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Abstract

In this thesis, I present a review of five publications that all in one way or another are

related to low dimensional quantum systems. The thesis has three major areas, where in

the first area I concentrate to quantum dots. In the second area, I discuss the relation of

quantum liquids to quantum dots. Finally, I discuss quantum dot lattices and clusters,

and their magnetic properties.

I go through the basic assumptions, computational methods, results and their inter-

pretations of the semiclassical model I have used to describe quantum dots with few

electrons. I show also that the physics of confined particle systems (in general) can

be succesfully described with a generalized version of the model. I demonstrate that

its range of usefulness is independent of the statistics of the confined particles by ap-

plying it to bosonic systems also. The role of the interparticle interaction seems also

to be insignificant; the only thing needed is thatthere isan interparticle repulsion be-

tween particles. To prove this claim, I succesfully apply this model also to systems

with Gaussian repulsion.

In this thesis, I will also consider the relation of quantum dots with quantum liq-

uids. The composite fermion (CF) theory, originally developed to describe the physics

of quantum Hall effect (QHE), has shown to be applicable also in describing quan-

tum dots. I will go through some basic properties of that theory and go through a

mathematical discussion related to that theory. The purpose of this was to prove math-

ematically that the wave functions of CF theory satisfyφCF
α,0,0 = φCF

0,β,1. Although I did

not succeed with a complete proof, I observed it to be true in every case I succeeded to

calculate.

In the last part, I review the physical properties of quantum dot lattices and clus-

ters, and present the results of my own research. I go through the Hubbard and the

Heisenberg models because they play a significant role in the calculations and anal-

ysis of my investigations. I found out that the (antiferro-)magnetic properties of 1D

lattices with twop states per lattice site can be understood with corresponding antifer-

romagnetic Heisenberg model. Similar model can explain antiferromagnetism of many

2D and 3D clusters.
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Chapter 1

Introduction

1.1 Quantum mechanics in material physics

Quantum mechanics (QM) was developed and formulated in co-operation of several

great physicists, and it has proven to be vigorous from its invention to present. The only

problem on using it in material physics is that one can actually solve analytically hardly

any macroscopic systems due to significant number of linked equations. Despite that,

the triumphal march of quantum mechanics has kept on going. It was less than thirty

years ago, when it was technically possible to confine electrons into two dimensions.

This remarkable scientific breakthrough has initiated a new golden-age for theoretical

condensed matter physics since it is much easier to handle theoretically particles in

two dimension than in three dimension. An addition to that, artificial low dimensional

systems have turned out to allow many interesting phenomena.

1.2 Quantum Hall Effect, a consequence for electrons

confined to 2D

In 1980 German physicist Klaus von Klitzing found a new natural phenomenon, when

he investigated properties of transistors at very low temperatures and high magnitudes

of magnetic field. The accuracy of measurements was very good; the relative accuracy

was about one per ten million. The results of his research were astonishing, he found a

phenomenon that he named as a quantized Hall effect (QHE) as a distinction from the

usual Hall effect. In the Figure 1.1 it is shown how the Hall resistance did not grow

linearly as a function of magnetic field, instead of that it grew stepwise. [1]

Von Klitzing and his coworkers showed that the growth of the Hall resistance was

step-like. The rise to the next step happened at very precise values of magnetic field.

More interestingly, the value of Hall resistanceRH could be expressed as a function of

natural constants

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: The main result of von Klitzing’s measurements. The measurements were carried in

8mK temperature. The upper curve represents the behaviour of the Hall resistanceRH
∼= ρxy,

and the lower curve the diagonal part of the resistivityρxx. (from Ref. [1])

RH =
h

νe2
, (1.1)

whereh is Planck’s constant ande is elemental electric charge, and symbolν is an

integer number. The results were a surprise to the scientific community, because it was

very unlikely that anything new was yet to be discovered in that field of physics. Von

Klitzing was the first one to show that resistance, a macroscopic physical observable,

was quantized. Later it is shown that at least specific heat capacity is also quantized.

[2]

The scientific community held the von Klitzing’s discovery very remarkable, and

he was awarded the Nobel prize in physics already at1985. Figure 1.1 is taken from

von Klitzing’s Nobel lecture, and one can observe that there occur risings on the Hall

resistivity ρxy at very specific values of magnetic field. Another important observa-

tion is that there exists peaks on the diagonal resistivityρxx at the same values ofB.

The phenomenon that Klaus von Klitzing observed is known currently as the integer

quantum Hall effect (IQHE). It is used for example to measure very precisely the fine-

structure constant (i.e. Sommerfeld fine-structure constant)α = e2

~c . Furthermore, with

the help of this phenomenon the unit of resistanceΩ, can also be measured very accu-
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rately. [3] Direct consequence for the accurate measuring of resistance is, that actually

the unitΩ itself can be metrological defined with the help of QHE. [4, 5, 6, 7]

Figure 1.2: Horst L. Störmer and Daniel C. Tsui found that the Hall resistance had also values

like RH = h
νe2 , whereν is a common fraction and not an integer. First non-integer quantum

Hall resistance value they observed wasν = 1/3. In addition, Tsui and Störmer reported about

minimum values in diagonal resistanceR at the same points where the plateaus forRH were

observed. (from Ref. [8])

In 1982 German physicist Horst L. Störmer together with Chinese physicist Daniel

C. Tsui, investigated this same phenomenon. They used even stronger magnetic fields

and lower temperature. They first confirmed the results of von Klitzing, but further-

more, they found a new plateau in the Hall resistance. They noticed that if the value of

resistance is expressed in the form (1.1), it equals very precisely the value forν = 1/3.

Later they found more plateaus in the Hall resistance and showed that all of them can

be expressed as in (1.1), if one accepts fractional values ofν. Tsui and Störmer were

awarded the Nobel price in physics at1998, and the phenomenon they found is known

as the fractional quantum Hall effect (FQHE). [8]

Later it has been shown that the QHE is caused because of special quantum proper-

ties of electrons captured into two dimension. Capturing electrons into two dimensions

was first done at the early 1980’s. Russian physicist Alex Ekimov managed to cap-

ture electrons to a glass that contained also sulphur and lead. [9] The purpose of the

measurements was basically to bound electrons to the plane, and thus to create a two-

dimensional quantum dot (QD).
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Just after these experiments, Russian physicists Efros and Efros published the first

theoretical discussions concerning quantum dots. [10] A group working at Bell Lab-

oratory, an American physicist Louis Brus leading it, investigated the properties of

electrons with semiconductors. They managed to capture electrons in a very small

region at plane. They noticed that energy spectrum of such group of electrons was dis-

crete, reminding the properties of the electrons confined to an atom. Nowadays group

of electrons confined to a small region is called as a quantum dot, or an artificial atom.

The role of quantum dots in the future nanoelectronics is expected to be remarkable and

their properties are examined in several universities throughout the world. [11, 12, 13]

1.3 Localization of particles into Wigner molecule

N electrons of a quantum dot can be set to rotation with the help of magnetic field.

In the single-particle picture, the magnetic field puts every particle to rotate with some

value lj so that the total angular momentum isL =
∑N

j=1 lj . If the magnetic field

is strong enough, it polarizes the spins of the electrons. At large angular momenta

the electrons also crystallize forming a rotating Wigner molecule. [14, 15, 16] The

observation of localization raises up a question if the physics of a quantum dot could

be understood using the means of classical physics.

The formation of a Wigner molecule is postulated in articles [I] and [III]. With

that assumption we managed to show that spectral properties of a quantum dot at high

angular momenta can be described with vibrational modes of the Wigner molecule.

Furthermore, we showed that the exact form of the interaction of particles and the

statistics of the particles are not critical on the formation of Wigner molecule. To be

more specific, we demonstrated that the energetics of quantum dot can be understood

with the help of classical physics regardless of what is considered to be the form of

the interaction or the statistics of the particles. In research paper [II], I participated on

calculation of a quantum dot with four and seven particles. The localization of particles

into Wigner molecule was observed theoretically in that article. In articles [II] and [III],

we showed that the localization of particles (when angular momentum is increased), is

related closely to the expansion of the molecule. The expansion is initiated by the

increase of centrifugal force. We showed that the width of the wave function of the

particles remains unchanged, but the distances of the maxima are increased.



CHAPTER 1. INTRODUCTION 15

1.4 Magnetic properties of clusters and low dimensional

lattices

More than a decade ago it was observed that clusters may exhibit stronger magnetic

properties than corresponding bulk material. This kind of behavior has been reported

for example for Iron, Nickel, Cobalt and for Gallium. [17, 18, 19, 20, 21] The exper-

imentalists have been varying the cluster sizes extensively from few to few thousands

of atoms. As usually in physics, interesting results of experiment have initiated an in-

tensive theoretical phase, where for example the Hubbard model [22, 23], and different

forms of the density functional theory (DFT), are applied. [24, 25, 26, 27] Eigenstates

of single quantum dots with a few electrons can be calculated exactly by diagonalizing

the many-body Hamiltonian (see Ref.[25] for review).

New experimental results have also been achieved in constructing artificial lattices

from quantum dots. [28, 29, 30] Both lateral and vertical quantum lattices have been

succesfully produced in experiments. Another example of artificial lattices are optical

lattices – stable periodic arrays of potentials created by standing waves of laser light.

[31, 32] The depths of the single traps may be changed with varying intensity of the

laser light. By doing that, the experimentalists can confine ultra-cold atoms, of bosonic

or fermionic character [33, 34, 35, 36, 37, 38], achieving particle numbers on the sites

that may be even less than three. The strengths and the sign of the interparticle interac-

tions between the atoms can be tuned by Feshbach resonances. [39, 40, 41, 42, 43, 44]

Also in theoretical analysis of artificial lattices, the usefulness of the density func-

tional theory, has been shown. Mean-field calculations based on the spin-density func-

tional theory predict that Hund’s first rule orders the total spin of an individual (iso-

lated) lattice site. [24, 25] Magnetic properties of the lattice itself depend on the total

spin of the individual lattice sites, on the lattice structure and on the coupling between

different lattice sites. [45, 46, 47, 48] Some of these findings can be understood with

help of a simple tight binding model. [49] For calculating properties for quantum

dot molecules, the density functional method has also been applied successfully. [50]

Methods beyond the mean-field approximation have been applied also with quantum

dot molecules. [51, 52, 53, 54, 55, 56]

The artificial and natural lattices have many differences. When the length scale

in a normal lattice is significantly dependent on the strength of the interaction energy,

an artificially made lattice can be nearly immune to this effect. The lattice structure it-

self is stable and the interactions of the particles are far too weak to break that ordering.

This may lead to an internal symmetry breaking and, for example, to spontaneous mag-

netism, to superconductivity or even to superfluidity. New experimental results have

lead to very rapidly developing theoretical epoch. [57, 58, 59, 60, 61, 62, 63, 38, 37]

For the physics of a lattice with strongly correlated particles, the generic model is the

Hubbard model, which has been intensively studied in the case of one state per lattice

site (for reviews see [64, 65]). The simple Hubbard model is exactly solvable using the
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Bethe ansatz.[66] Magnetism of finite molecules[22, 23] and quantum rings[67] have

also been studied using the 1D Hubbard model.

1.5 About this thesis

In this thesis, I go through a review of five articles where I have contributed. An

addition to those results, I present also some unpublished results that are mainly re-

lated to the composite fermion theory. In research papers [I] and [III], a semiclassical

model was used on describing the physics (i.e. energetics and corresponding modes)

of few particle quantum dots. It was shown that semiclassical model is appropriate in

describing quantum dots with Coulombic and Gaussian inter-particle interaction. In

those papers, we also showed that the particle statistics does not affect to validity of the

model and it was demonstrated with bosonic particles.

In research paper [II], my main contribution was on calculation of energetics of

quantum dots with four and seven particles. In that paper, the semiclassical model

was used to demonstrate how the spin degree of freedom makes it possible that purely

rotational state can be the lowest state of the system for every angular momenta. On

that article, I also participated on calculation of overlap integrals (Table 3 in article

[II]). With that table it was shown how well the exact diagonalization wave functions

(with filling factorsν = 1/3, 2/5 and2/3, are overlapping with the Haldane-Halperin

model wave functions.

In articles [IV] and [V], we considered Hubbard model in describing low dimen-

sional quantum systems. In both articles, the exact diagonalization was used for solving

the energetics of the systems. We concentrated on solving the spectral and magnetic

properties of the systems on consideration. In both papers we analyzed results for half

filling factor with a suitable Heisenberg model, which turned out to work in most of

the cases. In article [IV], one-dimensional lattices were considered with two to four

fermions per lattice site. In research report [V] we revealed the magnetic properties for

various two and three dimensional clusters (triangle, tetrahedron, a row and a square

with four lattice sites) with several orbitals (1s, 1p, 2s1d and even 1p withthree p

orbitals) per lattice site.



Chapter 2

Theoretical models and

numerical tools

In this chapter a short introduction to theoretical models that are widely used to de-

scribe integer and fractional quantum Hall effects, is presented. These models are then

expanded to describe quantum dots also. Laughlin theory and the next generation of it,

the hierarchy theory are introduced first. They are followed by the composite fermion

theory, which is proven to be very useful model with both versions of quantum Hall

effect, and even with describing the physics of quantum dots, and graphene [68]. The

Hubbard model, and the Heisenberg model, are in very intensive use on many fields of

material physics. The exact diagonalization technique used in this thesis is presented in

this chapter. We go through the eigenvalue problem both for a classical system and for

a quantum mechanical system. Basically all energies and length scales in my research

papers are presented in atomic units that are shortly introduced here as well.

2.1 Integral Quantum Hall Effect

American physicist Robert B. Laughlin revealed an explanation to IQHE already1981.

He showed that the phenomenon found by von Klitzing is a direct consequence of

gauge invariance and the existence of a mobility gap (i.e. the quantization is derived

by assuming the gauge invariance and a mobility gap). He proposed, that at very high

magnetic fields the electrons nearby Landau levels cause the phenomenon (The Landau

levels are discovered by Russian physicist Lev Landau). Landau levels represent the

energy levels for a certain angular momentum (k vector). The lowest Landau level,

for example, is defined to be the ground state energy for every angular momenta. In

the same way, the second lowest Landau level is the group of second lowest energies

for every angular momenta etc. Laughlin proposed that in phenomenon that von Kl-

itzing found, all electrons are at the lowest Landau level. Qualitatively, the IQHE was

17
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explained with a single particle picture. [69, 3]

2.2 Fractional Quantum Hall Effect

The phenomenon found by Tsui and Störmer, i.e. fractional quantum Hall effect

(FQHE), was even more stunning than IQHE. IQHE could be understood as a phe-

nomenon caused by electrons carrying chargee. If one used single particle picture in

describing the physics of FQHE, the interpretation would be such that particles causing

the phenomenon had charge that was a fraction of electron’s charge, for examplee/3.

Only quarks are known particles that have charge that is a fraction of electron’s charge.

Therefore, single particle picture seemed to be rather poor approach in describing the

physics of FQHE. [3, 70, 71]

2.3 Laughlin’s theory

Year after the discovery of FQHE, first theoretical model was presented. The man be-

hind this first model was American physicist Robert B. Laughlin. According to Laugh-

lin, every successful theory should explain why the charge carriers seem to have charge

that is a fraction of the electron’s charge. He proposed that the electrons form together

a many particle state that acts as a single particle. The state formed by the electrons

he calleda quasiparticle or a quasielectron, and its charge can be for examplee/3.

[3, 71]

Laughlin suggested that because the particles are bound into two dimension, one

could choose a complex numberzj = xj + iyj to represent the position ofjth particle.

He also proposed that at a strong magnetic field the spins of the electrons are automat-

ically polarized. Because of Pauli exclusion principle, the electrons resist compression

strongly. They form a collective state, quantum liquid, which behavior can be described

by one single wave function. Because of the Pauli exclusion principle, the quantum liq-

uid is incompressible. It is also strongly correlated, which is due to the Pauli principle

and the Coulomb repulsion. [3, 71]

The wave function must be antisymmetric in the interchange of particles, but it

must also be an eigenstate of intrinsic angular momentum. Intrinsic angular momen-

tum means that the center of mass angular momentum is omitted. Because the angular

momentumL is conserved, the wave function must a polynomial with the coordinates

z1, z2, ..., zN , and with every term on the same order. The symbolN stands for num-

ber of particles. Laughlin noticed that the simplest wave function that fulfils these

conditions is of the form

Ψ =
N∏

i<j

(zi − zj)me−
∑N

k=1 |zk|2 , (2.1)
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and it is an eigenstate of angular momentum with eigenvalueL = N(N −1)m/2. The

wave function (2.1) is called nowadays as Laughlin wave function. The symbolm in

the equation is an odd number and Laughlin showed that wave function describes a state

where the Hall resistance (1.1) has a value that corresponds to factorν = 1/m. The

model Laughlin presented could not explain the later found values for Hall resistance

ν = 2/3 or ν = 2/5. Still, the theory proposed by Laughlin, and especially writing the

wave function (2.1) has improved our knowledge of FQHE. Laughlin was awarded the

Nobel Prize in physics with Tsui and Störmer in1998. [3, 71]

2.4 Hierarchy Theory: Haldane-Halperin wave func-

tions

The Laughlin theory have been extended afterwards to the hierarchy theory, where

the quasiparticles form new quasiparticles. The formed state is in a way a "daughter"

state of the initial quasistate. According to the hierarchy theory, for example a state

corresponding to factorν = 3/7 is daughter state ofν = 2/5 state, which itself

is daughter state of a state corresponding to factorν = 1/3. The daughter state is

followed from the parent state by adding to itparticle-like or hole-like excitations.

[72, 73, 3]

Maximum density droplet (MDD, i.e. a state with angular momentum

L = N(N − 1)/2), corresponds to a state with filling factorν = 1. Wave function for

a givenSz is of the form

Ψ =
N/2+Sz∏

i<j

(zi − zj)
N/2−Sz∏

k<l

(z̃k − z̃l)
∏
m,n

(zm − z̃n)e−
∑
|z|2 , (2.2)

where the coordinateszi label the positions of spin up particles andz̃i label the spin

down coordinates. The Haldane-Halperin wave function represents a state with a non-

simple fraction [72, 73]

ΨHH =
N/2∏
i<j

(zi − zj)q

N/2∏
k<l

(z̃k − z̃l)q

N/2∏
m,n

(zm − z̃n)pe−
∑
|z|2 (2.3)

whereq is an odd integer andp a positive integer that can be even or odd. One can

notice that in the Equations (2.2) and (2.3), there exists also a spin degree of freedom.

For example, the angular momentaL = N(N − 1)/2 + N2/4 andL = 3N(N −
1)/2−N2/4 agree with the above wave function withq = 1, p = 2 andq = 3, p = 2,

respectively. [II]

2.5 Composite Fermion Theory

Currently the generally used theory for describing FQHE is the composite fermion the-

ory, which was published by Indian physicist J. K. Jain in1989. He thought that the
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hierarchy theory was not good enough in describing the physics of FQHE. Accord-

ing to Jain quasielectrons had too much peculiar properties, like fractional statistics.

Moreover, the number of needed quasielectrons was far too large if one compared it to

the number of normal electrons in that system. For example, the state corresponding

to factorν = 2/5 arises from the stateν = 1/3 when the number of quasielectrons

would be about half of the number of normal electrons. According to Jain, the hierar-

chy theory did not present understanding of the microscopy of the phenomenon. Still,

it gave a good classification for the states. [75, 76]

Hierarchy theory did not explain states, where the factor was on the formν = p/q

with evenq. An example of states like that is a state with factorν = 5/2, which was

discovered by Willetet al [74]. According to composite fermion theory, in principle

all fractions are possible, but some are more stable than others. Jain wanted to reveal

similarities between IQHE and FQHE, because difference on the origin of those two

phenomena felt artificial. Jain wanted to explain these two phenomena with one single

theory. [76]

On previous theories all particles were at the lowest Landau level (LLL). Jain

thought that it was reasonable to allow particles to be also at the higher Landau levels.

According to composite fermion theory, electrons form a collective state and the state

itself acts like one particle. The wave function of this collective state is written as a

function of electron coordinates in the same way as Laughlin wave function. As a dis-

tinction from Laughlin wave function, Jain wave function for FQHE is written with the

help of any IQHE wave function. For example the state corresponding to factor1/m is

written as [76]

Ψ1/m =
N∏

i<j

(zi − zj)me−
∑N

k=1 |zk|2 . (2.4)

The above state is incompressible which can be seen by writing the wave function

Ψ1/m with the help of wave functionΨ1 corresponding to factor1 [76]

Ψ1/m =
N∏

i<j

(zi − zj)me−
∑N

k=1 |zk|2

=
N∏

i<j

(zi − zj)m−1
N∏

i<j

(zi − zj)e−
∑N

k=1 |zk|2

︸ ︷︷ ︸
=Ψ1

=
N∏

i<j

(zi − zj)m−1Ψ1 .

(2.5)

Jain’s idea was that the Equation (2.5) can be interpreted so that electron unites

with m − 1 magnetic flux quanta and therefore carries flux(m − 1)φ0 with it. Uni-

fying magnetic flux quanta with electron does not destroy the incompressibility of the
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original state since unification can be interpreted in mean field approximation so that

a flux tube carrying flux(m − 1)φ0 is attached to every electron. The flux tubes are

not observables so attaching them with electrons do not destroy the correlations of the

stateΨ1 and therefore it stays incompressible. [75]

The result (2.5) can be generalized by formulating every FQHE wave functionΨν

with the help of IQHE wave function by attaching flux tube carrying magnetic flux

(m− 1)φ0 with every electron. Since the original state was incompressible, the result-

ing wave function is as well [76]

Ψν =
N∏

i<j

(zi − zj)m−1Ψν1 . (2.6)

The factorν acquires then a form [76]

ν =
ν1

(m− 1)ν1 + 1
, (2.7)

from which one sees that a FQHE state with factorν has connected with an IQHE state

with a factorν1. The trial wave function for FQHE is written by allowing the state

to be partly at higher Landau levels. In summary, FQHE as a phenomenon is closely

related to IQHE. In1995 Jain proposed that also the physics of quantum dots can be

expressed with the help of composite fermions. [75, 76, 77]

In practice, the composite fermion wave function for FQHE is derived by multiply-

ing an IQHE wave function(φm,n) with the Jastrow factor (2.8)

Dk =
∏
i<j

(zi − zj)2k , (2.8)

and then projecting the result to Bargmann space, which represents LLL. It is physi-

cally reasonable to take a projection to the LLL, because the eigenenergies of the parti-

cles split into two parts when the magnetic field is increased. The confining partEc of

the energy is directly proportional to the magnetic fieldB, and it represents LLL. The

interaction partV depends also on the magnetic field, but the dependency is weaker,

V ∝
√
B. [77]

Projection to the LLL can be done in a general case, i.e. one can take a projection

of an arbitrary holomorphic functionψ to Bargmann space. [82]

P (ψφm,n) = (−1)n+mzn dm

dzm
ψ , (2.9)

wheren andm are positive integers. They determine the angular momentum and

energy coordinates, although not directly, the(m,n) coordinate system is canted45
degrees when compared to(L,E) coordinate system. The wave function of a non-

interacting electronφm,n depends naturally only on one complex variablez. The result

can be generalized to describe a system of several particles [82]
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zα = zα1
1 · · · zαN

N and
∂β

∂zβ
=

∂|β|

∂zβ1
1 · · · ∂zβN

N

, (2.10)

where indicesαi and βi determine the angular momentum and energy coordinates

of particle i and |β| =
∑
βi. In the Equation (2.10), we have introduced markings

α = (α1, ...αN ) andβ = (β1, ...βN ). We notice that the(α, β) coordinate system is

canted by45 degrees when compared to(L,E) coordinate system, as is seen in Figure

2.1.

Figure 2.1: Left panel: a five-particle system at the ground state for angular momentumL =

−10. Right panel: a five particle system at the ground state for angular momentumL = 10.

In both cases, black dots represent particles, i.e. one particle in the system has this particular

angular momentum and energy(L, E) combination. The combination can also be presented in

the coordinate system(α, β). In both systems the particles are non-interacting particles.

The composite fermion wave function forN particle system is an antisymmetric

product of one particle wave functions [82]

φCF
α,β,k = A[zα(

dβ

dzβ
Dk)]e−

1
2 |z|

2
, (2.11)

whereexp(−|z|2/2) is the ground state wave function of harmonic oscillator, andA

is an antisymmetric operator that is explained in more detail below. In practise, the

antisymmetric operator antisymmetrizes the single particle states with respect of allαi

andβj . The wave function (2.11) represents interacting electrons forming a quantum

dot with angular momentumL [77]

L = L∗ + kN(N − 1) , (2.12)

whereL∗ is angular momentum for corresponding non-interacting system. The angular

momentumL∗ for a quantum dot formed with non-interacting particles is bounded

between values

−N(N − 1)
2

≤ L∗ ≤ N(N − 1)
2

. (2.13)
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The composite fermion theory basically represents a system of interacting particles

rotating with angular momentumLwith the help of a system of noninteracting particles

rotating with angular momentumL∗.

From Figure 2.1 we see that the ground state of noninteracting particles in positive

angular momentumL∗ is mirror symmetric inE-axis with a ground state of negative

angular momentumL∗.

In the Equation (2.11), there occurs an operatorA that creates an antisymmetric

productA[Ψ]. The operatorA is on the form

A : τp
0 (ν) → Λpν so, that

A[Ψ] (τ1, τ2, ..., τp) =
1
p!

∑
π

επΨ
(
τπ(1), τπ(2), ..., τπ(p)

)
, (2.14)

where the sum is over all permutationsπ = (π(1)π(2)...π(p)) andεπ = επ(1)π(2)...π(p)

is the Levi-Civita -number. An individual productΨ
(
τπ(1), τπ(2), ..., τπ(p)

)
is a prod-

uct of variablesτi forming a permutation
(
τπ(1), τπ(2), ..., τπ(p)

)
. If the permutation

can be transformed into form(12...p) with even number of hops, thenεπ = +1, and if

the same result is achieved with odd number of hopsεπ = −1. The numberπ(j) gives

thejth number, i.e. for permutation(43...p) we getπ(1) = 4 and π(2) = 3.

2.6 Diagonalization of quantum mechanical Hamilto-

nian using Configuration Interaction (CI) method

Hamiltonian for a quantum dot is of the form

H =
N∑

i=1

(
p2

i

2m
+ Vext(ri)

)
+

N∑
i<j

V (ri − rj) , (2.15)

whereVext(ri) stands for external potential. In practice, external potential is often two-

dimensional harmonic potential. The form for kinetic energy is familiar, and we have

used two different potentials to describe the interparticle interaction. In papers [I-III],

we used the usual Coulombic repulsion

V (r) =
e2

4πεε0r
(2.16)

to describe the interparticle interaction. In research [III], also Gaussian-type repulsion

V (r) =
1
πσ2

e−r2/σ2
(2.17)

was used to show that the semiclassical model presented in [I] is not sensitive to the

shape of the interaction.



24 CHAPTER 2. THEORETICAL MODELS AND NUMERICAL TOOLS

The eigenstates (and eigenenergies) of the Hamiltonian matrix (2.15) are solved

using configuration interaction method. Let us assume that we have a completeN -

electron basis set{ψ}. Any N -electron wave function may be written in a complete

N -electron basis. The idea of the CI method is to write down the eigenvalue problem

HΨ = EΨ (2.18)

and solve it by writing the eigenstateΨ in a completeN electron basis{ψ}. Because

the Slater determinantsψm form a complete basis, the wave functionΨ may be written

as it follows

Ψ =: ΨCI =
∑
m

Cmψm , (2.19)

where the coefficientsCm are to be solved.

An advantage of the CI method is that one can easily solve also the excitation

energies and corresponding states. A disadvantage is that the calculations are very

heavy, and the method is therefore not applicable to systems with more than about ten

to fifteen particles. [78, 79]

It is convenient to use the occupation-number representation for Slater determinant.

In that representation, a state corresponding to a certain particle configuration is written

as

ψ =
∣∣001110000...

〉
. (2.20)

Whenever a state is occupied (unoccupied), the number one (zero) is set to its place.

The state on Equation (2.20) is written on the basis of the eigenfunctions of2D har-

monic oscillator. Furthermore, when one writes the state in that form one only takes

into account the lowest Landau level. If one would take into account also the second

Landau level, the state of Equation (2.20) was of the form

ψ =

∣∣∣∣∣ 0 0 0 0 0 0 0 0 0 . . .

0 0 1 1 1 0 0 0 0 . . .

〉
, (2.21)

where the zeros at the second Landau level mean that it is not occupied. If the particle

with highest angular momentum would jump into the second Landau level (and the

angular momentum would conserve), the state would be

ψ =

∣∣∣∣∣ 0 0 0 0 1 0 0 0 0 . . .

0 0 1 1 0 0 0 0 0 . . .

〉
. (2.22)

Let us write down the wave function corresponding to state (2.20) (or (2.21)) in Figure

2.2. From the picture we see that the angular momentum isL = 2 + 3 + 4 = 9. The

right picture on Figure 2.2 shows a state showed in Equation (2.22).
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Figure 2.2: On left: A three-particle system at a state corresponding to angular momentum

L = 2 + 3 + 4 = 9. One obtains that only the lowest Landau level is used. On right: A three-

particle system in another state corresponding to angular momentumL = 2 + 3 + 4 = 9. One

obtains that the particle on angular momentum4 is at the second Landau level.

2.7 Diagonalization of the Hamiltonian for a classical

few particle system: eigenenergies and correspond-

ing eigenmodes

In the papers [I] and [III], we have considered classical (charged) particles confined to

a harmonic potential. Lagrange mechanics is frequently used, when one has to solve

a classical few particle system [80]. Lagrange mechanics is based on the Lagrangian

functionL

L = T − U , (2.23)

whereT is the kinetic energy of the system, andU is the potential energy of the system.

By varying the time integral of the Lagrangian function (i.e. the action integral) in

respect ofxi(t), and finding the extremum (minimum, in practise) for the action, the

Lagrangian equations of motion forxi can be derived

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 , (2.24)

whereẋi is a time derivative of variablexi.

In present case we are interested in particles confined into two dimensions, solving

the eigenfrequencies of the system, and then quantizing them. The goal is to see how

well this kind of semiclassical model is describing the spectroscopy of quantum dots.

The eigenfrequenciesω for a system with linked equations of motion can be solved

by finding the normal coordinatesqj andq̇j for the system. With the help of the normal

coordinates one can separate the Lagrangian into effective potentialUeff, which de-

pends only on coordinatesqk, and into effective kinetic energyTeff that depends only

on coordinateṡqk [80]

L = Ueff(q1, ..., qn)− Teff(q̇1, ..., q̇1) . (2.25)



26 CHAPTER 2. THEORETICAL MODELS AND NUMERICAL TOOLS

The Lagrangian equation of motion (2.25) is simplified in such a way that

∂Ueff

∂qk
+
d

dt

∂Teff

∂q̇k
= 0 . (2.26)

If the equations of motion (2.26) are linear, their solutions are on the form

C1,k exp(iωt) + C2,k exp(−iωt). This can be written on matrix form and for both

exponential form solutions separately. By skipping few intermediate steps, one comes

to an equation∣∣∣∣∣∣∣∣∣∣
A11 −m11ω

2 A12 A13 ...

A21 A22 −m22ω
2 A23 ...

A31 A32 A33 −m33ω
2 ...

...
...

...

∣∣∣∣∣∣∣∣∣∣
= 0 , (2.27)

where

Ajk =
∂2Ueff

∂qk∂qj
and mjj =

∂2Teff

∂q̇2j
. (2.28)

Once the eigenenergies are solved, one has to find the corresponding eigenmodes. The

symmetry properties of the eigenmodes are needed to define on which angular mo-

menta they may be coupled to make a proper quantum state. We will handle the solu-

tion of eigenmodes more detail in theResultspart, and in Appendix [C].

The problems considered next would be rather easy, if all the equations of motion

were linear as we assumed when we derived the Equation (2.27). The problem is that

when we take Coulombic (or Gaussian) form for interparticle interaction, the equations

of motion are not linear. To solve this problem, one has to first linearize the equations

of motion at their equilibrium position. Therefore, one has to first solve the classical

equilibrium configuration of the system considered.

2.8 Quantization of classical vibrations and rotations

Previously the energy spectrum of a quantum dot has been discovered to be periodic

as a function of the angular momentumL. [79] Our intention was to find out if the

energy spectrum of a quantum dot could be reproduced from the energetics of corre-

sponding classical system. Therefore, the methods for solving classical vibrations were

considered in the previous section.

Once all the eigenmodes are solved, one has to quantize them. The quantization is

performed as follows

ω → En =
(
n+

1
2

)
~ω

L→ L = ~l ,

(2.29)
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where~ is the Planck constant andn a quantum number (an integer) telling the en-

ergy state of the harmonic oscillator. The symboll is the quantum number for angular

momentumL (and actuallyL = Lz because the particles are confined into two dimen-

sion), and it is an integer.

The energy spectrum for a quantized system consists of quantized rotation energy

and the vibration energy. The rotational energyErot, together with the interparticle

interaction energyUinter and the confining harmonic potentialUharm , determines the

lowest possible energy value for certain angular momentum. This energy is therefore

named as the classical zero-point energyE0
cl, and it has an expression

E0
cl = Erot + Uinter + Uharm , (2.30)

For symmetry reasons, this state can not be the lowest state energy for every angular

momentum. The state has to be antisymmetric (symmetric) to be an acceptable state

for a fermionic (bosonic) system.

The request of antisymmetric state leads to a selection rule, first derived by Maksym

[14]

L+
∑

i

niki =
{

0 modp for p = odd

p/2 modp for p = even,

where the symbolp refers to the equilibrium geometry of the system (p-fold ring). The

corresponding requirement for bosons is

L+
∑

i

niki = 0 modp.

The symbolsni refer to the number of excitations of modeωi and the numberki to the

symmetry property of the same mode (rotation by2πk/p is presented byexp(i2πk/p)).[14]

The energy spectrum of this semiclassical model is in general of the form

Ecl = E0
cl +

∑
k

~ωk(nk +
1
2
) + ~ω0(n0 + 1), (2.31)

whereωk are all the vibration frequencies determined in the rotating frame andnk =
0, 1, 2, · · · . The last term corresponds to the center of mass excitations. In research

report [I], the semiclassical energy spectrum for three and four electron systems is re-

ported. In the article [III], a more general view of the problem was considered. In the

latter report, first the semiclassical energy spectrum for seven electron system was re-

vealed. In paper [III], also the semiclassical energy spectrum for three and four bosonic

particles with Gaussian repulsion was studied.

2.9 Atomic units

All the numerical values presented in this thesis concerning the results of my papers

are presented in atomic units. In the atomic unit system, one defines the units so that
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e = me = ~ = a0 = 1 , (2.32)

which means that the charge and mass of electron (e andme), and the Planck constant

and the Bohr radius (~ anda0) equal to one. The Bohr radius is on the form [81]

a0 =
4πε0~2

mee2
, (2.33)

which leads immediately to a simplifying fact that in atomic unit system also

4πε0 = 1 . (2.34)

Let us consider an example to explain the numerics of atomic unit system. Electrons in

a quantum dot can be considered to be confined in a harmonic trap. Let us assume the

strength of the trap to beω0 = 1
2 (in atomic units). The corresponding strength for the

spring constantk (in SI units) is

k = ω2
0me =

1
4

(
~

2πmea4
0

)2

me =
~2

16π2mea2
0

≈ 10
N
m

, (2.35)

a value that, interestingly, could also be a typical strength of a mesoscopic spring.

2.10 Generalized Hubbard model

The generalized Hubbard model Hamiltonian is on the form

Ĥ = Ĵ + Û , (2.36)

where the first term represents the energy needed for hopping and the latter is the inter-

action energy. Hops preserve spin, and are equal for spin-up and spin-down particles.

Thus,Ĵ separates into two symmetric spin parts:Ĵ =
∑

σ=↑,↓ Ĵσ. Each part can be

written as

Ĵσ = −
∑
nn′

∑
jj′

Jnn′jj′

(
c†njσcn′j′σ + h.c.

)
, (2.37)

where the indexσ is the spin index, andn andn′ refer to different dots (i.e. lattice

sites). For every lattice siten, summation overn′ includes all sites where the electron

can hop from siten. When looking closer the expression for the hopping matrix (2.37),

one notices that the generality of this model comes from the double summation over

several statesj and j′ in each dot. In the usual Hubbard model, there is only one

possible state (if the spin degree of freedom is excluded), where an electron can sit at

one lattice site. The matrix elementJnn′jj′ , in Equation (2.37), gives the energy scale
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for electron to hop from its present state at(n, j) to an other state in(n′, j′). In the

article [IV], we considered lattices with one and two sub-atomic sites. In the research

paper [V], we investigated clusters with two and three sub-atomic sites per one lattice

site.

The interaction term in Equation (2.36) is approximated in the spirit of the tight-

binding model: The particles interact only when they are at the same lattice site.

Therefore,Û separates in the symmetric parts representing interactions on each site

n: Û =
∑

n Ûn. Within a site, full (spin-independent) two-body interaction is “al-

lowed”, which yields

Ûn =
1
2

∑
j1j2j3j4

σσ′

Uj1j2j3j4c
†
nj1σc

†
nj2σ′cnj4σ′cnj3σ. (2.38)

Two-body interaction matrix elementsUj1j2j3j4 are the direct space matrix elements

of on-site interaction, depending on the interaction itself and thej-orbits in question,

i.e. the eigenstates of the confining potential. Note that the total spinS and itsz-

componentSz are good quantum numbers. We diagonalize the system forSz = 0 for

even number of electrons and forSz = 1/2 for odd number of electrons. The total spin

S is determined after that for each many-particle state.

2.11 Heisenberg model

As mentioned in the Introduction part, earlier studies with artificial lattices have showed

that Hund’s first rule orders the total spin of an individual (isolated) lattice site. This

has been observed by using mean-field calculations based on the spin-density func-

tional theory. Furthermore, it is generally known that the simple Hubbard model at

the limit of largeU/t (U and t represent the interaction strength and the energy re-

lated to the hops, respectively) approaches the antiferromagnetic Heisenberg model.

In research reports [IV] and [V], we have used the Heisenberg model in analyzing the

results calculated with the Hubbard model. The effective Heisenberg Hamiltonian is

on the form

Ĥeff =
1
2
Jeff

L∑
n 6=n′

Sn · Sn′ + constant, (2.39)

whereSn is the spin operator for siten. In the report [IV], we compare the Heisenberg

and Hubbard models for the case of four sites,L = 4, where the spectrum of the anti-

ferromagnetic Heisenberg model can be solved exactly[67, 84]. In the report [V], the

corresponding comparison is made in all physical systems considered. In our research,

the spin on Equation (2.39) can have values1/2, 1, or 3/2 when first, second or third

shell is half filled, respectively.
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Chapter 3

Results

3.1 Semiclassical model in describing quantum dots

In this section, we present results that were published in papers [I], [II] and [III].

Maksym [85, 14] was the first one who tried to describe quantum dots with a semi-

classical model. He showed that the lowest energy states for a few electron quantum

dot can be explained with a reasonable simple model. We developed a comparable

semiclassical model using a different technique to describe spectroscopic properties of

quantum dots.

In publications [I] and [III], the equilibrium geometries of the systems considered

were first revealed, and after that the solution for the eigenmodes was carried out by

simply linearizing the equations of motion around the equilibrium position. After solv-

ing the eigenmodes (technique is shown in Appendix [C]), their symmetrical properties

were solved by using group theory [86]. Finally, the energy spectrum of corresponding

quantum dot was revealed. The quantum mechanical energies were determined via the

following equation

Ecl = E0
cl +

∑
k

~ωk(nk +
1
2
) + ~ω0(n0 + 1), (3.1)

whereωk are all the vibration frequencies determined in the rotating frame andnk =
0, 1, 2, · · · , and the last term corresponds to the center of mass excitations. The

energy spectra for three and four electron quantum dots is presented in Figure 3.1 as

open squares. The results in the figure show clearly that the energy spectrum can be

understood well with this simple semiclassical model.

In paper [I], it was shown that both the whole low energy spectrum and the cor-

responding modes could be explained with a semiclassical model. The results of the

first are shown in Figure 3.1, and the results for the latter are shown in Figure 3.2. The

results indicate that, despite the many body theory is often needed to describe properly

a quantum mechanical system, many properties, for example spectral properties, can

indeed be explained with the help of this semiclassical model.

31
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Figure 3.1: On the left: Many-particle energy spectrum for three electrons. The interaction

energy is shown as a function of the angular momentum. The black dots are results of the

Schrödinger equation and the open squares the results from the classical model. The center of

mass excitations are not shown as points but are indicated as dashed lines. The numbers indicate

the order of the vibration state a system of three noninteracting particles in its ground state(n1).

On the right: The same results for four electrons. The numbers indicate the vibration state

(n1, n2).

These results are in accordance to observed localization of particles into a Wigner

molecule [87, 88]. The localization is a necessary condition, but definitely not a suffi-

cient, for manifestation of a classical model as an explanatory theory for quantum dots.

Therefore, it was a little surprise that semiclassical model works so well as it does.

Later, Fanga,et al [89] have found states that semiclassical model omits. On the other

hand, Zhensheng Daiet al [90] have later published a fully quantum mechanical model

that explains well the energetics and states of few particle quantum dots. In addition,

the composite fermion theory has recently demonstrated, by Chuntai Shiet al, to ex-

plain properly the energetics and states of localized Wigner crystals (for which they

used name ’CF crystals’) [91].

We examined also how the semiclassical energy spectrum evolves on higher energy

levels. Because of the mixing of the states, it is virtually impossible to directly compare

the semiclassical and quantum energy spectra. Therefore, we concentrated to compare

the density of states (DOS) from both spectra. By using DOS as a tool of research,

we found that the similarity of these two spectra continues also at much higher energy

levels than those shown in Figure 3.1.

In research paper [III], we continued to study semiclassical model. In that paper,

we first showed that the energy spectrum for seven electrons could also be understood

with the same semiclassical model used in [I]. The seven-particle-system was chosen

because it has a very stable classical configuration: a hexagon with one electron at

the center. The semiclassical and quantum mechanical spectra are presented in Figure

3.3, from which one can observe that the semiclassical model works well. Our result

contradicts to the case of six electrons where Maksymet al [15] found two competing

minima. They concluded that this competition spoils the explanatory value (in energy

spectrum) of the semiclassical model. This is due to uncertainty of which classical

equilibrium geometry will dominate in the energy spectrum.
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Figure 3.2: The left column shows the classical geometries and modes (pseudo-rotations) for

three and four electrons. The two other columns show contour plots of the pair correlation

functions from the quantum mechanical calculation. The reference point is shown as a cross.

The relation of the pair correlation functions to the classical extreme geometries is indicated

with solid and dashed lines. The numbers in parentheses are (L, n1, n2) indicate the angular

momentum and the vibration state.

We found out that also with of seven electrons, other geometries than hexagonal

are possible. Contradictory to the six-electron case, in the seven-electron case other

geometries are much higher in energy. The picture on the left in Figure 3.4 is a non-

vibrating state (pure rotational state), and it is drawn to illustrate a normal six-fold

state. The picture on the right shows a state that is not six-fold but rather seven-fold,

which is a quite interesting result as such. The state in the middle, on the other hand,

is a normal excited state (but does not seem to be ashamed of it).

In the paper [III], we investigated also other interactions, and how they affect to the

validity of the semiclassical model. We published some analytical results for harmonic

repulsive interaction of the particles. The main results are derived in Appendix [A].

In addition, the Gaussian interaction was considered and investigated in the cases of

three and four particle quantum dots as an example. Term “particle” was used because
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Figure 3.3: Low energy spectrum of seven electrons at high angular momenta. Black dots show

the exact diagonalization results and open squares the results of the model Hamiltonian (8),

shifted upwards with a constant 0.014.∆E is the interaction energy in atomic unitsω0 = 0.5.

The ground states forL = 129 and135 are purely rotational states. The ground states from

L = 130 to L = 134 have vibration modesω5, ω4, ω6, ω7, ω3, respectively.

Figure 3.4: Pair correlation functions for selected states of seven electrons. Left panel shows

the purely rotational state (ground state forL = 117). The center panel shows a vibration state

(fourth excited state forL = 133), which consists of vibration modesω5 andω6. The right

panel shows a seven-fold ring as a high-excited state (17th state forL = 133). The division

between the frame ticks is 2 (in atomic units) and the reference point is shown as a black dot in

each figure.

we investigated both fermions and bosons. The motivation for studying particles with

Gaussian repulsion was that repulsive interaction between atoms can be approximated

via such interaction. In the semiclassical model, it is essential to know which energy

belongs to which mode. This fact leads to technical difficulties, because taking Gaus-

sian repulsion to be the interparticle interaction, leads immediately to transcendent
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Figure 3.5: Dependence of the two low-energy vibration modes on the total angular momentum

in the case of four fermions interacting with a Gaussian interaction withσ = 3.0. Dashed (red)

lines show the classical results and solid black lines the quantum mechanical results from the

exact diagonalization. All energies are in atomic units.

equations. Therefore, analytical results for the energies or their modes are not achiev-

able. More importantly, keeping track on which energy belongs to which mode turns

out to be somewhat challenging. With three electrons, the situation was easy because

the number of relevant modes equals to one and it is easy to find.

With four particles, we had to solve numerically both the energies and the modes.

It was necessary to find the right energy-mode pairs numerically, and this search had to

be done for each angular momentum separately. Doing that was worthwhile, because

I found out that the energies of the two lowest modes actually cross at certainL. If

the semiclassical model explains the energetical properties of quantum dot properly,

this state crossing should also happen in the quantum mechanical energy spectrum.

That was exactly how it was. In Figure 3.5, we demonstrate the observed “phase tran-

sition” for both semiclassical and for quantum mechanical quantum dot. The “phase

transition” is crystal clear on both case, although it does not occur at the same angular

momentum.

Previously (see Ref. [25]) it has been noticed that the localization of particles

in a quantum dot is related to angular momentum. Here we want to point out, that

angular momentum does not seem to affect the electron probability distribution, which

is demonstrated in Figure 3.6 (clearly, the varianceW of the radiusR for quantum

ring considered, seems to stay constant even if the angular momentumL increases).

When particles rotate with larger angular momentum, the localization occurs when the

probability maxima of electrons move farther away from each other, which is illustrated

in Figure 3.7. From that figure it is clearly seen that the magnitude of the angular
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Figure 3.6: Average radius of the ring of four bosons as a function of the angular momentumL,

calculated with exact diagonalization in the LLL. The centerline and -points show the radiusR

and the lower and upper lines and -pointsR ± W . The variance of the radius is labeled asW .

Solid lines show results for the Gaussian interaction withσ = 3.0, squares forσ = 0.05 and

crosses for the Coulomb interaction. Dotted line is the result for classical particles with Gaussian

interaction,σ = 3.0. The radii are presented in atomic units.

momentum does not have an effect to the probability distribution amplitude or to the

width of the distribution.

We considered also rotational spectra of interacting particles in a 2D harmonic po-

tential. In the 3D case, the classical particles interacting with repulsive interaction tend

to form spherical shells. However, when put into rotation, it is energetically favorable

for the 3D structure to collapse into a 2D structure due to the increased momentum of

inertia. For a few particles, this happens already at small angular momenta.
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Figure 3.7: Pair correlation functions of four fermions interacting with the Gaussian interaction

with σ = 3.0. Upper row shows results forL = 10 (left)andL = 18 (right) and the lower row

for L = 30 (left) andL = 42 (right). The contour plots are in the same scale to demonstrate the

expansion due to the rotation. The division between the frame ticks is 1 (in atomic units).
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Figure 3.8: On the left: Excitation energies as a function of the angular momentum. Points are

results of the exact diagonalization and the lines from the model of classical vibrations. Blue

points: S = 2, open circles:S = 1, green squares:S = 0. On the right: Spectrum for 7

electronsν = 1 · · · 1/3. Blue crosses:S = 1/2; blue squares:S = 3/2; red open squares:

S = 5/2; black dots:S = 7/2. A third order polynomial fitted to the lowest energies has been

subtracted from the total energy.
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Table 3.1: Overlap between the exact result and the Halperin-Haldane model,|〈ΨHH|Ψ〉|2, for

different filling factorsν and electron numbersN

N \ ν 1 2
3

2
5

1
3

2 1 1 1 1

3 1 .843 .920 .982

4 1 .636 .931 .958

5 1 .363 .911 .970

6 1 .162 .909 .980

Earlier [92] it has been shown that specific 3D structures collapse to 2D struc-

ture when are put to rotation. We studied the case of seven particles interacting with

Coulomb interaction. We found that the ground state geometry of a non-rotating sys-

tem is a pentagonal bipyramid, i.e. a five-fold ring in thex-y-plane with two atoms at

positions±cẑ. We also found that when such system is put to rotation, the five-fold

ring expands while the particles in thez axis become closer to each other. The final

phase transition from 3D to 2D structure occurs approximately at angular momentum

L = 7. Similar results are obtained for other small particle numbers in 3D harmonic

oscillator. Therefore, we concluded that the region where the classical model explains

the spectrum for the 2D harmonic oscillator the result would be the same had we done

the computations for the 3D confinement.

In research paper [II], my role was on computing energies of a quantum dot with

four and seven particles. In that research, the semiclassical model was used with the

spin degree of freedom. In Figure 3.8 excitation energies (on left panel) as a function

of the angular momentum, are shown. The results show that the classical model with

the spin degree of freedom explain all the lowest energies. In the figure (on right panel)

spectrum for 7 electronsν = 1 · · · 1/3, is presented. From that figure one observes a

gap between the lowest band (purely rotational states) and the first excited band (lowest

vibration states).

The spin degree of freedom makes it possible that purely rotational state can be

lowest state of the system for every angular momenta. On article [II] also the symme-

try of the order for states on both sides of angular momenta corresponding to filling

fractionsν = 1/m, with odd denominator, was observed (Figure 13 on article [II]). In

that research, I also contributed on calculation of overlap integrals (Table 3 in article

[II]). It was shown that the wave functions calculated by exact diagonalization (with

filling factors , and ), overlap with the Haldane-Halperin model wave functions well

with ν = 1/3 and reasonably well withν = 2/5 as shown in Table 3.1. From the table

one observes that overlap is not so good whenν = 2/3 and it becomes worse when the

number of particles increases.

In conclusion, we have shown that at high angular momenta the energy spectrum of
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particles confined to a 2D harmonic trap can be explained with the means of classical

physics. The classical modes of localized particles were solved in a rotating frame of

reference, and after that the modes were quantized. The form of inter-particle repulsion

or the statistics that particles obey does not seem to affect to the localization or to the

energy spectrum. It was pointed out that the situation would be the same for 3D har-

monic trap, because the 3D structure collapses into 2D structure in any case, when the

angular momentum increases. The validity of the semiclassical model in the presence

of the spin degree of freedom was observed.

3.2 Composite Fermions

The composite fermion theory is widely used in describing the physics of quantum dots

in addition to describing the nature of quantum Hall effect. My purpose was to show

some mathematical properties of the composite fermion theory and use it to understood

the systematics of the rotational spectra. However, we collided with several technical

problems and therefore these results did not lead to publications. Nevertheless, we

shortly go through some of my unpublished results in Appendix [B].

3.3 Magnetism in 1D quantum lattices, and in 2D and

3D clusters

In this section, we present results that were published in papers [IV] and [V]. We

use generalized Hubbard model (2.36) to solve spectral and magnetic properties of

quantum systems, mainly lattices and clusters. The strength of the interaction energy

is used as a parameter in papers [IV] and [V]. In the previous research, we considered

only δ potential to be the interaction energy, while in the latter paper we considered

also Coulombic repulsion.

In the research paper [IV] we studied the magnetism of one-dimensional artificial

lattices made of quasi-two-dimensional potential wells, for up to four particles per lat-

tice site. In that region, the 1p level is (partially) filled. The 1s band was approximated

to be filled completely, and only the 1p states were considered (shown in Figure 3.9).

Numerical diagonalization of a generalized Hubbard model was performed for several

particle numbers and filling fractions. The antiferromagnetic Heisenberg model was

used in the analysis of the Hubbard model results.

An approximation is applied to the interparticle interactions with tight-binding in-

teraction meaning that the interaction energy is finite only when the electrons are at the

same lattice site. The ratio of interaction energy with electrons in the same state (e.g

perpendicular-perpendicular) and interaction energy with electrons in different states

(longitudinal-perpendicular) is approximated to be3. Next, the validation of this ap-

proximation is presented.
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Figure 3.9: Schematic pictures of 1D lattices considered. Each lattice site haspx andpy or-

bitals. In thelateral case, these are shown as light and dark-gray densities. Here, the hopping

probabilitiest andt2 between neighboring lattice sites are different forpx andpy orbitals. In

the vertical case, it is natural to use states with ’rotating orbitals’p+1 andp−1 with circularly

symmetric densities. In this case, there is only one hopping probabilityt.

Let us concentrate now on derivation of the earlier discussed relation for interaction

matrix elements. We assume that the two states are p-states as they are in hydrogen

atom

px = xe−αr = r cos θe−αr

py = ye−αr = r sin θe−αr
, (3.2)

where(r, θ) are the electron’s polar coordinates in 2D and(x, y) the corresponding

Cartesian coordinates. We need to the matrix elements〈lm|V |pn〉 forψl, ψm, ψn, ψp =
px or py. Generally

〈lm|V |pn〉 =
∫
r,r′

ψ∗l (r)ψp(r)ψ∗m(r′)ψn(r′)V (r− r′), (3.3)

which is simplified after inserting in the delta interactionV (r−r′) = V0δ(r−r′). The

integration overr′ can be performed

〈lm|V |pn〉 = V0

∫
r

ψ∗l (r)ψp(r)ψ∗m(r)ψn(r). (3.4)

Because all the wave functions are proportional tore−αr, we get

〈lm|V |pn〉 = V0

∫ 2π

θ=0

f(θ)dθ
∫ ∞

r=0

(
re−αr

)4
rdr︸ ︷︷ ︸

=A=constant

, (3.5)
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Figure 3.10: Lowest energy levels (E � U ) for L = 4 andN = 8 calculated for different

values ofU . The numbers next to the levels denote the total spinS of the many-particle state. The

wave vectork has values 0, 1, and 2. The symbols plus, square, star, circle and dot correspond

to U values 2, 2.5, 5, 10, and 50, respectively. The energy levels forU = 50 agree with those of

theS = 1 Heisenberg model with 0.01 % accuracy.

wheref(θ) is a function that depends only onθ and it is determined immediately after

the wave functions are chosen. The possible combinations forf(θ) are listed on the

following

cos4 θ, for 〈pxpx|V |pxpx〉

sin4 θ, for 〈pypy|V |pypy〉

sin2 θ cos2 θ, if both px andpy appear twice

sin θ cos3 θ, if py(px) appears once (three times)

sin3 θ cos θ, if px(py) appears once (three times)

. (3.6)

The integration in the expression (3.5) gives then3π/4, 3π/4, π/4, 0, 0, respectively.

The ratio of the two different nonzero matrix is exactly3. Even though we derived this

relation for p-states that are for hydrogen-like potential1/r, it is true also for harmonic

oscillator (HO) potentialr2, where the p-states are on the formpx = xe−αr2
and

py = ye−αr2
. We denote the nonzero matrix elements asU and3U , in units of the

hopping parametert.

In the Figure 3.10 it is shown that in a vertical lattice, the system with half filling

(and at the strong interaction limit) can be described correctly with the antiferromag-
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Figure 3.11: Lowest energy levels (E ≤ 0) for polarized fermions withL = 4 andN = 4

calculated for different values of∆ for U = 50. The numbers next to the levels denote the total

spin of the corresponding state of the spin-1/2 Heisenberg model. The wave vectork has values

0, 1, and 2. The symbols star, circle and dot correspond to∆ values 2, 10, and 50, respectively.

The energy levels for∆ = 50 agrees with those of theS = 1/2 Heisenberg model with 0.1 %

accuracy.

netic Heisenberg model. Hubbard model results equal to Heisenberg model calcula-

tions within a0.01% accuracy. It is emphasized that also at weaker interaction the

computations show a qualitative similarity.

Results in the Figure 3.11, on the other hand, show anorbital antiferromagnetism.

In that system, each site has twop states. The strongU limit in this case is an anti-

ferromagnet where the ’magnetic moment’ in each lattice site is not the spin but the

orbital angular momentum of thep states, which can have the two values +1 or -1. The

Heisenberg model energies equal to the Hubbard model energies within0.1%.
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Figure 3.12: Magnetic phase diagram of the one-dimensional lateral lattice. The vertical axis

shows the number of particles per site (onp-states) and the lateral axis the ratiot2/t of the

two hopping parameters. The dashed lines show the borders between which the narrower band

(t2 band) is filled. Outside this area the lattice is antiferromagnetic (except att2 = t). The

filled (open) symbols show the ferromagnetic (antiferromagnetic) ground states obtained with

exact diagonalization of the Hubbard Hamiltonian for 10 (triangles), 6 (squares), and 2 (circles)

particles. Crosses show those results forN = 6, which are not ferro or antiferromagnetic, i.e.

0 < S < N/2. The numerical results are forU = 10.

With lateral lattices, the whole magnetic phase diagram was resolved (Figure 3.12).

Figure shows the magnetism of the lowest state as a function of both the number of

particles per site (on thep-states) and the ratiot2/t of the two hopping parameters.

The limits shown in the figure are given by Eqs. (3.7)

N

L
<

1
2π

cos−1(t2/t) . (3.7)

and (3.8)

N/L > 2− 1
2π

cos−1(t2/t) (3.8)

and they are discussed in detail in article [IV]. One observes that between these limits,

the ground state is mainly ferromagnetic, while outside these limits it is always anti-

ferromagnetic. In the Figure 3.12, results for 2, 6 and 10 particles are shown. In the

cases ofN = 4, 8, 12, · · · the ferromagnetic state has a spin-wave (or domains) and

interpretation of the magnetic structure is more difficult.

On the research [IV], it was found out that lattices seem to prefer ferromagnetism.

An exception to that, in all systems under investigation, the half filled cases are anti-
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1 2

3

Figure 3.13: Schematic picture of clusters considered. Upper panel on the left: a triangle with

orbitalspx andpy per lattice site; Upper panel on the middle: a triangle with orbitalspx, py and

pz; Upper panel the right: a tetrahedron with orbitalspx andpy andpz; Lower panel on the left:

Four dots in a square; Lower panel on the right: Four dots in a row with periodic boundaries.

ferromagnetic and in those cases a corresponding antiferromagnetic Heisenberg model

explained the results well.

In research report [V], several 2D and 3D clusters were considered. Their magnetic

properties were revealed and in the cases of half filling factor they were interpreted with

the help of a proper antiferromagnetic Heisenberg model. On the upper panel of the

Figure 3.13, two triangle clusters and one tetrahedron cluster is presented. From left

panel onwards the clusters are a triangle with twop states per site, a triangle with

threep states per site and a tetrahedron with threep states per site, respectively. An

addition to those, also a dimer was investigated, and four quantum dots (with partially

filled p or sd shell) in a square and in a row. Schemadic pictures of considered four

dot systems are presented on the lower panel of the Figure 3.13. The row geometry is

presented with periodic boundaries, but also row geometry without periodic boundaries

was investigated.
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Figure 3.14: 25 lowest energy states for 12sd electrons in a square calculated with the delta

function (Umax/Jmax = 10), squares, and with the Coulomb interaction (Umax/Jmax = 7.5),

open circles, compared with the results of the Heisenberg model, black dots. The results for the

Coulomb interaction and the Heisenberg model have been scaled and shifted so that the ground

state and the lowestS = 4 state agree with those of the delta function interaction.

It was found out that at the half filling of a dimer, a square and a row, a correspond-

ing antiferromagnetic Heisenberg model can describe the spectroscopic and magnetic

properties properly. The results for the square with half filledsd shells are presented

in the Figure 3.14, and the same with row geometry is presented in the Figure 3.15.

From the figures one observes that the spectrum calculated with the Hubbard model

can be explained well with the help of corresponding Heisenberg model. A suitable

Heisenberg model explained also the systems with half filledp orbitals.

The Heisenberg model turned out to describe well also triangular and tetrahedral

quantum dot clusters at the half filling. We investigated only partially filledp orbitals

for those clusters. The result was most evident with repulsive delta interaction but the

agreement was good with the Coulomb interaction also. With tetrahedral geometry the

dimension of the cluster was obviously three, and therefore threep orbitals per site was

considered. With triangle geometry we investigated both two and three-dimensional

clusters, i.e. two and threep orbitals, respectively. The results of triangular cluster

showed that the only effect of the inclusion of the thirdp orbital, was to increase the

spin per dot for the Heisenberg model.
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Figure 3.15: 25 lowest energy states for 12sd electrons in a row of four quantum dots.

Black points are results for a row of vertical dots calculated with the delta function interac-

tion (Umax/Jmax = 40), open circles are results for a row of lateral dots calculated with the

Coulomb interaction (Umax/Jmax = 7.5). The results for Coulomb interaction have been scaled

and shifted so that the ground state and the lowestS = 4 state agree with those of the delta func-

tion interaction.

In the research papers [IV] and [V], we investigated 1D quantum dot lattice and

several 2D and 3D quantum dot clusters. Three lowest shells1s, 1p and2s1d were

considered to be partially filled. Therefore, the generalized Hubbard model was used

to solve the spectroscopic and magnetic properties of these systems. The antiferromag-

netic Heisenberg model was used in the analysis of systems with half filled orbitals.

The analysis showed that in all half filled cases the cluster or lattice is truely antiferro-

magnetic. With other fillings the considered systems favored mostly ferromagnetism.
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Conclusions

This thesis consists of five articles, which are related to three different subjects in ma-

terial physics. Two of the articles handle quantum dots (papers [I] and [III]). In those

publications, we consider a semiclassical model, whereby we tried to describe quantum

dots. Article [II] covers an area of the relation of quantum liquids with quantum dots.

Two of the articles are subjected to artificial lattices and artificial clusters that have

multiple orbitals on their lattice sites (articles [IV] and [V]). In those articles, we made

calculations with the Hubbard model and analyzed the results with a proper Heisenberg

model.

In the first part (and articles [I] and [III]), we showed that the energy spectrum of

interacting particles confined to a 2D harmonic trap can be explained with a semiclassi-

cal model. The classical vibration modes of localized particles were solved in a rotating

frame of reference. Quantum mechanics was brought to the system by quantizing the

energies of the modes and by using group theoretical means when combining the modes

to the angular momentum. We managed to show that the form of interparticle repul-

sion or the statistics that particles obey makes no big difference to the validity of the

semiclassical model. We went through a mathematical discussion related to composite

fermion theory, but it did not lead to significant results.

In the research of quantum dot lattices and clusters (papers [IV] and [V]), We stud-

ied the magnetic phase diagrams for systems that consisted of artificial atoms with

many particles. We found that majority of the systems favored ferromagnetism. How-

ever, In the cases where half of the states were filled, all the systems were antiferro-

magnets. In these cases, the antiferromagnetic Heisenberg model described well the

low energy spectrum of the Hubbard model.

47
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Appendix A

Harmonic interparticle

repulsion

Here we consider a situation where there is, instead of the normal Coulombic repulsion,

a repulsive harmonic interaction between particles. For two particles the total potential

is then

U =
1
2
(
ω0

2
(
x1

2 + y1
2 + x2

2 + y2
2
)
− Ω2

(
(x1 − x2)2 + (y1 − y2)2

))
, (A.1)

whereω0 is essentially the strength of the attractive harmonic interaction andΩ the

strength of the repulsive harmonic interaction. The classical Hamiltonian matrix is

H =


ω0

2 − Ω2 Ω2 0 0
Ω2 ω0

2 − Ω2 0 0
0 0 ω0

2 − Ω2 Ω2

0 0 Ω2 ω0
2 − Ω2

 , (A.2)

which is clearly block diagonal. Therefore, the displacements in thex andy directions

can be treated separately.

By using simple algebra the eigenfrequencies can be solvedω2 = ω0
2 CM vibration, twofold degeneracy

ω2 = ω0
2 − 2Ω2 twofold degeneracy

. (A.3)

The eigenmode for the internal vibration is clearly of the formx = x0 sinωt

y = x0 cosωt
. (A.4)

49
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Therefore the angular momentum is

L = Iω = 2x0
2ω , (A.5)

wherex0 is thex -coordinate of the equilibrium point andI stands for the moment of

inertia. The total energy is

E =
L2

2I
+ Uharm =

4x4
0ω

2

4x0
2

+
(
ω0

2 − 2Ω2
)
x0

2

=2x0
2
(
ω0

2 − 2Ω2
)

.

(A.6)

On the other hand, the system can be thought as a quantum mechanical harmonic os-

cillator that vibrates with frequencyω (neglecting the zero point energy)

E = n1ω = n1

√
ω0

2 − 2Ω2 , (A.7)

wheren1 is the usual quantum number for vibration. By combining Equations (A.6)

and (A.7) the equilibrium point can be expressed in a simple form

x0
2 =

n1

2ω
, (A.8)

which leads to an important relation between the quantum numbers of rotation and

vibration

L = 2x0
2ω = 2

n1

2ω
ω = n1 . (A.9)

Now we can express the internal energyEint in terms of angular momentum

Eint = E − Lω0 = L (ω − ω0) , (A.10)

from which we observe that the internal energy decreases linearly as angular momen-

tum increases. It is an understandable result because the particles move farther apart

from each others as the angular momentum increases.

It is easy to see that the eigenfrequencies in case of the harmonic interparticle re-

pulsion are ω2 = ω0
2 CM vibration, twofold degeneracy

ω2 = ω0
2 − nΩ2 2(n− 1) -fold degeneracy

, (A.11)
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wheren is the number of particles. We will now derive this result. The total potential

energy forn particles is

U =
1
2

ω0
2

n∑
i=1

(
xi

2 + yi
2
)
− Ω2

n∑
i<j

(
(xi − xj)

2 + (yi − yj)
2
) , (A.12)

which leads to the classical2n× 2n Hamiltonian matrix that is clearly block diagonal.

Therefore, the other part of the matrix can be dropped out, and the Hamiltonian is on

the form

H =


ω0

2 − (n− 1)Ω2 Ω2 Ω2 ...

Ω2 ω0
2 − (n− 1)Ω2 Ω2 ...

Ω2 Ω2 ω0
2 − (n− 1)Ω2 ...

...
...

...

 , (A.13)

which isnxn matrix. The eigenvalue equation leads to the usual case, where the corre-

sponding determinantD must vanish

D =

∣∣∣∣∣∣∣∣∣∣
α β β ...

β α β ...

β β α ...
...

...
...

∣∣∣∣∣∣∣∣∣∣
= 0 , (A.14)

where the variables are α = ω0
2 − (n− 1)Ω2 − ω2

β = Ω2 .
(A.15)

The determinantD in the Equation (A.14) can be simplified by using general ma-

nipulation rules of determinant. If the first column is subtracted from every other col-

umn, the determinant remains invariant

D =

∣∣∣∣∣∣∣∣∣∣∣∣

α β − α β − α β − α ...

β α− β 0 0 ...

β 0 α− β 0 ...

β 0 0 α− β ...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣
, (A.16)

where all the off-diagonal values that are not in either in the first column or in the first

row are zero. The determinant (A.16) can easily be expanded
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D =α (α− β)n−1

− (β − α)β (α− β)n−2 + (β − α)β (α− β)n−2 · (−1) + ...︸ ︷︷ ︸
=(n−1)β(α−β)n−1

=(α+ (n− 1)β) (α− β)n−1

. (A.17)

The determinant can now be inserted into the Equation (A.14). By taking the values

for the constantsα andβ (A.15), we finally obtain Eq. (A.11). The2(n − 1) times

degenerate internal vibration mode can also be solved easily. Let us consider only the

movement inx -direction in which case we get


ω0

2 − (n− 1)Ω2 Ω2 Ω2 ...

Ω2 ω0
2 − (n− 1) Ω2 Ω2 ...

Ω2 Ω2 ω0
2 − (n− 1) Ω2 ...

...
...

...



x1

x2

x3

...



=
(
ω0

2 − nΩ2
)

x1

x2

x3

...


.

(A.18)

Solving the matrix product leads to an equation group



(
ω0

2 − (n− 1)Ω2
)
x1 + Ω2 (x2 + x3...+ xn) =

(
ω0

2 − nΩ2
)
x1(

ω0
2 − (n− 1)Ω2

)
x2 + Ω2 (x1 + x3...+ xn) =

(
ω0

2 − nΩ2
)
x2

...(
ω0

2 − (n− 1)Ω2
)
xn + Ω2 (x1 + x2...+ xn−1) =

(
ω0

2 − nΩ2
)
xn

. (A.19)

This is actually the same equation appearingn times and it is true only if

n∑
i=1

xi = 0 , (A.20)

which means that the center of mass does not move. Therefore, the system can be put to

vibrate in the simplest possible way that keeps the center of mass to stay at the origin.

Two particles rotate at circular orbits while the rest remain still at the origin. Thus, the

set of2 (n− 1) times degenerate modes is on the form

X = { (sinωt,− sinωt, 0, ..., 0) , (sinωt, 0,− sinωt, 0, ..., 0) , ...,

(sinωt, 0, ..., 0,− sinωt)}
. (A.21)



Appendix B

Results related to the CF theory

B.1 Symmetrics

The composite fermion wave function is on the form (2.11). The wave function has

to describe fermions and consequently it has to be antisymmetric in every interchange

of two particles. The antisymmetricity is achieved by using an antisymmetric product

introduced in Equation (2.14). Whenp = 3, the antisymmetric product for particles

(τ1, τ2, τ3) is on the form

A[τ1, τ2, τ3] =
1
3!

(
ε123A(τ1, τ2, τ3) + ε213A(τ2, τ1, τ3) + ε132A(τ1, τ3, τ2)

+ ε312A(τ3, τ1, τ2) + ε321A(τ3, τ2, τ1) + ε231A(τ2, τ3, τ1)
)

=
1
6

(
A(τ1, τ2, τ3)−A(τ2, τ1, τ3)−A(τ1, τ3, τ2)

+A(τ3, τ1, τ2)−A(τ3, τ2, τ1) +A(τ2, τ3, τ1)
)

.

As discussed before, a state of noninteracting many particle ground state with angu-

lar momentumL∗ = N(N − 1)/2 is mirror symmetric due energy axis with a ground

state with angular momentumL∗ = −N(N − 1)/2.

B.2 Wavefunctions for positive angular momentumL∗

It can be seen from the form of composite fermion wave function (2.11), after tedious

calculation, that fork = 1 and with positiveL, the ground state has automatically a

Slater determinant as a multiplier. The Slater determinant appears in Equation (2.8),

where its power is2. From the Figure 2.1 it is seen that whenk = 1, which means that

β = (β1, ...βN ) = (0, ..., 0), the derivatives do not occur in Equation (2.11). On the

other hand, all permutations of numbers0, ..., N − 1 appear in the antisymmetrization

of α = (α1, ...αN ). Therefore, all terms of the formzα1
1 ...zαN

N appear in that equation.
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The sign of one particular termzα1
1 ...zαN

N is the same as the sign of the permutation

itself. Later we notice that the Slater determinant is exactly what arises after going

through these intermediate steps. The lowest energy eigenstate (fork = 1) is of the

form

φCF
α,0,1 =

1
N !

N∏
i<j

(zi − zj)
N∏

i<j

(zi − zj)2e−
1
2 |z|

2

=
1
N !

N∏
i<j

(zi − zj)3e−
1
2 |z|

2
.

(B.1)

Generally the wave function is of the form

ΨCF
α,0,k =

1
N !

N∏
i<j

(zi − zj)2k+1e−
1
2 |z|

2
. (B.2)

Clearly the wave function for positive angular momentumL∗, calculated starting from

Equation (2.11) corresponds to composite fermion wave function forL = (2k +
1)N(N − 1)/2, as it should.

The first part, i.e. the polynomial part of wave function (B.2)
∏N

i<j(zi − zj)2k+1

tells that the particles avoid each others. If two particles are at the same place, the wave

function vanishes. It is notable that on increase in angular momentum (effectivelyk)

makes this behavior even stronger. The other partexp(− 1
2 |z|

2) of the wave function

prevents the particles to escape too far from the origin, because it approaches to zero

faster than any possible polynomial approaches to infinity.

Next we will try to illustrate the probability function, which is the wave function

(B.2), by drawing few schematic pictures. It is impossible to draw directly probability

functions for two or more particle systems, because the degree of freedom is four or

more, (and we can not draw four-dimensional pictures). The probability function for

two particles

φCF
α,0,k =

1
2
(z1 − z2)2k+1e−

1
2 (|z1|2+|z2|2), (B.3)

can be drawn with few tricks. In the two-particle case we can neglect they− coor-

dinates, because the form of wave function (B.3) tells that the two particles are most

likely at the same line with the origin. For three-particle system this is not the case,

because actually it is seen from the wave function (B.2) that the particles tend to form

an equilateral triangle with origin at the center.

The first trick is to assume that the particles are at the real axis. We still can not draw

the probability function to plane because the degree of freedom is still two. However,

we can now describe the one-dimensional system with two degrees of freedom as a

two-dimensional system. In practice, the position of the first particle (in real axis) is
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Figure B.1: On the left top corner: The probability of this figure can be understood so that its

value in(X, Y ) tells the probability of situation that the particles are in real axis at spotsx and

y. It is seen from the probability function that for angular momentumL = 1 two particles rotate

very likely at directly opposite sites and in the same line with origin. On the right top corner:

A two particle system rotating with angular momentumL = 3, i.e. k = 1. The probability

function describes the physically trivial situation, where the particles rotate at the opposite sites

from the rotational axis. On the left bottom corner: A two particle system rotating with angular

momentumL = 5. On the right bottom corner: A two particle system rotating with angular

momentumL = 41.

shown in x-axis, and the position of the other particle (that is actually also in the real

axis) is shown in y-axis.

At the upper left corner in Figure B.1, there is shown a probability function of a

two particle system with angular momentumL = 1, i.e k = 0. The particles rotate

most likely at exactly on the opposite sites of the origin, because the peaks are highest

at values(x,−x) and(−x, x). The probability function of two particle system rotating

with angular momentaL = 3 (k = 1), L = 5 (k = 2) andL = 41 (k = 20) are also

shown in Figure B.1. One can see from these pictures that the system indeed expands

when angular momentum increases. The expansion is best shown in the system with

angular momentumL = 41.

B.3 Wave functions for negative angular momentumL∗

One could assume that the wave functions should differ in situations where particles ro-

tate align or against (and with the same valuek) the direction favoured by the magnetic
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field. Next we try to prove that they do differ, although they have some similarities, too.

When the angular momentum isL, it can be easily seen that for positive and negative

k values

L = 2kpos+ 1 = 2kneg− 1

⇒ kpos = kneg− 1 .
(B.4)

Therefore the wave functions should be related through an equation

φCF
α,0,k = φCF

0,β,k+1 . (B.5)

We try to show the relation (B.5) between the wave functions for these cases. The

wave function for negative angular momentumL∗ with k = 1 should correspond to

wave function for positive angular momentum withk = 0.

From the CF wave function one can see that when calculating the ground state for

negativeL∗, differentiating is the only mathematical operation that has to be performed

for the antisymmetric product, multiplying with coordinatesz is not executed. The

differentiating is executed so that the numberπ(j) in the Equation (2.14) (numberβj

with markings of Equation (2.11)), tells how many times one has to differentiate with

respect to coordinatej. For example, permutation(43...p) means that the coordinate

z1 has to be differentiated four times,z2 three times etc. In three-particle case with

k = 1, the ground state for angular momentumL = 3 · (3− 1)− 3 · (3− 1)/2 = 3 is

calculated as follows

φCF
0,β,1 =

1
3!

(
ε012

∂3D

∂z0
1∂z

1
2∂z

2
3

+ ε102
∂3D

∂z1
1∂z

0
2∂z

2
3

+ ε021
∂3D

∂z0
1∂z

2
2∂z

1
3

+ε201
∂3D

∂z2
1∂z

0
2∂z

1
3

+ ε210
∂3D

∂z2
1∂z

1
2∂z

0
3

+ ε120
∂3D

∂z1
1∂z

2
2∂z

0
3

)
e−

1
2 |z|

2

= −22
3∏

i<j

(zi − zj)e−
1
2 |z|

2
.

(B.6)

The ground state wave function for negative angular momentumL∗ in three par-

ticle case (B.6) differs from corresponding wave function (B.1) for positive angular

momentum. On the other hand, the wave function (B.6) equals to wave function for

L∗, whenk = 0 (B.3).

The probability distribution for two-particle system rotating with angular momen-

tum L = 2 − 1 = 1 is presented in Figure B.2. It seems that the negative angular

momentum ground states fork = 1 are on the form

φCF
0,β,1 = CN

N∏
i<j

(zi − zj)e−
1
2 |z|

2
, (B.7)
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Figure B.2: Two-particle system rotates with angular momentumL = 2·(2−1)−2·(2−1)/2 =

1. The particles rotate very likely at the opposite sides of the rotation axis.

whereCN is a constant that depends on particle numberN . If we could show that the

Equation (B.7) is generally true, it showed that the composite fermion theory is at least

in that case internally consistent. To show relation (B.7), we need only to show the

antisymmetric derivativeAder for Jastrow factor (2.8) is generally on the form

Ader := A
[∂βD

∂zβ

]
= CN

N∏
i<j

(zi − zj) , (B.8)

whenk = 1. The antisymmetrization goes through all the permutationsβ = (β1, ...βN ),
where every number0, ..., N appears exactly once. Let us write the Jastrow factor with

the help of the sum of all these permutations

D =

(
(−1)

N(N−1)
2

∑
π

επz
0
π(1)z

1
π(2)z

2
π(3)...z

N−1
π(N)

)2

=

(∑
π

επz
0
π(1)z

1
π(2)z

2
π(3)...z

N−1
π(N)

)2

,

(B.9)

whereπ stands for a certain permutation andεπ tells its sign. Symbolπ(n) means the

nth permutation, and it gives the index for the complex number (i.e.zπ(n)). From the

form (B.9) of the Jastrow factor one can see that two different complex numbers in
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the same term cannot have the same degree. The degree of complex numbers in every

term of the sum runs from zero toN − 1. In the three particle case, the number of

permutations is six, and the Jastrow factor as written in (B.9) is on the form

D =
(
(−1)

3∗2
2 (z0

1z
1
2z

2
3 − z0

1z
1
3z

2
2 − z0

2z
1
1z

2
3 + z0

2z
1
3z

2
1 + z0

3z
1
1z

2
2 − z0

3z
1
2z

2
1)
)2

=
(
z2z

2
3 − z3z

2
2 − z1z

2
3 + z3z

2
1 + z1z

2
2 − z2z

2
1

)2
.

(B.10)

Let us now try to prove that the Equation (B.8) holds. We substitute the Jastrow

factor (B.9) to the left side of Equation (B.8). In the next stage, there appears two

independent sums over two permutations. By marking the permutations in the anti-

symmetric product asβ, and the permutations in the Jastrow factor asπ, we get

Ader =A
[∂βD

∂zβ

]
= A

[
∂0

z1
∂1

z2
...∂N−1

zN

( 1
N !

∑
π

επz
0
π(1)z

1
π(2)...z

N−1
π(N)

)2]
=

1
N !

∑
β

εβ∂
β1
z1
∂β2

z2
...∂βN

zN

(∑
π

επz
0
π(1)z

1
π(2)...z

N−1
π(N)

)2

.
(B.11)

From the Equation (B.11) one notices that the task would be a lot easier if the

Jastrow factor were not powered to two. We could prove that the antisymmetric product

is a constant:

A
[∂β

∏
i<j(zi − zj)
∂zβ

]
= (−1)

N(N−1)
2

1
N !

∑
β

εβ∂
β1
z1
∂β2

z2
...∂βN

zN

(∑
π

επz
0
π(1)z

1
π(2)...z

N−1
π(N)

)
= (−1)

N(N−1)
2

1
N !

∑
β,π

εβεπ ∂
β1
z1
∂β2

z2
...∂βN

zN

(
επz

0
π(1)z

1
π(2)...z

N−1
π(N)

)
︸ ︷︷ ︸

=δβ,π(N−1)!(N−2)!...(N−(N−2))!

= (−1)
N(N−1)

2
(N − 1)!(N − 2)!...2!

N !

∑
β,π

δβ,πεσεπ︸ ︷︷ ︸∑
π ε2π=N !

= (−1)
N(N−1)

2 (N − 1)!(N − 2)!...2! .

(B.12)

It is much more difficult to find a related equation for the actual wave function for neg-

ative angular momentumL∗ (B.11). First, we notice that the number of terms increases

rapidly because of the derivatives of the products. It is very difficult to see any regu-

larity from these terms. It would be better to express the Jastrow factor as a one single

sum to see more clearly the effects of the antisymmetric derivatives. Nevertheless, we

can write the Jastrow factor as a multinomial [83]
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(x1 + x2 + ...+ xr)n =
∑

n1+...nr=n

(
n

n1 , n2 , ... , nr

)
xn1

1 xn2
2 ...xnr

r , (B.13)

where
(

n
n1 ,n2 ,... ,nr

)
= n!

n1!n2!...nr! . Fork = 1, the Jastrow factor (B.9) corresponds to

the left side of multinomial (B.13). The sum over permutations is powered with two,

so in the multinomial formn = 2. On the other hand, there is altogether as many terms

as there is permutationsπ. Thereforer = N ! and the Jastrow factor is on the form

D =
∏
i<j

(zi − zj)2 =
(∑

π

επz
0
π(1)z

1
π(2)...z

N−1
π(N)

)2

=
∑

n1+...+nN!=2

(
2

n1 , ... , nN !

)(
επ1z

π1(1)
1 ...z

π1(N)
N

)n1

...

...
(
επN!z

πN!(1)
1 ...z

πN!(N)
N

)nN!

.

(B.14)

The markingn1 + ... + nN ! = 2 in the summation of Equation (B.14) means that the

summing is performed over all strings(), where the sum of the indexes equals two. The

summing (B.14) can be divided into two parts. There are altogetherN ! terms in the

first sum, where one ofn1, ..., nN ! equals to two and the others are zero. In the second

sum two ofn1, ..., nN ! equal to one and the rest are zero. In the first sum, the factor(
n

n1 ,n2 ,... ,nN!

)
= 1. We call this as the sum of diagonal terms, because in practice it is

build by powering every term of the sumπ and powering it to two, and then summing

them. In the latter case, every term in the sum has a constant
(

n
n1 ,n2 ,... ,nN!

)
= 2 as a

multiplier. This sum is called as the cross-term-sum, because it is build of terms where

two cross terms of the sumπ are multiplied. Then the Jastrow factor (2.8) reaches the

form

D =
∏
i<j

(zi − zj)2 =
(∑

π

επz
0
π(1)z

1
π(2)...z

N−1
π(N)

)2

=
∑

π

z0
π(1)z

2
π(2)...z

2(N−1)
π(N)︸ ︷︷ ︸

sum of diagonal terms=:Ddiag

+ 2
∑

πv 6=πw

επvεπwz
πv(1)+πw(1)
1 z

πv(2)+πw(2)
2 ...z

πv(N)+πw(N)
N︸ ︷︷ ︸

sum of off-diagonal terms=:Dcross

.

(B.15)

The diagonal-term-sum behaves nicely in the antisymmetric derivative, which can

be seen by inserting the Jastrow factor on the form (B.15) into Equation (B.11)

Ader,diag = A
[∂βDdiag

∂zβ

]
=

1
N !

∑
β

εβ∂
β1
z1
∂β2

z2
...∂βN

zN

(∑
π

z0
π(1)z

2
π(2)...z

2(N−1)
π(N)

)
.

(B.16)
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After antisymmetric summation only derivatives of the form

∂0
z1
∂1

z2
...∂N−1

zN
(z0

1z
2
2 ...z

2(N−1)
N )

=
(
2(N − 1)[

=2N−3︷ ︸︸ ︷
2(N − 1)− 1]...[

=N︷ ︸︸ ︷
2(N − 1)− (N − 2)]

)
·

(
2(N − 2)[

2N−5︷ ︸︸ ︷
2(N − 2)− 1)]...[

=N−1︷ ︸︸ ︷
2(N − 2)− (N − 3)]

)
· ...·

·
(
2

=1︷ ︸︸ ︷
(N − (N − 1))[

=1︷ ︸︸ ︷
2(N − (N − 1))− 1]z0

1z
1
2 ...z

N−1
N

)
= 2N−1(N − 1)! · 1!

1!
· 3!
2!
· ... · (2N − 5)!

(N − 2)!
· (2N − 3)!

(N − 1)!
z0
1z

1
2 ...z

N−1
N .

(B.17)

remain. It is worth of mentioning, that also following terms survive after taking the

derivatives

∂0
z1
∂1

z2
...∂N−3

zN−2
∂N−1

zN
∂N

zN−1
(z0

1z
2
2 ...z

2(N−1)
N ) ,

but they are eliminated in the antisymmetrizing part of the derivatives. Because the

sign of the derivative is the same as corresponding sign for the permutation, the anti-

symmetric derivative fork = 1 is automatically of the form of Slater determinant.

We have shown that the diagonal part behaves in the antisymmetric derivative as

Equation (B.8) claims. The Equation (B.17) gives us corresponding front coefficient

for that part. The final result for the antisymmetric derivative of the diagonal part with

k = 1, is thus

Ader,diag = CNdiag

N∏
i<j

(zi − zj) , where

CNdiag = (−1)
N(N−1)

2
1
N !

2N−1(N − 1)! · 1!
1!
· 3!
2!
· ... · (2N − 5)!

(N − 2)!
· (2N − 3)!

(N − 1)!
.

(B.18)

In the Table B.1 coefficients calculated from the Equation (B.18), are presented. We

have verified the values by computing the antisymmetric derivative for diagonal part as

in Equation (B.16), and the results equal.

Next we should prove that the cross-term-sumDcrossbehaves also as stated in (B.8)

in the antisymmetric derivative. It will be a lot more difficult than proving correspond-

ing equation for the diagonal partDdiag. This is due to the fact that there are
(
N !
2

)
terms

in the cross-term-sum. One observes that there is not a simple form for the result such

as a product of simple terms depending onN , that would be multiplied with a factor

2N . This can be seen by comparing coefficients for diagonal part and for cross-term

part (Table B.2). From the table one can observe that the prime number factors in the
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Table B.1: The contribution from diagonal-term-sum into the ground state wave function in two
to seven particle cases. The results are calculated both from Equation (B.18), and for comparison,
directly with Mathematica. In both cases, the results are the same.

N Ader,diag

2 −
∏2

i<j(zi − zj)

3 −4
∏3

i<j(zi − zj)

4 120
∏4

i<j(zi − zj)

5 40320
∏5

i<j(zi − zj)

6 −203212800
∏6

i<j(zi − zj)

7 −19313344512000
∏7

i<j(zi − zj)

Table B.2: The contributions of diagonal-term-sum and cross term sum terms into factorCN .

N CN,diag CN,cross

2 −1 −1

3 −22 −2 · 32

4 23 · 3 · 5 22 · 523

5 27 · 32 · 5 · 7 24 · 3 · 7 · 8443

6 −211 · 34 · 52 · 72 −29 · 37 · 17 · 37 · 89
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coefficient for diagonal part are of orderN as also (B.18) shows. Contradictory, the

prime number factors in the coefficient for cross-term part are of much higher-order,

and especially there is no simple dependence ofN .

It seems to be impossible to have such a simple form to the coefficient of the cross

term sum, as in the diagonal partCN,diag. In spite of that it is possible to show that the

cross term coefficient consists of sum of terms such likeCN,diag. First we notice that

the number of terms in the crossterm sumDcrosscan be halved by writing

Dcross= 2
∑

πv 6=πw

z
πv(1)+πw(1)
1 z

πv(2)+πw(2)
2 ...z

πv(N)+πw(N)
N

= 4
∑

πv<πw

επv
επw

z
πv(1)+πw(1)
1 z

πv(2)+πw(2)
2 ...z

πv(N)+πw(N)
N ,

(B.19)

where markingπv < πw stands for summation over all permutations, whereπv is

smaller thanπw. All one has to do is to invent a way to define the magnitude of certain

permutation. This way of marking works only if every permutation has a magnitude.

The solution is quite simple; we define the magnitude for every permutation so that we

consider it as a number inN + 1 number system. Then, permutation(012...N) is the

smallest in magnitude and permutation(N...210) the greatest.

To conclude, we demonstrated how the composite fermion wave functions show the

expansion related to the increase of angular momentum. It was done in a case of two-

particle system and without using pair correlation function but my own method instead.

We also tried to prove that the CF theory wave functions satisfyφCF
α,0,0 = φCF

0,β,1. We

did not succeed in proving that generally, but it held true in every case we managed to

compute.



Appendix C

Discussion of the solution of

classical eigenenergies and

eigenmodes

C.1 Three-particle case

Eigenfrequencies (eigenenergies) of a classical three-particle system with Coulombic

inter-particle interaction are

ω1 = ω0 − ωr0

ω2 = ω0 + ωr0

ω3 = 4

√
3ω4

0 + 10ω2
0ω

2
r0
− 7

3
ω4

r0
+

R3

12S3
− S3

12

ω4 =
√

3ω2
0 + ω2

r0
− ω2

3

ω5 =
√

3ω2
0 + ω2

r0
,

(C.1)

whereω0 stands for the strength of the confining harmonic potential, andωr is the

rotation frequency.
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64
APPENDIX C. DISCUSSION OF THE SOLUTION OF CLASSICAL

EIGENENERGIES AND EIGENMODES

SymbolsR3 andS3 are on the form

R3 =− 81ω8
0 − 3132ω6

0ω
2
r0
− 1638ω4

0ω
4
r0

+ 708ω2
0ω

6
r0

+ 47ω8
r0

S3 =
(
− 729ω12

0 + 62694ω10
0 ω2

r0
+ 234009ω8

0ω
4
r0
− 108ω6

0ω
6
r0

− 29079ω4
0ω

8
r0
− 7002ω2

0ω
10
r0

+ 2359ω12
r0

+ i972
√

6
(
ω2

0 − ω2
r0

)4√
3ω2

0 − ω2
r0

(
ω2

0 + ω2
r0

)
ωr0

) 1
3

.

(C.2)

It is interesting to note that even thoughS3 is complex, the eigenfrequenciesω3 andω4

are real whenωr0 ∈ [0, ω0].

Using molecular dynamics simulations, the eigenfrequencies can be solved from

the velocity-velocity autocorrelation function. Figure C.1 shows that the eigenfre-

quencies of Eq. (C.1) correspond to those solved by computer simulation. Because

simulation in this case represents an experiment (when one checks the correctness of

the derived results), it is reasonable to assume that the eigenfrequencies are derived

correctly. Mathematical forms for the corresponding eigenmodes are as follows

Figure C.1: In this figure eigenfrequencies presented in equation (C.1), are compared to those

solved with computer simulation (black dots). One observes that the results are identical, which

basically means that one may believe that eigenfrequencies (C.1) are correct. Black solid line

stands for the “breathing” mode, and violet and red line represent eigenfrequenciesω3 andω4,

respectively.
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Figure C.2: The eigenfrequencies for three classical (charged) particles confined into a harmonic

potential. In all cases the angular momentum is so that corresponding angular frequencyωr0 =

0,4. From the upper left onwards the modes areω1, ω2, ω3, ω4 andω5, respectively.

X1 =Dω1,1(−i,−i,−i, 1, 1, 1)eiω1t +Dω1,2(i, i, i, 1, 1, 1)e−iω1t

X2 =Dω2,1(i, i, i, 1, 1, 1)eiω2t +Dω2,2(−i,−i,−i, 1, 1, 1)e−iω2t
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√
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√
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For every eigenmodei, its jth component is on the form

Xi,j =Dωi,1(A+Bi)eiωit +Dωi,2(A−Bi)e−iωit

=A(Dωi,1 +Dωi,2) cosωit−B(Dωi,1 +Dωi,2) sinωit

+ i (A(Dωi,1 −Dωi,2) sinωit+B(Dωi,1 −Dωi,2) cosωit)︸ ︷︷ ︸
=0 ⇒Dωi,1=Dωi,2

=2Di,1(A cosωit−B sinωit) ,

(C.4)

where we have required that the eigenmode is real. Therefore, the (real and normalized)

eigenmodes are

X1 =
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In Figure C.2 the time dependencies of the eigenmodes are presented. Angular mo-

mentum is set so thatωr0 = ω0. From the upper left onwards, the two first modes cor-

respond to center of mass vibrations, where the particles rotate clockwise or counter-

clockwise on circular orbits around their equilibrium positions. Two following modes

are the eigenmodesω3 andω4, respectively. The first of those rotates clockwise and

the latter counterclockwise. The last mode is the “breathing” mode, and in that the

particles rotate counterclockwise on their eclipse orbits.

The eigenmodesω3 andω4 are degenerate when the angular momentum equals

zero. The degeneracy vanishes when the system starts to rotate. When one examines

Figure C.2, the disappearing of the degenaracy seems to be understandable. In a rotat-

ing frame of reference the modes rotating clockwise vibrate slower and the frequency

goes to zero, whenωr0 = ω0. Opposite to that, the eigenfrequencies of the counter-

clockwise modes increase when the angular momentum is increased, approaching to
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Figure C.3: “Breathing” mode is shown as a function of angular momentum.

2ω0. This phenomenon is demonstrated in Figure C.3, where the “breathing” mode is

considered. From the figure one sees that at low angular momentum values the parti-

cles rotate on narrow eclipses and finally, withω5 = ω0, the particles rotate on circular

orbits. Note that the particle configuration is always an equilateral triangle.
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C.2 Four-particle case

The eigenmodes of the four-particle case are

ω1 = ω0 − ωr0

ω2 = ω0 + ωr0

ω3 =

√
3ω2

0

2
+
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2
−R4
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2
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3ω2
0 + ω2

r0
,

(C.6)

where the coefficientR4 andS4 are
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(C.7)

As for three particles, one has to first check that the numerical values of the modes

are correct. It is done on the same way as in the three-particle case, by comparing the

results with computer simulation results. The results of the comparison are presented

in Figure C.4. We notice that the solid line representing the energy of the modeω5

intersects with the lines ofω6 andω7. It is an interesting result but unfortunately does

not appear with low energy modes. If this phenomenon happened with low energy

modes, it would have been seen in the low energy spectrum of a quantum dot.
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Figure C.4: Numerical values for the eigenmodes calculated with two methods: by linearization

(C.6), and by solving them with computer simulation (corresponding to an experiment). One

notes that the results are equal. The simulated results are shown as black dots, and the solid

lines represent to the analytical results (C.6). Black solid line stands for the “breathing” mode,

and violet, red, green and blue lines represent to modesω4, ω5, ω3 andω6, respectively. An

interesting fact is that when the angular momentum is increased, the modeω5 passes in energy

first the modeω6 and finally the “breathing” modeω7. Unfortunately, this does not happen with

low energy modes that contribute to the energy spectrum of a quantum dot.

The eigenvectors of the eigenfrequencies are solved as for four particles. We man-

aged to solve analytical results for following modes:ω1, ω2, ω4 andω5, respectively,

and they are

X1 =
1
2
(sinω1t, sinω1t, sinω1t, sinω1t,

cosω1t, cosω1t, cosω1t, cosω1t)

X2 =
1
2
(− sinω2t,− sinω2t,− sinω2t,− sinω2t,

cosω2t, cosω2t, cosω2t, cosω2t)

X4 =
1
2
(sinω4t,− sinω4t, sinω4t,− sinω4t,

cosω4t,− cosω4t, cosω4t,− cosω4t)

X5 =
1
2
(− sinω5t, sinω5t,− sinω5t, sinω5t,

cosω5t,− cosω5t, cosω5t,− cosω5t) .

(C.8)
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In the Figure C.5, the modes are shown in the case ofωr0 = 0.4. In all cases the

time step between two different configurations, is equal. From upper left onwards the

two first modes correspond to center of mass vibrations, and the following two toω4

andω5. One obtains from the figure that the paths of the modesω4 andω5 (as well as

ω1 andω2) are identical otherwise but the first rotates clockwise while the latter rotates

counterclockwise.

We could not find the analytical solutions for the rest of the eigenmodesω3, ω6

andω7. However, we managed to solve their orbits numerically, and in Figure C.6

the results are shown with few angular frequencies. The uppermost row of the figure

represents the modeω3, the row on the middle represents the modeω6, and the lowest

row modeω7 (i.e. “breathing” mode). From the figure one obtains that the paths of

the modesω3 andω7 seem to be similar, and the only difference is that first rotates

clockwise while the other rotates counterclockwise. One observes also that the particle

configuration of the “breathing” mode is a square at every time step.

Figure C.5: Eigenmodes (C.8) are presented in this figure. From upper left onwards the two

first modes correspond toω1 andω2, and the following two toω4 andω5. The rest of the modes

are not shown in this figure, because We could not solve their analytical forms.
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Figure C.6: The rest of the eigenmodes (ω3, ω6 andω7) of a four-particle system confined to a

harmonic potential.

Although we could not actually solve the analytical solutions for the eigenmodes

ω3, ω6 andω7, We managed to find out following analytical expressions to them
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(C.9)



72
APPENDIX C. DISCUSSION OF THE SOLUTION OF CLASSICAL

EIGENENERGIES AND EIGENMODES

where some of the parameters seem to obey the following rules

√
T 2

ωj ,1 + T 2
ωj ,2 =

1√
8

Tω6,1, Tω7,1 → 0, whenωr0 → ω0

Tω6,2, Tω7,2 →
1√
8
, whenωr0 → ω0 .

(C.10)

The parametersTω3,1 andTω3,2 approach to some different values than0 or 1√
8
.

To summarize, we observed that the energies of all modes rotating clockwise (coun-

terclockwise) decrease (increase) as a function ofωr. The most interesting results was

that the energy of the modeω5 passes the energy of the modesω6 andω7. Unfortu-

nately, these modes are not interesting for this work, because they do not contribute

to the low energy spectrum of a quantum dot. Finally, we want to emphasize that the

energy of the “breathing” mode was of the same form as in the case of three particles.
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