä Studies in Education, Psychology and Social Research, 
ISSN 0075-4625; 349) 
ISBN 978-951-39-3440-8 (PDF), 978-951-39-3412-5 (nid.)
Diss.

Developmental dyscalculia (DD) is a behavioural learning disorder affecting the 
successful acquisition of arithmetic skills. The root causes of this disorder, however, are 
poorly understood. This thesis investigates the theory that dyscalculia is caused by a 
core deficit in the representation and processing of numerical magnitude information 
by comparing behavioural and functional magnetic resonance imaging (fMRI) profiles 
during symbolic and nonsymbolic numerical comparison. Dyscalculic and typically 
developing (TD) children are compared on both the behavioural and neural distance 
effects. The behavioural results reveal that DD children show stronger effects of 
distance on comparison accuracy than the TD group in both symbolic and nonsymbolic 
comparison. fMRI results reveal that during nonsymbolic numerical comparison the 
TD group show increased activation in the right intraparietal sulcus for small distance 
comparisons relative to large distance comparisons. The DD group, on the other hand 
show no such distance related modulation of brain activity in this region. As the IPS is 
thought to house a domain specific representation of numerical magnitude these 
results suggest a core deficit in the representation of numerical magnitude in DD. Brain 
activation during symbolic comparison, on the other hand, did not reveal parietal 
differences between groups, but rather a set of regions which may relate to the visual 
recognition and processing of Arabic digits. 

A high rate of comorbidity exists between dyscalculia and dyslexia, and the 
causes of this comorbidity are poorly understood. Therefore this thesis also 
investigates whether the mental representation of numerical magnitude in children 
with comorbid dyscalculia and dyslexia (CM) shows more in common with that of 
children with either pure dyscalculia or pure dyslexia (DL) using behavioural evidence 
from symbolic and nonsymbolic numerical comparison tasks. The results reveal that 
while the DD group show stronger accuracy distance effects during both symbolic and 
nonsymbolic comparison, the CM group show a stronger accuracy distance effect 
during symbolic number comparison only. These results suggest that while the DD 
group has an impaired representation of numerical magnitude, the CM group has an 
intact representation but a specific deficit in accessing that representation through 
visual symbols, a deficit which is not shared with either the DD or DL groups. 

Keywords: dyscalculia, fMRI, distance effect, comorbidity, number comparison, 
number sense 
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1  INTRODUCTION 

Numbers are one of the most pervasive stimulus categories in our natural 
environment. Almost every walk of life requires the use of numerical 
information, from telling the time, through the use of money to complex 
computational procedures. Numbers are an integral foundation of modern 
society.

There are, however, a large number people who struggle to learn 
arithmetic, and even struggle with the most basic numerical processes, such as 
judging the larger of two numbers. This mathematical learning disorder is 
called developmental dyscalculia (DD), and is as common as dyslexia, yet 
comparatively understudied. Despite having equivalent intelligence, socio-
economic background and schooling environment as their typically developing 
peers, approximately 3-6% (Shalev, Auerbach, Manor, & Gross-Tsur, 2000) of 
individuals fail to develop the numerical skills necessary to carry out even the 
most basic numerical operations with the same ease as the rest of us.

Although impairments of numerical processing resulting from acquired 
brain damage have been studied for over a hundred years, the last ten years 
have seen a dramatic increase in the number of research studies investigating 
the neuro-anatomical networks which support numerical cognition in the 
healthy brain. Despite the dramatic advances in our understanding yielded by 
the growing body of numerical cognition research, developmental dyscalculia 
has remained relatively understudied, and its causes remain poorly 
understood.

Recent theoretical advances in the understanding of numerical cognition in 
healthy adults have identified key neural substrates for the representation and 
processing of numerical magnitude information. These developments have 
prompted some researchers to suggest that a developmental impairment of this 
neural circuitry may underlie DD (Butterworth, 1999; Dehaene, 1997). 
According to this view, impaired neural representation of numerical 
magnitudes undermines the foundation on which school level arithmetic 
learning is based. 
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In order to develop effective interventions for DD, its root causes need to 
be clearly understood. Research into these causes has been hindered by highly 
variable selection criteria and terminology across studies, reducing the coherent 
impact of multiple sets of results. Furthermore, there has been a general 
tendency for studies to focus on higher level arithmetic abilities rather than 
fundamental numerical processing (Ansari & Karmiloff-Smith, 2002). 

This thesis investigates the integrity of the mental representation of 
numerical magnitude in children with DD, by comparing brain activations 
during numerical comparison with those of Typically Developing (TD) 
children.

A high rate of comorbidity exists between dyscalculia and dyslexia, yet, as 
with the root causes of DD, the source of this high comorbidity rate is as yet 
unclear. Therefore, this thesis also investigates the integrity of the mental 
representation of numerical magnitude in children with comorbid dyscalculia 
and dyslexia, in order to shed light on the source of arithmetic impairments in 
comorbid children. 

This thesis will begin by briefly reviewing the historical context of 
research into domain specific impairments of numerical processing, and will 
then proceed to outline the behavioural characteristics of DD. This will be 
followed by a review of domain general and domain specific theories of DD, 
including a review of recent neuroimaging research into the neural substrates of 
numerical cognition in healthy adults, typically developing and atypically 
developing children. The current state of knowledge regarding comorbidity 
between DD and Dyslexia will be briefly discussed.

Behavioural and functional magnetic resonance imaging (fMRI) evidence 
will then be presented from a numerical comparison paradigm that investigates 
both symbolic and non-symbolic numerical comparison. Each results section 
will close with a brief discussion specific to the empirical questions answered 
by that data set, and the thesis will close with a general discussion, including 
outlines for future directions of research in this field, as well as possible 
implications for focused interventions. 



2  DEVELOPMENTAL DYSCALCULIA 

A structural disorder of mathematical abilities that has its origin in a genetic or 
congenital disorder of those parts of the brain that are the direct anatomico-
physiological substrate of the maturation of the mathematical abilities adequate to 
age, without a simultaneous disorder of general mental functions (Kosc, 1970) 

The ubiquity of numerical information in everyday life means that the ability to 
process that information is taken for granted by many people. In comparison to 
the widespread awareness of other developmental disorders such as dyslexia 
and ADHD, developmental dyscalculia (DD) remains relatively unknown. 
When one contrasts the large body of research into dyslexia to the small, but 
growing research body into dyscalculia, it is clear that the latter has been 
somewhat neglected. It has even been suggested that impairments in 
mathematical abilities are more “socially acceptable” than equivalent deficits in 
reading, writing or spelling (Cohn, 1968). Over the last fifty years, the ratio of 
reading disability studies to dyscalculia studies has declined from 100:1 to 14:1 
(Gersten, Clarke, & Mazzocco, 2007), but despite the increase in dyscalculia 
research, studies investigating reading disabilities are still far more numerous. 

Temple (1992) defines mathematical disability as “a disorder of numerical 
competence and arithmetical skill which is manifest in children of normal 
intelligence who do not have acquired neurological injuries”, and the vague 
nature of this definition is indicative of the level to which the causes and 
manifestations of DD are currently understood. Despite the paucity of research 
into origins and treatment of DD, poor numeracy is no less of an obstacle to 
successful education and employment than poor literacy (Bynner & Parsons, 
1997), and furthermore,  epidemiological studies have estimated that DD is as 
widespread in the general population as dyslexia with prevalence estimates in 
the range of 3.5-6.5% (Badian, 1983; Gross-Tsur, Manor, & Shalev, 1996; Kosc, 
1974; Lewis, Hitch, & Walker, 1994).



3  HISTORICAL PERSPECTIVE 

The history of research into mathematical learning disabilities has its roots in 
neuropsychological case studies reported in the early part of the 20th century. 
One of the first studies reporting a case of calculation deficits in the absence of 
any aphasia was a report by Lewandowsky & Stadelmann (1908) who observed 
a patient with posterior left hemisphere lesions resulting in an isolated 
impairment of written and mental calculation. Prior to that time it had been 
widely thought that impairments of arithmetic occurred only as a consequence 
of aphasia. Furthermore, Lewandowsky and Stadelmann’s report was a sign of 
things to come, in that it examined the calculation deficit in its component parts, 
rather than viewing arithmetic as a unitary construct. This is an issue which 
remains an important focus even in modern day research (Gersten et al., 2007).

The first suggestion of an anatomically specific calculation centre in the 
brain, specifically the left angular gyrus came from Peritz (1918), and 
subsequently, Henschen (1919, 1925) first used the term “Akalkulia” or 
acalculia, to describe a disorder arising from damage to a distinct and 
autonomous cortical network responsible for the arithmetic processing.

The varied loci of brain lesions that lead to the calculation deficits 
observed by Henschen, illustrates the difficulty in assigning “calculation” per se 
to a single brain region, but the major impact of his work was to reveal that 
calculation deficits could occur in the context of intact language abilities. 
Despite this apparent dissociation, some patients did exhibit impairment in 
both language and calculation, and subsequently, Berger (1926) demonstrated 
that acalculia could present as a specific cognitive deficit, but could also be part 
of a larger clinical spectrum, including disturbances in memory and language. 
Berger proposed a classification system whereby calculation impairments in 
isolation would be termed “Primary Acalculia” and the calculation deficits 
concomitant with other disorders, “Secondary Acalculia” (Berger, 1926). Later, 
Hecaen, Angelergues, & Houilliers (1961) extended the conceptual division of 
calculation impairments by attributing problems in performing calculations to 
three neurobehavioral impairments: agraphia or alexia for numbers, spatial 
dyscalculia, and anarithmetia (pure deficit of calculation).
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Moving on from studies of acquired numerical processing impairments, in 
1970 a seminal paper published by Kosc (1970) attempted to summate existing 
research on mathematical learning disabilities and apply a structured 
classification system. Furthermore, Kosc promoted a definition that stated DD 
could not be accompanied by impairments of general intelligence and still be 
considered as a specific mathematical learning disorder. Subsequently, Kosc 
was the first to coin the term “Developmental Dyscalculia” (Kosc, 1974), and 
also importantly highlighted what he called “pseudodyscalculia” which could 
arise from external factors such as poor teaching. It was not until 1980 that 
mathematical disabilities were recognised in diagnostic manuals of the 
psychiatric profession (DSM-III, American Psychiatric Association, 1980), using 
a definition that stemmed from the earlier work of Kosc (1970), relying on 
discrepancy between mathematics performance and general intelligence.

Recent years have seen a rapid growth in research interest in DD. 
However, there still exists no agreement on the existence of a domain specific 
core deficit that underlies the disorder, which could guide diagnosis and 
intervention. Instead, a range of differing terminologies and diagnostic criteria 
used across studies has made it difficult to combine disparate findings in order 
to discern a coherent research body. 



4  TERMINOLOGY AND DIAGNOSIS 

4.1  Terminology  

One of the reasons for the lack of unified progress in understanding dyscalculia 
is the wide range of terminologies that have been used to describe the disorder. 
Examples of different terms include “Mathematics Disorder” in the DSM-IV 
(American Psychiatric Association, 1994), “Developmental Dyscalculia” (Gross-
Tsur et al., 1996; Kosc, 1970; Shalev & Gross-Tsur, 1993, 2001), “Arithmetic 
Learning Disabilities” (Koontz & Berch, 1996) “Specific Arithmetic Learning 
Difficulties” (Lewis et al., 1994; McLean & Hitch, 1999), “Mathematics 
Disabilities” (Geary, 1993; Geary, Hamson, & Hoard, 2000; Geary, Hoard, & 
Hamson, 1999), and “Arithmetic Deficits” or “Mathematics Difficulties” 
(Jordan, Kaplan, & Hanich, 2002). 

While the terms mathematics, arithmetic, math, arithmetical are essentially 
used interchangeably across the literature, and denote the same area of study, 
there is an essential difference between the terms disability and difficulty 
(Mazzocco, 2007). While ‘Disability’ reflects an inherent inability to acquire the 
necessary skills within a given learning domain, and suggests a biologically 
based disorder, the term ‘difficulty’ has been explicitly defined as referring to 
poor achievement stemming from any one of a number of causes, with no 
presumed biological basis (Hanich, Jordan, Kaplan, & Dick, 2001a; Jordan, 
Kaplan, Oláh, & Locuniak, 2006). Mathematical difficulties is a term that 
encompasses not only a broader range of causes, but also a much wider range 
of performance than is typically denoted by the term ‘disability’, the former 
including performance in the below average to low average range on 
standardised arithmetic tests (Gersten, Jordan, & Flojo, 2005). “Mathematical 
Difficulties” are often operationalised as those scores which fall below 
approximately the 35th percentile on standardized scores, that is, the lowest 35% 
of performers, a cut off which sits high above the estimated prevalence rate for 
developmental dyscalculia (Mazzocco, 2007).
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The contrast between these definitional terms means that the research field 
has, in broad terms, employed two different population samples (those with 
Dyscalculia and those with mathematical difficulties) yet the findings from one 
are frequently generalised to the other. This may in part explain the apparent 
difficulties in isolating the causes of DD, when much of the influential 
behavioural research has in fact focused on the more heterogeneous group of 
those with ‘mathematical difficulties’. 

In the present work, the term developmental dyscalculia (DD) will be used 
to refer to a specific impairment of school level arithmetic ability diagnosed 
with a selection criteria of at least the lower 10th percentile, or 1.5 standard 
deviations below the control mean on standardised arithmetic tests, or 
equivalent, in the absence of other learning disorders or neurologically based 
developmental abnormalities. When reviewing studies which use less strict 
selection criteria, their populations will be referred to as having arithmetic 
difficulties (AD) but it should be noted that these populations are likely to 
include children with DD. These terms will be used even when the original 
study employs alternative labels, so as to maintain consistency and allow easier 
comparison of separate research findings.

4.2  Diagnosis 

Clinical diagnosis of DD usually occurs on the basis of a discrepancy criteria, 
whereby a child’s score on a standardised test of arithmetic is compared to non-
arithmetical intelligence measures, or by a 2 year difference in chronological 
school grade and level of arithmetic achievement (Shalev & Gross-Tsur, 2001).

There are many reasons, however, why a child’s performance may fall 
below the expected level in a given subject. Motivation, teaching method, 
learning environment may all vary in such a way as to reduce the child’s 
performance in a given subject, and hence assessment by a qualified clinician is 
necessary to establish the presence of a learning disorder (Brody & Mills, 1997). 
Attentional difficulties (Lindsay, Tomazic, Levine, & Accardo, 2001), 
mathematics anxiety (Faust, Ashcraft, & Fleck, 1996), mainstreaming in 
classrooms, whereby children of different abilities are not separated but rather 
taught together in the same class, inadequate teaching methods and untested 
curricula (Miller & Mercer, 1997) are some examples of non-neurobiological 
factors which can adversely affect mathematical performance in children, yet 
should not qualify a child as Dyscalculic. Thus it remains important that at the 
clinical level diagnosis is highly tailored to the individual, in that it takes 
account of individual circumstances and extraneous factors which may 
negatively influence learning, and is conducted by trained specialists capable of 
assessing the multiple potential sources of mathematical deficits. 

Discrepancy scores as a criterion for diagnosing DD run the risk of failing 
to identify some cases. While it is important to rule out concomitant deficits in 
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general IQ and other cognitive domains, it is also possible that the underlying 
cognitive deficit that leads to DD may impair performance on other 
standardised tests such as measures of spatial IQ for example (Mazzocco, 2007). 
Naturally it is hard to determine the direction of causality when two 
impairments are evident in separate tests, such as arithmetic and spatial IQ. It is 
easy to assume that the deficit in the standardised test measuring the more 
domain general cognitive system (IQ in this case) is the one influencing the 
impairment of the more domain specific system (arithmetic in this case). 
However, it may also be the case that the standardized tests commonly used to 
assess basic processes such as spatial IQ, are not as pure a measure as is 
generally assumed, and that impairments in more domain specific systems such 
as a “Number Module” (Butterworth, 1999) or “Number Sense” (Dehaene, 
1997) may impair performance.

In the absence of more advanced diagnostic tools, operational criteria for 
research studies are typically discrepancy criteria, or simple cut off scores on 
standardised arithmetic tests. An overview of some of the criteria that have 
been used is given in Table 1, which shows the study, the test used to assess 
arithmetic ability, the selection criteria, and any additional exclusionary criteria 
in order for a participant to be categorised as dyscalculic.

Although DD research is in its relative infancy, and thus such discrepancy 
and cut off criteria may be the most appropriate until a deeper understanding 
of the disorder is achieved, as that understanding progresses a greater 
uniformity of selection criteria which use more focused and in depth diagnostic 
tools will be important in building a coherent research body. 
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TABLE 1  Examples of Selection Criteria for AD and DD studies. 

Study Terminology Test Criteria Exclusions 

(B
Butterworth,

2003) 
Dyscalculia

Item-timed tests 
of enumeration 

and number 
comparison

Bottom 2 
stanines

(lowest 11% of 
scores)

Geary et al., 
(1999) 

Mathematical 
disabilities

Woodcock 
Johnson

Mathematics 
Reasoning

Bottom 30th

Percentile IQ < 80 

Geary et al., 
(2000) 

Mathematical 
disabilities

Woodcock 
Johnson

Mathematics 
Reasoning

Bottom 35th

Percentile

Jordan et al., 
(2002) 

Jordan et al., 
(2003a, b) 

Mathematics 
difficulties

Woodcock 
Johnson Broad 
Mathematics 
Composite

Bottom 35th

Percentile

Koontz
&Berch (1996) 

Arithmetic
learning

disabilities
Iowa Tests of 
Basic Skills 

Bottom 25th

Percentile

Below 30th

percentile on 
reading or 

below normal 
IQ

Landerl et al., 
(2004) 

Developmental
Dyscalculia

Item-timed
arithmetic and 

teacher’s 
classification 

3 Standard 
Deviations

below the mean 
50th + 

Percentile IQ 

McLean & 
Hitch (1999) 

Specific
arithmetic
learning

difficulties

Graded
Arithmetic-

Mathematics 
Tests

Bottom 25th

Percentile
Mid-50% on 

Primary
Reading Test 

Shalev et al., 
(1997) 

Developmental
Dyscalculia

Standardised 
arithmetic

Battery

2 grades below 
chronological

age group 
average

IQ < 80 

Temple & 
Sherwood

(2002) 
Number fact 

disorder
WOND

numerical
operations

12 months below 
chronological

age group 
average



5  BEHAVIOURAL CHARACTERISTICS 

Mathematical proficiency requires mastery of numerous skills, from counting 
and enumeration all the way to higher level reasoning, which may be employed 
to different degrees depending on the mathematical problem being solved. 
Children with DD may have deficits in one or more of the elementary skills 
necessary for arithmetical performance, or may even have impairments in 
understanding and carrying out the actual principles and procedures of 
mathematics (Geary et al., 2000; Hanich et al., 2001). The nature of these abilities 
and their impairments may have varying development trajectories, and 
furthermore may differ between adults and children (Mazzocco, 2007).  

In addition to the wide range of requisite skills, the abilities required to 
maintain arithmetic proficiency change over time, both in the range of 
necessary abilities and the skill with which those abilities are performed. 
Mathematics becomes increasingly complicated as school progresses, and thus 
the nature of behavioural deficits may vary over time. An important question is 
whether deficits observed at a later stage of schooling are the result of a 
difficulty with a new concept or skill, or can they be traced back to an 
underlying core deficit that is stable across development, and which interrupts 
the structured acquisition of more advanced mathematical abilities.  

In other words, DD may emerge at different stages of development, and 
this may be the result of different cognitive deficits interacting with the 
changing skill set required for successful arithmetic performance. Indeed, it has 
been observed that out of a sample of 3rd grade DD children, 65% met the 
diagnosis criteria in kindergarten, but 20% only began to meet the criteria 
during second grade (Mazzocco & Myers, 2003). Since it is unclear whether 
those 20% would have been diagnosed earlier had more sensitive criteria been 
used, this finding highlights the need for developmentally appropriate 
diagnostic criteria. 

In order to better understand the behavioural characteristics and core 
deficits underlying DD, it is important for researchers not only to characterise 
the nature of mathematical deficits that occur in children, but also the 
developmental trajectories of those impairments. Such developmental research, 
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however, remains sorely underrepresented in the field. An in depth 
characterisation of the behavioural deficits which occur in DD is a necessary 
starting point for the investigation into whether DD is rooted in a domain 
specific core deficit.  

5.1  Arithmetic 

Despite the relatively recent growth of the dyscalculia research field, and the 
problems faced therein, there is a general agreement on some of the primary 
behavioural manifestations of the disorder.  

The most consistently observed deficit in DD and AD is the learning and 
retrieval of arithmetic facts from semantic memory. This lack of automaticity in 
arithmetic fact retrieval is also associated with the perseverant use of immature 
problem-solving and counting strategies (Geary, 1993; Geary, Bow-Thomas, & 
Yao, 1992; Geary, Brown, & Samaranayake, 1991; Geary et al., 2000; Geary, 
Hoard, Byrd-Craven, & Catherine DeSoto, 2004; Hanich, Jordan, Kaplan, & 
Dick, 2001b; Jordan & Hanich, 2003; Jordan, Hanich, & Kaplan, 2003; Jordan & 
Montani, 1997; Landerl, Bevan, & Butterworth, 2004; Russell & Ginsburg, 1984). 
As an indication of the severity of this deficit, typically developing children 
have been found to recall an average of three times as many arithmetic facts as 
DD children (Hasselbring et al., 1988). 

Pellegrino & Goldman (1987) observed that the best indicator of DD was 
an impairment of the efficient retrieval of arithmetic solutions from memory. 
The authors suggested that those children who were unable to recall the 
answers to simple arithmetic problems fluently were forced to resort to finger 
counting in order to compute the solution. Consequently these children were 
unable to follow and assimilate the more complex procedural knowledge being 
taught. Thus, a deficit in arithmetic fact retrieval may have knock on effects for 
other aspects of arithmetic ability which may be unrelated in terms of 
underlying processes.  

Furthermore, when DD children do recall arithmetic facts from memory, 
their answers are error prone and show reaction time and error patterns 
different from typically developing children (Barrouiliet, Fayol, & Lathuliere, 
1997; Fayol, Barrouillet, & Marinthe, 1998; Geary, 1990; Rasanen & Ahonen, 
1995). These findings have been incorporated into many attempts to develop 
focused interventions for DD, however, deficits in arithmetic fact retrieval tend 
to persist throughout elementary school even in the event of focused 
intervention (Jordan & Montani, 1997; Ostad, 1997, 1999). 

A second group of commonly observed deficits are difficulties executing 
calculation procedures, and the use of immature problem-solving strategies 
(Butterworth, 1999; Geary, 1993). Geary and colleagues (Geary et al., 2000; 
Geary et al., 1999) observed that in the first and second grades, children with 
AD frequently used less efficient strategies than controls for solving 
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calculations, such as counting all rather than counting min (whereby counting 
starts with the higher number in the equation and proceeds until the solution is 
reached). Furthermore, while typically developing children progressed from 
finger counting to verbal counting and fact retrieval from first to second grade, 
AD children did not show the same developmental trajectory. A cross sectional 
study by Geary et al., (2004) revealed that while typically developing children 
progress from finger counting through verbal counting to fact retrieval from 1st

to 5th grade, much fewer children with mathematical learning disabilities 
showed the same developmental trajectory. This pattern of results shows that 
atypical development of calculation procedures is present only in some of the 
sample studied, and perhaps this inconsistency is due to the liberal selection 
criteria used by Geary and colleagues (see Table 1). Thus it emphasises the need 
to employ strict selection criteria when defining atypical populations for 
research, in order to allow a more specific focus on subtypes of developmental 
learning disorders. 

Although DD and AD children have been observed to show impairments 
in both arithmetic fact retrieval and procedural knowledge, it has been 
suggested that in fact these deficits are dissociable (Temple, 1991; Temple & 
Sherwood, 2002) and hence may stem from separate causal pathways. 
However, such dissociations have primarily been evidenced using case rather 
than group studies, and hence are difficult to generalise. Furthermore, 
contradictory evidence has revealed no dissociation between arithmetic fact 
ability and procedural ability in children with numerical processing difficulties 
(Ashcraft, Yamashita, & Aram, 1992). Similarly, Russell & Ginsburg (1984) 
found that children with “mathematical difficulties” showed problems with 
both written calculation problems and arithmetic fact retrieval. 

In light of the extant literature,  it has been suggested that while 
procedural problems are likely to improve with experience, retrieval problems 
are more persistent, because retrieval deficits stem from impairments in 
semantic long term memory, whereas procedural deficits reflect a lack of 
conceptual understanding which may be more easily remediated through 
focused educational intervention (Geary, 1993). However, other authors suggest 
that both procedural and retrieval deficits may arise from memory 
impairments, with procedures being simply easier to remember than large 
numbers of arithmetical facts, which are meaningless without an understanding 
of cardinality (the numerical value of a set of objects) (Landerl et al., 2004). 

Thus, deficits in arithmetic fact knowledge and arithmetic procedural 
knowledge are common in children with AD and DD, but not universal. Again, 
the lack of uniformity of these findings may be related to the range of selection 
criteria employed across studies meaning that populations with heterogeneous 
impairments of arithmetic are compared to those with more process pure 
learning disorders. 

In addition to impairments of arithmetic fact retrieval and procedural 
knowledge, some studies investigating children with arithmetic difficulties (not 
pure DD) have found a lack of understanding of some counting principles in 
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children with arithmetic difficulties, such as counting each object only once and 
understanding that items can be counted in any order (Geary et al., 1992; Geary 
et al., 2000; Geary et al., 1999). Although DD children show considerable 
improvement in counting ability from first to second grade (Geary, 1994), when 
monitored longitudinally from the age of 10-11 for 3 years, children with AD 
showed little improvement, and those diagnosed with DD in fifth grade 
maintained that diagnosis into eighth grade (Shalev, Manor, Auerbach, & 
Gross-Tsur, 1998). Thus, in children with AD and/or DD counting abilities and 
understanding of the principles that govern counting appears to be negatively 
affected to different degrees, but at present there does not seem to be a uniform 
pattern of impairment across studies. Not all children with mathematical 
learning difficulties show counting impairments, but in those who do, the 
deficits tend to persist throughout development. 

Studies attempting to characterise arithmetic deficits in DD have yielded a 
complex set of results. It can be concluded that in general, DD children show 
marked deficits in arithmetic fact retrieval and delayed development of 
arithmetic procedures. However, the studies reviewed above essentially 
provide a characterisation of the range of deficits observed in DD and AD 
children. What is as yet unknown is whether these impairments are 
underscored by a core deficit in a cognitive system specialised for the 
representation and processing of numerical information, or whether they are a 
by product of impairments in other cognitive domains such as memory or 
language.

The wide range of arithmetic impairments reviewed here do not provide a 
coherent characterisation of DD, instead they suggest a distinct lack of 
uniformity in the behavioural manifestations of the disorder at the arithmetic 
level. It is possible, however, that this variation is the consequence of an 
interplay between an underlying core deficit and compensatory mechanisms 
which vary between individuals. Thus, a core deficit in the mental 
representation of numerical quantity may impair the development of arithmetic 
skills, but the exact nature of that impairment varies between individuals 
depending on their ability to employ other cognitive processes to compensate 
the core deficit. 

Therefore, this thesis investigates the representation and processing of 
numerical quantity at the most basic level, in order to investigate the existence 
of a core deficit in DD.

5.2  Basic Processes 

Although developmental dyscalculia is a disorder manifest in deficient school 
level arithmetic, with a range of possible impairments (see above), some 
researchers have suggested that the root cause of the failure to acquire 
arithmetic skills is a core deficit in the basic representation and processing of 
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numerical quantity or ‘numerosity’ (Butterworth, 1999; Dehaene, 1997). In order 
to investigate this idea, several researchers have investigated very basic 
numerical processing abilities in children with arithmetic difficulties, as well as 
in children with more severe DD. 

One of the first studies of this nature by Koontz & Berch (1996), employed 
a task in which children had to decide whether two stimuli were physically 
identical (e.g. 2 – 2 or A – A), and in a second task had to say whether two 
stimuli represented the same numerosity (e.g. 2 , 2 – 2, or  ). The 
results of this study showed that typically developing children showed 
interference from numerical information when judging whether two stimuli 
were physically identical, while those with arithmetic difficulties (AD) did not. 
In other words, when the stimuli were numerically identical (e.g. 2 ), the 
typically developing children were slower to say no when asked if they were 
physically identical than when the numerical values did not match (e.g. 2 ).
The AD group on the other hand, showed no such interference and answered 
with the same speed whether the numerical values were the same or different. 
This suggests that the AD group did not activate the numerical semantic 
information of the stimuli automatically, while the control children did. On the 
other hand, when making judgements about the numerosity of stimuli, AD 
children showed interference from irrelevant physical characteristics, while the 
typically developing children did not, suggesting that the AD children were 
attending more to the superficial elements of the stimuli and perhaps having 
trouble accessing the underlying numerical semantic information.

The idea that DD is associated with a failure to activate internal 
representations of numerical magnitude has subsequently been explored by 
Rubinsten & Henik (2005), who investigated the automatic activation of 
numerical semantic information in a group of adults with developmental 
dyscalculia using a numerical stroop paradigm. In this task subjects had to 
select which of two Arabic digits was physically larger (e.g. 3 – 5). Trials were 
either congruent (larger physical size and larger numerosity), incongruent 
(larger physical size and smaller numerosity), or neutral (different physical size 
and same numerosity). This study employed the same design to test the 
interference of numerical information on judgements of digits size, height and 
greyness, so in no task was numerosity a task relevant dimension. The results of 
this study showed that while DD subjects showed interference from numerical 
information during incongruent trials, they showed no facilitation of processing 
during congruent trials. It has been suggested that facilitation reflects 
automaticity while interference reflects attentional processing (Posner, Nissen, 
& Ogden, 1978). Thus, Rubinsten & Henik (2005) interpret their results as 
indicating a lack of automatic association of Arabic numerals with their 
numerical, semantic referents. Whether this lack of association is due to a deficit 
in the actual construction of those associations, or whether it is due to an 
impairment of the semantic representation of numerical itself is an open 
question, and one this thesis seeks to address.  
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The integrity of the mental representation of numerical magnitude is 
frequently investigated using numerical comparison paradigms, and several 
studies have shown impaired processing of numerical magnitude during 
number comparison in DD.  Butterworth (1999) reported the case of Charles, an 
adult man who suffered with DD his entire life, and at the age of 31 still relied 
of finger counting to solve simple calculations. During tests of number 
comparison Charles was forced to rely on counting, leading him to be four 
times slower than controls and to show a reverse distance effect (numbers that 
were closer together were faster to compare than those far apart). The distance 
effect refers to a robust psychophysical effect during numerical comparison first 
observed by Moyer & Landauer (1967), whereby numbers which are separated 
by a small numerical distance take longer to compare and elicit more errors 
than numbers which are separated by a large numerical distance (e.g. 
comparing 3 vs 5 takes longer to compare and elicits more errors than 3 vs 9). 

Geary et al., (1999) observed that children with AD showed marginally 
lower accuracy than controls during number comparison, particularly so during 
visual presentation of stimuli compared to auditory presentation. This study 
used a cut off point of the 30th percentile to define mathematical difficulties, and 
therefore it is possible that had a more stringent criterion been used, more 
pronounced group differences would have been observed. An interesting point 
is that the group classification  scheme in the study by Geary et al., (1999) study 
was based on tests of arithmetic reasoning, which has been suggested to relate 
specifically to right hemisphere function (Langdon & Warrington, 1997), 
suggesting that the numerical comparison impairments seen in this study could 
relate to underlying dysfunction of right hemisphere numerical processing 
mechanisms.

In recent years there has been a growing emphasis on investigating 
numerical processing impairments in children with pure dyscalculia rather than 
less severe arithmetic difficulties. Landerl et al., (2004) conducted the first in 
depth investigation of basic numerical abilities in children with strictly defined 
DD (3 standard deviations below the control average on standardised 
arithmetic tests). The study found that DD children were slower than controls 
on tasks of number naming, even when general naming speed was controlled. 
Other studies have also observed slowed naming speed specific to numerical 
stimuli in DD (van der Sluis, de Jong, & Leij, 2004), suggesting that even the 
most basic processing of numerical information is impaired in DD. During 
number comparison, Landerl and colleagues found that DD children were 
slower than controls when comparing numerosity but not when comparing 
digit size. DD children were also slower than controls at verbal counting, and 
marginally slower at dot counting.

This pattern of results provides strong evidence for a cognitive deficit 
specific to the processing of numerical magnitude in children with DD. The key 
factor is that in this study the selection criteria was stringent, resulting in a high 
probability that the atypical group consisted of individuals with genuine 
learning disorders as opposed to less severe mathematical difficulties and thus, 
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while arithmetical difficulties may stem from a wide variety of sources, 
developmental dyscalculia appears to be related to a domain specific 
impairment of the processing and representation of numerical magnitude.  

Numerical magnitudes can be externally represented in multiple formats, 
such as Arabic numerals, number words and non-symbolic arrays (such as dots 
or squares). This raises the question of whether numerical magnitude 
processing deficits observed in DD are format specific, or whether they persist 
across formats. Although different studies have looked at different number 
formats independently, to my knowledge, only one study to date (Rousselle & 
Nöel, 2007) has compared numerical magnitude processing across formats in 
DD children within the same study.  

Rousselle & Nöel (2007) demonstrated that DD children were slower and 
less accurate than controls during symbolic number comparison. During 
nonsymbolic comparison, however, the authors found no group differences in 
reaction time or accuracy after controlling for general processing speed and 
general error rate respectively. The authors suggest that these results reflect an 
impairment of the ability to access numerical magnitude representations 
through the use of numerical symbols (Arabic digits) and that this deficit 
underlies impaired arithmetic performance in DD. However, the DD group in 
this study comprised children with pure DD as well as those with comorbid 
reading disabilities, and the effect of collapsing these groups is difficult to 
assess given the current state of knowledge in the field, as the comorbid 
dyslexia present in some participants may differentially effect the processing of 
one format versus another. Therefore, this thesis is the first work to directly 
compare the effect of presentation format on basic numerical magnitude 
processing in pure DD. 

Another task which is thought to tap the mental representation of 
numerical magnitude is approximate calculation, whereby participants are 
asked to choose between the more plausible of two incorrect answers to 
calculation problem. In contrast to exact calculation, approximate calculation is 
thought to require access to the mental representations of numerical magnitude 
(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). Children with mathematical 
difficulties have also been shown to perform worse than controls in 
approximate calculation, further suggesting an impairment in the ability to 
access and process mental representations of numerical magnitude in DD 
(Hanich et al., 2001a; Jordan & Hanich, 2003). 

In summary, children with DD appear to show a range of behavioural 
deficits in school level arithmetic, but importantly, they also show impairments 
in tasks of basic numerical processing such as number comparison as well as 
reduced automatic activation of mental representations of numerical 
magnitude. These findings suggest that the observed arithmetic impairments 
may stem from the inability to develop typical representations of numerical 
magnitude and access these in the context of a numerical task, such as 
performing an arithmetic calculation. Some debate still exists, however, 
regarding whether the observed behavioural impairments in basic numerical 
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processing stem from a deficit in accessing numerical magnitude 
representations through Arabic digits, or whether the representation itself in 
impaired. By comparing numerical comparison performance using both 
symbolic and nonsymbolic stimuli in children with pure DD, this thesis will 
address this open question. 



6  THE ROOTS OF DEVELOPMENTAL 
DYSCALCULIA

Although the behavioural manifestations of DD at the arithmetic level are 
widely agreed upon, and descriptions of impairments in basic numerical 
magnitude processing are becoming more widespread, there still exists some 
debate as to the root causes of theses impairments. A broad distinction can be 
drawn, between causal theories of DD, which focus on domain general causes 
such as memory or language impairments, and those which focus on domain 
specific core deficits of numerical processing. Domain general theories have 
thus far been based primarily in behavioural research, while domain specific 
theories have stemmed from a growing body of neuropsychological and 
neuroimaging evidence. Theories from both these approaches to understanding 
the origins of DD will be discussed in turn. 

6.1  Impairments of Domain General Cognitive Systems 

One approach to understanding the causes of DD has been to investigate 
impairments in those domain general cognitive skills which contribute to 
successful arithmetic performance,  such as general IQ, memory (Geary, 1993) 
and verbal and non-verbal information processing mechanisms identified 
through neuropsychological test batteries (Rourke, 1989a, 1993; Rourke & 
Strang, 1978, 1983).

In accordance with clinical definitions of DD which emphasise the 
impairment of arithmetical abilities in the context of normal general intelligence 
(e.g. DSM-IV), several studies have revealed no systematic differences in IQ 
between DD children and their typically developing peers (Gross-Tsur et al., 
1996; Landerl et al., 2004; Shalev et al., 2001) and thus, having ruled out low IQ 
as a cause of DD, research has focused on alternative cognitive domains. 
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6.1.1  Memory 

One hypothesis suggests that impairments of memory systems underlie 
arithmetic fact retrieval deficits in DD. Impairments in working memory may 
lead to a failure to construct a reliable network of arithmetic facts to be stored in 
long term memory, thus impairing fluent mathematical performance (Geary, 
1993; Geary, 1994; Geary et al., 1991; Geary & Hoard, 2005).

This theory follows the logic that in order to store the solutions to 
common arithmetic problems in long term memory, both the problem and the 
solution must be simultaneously active in short term working memory. Thus, if 
the problem cannot be maintained in working memory until the solution is 
calculated, the connection between problem and solution is not stored and the 
arithmetic ‘fact’ not learned. Furthermore, if working memory is responsible for 
the allocation of attentional resources during arithmetical problem solving, 
impaired working memory may result in incorrect solutions being derived and 
thus erroneous associations being stored in long term memory.

A further impact of impaired working memory for arithmetic processing 
would be that in the event of a failure to solve an arithmetic problem, children 
with poor working memory would not be able to resort to back up strategies 
that place high demand on the working memory system. Instead they would 
have to rely on immature, inefficient but less demanding strategies such as 
finger counting rather than verbal counting, ‘counting all’ rather than ‘counting 
min’ (Geary et al., 2004; Nöel, Seron, & Trovarelli, 2004). However, finger 
counting can be both a cause and a consequence of poor memory for arithmetic 
facts, as finger counting leads to delays and errors in working memory 
(Butterworth & Reigosa, 2007).

As with general IQ, the contribution of working memory to successful 
arithmetic performance is essential (Andersson, 2006; DeStefano & LeFevre, 
2004), and many studies have shown an association between children’s working 
memory performance and mathematical performance (Bull, 1999; Bull & Scerif, 
2001; Gathercole & Pickering, 2000). Several studies have reported evidence 
showing that DD children show impairments of various working memory 
components including the phonological loop (Hitch & McAuley, 1991; Koontz 
& Berch, 1996; McLean & Hitch, 1999), visuo-spatial sketch pad (McLean & 
Hitch, 1999), and central executive tapped by forward and backward digit-span 
(Geary et al., 1991; Geary et al., 1999; Passolunghi & Siegel, 2004).

However, other studies have not supported the existence of working 
memory differences between DD children and their typically developing peers. 
A recent, well controlled study in which DD children were selected on the basis 
of a stringent classification criteria (Landerl et al., 2004) found no differences 
between DD children and controls in either backward or forward digit span. 
Furthermore,  a comparison of DD children and controls on a range of working 
memory measures (Temple & Sherwood, 2002) failed to reveal any significant 
differences between groups on any measure, including forward and backward 
digit span, corsi blocks, and word span. Furthermore, this study found no 
correlation between any of the measures of working memory and mathematical 



30

performance, further suggesting no causal link between working memory and 
DD.

In the absence of a clear and consistent impairment in working memory in 
DD, some authors have suggested that DD children exhibit an impairment of 
working memory specific to numerical information. Siegel & Ryan (1989) found 
DD children to be poorer than controls on working memory tasks requiring 
counting and remembering digits, but not on tasks that did not involve 
numerical information, suggesting there may be dissociable memory systems 
for numerical and non-numerical information. Furthermore,  phonological 
working memory was found to be intact in DD (McLean & Hitch, 1999), 
although DD children did show a trend towards poorer digit span than 
controls, thus leading the authors to suggest that a deficit of working memory 
specific to numerical information may exist. However this study also found 
evidence of poorer spatial working memory and some aspects of central 
executive function in DD, so it cannot be argued that the working memory 
deficits were purely specific to numerical information.

Research investigating working memory impairments in DD has not 
produced a consistent set of results, and thus impaired working memory is 
unlikely to represent a core deficit in DD.  However, an alternative explanation 
may be that the failings of the working memory system with regards to 
numerical information results from a degraded representation of numerical 
magnitude itself, and thus domain general systems such as working memory 
are unable to process that information with the same degree of efficiency as 
non-numerical information.  In other words, poor representations of numerical 
magnitude may result in greater demands on working memory during 
mathematical tasks, revealing that working memory is associated with DD as a 
consequence of impaired representations of numerical magnitude.  

A further limitation of the argument that impaired working memory 
underlies arithmetic fact retrieval deficits in DD is that it depends on a 
functional dependency between working memory and semantic long term 
memory, in that it assumes arithmetic facts must be successfully held in 
working memory in order to be transferred to long term memory stores. Yet, 
there is a wide body of research demonstrating the neural and functional 
independence of these systems (McCarthy & Warrington, 1990). In other words, 
it is not necessarily the case that an impairment of working memory would lead 
to deficits in storage and retrieval of arithmetic facts from long term semantic 
memory.

Geary and colleagues (Geary et al., 2000; Geary & Hoard, 2001) also 
suggest that an impairment of semantic long term memory itself may be 
responsible not only for difficulties in learning and retrieving arithmetic facts, 
but also for the comorbid reading difficulties frequently found to co-occur with 
DD. However, there is little evidence for a deficit in non-numerical semantic 
memory in DD children. Furthermore, Cappelletti, Butterworth, & Kopelman 
(2001) show in a neuropsychological study that number knowledge is 
dissociable from verbal semantic knowledge, suggesting that memory of 
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arithmetic facts may be mediated by a separate semantic memory store than 
that for general semantic memory. In support of this dissociation, neural 
activation patterns associated with numerical and non-numerical semantic 
memory have been found to be spatially separable (Thioux, Seron, & Pesenti, 
1999), suggesting that a general impairment of long term memory is unlikely to 
be the root cause of DD. 

Thus, the studies reviewed above do not provide a consistent body of 
evidence to support the hypothesis that impairments in either semantic long 
term memory or working memory are responsible for the fact retrieval and 
procedural deficits observed in DD. Thus, while impairments of either working 
memory or long term memory would undoubtedly impact negatively on 
mathematical performance, they do not seem to represent a core deficit in DD. 

6.1.2  Cerebral Asymmetry and the “Nonverbal Learning Disabilities 
Syndrome” 

Another influential domain general approach to understanding mathematical 
learning disabilities is the “Nonverbal Learning Disabilities Syndrome” (NLD). 
Rourke and colleagues have pioneered a research program aimed at revealing 
subtypes of dyscalculia, the characteristics of which are determined by whether 
the atypical brain development affects the left or right cerebral hemisphere of 
the individual (Rourke, 1975, 1993; Rourke & Conway, 1997; Rourke, Dietrich, 
& Young, 1973; Rourke & Finlayson, 1978; Rourke & Fisk, 1988; Rourke & 
Strang, 1978). The NLD approach contends that differential patterns of 
mathematical disabilities observed in children can be explained by the relative 
contributions and impairments of left hemisphere language systems versus 
right hemisphere visuo-spatial processing systems.

Rourke & Conway (1997) argue that the left hemisphere subserves the 
processing of numerical symbols, retrieval of arithmetic facts from semantic 
memory and simple calculation, while the right hemisphere supports adaptive 
reasoning and spatial manipulations necessary for arithmetic problem solving. 
These authors suggest that in contrast to acquired brain damage, which 
typically affects a focal region and impairs the functioning of an already 
developed cognitive process, such as calculation per se, developmental 
impairments of brain function are likely to be more subtle and perhaps more 
widespread. The impact of a developmental brain level impairment is the 
interruption of a structuring process during which increasingly more 
sophisticated abilities are built upon those foundations already established 
through the learning process. Thus, according to this argument, developmental 
disorders of mathematical processing are more likely to reflect low level 
functional impairments to broad domain general systems, rather than the 
domain specific incapacitation that occurs following acquired brain damage in 
adulthood. In other words, developmental disorders disrupt a sequence of 
building certain cognitive abilities, rather than cause the loss of a single existing 
function (B. P. Rourke & Conway, 1997).
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The early work of Rourke and colleagues (Rourke et al., 1973; Rourke & 
Telegdy, 1971; Rourke, Young, & Flewelling, 1971) revealed that patterns of 
discrepancy between Verbal IQ and Performance IQ predicted patterns of 
performance on the Wide Ranging Achievement Test WRAT (Jastak & Jastak, 
1965), suggesting that a distinction may be drawn between children with verbal 
impairments versus those with visuo-spatial impairments. Their subsequent 
work investigated whether children with different patterns of learning 
disability would show distinct patterns of performance on a range of 
neuropsychological tests which tap verbal and visuo-spatial processing 
(Rourke, 1993).

In the first of these studies, Rourke & Finlayson (1978) compared children 
with AD, children with RD and children with comorbid AD/RD. It is important 
to note that RD and AD groups in fact had equivalent arithmetic performance, 
despite showing very different overall profiles. The classification of RD children 
was therefore based on the fact that reading performance was impaired to a 
greater degree than their arithmetic performance. Furthermore, both AD and 
RD groups showed significantly better performance on the WRAT arithmetic 
subtest than the AD/RD group, thus the group distinctions are not especially 
well delineated. 

Despite the performance overlap in the arithmetic domain, this study 
found that the AD/RD and RD groups showed significantly better visuo-spatial 
and visual perceptual ability than the AD group while the AD group showed 
significantly better performance on tests of verbal and auditory perception. 
Contrasts of verbal and performance IQ measures revealed that while the 
AD/RD and RD groups had superior performance IQ relative to verbal IQ, the 
AD group showed the opposite pattern. The authors interpreted these findings 
as reflecting the different cerebral sources of impairment between groups. 
AD/RD and RD groups showed impairments only on those tasks thought to be 
subserved by left hemisphere language processes, while the AD group was 
impaired only on those tasks thought to be underpinned by right hemisphere 
visuo-spatial processing mechanisms. Thus, despite the equivalent arithmetic 
performances of the RD and AD groups, the authors suggest that the source 
and nature of those impairments stem from verbal deficits in the AD/RD 
group, and visuo-spatial deficits in the AD group.

Rourke & Strang (1978) attempted to confirm the cerebral asymmetry 
hypothesis by testing the same three groups as Rourke & Finlayson (1978) on a 
range of motor, psychomotor and tactile-perceptual tasks known to tap left or 
right hemisphere functional systems, including tests of finger agnosia, finger 
tapping and grip strength. The results of this study showed that the AD group 
was impaired relative to the RD and AD/RD groups on several visuo-spatial 
tests (maze and groove peg board tests), and that interestingly, this difference 
was particularly pronounced when using the left hand, suggesting a broad 
neurodevelopmental impairment within the right cerebral hemisphere in the 
AD group.
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Further research by Strang & Rourke (1983) compared the RD and AD 
groups on the Halstead Category Test (Reiton & Davison, 1974), a complex 
measure of nonverbal reasoning and concept formation (Rourke & Conway, 
1997). Based on Piagetian theory (Piaget, 1954) that the visual and tactile 
perceptual abilities found to be deficient in the AD group are necessary in order 
to learn effectively from early sensori-motor experiences, Strang and Rourke 
(1983) hypothesised that the AD group would be impaired relative to the RD 
group on the Halstead Category Test. Indeed this was found to be the case, with 
AD children making significantly more errors than the RD group. While this 
result does reveal some form of developmental impairment in nonverbal ability 
in the AD group, there is no evidence to suggest that performance on the 
Halstead Category Test is right lateralised, and thus this study can be taken as 
evidence only for the cognitive aspects of Rourke and colleague’s “NLD” 
(Rourke, 1987, 1989b, 1993; Rourke & Conway, 1997) theory, and not for the 
neuroanatomical hypotheses. 

Rourke (1993) points out, the pattern of symptoms exhibited by the AD 
group is somewhat analogous to those that make up the so called “Gerstmann’s 
Syndrome” (Gerstmann, 1940), namely, deficient arithmetic in the context of 
normal reading and spelling, visual-spatial orientation difficulties, general 
psychomotor coordination problems including dysgraphia, and impaired tactile 
discrimination including finger agnosia. However, while Rourke’s research 
suggest a generalised right hemisphere dysfunction as the root cause of the 
symptom pattern, Gerstmann’s Syndrome is typically associated with damage 
or dysfunction of the left hemisphere, in particular the left angular gyrus 
(Benson & Geschwind, 1970; Rusconi, Walsh, & Butterworth, 2005). There is no 
clear reason for this contradiction, but the existence of Gerstmann’s Syndrome 
as a syndrome is debatable in itself (see below). 

While Rourke and colleagues have produced considerable evidence in 
favour of the cerebral asymmetry hypothesis, the “NLD” cannot account for the 
evidence reviewed above showing that children with AD and DD show 
impairments in specific tasks of basic numerical processing. The NLD theory 
cannot account for the fact that DD children are impaired in the processing of 
numerical information more than any other stimulus category. There is no 
explanation within this theory of why a visuo-spatial processing deficit would 
cause specific impairments in numerical processing. It is highly plausible that 
developmental impairments in the right hemisphere may be widespread and 
subtle, and it is known that numerical processing regions and spatial attention 
areas of the brain lie in close proximity within the superior parietal lobe 
(Hubbard, Piazza, Pinel, & Dehaene, 2005). Thus, it is possible that 
developmental abnormalities in these regions may impair both numerical and 
visuo-spatial abilities, but that is not to say that the numerical impairments are 
caused by the visuo-spatial deficits.    

Studies supporting the domain general approach have often used 
participant samples with a relatively broad range of ability, for example the 
bottom 30th percentile (e.g. Geary et al., 1999) on standardised arithmetic tests, 
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and thus are likely to contain participants with both AD and DD. It is possible 
that domain general factors may influence less severe arithmetic difficulties, 
while dyscalculia as a bona fide learning disorder may be related to a domain 
specific core deficit. 

6.2  Impairments of a Domain Specific Number Module 

While it is clear that impairments in a number of cognitive domains can 
adversely affect mathematical performance, and lead to arithmetic difficulties,
the theories reviewed above cannot fully account for the incidence and nature 
of numerical processing deficits in developmental dyscalculia. An alternative 
approach is to ask, which mechanism or mechanisms, specialised for the 
processing of numerical information may be impaired in DD?

Several theoretical models have emerged which propose the existence of a 
domain specific cognitive module for the representation of numerical 
magnitude. However, some lend themselves to the study of dyscalculia more 
than others. 

McCloskey and colleagues (McCloskey, 1992; McCloskey, Caramazza, & 
Basili, 1985; McCloskey, Sokol, & Goodman, 1986) have proposed a functional 
model of numerical processing based principally upon evidence from 
neuropsychological studies of patients with acquired brain damage.

This model distinguishes mechanisms of number production from number 
comprehension, and within those mechanisms, distinguishes the processing of 
Arabic numbers versus verbal numbers (number words). The comprehension 
system translates either Arabic numbers or verbal numbers into abstract 
internal representations of number which specify the quantity and the 
associated power of ten. Calculations are then performed on these 
representations and the output then translated into verbal or Arabic numbers 
by the number production module. A further distinction between lexical and 
syntactic processing of numbers is suggested. This model also proposes stored 
representations of arithmetic facts which may be individually impaired, rather 
than impairments occurring on the basis of the type of arithmetic operation. 
Such a dissociation between subcomponents of arithmetic processing has been 
reported in multiple cases in the literature (e.g. Temple, 1989).  

McCloskey and colleagues’ model is principally a model which seeks to 
explain, at the cognitive level, the numerical processing mechanisms present in 
the adult brain. The model does not elucidate how such processes may emerge 
over the course of development within the brain, and hence is of limited utility 
as a foundation from which to explore the roots of DD. 

 Though also not explicitly developmental, a more useful model for 
generating hypotheses regarding the underlying causes of DD because of its 
specific cognitive and neuroanatomical descriptions, is the “Triple Code 
Model” (Dehaene, 1992; Dehaene & Cohen, 1995, 1997; Dehaene, Piazza, Pinel, 
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& Cohen, 2003). The ‘Triple Code Model’ proposes three separate systems by 
which numerical information may be represented and processed. These three 
systems or ‘Codes’ are 1) the Verbal Code, in which numbers are represented 
syntactically, phonologically and lexically, as with any other linguistic system, 
2) a Visual Code, in which numbers are encoded as strings of Arabic digits and 
3) an Analogue magnitude representation, a system which represents numerical 
quantities as nonverbal semantic size and distance relations between numbers.  

According to the Triple Code model, simple calculations are processed by 
the verbal system and stored as verbal representations, and hence can be 
retrieved from verbal memory when the solution to a given simple arithmetic 
problem is required. This verbal code represents the system by which rote 
learning of arithmetic facts occurs, and is in essence independent of the quantity 
representations to which verbal numbers often refer.  

Anatomically, the verbal code is suggested to be subserved by the left 
lateralised perisylvian language network extending into the left inferior parietal 
lobe. The visual system, on the other hand, is supported by bilateral inferior 
temporal regions for the asemantic processing of visual symbols, and superior 
parietal visual attention mechanisms for orienting visual attention along a 
mental number line, while the analogue magnitude system is suggested to be 
housed along the horizontal section of the intraparietal sulcus (HIPS) (Dehaene 
et al., 2003). 

Several researchers have suggested that the impairment of a domain 
specific mechanism that supports the representation and processing of 
numerical magnitudes, such as that outlined in the triple code model, may 
represent a core deficit in DD (Butterworth, 1999; Dehaene, 1997). While the 
specific conceptualisation of how numerosity representations are characterised 
in this system vary between theorists, most agree that this ‘number 
module’(Butterworth, 1999, 2005) or ‘number sense’ Dehaene (1997) is located 
at the neuroanatomical level in the posterior parietal lobes, specifically the 
intraparietal sulcus.

These theories support the existence of an innate domain specific system 
by drawing on from evidence of infant and animal numerical capabilities as 
well as neuroimaging studies of typically developing children and adults. These 
supporting bodies of evidence will be briefly reviewed in turn, following a brief 
commentary on the experimental paradigms typically used to investigate the 
representation of numerical magnitude.

6.3  Numerical Comparison and the Distance Effect 

Developmental dyscalculia is manifested at the behavioural level as a deficit in 
arithmetical ability. However, the search for an underlying core deficit should 
focus on basic cognitive mechanisms potentially present at birth or at least 
infancy if it is to succeed in identifying a core deficit that would compromise 
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the development of and not just performance of already developed arithmetical 
skills.

The measurable quantity or ‘numerosity’ of a set of objects is an important 
piece of information which guides human and animal interaction with the 
environment in many circumstances, and one that must be recognized and 
represented before any form of numerical processing can be carried out 
(Dehaene, 1992). ‘Quantification’ is the process by which the numerosity of a set 
of object is ascertained, and three parts to quantification have been suggested; 
counting, subitizing and estimation (Klahr, 1973; Klahr & Wallace, 1973). 

Counting involves the serial enumeration of a set of objects. It comprises a 
set of logical principles and can be achieved using a number of strategies which 
are thought to become more efficient over the course of development (Gelman 
& Gallistel, 1978). Counting can be achieved through verbal and nonverbal 
strategies (Gelman & Gallistel, 1978; Whalen, Gallistel, & Gelman, 1999) and has 
been shown in neuroimaging studies to activate classical language areas 
(Hinton, Harrington, Binder, Durgerian, & Rao, 2004) and intraparietal areas 
associated with numerical representation and processing (Piazza, Mechelli, 
Butterworth, & Price, 2002). 

The process of ‘subitizing’ refers to the rapid recognition of small sets of 
objects, usually up to 4, without counting (Kaufman, Lord, Reese, & Volkmann, 
1949), and considerable debate currently exists as to whether counting and 
subitizing reflect different cognitive processes or are differentiated simply by a 
continuum of difficulty (S. Dehaene, 1992; Piazza et al., 2002). Finally, 
estimation refers to the process of approximate enumeration (Klahr, 1973) 
carried out when a set of objects is too large to subitize or count within the 
allotted time span. 

Numerical estimation performance is thought be reflect the way numerical 
magnitudes are represented in the brain and the most common way to tap those 
representations is through numerical comparison tasks. Numerical comparison 
refers to the comparison of either two numbers (Arabic or Verbal) or two sets of 
objects with respect to their relative numerosity (typically participants select the 
item or array with the larger numerosity). This task elicits what is now well 
known as the ‘distance effect’ that was first observed by Moyer & Landauer 
(1967). The distance effect refers to a monotonic increase in both reaction time 
and error rates as the numerical distance between the two comparators 
decreases. Thus comparing the numerosities of 5 vs 9 would be produce less 
errors and be performed faster than comparing 8 vs 9. The distance effect is a 
highly replicable effect (Ansari, Dhital, & Siong, 2006; Fias, Lammertyn, 
Reynvoet, Dupont, & Orban, 2003a; Moyer & Landauer, 1967; Piazza, Izard, 
Pinel, Le Bihan, & Dehaene, 2004; Pinel, Dehaene, Riviere, & LeBihan, 2001). 
Furthermore the distance effect has been shown to correlate with brain 
activation in the intraparietal sulcus in both children and adults (Ansari, Garcia, 
Lucas, Hamon, & Dhital, 2005; Pinel et al., 2001). 

According to Dehaene & Cohen (1995) the internal representation of 
numbers is organised along a mental number line which is housed in the IPS 
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(Dehaene et al., 2003). The closer two numbers are on this number line the more 
they overlap in terms of representational space, thus making it harder to 
distinguish one from the other. It is this representational overlap which is 
thought to give rise to the numerical distance effect. The size of the distance 
effect decreases over the course of development (Duncan & McFarland, 1980; 
Sekuler & Mierkiewicz, 1977) suggesting that the mental representations of 
numerical magnitudes become more distinct and less overlapping.

The importance of numerical comparison is not limited to simple 
elucidation of the nature of numerical representation. A new finding relates the 
distance effect to higher level mathematical performance. In a recent study, it 
was found that the size of the distance effect was negatively correlated with 
mathematics scores as measured by the Mathematics Fluency and Calculation 
subtests of Woodcock Johnson III Tests of Achievement (Holloway & Ansari, in 
press). These data suggest that higher mathematics achievement is related to a 
smaller distance effect. In essence, these data reveal an important link between 
reaction times associated with very low-level numerical magnitude processing 
and school level arithmetic performance. Furthermore, (Delazer, Karner, 
Zamarian, Donnemiller, & Benke, 2006) present the case of a patient with 
posterior cortical accuracy extending into the right parietal lobe who showed 
both impaired arithmetic performance and an increased distance effect during 
numerical comparison. Thus, a gradually increasing collection of studies 
suggests a tripartite relationship between the parietal cortex, numerical distance 
effect, and arithmetic performance. 

It should be noted that in an untimed paradigm, in which participants are 
not required to provide a solution within a certain time frame, different 
strategies may be used to solve the problem (e.g. counting). However, when a 
time limit is imposed it reduces the possibility that alternative strategies which 
do not require access to numerical semantics are used. 

Thus, not only do numerical comparison tasks tap underlying numerical 
magnitude representations, but those representations are evidently related to 
the development of more sophisticated arithmetic abilities. A numerical 
comparison task which contains a within task manipulation of distance, 
therefore, represents an ideal paradigm with which to probe the representation 
and manipulation of numerical magnitudes in developmental dyscalculia.

6.3.1 Infant and Animal Numerical Processing Abilities. 

6.3.1.1 Infants and Children 

If DD is caused by the disruption of an innate domain cognitive system for 
representing and processing numerical magnitude, then evidence of that system 
should be present in infants and typically developing children. 

Research suggests that human infants have both an exact representation of 
small numerosities, affording them some basic computational ability, as well as 
a more approximate understanding of larger numerosities, allowing them to 
discriminate between sets of objects based on number. The earliest studies of 
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infant number processing  found that 4 month old infants could discriminate 
between sets of dots (Starkey & Cooper, 1980) and  sets of objects (Strauss & 
Curtis, 1981) made up of numerosities less than 3, but could not discriminate 
between sets numbering more than 3. This finding was later replicated with 
neonates (Antell & Keating, 1983) providing a strong suggestion that infants 
have some representation of discrete quantities, albeit those lower than 3.

Multiple studies have subsequently confirmed the ability of infants to 
detect changes in the numerosity of sets of objects (Starkey, Spelke, & Gelman, 
1990; van Loosbroek & Smitsman, 1990). Furthermore, infants are aware of 
changes in the numerosity of a set, even when those changes take place behind 
a screen, suggesting that as well as a basic representation of small numerosities, 
infants have an arithmetic expectancy regarding numerical transformations of 
the number of objects in a set. (Wynn, 1992, 1998). 

However, the exact nature of numerical abilities in infants has been 
challenged by researchers whose studies show that infants respond not to 
numerosity per se, but rather to changes in non-numerical dimensions, such as 
surface area and contour length which vary systematically with numerosity 
(Clearfield & Mix, 1999, 2000; Feigenson, Carey, & Spelke, 2002). Even children 
as old as three years old have been shown to rely on non-numerical visual cues 
in order to discriminate between sets of objects (Rousselle, Palmers, & Nöel, 
2004). Evidence on this matter is mixed however, as several studies have shown 
that infants still respond to changes in number even when non-numerical 
continuous variables are strictly controlled, typically when larger numerosities 
are tested (Brannon, 2002; Lipton & Spelke, 2003; Wynn, Bloom, & Chiang, 2002; 
Xu, 2003; Xu & Spelke, 2000).

The extent to which this numerical discrimination mechanism, present in 
infants in children, operates on numerosity versus continuous physical 
variables is an important issue in understanding how the domain specific 
numerical mechanisms present in adults develop. Brannon (2002) used a 
preferential looking paradigm to show that 9 month old infants were sensitive 
to changes of size but not number of squares, while 11 month old infants could 
detect both. This finding suggests there may be an ontogenetic relationship 
between visual discrimination mechanisms and the development of a domain 
specific numerical processing system. In other words, the numerosity of a set of 
objects may be an emergent property of the visual characteristics of the set, and 
hence numerical representations develop early in infancy but are not present at 
birth.

The majority of infant research has thus far been cross sectional, and thus 
the nature of the processes by which infant abilities develop into adult end 
states, or in the case of developmental disorders do not, remains open. 
However, it is apparent that some level of numerical processing ability exists 
before any formal exposure to arithmetic learning, and even before learning can 
take place in the home, suggesting a phylogenetically specified cognitive 
mechanism for representing and processing numerical quantity. Furthermore, 
infant numerical discrimination abilities are sensitive to the effects of numerical 
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distance and size (e.g. Xu, 2003), suggesting that the innate numerical 
magnitude representation shared by typically developing adults, children and 
infants can be identified by its susceptibility to changes in numerical distance. 
This supports the use of a numerical comparison paradigm with distance 
manipulations as a method of assessing the integrity of that representation. 

6.3.1.2 Animal Numerical Cognition 

The idea that the human brain should be endowed with an innate 
representation of numerical magnitude rests on the assumption that such a 
representation would have evolutionary value. Evidence of numerical 
representation and processing abilities in animals support this idea. 

The first reliable studies showing animal numerical abilities came from 
Koehler (Koehler, 1941, 1951), who showed that birds could recognise 
numerosities of sets both in match-to-sample paradigms and when they had to 
select a pre-trained numbers of items in sequential order. Subsequent research 
observed numerical discrimination abilities in rats (Church & Meck, 1984; 
Mechner, 1958; Mechner & Guevrekian, 1962; Meck & Church, 1983), 
orangutans (Shumaker, Palkovich, Beck, Guagnano, & Morowitz, 2001), 
monkeys (Brannon & Terrace, 1998; Washburn & Rumbaugh, 1991) and pigeons 
(Emmerton, Lohmann, & Niemann, 1997).  

An obvious criticism of evidence which shows numerical processing 
abilities in animals is that such ability is purely a result of training. A 
pioneering study by Brannon & Terrace (1998) addressed this concern by 
showing that monkeys are able to transfer their trained numerical knowledge to 
novel numerosities. In this study monkeys were trained to select sets with 
numerosities 1 – 4 in ascending order, and were subsequently shown to be able 
to order sets with numerosities 5 – 9 without any training, suggesting a true 
understanding of the ordinal relationship between numerosities. Furthermore, 
the monkeys’ performance accuracy increased as the numerical distance 
between the numbers to be ordered increased. In other words, the monkeys’ 
performance showed a classical distance effect, indicative of a mental 
representation of numerical magnitude that shares at least some properties and 
perhaps a phylogenetic basis with that of humans. 

As well as numerical discrimination and ordering, research has also 
revealed computational abilities in animals. Studies modelled on the arithmetic 
expectancy tasks used in human infant research (Wynn, 1992, 1996) have found 
that non-human  primates also recognise when the outcome of a numerical 
transformation on a set of objects is incorrect (Hauser, MacNeilage, & Ware, 
1996; Santos, Sulkowski, Spaepen, & Hauser, 2002; Uller, Hauser, & Carey, 
2001). Furthermore the one-by-one addition performance of chimpanzees was 
found to match those of human children (Beran & Beran, 2004). 

Further support for the existence of numerical processing abilities in 
animals independent of training comes from field studies showing that when 
female lions hear the voices of another group of lions, they decide whether or 
not to react aggressively or retreat by comparing the number of voices in the 
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other group with the number of their own (McComb, Packer, & Pusey, 1994). 
Furthermore, groups of Chimpanzees will only enter into a violent contest if 
they outnumber the opposing group by a factor of 1.5 (M. L. Wilson, Hauser, & 
Wrangham, 2001). These findings suggest that numerosity is an important 
environmental stimulus category even for animals, and in the absence of 
training they are biologically equipped to represent and process numerical 
information. The question is, however, whether these abilities in animals are 
underpinned by the same neural mechanisms as those observed in humans. 

An emerging body of single cell recording research has shown that 
neurons in the monkey brain respond selectively to numerical information. 
Nieder, Freedman, & Miller (2002) showed that when monkeys were made to 
judge whether two successive displays contained the same number of items, 
neurons in the lateral prefrontal cortex were maximally activated by the 
number of items rather than the appearance of the objects. Nieder & Miller 
(2004) showed that in the parietal cortex, number selective neurons were most 
common in the fundus of the intraparietal sulcus, in areas homologous to the 
human intraparietal sulcus. Furthermore, the responses of these neurons were 
related to the numerical distance between the presented and preferred 
numerosities. Specifically, the greater the distance between the presented and 
preferred numerosity the lower the firing rate of these ‘number neurons’. In 
other words, the firing rate of number specific neurons exhibits a distance 
effect. This is very important as it shows that the highly replicable behavioural 
distance effect (see above), which is thought to represent the mental 
representation of numerical magnitude at the brain level, is present even at the 
single cell level. This further reinforces the distance effect as a key indicator of 
the integrity of numerical magnitude representation and suggests that the effect 
reflects neuronal response properties. 

A significant body of research, therefore, shows that at least some level of 
numerical processing ability present in human adults is shared with human 
infants and even non-human animals. This ability appears to depend appears to 
be supported by neurons in the intraparietal sulcus and the prefrontal cortex. 
Interestingly, the tuning curves of the response functions for the neurons, tested 
in the work of Nieder and colleagues, overlap remarkably with the behavioural 
accuracy response distributions in many of the behavioural animal studies (e.g. 
Mechner, 1958; Mechner & Guevrekian, 1962) suggesting a tight coupling 
between neuronal activity and cognitive function.

These results suggest the existence of a phylogenetically specified neural 
mechanism for the representation and processing of numerical magnitude that 
is subject to the numerical distance effect. That this mechanism exists in 
animals, children and adults makes it a prime candidate for a system whose 
impairment may represent a core deficit in developmental dyscalculia. In order 
to better understand the nature of this mechanism it is important to understand 
the neural correlates of its function in human adults and children.

Studies of neuropsychological patients with focal lesions resulting in 
specific behavioural deficits have provided many insights into the neural 
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underpinnings of numerical cognition. This has been supported more recently 
by a growing body of neuroimaging research. These two sources of evidence 
will now be discussed in turn. 

6.3.2 Neuropsychological Case Studies 

Historically, neuropsychological case studies have tended to focus on 
impairments of sub-domains of arithmetic ability, such as selective deficits of 
multiplication or subtraction and division. Recent neuropsychological case 
studies show that some aspects of arithmetic, such as multiplication, thought to 
rely on verbal systems can be successfully performed despite impaired 
performance on tasks thought to rely on understanding of numerical quantities, 
such as subtraction, division and the understanding of number meanings 
(Dehaene & Cohen, 1997; Delazer, Karner, Zamarian, Donnemiller, & Benke, 
2006; van Harskamp & Cipolotti, 2001).

In contrast, other case studies have shown that multiplication may be 
impaired while other arithmetic operations such as division and subtraction, 
thought to rely on domain specific numerical systems, remain intact  (Delazer et 
al., 2004; Hittmair-Delazer, Semenza, & Denes, 1994; van Harskamp & Cipolotti, 
2001) These findings suggest distinct neural substrates for arithmetical 
operations compared to more basic numerical magnitude representation as well 
as showing that while arithmetic facts may be stored in memory as verbal 
routines, calculation can still be impaired in the context of spared language, 
suggesting that arithmetic performance depends upon more than just verbal 
memory. Together these sets of results support the distinctions within the 
“Triple Code” model between neural circuits which underlie verbal 
representations of arithmetic facts, and those which underlie the representation 
of numerical magnitude information, and suggest that these circuits may be 
independently impaired. 

Neuropsychological evidence suggests that, in the adult brain at least, 
arithmetic procedures may be differentially impaired following brain damage. 
However, interpreting this evidence in terms of developmental learning 
disorders is difficult as the cognitive modules shown to be impaired in these 
studies are the product of lifelong learning. Arithmetic is a composite process 
drawing on linguistic skills, memory and executive function, and thus it is 
important to ask whether basic numerical magnitude processing abilities can 
show an isolated impairment following brain damage. 

To date, only a few neuropsychological case studies have investigated the 
understanding of numerical quantities independent of formal calculation 
procedures, that is, those processes, such as number comparison and numerical 
estimation, thought to depend upon a domain specific number sense (Dehaene, 
1997). In studies that have compared basic quantity processing with conceptual 
arithmetic knowledge (Delazer & Benke, 1997; Delazer et al., 2004) dissociations 
have been observed between intact quantity processing and impaired 
conceptual knowledge, but not the reverse, suggesting that the quantity 
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processing system is a more fundamental foundation upon which more 
sophisticated arithmetic knowledge is built.  

Dissociations have also been observed between exact and approximate 
numerical abilities which are thought to tap arithmetic fact memory and 
numerical magnitude representation respectively (Dehaene et al., 1999). In the 
first such case study Warrington (1982) reported the case of a patient who, 
following damage to the left parietal and occipital lobes, was unable to solve 
even the most basic calculation problems. However, he was able to clearly 
define arithmetic operations, as well as being able to give approximate 
solutions to simple and complex calculations (e.g. when asked “5 + 7” he 
replied “about 13”) suggesting that the underlying representation of numerical 
magnitude was intact. Subsequent studies have also revealed a relationship 
between damage to the left parietal lobe and impaired exact calculation in the 
context of intact approximate numerical abilities (Dehaene & Cohen, 1991; 
Lemer, Dehaene, Spelke, & Cohen, 2003). These findings support the idea that 
arithmetic depends on both an exact verbal system for representing and 
processing discrete numbers and an approximate system for representing and 
processing numerical magnitude, and that these processes can be differentially 
impaired following brain damage. 

A recent case study explored basic numerical processes in a patient with a 
cerebral lesion restricted to the left IPS (Ashkenazi, Henik, Ifergane, & Shelef, 
2008) and observed an interesting set of results. The patient (AD) showed 
impairments in calculation but not number comprehension and production, as 
well as impaired performance in magnitude comparison from dots to digits and 
from dots to dots and in dot counting and subitizing. Interestingly, AD also 
showed a larger distance effect than controls, an effect observed when 
comparing children to adults (Ansari et al., 2006) as well as a lack of a 
facilitation effect during congruent trials of a numerical stroop task, an effect 
observed in adults with developmental dyscalculia (Rubinsten & Henik, 2005).

These results suggest that not only can basic numerical magnitude 
processing be impaired following damage to the IPS, but that impairments in 
that domain relate to a stronger distance effect. In combination with the results 
of Ansari et al (2006), these findings suggest that a stronger distance effect may 
reflect impairment or lack of development of the mental representation of 
numerical magnitude. 

An obvious and serious problem with making inferences about cognitive 
architecture from brain damaged patients is that brain lesions rarely respect the 
confines of functionally defined cortical areas. Often several processes are 
impaired, making it difficult to make specific interpretations from the resulting 
impairment patterns. Furthermore, patients are frequently able, consciously or 
not, to employ alternative, compensatory cognitive mechanisms in order to 
carry out tasks, thus further confounding any interpretations of error patterns. 

Despite the limitations of the neuropsychological approach, the results 
reviewed above do suggest that a selective impairment of the mental 
representation of numerical magnitude is possible, and that it is most likely that 
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it arises from damage to the intraparietal sulcus. Whether this cognitive module 
can be so selectively impaired as a consequence of atypical brain development 
in dyscalculia, however, remains an open question. The current thesis seeks to 
address this question with both behavioural and neuroimaging evidence.  

While neuropsychological case studies may be highly valuable in 
elucidating the separability of cognitive systems, in terms of localising those 
systems to neural loci it is unfortunately approximate. Modern advances in 
neuroimaging, however, have provided a powerful complimentary tool for 
investigating the neural bases of numerical processing mechanisms. 

6.3.3 Neuroimaging of Numerical Comparison in Adults and Children 

6.3.3.1 Adults 

Domain specific theories of developmental dyscalculia suggest that a core 
deficit in the representation of numerosity may impair the structured 
development of mathematical learning, in that more sophisticated school level 
knowledge would lack the necessary semantic foundations on which to be built. 
Several researchers have suggested that the neuroanatomical location of this 
core deficit may be the posterior parietal lobe (Butterworth, 1999; Dehaene, 
1997). The advent of greater spatial resolution and more sophisticated 
paradigms and analysis methods in fMRI has afforded researchers the 
possibility to construct more detailed descriptions of how cognitive 
representations such as those outlined in the triple code model (Dehaene & 
Cohen, 1995; Dehaene et al., 2003) may be instantiated at the neuroanatomical 
level and subsequently, allowed a greater degree of neuroanatomical specificity 
in hypotheses of a brain based core deficit in DD. 

In a seminal meta analysis Dehaene et al (2003) outlined three neural 
circuits suggested to support different aspects of numerical cognition. The left 
angular gyrus (AG) tends to be more active in verbal tasks such as 
multiplication and “exact addition”  (Chochon, Cohen, van de Moortele, & 
Dehaene, 1999; Dehaene et al., 1999; Lee, 2000), the posterior parietal lobe is 
active in tasks requiring the shifting of spatial attention (Dehaene et al., 1999; 
Lee, 2000; Pinel et al., 2001), while the intraparietal sulcus (IPS) is involved in 
number specific tasks such as number comparison, numerical estimation and 
approximation, and subtraction (Chochon et al., 1999; Dehaene et al., 1999; Lee, 
2000).

Thus, if DD is caused by a deficit in the development of numerical 
magnitude representation, then the most likely neural substrate for that 
impairment is in the IPS. However, before one can investigate the atypical 
development of that representation, it is important to understand its neural 
correlates in typically developing children and adults. 

As discussed above, numerical comparison and estimation serve as ideal 
tasks for probing the representation and processing of numerical magnitude, 
and a growing body of neuroimaging research has employed these tasks with 
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the aim of elucidating the neural substrates of this potentially domain specific 
cognitive mechanism. 

An early PET study of numerical comparison (Dehaene, 1996) revealed 
that parietal regions are involved in comparing both Arabic digits and number 
words. Furthermore, an effect of numerical distance was observed over the 
right parieto-occipital-temporal region, showing greater difference amplitudes 
for close distances than for far. Subsequent neuroimaging studies of number 
comparison have consistently reported activation of the IPS in both cerebral 
hemispheres. Activation of the IPS has been reported for number comparison 
but not digit naming (Chochon et al., 1999), for comparison of two-digit 
numbers in both Arabic and written form to a reference number (Pinel et al., 
2001), for comparison of verbal numerals to a reference number (Thioux, 
Pesenti, De Volder, & Seron, 2002) and for number comparison relative to 
judging the orientation of digits (Pesenti, Thioux, Seron, & De Volder, 2000). 
These results provide strong evidence of the key role of the IPS in representing 
and processing numerical magnitude. 

As well as investigating number comparison using Arabic digits and 
number words, studies have probed the domain specificity of numerical 
processing in the IPS using nonsymbolic stimuli (i.e. collections of objects). 
Castelli, Glaser, & Butterworth (2006) observed that the bilateral IPS was more 
active for comparing the numbers of blue versus green squares relative to 
comparing the amount of blue versus green hue in a single large square, 
indicating that the IPS responds specifically to numerosity rather than a simple 
more than/less than magnitude system.

Venkatraman, Ansari, & Chee (2005) used nonsymbolic stimuli (dot 
patterns) in an addition paradigm, comparing exact and approximate additions 
in both symbolic and nonsymbolic formats. The results of this study showed 
that while nonsymbolic addition activated the IPS bilaterally, symbolic addition 
predominantly activated the left IPS, suggesting some level of shared 
representation but perhaps some subtle format related hemispheric differences. 
Piazza, Giacomini, Le Bihan, & Dehaene (2003) showed that bilateral posterior 
parietal regions are more active for counting sets of four to seven objects 
compared with subitizing sets of less than four, and that activation in the IPS 
showed a linear increase in relation to the number of items being counted. 

These results show that the IPS is active during the processing of 
numerical magnitude regardless of the visual format in which stimuli are 
presented. However, a question which arises then, is whether the IPS is 
involved specifically in the processing of numerical magnitude, rather than 
housing the representation thought to be tapped by numerical comparison 
tasks and the distance effect (see above). Some researchers have argued that the 
observed IPS activations during numerical processing stem from more domain 
general processes such as response selection mechanisms, rather than from 
activation of the representation of numerical magnitude (Göbel, Johansen-Berg, 
Behrens, & Rushworth, 2004; Göbel & Rushworth, 2004). 
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In order to address this concern, several studies investigating nonsymbolic 
number processing have employed a technique known as functional magnetic 
resonance adaptation (fMRA). In an adaptation paradigm, stimuli are presented 
sequentially, and during this presentation one stimulus attribute is held 
constant, while others vary. For example, a series of sets of dots may be 
presented, each with 35 dots, but the individual shapes of the dots may change, 
as might the overall surface area covered by the set, as well as density of stimuli 
within the surface area. Thus, numerosity would be considered the invariant 
dimension in this example.  

Repeated presentation of this stimulus dimension leads to a decrease, or 
habituation, of the brain activation in areas whose activation initially increased 
in response to the stimuli. Finally, a deviant stimulus is presented in which the 
previously invariant stimulus dimension is altered (e.g. a series of sets 
containing 35 dots followed by a set with 55 dots). This deviant stimulus leads 
to a recovery, or dishabituation, of function in those areas which are responsible 
for the processing of the invariant stimulus dimension. Typically participants 
are asked to attend to a neutral element in the display such as a fixation cross. 
Thus the paradigm involves no response selection and no task dependant 
attention (for a detailed description of this method see Grill-Spector, Henson, & 
Martin, 2006)

Using an fMRA paradigm which used sets of 16 or 32 dots as habituation 
stimuli, Piazza et al (2004) showed that the anterior IPS bilaterally responds to 
changes in numerosity but not in individual item shape, and that the greater the 
change in numerosity when the deviant stimuli was presented, the great the 
activation recovery in the IPS. Piazza, Pinel, Le Bihan, & Dehaene (2007) 
showed that the IPS bilaterally recovers in response to numerosity changes, 
even when the deviant stimulus is in a different notation (digit deviant in dot 
habituation and vice versa). In this study the left IPS showed greater sensitivity 
to notation changes when digit deviants were presented amongst dot 
habituation series, again suggesting there may be hemispheric asymmetries in 
the processing of numerical stimuli. Critically, these studies reveal that the IPS 
is sensitive to changes in numerosity even when no explicit processing of the 
stimuli is required, strengthening the idea that this region houses a 
representation of numerical magnitude. 

fMRA has also been used to explore the neuronal populations responsive 
to numerosity comparison using Arabic digits and number words. Naccache & 
Dehaene (2001) observed bilateral IPS activation recovery for numerosity 
changes using both Arabic digits and number words. Cohen Kadosh, Cohen 
Kadosh, Kaas, Henik, & Goebel (2007) employed a passive viewing fMRA 
paradigm using Arabic digits and number words. The authors observed 
dishabituation in the left IPS in response to changes in numerosity for both 
Arabic digits and number words, and dishabituation only for Arabic digits in 
the right IPS. This result suggests that while the bilateral IPS responds to 
changes in numerosity, there may be a specialised role for the left IPS in 
processing verbal number words. 
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In addition to showing the IPS as simply being active during numerical 
processing, numerical comparison paradigms have revealed neural correlates of 
the behavioural distance effect, a key indicator of access to numerical semantic 
information. Pinel et al. (1999) employed an event-related fMRI paradigm to 
show that when comparing Arabic digits or number words, smaller numerical 
distances between comparators correlates with increased activation in the 
bilateral IPS. This finding has since been replicated in multiple studies (Cohen 
Kadosh et al., 2005; Kaufmann et al., 2005).

Furthermore, fMRA studies have shown that the greater the distance 
between the deviant and the habituated numerosity, the greater the degree of 
signal recovery in the IPS (Piazza et al., 2004; Piazza et al., 2007). This finding is 
in line with computational models of numerosity representation (Dehaene & 
Changeux, 1993), and supports the idea that the mental representation of 
numerical magnitude is sensitive to the effects of numerical distance at the 
brain level. These findings lend further support to the hypothesis that the IPS is 
crucially involved in the representation and processing of numerical magnitude 
and that this cognitive system is highly domain specific. Furthermore, the 
distance related activation changes in the IPS observed in humans parallel the 
distance related response tuning curves of parietal neurons in monkeys (see 
above), suggesting that the nature of the numerical magnitude representation in 
the IPS is phylogenetically specified, and hence represents a plausible candidate 
for core deficit in DD which may be present from birth. 

A second line of argument against the domain specificity of numerical 
representation in the IPS, however, comes from findings showing common 
activation in the IPS for magnitude judgements involving stimuli that are not 
explicitly numerical, such as, letters, shapes, line length, angle width, character 
size and luminance (Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003b; 
Fulbright, Manson, Skudlarski, Lacadie, & Gore, 2003; Pinel, Piazza, Le Bihan, 
& Dehaene, 2004). These findings have led to suggestions that observed 
activations in the IPS reflect the operation of a domain general magnitude 
system (Fulbright et al., 2003; Walsh, 2003) rather than a domain specific 
representation of numerical magnitude. However, in the Pinel et al., (2004) 
study, the regions activated by different dimensions of magnitude were found 
to be overlapping but distinct, with numerical magnitude being linked to 
anterior regions of the IPS. Furthermore, Ansari et al (2006) used an fMRA 
paradigm to show that the IPS responds to changes in number but not surface 
area. Thus, the evidence suggests that while the parietal lobe may process 
domain general magnitude, it appears to also contain a domain specific 
numerical system, possibly located in more anterior regions of the IPS. 

6.3.3.2 Children 

The above studies show that in typically developing adults, the IPS supports 
the representation and processing of numerical magnitude, and that the 
behavioural effects of changes in numerical distance are mirrored in the neural 
responses of the IPS. However, neuroimaging studies of healthy adults alone 
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cannot address the question of whether such a neural mechanism supports the 
development of numerical abilities, or whether this is caused by a lifetime of 
learning and experience of numerical processing. Recently several researchers 
have started to explore the neural substrates of numerical cognition in children 
in order to investigate whether the numerical processing abilities present so 
early in development at the behavioural level (see above) are tied at the 
neuroanatomical level to the same systems supporting those processes in 
adults.

Calculation tasks consistently activate parietal regions in adults (see 
above) and several studies have revealed an interesting pattern of similarities 
and differences in children’s brain activation. Kawashima et al (2004) compared 
brain activation between children and adults during simple addition, 
subtraction and multiplication. The results revealed that while the adults show 
IPS activity during all three tasks, children only showed activation in the right 
IPS during subtraction. Furthermore, subtraction was also the only task to 
reveal right IPS activation in adults, the other two showing left lateralised IPS 
activity. Subtraction and division are thought to require greater access to 
numerical semantic information than addition and multiplication which can be 
solved using stored arithmetic facts. Thus, these results point to an ontogenetic 
specialisation of the left IPS for calculation, but suggest a shared right IPS 
mechanism present in childhood for more basic numerical processing.

Another study looked at differences between children and adults in the 
neural circuitry underlying calculation (Rivera, Reiss, Eckert, & Menon, 2005). 
This study found that children recruit more frontal areas including superior, 
middle and inferior frontal gyri compared to adults during addition and 
subtraction. Adults on the other hand, recruit more posterior areas including 
lateral occipital cortex, mid-temporal areas, the left supramarginal gyrus, and 
the left IPS. These findings suggest that the involvement of the parietal cortex in 
calculation may be the product of ontogenetic specialisation, perhaps by means 
of mapping Arabic digit symbols onto nonsymbolic representations of 
numerosity held in the parietal cortex from infancy. 

The results above suggest that in children, the IPS perhaps does not play 
as strong a role in supporting calculation as it does in adults. The question 
arises then, whether this difference is related to differences in the calculation 
procedures used by children and adults, or to the development of 
representation of numerical magnitude in the IPS.

In order to address this question it is necessary to investigate the neural 
correlates of numerical processing in the absence of calculation. In fact, the first 
study to investigate the neural correlates of numerical processing in children 
used symbolic and nonsymbolic number comparison in an ERP paradigm  
(Temple & Posner, 1998). This study observed similar behavioural and 
electrophysiological effects of numerical distance for both children and adults, 
centred over posterior parietal electrodes. However, the limited spatial 
resolution of ERP makes more specific anatomical inferences impossible.  
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More recently, Ansari et al (2005) used fMRI to examine the neural 
correlates of the distance effect during symbolic number comparison in children 
and adults and found that while distance modulated a frontal and parietal 
network in adults, in children distance modulated a primarily frontal and sub-
cortical network. However, the children did show an effect of distance in the 
right superior parietal lobe, further suggesting that the numerical processing 
specialisation of the parietal cortex may emerge earlier in the right hemisphere 
than the left. 

Extending the results of the above studies, which lacked a direct statistical 
contrast between children and adults, Ansari & Dhital (2006) investigated age 
related changes in brain activation during numerical comparison of 
nonsymbolic stimuli and employed a direct statistical comparison between 
adults and children. The authors observed that while children showed a classic 
distance effect (increased activation for smaller distances) in the left IPS, adults 
showed the same effect in the IPS of both hemispheres. Furthermore, the left 
IPS region showed a group x distance interaction driven by a stronger effect of 
distance in the adults than the children. This was the first study to reveal an 
ontogenetic development of IPS activity during nonsymbolic number 
comparison, and shows that the neural distance effect increases with age. This 
pattern is interesting in the context of behavioural evidence showing an age 
related decrease in the distance effect (Duncan & McFarland, 1980; Sekuler & 
Mierkiewicz, 1977), suggesting that stronger parietal activation during 
numerical comparison may reflect greater integrity and efficiency within the 
numerical magnitude system. 

fMRA has also been used to explore age related changes in nonsymbolic 
number comparison. Cantlon, Brannon, Carter, & Pelphrey (2006) showed that 
in adults, the bilateral IPS responds to changes in the number of objects in a set 
of dots. In 4 year old children, however, the response was right lateralized. This 
study provides further evidence of a possible developmental shift from right 
IPS dominance to more bilateral processing of numerical information. This shift 
may be linked to the increasing role of language in the child’s understanding 
and processing of numerical information. However, the studies above have 
produced conflicting evidence regarding the hemispheric lateralisation of 
number processing in the IPS, and thus it is difficult to speculate as to the 
different roles of the left and right IPS during the development of numerical 
processing abilities. 

Neuroimaging studies of numerical processing in children reveal several 
key points. Firstly, the IPS is involved in numerical processing in children, 
albeit to a lesser extent than in the adult brain. Secondly, changes in numerical 
distance during number comparison modulate activity in the IPS of children, 
again, albeit to a lesser extent than for adults. Finally, some studies suggest a 
right IPS specialisation for the representation of abstract numerical magnitude 
and a left IPS specialisation for symbolic or verbally based number processing, 
although other studies present evidence contrary to this dichotomy. Thus the 
question of hemispheric asymmetry requires further focused investigation. 
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If the numerical representations housed in the IPS are weaker in typically 
developing children than adults, then it may be that those representations are in 
turn weaker in children with mathematical learning disorders than in typically 
developing children, effectively creating a developmental hierarchy of the 
strength of numerical representations in the brain. The current thesis 
investigates this question by comparing brain activation during symbolic and 
nonsymbolic comparison in children with developmental dyscalculia and 
typically developing controls. This is the first work to investigate this issue 
using both symbolic and nonsymbolic stimuli. Although a very small number 
have studies have recently begun to probe the neural correlates of numerical 
representation in DD children, the results have proved inconclusive, and the 
integrity of the representation of numerical magnitude at the brain level in DD 
remains an open question. 

6.3.3.3 Neuroimaging of Number Processing in Atypical Populations 

In contrast to research on mathematical disabilities, studies examining the 
neural correlates of dyslexia have been fairly widespread, and have thus been 
able to identify key differences in brain activation between dyslexics and 
normal readers, especially in the left occipito-temporal area (e.g. Shaywitz et al., 
2002) These findings have been highly relevant in informing theories of 
developmental dyslexia based on deficits in phonological decoding for example 
(Lyytinen, Erskine, Aro, & Richardson, 2006). In view of this highly significant 
progress in the field of dyslexia research, it is likely that the study of 
mathematical learning disabilities would benefit from similar neuroimaging 
contributions.

The first body of neuroimaging studies which investigated atypical 
numerical processing looked at populations with numerical and visuo-spatial 
impairments occurring in the context of genetic developmental syndromes, 
such as Turner Syndrome (TS) and Fragile X syndrome (fraX).  

Using both functional and structural neuroimaging methods, Molko et al 
(2003) compared Turner Syndrome patients to typically developing controls 
during calculation. While the control subjects showed increased activation in 
the bilateral IPS as the difficulty of exact calculations increased, the TS subjects 
did not show the same modulation. Subsequent morphometric analysis 
revealed abnormal structural organization of the right hemisphere IPS in TS 
subjects. The behavioural results of this study showed that TS subjects 
performed disproportionately worse when the difficulty of exact calculations 
increased relative to controls. In addition the IPS, i.e. the brain area associated 
with supporting the increased level of quantity processing in controls, does not 
respond to increased demand in TS subjects, a pattern also observed in females 
with fragile X syndrome in calculation verification tasks (Rivera, Menon, White, 
Glaser, & Reiss, 2002).

Taken together these findings suggest that atypical development of 
parietal brain regions, and in particular the right IPS, may undermine the 
development of arithmetic abilities. These findings are additionally important 
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as they link atypical development of the IPS, the presumed locus of the 
representation of numerical magnitude to atypical development of arithmetic 
abilities, not just basic magnitude processing skills, thus suggesting a potential 
causal link between atypical development of numerical magnitude 
representations and developmental dyscalculia. 

Molko et al (2004) further supported this finding with Voxel Based 
Morphometry (VBM) evidence showing that TS subjects showed decreased 
grey matter volume in the left superior temporal sulcus and right IPS. Similarly, 
Isaacs, Edmonds, Lucas, & Gadian (2001) found that adolescents of very low 
birth weight who showed deficits in numerical operations had reduced grey 
matter volume in the left hemisphere IPS. Again, the causes for hemispheric 
asymmetries between studies are unclear.  

An important caveat in the interpretation of anatomical studies of 
atypically performing groups is that the observed structural changes may be 
either a cause or an effect of impaired performance in the cognitive domain 
with which that brain region is associated, so causal inferences should be 
treated with caution. Furthermore, groups of atypically developing individuals, 
with different genetic disorders, have been compared as though they shared a 
single deficit in numerical processing. Although the consequences are 
unknown, the fact that these groups present these mathematical impairments as 
part of broader genetic syndromes should not be forgotten when generalizing 
the results of these studies to pure DD.

Few studies have investigated the neural correlates of numerical 
processing in children with developmental dyscalculia rather than wider 
genetic syndromes. Kucian et al (2006) conducted an fMRI experiment with 
developmental dyscalculics in the 3rd and 6th Grades, defined by discrepancy 
between scores on a battery of mathematical and reading tests and general IQ, 
and two groups of age matched controls. The experiment included approximate 
and exact calculation conditions and a magnitude comparison task, comparing 
small sets of different objects (e.g. strawberries vs. nuts). The results of the fMRI 
showed similar activation patterns, albeit generally weaker and more diffuse, 
for DD and control groups in all conditions. There was no effect of age on 
activation pattern.  

The main difference between groups in this study was found using region 
of interest analysis in the IPS. In this region DD subjects showed significantly 
weaker activation in response to approximate calculation in the left IPS, and a 
non-significant trend in the same direction in the right IPS. During the 
numerical comparison task, a region of interest analysis revealed significantly 
weaker activation during numerical comparison for DD children in the left IPS 
and a trend toward the same pattern in the right IPS. Thus, this study revealed 
essentially similar networks for all tasks between groups, albeit with weaker 
activations in the DD group. However, these results were not supported by 
whole brain statistical analysis, and thus do not represent strong evidence in 
favour of brain level differences in the IPS between DD and control children. 
The failure to observe group differences at the whole brain level may be 
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because the magnitude comparison task used stimuli comprised of set of 
different objects (e.g. nuts vs strawberries) and there was no assessment of the 
effect of numerical distance on brain activation.  Therefore it may be that the 
task was simply too coarse to elucidate subtle group differences. 

A recent ERP study sought to investigate the neural correlates of the 
distance effect in DD children using symbolic number comparison (Soltesz, 
Szucs, Dekany, Markus, & Csepe, 2007). This study observed no significant 
differences in the distance effect at an early time window, but at a later time 
window, the control group showed a non-significant distance over right 
parietal areas, while the DD group showed no such signs. Although non-
significant, these qualitative differences suggest the possibility of a right 
parietal dysfunction in DD. The only concrete support for the role of 
developmental abnormalities of the right IPS in DD comes from a recent VBM 
study, which revealed reduced grey matter volume in the right IPS in DD 
children relative to controls (Rotzer et al., 2007).

Thus, neuroimaging studies investigating numerical processing in pure 
DD have thus far hinted at potential defects in the right IPS during number 
comparison, but have yet to provide robust evidence of such an impairment. 

Transcranial Magnetic Stimulation (TMS) studies have shown that 
temporary lesions of the right IPS disrupts automatic processing of numerical 
magnitude during a numerical stroop task (Cohen Kadosh, Cohen Kadosh, 
Schuhmann et al., 2007), mirroring a result shown in behavioural studies of 
adult dyscalculics (Rubinsten & Henik, 2005). Furthermore, TMS of the left IPS 
has been shown to slow both symbolic and nonsymbolic numerical comparison 
(Cappelletti, Barth, Fregni, Spelke, & Pascual-Leone, 2007; Dormal, Andres, & 
Pesenti, 2008). These findings support the crucial role of the IPS in numerical 
representation, but again show that the issue of hemispheric lateralisation 
requires further focused research in order to be understood. 

Neuroimaging of basic number processing in atypically developing 
populations has so far provided variable results. Different experimental designs 
and populations with highly variable cognitive profiles outside the number 
domain have made it difficult to apply a uniform interpretation of the findings. 
However some consistent findings have emerged, in that almost all of these 
populations, when the task is well controlled, show some abnormal functional 
or structural modulation of parietal region, making a developmental 
impairment of this region a strong candidate for a core deficit in DD. The 
current thesis is the first work to address this open question by comparing the 
neural distance effect during symbolic and nonsymbolic comparison between 
children with pure DD and typically developing controls. In this way the 
integrity of the underlying representation of numerical magnitude can be 
probed at both the brain and behavioural levels. 



7  COMORBIDITY – MATHEMATICS AND READING 

A notable characteristic of developmental dyscalculia is the high rate of 
comorbidity with dyslexia. Recent estimates suggest between 50% and 75% of 
children with mathematical difficulties also have reading difficulties (Barbaresi, 
Katusic, Colligan, Weaver, & Jacobsen, 2005). The question of comorbidity is 
important as comorbid and pure DD may represent two subtypes of 
arithmetical learning disorder, with inherently different causes, behavioural 
outcomes, and developmental trajectories, and thus may require very different 
methods of intervention (Fletcher, 2005), and yet the cognitive sources of this 
comorbidity are not understood.

It is possible that comorbidity between the two disorders results from a 
mutual dependence on language mechanisms shared between reading and 
certain aspects of mathematics (Geary & Hoard, 2001). The current best 
understanding of the root cause of dyslexia is a disruption of phonological 
processing skills that support language acquisition (Lyytinen, Erskine, Aro et 
al., 2006). A disruption in phonological skills may lead to deficits in processes 
such as counting which are required in order to learn arithmetic facts (Geary & 
Hoard, 2001). In other words, the reading deficit in dyslexia and comorbid 
dyslexia and dyscalculia may be the same, while the arithmetical deficits in 
pure dyscalculia and comorbid dyscalculia and dyslexia are inherently different 
since one stems from difficulties with the verbal elements of arithmetic, while 
the other stems from difficulties in representing numerical quantity information 
(Fletcher, 2005).

However, this line of argument would suggest that all dyslexic children 
should show deficient arithmetic retrieval, but this is not the case and so it is 
unlikely that impaired phonological awareness alone accounts for the high rate 
of comorbidity between dyscalculia and dyslexia. 

Another possibility is that the arithmetic deficits in the comorbid group 
stem from a cognitive deficit prevalent in dyslexia, but separate from 
phonological processing; a deficit of retrieving semantic information through 
symbolic visual stimuli, typically measured by tasks such as rapid naming 
(Lyytinen, Erskine, Tolvanen et al., 2006). Some authors have suggested that 



53

such a retrieval deficit represents a core deficit in dyslexia which is separate to 
core deficit in phonological awareness (e.g. Manis, Seidenberg, & Doi, 1999; 
Wolf & Bowers, 1999). Dyslexic children frequently show deficits in rapid 
naming (e.g. Willburger, Fussenegger, Moll, Wood, & Landerl, 2008) and data 
from a major longitudinal study of dyslexia (the Jyväskylä Longitudinal Study) 
has shown that at many children at risk for dyslexia show retrieval deficits, 
indexed by tasks such as rapid naming (Lyytinen, Erskine, Tolvanen et al., 
2006).

Rapid naming (or semantic retrieval) has been suggested to require visual 
discrimination and feature detection, integration of visual features with stored 
orthographic representations, access and retrieval of phonological labels and 
activation and integration of semantic and conceptual information (Wolf & 
Bowers, 1999). Thus, it is possible that an impairment of rapid naming could 
negatively affect arithmetic performance, particularly in the domain of fluent 
arithmetic fact retrieval, but also in comparing the relative magnitude of 
visually presented numbers through an impaired access to the underlying 
semantic information. 

This ‘retrieval deficit’ may be analogous to the ‘access deficit’ suggested 
by some to underlie arithmetic deficits in both pure and comorbid dyscalculia 
(Rousselle & Nöel, 2007). The access deficit hypothesis suggests that DD 
children have an impaired ability to access numerical magnitude 
representations through the use of symbolic stimuli, but that the 
representations themselves are intact. In combination with the retrieval 
hypothesis, such a deficit would potentially explain the high rate of 
comorbidity. However, before focusing on an independent core deficit in 
comorbid children, it is necessary to first investigate whether the arithmetic 
deficits in comorbid children stem from the same core deficit as those in 
dyscalculic children, i.e. a core deficit in the representation and processing of 
numerical magnitude. 

The typical research approach to this issue has thus far been to contrast 
children with isolated deficits in arithmetic (AD) to those with comorbid 
arithmetic and reading disorders (AD/RD) on a range of tasks in order to 
ascertain whether the groups can be divided on the basis of performance on 
arithmetical tasks that rely on language skills and those that do not. 

Geary et al (2000) used such a comparison in a longitudinal study across 
1st and 2nd grades that compared children with AD only, RD only, AD/RD and 
typically developing (TD) controls. The two AD groups performed worse than 
RD and TD groups in tests of counting knowledge and addition, and 
furthermore the AD/RD group performed worse than the AD only group on 
addition. No group differences were observed for number comprehension and 
the mazes spatial task. In addition, RD and AD/RD groups performed worse 
than the other groups on articulation speed of familiar words. The results of 
this study suggest that arithmetic deficits in the AD/RD group are not caused 
by the phonological processing deficits which underlie dyslexia but instead 
occur independently. The two groups with arithmetic difficulties showed 
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generally similar performance on numerical tasks. However, this study used a 
cut off criteria of the lowest 35th percentile for selecting children with arithmetic 
difficulties, and thus it is difficult to speculate as to the source of the arithmetic 
impairments in either group, let alone whether or not those sources were 
shared.

A longitudinal study by Jordan et al (2003), that also used an arithmetic 
difficulties group selection criteria of the 35th percentile, compared AD children 
with AD/RD children across 2nd and 3rd grade and found that AD only children 
were superior in tests of problem solving, such as arithmetic story problems 
and arithmetic principles. The two groups performed equally poorly in tests of 
basic calculation, such as timed fact retrieval and estimation. At the end of third 
grade, both group relied heavily on finger counting to solve arithmetic 
problems, however, the AD only group did so more accurately, suggesting the 
use of more mature counting procedures. These results may suggest that, while 
both groups share some basic impairment in numerical processing, the AD only 
group are able to employ linguistic skills to compensate to some extent during 
verbally based tasks, while the comorbid group are not. However, this study 
included no tasks of nonsymbolic numerical processing and thus it is 
impossible to say whether or not the atypically developing participants had any 
cognitive deficits beyond the processing of symbolic Arabic digits. 

Children with comorbid AD/RD typically show poorer performance on 
arithmetic tests than children with isolated AD or RD. One explanation for this 
is that children with isolated AD can use their intact linguistic skills to 
compensate their impaired numerical representations, while children with 
AD/RD cannot (Jordan, 2007).

In support of this theory Jordan et al (2002) showed that AD only children 
improve in mathematical skill more quickly than AD/RD children, while in 
reading skill, the growth rate of RD only and AD/RD children are equivalent. 
Furthermore, AD/RD children have been found to be significantly more 
impaired on tests of arithmetic than children with dyscalculia alone, and that 
the observed differences were related to performance level rather than category, 
and thus there were no qualitative differences between AD only  and AD/RD 
(Shalev, Manor, & Gross-Tsur, 1997). However, this study also used the liberal 
selection criteria of 35th percentile and did not test basic numerical processing 
skills with nonsymbolic stimuli. Thus, although it is entirely feasible that the 
AD only group were able to compensate their impaired arithmetic with 
language skills more so than the comorbid group, the root causes of the 
arithmetic disorders in each group are not elucidated by this study. 

Rourke (1993) has suggested that different patterns of impairment 
between AD and AD/RD children reflect different hemispheric lateralisation of 
developmental impairments of brain function (see Cerebral Asymmetry 
Hypothesis above). Thus, a combined deficit of reading and arithmetic would 
reflect shared developmental impairments resulting from atypical development 
of left hemisphere language systems, while pure dyscalculia would reflect 
abnormalities in the development of right hemisphere visuo-spatial 
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mechanisms. However, behavioural and neuroimaging research has not 
supported such a dichotomous hemispheric asymmetry in the processing of 
arithmetic and numerical stimuli, and this hypothesis does not explain why 
only some children with developmental reading disorders show comorbid 
arithmetic deficits.

Landerl et al (2004) conducted the first in depth study of basic numerical 
abilities in both dyscalculic and comorbid children using a stricter criterion for 
selecting children with dyscalculia rather than arithmetic difficulties (3 
standard deviations below the mean on standardised tests of arithmetic). This 
study found that DD and DD/RD groups did not differ on a series of basic 
number processing tasks, including number naming, number reading and 
writing, number comparison, counting and dot enumeration. Both of the DD 
groups performed worse than non-DD groups on these tasks, but there were no 
group differences on a range of general cognitive measures.

These results suggest that arithmetic impairments in DD/RD and pure 
DD are both underscored by more basic impairments in numerical processing. 
However, this study did not investigate the numerical distance effect using 
nonsymbolic numerical comparison, and thus it is difficult to conclude whether 
the basic numerical processing impairments were driven by an impaired 
representation of numerical magnitude in both groups, as the majority of tasks 
required some form of Arabic digit processing. Therefore the CM group could 
have an intact representation of numerical magnitude but a deficit in accessing 
that representation through visual symbols, while the DD group could simply 
have an underdeveloped representation, and yet performance on the range of 
tasks used in this study could be similar for both groups.

The first study to investigate basic numerical processing skills using both 
symbolic and nonsymbolic stimuli with strictly defined dyscalculic and 
comorbid children was conducted by Rousselle & Nöel (2007), and gave rise to 
the ‘access deficit’ hypothesis. One of the main findings of this study was that 
children with dyscalculia performed worse than typically developing controls 
on symbolic numerical tasks but not nonsymbolic tasks, leading the authors to 
suggest that DD is caused by a deficit in accessing numerical semantic 
information through the use of Arabic digits (visual symbols). This study 
collapsed pure dyscalculic and comorbid children into one group on the basis 
that they did not differ on overall performance on any of the tasks. However, 
the groups were not compared in terms of their symbolic and nonsymbolic 
distance effects before being collapsed, and as the distance effect is a reliable 
and robust measure of the integrity of numerical magnitude representation, this 
leaves open the possibility that the groups may in fact have differed in terms of 
their core deficits.

The above studies, although largely revealing similar performance on 
range of basic numerical tasks between comorbid children and DD children, 
have typically employed liberal selection threshold for atypical groups, or have 
not investigated nonsymbolic numerical processing in addition to symbolic 
processing and arithmetic. Furthermore, no study to date has compared CM 
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and DD children on numerical comparison using both symbolic and 
nonsymbolic stimuli and employing a comparison of the effects of distance. 
This leaves open the possibility that although CM and DD children show 
similar behavioural profiles on relatively basic numerical tasks, those 
similarities are driven by factors other than an impaired representation of 
numerical magnitude which may be revealed using more subtle within task 
manipulations. The distance effect during numerical comparison (as discussed 
above) represents an ideal paradigm for investigating the integrity of numerical 
magnitude representations. 

Thus, in order to begin to understand the sources of comorbidity between 
dyscalculia and dyslexia, this thesis investigates whether arithmetic deficits in 
comorbid and dyscalculic children are underscored by a shared impairment of 
the representation of numerical magnitude, by examining the distance effect in 
dyscalculic, dyslexic, and comorbid children during both symbolic and 
nonsymbolic numerical comparison. This is the first work to compare both 
symbolic and nonsymbolic distance effects between children with pure DD and 
comorbid DL and DD. 



8  SUMMARY 

The evidence reviewed above suggests that, although DD is typical recognised 
by impairments in school level arithmetic abilities such as arithmetic fact 
retrieval, conceptual, and procedural arithmetic knowledge, these impairments 
may be caused by underlying impairments in the representation and processing 
of numerical magnitude. A growing body of evidence shows that DD children 
have difficulties comparing the relative numerosity of two numbers, and that 
this impairment may be related to developmental abnormalities in the 
intraparietal sulcus. Patterns of behaviour and brain activity in typically 
developing adults and children suggest that the numerical comparison task, 
and in particular the effect of manipulating the distance between the two 
numbers being compared, provides a key insight into the integrity of brain level 
representations of numerical magnitude. Thus, given the current state of 
knowledge of the field, the most plausible candidate for a core deficit in DD is 
an impairment of the representation of numerical magnitude housed within 
bilateral regions of the intraparietal sulcus. The present work will investigate 
this hypothesis using symbolic and nonsymbolic numerical comparison tasks. 

Furthermore, a high rate of comorbidity exists between dyscalculia and 
dyslexia. Behavioural evidence regarding the source of arithmetic impairments 
is thus far inconclusive as to whether arithmetic deficits in comorbid children 
are caused by an impaired representation of numerical magnitude, or a deficit 
in accessing that representation through the use of visual symbols (Arabic 
digits). Thus, this thesis addresses one side of the debate by investigating 
whether the quality of numerical representations among comorbid children is 
more closely aligned with the representations of numerical magnitude 
measured in dyscalculic children or dyslexic and typically developing children. 



9  AIMS AND STRUCTURE 

9.1  Aims 

Aim 1:  To investigate the integrity of numerical magnitude representation in 
children with developmental dyscalculia 

Aim 2:  To investigate the integrity of numerical magnitude representation in 
children with comorbid dyscalculia and dyslexia. 

9.2  Structure 

In order to address the above aims, the following structure will be adopted in 
this thesis: Behavioural results comparing performance on numerical 
comparison tasks between dyscalculic (DD), dyslexic (DL), comorbid (CM) and 
typically developing (TD) groups will be presented first for nonsymbolic 
stimuli and then for symbolic stimuli. Within each section main effects of group 
on reaction time and accuracy will be addressed first, followed by the effects of 
numerical distance on comparison performance. 

Following the behavioural results, the fMRI results will be presented, first 
for nonsymbolic stimuli, secondly for symbolic stimuli. Within these sections, 
activation profiles for numerical comparison versus rest will be presented first, 
followed by an examination of the regions that are modulated by the distance 
between the number pairs presented.  



10  GENERAL METHODS 

10.1  Participant Recruitment 

10.1.1 Recruitment Procedure 

45 children were recruited as participants through either a database of families 
participating in the ‘Jyväskylä Longitudinal Study’, direct recruitment from 
local schools in the Jyväskylä area, or through a screening process for a separate 
project within our lab ‘NeuroDys’. All children were invited to participate in 
initial behavioural screening sessions in order to assess mathematical ability, 
nonword reading ability and IQ. Results of the behavioural screening sessions 
were used to assign participants to experimental groups: dyscalculic (DD), 
dyslexic (DL), comorbid (CM) or typically developing (TD) children.  

10.1.2 Selection Criteria and Standardised Tests 

Mathematical ability was assessed using the RMAT test of arithmetic 
achievement (Räsänen, 2004). The RMAT is a standardized 10 minute test 
consisting of 56 arithmetic items. Items include single and multi-digit addition, 
subtraction, multiplication and division, decimal conversions, fraction 
calculations and simple algebra. The RMAT test was adapted from the WRAT 
test, and has been shown to have a high internal validity and external reliability 
(Räsänen, 2004). Developmental dyscalculia was defined on the basis of a 
standardized math scores at least 1.5 standard deviations below the control 
mean. As discussed above (see TABLE 1), a range of criteria have been used to 
operationalise dyscalculia, and the criterion used here is stricter than those the 
majority of behavioural studies carried out to date (for an exception see 
(Landerl et al., 2004).   Furthermore, in order to be classified in the DD group, 
participants had to be free from diagnosis of comorbid developmental disorders 
such as developmental dyslexia or ADHD. Dyslexia was operationally defined 
as a deficit in phonological decoding (Ramus, 2003; Vellutino, Fletcher, 
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Snowling, & Scanlon, 2004) and therefore a test of pseudoword reading 
(Kairaluoma, Aro, & Rasanen, 2005) was used to rule out children with 
comorbid developmental dyslexia. Two pseudoword lists contained 26 items 
each from 4 to 9 letters. The time to read the list from start to finish was 
recorded by the experimenter. The two lists were tested at intervals 1 hour 
apart, at the start and the end of the behavioural screening session. The mean 
reading speed of these two lists was contrasted to the results of a reference 
group of 64 children of same age. In the reference sample the correlation 
between the reading speed of the pseudoword list and a standardised test of 
reading (A standardised reading test for grade levels 1–6 (Häyrinen, Serenius-Sirve, 
& Korkman, 1999) was .832 (p < .001) (Kairaluoma et al., 2005).

For the purposes of this study, participants were classified as dyslexic if 
either their nonword reading speed or nonword reading error rate fell 1.5 
standard deviations below the control mean, while having a verbal IQ within 
the normal range (i.e. above 80). Comorbidity was defined as meeting the 
criteria for both dyscalculia and dyslexia while having IQ scores above 80. IQ 
scores were obtained for WISC-III Similarities and Block design subtests as 
measures of verbal and non-verbal IQ respectively (Wechsler, 1991). IQ scores 
were unavailable for one control participant, however standardised maths and 
reading scores for that participant were well above average. Table 2
summarises the classification criteria for each participant group. One subject 
(Control) was excluded from further analysis on the basis of extremely long RTs 
and poor accuracy (at least 4 standard deviations away from control mean in 
accuracy and speed in each condition), hence we were unable to be sure that the 
child had understood the purpose of the task. 

TABLE 2  Classification Criteria for Each Experimental Group (dyslexia classification was 
on the basis of nonword reading errors OR speed).

Screening Measure 
Arithmetic Nonword 

Reading 
Speed

Nonword
Reading 
Errors

WISC-
III
Block
Design

WISC-III
Similarities

Control > -1.5sd > -1.5sd > -1.5sd > 80 > 80 
Dyscalculic < -1.5sd > -1.5sd > -1.5sd > 80 > 80 
Dyslexic > -1.5sd < -1.5sd  < -1.5sd > 80 > 80 

Group

Comorbid < -1.5sd < -1.5sd < -1.5sd > 80 > 80 
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10.2  Data Collection 

10.2.1 Experimental Procedure 

Prior to experimental testing, participants took part in a practice scan session 
using a mock scanner. During the practice session children were familiarized 
with the tasks and with the procedural aspects of participating in an fMRI 
study. It was ensured that each subject understood the goal of the task, and had 
perfect accuracy during an untimed practice session using a subset of the trials 
presented during formal experimentation.

During the session data were collected for four different trial types, two 
numerical comparison tasks (symbolic and nonsymbolic) and two line 
comparison tasks (not reported here). Data were collected from 3 runs per 
condition, resulting in a total of 12 runs. For each run the stimulus presentation 
began with 9 seconds of fixation on a white dot in the centre of the screen. Four 
trial blocks of 15s each were then presented, separated by 18s fixation. Each 
block contained 6 trials of 2.5s each. Trial time was comprised by 1200ms 
stimulus presentation and 1300ms fixation, during which responses were still 
recorded although responses were typically made during the 1200ms stimulus 
presentation. After the final block of trials a block of rest was presented for 15 
seconds before the run terminated.  Thus, the total duration of each run was 2.5 
minutes. The task stimuli were created using Adobe PhotoShop software and 
presented using E-Prime 1.1 Software (Psychological Software Tools, 
Pittsburgh, PA). All stimuli were presented in white color on a black 
background measuring 600x800 pixels.  Stimuli were presented equidistant 
from a fixation dot that appeared between individual trials. There were 24 trials 
per run, and 3 runs per condition. Thus there were 144 trials in the experiment, 
72 trials for symbolic comparison and 72 for nonsymbolic comparison. Once 
split into small and large conditions there were 36 trials per condition. 

Participants were instructed to choose, as quickly and as accurately as 
possible, which of the two arrays of squares contained the greater number of 
squares in the Nonsymbolic condition, and which of the two Arabic digits 
represented the greater numerosity in the Symbolic condition. These 
instructions were repeated at the beginning of each run to ensure subjects 
focused on selecting the array with the greater numerosity, rather than any 
other variable.  Subjects were asked to make the appropriate responses as 
quickly and accurately as possible by depressing a response button that 
corresponded to the correct side of the screen. All responses were made with 
the right index and middle fingers. Index finger was pressed if the correct 
response was the left hand array, while the middle finger response was used if 
the correct response was the right hand array.
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10.2.2 Tasks 

10.2.2.1 Nonsymbolic Number Comparison 

Participants were instructed to choose, as quickly and as accurately as possible, 
which of two arrays of white squares contained the larger number of items. Set 
sizes of 1-9 items were presented simultaneously on either side of a centrally 
positioned fixation dot (FIGURE 1 gives an example of the experimental 
paradigm and stimulus pairs). Set pairs were divided into two conditions 
according to the numerical distance between the two digits being compared. 
Pairs with a distance of 1-3 were assigned to the ‘Small Distance’ condition, 
while pairs with a distance of 5-8 were assigned to the ‘Large Distance’ 
condition. To control for the possible confound of continuous variables, the 
density, individual square size, and total area of each array was systematically 
varied across trials. Specifically, in each run, 2 of each 6 pairings, the larger 
numerosity had a larger overall area than the smaller numerosity.  In another 2 
pairs, the smaller numerosity had a larger overall area.  In the final 2 pairings, 
the numerosities occupied equal amounts of the display.  Density was varied in 
each of these 3 subgroups of 2 stimuli.  One of the two stimuli in each group 
associated larger density with the larger numerosity and one of the stimuli 
associated smaller density with the larger numerosity.  Additionally, individual 
square sizes were varied over all stimuli in such a way that the individual 
squares within an array differed from one another.  These variations ensured 
that numerosity could not be reliably predicted from variables continuous with 
it.

FIGURE 1  Nonsymbolic Number Comparison Stimulus Timing and Paradigm Structure. 
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10.2.2.2 Symbolic Number Comparison 

Participants were instructed to choose, as quickly and as accurately as possible 
,which of two simultaneously presented Arabic Digits represented the larger 
numerosity. Digits 1-9 items were presented simultaneously on either side of a 
centrally positioned fixation dot (FIGURE 2 gives an example of the 
experimental paradigm and stimulus pairs). Digit pairs were divided into two 
conditions according to the numerical distance between the two digits being 
compared. Pairs with a numerical distance of 1-3 were assigned to the ‘Small 
Distance’ condition, while pairs with a numerical distance of 5-8 were assigned 
to the ‘Large Distance’ condition. The task stimuli were created using Adobe 
PhotoShop software and presented using E-Prime 1.1 Software (Psychological 
Software Tools, Pittsburgh, PA). All stimuli were presented in white color on a 
black background measuring 600x800 pixels.  Stimuli were presented 
equidistant from a fixation dot that appeared between individual trials. 

FIGURE 2  Symbolic Number Comparison Stimulus Timing and Paradigm Structure. 

10.2.3 fMRI Parameters 

The experiment was performed using Siemens Symphony 1.5 T MRI scanner. 
Before functional imaging, a T1-weighted high resolution 3D structural volume 
(3D-MPR, FOV = 256 × 256 × 176 mm3, sampling = 0.97 × 0.97 × 1 mm3) was 
acquired providing detailed anatomical information for defining the location of 
36 axial slices acquired during functional imaging. For each run a time-series of 
43 EPI volumes were acquired using BOLD sensitive interleaved gradient-echo 
sequence (sampling = 3× 3 × 4 mm3, no gap, TR = 3 s, TE = 44 ms, FA = 90 º). 
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10.2.4 Behavioural Data Analysis 

This study employed an experimental paradigm which was designed to ensure 
that all groups, typically and atypically developing, were able to perform the 
task with a high level of accuracy. This is an important dimension of task 
design particularly in the context of neuroimaging data, as in order to interpret 
activation patterns in terms of cognitive processes, the experimenter must be 
able to reasonably assume that all participants were performing the same task. 
If accuracy falls below a certain level it can no longer be assumed that the 
participant or groups were performing the task at hand. As a consequence of 
this design strategy, however, percent correct accuracy data tends to exhibit a 
negative skew and this was evident in the accuracy scores for all conditions and 
for all groups in the present study. In order to correct this skew a logarithmic 
transformation was applied to all accuracy data, however, this transformation 
did not correct the skew and therefore the transformed data was not used in the 
final analysis. Subsequently, an ARCSINE transformation was applied to the 
accuracy data, but again did not improve the skew, and thus the transformed 
data were not used in the final analysis. However, ANOVA is known to be 
robust statistical procedure and violations of parametric assumptions have little 
or no effect on the conclusions (Howell, 2001) and so nonparametric tests were 
not employed. 

10.2.5 fMRI Data Analysis 

Both structural and functional images were analyzed using Brain Voyager QX 
1.8.6 (Brain Innovation, Maastricht, Netherlands).  The functional images were 
corrected for head motion, linear trends in signal intensity, and low frequency 
non-linear trends in signal intensity using a high-pass filter set at 3 cycles per 
time course. Following initial automatic alignment of functional images to the 
high-resolution T1 structural images, the alignment was manually fine-tuned to 
ensure optimal spatial correspondence. The realigned functional data set was 
then transformed into Talairach space (Talairach & Tournoux, 1988). A two 
gamma hemodynamic response function was used to model the expected 
BOLD signal(Friston et al., 1998).   

A random effects, whole-brain, analysis was carried out to assess which 
brain regions were significantly activated by numerical comparison versus rest 
in the first instance, and by distance (small – large) in the second instance. The 
resulting statistical maps were subsequently corrected for multiple comparisons 
using cluster-size thresholding (Forman et al., 1995; Goebel, Esposito, & 
Formisano, 2006).

In this method, an initial voxel-level (uncorrected) threshold is set (In the 
present study p < .001, uncorrected). Then, thresholded maps are submitted to a 
whole-slab correction criterion based on the estimate of the map's spatial 
smoothness and on an iterative procedure (Monte Carlo simulation) for 
estimating cluster-level false-positive rates. After 1,000 iterations, the minimum 
cluster-size that yielded a cluster-level false-positive rate ( ) of .05 (5%) is used 
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to threshold the statistical maps.  Put another way, this method calculates the 
size that a cluster would need to be (the cluster threshold) to survive a 
correction for multiple comparisons at a given statistical level.  Only activations 
whose size meet or exceed the cluster threshold are allowed to remain in the 
statistical maps. 

The current set of analyses contained a combination of task versus rest 
within and between group, and within task within and between group 
contrasts. Thus, in order to address the progression from the most basic to 
higher level, multi-factorial analyses, and compensate the increasing risk of 
Type II errors with increasing analysis complexity, a different cluster corrected 
threshold was used for each level of analysis employed. For the first level of 
analysis, task versus rest across groups, a cluster level correction criteria of p < 
0.001 (p <0.001 uncorrected) was used. For the next level of analysis, task versus 
rest between groups and distance effect across groups a cluster level correction 
criteria of p < 0.001 (p < 0.005 uncorrected) was used, and finally the distance 
effect between groups analysis used a cluster corrected threshold of p < 0.01 (p 
< 0.005 uncorrected). 

Functional activations were z-scored by estimating baseline signal from 
the rest periods of each functional run. 



STUDY 1: BEHAVIOURAL ANALYSIS 

11  INTRODUCTION 

It is clear from the literature review above, that few studies have investigated 
the mental representation of numerical magnitude in dyscalculic populations 
that are both stringently defined and do not present with comorbid reading 
disorders. Although a growing body of behavioural research has begun to 
investigate impairments in basic numerical processing abilities which may 
underlie DD, such as estimating the approximate results of arithmetic equations, 
matching quantities to Arabic digits and naming digits and quantities from one 
to four (Jordan & Hanich, 2003; Jordan et al., 2003; van der Sluis et al., 2004), 
only a handful have investigated numerical comparison.  

Bruandet, Molko, Cohen, & Dehaene (2004) compared typically 
developing controls to individuals with Turner Syndrome on a range of basic 
numerical tasks and found that during numerical comparison of Arabic digits 
there were no significant performance differences between Turner Syndrome 
patients and controls. Furthermore the authors found no Group x Distance 
interaction, with both groups showing classical behavioural distance effects. 
However, while Turner Syndrome patients have been shown to have mild to 
severe arithmetic deficits, these are present in the context of widespread visual 
memory, visual-spatial and attentional deficits (Mazzocco, 1998; C. M. Temple 
& Marriot, 1998). Thus, while Turner Syndrome may include some of the 
impairments seen in dyscalculia, studies of Turner syndrome patients cannot 
reliable elucidate the underlying causes of pure DD. 

Landerl et al (2004) compared children with pure DD to typically 
developing children, those with dyslexia and comorbid dyscalculia and 
dyslexia. The authors found that during numerical comparison of Arabic digits, 
the dyscalculic and the double deficit groups were slower than the controls and 
dyslexics, but did not differ from each other. The control and dyslexic groups 
also did not differ from each other. This result suggests that the underlying 
deficit in the DD and double deficits groups is specific to numerical information 
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and is not related to reading deficits. However, this study failed to observe a 
significant distance effect for any of the groups, or any Group x Distance 
interaction.  

Although Landerl et al (2004) used strict selection criteria for defining the 
experimental groups, it is peculiar that a distance effect was not observed even 
for control children as the behavioural distance effect is a highly robust effect 
(Moyer & Landauer, 1967). The reasons for the lack of distance effect in this 
study are unclear, and the authors do not offer one, thus the findings of this 
study with regards to numerical comparison are in need of replication. 
Furthermore, this study did not include a nonsymbolic numerical comparison 
task, and thus the question remains whether the slower RTs in the dyscalculic 
and double deficit groups reflect an impairment dealing with Arabic digits or 
whether underlying numerical representations are impaired in one or other of 
those groups. 

So far only one study appears to have investigated numerical comparison 
in DD using nonsymbolic stimuli. Rousselle & Nöel (2007) found that children 
with DD were slower and less accurate than controls in comparison of Arabic 
digits but not in comparison of collections of lines. This study also found that 
DD children showed a weaker distance effect than controls in symbolic 
comparison, but the distance comparison for nonsymbolic stimuli was not 
reported. Despite the interesting findings of this study there is a serious 
problem in interpreting the results with regards to pure DD. The “maths 
disabled” group was made up of children with pure DD and those with 
comorbid mathematical and reading disorders. The authors report that the 
groups were collapsed on the basis that they showed no differences in overall 
reaction time or accuracy for any of the experimental measures. However, it is 
still highly possible that group differences existed in the distance effects 
between groups as this effect in particular is thought to reflect access to 
numerical semantic information. Thus it is possible that the merging of the two 
maths disabled groups may have masked more subtle group differences in the 
representation and processing of numerical magnitude that would have been 
revealed by a contrast of distance effects. 

Furthermore, Rousselle & Nöel included in their selection measures a 
subtest of Arabic number comparison. Thus, the comparison between symbolic 
and nonsymbolic number comparison is undermined because poor 
performance on symbolic comparison has already contributed to the initial 
group classifications. 

Both Landerl et al (2004) and Rousselle & Nöel (2007) observed no 
differences in numerical comparison performance or in the numerical distance 
effect between DD and CM children. Landerl et al suggest that this reflects a 
shared deficit in the representation and processing of “specifically numerical 
information”. While it is true that the two groups did not differ on a range on 
basic numerical tasks including number reading and writing and dot counting, 
these tasks all required either the use of Arabic digits or serial counting, and 
thus impaired performance on these tasks could reflect both a deficit in the 
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representation of numerical magnitude or a deficit in accessing that 
representation through the use of visual symbols. It may be that had this study 
included a test of nonsymbolic numerical comparison different profiles may 
have emerged for the DD and CM groups. 

Rousselle & Nöel (2007) on the other hand, tested both symbolic and 
nonsymbolic comparison, and found that the DD and CM groups when 
collapsed together performed worse than controls on symbolic comparison but 
not nonsymbolic comparison. The authors suggest that this reflects a deficit in 
the accessing numerical magnitude representations through the use of Arabic 
digits, while the underlying representations themselves remain intact.  

However, these groups were selected on the basis of a composite score 
which included a test of symbolic comparison but not nonsymbolic comparison, 
thus inflating the chances of finding a group difference on this measure. 
Furthermore, the DD and CM groups were not compared directly with regards 
to the effects of distance on their numerical comparison performance, and thus 
it is possible that group differences in the distance effect in either symbolic or 
nonsymbolic comparison may have been present between the groups, but were 
masked by collapsing them into one. Thus it is possible that a deficit in the 
underlying representation of numerical magnitude was present in one or both 
of these groups, but was not revealed for the reasons above. 

The Comorbid group may represent a subset of dyslexics who have a 
specific deficit in retrieval of semantic information from visual symbols, in 
addition to a phonological awareness core deficit, which impacts negatively on 
arithmetic performance. Many dyslexic children show a retrieval deficit 
measured by tasks such as rapid naming (Lyytinen, Erskine, Tolvanen et al., 
2006) which has been suggested to represent a second core deficit in dyslexia 
(Wolf & Bowers, 1999). 

Symbolic number comparison requires rapid recognition of Arabic digits, 
as well as access and integration of the semantic information underlying the 
symbols, and therefore, if the comorbid group’s arithmetic deficits stem from 
retrieval or ‘access’ impairments, and not an impaired representation of 
numerical magnitude, then they could be expected to show impairments of 
symbolic number comparison but not nonsymbolic number comparison. An 
access deficit would also be expected to result in a stronger distance effect, as 
the access to and integration of semantic information underlying numerical 
symbols would become more difficult as that semantic information becomes 
more overlapping. 

By contrasting symbolic and nonsymbolic numerical comparison 
performance and the in particular the effect of numerical distance between 
groups it is possible to probe at least one of the potential sources of comorbidity 
between dyslexia and dyscalculia, that is, the impairment of numerical 
magnitude representation. If the arithmetic impairments of the comorbid 
children stem from the same presumed impairment of numerical magnitude 
representation as those in the DD children, then both groups would be expected 
to show atypical effects of distance on numerical comparison in both the 
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symbolic and nonsymbolic condition. If, however, this is not shown to be the 
case, then it paves the way for future research to focus on other potential 
sources of the comorbidity, such as a specific deficit in naming fluency. 

In order to address the above concerns, this thesis compares dyscalculic 
(DD), dyslexic (DL), comorbid (CM) and typically developing (TD) children on 
both symbolic and nonsymbolic numerical comparison tasks. Furthermore an 
explicit comparison of the effects of distance on both reaction time and accuracy 
in both conditions is included so that the representation and processing of 
numerical magnitude both through the use of numerical symbols and directly 
may be compared between groups. 



12  PARTICIPANTS  

45 Children who completed the initial screening session were assigned to one of 
4 groups based on their results (see General Methods section for selection 
criteria). A one-way Analysis Of Variance (ANOVA) revealed no main effect of 
Group on Age (years) F(1,3) = 1.44, p > 0.05, WISC-III Block Design scores F(1,3) 
= 1.92, p > 0.05,  or WISC-III Similarities subtest scores F(1,3) = 0.34, p > 0.05. A 
one-way ANOVA revealed a significant main effect of Group on Nonword 
reading time (seconds) F(1,3) =15.8, p < 0.001. Post-hoc analyses using Tukey’s 
criterion for post-hoc significance indicate that reading times were slower in the 
dyslexic and comorbid groups than the control and dyscalculic groups (p < 
0.05), no other group differences were significant. A one-way ANOVA revealed 
a significant main effect of Group on Nonword reading error percentage F(1,3) 
=3.46, p < 0.05. Post-hoc analyses using Tukey’s criterion for post-hoc 
significance indicate that the dyslexic group made more errors than the control 
group (p < 0.05), no other group differences were significant. A one-way 
ANOVA revealed a significant main effect of Group on Arithmetic F(1,3) 
=28.83, p < 0.001. Post-hoc analyses using Tukey’s criterion for post-hoc 
significance indicate that arithmetic performance was lower (p < 0.05) in the 
dyscalculic and comorbid groups than the control and dyslexic groups, no other 
group differences were significant. These results support the validity of the 
screening measures, and confirm that the participant groups differ only along 
the dimensions on which they were intended to. Table 3 summaries the group 
profiles on the screening measures. 
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TABLE 3  Group Results for Behavioural Screening Measures. 

Group

 Control n(13) Dyscalculic n(9) Dyslexic n(11) Comorbid n(12) 

Mean Std. 
Error

Mean Std. 
Error

Mean Std. 
Error

Mean Std. 
Error

Age (yrs) 11.74 0.43 11.46 0.52 10.99 0.35 10.64 0.4 

Arithmetic
Standard Score 

9.54 0.83 3 0.58 9 0.54 3.58 0.45 

Non-word
Reading Time 

(secs)

28.38 3.34 28.94 2.59 53.73 3.83 70.75 8.18 

Non-word
Reading Error 

Percentage 

1.48 0.49 3.21 1.2 9.1 2.63 8.17 2.77 

WISC-III
Block Design 

103.64 1.92 91.11 5.88 94.55 5.93 103.0 2.71 

WISC-III
Similarities

105.45 3.78 105.0 4.64 100.45 2.56 102.5 5.28 



13  NONSYMBOLIC NUMBER COMPARISON 

13.1  Hypotheses 

H1. If dyscalculia stems from an impaired or underdeveloped mental 
representation of numerical magnitude, the DD group is expected to show 
poorer performance on nonsymbolic number comparison than the TD and DL 
groups.

H2. If the arithmetic impairments in the comorbid group stem from the same 
impaired or underdeveloped representation of numerical magnitude as those in 
DD, then the CM group is expected to show poorer performance than the 
control and DL groups on nonsymbolic number comparison but equivalent 
performance to the DD group.

H3. As children show a stronger distance effect than adults, a stronger distance 
effect is assumed to represent a less well developed representation of numerical 
magnitude. If the mental representation of numerical magnitude is impaired or 
underdeveloped in the DD, then the DD group is expected to show a stronger 
distance effect than the TD and DL groups.

H4. If the arithmetic impairments in the comorbid group stem from the same 
impaired or underdeveloped representation of numerical magnitude as those in 
DD, then the CM group is expected to a stronger distance effect than the TD 
and DL groups but not than the DD group. 
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13.2  Results 

13.2.1 Overall Comparison 

13.2.1.1 Reaction Time 

Mean reaction times (see TABLE 4) for correct responses were analysed in a 
one-way ANOVA with Group as the between subjects factor. Responses were 
classified as incorrect if the participant selected the smaller of the two 
numerosities, or if the participant did not respond within the 1.3s post stimulus 
period. This analysis revealed no main effect of group, [F(1,3) = 1.25, p > 0.05]. 

13.2.1.2 Accuracy 

Accuracy was calculated as the percentage of trials in which a correct response 
was given (see TABLE 4). A one-way ANOVA with Group as the between 
subjects factor revealed no main effect of group on comparison accuracy [F(1,3) 
= 1.11, p > 0.05].

TABLE 4  Mean reaction times and percentage correct accuracy for nonsymbolic 
comparison. 

Typically
Developing Dyscalculic Dyslexic Comorbid 

Mean Standard 
Error Mean Standard 

Error Mean Standard 
Error Mean Standard 

Error
Reaction 

Time 673.87 23.24 675.19 34.27 705.02 22.09 731.34 21.82 
Percentage 

Correct 93.27 0.89 88.89 1.46 89.77 3.15 91.55 1.2 

13.2.2 Nonsymbolic Distance Effect 

13.2.2.1 Reaction Time 

In order to assess the effect of numerical distance on reaction time between 
groups, mean RTs were analyzed by means of  a 2 x 4 mixed design analysis of 
variance (ANOVA), with Distance (small vs. large) as a within subjects factor 
and Group (Control vs. Dyscalculic vs. Dyslexic vs. Comorbid ) as a between 
subjects factor. This analysis revealed a main effect of distance on reaction time 
[F(1,41) = 284.04, p < 0.001], with longer response times for small distance trials 
than large distance trials. The main effect of group was not significant [F(1, 3) = 
1.25, p > 0.05]. No distance by group interaction was found [F(3,41) = 0.34, p > 
0.05]. FIGURE 3 summarises reaction times for each group for small and large 
numerical distances, and shows that each group showed a classical distance 
effect.
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FIGURE 3  Reaction times for small and large distance nonsymbolic number comparison.

13.2.2.2 Accuracy 

In order to assess the effect of numerical distance on comparison accuracy, 
‘Percentage Correct’ accuracy data were analyzed by means of  a 2 x 4 mixed 
design analysis of variance (ANOVA), with Distance (small vs. large) as a 
within subjects factor and Group (Control vs. Dyscalculic vs. Dyslexic vs. 
Comorbid ) as a between subjects factor. This analysis revealed a main effect of 
distance on accuracy [F(1,41) = 171.49, p < 0.001], with greater accuracy for large 
distance trials than small distance trials. There was no significant main effect of 
group [F(1,3) = 1.11, p > 0.05]. This analysis revealed no significant distance by 
group interaction [F(1,3) = 1.39, p > 0.05]. Figure 4 summarizes accuracy data 
for small and large distance comparisons in terms of percent correct. It can be 
seen that all groups show a classical distance effect with decreased accuracy for 
smaller numerical distances.
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FIGURE 4  Percent correct data for small and large distance nonsymbolic number 
comparison.

Despite the lack of a significant Group x Distance interaction the dyscalculic 
group appeared on visual inspection of the data to show a stronger distance 
effect than the other three groups. Thus, on the basis of apriori hypotheses, a 
series of 2 x 2 mixed design ANOVAs were carried out, comparing at first each 
atypically developing group to the control group, then each atypically 
developing group with each other. The results of these analyses are 
summarised in TABLE 5. 

It can be seen from TABLE 5 that for nonsymbolic number comparison, 
the Group x Distance interaction was marginally significant for controls versus 
dyscalculics while no other interactions approached significance. Independent 
samples t-tests showed that the DD group did not differ from controls in the 
large distance condition [t(9.94) = 1.77, p > 0.05], however the DD group were 
significantly less accurate in the small distance condition [t(20) = 2.5, p < 0.05].
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TABLE 5  2 x 2 ANOVAs comparing nonsymbolic distance effects between each group. 

 Main Effect of Distance Group x Distance 
Interaction

Group
Contrast 

F-Value Significance Level F-Value Significance 
Level

Control–
Dyscalculic

132.03 < 0.001 3.96 0.06 

Control– 
Dyslexic

93.34 < 0.001 0.02 N.S. 

Control– 
Comorbid

77.21 < 0.001 0.001 N.S. 

Dyscalculic–
Dyslexic

96.46 < 0.001 3.33 N.S 

Dyscalculic–
Comorbid

78.73 < 0.001 2.27 N.S. 

Dyslexic– 
Comorbid

58.67 < 0.001 0.02 N.S. 

13.3  Discussion 

The first set of analyses of this section investigated general speed and accuracy 
differences between groups during nonsymbolic number comparison. The 
results above show that all groups performed with equal speed and accuracy 
when the small and large distance conditions were collapsed. Thus hypotheses 
1 and 2 were not supported. 

This finding supports the results of Rousselle & Nöel (2007) who found no 
difference in the speed and accuracy of nonsymbolic numerical comparison 
between DD and control children. The authors suggest that this reflects a fully 
intact mental representation of numerical magnitude in DD children, however, 
it is highly possible that the representation as a whole is intact at the most basic 
level, but not sufficiently strong to support more taxing numerical processing. 
In other words, the numerical magnitude representation in DD children may be 
sufficient to compare numbers separated by relatively large numerical 
distances, but is not able to perform as well with numbers separated by 
relatively small distances. Thus one could say the representation is not absent, it 
is simply underdeveloped and a more sophisticated within task manipulation is 
required to probe that impairment. 

Therefore the second set of analyses in this section compared the 
numerical distance effect between groups and found no Group x Distance 
interactions for either speed or accuracy. However, when each group was 
compared to each other in a series of 2 x 2 ANOVAs a marginally significant 
Group x Distance interaction for accuracy was revealed when comparing the 
DD and TD groups. Further analysis revealed that while the groups did not 
differ in accuracy on the large distance condition the DD group was 
significantly less accurate in the small distance condition. Thus the predictions 
of hypothesis 3 were met. Although there was no significant Group X Distance 
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interaction for reaction time, all groups showed a classical distance effect for 
reaction time, suggesting there was not a speed accuracy trade off. 

These results suggest that the level of numerical representation in DD 
children is sufficient to perform the simplest of numerical comparisons in 
which a large numerical distance separates the two numbers. However, once 
the task places increasing demands on that representation it fails to support the 
same level of accurate performance as typically developing children. Thus, 
these results tentatively support the hypothesis that DD children have an 
impairment of the mental representation of numerical magnitude, and that it is 
revealed by a stronger distance effect than typically developing children. It 
should be noted, however, that this interpretation is based on a post-hoc 
interaction that was only marginally significant, and that the initial Group X 
Distance interaction was non-significant. However, the post-hoc test was 
justified on the basis of the apriori hypotheses, but nonetheless the result 
requires replication. 

The comorbid and dyslexic groups showed no differences in the 
nonsymbolic distance effect to the typically developing group. This suggests 
that in these two groups the mental representation of numerical magnitude is 
equally as developed and supportive to numerical processing as that in 
typically developing children. Furthermore, this suggests that the arithmetic 
deficits observed in the CM group stem from a different source to those 
observed in pure DD and thus hypothesis 4 could not be accepted. 

Rousselle & Nöel (2007) showed that when DD and CM children are 
collapsed into one group, they do not perform worse than control children on 
nonsymbolic number comparison. The authors suggest therefore, that the 
arithmetic impairments in both groups stem from a deficit in accessing 
underlying numerical representations through Arabic digits. However, the 
current results suggest that this may be the case only for the CM group, and 
that the failure of Rousselle and Nöel to elucidate these subtle group differences 
was due to the fact that they collapsed the groups and did not test for 
differences between CM and DD children in the effects of distance during 
nonsymbolic numerical comparison. 

Thus, the results of the nonsymbolic comparison task suggest that pure 
dyscalculia is underscored by an underdeveloped representation of numerical 
magnitude. Children with comorbid dyslexia and dyscalculia, on the other 
hand do not show the same representational impairment. This suggests that the 
mental representation of numerical magnitude in the CM group is intact, and 
thus, the source of arithmetic impairments in comorbid children remains an 
open question. By comparing the numerical distance effect during symbolic 
number comparison, it is possible to investigate whether the comorbid group 
differ from the dyslexic and typically developing groups in their ability to 
access the mental representation of numerical magnitude through the use of 
Arabic digits, as the results of Rousselle and Nöel (2007) would suggest. 



14  SYMBOLIC NUMBER COMPARISON 

14.1  Hypotheses 

H1. If dyscalculia stems from an impaired or underdeveloped mental 
representation of numerical magnitude, the DD group is expected to show 
poorer performance on symbolic number comparison than the control and 
dyslexic groups. 

H2. If the arithmetic impairments in the CM group are a result of a deficit in 
accessing the mental representation of numerical magnitude through the use of 
Arabic digits, independent of their comorbid dyslexia, then the CM group is 
expected to show impaired performance in symbolic number comparison 
relative to the TD and DL groups. 

H3. As children show a stronger distance effect than adults, a stronger distance 
effect is assumed to represent a less well developed representation of numerical 
magnitude. If the mental representation of numerical magnitude is impaired or 
underdeveloped in DD, then the DD group is expected to show a stronger 
distance effect than the control and dyslexic groups.  

H4. If the arithmetic impairments in the CM group are a result of a deficit in 
accessing the mental representation of numerical magnitude through the use of 
Arabic digits, independent of their comorbid dyslexia, then the CM group is 
expected to show a stronger distance effect than TD and DL groups, but not 
than the DD group. 
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14.2  Results 

14.2.1 Overall Comparison 

14.2.1.1 Reaction Time 

Mean reaction times for correct responses (see TABLE 6) were analysed in a 
one-way ANOVA with Group as the between subjects factor. Responses were 
classified as incorrect if the participant selected the smaller of the two 
numerosities, or if the participant did not respond within the 1.3s post stimulus 
period. This analysis revealed a marginally significant effect of group, [F(1,3) = 
2.78, p = 0.053].

14.2.1.2 Accuracy 

Accuracy was calculated as the percentage of trials in which a correct response 
was given (see TABLE 6). A one-way ANOVA with Group as the between 
subjects factor revealed no main effect of group on comparison accuracy [F(1,3) 
= 1.91, p > 0.05].

TABLE 6  Mean reaction times and percentage correct accuracy for symbolic comparison. 

Typically
Developing Dyscalculic Dyslexic Comorbid 

 Mean Standard 
Error Mean Standard 

Error Mean Standard 
Error Mean Standard 

Error
Reaction Time 632.62 24.94 688.93 32.61 717.13 28.35 736.04 29.15 

Percentage 
Correct 94.87 0.48 91.67 1.65 90.15 2.58 90.63 1.34 

14.2.2 Symbolic Distance Effect 

14.2.2.1 Reaction Time 

In order to assess the effect of numerical distance on reaction time between 
groups, median RTs were analyzed by means of  a 2 x 4 mixed design analysis 
of variance (ANOVA), with Distance (small vs. large) as a within subjects factor 
and Group (Control vs. Dyscalculic vs. Dyslexic vs. Comorbid ) as a between 
subjects factor. This analysis revealed a main effect of distance on reaction time 
[F(1,41) = 71.9, p < 0.001], with longer response times for small distance trials 
than long distance trials, but no distance by group interaction [F(1,3) = 0.4, p > 
0.05]. The main effect of group was marginally significant [F(1,3) = 2.78, p = 
0.053). Post-Hoc Tukey’s HSD tests revealed that the marginally significant 
main effect of group was driven by higher reaction times for the comorbid 
group relative to the control group (p < 0.05). All other comparisons were not 
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significant. FIGURE 5 summarises the reaction time data for small and large 
distances. It can be seen that all groups showed a classical distance effect, with 
longer reaction times for the small distance condition. 

FIGURE 5 Reaction times for small and large distance symbolic number comparison.

14.2.2.2 Accuracy 

 In order to assess the effect of numerical distance on comparison accuracy, 
‘Percentage Correct’ accuracy data (FIGURE 6) were analyzed by means of  a 2 
x 4 mixed design analysis of variance (ANOVA), with Distance (small vs. large) 
as a within subjects factor and Group (Control vs. Dyscalculic vs. Dyslexic vs. 
Comorbid ) as a between subjects factor. This analysis revealed a main effect of 
distance on accuracy [F(1,41) = 158.46, p < 0.001], with greater accuracy for large 
distance trials than small distance trials. The main effect of group was not 
significant [F(1,3) = 1.91, p > 0.05). This analysis also revealed a significant 
distance by group interaction [F(1,3) = 3.96, p < 0.05]. 
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FIGURE 6 Percent correct data for small and large distance nonsymbolic number 
comparison.

In order to explore the source of the Group x Distance interaction, a series of 2 x 
2 mixed design ANOVAs were carried out, comparing at first each atypically 
developing group to the control group, then each atypically developing group 
with each other. The results of these analyses are summarised in TABLE 7. 

TABLE 7 2 x 2 Anova’s directly contrasting each group with each other. 

 Main Effect of Distance Group x Distance 
Interaction

Group
Contrast F-Value Significance Level F-Value Significance

Level
Control–

Dyscalculic 85.61 < 0.001 5.05 < 0.05 
Control– 
Dyslexic 72.8 < 0.001 0.84 N.S. 
Control– 

Comorbid 128.65 < 0.001 5.18 < 0.05 
Dyscalculic–

Dyslexic 50.77 < 0.001 5.2 < 0.05 
Dyscalculic–

Comorbid 83.07 < 0.001 0.16 N.S. 
Dyslexic– 
Comorbid 72.72 < 0.001 6.62 < 0.05 
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As can be seen from TABLE 7, all contrasts revealed a significant main effect of 
distance. TD versus DD, TD versus CM, DD versus DL, and CM versus DL 
contrasts all revealed significant Group x Distance interactions. Inspection of 
the means plots suggested that both the DD and CM groups showed a greater 
effect of distance than the TD and DL groups. In other words, the two groups 
with mathematical impairments showed stronger distance effects than the two 
groups without mathematical impairments. Independent-samples t-tests 
confirmed this interpretation, showing that the DD group did not differ 
significantly from the TD group in accuracy in the large distance condition 
[t(20) = 0.39, p > 0.05] but showed significantly lower accuracy during the small 
distance condition [t(20) = 2.24, p < 0.05]. The CM group who also showed a 
significant group by distance interaction with the TD group were found to have 
significantly lower comparison accuracy in both the large [t(13.68) = 2.16, p < 
0.05] and small [t(15.4) = 2.8, p < 0.05)]distance conditions. When comparing the 
DD and DL groups, accuracy rates were not significantly different in either the 
small distance [t(18) = -0.65, p > 0.05] or the large distance [t(18) = 1.55, p > 
0.05)]conditions. The significant Group X Distance interaction can be explained 
by marginally higher accuracy for the DL group relative to the DD group in the 
small distance condition, and marginally lower accuracy in the large distance 
condition. Thus, although percent correct was not significantly different 
between groups in either condition, the change in accuracy from large to small 
distance comparisons was greater for the DD group. Similarly, the CM group 
did not differ from the DL group in either the small [t(21) = -0.9, p > 0.05] or 
large [t(21) = 1.2, p > 0.05] distance conditions, despite showing a significant 
group by distance interaction.  

14.3  Discussion 

The first analysis in this section investigated overall speed and accuracy 
differences between groups during symbolic number comparison. The above 
results revealed no group differences in accuracy but did reveal a marginally 
significant main effect of group for reaction time, post-hoc tests showing that 
the effect was driven by longer reaction times for the comorbid group relative 
to the typically developing group. Thus Hypothesis 1 was not met, but 
hypothesis 2 was tentatively supported. 

These results support previous findings by Landerl et al (2004) and 
Rousselle & Nöel (2007) both of which found a main effect of group on reaction 
time during symbolic comparison. Rousselle & Nöel also found a main effect of 
group on comparison accuracy. Landerl et al, however, did not find any 
accuracy differences between groups. Thus results from previous studies show 
that in untimed tasks, children with mathematical learning disorders are slower 
than typically developing children during symbolic number comparison. 
Accuracy comparisons, however, have yielded mixed results and the present 
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set of results suggests that groups do not differ in overall symbolic accuracy 
with numbers 1 - 9.

The source of the main effect of group on reaction time in the present 
study was longer reaction times for the comorbid group than for the control 
group. No other comparisons were significant. This suggests that the comorbid 
group had a general problem in accessing numerical information through 
Arabic digits as suggested to underlie DD in general by Rousselle and Nöel 
(2007).

The lack of a group effect on overall accuracy is harder to explain 
however. The participants in the Landerl et al (2004) and the Rousselle & Nöel 
(2007) studies were 4 years old and 6-7 years old respectively, while the 
participants in the present study were approximately 11 years old. It is possible 
that the older age of the participants in the present study afforded them a great 
familiarity with Arabic digits, and thus the task was relatively simple for them, 
in comparison to the younger children in previous studies. 

It is also possible that, as in the nonsymbolic condition reported above, 
collapsing small and large distance conditions masks subtle performance 
variations between groups, and thus the second set of analyses in this section 
compared the effect of distance on reaction time and accuracy between groups. 
This analysis revealed that both the dyscalculic and comorbid groups showed 
stronger accuracy distance effects than the typically developing and dyslexic 
groups. Although there were no differences between groups in the effect of 
distance on reaction time, all groups showed a classical distance effect for 
reaction time, suggesting that the results pattern did not reflect a speed 
accuracy trade off.

Exploration of these interactions revealed that the DD group did not differ 
in accuracy from the TD group during the large distance condition, but showed 
a significantly greater error rate during the small distance condition, suggesting 
that the underlying numerical representation in the DD group is sufficiently 
developed to perform the most simple numerical comparisons, but cannot 
support comparisons which require more fine grained access to the mental 
representation of numerical magnitude. Thus the predictions of hypothesis 3 
were met. 

The CM group, on the other hand, as well as showing a stronger accuracy 
distance effect than controls, made significantly more errors than the TD group 
in both the small and large symbolic distance conditions. Since they did not 
show an increased distance effect during nonsymbolic comparison, this result 
suggests that the CM group’s arithmetic problems are related specifically to the 
use of Arabic digits rather than an impaired underlying representation of 
numerical magnitude. In combination with the significantly longer reaction 
times for the CM group relative to the TD group, these results suggest the while 
the underlying representation of numerical magnitude is intact in the CM 
group, they may have a deficit in accessing that representation through 
symbolic stimuli. 
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Hypothesis 4 predicts that if comorbidity is caused by a deficit in 
accessing numerical representations through Arabic digits, then the CM group 
but not DL group will show a stronger distance effect than the TD group. The 
results of this analysis showed that indeed the CM group showed a stronger 
distance effect than the TD group, but the DL group did not. Thus, hypothesis 4 
was supported.

Rouselle & Nöel (2007) suggest that DD is caused by semantic access 
deficit whereby DD children are impaired in accessing numerical magnitude 
representations through the use of Arabic digits. In this account the underlying 
representation is intact, but the access to that representation through the use of 
symbols is impaired. The authors suggest that this access deficit underlies DD 
based on results from a study which collapsed DD and CM children into one 
group. The results of the present study, however, suggest that the access deficit 
may underlie comparison deficits in CM children since numerical comparison 
impairments in this group are apparent only during the symbolic condition. 
DD, on the other hand, appears to be caused by an underdeveloped 
representation of numerical magnitude as this group shows comparison deficits 
in both symbolic and nonsymbolic conditions. 

Rousselle & Nöel (2007) report a significant Group x Distance interaction 
for symbolic comparison reaction times (the authors do not report whether the 
same interaction was significant for accuracy). However, in that study the DD 
group which comprised both DD and CM children showed a weaker distance 
effect than controls. The authors suggest that, since many of the DD children 
actually showed a reverse distance effect, they may have been reciting the 
counting sequence rather than directly comparing the numerical magnitudes of 
the two digits. Thus, the difference in the direction of the Group x Distance 
interaction between the Rousselle & Nöel study and the current study may be 
as a result of the fact that their paradigm was not time limited while the current 
study classified answers which took more than 2.5 seconds after stimulus onset 
as incorrect. 

In summary, the results of the both symbolic and nonsymbolic 
comparison tasks suggest that the dyscalculic group have an underdeveloped 
representation of numerical magnitude which impairs their ability to make 
numerical comparisons as the numerical distance between comparators 
decreases in both symbolic and nonsymbolic tasks. The comorbid group, on the 
other hand, showed a stronger distance effect than typically developing 
children in the symbolic condition but not the nonsymbolic condition, as well as 
slower overall reaction times during symbolic comparison. This suggests that 
the CM group may represent a subgroup with a specific deficit in accessing 
numerical semantic information through the use of symbolic stimuli. It is 
possible that this deficit may stem from a wider deficit in semantic retrieval 
present in many dyslexic children (Lyytinen, Erskine, Tolvanen et al., 2006), and 
thus, such a deficit may represent a plausible explanation for the high rate of 
comorbidity between dyslexia and dyscalculia. The current thesis did not 
include a rapid naming test or any other test of general retrieval speed, and 
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thus this hypothesis is a speculative, post-hoc one which requires further 
research to address. The present results do support, however, the conclusion 
that the representation of numerical magnitude is not impaired in CM children 
as it is in DD children. It should be noted that some of the present results were 
marginally significant, and thus should be treated as tentative preliminary 
findings which require replication. 

In summary, the behavioural distance effect is robust and gives strong 
insight into the integrity of mental representations of numerical magnitude (see 
above). The current results are the first to examine the distance effect in both 
symbolic and nonsymbolic number comparison in children with pure 
dyscalculia, dyslexia, comorbid dyscalculia and dyslexia and typically 
developing controls. Subsequently they are the first results to reveal essential 
differences in the mental representation of numerical magnitude between 
children with pure dyscalculia and those with comorbid dyslexia. This is an 
important step in beginning to understand not only the roots of pure DD but 
the sources of comorbidity with dyslexia, and ultimately in developing focused 
educational interventions for each disorder.

The behavioural data reported above provide evidence of an impaired 
representation of numerical magnitude in developmental dyscalculia, however, 
in order to further strengthen this hypothesis it is necessary to examine this 
representation, which has reliable neural correlates, at the brain level. Although 
the comorbid and dyslexic groups participated in fMRI scanning, excess head 
motion in those groups caused their imaging data to be uninterpretable, and 
thus, the next chapter of this thesis investigates the neural correlates of the 
symbolic and nonsymbolic distance effects in the DD and TD groups. 



STUDY 2: BRAIN IMAGING ANALYSIS 

15  INTRODUCTION 

It is clear from the literature review above that the intraparietal sulcus (IPS) 
plays a key role in the representation and processing of numerical magnitude 
information (Dehaene et al., 2003). Neuroimaging studies of healthy adults and 
children have shown the IPS to be active in numerical comparison with 
symbolic and nonsymbolic stimuli (Ansari & Dhital, 2006; Pinel et al., 1999). 
Furthermore IPS activation during numerical comparison increases as the 
numerical distance between the numbers being compared decreases both for 
adults and children (Ansari et al., 2006; Pinel et al., 2001). These results suggest 
that impairments in the representation and processing of numerical information 
thought to underlie DD (Butterworth, 1999; Dehaene, 1997) should be reflected 
in functional abnormalities in the IPS of DD children during numerical 
comparison.

However, despite several recent attempts, there is as yet no conclusive 
evidence regarding the functional integrity of the IPS in children with 
developmental dyscalculia (DD). Neuroimaging studies of patients with genetic 
syndromes such as fragile X syndrome and Turner’s Syndrome have revealed 
functional and structural abnormalities in the IPS (Molko et al., 2003; Molko et 
al., 2004; Rivera et al., 2002). However, these populations show difficulties with 
arithmetic in the context of much wider behavioural impairment profiles, and 
thus it is impossible to extrapolate those results to the case of pure DD. 

Recently imaging studies have attempted to focus on DD subjects with 
isolated mathematical learning disorders in the context of otherwise typical 
development. Kucian et al (2006) used fMRI to compare children with DD to 
typically developing peers during a nonsymbolic numerical comparison task. 
Participants had to compare the relative numerosity of sets of objects such as 
nuts or fruits. The study found that during comparison both groups of children 
showed task related activation in the right IPS, but in the control group this 
activation was bilateral across the IPS. However, a direct statistical comparison 
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of the groups yielded no significant differences in brain activation during 
comparison versus rest.

The authors subsequently employed a Region of Interest (ROI) analysis to 
compare activity between groups in a predefined set of brain areas. These 
analyses also yielded no significant differences in any of the regions tested 
including both the left and right IPS. The lack of significant differences may be 
attributed to the fact that the stimuli used in this study were not controlled for 
physical variables which vary continuously with numerosity, such as surface 
area and density. Such variables have been shown to be used by children to aid 
numerosity judgements if not controlled for within the experimental design 
(Rousselle et al., 2004) and thus it is possible that the failure of Kucian et al to 
control continuous physical variables means that their comparison task did not 
require sufficient access to mental numerical magnitude representations and 
could instead be solved using spatial strategies. Furthermore, despite including 
a distance manipulation in the task design, Kucian et al did not report distance 
effect contrasts within or between groups.  

More recently, Soltesz et al (2007) used an Event Related Potentials (ERP) 
paradigm to test for electrophysiological correlates of the distance effect during 
numerical comparison of Arabic digits. The authors observed that during an 
early time window there were no differences in the topography of the distance 
effect between control and dyscalculic participants. During a later time 
window, however, the control group show a non-significant distance effect over 
right parietal areas, while the Dyscalculic group did not. Thus, although these 
results do not provide conclusive evidence of an impaired neural distance effect 
in DD, they do hint at a weaker effect in the right parietal area.

One possible reason for the lack of significant differences in this study is 
the way in which the participants were selected. Dyscalculic children were 
selected purely on the basis of having been diagnosed with DD in school at 
least 2 years prior to the study, and having been unresponsive to special 
education. However, the authors do not provide details of how these diagnoses 
were carried out, and whether each diagnosis adhered to the same diagnostic 
criteria. Thus it is possible that the group contained a heterogeneous sample of 
dyscalculics with regards to the severity of the disorder. 

A second issue is that all the dyscalculic participants had above average 
verbal skills, and the authors included only symbolic number comparison in the 
task design. It is possible that the DD group was able to employ verbal 
strategies such as counting or ordering in order to perform the task which 
would alleviate the need to access underlying numerical magnitude 
representations.

Thus, no study has thus far compared clearly defined dyscalculic and 
control groups on well controlled nonsymbolic and symbolic numerical 
comparison tasks as well as testing for the effects of numerical distance on brain 
activation in these groups. 

In order to address the above concerns, the current thesis employs both 
symbolic and nonsymbolic numerical comparison tasks including within task 
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distance manipulations. This allows both a comparison of the effects of stimulus 
format between groups during comparison versus rest, and beyond this a more 
fine grained analysis of the neural correlates of the distance effect within and 
between formats. Furthermore, the nonsymbolic comparison task is structured 
so that continuous physical variables such as overall surface area, item density 
and individual item size cannot be used to reliable predict numerosity of a set. 



16  PARTICIPANTS 

(For recruitment and group classification procedures see General Methods). 

Head motion during fMRI reduces signal to noise ratio and introduces a highly 
possibility of false activations or “motion artefacts”. Thus it is imperative to 
exclude from analysis those participants whose head motion exceeds an 
acceptable level, typically 3mm for a given functional run. Thus, in the present 
study head motion was quantified using BrainVoyager QX motion correction 
algorithms, and runs in which overall motion exceeded 3mm were excluded 
from analysis.

Unfortunately, children in the comorbid and dyslexic groups showed a 
high number of runs in which head motion exceeded the above criterion, so 
much so that as groups their imaging date revealed almost no reliable task 
related activations and instead showed what appeared to be extensive 
deactivations in areas canonically activated during the performance of any task 
such as contralateral motor cortex and primary visual areas. Thus both groups 
had to be excluded from further analysis.

Six (5 controls and 1 dyscalculic) subjects were also excluded entirely from 
analysis due to excess head motion. One subject (control) was excluded on the 
basis of extremely long RTs and poor accuracy (at least 4 standard deviations 
away from control mean in each condition), hence we were unable to be sure 
that the child had understood the purpose of the task and was performing with 
a focused strategy. Thus, from an initial sample of 45 children who underwent 
screening, eight right handed children diagnosed with DD on the basis of 
standardized math scores of  at least 1.5 standard deviations below the 
standardized average, in the absence of any other cognitive or learning 
disabilities were compared to eight right handed, typically developing age-
matched peers.

Control and dyscalculic groups differed significantly on standard math 
scores (t (14) = 5.72, p < .001), but not on Non-word reading time (t (14) = -.48, p
> .05), or Non-word reading Errors (t (14) = -1.9, p > .05). The groups did not 
differ significantly on Similarities subtest (t (13) = .86, p > .05), but there was a 
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significant group difference in the Block Design Subtest (t (13) = 2.58, p < .05). 
However, for the Block design subtests the group mean for the DD was within 
the normal range. TABLE 8 summarises the results of screening measures for 
both groups. 

TABLE 8  Screening measures results for TD and DD groups. 

Controls (N=8) Dyscalculics (N=8) 

Mean Std. Error Mean Std. Error 

Age (yrs) 12.06 0.53 11.43 0.59 

RMAT Standard Score 10.12 1.04 3.13 0.64 

Non-word Reading Time (secs) 26.87 5.12 29.65 2.79 

Non-word Reading Errors 0.38 0.18 1.75 0.7 

WISC-III Block Design 106.43 2.1 88.75 6.11 

WISC-III Similarities 110.71 3.69 105.00 5.26 



17  NONSYMBOLIC NUMBER COMPARISON 

17.1  Hypotheses 

H1. Dyscalculic children are expected to show weaker activation in the 
intraparietal sulcus during nonsymbolic number comparison than typically 
developing children, reflective of weaker underlying mental representations of 
numerical magnitude. 

H2. While typical developing children are expected to show a classical neural 
distance effect in the IPS, that is, increased activation in the small distance 
condition relative to the large distance condition, dyscalculic children are 
expected to show a weaker neural distance effect reflective of weaker 
underlying representations of numerical magnitude. 

17.2  Results 

17.2.1 Behavioural 

17.2.2 Overall Comparison 

17.2.2.1 Reaction Time 

Mean reaction times for correct responses were analysed in a one-way ANOVA 
with Group as the between subjects factor. Responses were classified as 
incorrect if the participant selected the smaller of the two numerosities, or if the 
participant did not respond within the 1.3s post stimulus period. This analysis 
revealed no main effect of group, [F(1,14) = 0.79, p > 0.05]. 
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17.2.2.2 Accuracy 

Accuracy was calculated as the percentage of trials in which a correct response 
was given. A one-way ANOVA with Group as the between subjects factor 
revealed a significant main effect of group on comparison accuracy [F(1,14) = 
5.41, p < 0.05] with the dyscalculic group showing lower accuracy than the 
typically developing group. 

17.2.3 Nonsymbolic Distance Effect 

17.2.3.1 Reaction Time 

Mean reaction time data (TABLE 9) for nonsymbolic numerosity comparison 
were analyzed by means of  a 2 x 2 mixed design analysis of variance 
(ANOVA), with Distance (small vs. large) as a within subjects factor and Group 
(Control vs DD) as a between subjects factor. This analysis revealed a main 
effect of distance on reaction time [F(1,14) = 115.75, p < 0.001] with longer 
response times for small distance trials, but no distance by group interaction 
[F(1,14) = 2.13, p > 0.05].

17.2.3.2 Accuracy 

Percentage of correct responses (TABLE 9)  for nonsymbolic numerosity 
comparison were analyzed by means of  a 2 x 2 mixed design analysis of 
variance (ANOVA), with Distance (small vs. large) as a within subjects factor 
and Group (Control vs DD) as a between subjects factor. This analysis revealed 
a significant main effect of distance [F(1,14) = 85.58, p < 0.001] on 
accuracy, with more errors in the small distance condition than the large. 
Additionally, a significant group by distance interaction was found [F(1,14) = 
5.09, p < 0.05], with DD subjects showing a greater effect of distance on 
response accuracy. Independent samples t-tests revealed that the DD group did 
not differ from the TD group in the large distance condition (t(14) = 1.14, p > 
0.05) but showed significantly lower accuracy in the small distance condition 
(t(14) = 2.41, p < 0.05).
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TABLE 9  Accuracy and Reaction Time Data by Distance Condition for Nonsymbolic 
Comparison.

Control (N = 8) Dyscalculic (N = 8) 

Average Std. Error Average Std. Error 
Small Distance 
Mean RT(ms) 

718.82 26.96 740.57 44.47 

Large Distance 
Mean RT(ms) 

554.85 26.79 615.79 35.98 

Small Distance 
Percent Correct 

88.19 2.21 79.86 2.66 

Large Distance 
Percent Correct 

98.96 0.51 97.6 1.11 

17.2.4 fMRI 

17.2.4.1 Task Vs Rest Across Groups

A random effects whole brain analysis was carried out to assess which regions 
were significantly activated by numerical comparison relative to rest across all 
participants. Greater activation for nonsymbolic comparison vs. rest was found 
at cluster corrected threshold of p< 0.001 (cluster-level threshold calculated on 
the basis of interaction t-map thresholded at p < 0.001, uncorrected) in bilateral 
primary visual cortices, bilateral superior parietal lobes, left inferior parietal 
lobe, dorsal anterior cingulate cortex, left primary motor cortex extending into 
primary somatosensory cortex, right rostral middle frontal gyrus, right 
dorsolateral prefrontal cortex, right insula extending including the claustrum, 
right cerebellum, and the right lentiform nucleus including the Putamen (see 
TABLE 10). 
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TABLE 10  Brain regions active during nonsymbolic comparison versus rest across groups. 

Region Brodmann
Area

Voxel Cluster 
Centre of Mass 

Talairach
Coordinates (x, 

y, z) 

Cluster 
Size

Average
Statistic t(15) 

Right Superior 
Parietal BA7 29, -57, 45 9933 5.63 

Left Superior 
Parietal BA7 -27, -55, 48 8380 5.72 

Left Inferior 
Parietal BA40 -43, -28, 45 3814 5.49 

Left Primary 
Motor Cortex BA4 -37, -17, 54 2921 4.87 

Dorsal Anterior 
Cingulate Cortex BA32 1, 16, 43 8137 5.1 

Right Rostral 
Middle Frontal 

Gyrus
BA10 38, 40, 20 5548 5.17 

Right Dorsolateral 
Prefrontal Cortex BA9 44, 7, 30 696 4.64 
Right Lentiform 

Nucleus N.A. 18, 11, 2 597 5.26 
Right Insula BA13 37, 17, 5 1503 4.55 

Right Primary 
Visual Cortex BA17/18/19 25, -78, 0 27293 6.04 
Left Primary 
Visual Cortex BA17/18/19 -24, -79, -2 26829 6.05 

Right Cerebellum N.A. 23, -48, -13 9978 5.3 

17.2.4.2 Task vs. Rest Between Groups 

In order to assess which brain regions were differentially modulated by 
nonsymbolic numerosity comparison between groups, we carried out a 
random-effects, whole brain, voxel-wise analysis testing for Task by Group 
interactions. Interactions were investigated at a cluster-level correct threshold of 
p < 0.001 (cluster-level threshold calculated on the basis of interaction t-map 
thresholded at p < 0.005, uncorrected). This analysis revealed no brain regions 
more active for Task vs. Rest that were more active for one group than the other 
i.e. no significant Task x Group interactions. In other words, there were no 
significant differences in the brain regions employed by controls or dyscalculics 
during nonsymbolic numerosity comparison relative to rest. 

17.2.4.3 Distance Effect Across Groups 

In order to assess which brain regions were differentially modulated by 
numerical distance across both groups, we carried out a random-effects, whole 
brain, voxel-wise analysis testing for regions which showed stronger activation 
for small distance comparisons than large distance comparisons. In other words 
we tested for regions which showed stronger activation in the small distance 
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condition relative to the large distance condition across both control and 
dyscalculic groups. As this comparison contrasted a within subjects factor 
which was a within task manipulation, as opposed to the coarse Task vs. Rest 
contrasts reported above, a more liberal uncorrected threshold of p < 0.005 was 
used to calculate the cluster-level corrected threshold. Significant interactions 
were observed at cluster corrected threshold of p < 0.001 (cluster-level threshold 
calculated on the basis of interaction t-map thresholded at p < 0.005, 
uncorrected) in the right superior parietal lobe, anterior cingulate gyrus, 
bilateral posterior cingulate gyrus, right lingual gyrus, right inferior temporal 
gyrus and the right claustrum (see TABLE 11). 

TABLE 11  Brain regions more active in the small distance condition relative to the large 
distance condition across groups. 

Region Brodmann
Area

Voxel Cluster 
Centre of Mass 

Talairach
Coordinates (x, 

y, z) 

Cluster 
Size

Average
Statistic t(15) 

Right Superior 
Parietal Lobe BA7 22, -54, 51 560 3.83 

Anterior
Cingulate Gyrus BA32 0, 18, 37 953 3.87 

Left Posterior 
Cingulate Gyrus BA23 -8, -71, 7 1433 3.4 
Right Posterior 

Cingulate BA30 9, -58, 6 1077 3.74 
Right Lingual 

Gyrus (Prestriate 
Cortex)

BA18 11, -72, 0 528 373 

Right Inferior 
Temporal Gyrus BA37 42, -51, -4 552 3.71 
Right Claustrum N.A. 32, 10, 2 1270 3.95 

17.2.4.4 Distance Effect Between Groups 

In order to assess which brain regions were differentially modulated by 
distance between groups, we carried out a random-effects, whole brain, voxel-
wise analysis testing for Group x Distance interactions. Significant interactions 
were observed at cluster corrected threshold of p < 0.05 (cluster-level threshold 
calculated on the basis of interaction t-map thresholded at p < 0.005, 
uncorrected) in three separate neural loci (see TABLE 12). Interactions were 
found in the right intraparietal sulcus (FIGURE 7), left fusiform gyrus (Figure 
8), and left medial prefrontal cortex (FIGURE 9). 



96

TABLE 12  Brain Regions showing Group X Distance interactions during nonsymbolic 
comparison. 

Region Brodmann
Area

Voxel Cluster 
Centre of Mass 

Talairach
Coordinates (x, 

y, z) 

Cluster 
Size

Average
Statistic t(15) 

Right Intraparietal 
Sulcus BA7 33, -50, 52 219 4.09 

Left Medial 
Prefrontal Gyrus BA10 -13, 54, -2 199 3.91 

Left Fusiform 
Gyrus BA37 -36, -54, -13 324 3.92 

FIGURE 7 Group X Distance interaction in the Right Intraparietal Sulcus 

FIGURE 8 Group X Distance Interaction in Left Fusiform Gyrus.
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FIGURE 9  Group X Distance interaction in the left medial prefrontal cortex

As can be seen from the Bar chart in FIGURE 10 the interaction in the IPS was 
characterized by a stronger distance effect in the control group compared to the 
DD group, and the same pattern was observed in the left fusiform area, as 
shown in FIGURE 11. The interaction in the MPFC region shown in FIGURE 12, 
on the other hand, was characterized by a greater deactivation in the DD group 
for Small vs. Large distances while showing equal positive activations in the 
Control group.

FIGURE 10 Beta weights extracted from right intraparietal region showing distance effect 
in TD group and no distance effect in DD group. 
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FIGURE 11  Beta weights extracted from left fusiform gyrus region showing distance effect 
in TD group and no distance effect in DD group. 

FIGURE 12  Beta weights extracted from left medial prefrontal region showing no distance 
effect in TD group and reverse distance effect in DD group. 

In order to further explore the strength of the distance effect in each group in 
each of these ROIs, paired samples t-tests were performed on signal change 
values for small and large distance conditions in each ROI. These analyses 
revealed that in the right IPS, the TD group showed a significant increase in 
signal strength from the large distance condition to the small distance condition 
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(t(7) = 4.59, p < 0.05) while the DD group showed no difference in signal 
strength between the two conditions (t(7) = 0.64, p > 0.05). The same pattern 
was true in the left fusiform area, with the TD group showing a significant 
increase in signal strength from large to small distance conditions (t(7) = 4.51, P 
< 0.05), while the DD group showed no significant change (t(7) = -1.14, p > 
0.05). In the left medial prefrontal cortex however, the TD group showed no 
significant effect of distance (t(7) = 2.12, p > 0.05) while the DD group showed a 
significantly greater deactivation during the small distance condition compared 
to the large distance condition (t(7) = -6.9, p < 0.05). 

 17.2.4.5 Baseline Activation Levels 

The paucity of previous fMRI research in developmental dyscalculia leaves 
open the possibility that the present results could be the consequence of lower 
activation levels throughout the whole brain in DD participants. In order to rule 
out this possibility and ensure that the observed results were indeed reflective 
of a deficit of the cognitive mechanism for numerical magnitude processing, 
ROI analyses were performed on left and right hemisphere primary visual 
areas. Left hemisphere V1 (-32, -83, -1) showed no main effect of distance 
[F(1,14) = 3.11, p > .05], and no Group x Distance interaction [F(1,14) = 2.51, p > 
.05]. The same pattern was true of activations in right hemisphere V1 (27, -86, 
10) for both the main effect of distance [F(1,14) = 1.72, p > .05], and the Group x 
Distance interaction [F(1,14) = .68, p > .05]. These results suggest that the 
observed group differences in brain activation during nonsymbolic number 
comparison are indeed task related and not the consequence of general lower 
activation levels across the whole brain. 

17.3  Discussion 

The first analysis in this section compared the neural activation patterns 
associated with nonsymbolic magnitude comparison across both large and 
small distances. The results of this analysis show that during nonsymbolic 
numerical comparison in general, both DD and TD children activate a canonical 
network of brain regions associated with the representation and processing of 
numerical magnitude.

The observed regions of task related activation included bilateral superior 
parietal lobes as well as prefrontal and inferior frontal areas. These regions have 
been found to be active in the processing of nonsymbolic numerical stimuli in 
typically developing adults and children (Ansari & Dhital, 2006; Cantlon et al., 
2006; Piazza et al., 2004) and so the present findings support the results of 
previous studies with regards to the role of a fronto-parietal network in the 
processing of numerical magnitude through nonsymbolic stimuli. Furthermore, 
these findings replicate those of Kucian et al (2006) who found no differences 



100

between DD children and typically developing controls on a nonsymbolic 
numerical comparison task. Thus, Hypothesis 1 was not supported. 

The present results are in agreement with previous literature when 
distances are collapsed. However, the behavioural results show significant 
differences in the effect of distance on comparison accuracy between groups. In 
the large distance condition the DD and TD groups performed with equivalent 
accuracy but in the small distance condition the DD group showed a 
significantly sharper decline in accuracy than the TD group. Thus it is possible 
that simply comparing the groups on general numerical comparison without 
contrasting numerical distances does not sufficiently probe the integrity of the 
underlying numerical representations and at the neural level averaging 
comparison across distances may mask more subtle group differences in those 
representations.

Therefore, the next analysis contrasted the neural correlates of the distance 
effect between groups. Smaller numerical distances have been shown to 
correlate with stronger activation in the IPS in typically developing adults and 
children (Ansari et al., 2005; Pinel et al., 2001). However, no studies to date have 
contrasted the neural distance effects between DD and TD children during 
nonsymbolic number comparison. 

The results of the present analysis revealed that the TD group showed 
significant neural distance effects in the right IPS and left fusiform gyrus, while 
the DD group showed no modulation by distance in these areas. The lack of a 
neural distance effect in the IPS of DD children supports Hypothesis 2, and 
provides the first direct evidence of an underdeveloped brain level 
representation of numerical magnitude in dyscalculia. The IPS region showing 
the Group x Distance interaction overlaps directly with an area identified in a 
meta analysis by Dehaene et al (2003) as in the representation and processing of 
numerical quantity (mean Talairach coordinates for hIPS:41, –47, 48; standard 
deviations for these mean coordinates: 7, 7, 5). Furthermore Transcranial 
Magnetic Stimulation to this region resulted in impaired automatic activation of 
numerical magnitude information in a numerical stroop task in healthy adults 
(Cohen Kadosh, Cohen Kadosh, Schuhmann et al., 2007), mimicking a 
behavioural characteristic of adults with DD (Rubinsten & Henik, 2005). 

Thus, these results suggest an impaired parietal representation of 
numerical magnitude in DD that is able to support numerical comparisons in 
the large distance condition, but not in the small distance condition. This 
supports the pattern of behavioural results reported above which show that DD 
and TD groups perform equally well during large distance comparisons, but the 
DD perform significantly worse during small distance comparisons and 
suggests that this occurs because the underlying mental representations of 
numerical magnitude in DD are insufficiently developed to support more 
demanding numerical processing.   

The same pattern was observed in the left fusiform gyrus, whereby the TD 
group showed a significant neural distance effect while the DD group showed 
no modulation by distance. This area has been associated with the identification 
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of visual word forms (e.g. Cohen et al., 2002) but is also active in object naming 
and visual form processing in general (Price & Devlin, 2003).  The exact 
cognitive function of this area is as yet unresolved, however, Price & Devlin 
(2003) suggest that its role may be specified on the basis of the network of 
regions with which it interacts during a given task. Thus, in the current study 
the lack of distance effect in this region in the DD group may reflect a deficit in 
the function of visual mechanisms used to extract the semantic dimension of 
numerosity from a set of objects. However, this interpretation is speculative and 
this finding is in need of further replication in order to gain a better 
understanding of its cognitive function in numerical comparison.  

While the left fusiform gyrus and right IPS appear to be involved in the 
visual extraction and mental representation of numerical semantic information 
respectively, the left medial prefrontal cortex appears have a more domain 
general role. In this region the TD group showed no activation differences 
between small and large distance conditions, while the DD group showed a 
significant decrease in activation in response to small distance comparisons 
compared to large distance comparisons. This area is suggested to be part of the 
so-called resting stating network (Gusnard & Raichle, 2001) and thus it is 
possible that the distance related deactivation for DD children reflects the 
greater level of subjective task difficulty and the need for more effortful 
processing in order to compensate for the failures of the parietal magnitude 
system.

The present results provide the first direct evidence of parietal 
dysfunction in pure developmental dyscalculia and thereby support the 
hypothesis that DD is caused by a disruption of the neural circuitry that 
supports a domain specific mental representation of numerical magnitude.  



18  SYMBOLIC NUMBER COMPARISON 

18.1  Hypotheses 

H1. Dyscalculic children are expected to show weaker activation than control 
children in the intraparietal sulcus during symbolic number comparison 
reflective of weaker underlying mental representations of numerical 
magnitude.

H2. While Typical Developing children are expected to show a classical neural 
distance effect in the IPS, that is, increased activation in the small distance 
condition relative to the large distance condition, dyscalculic children are 
expected to show a weaker neural distance effect reflective of weaker 
underlying representations of numerical magnitude. 

18.2 Results 

18.2.1 Behavioural 

18.2.2 Overall Comparison 

18.2.2.1 Reaction Time 

Mean reaction times for correct responses were analysed in a one-way ANOVA 
with Group as the between subjects factor. Responses were classified as 
incorrect if the participant selected the smaller of the two numerosities, or if the 
participant did not respond within the 1.3s post stimulus period. This analysis 
revealed no main effect of group, [F(1,14) = 2.13, p > 0.05]. 
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18.2.2.2 Accuracy 

Accuracy was calculated as the percentage of trials in which a correct response 
was given. A one-way ANOVA with Group as the between subjects factor 
revealed no main effect of group on comparison accuracy [F(1,14) = 3.45, p > 
0.05].

18.2.3 Symbolic Distance Effect 

18.2.3.1 Reaction Time 

Mean reaction time data (Table 13) for Symbolic Number comparison were 
analyzed by means of  a 2 x 2 mixed design analysis of variance (ANOVA), with 
Distance (small vs. large) as a within subjects factor and Group (Control vs. DD) 
as a between subjects factor. This analysis revealed a main effect of distance on 
reaction time [F(1,14) = 93.49, p < 0.001] with longer response times for small 
distance trials. Additionally, a significant distance by group interaction was 
revealed [F(1,14) = 6.16, p < 0.05]. Paired samples t-tests revealed that both 
groups showed a significant increase in reaction time for small distance 
comparisons compared to large distance comparisons, however, the effect was 
weaker in the DD group. Independent samples t-tests revealed that reaction 
time was not significantly different between groups in either the small distance 
[t(14) = -1.15, p = p < 0.05] or large distance conditions [t(14) = -1.8, p < 0.05]. 

18.2.3.2 Accuracy 

Percentage of correct responses (TABLE 13) for symbolic comparison were 
analyzed by means of a 2 x 2 mixed design analysis of variance (ANOVA), with 
Distance (small vs. large) as a within subjects factor and Group (Control vs. DD) 
as a between subjects factor. A significant main effect of distance [F(1,14) = 
45.21, p < 0.001] on the number of errors was found, with more errors in the 
small distance condition. Additionally, a marginally significant group by 
distance interaction was found [F(1,14) = 4.44, p = 0.05], with DD subjects 
showing a greater effect of distance on response accuracy. Independent samples 
t-tests revealed that comparison accuracy was equivalent between groups in the 
large distance condition (t(14) = 0.00, p < 0.001) but in the small distance 
condition the DD group showed a marginally significant lower accuracy rate 
than the TD group (t(14) = 2.0, p = 0.065). 
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TABLE 13 Accuracy and reaction time data for symbolic comparison. 

Control (N = 8) Dyscalculic (N = 8) 

Average Std. Error Average Std. Error 
Small Distance 
Mean RT(ms) 657.22 36.34 714.91 36.84 

Large Distance 
Mean RT(ms) 559.19 33.77 647.65 35.85 

Small Distance 
Percent Correct 91.32 1.11 84.03 3.47 

Large Distance 
Percent Correct 99.31 0.45 99.31 0.45 

18.2.4 fMRI 

18.2.4.1 Task vs. Rest Across Groups 

A random effects whole brain analysis was carried out to assess which regions 
were significantly activated by symbolic number comparison relative to rest 
across all participants. Greater activation for task vs. rest was found at cluster 
corrected threshold of p< 0.001 (p < 0.001 uncorrected) in bilateral primary 
visual cortices, bilateral cerebellum, right superior parietal lobe, anterior 
cingulate gyrus, left pre-central and post-central gyri (see TABLE 14). 

TABLE 14  Brain regions active during symbolic comparison versus rest across groups. 

Region Brodmann
Area

Cluster Centre of 
Mass Talairach 

Coordinates (x, y, 
z)

Cluster 
Size

Average
Statistic t(15) 

Right
Superior
Parietal

BA7 31, -54, 42 1591 4.69 

Left
Precentral & 
Postcentral

Gyri
BA3/4 -39, -22, 53 3734 4.77 

Anterior
Cingulate

Gyrus
BA32 -2, 10, 46 3457 4.87 

Right
Primary

Visual Cortex 
BA

17/18/19 25, -78, -7 9313 4.92 

Left Primary 
Visual Cortex 

BA
17/18/19 -12, -84, -4 1023 4.64 

Left
Cerebellum N.A. -29, -69, -17 4583 4.84 

Right
Cerebellum N.A. 25, -72, -15 4021 4.71 
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18.2.4.2 Task vs. Rest Between Groups 

In order to assess which brain regions were differentially modulated by 
symbolic number comparison between groups, we carried out a random-effects, 
whole brain, voxel-wise analysis testing for Task by Group interactions. 
Interactions were investigated at a cluster-level correct threshold of p < 0.001 
(cluster-level threshold calculated on the basis of interaction t-map thresholded 
at p < 0.005, uncorrected). This analysis revealed no brain regions more active 
for Task vs. Rest that were more active for one group than the other i.e. no 
significant Task by Group interactions. In other words, there were no significant 
differences in the brain regions employed by controls or dyscalculics during 
basic symbolic numerosity comparison relative to rest. 

18.2.4.3 Distance Effect Across Groups 

In order to assess which brain regions were differentially modulated by 
numerical distance across both groups, we carried out a random-effects, whole 
brain, voxel-wise analysis testing for regions which showed stronger activation 
for small distance comparisons than large distance comparisons. In other words 
we tested for regions whose activation strength was negatively correlated with 
numerical distance across both control and dyscalculic groups. As this 
comparison contrasted a within subjects factor which was a within task 
manipulation, as opposed to the coarse Task vs. Rest contrasts reported above, 
a cluster-level correction threshold of p < 0.05 (p < 0.005 uncorrected) was used. 
This analysis revealed no brain regions that were more active for small distance 
comparisons than large distance comparisons across groups.

18.2.4.4 Distance Effect Between Groups 

In order to assess which brain regions were differentially modulated by 
distance between groups, we carried out a random-effects, whole brain, voxel-
wise analysis testing for Group x Distance interactions. Significant interactions 
were observed at cluster corrected threshold of p < 0.05 (cluster-level threshold 
calculated on the basis of interaction t-map thresholded at p < 0.005, 
uncorrected) in three regions (see TABLE 15), the left middle temporal (FIGURE 
13), right mid-occipital gyrus (FIGURE 14) and right lateral prefrontal cortex 
(pars triangular) (FIGURE 15)
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TABLE 15 Brain Regions showing Group X Distance interactions during symbolic 
comparison. 

Region Brodmann
Area

Cluster Centre of 
Mass Talairach 

Coordinates (x, y, 
z)

Cluster 
Size

Average
Statistic t(15) 

Left Mid-
Temporal

Gyrus
BA21 -46, -31, -6 300 3.90 

Right Mid-
Occipital Gyrus BA19 44, -69, 6 805 3.95 

Right Inferior 
Frontal Lobe 

(Pars
Triangular)

BA45 32, 18, 17 361 3.92 

FIGURE 13  Group X Distance interaction in the Left Middle Temporal Gyrus

FIGURE 14  Group X Distance interaction in the Right Middle Occipital Gyrus 
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FIGURE 15  Group X Distance interaction in the Right Inferior Frontal Lobe 

As can be seen from the Bar chart in FIGURE 16 the interaction in the left 
middle temporal region was characterized by an increase in activation from 
large distances to small distance in the TD group, and a decrease in activation 
from large to small distances in the DD group. The same pattern was observed 
in the left middle occipital area, as shown in FIGURE 17, and in the right 
inferior frontal area (FIGURE 18).

FIGURE 16. Beta weights extracted from left middle temporal region showing distance 
effect in TD group and reverse distance effect in DD group. 
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FIGURE 17 Beta weights extracted from right middle occipital region showing distance 
effect in TD group and reverse distance effect in DD group. 

FIGURE 18 Beta weights extracted from right inferior frontal region showing distance 
effect in TD group and reverse distance effect in DD group.

In order to further explore the strength of the distance effect in each group in 
each of these ROIs, paired samples t-tests were performed on signal change 
values for small and large distance conditions in each ROI. These analyses 
revealed that in the left middle temporal region, the TD group showed a 
significant increase in signal strength from the large distance condition to the 
small distance condition (t(7) = 2.62, p < 0.05) while the DD group showed a 
significant reverse distance effect with signal strength decreasing from large to 
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small distance comparisons (t(7) = - 4.12, p < 0.05). The same pattern was true in 
the right middle occipital area, with the TD group showing a significant 
increase in signal strength from large to small distance conditions (t(7) = 2.97, P 
< 0.05), while the DD group showed a reverse distance effect (t(7) = -2.6, p < 
0.05). In the right lateral prefrontal cortex the TD group again showed a 
significant effect of distance (t(7) = 2.93, p < 0.05) while the DD group showed a 
significant reverse distance effect  (t(7) = -2.63, p < 0.05). 

18.3  Discussion 

The first analysis in this section investigated the neural correlates of symbolic 
number comparison in general, collapsing small and large distance conditions. 
The results reveal a network of brain regions involved in comparing the 
numerosity of Arabic digits across groups, including bilateral primary visual 
cortices, bilateral cerebellum, right superior parietal lobe, anterior cingulate 
gyrus, left pre-central and post-central gyri. 

These results replicate the findings of previous studies which show 
activation of the intraparietal sulcus during symbolic number comparison in 
typically developing children (Ansari et al., 2005) and adults (Pinel et al., 1999). 
A comparison of groups, however, revealed no differences in the activation of 
regions supporting symbolic number comparison. To date, no fMRI studies 
have compared DD and TD children during symbolic number comparison, and 
thus it is impossible to interpret these results in the context of previous 
research. Hypothesis 1 predicted that DD children would show weaker 
activation than TD children in this contrast, and this was not supported by the 
present set of results. The TD and DD groups did not differ in overall accuracy 
or reaction time for symbolic comparison, and thus it is possible that collapsing 
small and large distance conditions masks more subtle between group 
differences in the underlying representation of numerical magnitude.  

Thus, brain activations during small distance comparisons were 
contrasted to those during large distance activations both across and between 
groups. Across groups no brain regions revealed a significant effect of distance. 
Between groups, however, Distance x Group interactions were revealed in the 
left middle temporal gyrus, right mid-occipital gyrus and right lateral 
prefrontal cortex (pars triangular). In all three of these areas the interactions 
were explained by a significant classical distance effect in the TD group (i.e. 
Stronger activation for smaller distances) but a significant reverse distance 
effect in the DD group (i.e. stronger activation for large distances). 

The left middle temporal gyrus has been associated with the processing of 
auditory stimuli (Scott, Blank, Rosen, & Wise, 2000) and in particular phonemic 
discrimination during speech sounds (Ashtari et al., 2004). This suggests 
therefore that while the TD children were able to perform the task without 
explicit mental manipulation of the digits during the large distance condition. 
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During the small distance condition, however, the increased task difficulty lead 
them to employ a verbal strategy involving mentally reciting the counting 
sequence. The DD group on the other hand, who showed less activation in this 
region during the small distance condition, were perhaps already employing a 
verbal strategy involving reciting the counting sequence already during the 
large distance condition, and the degree of subjective task difficulty 
experienced during the small distance condition lead to a decrease in the 
engagement of this phonological processing mechanism as DD children failed 
to fully or accurately mentally recite the digit names.

The right middle occipital area has been shown to be involved in symbolic 
number comparison (Fias et al., 2003a), judging the orientation of Arabic digits 
(Pesenti et al., 2000), counting relative to random number generation 
(Jahanshahi, Dirnberger, Fuller, & Frith, 2000) and letter matching (Temple et 
al., 2001). In tandem with the present results this suggests that this area plays a 
role in representation and processing of Arabic digits as visual objects. Thus it is 
possible that in the TD group, as the distance between the numbers being 
compared decreases, participants are forced to engage in more effortful 
retrieval of visual representations of the Arabic digits in order to aid successful 
numerical comparison. In the DD group, however, activation in this region 
decreased in the small distance condition, suggesting that either the visual 
representation of Arabic digits is undermined in this group, or that simply 
attention to the task was reduced in this condition as a consequence of 
subjective task difficulty. 

The right inferior frontal region which shows a classical distance effect in 
the TD group and a reverse distance effect in the DD group has previously been 
shown to be involved in symbolic number comparison (Chochon et al., 1999), 
the backward recall of digits (Sun et al., 2005) and specifically in conflict 
resolution during numerical comparison of Arabic Digits (Tang, Critchley, 
Glaser, Dolan, & Butterworth, 2006). In addition to these numerically specific 
findings, the region has been shown to be involved in cognitive conflict 
resolution in go/no go tasks (Durston et al., 2002). In combination with the 
present results these findings suggest that the role of this region in symbolic 
number comparison is related to executive control over response selection, and 
that the reverse distance effect observed in the DD group may relate simply to 
reduced effort and attention to the experimental task. 

No previous fMRI studies have contrasted symbolic comparison distance 
effects between TD and DD children, and thus the present results require 
further replication in order to understand whether the reverse distance effects 
in the DD group are the result of underlying cognitive impairments, or whether 
due to the subjective task difficulty, perhaps as a result of the DD children’s 
numerical processing impairments, the DD group simply attended to the task 
less in the small distance condition, causing a decrease in activation in those 
areas. In other words, are the decreased activations during small distance 
symbolic comparisons in DD the result or the cause of their poor performance?  
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To date only one other imaging study has examined the neural correlates 
of the symbolic distance effect in DD. Soltesz et al (2007) observed that both TD 
and DD children showed distance effects over multiple parietal and frontal 
electrodes at an early time window, but at a later time window the TD children 
showed aright parietal distance effect while the DD children did not, although 
the difference between groups was nonsignificant. The authors suggest that in 
concert with their neuropsychological profile of their DD group, their results 
suggest deficient executive functioning in DD children during symbolic 
comparison.

In contrast to Soltesz et al, the present results did not show any parietal 
distance effect during symbolic number comparison. A possible explanation for 
this is that Soltesz et al used a paradigm which required participants to select 
whether or not a single digit was larger or smaller than 5, while the present 
study present two digits simultaneously in horizontal orientation. Thus it is 
possible task that performance in the present study was supported by 
visualising and/or reciting the ordinal number sequence in order to make 
numerosity judgements, rather than comparing the underlying numerical 
magnitudes. Thus, while overall the task did activate some level of parietal 
magnitude representation as evidenced by the task versus rest contrast across 
groups, it did not require a deeper access to parietal magnitude systems during 
the small distance condition. Thus it did not yield parietal distance effects in 
either group, but rather engaged cognitive mechanisms involved with the 
representation of the Arabic digits themselves.

In summary, the results above show that during symbolic number 
comparison compared to rest, TD and DD children activate a network of 
regions typically involved in numerical comparison, in particular the right IPS. 
However, when small distance and large distance trials are contrasted the two 
groups show dramatically different neural activation profiles. While the TD 
group show classical distance effects in a network of regions involved in the 
visual and phonological representation of Arabic digits as well as executive 
control over response selection, the DD group show a reverse distance effect in 
these areas. Thus the results of the symbolic number comparison task do not 
show an underdeveloped representation of numerical magnitude in DD 
children, but it may be that the task structure simply did not require deep 
enough access to those representations to yield brain level group differences. 



19  GENERAL DISCUSSION 

19.1  Summary 

Some researchers have suggested that dyscalculia is caused by a core deficit in 
the mental representation of numerical magnitude (Butterworth, 1999; Dehaene, 
1997). Furthermore a high rate of comorbidity exists between dyscalculia and 
dyslexia, and in order to develop effective educational interventions it is 
important to investigate whether the arithmetic deficits in comorbid children 
stem from the same core deficit as those in dyscalculic children. Thus, the aim 
of the present thesis was to investigate the integrity of the mental 
representations of numerical magnitude in developmental dyscalculia using 
both behavioural and brain-imaging methods, as well as to investigate the 
representation of numerical magnitude in children with comorbid dyscalculia 
and dyslexia. 

The distance effect, whereby decreasing numerical distance between two 
numbers causes an increase in reaction time and errors when comparing the 
numerical value of those numbers, is a well replicated effect and is presumed to 
reflect the nature of mental representations of numerical magnitude, in that 
numbers which are closer together overlap in representational space. Therefore 
the current thesis investigated the representation of numerical magnitude in 
dyscalculic (DD), dyslexic (DL), comorbid (CM) and typically developing (TD) 
children using symbolic and nonsymbolic numerical comparison tasks, 
contrasting small and large distance comparisons. 

Behavioural results from all four groups revealed that during nonsymbolic 
comparison, all groups showed a classical distance effect. The DD group, 
however, showed a marginally significantly stronger effect of distance on 
accuracy than the TD group on accuracy (i.e. a stronger decline in accuracy in 
response to decreased numerical distance). None of the other groups differed 
from the TD group or each other. Symbolic number comparison, on the other 
hand, revealed stronger distance effects for both the DD and CM groups. 
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Not only does the distance effect have a robust and highly replicated 
behavioural pattern, but it also has a well replicated neural signature as well. In 
both healthy adults and children, as numerical distance decreases, brain 
activation increases in intraparietal sulcus (Ansari et al., 2005; Pinel et al., 2001), 
an area thought to house a domain specific, abstract representation of numerical 
magnitude  (Dehaene et al., 2003). 

Unfortunately, due to a high level of head motion in the dyslexic and 
comorbid groups their fMRI data could not be included in the neuroimaging 
analysis, although the behavioural data alone provides highly novel insight into 
the mental representation of numerical magnitude in comorbid children as well 
as pure dyscalculics. Thus, only the dyscalculic and typically developing 
groups are discussed with regard to fMRI results.

During nonsymbolic number comparison versus rest, a whole brain 
analysis of both groups revealed classical distance effects in a network of 
regions frequently found to be active during numerical comparison and 
processing, including bilateral superior parietal and prefrontal regions. A direct 
comparison of groups during task versus rest revealed no regions of differential 
brain activation. However, when testing for the effects of distance on brain 
activation, significant Group x Distance interactions were revealed in three loci, 
the right IPS, the left fusiform gyrus, and the right medial prefrontal cortex. In 
all of these areas the TD group showed classical neural distance effects (i.e. 
increased activation for small relative to large distances) while the DD group 
showed no distance related changes in activation strengths. 

During symbolic number comparison versus rest, a whole brain analysis 
of both groups revealed task related activation in  the bilateral cerebellum, right 
superior parietal lobe, anterior cingulate gyrus, left pre-central and post-central 
gyri. A direct comparison of groups during task versus rest revealed no regions 
of differential brain activation. However, when comparing the effects of 
distance on brain activation between groups, significantly stronger distances 
effects in the TD group relative to the DD group were revealed in the left 
middle temporal gyrus, right mid-occipital gyrus and right lateral prefrontal 
cortex (pars triangular). In all three of these areas the TD groups showed a 
classical neural distance effect while the DD group actually showed reverse 
distance effects (i.e. lower activation for small distance comparisons). 

The principle aims of this thesis were firstly to investigate the integrity of 
numerical magnitude representations in children with pure developmental 
dyscalculia, and secondly to investigate the sources of comorbidity between 
dyscalculia and dyslexia. The results of this work will now be discussed in 
relation to these aims in turn. 



114

19.2  Numerical Magnitude Representation in Developmental 
Dyscalculia

Domain specific theories of dyscalculia hypothesise a core deficit in the mental 
representation of numerical information (Butterworth, 1999; Dehaene, 1997). 
However, only recently have studies begun to investigate the most basic 
numerical processing abilities in children with DD, having previously focused 
on higher level arithmetical abilities (Ansari & Karmiloff-Smith, 2002). It is 
especially important to investigate the existence of a core deficit in DD in order 
to ultimately develop focused and effective interventions. 

The results of this thesis revealed that while dyscalculic children did not 
differ from controls in overall accuracy and error rates during either symbolic 
or nonsymbolic comparison, they did show a stronger effect of distance on 
accuracy in both conditions. In other words, DD children were significantly 
poorer than controls at comparing numbers which are separated by a relatively 
small numerical distance. 

According to Dehaene & Cohen (1995), the internal representation of 
numbers is organised along a mental number line with its neural locus in the 
IPS (Dehaene et al., 2003). The closer two numbers are on this number line the 
more they overlap in terms of representational space, thus making it harder to 
distinguish one from the other. It is this representational overlap which is 
thought to give rise to the numerical distance effect. The size of the distance 
effect decreases over the course of development (Duncan & McFarland, 1980; 
Sekuler & Mierkiewicz, 1977) and furthermore, larger distance effects have been 
linked to poorer arithmetic performance (Holloway & Ansari, in press). These 
findings are an important precursor to the current work because they suggest 
that, firstly, a larger distance effect reflects a less developed mental 
representation of numerical magnitude, and secondly, that a less developed 
representation of numerical magnitude has a significant negative influence on 
arithmetic performance. 

Thus, the results of the present thesis, showing a stronger distance effect in 
dyscalculia, suggest that the underlying representation of numerical magnitude 
is underdeveloped in these participants, and that this underdeveloped 
representation is a plausible candidate for a core deficit underlying poor 
arithmetic achievement. In the current work, however, the size of the distance 
effect did not correlate with standardised maths scores for any of the groups. 
The lack of effect in this case may be due to low subject numbers and low 
variability in reaction time and accuracy.

It should also be noted that Holloway & Ansari (in press) observed a 
correlation between arithmetic fluency and the symbolic reaction time distance 
effect. Rousselle & Nöel (2007) have suggested that DD stems not from an 
underdeveloped representation of numerical magnitude, but rather a deficit in 
the ability to access those representations through the use of Arabic digit 
symbols. The limitations of Rousselle and Nöel’s study in support of this access 
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deficit hypothesis are discussed above and do not need to be repeated here. 
However, the results of Holloway and Ansari (in press) may lend support to the 
access deficit hypothesis in that it was only the symbolic distance effect and not 
the nonsymbolic distance effect which correlated with math fluency. 

Behavioural evidence, then, has yet to resolve the question of whether DD 
is caused by an underdeveloped representation of numerical magnitude or a 
deficit in accessing that representation through the use of Arabic digits. Thus it 
becomes even more important to investigate the neural processes which 
underlie numerical processing in DD. If the core deficit hypothesis is correct, 
then the larger distance effect in DD children should be underscored by atypical 
activation in those brains regions thought to support the representation of 
numerical magnitude, particularly the IPS. If, on the other hand, as the access 
deficit hypothesis suggests, the representation of numerical magnitude is intact 
in DD, then the IPS should not show any atypical activation patterns. 

The present thesis is the first work to examine the neural correlates of both 
the symbolic and nonsymbolic distance effects in DD children. The results show 
that during nonsymbolic number comparison, the TD group shows a classical 
distance effect in the right IPS and left fusiform gyrus. The DD group on the 
other hand, show equivalent activation to the TD group during large distance 
comparisons but no increase in activation during small distance comparisons 
(i.e. no distance effect). In other words, the larger behavioural distance effect in 
the DD group is mirrored by the lack of distance effect in the IPS, the brain 
region principally thought to house the representation of numerical magnitude 
(Dehaene et al., 2003). Thus the results of the nonsymbolic number comparison 
paradigm appear to support the core deficit hypothesis and contradict the 
access deficit hypothesis. 

The results of the symbolic comparison paradigm, however, are not as 
conclusive. The TD group showed a classical distance effect in three brain 
regions which the DD group did not, namely the left middle temporal gyrus, 
right mid-occipital gyrus and right lateral prefrontal cortex (pars triangular). In 
all three of these regions the DD group actually showed a decrease in activation 
during small distance comparisons relative to large distance comparisons. The 
left middle temporal region has previously been associated with auditory word 
processing (Price et al., 1996), phonemic discrimination (Ashtari et al., 2004) and 
auditory speech perception (Scott et al., 2000). This suggests that during the 
symbolic number comparison task participants were accessing and perhaps 
repeating sub-vocally the names of the Arabic digits to be compared. They 
could also have been reciting counting sequences. Seemingly the TD group 
employed the strategy more during the small distance condition while the DD 
group did so less for small distances than for large distances. No other fMRI 
study has investigated the neural correlates of the symbolic distance effect in 
DD children, and so this interpretation is highly speculative, and requires 
replication in theoretically focused empirical studies. 

The right middle occipital region which includes the occipito-temporal 
junction has previously been found to respond the judgement of Arabic digit 
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orientation more than numerical comparison (Pesenti et al., 2000), but is active 
during symbolic number comparison (Fias et al., 2003a). Thus it appears that 
although this region is involved in the visual processing of Arabic digits, it is 
not related to the underlying semantic representations of numerosity as it is less 
active during comparison than orientation judgement. It is possible that the 
increased activation for small distances in the control group simply reflects the 
greater application of this cognitive mechanism during the more difficult of the 
two conditions. The decreased activation in the DD group on the other hand 
may simply reflect reduced application in line with falling error rates. Given the 
existing literature on the function of this region it is difficult to see why it 
should show a distance effect in either group, given that the visual stimulation 
between conditions was not different, and the region does not appear to play a 
role in semantic access to numerical information. As with the middle temporal 
region, the role of this area in numerical comparison requires further focused 
investigation.

Finally, the right inferior frontal region which shows a classical distance 
effect in the TD group and a reverse distance effect in the DD group has 
previously been shown to be involved in symbolic number comparison 
(Chochon et al., 1999), the backward recall of digits (Sun et al., 2005) and 
specifically in conflict resolution during numerical comparison of Arabic Digits 
(Tang et al., 2006). In addition to these numerically specific findings, the region 
has been shown to be involved in cognitive conflict resolution in go/no go tasks 
(Durston et al., 2002) and error monitoring (Carter et al., 1998). As with the 
other two regions, the classical distance effect in the TD group suggests 
increased application of domain general cognitive processes during the harder 
of the two comparison conditions, the DD group, on the other hand, appear to 
decrease their application of these processes, and subsequently show a great 
increase in error rates. 

The lack of a neural distance effect in the IPS during symbolic comparison 
was unexpected. Previous neuroimaging studies which have investigated the 
symbolic distance effect have observed distance related modulation in parietal 
regions in both adults and children (Ansari et al., 2005; Pinel et al., 2001). Ansari 
et al used a paradigm almost identical to the current study, albeit with more 
subjects, so it is unclear why their paradigm should yield a parietal distance 
effect and the current study not. It is possible that the participants in the current 
study simply employed a different cognitive strategy to those in the Ansari et al 
study. Although highly speculative, this interpretation is supported by the fact 
that the brain regions showing neural distance effects in the current study were 
not present in the Ansari et al study. As the current set of regions suggest the 
use of a strategy which was based primarily on visual recognition of the Arabic 
digits themselves, it is possible that the current sample of TD children were 
retrieving the correct answer from memory of the ordinal counting sequence 
rather than accessing the underlying quantity representations. 

If we assume then, that the TD children in the current study were 
employing an ordinal strategy to carry out the comparison task, then the 
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question remains why the DD group showed a classical behavioural distance 
effect but reverse neural distance effects in those regions showing classical 
distance effects in the TD group.

It is possible that the failure to compare the numerosity of Arabic digits as 
effectively as controls is the result of a deficit in the link between the digits 
symbols and the underlying mental representations. Rousselle & Nöel (2007) 
argue that DD is caused by an impairment of the ability to access numerical 
magnitude representations through the use of Arabic digits. However, it is 
unclear why such a deficit would occur only in the context of Arabic digits, 
while the underlying representations themselves remain intact. Thus it seems 
more likely that such an access deficit may indeed be present, but it stems from 
an underdeveloped representation rather than a specific impairment of the 
access process. This would explain why DD children show a stronger distance 
effect both in nonsymbolic numerical comparison, which requires direct access 
to numerical magnitudes, and symbolic comparison, which requires fluent use 
of Arabic digits. However, this is the first work to compare the neural distance 
effect in both symbolic and nonsymbolic comparison between TD and DD 
children, and thus these interpretations are necessarily speculative. 

Although the behavioural and neuroimaging results of this thesis support 
a domain specific impairment of numerical magnitude representation in DD, it 
should also be noted that the DD group had significantly lower spatial IQ than 
the TD group, albeit within the normal range. There is an acknowledged link 
between spatial attention and numerical processing, evidenced from numerical 
deficits in spatial neglect patients (Zorzi, Priftis, & Umilta, 2002), behavioural 
interference between spatial location and numerical magnitude (Dehaene, 
Bossini, & Giraux, 1993), and shared neural circuitry in the parietal lobes for 
attention to external space and the representation of numerical information 
(Hubbard et al., 2005). Furthermore, a recent study by Geary, Hoard, Nugent, & 
Byrd-Craven (2008) showed that DD children are less accurate than controls in 
estimating the midpoint of a number line from 0-100.

These results suggest that the underdeveloped representation of 
numerical magnitude in DD suggested by the present thesis cannot be entirely 
extricated from deficits in visuo-spatial processing. Several studies which 
investigated mathematical difficulties as opposed to pure DD have observed 
poorer visuo-spatial skills in AD children (e.g. McLean & Hitch, 1999; Rourke, 
1993). However, several studies of DD have failed to find a specific pattern of 
relationships between general visuo-spatial ability and DD (Shalev, Manor, 
Amir, Wertman-Elad, & Gross-Tsur, 1995; Shalev et al., 1997). Thus the 
relationship between visuo-spatial processing and DD remains unclear. 
However, both the reduced spatial IQ and the lack of distance effect in the left 
fusiform gyrus of DD children in the current study suggest that perhaps there is 
a relationship between visuo-spatial ability and the development of numerical 
magnitude representation. 

It is possible that a developmental visuo-spatial deficit could undermine 
the development of a typical numerical magnitude representation by impairing 



118

the ability to extract numerosity from visual displays and organise numbers on 
a mental number line. However, given the lack of consistent evidence of visuo-
spatial deficits in DD, a more likely explanation is that there is simply an 
overlap between a domain specific impairment of numerical magnitude 
representation and visuo-spatial impairments due to the close proximity of the 
two neural mechanisms. The exact relationship between visuo-spatial 
processing and DD remains an open question, and one that requires truly 
developmental longitudinal research to answer. The results of the present 
study, however, are the first to provide direct support the existence of a domain 
specific core deficit in the brain-level representation of numerical magnitude.

19.3  The Causes of Comorbidity 

The second aim of this thesis was to investigate the representation of numerical 
magnitude in children with comorbid dyscalculia and dyslexia. The high rate of 
comorbidity makes this an important issue in the context of developing focused 
interventions for the remediation of arithmetic learning disorders, as different 
subtypes may present different behavioural profiles and developmental 
trajectories (Fletcher, 2005). 

The principle question addressed in this thesis is whether children with 
comorbid dyscalculia and dyslexia have arithmetic learning difficulties as the 
result of an impaired representation of numerical magnitude, as appears to be 
the case in pure dyscalculia, or whether, as suggested by Rousselle & Nöel 
(2007) both DD and CM children’s deficits stem from an impairment in 
accessing numerical semantic information through the use of Arabic digits.. 

This question was addressed by probing the mental representation of 
numerical magnitude in dyscalculic, dyslexic, comorbid and typically 
developing children as manifest through behavioural symbolic and 
nonsymbolic distance effects during numerical comparison. Unfortunately, due 
to head motion in the CM and DL groups their data had to be excluded from 
fMRI analysis, and so the second aim of this thesis is addressed solely by 
behavioural data. 

Despite the divergence in theoretical perspectives, the majority of 
behavioural evidence suggests that DD and CM children do not differ in terms 
of their basic numerical abilities, but may differ in their ability to compensate 
poor numerical skills with linguistic abilities (Geary et al., 2000; Geary & Hoard, 
2001; Jordan et al., 2003; Jordan et al., 2002). However, much of this work is 
compromised by liberal selection criteria when diagnosing DD. Two recent 
studies have employed more stringent selection criteria observed similar 
results, but arrived at opposing theoretical interpretations. Landerl et al (2004) 
observed that DD and CM children did not differ on a range of basic numerical 
tasks and concluded that the arithmetical deficits in both groups stemmed from 
the same core deficit in numerical representation. Rousselle & Nöel (2007) also 



119

found that DD and CM children did not differ on a range of basic numerical 
tasks. However, because in this study the DD and CM groups (collapsed) were 
impaired relative to controls in symbolic but not nonsymbolic comparison the 
authors concluded that DD is caused by a deficit in accessing numerical 
magnitude information through the use of Arabic digits.

The results of this thesis revealed that during nonsymbolic comparison the 
DD group showed a marginally significantly stronger distance effect than the 
TD group. No other group comparisons for this condition approached 
significance. During the symbolic condition, on the other hand, both the DD 
and CM groups showed stronger distance effects than the TD and DL groups, 
and furthermore, the CM group showed slower overall reaction time for 
symbolic comparison relative to the TD group.

These results suggest that while the DD group has an underdeveloped 
representation of numerical magnitude that impairs both symbolic and 
nonsymbolic processing of numerical information, the CM groups impairment 
is limited to symbolic number processing. However, it is important to note that 
the dyslexic group did not show any impairment of symbolic number 
comparison, and thus the performance of the CM grouped cannot be attributed 
solely to the presence of comorbid phonological awareness deficits associated 
with dyslexia. Thus it is possible that the comorbid group represents a 
subgroup of children who have a specific deficit in accessing mental numerical 
representations through the use of visual symbolic stimuli. Whether or not this 
‘access deficit’ extends to other domains is an open question. 

Some researchers have suggested that dyslexia may be associated with a 
core deficit in both phonological awareness and in naming fluency (i.e. 
semantic retrieval) (e.g. Manis et al., 1999; Wolf & Bowers, 1999) and 
longitudinal research has shown that many children with dyslexia show a 
specific impairment in retrieval, indexed by tasks such as rapid naming 
(Lyytinen, Erskine, Tolvanen et al., 2006). Thus, if semantic retrieval requires a 
combination of visual recognition of feature elements and integration of 
semantic and conceptual information (Wolf & Bowers, 1999), then it is plausible 
that an impairment of this cognitive process would impair both arithmetic 
performance and result in a stronger distance effect during symbolic number 
comparison, as both arithmetic and numerical comparison require fluent access 
to semantic information on the basis of visual symbolic stimuli. The current 
thesis did not, however, include a specific test of rapid naming, and thus this 
interpretation is speculative, but provides a highly plausible explanation for 
testing in future research. 

Although Rousselle and Nöel (2007) suggested that this “access deficit”, 
which may be analogous to a naming fluency or semantic retrieval deficit, was 
the root cause of arithmetic impairments in both the CM and DD groups, they 
did not compare the two groups in terms of distance effects before collapsing 
them into to one larger group. Had the groups remained separate, the authors 
may have observed group differences in the nonsymbolic condition related to 
the distance effect, which were masked as a result of collapsing the two groups. 
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Similarly, Landerl et al (2004), who found no differences between CM and DD 
groups in basic numerical tasks, did not include a nonsymbolic number 
comparison task. The current results show that the differences between the CM 
and DD groups emerge in the nonsymbolic and not the symbolic distance effect, 
and thus had the authors included such a contrast differences between the CM 
and DD groups may have emerged. 

Thus, the present results suggest that the arithmetic deficits in children 
with comorbid dyscalculia and dyslexia do not stem from an impaired mental 
representation of numerical magnitude, but rather from an impairment of 
accessing the semantic information represented by numerical symbols. Future 
research will be able to focus on identifying the cognitive impairments which 
lead to this ‘access deficit’. 

19.4  Intervention 

The natural goal of research into learning disorders is to ultimately develop 
effective educational interventions which allow children to achieve their full 
potential. Several researchers have already begun to develop focused 
interventions which attempt to improve the basic representation of numerical 
magnitude or “number sense”, (Griffin, 2007; Wilson, Dehaene et al., 2006).

The theory that the development of strong sense of quantity or number 
sense is essential to the development of arithmetic proficiency has, however, 
been used in the development of educational interventions long before the 
emergence of the triple code model. In the 1980s and 1990s Griffin and Case 
developed the “Number Worlds” (formerly “Rightstart’”) program which was 
specifically designed to teach Number Sense, initially to Kindergartners and 
later extended to grades one and two. The program aims to build upon and 
improve children’s existing knowledge levels and follows the natural 
developmental pathway to develop both computational fluency and conceptual 
understanding in mathematics learning.  The program is founded on the 
development of  the understanding of three ‘Number Worlds’, quantity, 
number words and symbols and has been found to be highly successful in 
helping children from lower socio-economic backgrounds attain the same level 
of numerical competence as those from more affluent backgrounds (Griffin & 
Case, 1997). The ‘Number Worlds’ program, although highly successful in 
improving the arithmetic performance of children with low socio-economic 
status has not yet been shown to be effective in the remediation of pure DD. 

The term “Number Sense” has different connotations in education and in 
cognitive psychology however (Berch, 2005). More recently, the 
neuropsychological concept of ‘number sense’ derived from the ‘triple code 
model’ (Dehaene, 1995) has been directly applied in the construction of 
intervention software, specifically designed to remediate children with DD. 
Wilson and colleagues (Wilson, Dehaene et al., 2006; Wilson, Revkin, Cohen, 
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Cohen, & Dehaene, 2006) have developed the “Number Race” computer game 
for the remediation of dyscalculia stemming from a core deficit either in 
number sense or in the access to it through symbolic number information. In 
the Number Race programme “Number Sense” is defined as the ability to 
“represent and manipulate numerical quantities non-verbally”.

The game uses a structure similar to a board-game, with numerical 
comparison as its main task, employing repeated associations between different 
number representations and quantity, as well as a spatial progression along the 
game path to emphasize associations between number and space. “Number 
Race” shares some features with “Number Worlds’ in that both also attempted 
to improve fluency in very basic calculation. A key feature emphasized in both 
projects was that the programs should be relevant to child’s own ability, and 
hence the “Number Race” game incorporates a computerized, 
multidimensional adaptive algorithm which assesses response patterns and 
adjusts task difficulty accordingly. Open trial assessments have shown positive 
effects of the game in improving basic numerical skills including speed of 
subitizing and numerical comparison, and accuracy of some simple subtraction 
(Wilson, Revkin et al., 2006).

The development of focused and effective teaching and remediation 
methods can be positively informed by cognitive neuroscience research, helping 
educators and scientists to understand how the brain acquires basic numerical 
skills and the nature of developmental abnormalities which can impair those 
processes. Despite the advancement of interventions focused on developing 
core number sense, the results of this thesis are the first to provide direct 
evidence of a brain level impairment in pure dyscalculia, and thus highlight the 
importance of the development of the mental representation of numerical 
magnitude in acquiring arithmetic proficiency. Furthermore, the lack of 
distance effect in the fusiform gyrus in DD subjects suggests that visuo-spatial 
processing may play a role in extracting the dimension of numerosity from a set 
of objects.

Such findings may be useful in the refinement of educational interventions 
in allowing developers a better understanding of which additional cognitive 
mechanisms may be employed to bolster the focused development of numerical 
representation. For example, an increased focus not just on understanding the 
relationship between quantities and symbols, but also on the low level visual 
processes which allow numerosity information to be extracted from visual 
displays may be beneficial in building a strong number sense.

Furthermore, the behavioural results presented in this thesis show that the 
arithmetic deficits in children with pure dyscalculia and comorbid dyscalculia 
and dyslexia may stem from different root causes. Thus, while the pure DD 
group may benefit from a focused intervention which seeks to bolster the 
mental representation of numerical magnitude through associations with 
numbers and space, the CM group may benefit more from interventions which 
seek to increase the fluency with which numerical representations are accessed 
through the use of symbols. 
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It is important, however, to avoid an extreme position in adapting 
educational practices to such an extent that children are learning only those 
basic processes which are well described at the neural level, such as basic 
magnitude comparison. It is highly important that proficiency in processes such 
as simple magnitude comparison are not viewed as the learning end states, but 
continue to be viewed as cognitive foundations on which more sophisticated 
learning can be built.  

19.5  Dyscalculia: Cause or effect of atypical development of the 
intraparietal sulcus. 

The IPS is frequently active in tasks requiring numerical magnitude processing 
(Dehaene et al., 2003). There are at least two possible explanations for this 
specialisation. First, that the IPS becomes specialised during ontogenetic 
development for the processing of numerical magnitudes by means of a so 
called ‘Neuronal Recycling’ mechanism (Dehaene, 2005). By this method 
neuronal populations innately specialised for processing domain general 
magnitudes would become assimilated for the preferential processing of 
numerical magnitudes, perhaps by an educational or cultural system which 
highlights the magnitude dimension of numerical information.  

The second possibility is that the right IPS is phylogenetically specified for 
numerosity processing, and upon this evolutionary foundation, our culturally 
embedded systems of number are based. Thus the properties of evolutionarily 
recent numerical systems would be at least similar in part to the properties of 
the numerical magnitude system located in the IPS. This second possibility is 
supported by evidence showing number selective neurons in regions of the 
monkey brain which are analogous to intraparietal regions in the human brain 
(Nieder, 2005) and evidence of numerical processing abilities in untrained 
animals (e.g. McComb et al., 1994; Wilson et al., 2001). 

If the intraparietal sulcus is ontogenetically specialised for numerical 
processing, then DD children should show functional impairments of this 
region only secondary to one or more functional impairments of more 
fundamental processing mechanisms, those that allow the IPS to become 
specialised for numerical processing. The current data show that the right IPS is 
functionally impaired in DD independent of impairments in any other primary 
processing brain regions, with the exception of the left fusiform gyrus. Thus, 
while the results of this thesis support the existence of a deficit in the mental 
representation of numerical magnitude in DD, there remains an open question 
as to whether that impaired representation occurs independently or is the 
consequence of the failure of lower level visual impairments to extract the 
dimension of numerosity from visual stimuli. 
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19.6  Conclusions and Future Directions 

The results reported above support the existence of a core deficit of numerical 
magnitude representation in dyscalculia. Furthermore they suggest that the 
arithmetic impairments shown by children with comorbid dyscalculia and 
dyslexia may stem from an alternative core deficit, perhaps in the cognitive 
mechanism responsible for accessing semantic information through visual 
symbols.

Domain specific theories of dyscalculia are rooted in adult 
neuropsychological evidence and as such follow similar theoretical 
conceptualisations of which processes may be impaired. In the initial stages of 
developing our understanding of DD, analogies between behavioural deficits 
acquired as a result of brain damage and developmental disorders are a useful 
first step (Denckla, 1973). However, the behavioural manifestations of acquired 
brain damage differ in many ways from those of developmental disorders, 
given that acquired cognitive deficits stem from a focal lesion which might 
disrupt one or more mature brain mechanisms, while in children the damage 
occurs often as a result of prenatal and postnatal developmental abnormalities, 
which rather than ‘knocking out’ a given system, impair the ontogenetic growth 
of that system. Furthermore, brain-behaviour relationships in adults tend to be 
much more static than they are in childhood (Rourke & Conway, 1997).

The consequence of brain damage in an adult brain is the partial or 
complete loss of one or more cognitive functions. In children however, the issue 
is rather how brain level abnormalities will affect future development and 
learning capacity. The behavioural impact of brain dysfunction in a child is a 
consequence of the present and future developmental environments, as well as 
the neuropathological characteristics of the brain dysfunction (Karmiloff-Smith, 
1998; Rourke, Bakker, Fisk, & Strang, 1983). The behavioural impairments 
present in infancy may fall away and even be supplanted by alternative 
impairments over the course of development (Paterson, Brown, Gsodl, Johnson, 
& Karmiloff-Smith, 1999). Thus, despite the heuristic utility of the 
neuropsychological approach to the study of DD, a truly development 
approach is required which considers the impact of brain development 
abnormalities on the ontogenetic learning trajectory of mathematical skills.  

The results of this thesis reveal a domain specific impairment of numerical 
magnitude representation in DD. However, it can presently merely be 
concluded that at some point in the course of development, pre or post natal, 
DD children appear to have suffered a disruption to the domain-relevant 
system responsible for developing the ability to manipulate numerical 
quantities. Whether the system that was originally impaired is numerically 
domain specific or linked to low level perceptual processes is a question that 
can only be answered by true developmental research (Karmiloff-Smith, 1998). 

Thus, future research should aim to chart developmentally the functional 
development of both parietal magnitude systems as well as lower level visual 
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mechanisms such as those supported by the fusiform gyrus in order to 
understand whether the functional impairments of these regions demonstrated 
in the current thesis occur independently or are causally linked, and if the latter, 
then in which direction does the causal influence flow? This thesis also revealed 
differing activation patterns in temporal and occipital regions between TD and 
DD children during symbolic number comparison. However, the exact roles of 
these regions in numerical comparison need to be further elucidated, and these 
findings need to be replicated before they can be practically interpreted. Future 
studies of symbolic number comparison should seek to use paradigms such as 
those used by Pinel et al (2001) which place more demand on numerical 
magnitude systems and are not readily solvable using ordinal strategies. In this 
way it may be possible to examine whether intact or impaired magnitude 
representations underlie performance in symbolic as well as nonsymbolic 
number comparison. 

The present results also suggest that children with comorbid dyscalculia 
and dyslexia have a cognitive deficit in accessing numerical semantic 
information through the use of visual symbols, and that impairs arithmetic 
performance, but is not shared with either pure dyscalculics or dyslexics. Thus, 
a major area for future research is to investigate the nature of the ‘access deficit’ 
in comorbid children. Exploratory research is required in order to understand 
whether the access deficit is specific to the use of numerical symbols, or 
whether these children have a wider deficit in mapping symbols onto referents, 
an impairment which could also possibly account, in part, for their reading 
impairments. Both behavioural and neuroimaging comparisons between 
dyscalculic, dyslexic and comorbid children are required and need to extend to 
cognitive tasks beyond those which probe core deficits in either numerical or 
phonological representation. 

Finally, the wide variation in terms used in research on mathematical 
learning difficulties has perhaps dissipated some of the focus from past 
research findings. Thus, in order that research findings from one study can be 
easily and accurately compared to those from another, there needs to be some 
agreement on exactly which populations are defined by different terms. To 
some extent this is already developing, with mathematics or arithmetic 
difficulties referring to populations with milder deficits than those observed in 
pure dyscalculia. 

The results reported in this thesis represent a key step in the identification 
of both a core deficit in pure dyscalculia, as well as a second, as yet unclear, 
core deficit in comorbid children. Significant work is still required in order to 
build a more complete understanding of these deficits, their causes and 
developmental trajectories and ultimately to develop effective educational 
interventions.  
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