
University of Jyväskylä

Department of Computer Science and Information System

Jyväskylä

Jukka Penttinen

USABILITY ASPECTS OF NETWORK ELEMENT

MANAGEMENT UNIT

Master’s thesis in

Information Systems Science

26.04.2004

ABSTRACT

Penttinen, Jukka

Usability aspects of Network Element Management Unit

Jyväskylä: University of Jyväskylä, 2004.

69 p.

This research tries to find out usability level of the Network Element Management Unit,

NEMU, applications. This was planned to happen via usability evaluations. Used

evaluation methods are consistency and heuristic evaluation, Ravden & Johnson

method, visual walkthrough and Cognitive walkthrough.

KEYWORDS: Usability, usability design, usability testing, task-centred design

TIIVISTELMÄ

Penttinen, Jukka

Verkkoelementin hallintayksikön käytettävyysnäkökohtia

Jyväskylä: Jyväskylän yliopisto, 2004.

69 s.

Tämän tutkimuksen tarkoituksena on selvittää verkkoelementin hallinta yksikön,

Network Element Managenemt Unit, NEMU, sovellusten käytettävyyden tila tällä

hetkellä. Tutkimuksen empiirinen osuus tapahtuu käytettävyystestauksien avulla.

Käytettävyystesteissä käytettän erilaisia menetelmiä, kuten heuristinen ja yhtenäisyyden

arviointi, visuaalinen ja kognitiivinen läpikäynti sekä Ravden & Johnson menetelmä.

AVAINSANAT: Käytettävyys, käytettävyyssuunnittelu, käytettävyystestaus,

tehtävälähtöinen suunnittelu

Forewords

First I would like to thank Petteri Mustalahti for the opportunity to made this work.

Without Petteri's motivation I would had quitten this a long time ago. I would also like

to thank all others who have been involved in this work: Keith Allen, Mauri Haapasaari,

Pasi Majakangas, Timo Taskinen, and Mika Toivola from Nokia, Antti Pirhonen and

Markku Sakkinen from Jyväskylä University. And, the last but not the least, my wife

Satu, she has used several hours correcting my English grammar.

Many things and several people have been changed, including me, around this work. I

think that there are more essential things to reach some objectives than spend eternity

only for the most ambitious result.

Tikkakoski 26th of April 2004

Terms and Abbreviations

NEMU Network Element Management Unit

Platypus Design pattern library

Pronto Problem report database

Testee A participant of the test

Tester A person who controls testees and a test session.

WIMP Windows, Icons, Menus, and Pointing devices

Content

1 INTRODUCTION ..7

2 BACKGROUND ..7

2.1 The Elements of Usability...7

2.1.1 Usability process ...7

2.1.2 Usability Problem..7

2.2 Usability Evaluation..7

2.2.1 Heuristic Evaluation..7

2.2.2 Discount Usability Engineering ..7

2.2.3 Participatory heuristic evaluation..7

2.2.4 Cognitive Walkthrough...7

2.2.5 Ravden & Johnson method ...7

2.2.6 Consistency Inspection..7

2.2.7 Visual Walkthrough ..7

2.3 Task Centred approach..7

2.3.1 Contextual Design...7

2.3.2 GOMS ...7

2.3.3 Other methods ...7

3 CASE NEMU..7

3.1 Telephone Network...7

3.2 NEMU...7

3.3 Starting of The Case NEMU...7

3.3.1 Designing of Testing ...7

3.3.2 Preparation of Testing ...7

3.3.3 Testing Situation ...7

3.4 Results of Usability Testing ..7

3.4.1 Heuristic Evaluation..7

3.4.2 Cognitive Walkthrough...7

3.4.3 Consistency Inspection..7

3.4.4 Ravden & Johnson Method...7

3.4.5 Visual Walkthrough ..7

3.4.6 Conclusion of the Results ...7

3.5 User Feedback...7

3.6 Other discoveries...7

4 ACTIONS TOWARD BETTER APPLICATIONS ...7

5 DISCUSSION ...7

6 BIBLIOGRAPHY...7

7 APPENDIX...7

7.1 Appendix 1 Used Usability Test Forms ..7

7.2 Appendix 2 NEMU at nutshell..7

7.3 Appendix 3 NEMU Applications..7

7.4 Appendix 4 Usability Test Cases ..7

7.5 Appendix 5 Pilot Usability Tests Results ...7

7.6 Appendix 6 The Results of The Consistency Inspection Meeting....................7

7.7 Appendix 7 Heuristic evaluation results by applications..................................7

7.8 Appendix 8 The Results of Cognitive walkthrough..7

7.9 Appendix 9 Cross-reference heuristic evaluation vs. Ravden& Johnson

method7

7.10 Appendix 10 User feedback ..7

7

1 INTRODUCTION

Owl lived at The Chestnuts, an old-world

residence of great charm, which was grander than

anybody else's, or seemed so to Bear, because it

had both a knocker AND a bell-pull. Underneath

the knocker there was a notice which said:

 PLES RING IF AN RNSER IS REQIRD

Underneath the bell-pull there was a notice which

said:

 PLEZ CNOKE IF AN RNSR IS NOT REQID.

A. A. Milne, Winnie the Pooh

Usability has become an increasingly important feature in any technical device, not only

in information technology but also everywhere in technology. Demand for good

usability in information technology has become more important because computers

have come closer to, and more frequently used by people who are unfamiliar with

computer technology. Some wise men said in the 1960’s that there would be only a few

big computers at the beginning of new millennium. Before those experts even uttered

their predictions they were doomed to failure. Nowadays computers surround people

everywhere; they have become a part of everyday life for almost everyone. There are

even ubiquitous computers like wrist computers or intelligent vacuum cleaners.

Because information technology and computers are generalised there has arisen a need

to adapt computers to meet users’ needs and not visa versa. In the old times it would

have been enough that engineers were introduced how to use a huge computer.

Nowadays it is essential to teach engineers how other people act, because those poor

engineers have to design information systems which fit into pockets. This same limited

knowledge of capability of human actions is restriction in usage of wider information

systems. There is often only one person controlling the flow of worldwide information

streams on one computer screen. These actions can be so complex that some decades

ago maybe hundreds or even thousands of workers would have been required to carry

out the same action.

8

Knowledge and understanding of users and their actions places a tremendous strain on

designers. Those who can comprehensively identify the needs of their system users’ are

probably the winners when customers make their investment decisions. Knowing the

users could help and streamline a software development process and it might reduce the

need for corrections of applications. A usable system could be more reliable and its

users could be more satisfied with their jobs.

Cost efficiency is one of the concerns of project leaders. It is quite normal that usability

is not the first priority when project organisations make their project plans. But

choosing the right persons to make the right things and embedding a usability process as

part of the software development process could lead to better results with less resources.

The main objective of this study is to find out the usability level of the NEMU

applications. That work starts with definition of terms and concepts that relate on

usability. In the first section defined the term usability, subsections have descriptions of

usability process and problem. Definition of usability process is dealt with, because the

knowledge of the process can make it repeatable. Description of usability problems

helps testers and testees work, because the definition of the problem can make it visible.

In the next subsection includes descriptions of usability evaluation methods that are

used in tests. Another approach of usability is described in next subsection; there are

definitions of task based usability process. This section includes methods which can use

when starting point for a development work and evaluation is users task. Chapter three

is the case NEMU. In this case are described the environment, methods, event, and

results of the study. The last chapter makes conclusion of this work.

9

2 BACKGROUND

This chapter describes the most important definitions and terms in this research. The

first subsection describes meaning of concept of usability. Next subsection defines the

usability process and its meaning of this work. Subsection three makes overview of

problems by defining and describing them. The last subsection includes closer lookup

for task-based approach of usability. This last subsection contains methods, which can

be used as a designing, implementing, and evaluating usability in a task centred

framework.

2.1 The Elements of Usability

According to the Free On-line Dictionary of Computing (FOLDOC, 2003) usability is:

“The effectiveness, efficiency, and satisfaction with which users can achieve tasks in a

particular environment of a product. High usability means a system is: easy to learn

and remember; efficient, visually pleasing and fun to use; and quick to recover from

errors.” This definition connect usability as a part of programming, but the usability can

be a feature of physical as well as software product. This paper deals only with usability

of software products.

The usability has many different aspects depending on the definers. Usability can be a

synonym to ergonomic. In this context it means a well-organised working environment,

or less eye and hand movements for one action. The relationship between ergonomic

and usability has been defined more precisely in the International Standard Organisation

standard (ISO 13407). Usability can be the quality of a product; for example, the end

users’ opinion of a better product is that the product that has only a few errors (Bevan

1995, p. 122). Nigel Bevan has defined connections between quality and usability in

several studies.

The definition software reliability can be the same as usability. John Musa says in his

book (1998, p.18) that usability attributes could be also reliability attributes. Those

attributes are, for example, ease of learning and ease of relating user problem to system

capabilities. The reliability of frequently used functions is the most important thing

when choose the functions to be tested.

10

The first impression of a system, psychologically, is essential and it affects users’

opinions of the whole system (Musa 1998 p. 20).

Karat (1997, s. 691) says that a usability attribute is the interaction between a product

and its context of use. The context of use cannot be universal. In ISO’s standard (9241-

11) it is defined that context includes the users, desired goals of users, tasks, equipment

to make tasks and usage environment in physical and social level. An impact of

attributes of context may vary and hence affect users’ experience of systems usability.

Jakob Nielsen (1993 p. 23) has defined a concept of usability. Usability is a part of the

system acceptability; see Figure 1 Nielsen’s definition. System acceptability is divided

into social and practical acceptability. Social acceptability means all those factors of a

system which are related to soft values of the system. This social acceptability could be

restriction, for example, of applications in CSCW context. Practical acceptability is

divided into several parts, for example, cost, compatibility, reliability and usefulness.

Usefulness can be separated into two different parts: utility and usability.

Attributes of usability are learnability, efficiency, memorability, error prevention and

subjective satisfaction. Learnability means that a new user can learn usage of the system

easily. Efficiency means that a user can make desired work with the system efficient

after s/he has learnt its usage. Memorability means that system functions are easily

recalled after some period of not using it. Error prevention means that system has a low

number of errors and that the system can easily recover from error situations.

Satisfaction means that the system is pleasant to use for a user.

Figure 1 Nielsen’s definition

11

Most of these usability attributes can be measured quite easily except subject pleasing.

This is almost impossible to measure directly with some common meters. Can we say

that he or she likes this system in some amount of kilograms or meters? Suitable meters

are statistical methods; ask users their opinion on systems pleasure.

Ben Shneiderman (1998, s.15) mainly agrees with Nielsen on the definition of usability,

but he defined it via meters. Shneiderman’s meters are learning time, execution time,

vulnerability of errors, keeping the skill, and subjective pleasant. His opinion is that

good usability includes clearly observable benefits, which could return the investments.

Those benefits could be, for example, increased job satisfaction and reduced stress

level.

ISO (9241-11, p. 2) defines usability as “extent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency and satisfaction

in a specified context of use”. In this context effectiveness means the accuracy and

completeness in which users achieve specified goals. The meaning of efficiency is in

this case the relationship between expending of resources and effectiveness. Satisfaction

is the user’s positive attitudes and freedom from discomfort when using the product.

It is quite common that people understand that usability only means, for example, ease

of use, attainable or ease of learning. All of these spoken language synonyms of

usability are both right and wrong. As already mentioned, none of the usability

attributes can define usability alone, because the usability is the collective total of the

product’s features. User and context of use can affect usability at least as much as well

defined standards. The main goal of standard is to create harmony and subjective

satisfaction.

2.1.1 Usability process

Nielsen (1993, p. 16) states that usability design is a process, because there are not even

two software projects, which are alike. In this context Nielsen means that the thing that

might be usable in one project is not in another project. This is the reason why projects

have to adapt to the situations. In common meaning a project starts and ends, but a

process exists and develops.

12

In a software development process, a wide variety of usability methods can be used in

each phase of the process. There are own methods to each phase or some methods,

which cover up the software process from feasibility study to user feedback handling.

An approach of a project can be, for example, contextual, process or user-centred. In

this paper the main focus is on the task centred approach. Regardless of the approach, a

goal of any project has to be a usable product. A task centred process is a process in

which the main focus is the users’ tasks and main target is to make these users’ tasks

streamlined and simple. The development of expert users’ systems should have the

same objective. If the approach of this study were user centred, then main concern

would be focused on discovering the user needs that are not yet clearly defined. Because

in this case end user needs are quite well defined then task-based approach might be

better one. Probably the best results would reach when process uses the best features of

both approaches.

A usability process is not a separate path in a software development process though it is

part of it in all phases of a process life cycle. The usability process according to Nielsen

(1994) is a method of product design which eliminates fences of fluent use of the

product. This kind of process utilised guidance and design rationales. Nielsen

announced the heuristic usability process as a set of acts:

• Guides and design principles

• Knowledge of cognitive psychology

• User centred approach

• Iterative design and usability evaluation in all phases of process.

Guidance can be, for example, an in-house guide, which describes the size and colour of

a dialog and the position of command buttons on it. Guidance can also be based on

some standards such as Microsoft’s descriptions of Windows. The use of guidelines in a

software development process could shorten and reduce, but not eliminate, the number

of iterations in the design-evaluate-redesign cycle of human computer interaction

development (Strong 1994).

13

Gulliksen (1996, p.12) argues that standards are necessary and they are good, but are

too difficult to grasp and use due to their size and complexity. He also says that

guidelines are useful but their origin and quality are often questionable.

Knowledge of cognitive psychology helps software designers to understand the

characteristics of humans acting in different situations. Important aspects, which have to

be noticed, are for example, memory and perception. Knowledge of cognitive

psychology is important when technical and usability requirements are made to

sequences of acts. For example, better knowledge of human behaviour has changed the

operations of ATM machines. Earlier, the sequence of acts in withdrawing money from

an ATM was: feed card, press PIN, input amount of money, take money, take a receipt

and the last act remove card. The new improved sequence is; feed card, input PIN, input

amount of money, take card, take money and last one is take receipt. The main reasons

for these changes were that people often forgot their card in the ATM. This is quite easy

to explain by psychological arguments; when a goal of action is achieved, i.e. money

has been taken from the ATM; people can leave and forget their cards.

Nielsen (1993, p. 107) emphasises the meaning of iterative design because according to

his studies one round of iteration can improve product 38 %. He (Nielsen 1993, p.105)

also warns about problems of iterative design if there is only one usability attribute to

improve. It is more important to get several notes to assure right changes. Iterative

approach is used in several software production methods, for example, in Boehm’s

spiral model (Boehm, 1988) or in Brooks’ prototype model (Brooks, 1975). The

iterative method that Nielsen recommends suits very well to the normal software

process. A cycle that contains design and evaluation can help designers to make better

solutions with minor changes of code, and reduce the time needed in a product’s

development. Because iterative approach is already known and used in a normal

software process, it is one reason why it is easy to adopt Nielsen’s thoughts in any

software production method. There is a need for usability adaptation of the method.

(Nielsen, 1994)

14

John Gould and Clayton Lewis (Gould & Lewis 1985; Gould et al. 1991) proposed four

principles that should guide any development process in which usability is important.

The first principle is early focus on users and their needs. The second and third

principles together are: on the early stage started and whole process lasting usability

testing. And the last point, which they mentioned is iterative design. That is integrated

on all the other actions of process, for example, usability testing.

Also Mayhew’s (1999, p. 6) approach of usability is iterative. Her usability engineering

lifecycle model includes three main steps. These three steps are requirement analysis

phase, design, development and test phase and installation phase. User profiling, task

analysis, platform capability and constraint defining, and general design principles are

the main acts to form usability goals in requirement analysis phase. Designing, testing

and development phase are divided into three separate levels. The first level deals with

work reengineering, conceptual model design, conceptual model mock-ups, and

iterative conceptual model evaluation. The second set focuses on standardisation; screen

design standard, screen design prototype, and iterative screen design standard

evaluation. The last level concerns detailed user interface design and detailed user

interface evaluation. A style guide is made between every level. The last phase of

Mayhew’s model is installation. The main target of this phase is to collect user feedback

after a product has been released. The feedback is very useful when the same product

will either be developed or only a few cosmetic corrections are required.

Nieminen et al. (1997, p.11) have defined a usability-engineering process that is an

aggregate of design and evaluation, and which has a tight relationship with the lifecycle

of a software product. Nieminen et al. process starts with requirement specification and

ends with perceiving user feedback. These steps have their own usability acts, which

have to improve usability noticeably. He also says that there are some important

methods that should be used. He mentions, for example, that in the requirement

gathering phase a task analysis should be carried out, and in the implementation phase

checklists are essential. In the testing phase, it is important that testing results are

compared against usability aims, and in the follow-up phase, it is primarily important

that user feedback is used and developers are aware of it.

15

In ISO standard 13407 (ISO 13407) four design stages are mentioned that lead to better

usability. The start of these stages are understanding and specifying the context of use.

The main goal in the next stage is to specify the user and organisational requirements.

The third stage produces design solutions and the last stage evaluates the previously

made designs against requirements.

In the book “A technology for Producing Ideas” Young (1994) presented the following

designing process framework: gather facts and information, examine and explore,

incubate, give design its birth, examine and refine, iterate (6-8 times), deliver product.

As mentioned earlier, usability depends on its context. There could not be two different

companies that have the same kind of project. Even inside one company there might not

be the same kind of project. Projects are always different in that at least the product has

different end users. Nevertheless usability should be a part of the process in every case.

Some methods, which improve usability, are very clear, explicit, and formal, but in

many cases it is quite troublesome to find a suitable method or there is not any good

solution at all. When some method is planned to be used in a software project its

applicability should be evaluated and judged each time. After methods applicability

evaluation has become an automated process then it is possible that usability could be a

part of an ordinary software development project and live its own life as a process.

2.1.2 Usability Problem

Before it is reasonable to find any problems and contingent faults from a software

product we need to define what we are looking for. There could be a situation where the

discovered error is some new feature of a system, or some error could not be found

because tester or testees perceive that it is not fault at all, or fault is not too severe. The

first of the previously mentioned situations is typical when new users are testing a

totally new system and the last one when designers are testing their own production.

A usability problem, as any other problem in a software product, can be a fault or an

error. The difference between the definition of a fault and an error is that the error is

something, which diverges from design principles or requirements. The fault is

something, which is too difficult to understand or use.

16

The fault can also be a design defect. These definitions do not mean that a poorly

designed but exactly implemented application is perfect and error free. On the other

hand, that perfectly designed and implemented software that is used by wrong people or

application, which is used in a wrong place, is faulty.

A usability problem must be well defined and a part of other faults, which have been

found (Wilson & Coyne 2001, p. 18). They emphasise the fact that the usability

problem is an ordinary problem, which can be fixed. That thought does not expand the

gulf between an ordinary software design and a usable software design.

Pressman (1997, p.196) says that a fault is a problem that is found after software is

released. An error is a problem, which is discovered before the products are released.

Haikala and Märijärvi (1998, p.261) say that an error is divergence between

implementation and its requirements. Without an exact and accurate definition we are

not able to observe an error. Since all software includes errors, it can be possible that the

error can affect the fault when the application is running. The error can also be non

harmful or it can cause trouble situations, which users feel as non-welcome features of

the system.

Kaner et al (1999, p. 60) expand the theory that Haikala and Märijärvi used in a form

that an error is a divergence between an application and its specification if, and only if,

the specification exists and it is correct. They agree that poor specification leads to a

totally poor program, not perfect. Thus they recommended Myers definition (1976):

there is a program error if the program does not do what a user expects it to do.

According to Musa (1998 s. 85), an error is an incorrect or missing action of a person or

persons that caused a fault in a program. A software fault is a defective, missing or extra

instruction or set of related instructions that is the cause of one or more potential

failures. Errors can be classified where they are arising in: communication, knowledge,

incomplete analysis, and transcription errors. There can be three different

communication errors; inter-role, intra-role and temporary. Inter-role means that there is

a lack of communication between a customer and a designer, a designer and a coder, a

designer and a tester.

17

Intra-role errors are among designers, coders, and testers. The last ones, temporary

errors are errors between different times for the same person. A transcription error

occurs between a mind and paper or a machine. An example of the transcription error

would be wrong text in a menu or in a command button.

Usability error is a design flaw that causes a fault, which leads into error behaviour, and

furthermore degrading performance of the system. Users have their own idea how the

system should work. Designers also have their own thoughts on how the system has to

work. In the case of a design defect, designers and users have different models in their

minds. The designers and users have their own mental model of the system. If there are

differences between designers’ and users’ mental model it will cause a conflict (Norman

1988, p.140).

According to Sinkkonen et al. (2002, p.133), a designer ”sends a message” to a user via

the user interface. If the user does not understand the signal (characters) then the

message will not get across. Or if the context of the product is not familiar to the

designer, then s/he probably makes wrong choices of terms and errors. Those errors can

lead to a strange action of the system; the user does not understand designer’s idea.

Usability problems can vary from minor cosmetic divergence to major functional

disability. Classifying the severity of the usability problem is quite difficult because of

users’ needs, ability and possibilities. The same problem in different context and viewed

by a different user can be totally different on its severity and overall meaning. A novice

user can feel something unusable but an expert user has no problem at all with the same

thing. Because usability is subjective it is hard to find a universal severity scale. There

is some kind of rating commonly used in Nielsen’s heuristics. This five-step scale is

used to describe the severity of discovered usability problems. Only levels one to five

are relevant, because the level zero means that there is no problem at all or testee did not

faced with it. Level one means that found problem is good to be fixed in next release

and the level five means that there is a catastrophic problem, the whole system is totally

unusable.

18

This four-step severity scale is used in this research for all usability problems. This

scale is the same as the Nokia Pronto database, which is used for Nokia in-house

testing. These main levels define a problem’s severity. Most of the cases are placed in

levels two and three as in normal distribution; only a few cases are in level four. Level

four is used for problems, which are mainly ideas for the next release. Hardly any of the

problems are in level one. Level one is for catastrophic cases. All of the main levels

divide into two to four sub levels. These sub levels are used only for fine-tuning the

seriousness of the problems.

When the aim is a usable product, what is tested and what we are looking for are not the

same. Only the definition of searched and possibly found problems could rationalise the

whole project. An exact definition of problems helps a team to avoid the biggest pitfalls

before testing because concentration on wrong things wastes resources and can generate

disagreement concerning usability.

2.2 Usability Evaluation

This study has two main focuses. The first is usability evaluation and other is

discovering a method or methods that can improve the outcome. The objective of the

first part of the study is to determine the level of usability of the NEMU applications.

This chapter determines and makes an overall view of those methods that are useful in

achieving this goal. Some of these methods are quite useful because they are used in

many phases of software development. See, for example, scenarios in (Nielsen, 1993,

p.100). They are applicable in designing and in the final testing phase. Dumas and

Redish (1993, p. 99) argue that usability evaluation can give extra value to a product

and a company. They think that those values could be; sales increase, growth in the

reputation of a company, increased productivity, reduction in resources needed in

training and support, also reduced need for new versions and corrections, and easier

creation of helps and training. Rubin (1994, p. 27) states that it is better to test

something than to test nothing.

19

Rubin (1994) states that normally formal tests are used to prove or refute hypothesis and

less formal tests are used to discover and correct usability problems. Increase of formal

methods needs a larger number of testees and exact design and implementation of tests

to ensure validity and reliability of tests and their results.

Dicks (2002, p. 26) says that it is important that usability testers know the limitation of

methods, so they can take a critical view of test results. This is important because it has

been too difficult to persuade most managers to invest in usability testing at all. Dicks

introduces five general categories of misconceptions that lead to non-usable outcomes.

1. Misunderstanding of the concept of usability itself and of the distinction

between usability studies and empirical tests.

2. Two types of problem with statistics: assuming that a set of quantitative

statistics equals a usability test, and misusing statistical results, especially from

tests performed without large enough user samples.

3. Using usability test for verification rather than usability.

4. Lack of knowledge of the limitations and the proper methods of usability testing

to ensure valid and reliable results.

5. Testing for ease of use but not usefulness.

Item three in Dicks’ list warns about mixing usability test and verification. Dicks (2002,

p.28) says that it is not a usability testing to test documentation against a system or a

part of it. This kind of test tests the usability of documents and also the usefulness of

documentation.

Usability evaluation is a common term of usability inspection and testing methods.

Usability testing is based on observing of the testees’ activity and inspection is based on

evaluation with the usability rules. Usability or domain professionals make evaluation

with using different rules, heuristics. Usability inspection can be done in any phase of a

system developing process. The only criteria are to use suitable methods for evaluation.

Usability testing needs a working model of a system or some suitable model, which

represents the evaluated system. These kinds of system representations can be:

20

• Mock-ups are system models without functionality. In other words, the

designer makes a non-functioning prototype of the system. These prototypes

do not have any functionality of them components. They are only snapshots,

drawn pictures of the desired system or, for example, an overhead projector

transparency, which is changed by the tester (Rowley & Rhoades, 1992, p.

391).

• Prototypes could be an exact implementation of some important features of

a coming system or they could be made like a mock-up, but then there is a

quite reduced accuracy of systems features. The first one is called a vertical

prototype and the second one is a horizontal prototype. The reasons for

using either prototype depend on the number of feasible features or the

whole system’s criticality (Nielsen, 1994, p.94; Nielsen, 1987; Life et al.

1990).

• Scenarios that are in written form of the desired system. These stories have

some defined use. The user uses a certain computer system with which a

certain task will be done. The task will be done in a defined environment

and according to defined schedule (Nielsen, 1993, p. 99).

• Wizard of Oz-model is the same kind of system figure as a mock-up, but it

has human controlled functionality. Wizard of Oz is composed of two parts:

user and system replica. System replica is a system figure that is co-

ordinated by human. The test is simple. The user makes the desired action

and the system replica responds as a real system. Normally the user does not

know that the system is not “real”. In this method some basic information

can be easily collected from the target environment and its users. This

method is appropriate for the study of human behaviour and/or for systems

requiring future technology.

As a usability inspection method can be, for example, walk through or heuristic method.

Both of those methods, usability testing and inspection, can be made in a laboratory or

in an actual environment.

21

Walk through is an evaluation method that tries to simulate actions of real end users in a

real system. In walk through, the testee is given a scenario, which describes the intended

action and the testee tries to make it by using the system’s mock-up, prototype or

already implemented system. One walk through type evaluation is described more

specifically in subchapter 2.2.4 Cognitive Walkthrough.

Heuristics are group rules and regulations that are focused on important usability

factors. The most commonly known usability heuristics are Nielsen’s (Nielsen 1993 p.

20) ten usability heuristics; more is said about these in the next subchapter. Heuristics

can be basic guidelines to designers and developers.

2.2.1 Heuristic Evaluation

Heuristic evaluation is a usability inspection method which is based on the usability

principles called usability heuristics. Testees evaluate each element of a dialog by

comparing it with heuristics. All divergences which are found in evaluation meeting are

usability problems. This method was introduced for the first time by Molich and

Nielsen (1990). One of the advantages of this method is cost efficiency. This method is

also good when it is used with a small number of evaluators.

Also one of the benefits is a quite low requirement of evaluators’ knowledge of

usability. Nielsen (1993, p. 156) claims that with this method up to 75% of usability

problems of the system can be found with a group of only 3-5 evaluators.

The evaluators go through the explored interface. In this method, the testees compare

the found objects, for example, menus and dialogues of the system to heuristics (Molich

& Nielsen, 1990 p. 339; Nielsen 1993, p. 20; Nielsen 1994a, p. 30; Nielsen 1994b, p.

153). All findings of the evaluations are compared to usability principles, which are:

• Use simple and natural dialogue

• Speak the users’ language

• Minimise users’ memory load

• Consistency

22

• Feedback

• Clearly marked exits

• Shortcuts

• Good error messages

• Prevent errors

• Help and documentation

Evaluators make their own estimations of the severity of each found problem. All,

which are found, have to be compared with the same scale. Nielsen (1993) has

presented two different ways to make severity ratings.

One of the possible models is that testers make their estimation of usability problems

and their severity after a test meeting. Factors that affect the severity of the problem are

the frequency with which the problem occurs, and the impact of the problem if it occurs,

and the persistence of the problem (Nielsen 1993, p. 103).

The rating scale of usability problems can be five steps from zero to four, for example;

0 = Not a relevant usability problem.

1 = Cosmetic problem only. Needs to be fixed if there is extra time available in a

project.

2 = Minor usability problem. Fixing should have low priority.

3 = Major usability problem. Important to fix with high priority.

4 = Usability catastrophe. Imperative to fix before release.

Another possible way to estimate problems is to make co-ordinates, where one axis is

the number of users who deal with the problem. The other axis defines the severity of

problem. The scale of the axis can be two or multi divisional (Nielsen, 1993, p. 104).

23

Heuristic evaluation does not advise how to fix the found problems; that is one of the

weaknesses of this method (Nielsen, 1993, p. 102). These weaknesses can be overcome

in debriefing sessions. In this session, all the participants can make their own

suggestions on how to fix these problems.

2.2.2 Discount Usability Engineering

Discount usability engineering, DUE, is a light version of Nielsen’s heuristics. Nielsen

introduced it for the first time in his book (1993, p. 17). This method is based on the

hypothesis that anything is better than nothing. If it is possible to collect any data of a

process, then it is possible to make improvements in the software development process.

The aim of this method is to be an easy and cost efficient way to improve usability in

software projects. This method is not supposed to be the most efficient method to treat

usability; rather on the contrary, it guarantees some kind of the base of to improve

usability process. Nielsen also suggests using parallel designs to make designing faster,

for example, there should be more than one team working on solutions at the same time.

One of Nielsen’s aims might be to create a method that can spread as wide as possible,

because of its easiness and low costs. The method is quite easy to use even for those

who have no previous experience of systematic usability.

Discount usability engineering is based on four main principles:

• Observing users and their tasks as invisibly as possible.

• Scenarios, written stories of system. A more precise description of scenarios

is included in section 2.2 page 7. For example, scenarios can be used with a

paper version of a user interface.

• Simplified thinking aloud, which means that the testees at the same time

when they make their tests they tell what they are thinking about and what

they are going to do next. In this method it is quite easy to determine what

users want to do and why they act in a certain way with the application. The

method is so simple that a tester does not need to be an expert in

psychology. Normally testers write notes and possible recordings are precise

enough to document tests.

24

• Heuristic evaluation, these are defined more precisely in chapter 2.2.1

Heuristic Evaluation. Non-experts can also apply heuristics to many

different problems; however a tester should have a moderate expertise to get

the best results.

Instructions for handling DUE administratively:

• Recognise the need of usability in the organisation.

• Make sure that usability is understood at management level.

• Organise resources.

• Integrate usability as part of the development process.

• Check that every user interface is tested.

Or this method can be even simpler: Choose one of the user interfaces. Do a simple

usability test in which some of potential customers make a test without extra guidance.

If any problems are found in the tests, use the iterative approach in the next version. “If

no usability problems are found, then be happy that you have been lucky (on you

project)” (Nielsen, 1993, s. 21).

Nielsen reports evidence that groups of assessors are more effective in identifying

problems than individuals and that experience in usability engineering as well as

specific domain expertise are useful. He also argues that the optimal sizes of such

assessment groups are smaller when such "double specialists" are used, i.e. 2-3 persons

are sufficient, rather than 3-5 when only usability specialists are used. He also says that

with novices much larger groups (i.e. 14 members) are needed to identify most of the

problems. However, some evidence was also reported that usability problems

concerning an existing system are difficult to detect by this method, and also that it can

be difficult to find missing dialogue elements using paper mock ups rather than full

prototypes (Nielsen, 1993).

25

It is proposed that designers can use the technology themselves with experts or users,

but that the best results are obtained when experts rather than end users are used to

perform the assessment. The technology is intended to be used in the early stages of

designing, with the rapid prototyping of design solutions.

The effectiveness of the technology is still being debated at the time of writing. It is a

recent development that moves away from the conventions of performing detailed trials

with larger numbers of subjects. One of the weaknesses of the approach is the

assumption that it is easy to predict how many experts are needed in order to identify

problems with a given system, and Nielsen uses a rather simplistic model in making his

argument. However, the approach is likely to be in use as it is cost effective and fairly

simple to apply. With all such techniques, however, it should be recognised that the

quality of the assessment produced will be largely dependent on the range of tasks,

which users try and perform with a system, and if tasks are not suitably representative,

they are likely to miss some of the problems that users will have in practice.

2.2.3 Participatory heuristic evaluation

Muller and McClard (1995, s.115) have modified Nielsen’s heuristic usability

evaluation method to be more process oriented. The first version of this method

includes all of Nielsen’s heuristics, see section 2.2.1, and three new heuristics.

Improvements, which have been added, are: process-oriented heuristics and to treat

users as work domain experts in an evaluator group. Muller (Muller et al., 1998, p.16)

has released an improved version of this method. The latest addition entails the concept

of privacy. All of Muller’s heuristics dealing with tasks and work supports are:

• Support human skills,

• provide a pleasurable and respectful working experience,

• help the user to provide quality results to his/her clients,

• aid the user in protecting the privacy of all involved his/her work.

26

Participatory heuristic evaluation follows the procedure of normal heuristic evaluation.

The main difference between participatory heuristic evaluation and normal heuristic

evaluation is that participatory heuristic evaluation concentrates more on users. Muller

et al. (1998, p. 15) have noticed that, in certain circumstances, it is good that evaluators

are members of a developing team. They say that they should get and motivate real

users in usability evaluations, because these people are experts in their work domain.

This method cannot substitute for user’s involvement in designing or user testing, but

this method could be a good aid when designing prototypes Muller, 1998, p. 18).

2.2.4 Cognitive Walkthrough

Cognitive walkthrough uses a precisely described process to simulate the user’s

problem solving process. This method requires that at least usability or domain experts

use it. These testers walk through the task scenarios, stories that describe the execution

of the task and then they compare it with the functions that are implemented in the

system. This method can be used in the early stage of the development process; even a

sketch of the system can be tested.

Cognitive walkthrough was introduced for the first time in Lewis et al. (1990)

publication. The authors have improved original study later (Wharton et al., 1994;

Lewis et al., 1997). This usability inspection method focuses on ease of learning. This

method is based on the theory of explorative learning and also Norman’s (1986) theory

of action. Norman’s theory of action divides user action into a cycle of execution and

evaluation. He divides the phases of the cycle into seven stages, between user’s goals

and the physical system. See Figure 2. The parts of the cycle are; at the first, establish

the goal. The second group of actions: forming the intention, and specifying the

sequence of action. The last group of stages includes executing the sequence of actions

and perceiving the system state. In the last group there are interpreting the system state

with respect of user’s own expectations and evaluation of the system state with respect

to user’s goals and intention of interpretation. Then the cycle starts again if needed.

27

All the possible functions of all the system’s objects, for example, the menu and

command buttons of a window, makes the affordance of the system. A simple example

of affordance could be a printer icon in MS Word menu bar that makes of vision of

printing existent view. Affordance is the most important factor of the system in stages 2

to 4 of execution and the evaluation cycle.

The process of cognitive evaluation can be divided into five steps (Wharton et al. 1994):

1. Define inputs for the walkthrough.

2. Find a group of analysts.

3. Walk through the tasks.

4. Record critical information.

5. Think of ways to fix the problems.

Figure 1 Cycle of execution and evaluation

28

Cognitive walkthrough gives detailed guidance for steps one to four. Guidance for the

last step might not be relevant, because of the need for wide variety of usability.

Usability depends on, for example, its context and users.

The preparation phase, which includes steps one and two, gathers basic information

about the researched system. This information includes data of the end user’s skills and

knowledge of the intended system. Also knowledge about the tasks is important

information; its sequence of action, because all system functions are not rational in a

survey. The most important parts of the interfaces of the system are reasonable to

evaluate alike in paper sketch and in final implementation form.

A walkthrough session can be individual or a group process. Some researchers’ opinion

is that a group session is more efficient in finding problems, but this method’s

originators suggest this kind of method have to be called a pluralistic usability

walkthrough (Bias, 1993, p. 63).

During evaluation, the testees study the interaction between users and the system.

Testees concentrate only on the selected tasks, because all of the explored tasks have to

be studied carefully. At first it has to be analysed how well the system supports the

users when they are forming a goal and sequence of actions to achieve the goal. Next it

has to be analysed how well the system gives hints and tips on executing the actions. In

the third part it is analysing the feedback of the system. Every part of the evaluation has

its own form, which supports the testees’ analysis of the system (Wharton et al., 1994).

Samples of these forms are included in appendix 7.1.

The originator of this method argues that this method and explorative learning have

close connections (Lewis et al., 1990, p. 241). From this point of view there can be one

important reason to use this method. That reason is that normally users do not read

manuals, they want to start using a program by doing and exploring it. The system must

show all the hints and tips, which can help users in their aims to set up goals. The

system must be easily learnt so that a normal user can start using it without reading the

manuals or excessive training.

29

Preece (1994, p. 679) mentions problems with this method. She argues that this method

is only capable to find problems, which are restraining the learning of the system. She

also claims that this method does not take notice of most of the other cognitive factors

like memory.

2.2.5 Ravden & Johnson method

This method was introduced for the first time in the book by Susannah Ravden and

Graham Johnson (Ravden & Johnson 1989). This method gives results quite easily but

it is quite demanding concerning testees’ knowledge of usability and context area and it

is relatively time consuming. A professional can use this method and it can be only an

extra value method. This method is not recommended as a single usability inspection in

a software project.

In their book, Ravden and Johnson describe a practical usability evaluation method,

which uses an evaluation checklist. Analysis of user interaction is carried out with a

checklist: users fill in detailed checklists about the acceptability of various aspects of

the interface. Thus testees are highlighting particular types of problems. The method is

designed for use by the developers together with the users. With this method it is also

possible to use evaluators who may not be the actual users of the designed system.

(Ravden & Johnson 1989)

End users and developers together start the evaluation. In the evaluation meeting, testers

go through all the tasks of the system and compare them with the checklist. The

checklist contains questions on several aspects of usability. The questions are based on

general user interface guidelines, see

Table 1. They are divided into 9 sections, each containing from 13 to 17 questions, and

the user is expected to answer questions like “Does the system validate user inputs

before processing, wherever possible?” or “Where interface metaphors are used, are

they relevant to the tasks carried out with the system?” on a 4-point scale ranging from

always to never. In addition, the checklist has also two sections of questions on general

usability problems encountered during use.

This sort of checklist is not cost efficient to use and it is quite difficult for the users to

30

fill in. There is a problem with these questionnaires: the user may find parts of the

software usable; and other parts difficult to deal with. As the checklist is aimed at

giving an overall evaluation of the software, it might not provide advice for the

developers. What corrective actions would have to be taken if the user's answer to a

question on software compatibility doesn’t agree with user expectations sometimes?

Table 1 The Usability Guidelines (Ravden & Johnson 1989)

Feature Description

Visual clarity Information on the screen should be clear, well organised, unambiguous and easy to read.

Consistency The way the system looks and works should be consistent at all times.

Compatibility The way the system looks and works should be compatible with user conventions and

expectations.

Informative

feedback

Users should be given clear, informative feedback everywhere they are in the system,

what actions they have taken, whether these actions have been successful and what

actions should be taken next.

Explicitness The way the system works and is structured should be clear to the user.

Appropriate

functionality

The system should meet the needs and requirements of users when carrying out tasks.

Flexibility and

control

The interface should be sufficiently flexible in structure, in the way information is

presented and in terms of what the user can do, to suit the needs and requirements of all

users, and to allow them to feel in control of the system.

Error prevention

and correction

The system should be designed to minimise the possibility of user error, with inbuilt

facilities for detecting and handling those, which do occur; users should be able to check

their inputs and to correct errors, or potential error situations before the input is

processed.

User guidance and

support

Informative, easy-to-use and relevant guidance and support should be provided, both on

the computer (via an on-line help facility) and in hard-copy document form, to help the

user understand and use the system.

Using this kind of a checklist as a developer tool for heuristic evaluation of user

interfaces would probably make it easier for the developer to identify usability

problems. But it would not help the developer in focusing attention towards the most

important aspects of usability.

31

2.2.6 Consistency Inspection

In this method, the main target is to find differences between the same kinds of

applications. These differences can be functional, layout, colour scheme, or textual

divergence. Functional consistency means, for example, that the same dialog must do

the same thing in different applications. Layout and colour scheme consistency means

the same kind of window component layout and colour through the system, for

example, command buttons are in the same place and order in dialogs and any

mandatory text field has a yellow background. Textual consistency keeps an eye on all

the texts in an application. An example of textual consistency means that menus and

menu items must be the same. Information, warning and error messages all have the

same style. The same abbreviations are used for the same meaning everywhere in the

applications. (Wixon 1994)

In order to carry out consistency inspection you will have to first build up an inspection

team. There has to be at least one developer of all applications and one usability expert.

This jury goes through step by step all components of all the applications. The best way

to do this is to project a computer screen onto a silver screen so, that all the participants

can comment the same application or component at the time. If there are in-house

development instructions or orders then all the divergences found have to be compared

against it first and after that against other applications. This technology is best used in

the early stages of development, when initial development work has not progressed to

the point where products that require extensive changes to ensure consistency will not

require total overhauls. The ideal time for consistency inspection is when design

documents for each of the individual products are almost done, and before any actual

work on building the products has commenced. This method normally finds dozens of

inconsistencies and, as a result, there is normally quite a big list of changes to do.

32

2.2.7 Visual Walkthrough

This technology is included in some of the above methods, but it can be used as an

individual method. In a visual walkthrough, the tester uses a checklist to determine

those parts of the system that will be ambiguous or unclear. Nieminen & Koivunen

(1995) have developed this method to get information about users' perception and

interpretation of the user interface and its components. The basis of this method is

Dehlholms (1992) picture analysis, and, more precisely, the first two steps of it: In the

first step, describe and identify the visible elements in the picture and describe their

relationships with each other. And in the second step analyse the meaning of the

elements in the picture, in this context the picture would be an interface.

Visual walkthrough is a method that cannot be an only usability testing method; on the

contrary, it can be used to complement a common usability test and thinking aloud

method. It is applied at the beginning of a test session before any test tasks. In the test,

the participants are asked to tell what components and groups of components they see in

the user interface and what they think their functionality is. The aim of the visual

walkthrough is to gather information of what the users notice in the interface, in what

order they notice the components and in what sort of groups, how they understand the

visual messages, and what terms they use as they describe the system and its

functionality.

As a conclusion of the previously described methods, we can say that every method has

its own strengths and weaknesses. The tester must be familiar with the methods and

their properties this is the main point to achieve the best results in testing. Suitability to

the purpose of using the previously presented methods is listed in Table 1 (see below).

The table shows the usability methods and the product lifecycle stage in which a

method can be used. There are different methods for different phases of the product

development lifecycle, many of them being complementary. Because none of the

methods is better than any other, instead of using only one method a combination of

methods should be selected that is most beneficial for the case at hand.

33

2.3 Task Centred approach

A software design process could have many different kinds of approaches. The choice

of approaches is quite broad, commonly used are, for example, user centred, task

centred, contextual, or hierarchical methods. Normally, if a process tries to get usable

output, a user centred approach is used as a design process. In this approach the user is

in the main focus of the system work.

In the NEMU environment, user centred design methods cannot be used as normal

developing method because the context of the desired system is different than a

“normal” software development target. There are some requirements and restrictions

that the NEMU system environment has: The users are professionals in their work

domain, they have their own special way to work, and the target system is complex,

dynamic and rapidly changing.

Name Task

analysis

Designing Implementing Testing Follow-up

Heuristic evaluation x x x x

Participatory evaluation x x x x

DUE, Discount usability evaluation x x x x

Cognitive walkthrough x x x x

Consistency evaluation x x

Ravden & Johnson method x x x x

Visual walkthrough x x x

Table 1 Suitability of Usability Methods.

34

There is a family of applications, which are not universal. Some of the users are used to

work with old computer systems that have command-based control systems that is the

one reason why users could not have or they could have very constricted WIMP skills

of their work environment. Some of the applications are used on a daily basis and some

are used very rarely, maybe those applications are needed only once a year or in an

extreme case of emergency. Because the target system users have different educational

and cultural backgrounds, in all cases the system must support their way to work too. In

this study the main focus have been set a task centred approach, because the methods of

this approach can offer support for most of the previous mentioned requirements and

restrictions.

2.3.1 Contextual Design

Contextual design (Holtzblatt & Beyer, 1993; Beyer & Holtzblatt, 1998; Holtzblatt &

Beyer, 1999) is a method that can provide a tool for gathering data from the users’ work

context, for example, data of real workflow and environment. This method is based on

field research. The basic goal of this method is to provide designers grounded and

detailed information of users and their tasks. This method defines coherent series of

actions, which lead to a better and well-designed system. As mentioned earlier in

chapter 2.1.2, problems are not the same as every system and organisation has their

own.

This is quite demanding for the method, which has to accommodate specific needs.

Contextual design provides a useful framework for tailoring a design process (Beyer &

Holtzblatt, 1999, p. 33). Contextual design can be divided into six phases; see

Figure 1 (Holzblatt & Beyer 1999, p. 33). The first phase is contextual inquiry where

users are observed and interviewed in their own work environment. The next phase is

work modeling. In this step, the main target is to make concrete and detailed models of

the users’ work. The models are made to help designers to find important details and

clarify the complexity.

35

Figure 1 (Holzblatt & Beyer 1999, p. 33)

The third phase is to consolidate and combine the findings and the models from

different users into one model that includes every observed user. In the fourth step

design team makes work redesign based on the previous findings. These new models of

work have to include all the essential aspects of users’ tasks, but it should bring

something new to it. In the next phase the user environment design, which describes the

workflow, is made. This new workflow model is based on the desired system. Mock-

ups and tests with customers are in the sixth phase. And the final stage is to put the

plans into practice, which takes note of environment, requirements, and key features of

the system (Beyer & Holtzblatt, 1998, p. 22).

36

Holzblatt & Beyer (1999, p. 33) have added one phase to the end of this process, which

is to design the implementation object model or code structure. Contextual design has

some disadvantages. Firstly process is quite informal because there are no question

forms that participants complete. Instead of forms, the interviewer must observe

carefully the user’s tasks and their answers. For this reason this method is demanding

for the tester. And other disadvantage of this method is that it is quite expensive,

because of the field study. Often the use of this method is still reasonable even as

resources are spent at the design phase, because correction of the software after release

is much more expensive.

Norros (2003 p. 2) sees some advantages of the contextual design. At the first, the

strength of the contextual design approach is that it changes the focus from the design of

technical products or services to the construction of new ways of work. Secondly this

method has well-defined design process to the analysis and modelling of the users’ real

practices. Also essential factor is in the concept, when it shows the designers how they

have to learn to what this information means for design. Norros also criticizes this

concept, because the approach is both prescriptive and descriptive. For example, the

analyses of use are restriction to human-technology interactions. She also argues that

the unpredictability of open systems and the context of use would demand modelling of

human behaviour in a way which has no restrictions.

2.3.2 GOMS

There are some methods that can evaluate learning usage of programs and tracing

execution of actions. In this chapter two methods are introduced. These methods are

good when estimations of execution or learning times are needed. The theoretical base

of these methods is cognitive psychology.

GOMS is an acronym that stands for Goals, Operators, Methods, and Selection rules.

This model describes the content and structure of data and skills that are needed when

routine tasks are being executed. This method, also like cognitive walkthrough, is based

on Norman’s (1986) theory of action.

37

This theory is described in chapter 2.2.4 Cognitive Walkthrough on page 7. The GOMS

model is composed of methods that are used to achieve specific goals. The methods are

composed of operators. The operators are specific steps that a user performs and are

assigned a specific execution time. If a goal can be achieved by more than one method,

then selection rules are used to determine the proper method.

Kieras (2002, p. 1153) suggest three arguments why it is essential to use GOMS

models. The first argument is the rationality principle; normally a human tends to act in

the most reasonable way. Kieras makes reference on the Card et al. (1983) publication

in this context. The second point is procedural primacy, which means that normally

people do their tasks in certain order regardless of system status. The last argument is

explicit representation, when it is tending to estimate advantages of a system that must

be based on the clear, explicit, and formal definition.

In the highest-level of GOMS model, the tasks are divided into subtasks. The certain

subtask consists of a sequence of actions by which the tasks are executed. In the lowest

level of the model there are user actions that are reviewed when they are executing

subtasks. The result of this model is a hierarchical description, which describes the task,

which is divided into subtasks. And there are also the actions, which are needed to

execute those subparts.

There are four basic GOMS models. These four models have different variations on

dealing with complexity and modelling different activities. These available models are:

• KLM, Keystroke-Level Model, rapid execution time evaluation method,

oldest of all GOMS models (Card et al., 1980). This method is not originally

a GOMS model, but John & Kieras (1994) have joined it as result of their

studies,

• CMN-GOMS, Card-Moran-Newell-GOMS, Original GOMS model (Card et

al., 1983),

38

• NGOMSL, Natural GOMS Language, model can be used when learning

time estimations are needed. This model expands the CMN-GOMS model

by adding natural language features. The model is developed by (Kieras,

1988; Kieras, 1997),

• CPM-GOMS, Cognitive Perceptual Motor GOMS, also known as Critical

Path Method GOMS, is based on the parallel multi–process stage model of

human information processing (John & Kieras 1994).

The most important benefits of using the GOMS model in the design process are

coverage and consistency. Coverage and consistency mean that the model can reach

most of the system’s function points and all of those function points are treated in the

same way. Also in this model, it is easy to get operation sequences and estimates of

execution time because of coverage. Comparing of the results is more reliable because

operations are walked through in the same way.

GOMS can be used both quantitatively and qualitatively. Quantitatively, it gives

predictions of execution time and learning of system. With these quantitative

predictions, you can examine such trade-offs in the light of what is important to your

company, and what is relevant to your user-group or task situation.

Qualitatively, GOMS can be used to design training programs and help systems. The

GOMS model is an exact description of the knowledge needed to perform a given task

and thus it describes the content of task-oriented documentation. You only need to tell

the new user what the goals are, what different methods could be used to achieve them,

and when to use each method (selection rules). This approach has been shown to be an

efficient way to organise help systems, tutorials, and training programs as well as user

documentation.

GOMS can be used in various applications and fields. For examples, CPM-GOMS,

which can represent several active goals at the same time, has been developed for using

a telephone operator workstation. More about these application topics can be found in

John and Kieras (1994).

39

KLM-GOMS provides a simple framework for describing expert behavior as linear

sequence of steps, and its simplicity has benefited evaluations of straightforward

interface and tasks, for example, the telephone operator task (Gray et al. 1993). Simple

KLM-GOMS model can provide a total task time for given interfaces, but does not

make any prediction, for example, about learning, memory, and failures.

Card et al. (1980) provided the most detailed list of the weaknesses of GOMS. The

weaknesses are as follows:

• The model is applied to skilled users, not to beginners or intermediates.

• The model does not account for either learning of the system or its recall

after a period of disuse.

• Even skilled users occasionally make errors; however, the model does not

account for errors.

• Within skilled behaviour, the model is explicit about elementary perceptual

and motor components. The cognitive processes in skilled behaviour are

treated in a less distinguished fashion.

• Mental workload is not addressed in the model.

• The model does not address functionality. That is the model does not

address which tasks should be performed by the system. The model

addresses only the usability of a task on a system.

• Users experience fatigue while using a system. The model does not address

the amount and kind of fatigue.

• Individual differences among users are not accounted for in the model.

• Guidance in predicting whether users will judge the system to be either

useful or satisfying or whether the system will be globally acceptable is not

included in the model.

• How computer-supported work fits or misfits’ office or organisational life is

not addressed in the model.

40

Kieras (2002, p. 1154) have also presented some limitation of GOMS models. The most

important restrictions are that GOMS cannot be used in modelling of procedural

features of user interface, and model does not support task analysis. This method is

quite demanding, because of the complexity of the method. First you have to make the

model of the users’ tasks and understand it, after that you can make a GOMS model.

2.3.3 Other methods

In this section it is presented some methods, which are not designed to use at a usability

design or evaluation method, but these methods can be used as part of usability testing.

These methods can be used to reduce the usability methods coverage of the production

lifecycle.

Nielsen (1993, p. 207) refers to Diaper’s (1989) studies when he mentions observation

as a usability method; observation is useful both in the task analysis phase and in

follow-up studies. Observing real users in a real environment initially reveals the tasks

they must perform and suggests the needed features and functions for the product. In a

follow-up phase, this can be used to validate that the product design was successfully

implemented.

One of the simple methods of usability evaluation is a questionnaire; this method can

find subjective user preferences and are easy to repeat. The tester has to guarantee that

the user cannot misunderstand the questions and thus give false data. The questionnaire

needs to be carefully formed and pilot tested. Nielsen says that interviews are a good

way of finding out the opinion of the user about something in more depth than with

questionnaires. Interviews are time consuming and hard to analyse. In addition, the data

from one interview is not easily comparable with data from another interview. (Nielsen

1993, p. 209)

Below in Table 1 is listed the suitability of methods during different phases of the

development lifecycle. This table is in addition to Table 1 on page 7. In this those

methods, which support the task-based approach, are presented. The contextual design

in its original form (Holzblatt & Beyer, 1993; Beyer & Holzblatt, 1998) does not have

any kind of support to the implementing phase.

41

The latest addition of methods (Holzblatt & Beyer, 1999) mentions support, but does

not have any instruction on it. According to one of the method originators (Card et al.,

1983) GOMS model is for predicting expert users' performance. These methods do not

directly lead to identification of usability problems. Therefore, they are not considered

as usability inspection methods in some context. (Virzi, 1997)

Table 1 Suitability of Usability Methods.

As a conclusion of this subsection is that task centred usability methods as the methods

that are described in subsection 2.2 have some common. None of they are good at if

they are used alone. Every method has their own strengths and weaknesses, but

combination of they can clear, simple enough, and effective. Some of the methods can

be used in task-based approach and in user centred too, but some of them are clearly

designed for handling users tasks.

1
 According originators of this method, this method does not support implementing.

2
 According one of this method originator, this is a model for predicting expert users' performance.

Name Task

analysis

Designing Implementing Testing Follow-up

Contextual design X X (X)1

GOMS (all models) X X (X)2

Observations X X

Questionnaires X X

Interviews X X X X X

42

The conclusions of the chapter 2 is that more essential than consider the approach of

usability is adapting and combining the right methods to helping developers to making

more usable applications to users. As said in the first subsection, none of this things that

are related on usability cannot make usability alone, neither none of methods or right

process cannot make it. Usability of product is combination of knowledge, skill, and

attitude.

43

3 CASE NEMU

This chapter describes main terms, methodological basics, and the framework of the

research. At the beginning of this chapter there is descriptions of environment of this

study after that there are descriptions of preparing, executing, and results of this

research.

NEMU, Network Element Management Unit, is the common name for an additional

network management system. NEMU offers extra value to telephone network operators

by adding graphical tools to maintain and follow up the DX200/IPA2800 switching

exchanges operations. More detailed description of NEMU is in section 3.2.

This chapter tries to find out the answers to the main questions of this study

• What is the level of usability in NEMU?

o What are the best usability features of NEMU?

o What are the most important usability features which should be

improved in NEMU?

• What are the causes for prospective usability problems?

o How could these problems be minimised in the future?

The customer of this study stated the first main question; whole meaning of this

research is to find out the usability problems of the NEMU or to find out that there are

no usability problems at all. If any problems are found then it is clear that the

discovered problem should be resolved in some way. All of the identified usability

problems should have at least a minimal improvement plan. This plan could be a clear

order to correct the identified usability problem against the corresponding validation

rule. Validation rules could be, for example, universal usability heuristics or in-house

guidance or standards.

44

 The second main question is only for case that there is one or more usability problems

and orderer wants to prevent those problems reoccurrence by improving software

production process. It is obvious that as all of the found usability problems are not

related to software process then it’s important to classify problems in certain categories

by possible cause of emergence. Classification system tries to find out usability

problems because of emergencies at least into the following classes: Technical domain

system and used development environment, instruction and process usability

competence and maturity. A decision of process improvement is made after this

research but this paper tries to make it clearer in a field of usability.

Sub questions try to focus on the main questions to most important aspect of NEMU

usability by making concrete founding and improvement suggestions.

3.1 Telephone Network

A switching exchange is the most important part of a telephone network which main

function is to make a link between two telephone users. This link is a connection

between a subscriber and a receiver. A switching exchange also has other quite

important functions that relate to a call such as signal transmission (free/busy line),

reception of the dialling, number analysis, connection of the call, monitoring the call,

clearing the call, collecting statistics and collecting charging data. If a call is local there

is only one switching exchange but if the desired call is a long distance call there could

be several switching exchanges involved in making the call available. Every telephone

network needs at least one switching exchange but the number of switching exchanges

depends on the number of users and the size of the exchanges that is measured, for

example, by the accepted number of connections. A big city would have hundreds of

switching exchanges.

Traditional switching exchanges offer switching services in fixed networks but

nowadays mobile and different kind of data communication services are the most

important usage of switching exchanges.

45

One type of switching exchange is the Nokia DX200. This name is used as a general

label for Nokia network elements that are used in a data communication network.

Development of the DX 200 began in the 1970’s and the first products were connected

in fixed telephone networks in 1980. Nowadays DX200s are used in several types of

networks such as mobile switching centres (MSC), home location registers (HLR), base

station controllers (BSC) and still in fixed telephone network switching centres (FSC).

MSCs are used as a centre in all kinds of mobile telecommunication. HLR is the mobile

networks’ user subscriber location database and BSC is the mobile network base

station-controlling unit. Each of those products is based on the same DX200 hardware.

All the necessary functionality of DX200 is made in software (Silander 1999).

DX200 is in principle a general-purpose computer; only the software makes any

difference when compared to other computer systems. This system also has switching

exchange typical parts, which these are needed only in fixed telephone networks. The

whole system is built with standard components, which means for instance Intel’s 32-bit

standard processors. This makes possible an increased efficiency of DX exchanges as

soon as new processors are coming to the market.

From an architectural viewpoint DX200 exchanges are a scalable, efficient, loosely

connected multiprocessor system with high level of fault tolerance. Scalability and

efficiency mean that the capacity of exchanges can be easily changed depending on

local needs. A loosely connected multiprocessor system means that one DX200

exchange could have several physical computers which are connected together and each

of these computers is specific in its own task. These separate computer units

communicate together via signal channels. Fault tolerance means that if some part of

system stops nevertheless other parts are still going.

Layer architecture guarantees an easily modified system. The DX exchange system

consists of three different layers. The two lower layers of DX, computing platform and

switching platform, build a fault tolerant system platform. The upper, the third, layer is

the application layer that gives all of services such as call control and subscriber

services. Not all DX exchange systems need all of these three layers, for example, HLR

(home location register) needs only the computing and application layers.

46

3.2 NEMU

NEMU, Network Element Management Unit, is the common name for an additional

network management system. This system is separate but cannot work without the

DX200/IPA2800 switching exchange. The NEMU system is composed of client

computers, a server computer platform and its operating system and a specific collection

of applications and server services. NEMU offers extra value to telephone network

operators by adding graphical tools to maintain and follow up the switching exchanges

operations. More detailed information about NEMU is in Appendix 2.

3.3 Starting of the Case NEMU

The first look up for the NEMU developing process was quite poor in a usability fields.

This section of development does not have any plan for usability or human-computer

interaction that supports to development. There were not clear and simple commonly

used rules to build usable applications, or these rules were quite difficult to adapt for

NEMU development environment and its needs. Developers do not have any training in

usability. This lack of knowledge relate also testing crew not only designers and

programmers. Some developers’ attitude was quite negative for usability. This might be

caused by the lack of correct information. On the other hand, because the NEMU

project was quite new, the people have to concentrate on developing the product and

they do not have extra time to think nothing else. During this study the most of this

section crew got basic information of usability on a training day, some of them got

usability teaching twice, because they were participants of a usability evaluations.

3.3.1 Designing of Testing

In this case, choosing the applications to evaluate is quite easy; all of the available

applications have to be tested. The low number of possible applications also caused that

easiness; there were only eight separate applications to be tested. Some of those

applications were so simple that they have only one window and a few user controlled

functions.

47

Two of the tested applications were not ready when tests started, this did not cause any

problems in testing. Just before the tests started, two more applications that had to be

also tested, were found. Another one was small utility tool, which is designed to use

very rarely and the other was a new concept of application platforms.

Some of the applications set some restrictions to evaluation methods, and some of

applications are so important that they might be tested using as many methods as it is

possible. In this particular case there were planned to use visual walk through, heuristic

evaluation, and cognitive walk through as testing methods. Ravden & Johnson method

is designed to act as a comparison material to heuristic evaluation. Consistency

evaluation has been already used as usability evaluation method. The most essential

applications to be tested all of those methods and others at least visual walk through,

heuristic, consistency and evaluation.

Test cases must walk through end user’s normal workflow and its exceptions. It also has

to go through all of the requirements of the system. In this case all of the test cases were

assumed to be as in the everyday life of an operator. There were included only few

exceptions in cases that it might be possible to find some more problems. Designing

those cases was quite hard; some designers had to be interviewed, as well as the test

crew, and some other persons who are familiar of telephone network operators’ normal

workflow. Even that was not enough in practice. The more reliable test there would

have been interviews and observation of real end users instead of developers, but within

resources of this study this was not possible.

Gathering of the testees was the most difficult phase of the preparing work. If you send

email it’s a miracle if some of invented respond to your mail. If you ask face-to-face

they commit, but maybe next day they send an email or an SMS in which they say that

they cannot attend because they are so busy. In this case it was so positively surprising

that most of the developing team members wanted to participate these test, but this

voluntariness does not be so good in other sections.

48

To gather all needed testees you have to use all relationships and competence that you

ever had. One quite easy way to recruiting of testees is use the “power of manager”.

That kind of recruiting decreases motivation and weakens results, so for using this

method has to carefully. But in this case that method has tremendous success. In NEMU

case there were needed 24 testees on six separate evaluations, two groups for Ravden

&Johnson method and four groups for heuristic evaluation. Cognitive walkthrough

needs only a few volunteer testees.

The aim was gather those 24 test person plus at least six reserve person in evaluation

meetings. This aim came almost true; all the test persons and one reserve person were

found. Cognitive walkthrough needs also some testees, but requirements of these testees

were quite hard, thus there were only few possible candidates. There were only two of

three volunteers who could take part in this test. That was not enough but it was better

than nothing. And the last group that needed in pilot test was quite easily formed; they

are all members of the same student project group. Testing persons that was needed in

consistency evaluation was colleted by another person and I was only on testee of this

group.

The most essential part of the testing preparation phase is the reservation and

preparation of testing rooms. These rooms must contain appropriate equipments and

enough seats to test persons. Also one thing has to be ensured that the room is separated

from its environment. Separated testing room ensures that conversations between test

administrative and testees can be without distractions and confidential and separation

reduces the noises and interruptions from the environment. Right equipment means that

there are working computers; data projectors, silver screen, and other needed devices

such as tape recorders and/or video cameras and a tester has trained to use them.

When you have found all testees and you are reserved all needed rooms you can make a

final schedule of tests. Who is where and when? In this phase you have to combine all

wishes and restrictions of test person timetables. All of the testees have proposed two

dates and time when they can participate. After few email conversations every test had

all its needed testees. This testing session was planned to be five days long, one day

there have to be two separate groups.

49

Pilot Tests, Case Application K

Before the actual usability evaluation of NEMU applications there was made a pilot test

with Jyväskylä Polytechnic student project members in their application. The project

group had produced a NEMU application K. For more details of application K, see

Appendix 3 NEMU Applications.

Not all of the application features were ready or they worked improperly, in other

words, the application was not finalized. This pilot testing tried to find out the usability

problems of application K and at the same time evaluate and check usability testing

materials such as test cases and test forms. These tests succeeded, usability problems of

the application K were found and testees found a few errors in test materials. This

usability testing made essential improvements to developing the application K, because

all of its features were not implemented at that stage. This test gave some advice to

developers and at the same time gave some support to the developers that their

application was not so bad at all. Redesign work was not going to be too extensive,

because some parts of the evaluations were made only as a paper test. This means that

there were no implementations, thus developers could make a new, improved version of

their application without wasting previously done work. More precise results of the

application K usability tests are in Appendix 5 Pilot Usability Tests Results.

At first there were planned to be visual walkthrough and heuristic evaluation in all tests.

Both of those usability-testing methods give quite same results. After this pilot test it

was clear that only one of the methods was needed in the further tests, and the heuristic

evaluation was selected. Heuristic evaluation has chosen because it is easier to learn and

use than visual walkthrough and heuristic evaluation have clearer instructions to

execution.

3.3.2 Preparation of Testing

Before the test session you have to ensure that you have right and working equipment

and you can use it. One important thing that you must check is that testees have pencils

and papers to make their own notes. There should be a needed amount of all forms and

instructions.

50

You need to have the latest or the certain versions of the applications on the test

computer. If you are going to test paper mock-ups, you have to assure that all pictures

are in the right order. One essential thing that must be done is removing all distractions

away from the testing room, for example, too loud clock.

3.3.3 Testing Situation

First of all the testing situation should be made relaxed and confidential for the testees.

Tester or testers must introduce themselves and the purpose of meeting. Next, the basics

and background of methods and tested applications must be told. There have to

remember that a tester does not introduce too detailed application that they do not affect

the testees’ opinion. One essential thing that has to emphasize to testees that all

evaluations are extremely confidential that means all said or wrote is reach only very

limited group of test administrative. Nobody even testee’s manager cannot get actual

comments of evaluation meeting. Normally all material should be handled anonymously

and all comments that could reveal the testee would be changed into unrecognisable

form before evaluations results are published. One important thing that has to be told is

that there would not be evaluated testees ability or knowledge in any level and every

testee is free to leave during the evaluation. Meetings can be recorded or videoed only

by explicit permission of testees. When all starting procedures are handled then actual

evaluation meeting begin.

This described procedure was used in visual walkthrough, heuristic evaluations and

Ravden & Johnson methods. Testees of cognitive walkthroughs made their evaluations

on they own workplaces and on their own schedule. Consistency inspection meeting

was more like pluralistic walkthrough. Secretary, who made notes about testees’

observations, also directed meeting.

51

3.4 Results of Usability Testing

This chapter takes a cursory view of usability tests results of this research. Here is only

a short summary of the results of the usability testing, because of confidentiality

reasons. Closer results are in appendixes. These results are divided into own sub

chapters by evaluation methods. All of the used methods are presented in their own sub

section. More detailed collection of the results of the usability tests can be found in

Appendix 5 Pilot Usability Tests Results.

3.4.1 Heuristic Evaluation

Heuristic evaluation was the main usability evaluation method in this research. There

are three main reasons to use this method. First Heuristic evaluation is easy to learn and

use. Second this method is quite cost efficient. That means that using this method needs

only three to five testees and this method returns approximately 75% coverage of all

systems usability problems. The last reason is the easy learning of this method this is

good point for all testees especially for developers in professional meaning. After

learning developers can use this method in a more informal way, they recognised the

places of possible errors during their developing work.

Evaluation meetings were arranged by collecting a team, this team includes one

developer, one person from testing, and two persons, who have different background

than other two testees. These non-developing people must have good skills in computers

and another must have some kind of knowledge of switching exchange environments

and/or operator work. This last requirement means that all of those four testees are

people from documentation. Testee who has not any domain knowledge and who is not

member of development team is usually a project management person from another

section or assistance crew of development section.

Evaluation environment was a normal meeting room that had one laptop computer, data

projector, and silver screen. Every testee had their own set of test cases, see Appendix 4

Usability Test Cases, and test forms, see Appendix 1 Used Usability Test Forms, and

short instruction of evaluation method in paper form.

52

Procedure of evaluation meeting was quite simple. The meeting started with

introduction part which content was short briefing of the method and application or

applications that are evaluated, and the instructions were told to execute the evaluation.

Next there is described short brief of heuristic evaluation results. More detailed results

of heuristic evaluations are in Appendix 7 Heuristic evaluation results by applications.

The first team tested five small applications B, C, F, H, and I, see Appendix 3 NEMU

Applications. Totally this method found 24 different discoveries on these applications.

Only 15 of found errors are in level three on Nielsen’s scale, and three out of 15 errors

were so severe that more than two testees noticed them at the same time. Findings are

mainly related on functionality of the system more than, for example, layout of

dialogues. Because of size of test group there might be about 6 more problems that this

test did not found.

The second team test applications A, and E, see Appendix 3 NEMU Applications.

Application E cannot be evaluated as other applications, because of its structure and

features. That application was tested with using applied heuristic evaluation method.

Testees found on application E a few problems and suggested some improvements.

Application A is normal application and its evaluation has not any divergences. Testees

found totally 20 problems in which more than two out of three was level 2 and the rest

were in level 1. Problems related mainly in window or dialogue layout and the lack of

shortcuts. Testees overall estimation of application A was quite positive.

Team three made usability test in application J, see Appendix 3 NEMU Applications.

The tests consists evaluations of the main window and three dialogues of it. This

application gets totally 24 estimations the most of these estimations are in level one.

Only four of all estimations are in level 3 and two of those evaluations are unanimous

enough. The found problems mostly related on missing texts and ambiguities of

functions. Estimated dialogues got the poorest estimation on the lack of the help and too

complex design. This application was not finalized during the tests; this was the most

essential reason of problems of this application.

53

Team four made tests for the applications G, see Appendix 3 NEMU Applications. Total

number of problems was 30, but third of problems were in level 1. This application was

the first of NEMU applications in this section and during implementation phase there

was not properly working version of Platypus available. All of the found problems

relate on the layout or the help system of the application. Testees do not found anything

comment on functionality of the application.

Application D was tested in meetings of group two, three, and four. The basic aim of

this evaluation was check features of the new concept and possible bottlenecks of it.

This application was in pre-design phase, and it has only a few working functions.

Applied testing method is combination of heuristic evaluation, visual walkthrough, and

pluralistic walkthrough. In the testing meeting, tester guided testees through application.

Testees answer to questions and they tried to find their own suggestions to developing.

More than a half of the testees estimated the application D was so good that it could be

develop as a new product. Some of the testees doubted about essence of the whole

application. Developers of application D got own report of evaluations. In Appendix 7

Heuristic evaluation results by applications is more about the results.

3.4.2 Cognitive Walkthrough

Cognitive walkthrough was planned to execute by only a few testees. Finally two

suitable testees made it. One was from NEMU testing crew and the other was usability

skilled testee, but not from NEMU development personnel. Those two testees made this

test on their own. Both testees got the same instructions, forms and scenarios but

different applications. Tested applications were A, B, C, F, H, and J. See details in

Appendix 3 NEMU Applications. Cognitive walkthrough test forms are in Appendix 1

Used Usability Test Forms and test cases are in Appendix 4 Usability Test Cases.

These tests gave a quite low number of notices, because of low number of testees. That

does not mean that tests were unsuccessful. Testees found some interesting points that

can affect on usability of the whole system, for example, application B does not have

refresh feature. In other tests its absence was not noticed at all, but the meaning of this

feature is quite essential for the task of the end user.

54

Testees rated their findings by using a scale: how many percent of users notice that

problem. All meaningful findings have to have at least 25 percent estimated probability.

Reliability of these results are quite low, thus these findings have to be treated like

testee’s point of view more than great scientific truth. I do not underestimate testees

skills in any level and their contribution for this study. More about the results of

cognitive walkthrough are in Appendix 8 The Results of Cognitive walkthrough.

3.4.3 Consistency Inspection

This usability evaluation was not designed and organised due to this study, it is a part of

normal development routines. In this meeting all existing NEMU applications styles,

layout and consistency were evaluated. The results of this meeting were quite shattering.

There were 13 applications in compared, and none of these applications were in the

same visual or naming style. For example there were 12 different about boxes, one

application even had them all. Applications had differences in their menus. There were

two or more words in the same meaning in several cases.

One reason to this kind of results might be the problems with Platypus. When the

NEMU development work started there was not Platypus like utilities at all, and

Platypus developing work took its own time. More precise results of consistency

evaluation found in Appendix 6 The Results of The Consistency Inspection Meeting.

3.4.4 Ravden & Johnson Method

This method was used only as a reference and it was used only with two separate

application tests. Applications that are evaluated in this method are application C and J,

see Appendix 3 NEMU Applications. The results of this method were quite same than

heuristic evaluation as assumed. For example, application C has 33 different notices. In

heuristic evaluation has been found 24 different notices and R&J method set of 25 hits.

Almost half of the found problems were found by both methods at the same time. The

most of the R&J methods discoveries are related to styles and layout, meanwhile

problems that were found by heuristic evaluations are mostly functionality aspects.

55

The cross-reference of the findings of both methods is in Appendix 9 Cross-reference

heuristic evaluation vs. Ravden & Johnson method.

Using this method takes clearly more resources than heuristic evaluation. That could be

a consequence of difference of testing material, in heuristic evaluation testee makes

choices by ticking to the box, but in this method testees have to write down some

opinions and discoveries. Making own notices can produce more fertile thoughts to

improving the system than bare check marks.

3.4.5 Visual Walkthrough

This usability evaluation method was designed to perform a part of all evaluation

meetings. This method is used only in pilot tests because this method is quite time

consuming and results are mainly the same than for example results in heuristic

evaluation. This first and only evaluation was done with Jyväskylä polytechnic project

course group. In this meeting was evaluated application K, see Appendix 3 NEMU

Applications. One important notice was that the application wasn’t ready when it was

tested and some parts of evaluations were made in paper mock-ups of designed system.

Mock-up test was quite easy to arrange. In this case it succeeded and offered several

changes and corrections to further development work.

In general, tested application was good and it does not need remarkable corrections, but

some features that relate on layout needs to be fixed. There are some problems with

readability and finding the information, those may cause by too dense layout. The

results of this test need some reservation, because the same persons who have made and

evaluated it and test materials were not final form. Also the number of testees was quite

low and test results might not be objective. More precise results of the visual

walkthrough are in Appendix 5 Pilot Usability Tests Results.

56

3.4.6 Conclusion of the Results

Testing situations succeeded, in other words there ware not bigger problems. Some

minor problems happened; a tape recorders cassette ran out once and a tape recorder

battery dried out once. Once there was a wrong version of tested application in the test

server, changing the server cleared out that situation. Once other testing crew freezes

the whole server at the middle of usability test. The most of those problems could be

forecast but, for example, totally system crash down is not predictable. In this case there

were several servers, which could replace the server that have problems.

Every used method ware found at least some usability problems. All the methods gave

results, which are typical for the method. Typically results were, for example,

observations of strange or absent features in cognitive walkthrough or incoherent about

boxes that was found in consistency inspection. All of the used methods gave the same

results, such as missing shortcuts or wrong titles of dialogues. Differences between cost

efficiency of methods were explicit, for example, visual walkthrough takes two hours

for the application K and the same application tested in an hour with heuristic

evaluation, but the results were quite the same. If the testees’ suggestions of

improvement are essential, then should use methods, which support that action. In this

case there were used methods that were applied to collecting proposals and suggestions

to developing. In all meeting alike in heuristic evaluation meetings this was put into

practice as in open conversation at the end of the meeting.

Some changes have to been made make before the next test. All meetings need at least

one person more that person should be a representative of end users. Test cases have to

be collected with real end users of they real working environments or they have to even

comment it. All materials and equipments need to be double checked before actual test

event.

Testing session was quite exhausting for tester, thus it is not realistic to arrange more

than two tests that takes more that two hours each in a day. Depending on evaluation it

might not be reasonable use same testees more than a one test in a day.

57

Overall feeling about NEMU usability testing is quite satisfying. Some things

succeeded and some did not, but every minute of the tests was eminently edifying. One

important notice was that all of the testees said after the test meeting that they have

learnt something about the usability of software. They might be having been polite to

me.

3.5 User Feedback

Because some of the applications have been used about year and half in real

environment with real end users, there has been received user feedback that relates on

NEMU applications. Number of feedback is quite small. This is probably a sign of the

lack of documentation of feedback instead of lack of user feedback. Handling the user

feedback as normal errors, such as Prontos, is essential to development process.

These user feedbacks which have been reported can be divided into two categories,

possible design flaws and problems with help and documentation. The total number of

reported user feedback is 11, but there are two separate problems that both have been

reported twice by different organisation. Five out of 11 reported NEMU prontos have

third level severity of the problem classification. Four of them are some kind of design

or implementing problems and one of them is clearly lack of documentation. Other six

prontos are marked on level two on severity category; all of them are related on some

kind of lack of help or documentation. More precise description of the user feedback is

in

58

Appendix 10 User feedback.

As a conclusion of the user feedback can be said that there is competent developing and

testing crew, or customers are too lazy to make any complains on their NEMU

applications. The latter reason does not seem so likely. If there is no help and

documentation Prontos at all then total number of Prontos might be less than a half, in

the future there have to make some improvements in the help and documentation.

3.6 Other discoveries

In informal discussions with development team members, before and after the usability

tests, I made some discoveries, which could be a possible reason, which can lead to

poor usability. Frequently mentioned cause was the lack of clear and unambiguous

guidance. For example, BTS SW GUI Checklist is 60 pages or Platypus 3.0 Designers

Guide is 219 pages and these are not the only ones. According to developer’s unclear

guidance it means, for example, priority of documents. Different documents can

describe the same thing but in a different way, in this particular case it is important that

a developer knows the order of the documents. Developers say that Platypus is so

ambiguous that even its authors cannot understand it. This might be true; because some

part of it was so detailed that a normal application developer does not need all of its

information. Another problem of Platypus is that it is constantly changing. If some part

of an application was made under old Platypus version and newer version of Platypus

was released then previously made application was not compatible with Platypus or visa

versa. A developer feels that the lack of good guidance frustrates and it also causes

delays to the work. To prevent delays developers try to make some own solutions and

inventions to solve problems. That kind of activity consumes resources of real

development and can be the cause of unnecessary errors, and incompatibility and

incoherence between applications. Those unnecessary errors can affect the moods of

development team and it can reduce hostility against usability, if those errors are found

during the usability tests.

59

Several developers brought in some suggestions, which can be helpful. First one is some

kind of design patterns. Developers say, for example, that they need simple models that

can make some trivial basic components such as a table. One of the suggested helping

hands is a simple model example application or some applications with their

commented codes. Those applications can be included in the most essential features of

desired system, such as information, input and output dialogs. There can be

implemented also some seldom used features, like directory tree listing and special

instance of windows. The second suggestion to help every day work is “Hall of Shame”.

If somebody has made a terrible blunder, there is no need to make it again.

Developers mentioned also reasons that cause consistency problems. There are no exact

definitions, what document is primary, and what the latest document is. They also

emphasise the most important reason that leads poor outcome, which is that there is any

kind of common guidance or design rules available when development starts with

respect to usability.

60

4 ACTIONS TOWARD BETTER APPLICATIONS

If the software have some feature that user can’t

use it’s the same the software haven’t that feature

at all. Allan Cooper

In this chapter I have collected a few actions towards better applications. These can be

considered as results of this research. These actions are the most cost efficient and

simple ways to introduce usability into a software development process.

Detecting and identifying users and their work is the first step to improve a software

product. After identification can be done Jacobson’s use cases of desired system. The

use case can be used as a basis of task analysis. The well-defined use cases help a

designer to concentrate his attention on the most essential or desired targets on early

stage. More essential is to set focus on primary functions of the application than nice

little tricky features that are also important for the whole system. Only the knowledge of

essential user’s tasks can help this phase. The user interface must satisfy three different

paradigms at the same time: the technology, metaphor, and idiomatic paradigm. The

first one is based on understanding how things work. The second paradigm is based on

intuiting how things should work, and the last one, idiomatic paradigm, is based on

learning how accomplish things (Cooper, 1995, p.54).

An important thing is to collect usability data during throughout the whole software

development lifecycle. In every phase of the development process come out ideas and

happen improvements. That means that when developers make new inventions for the

advanced applications those ideas should be collected into one common database. That

database can include all good and bad inventions with explanations, instructions, and

codes. Testing collects its own notes and hopefully designers take advantage of them.

Into this category belong collecting user feedback and its analysis. It might be the most

important source of usability data. “If achieving the users’ goals is the basis of our user

interface design, then the user will be satisfied and happy. If the user is happy, he will

gladly pay us money, and then we will be successful.” (Cooper, 1995, p. 11) As Cooper

says, if your product is good, you can be glorious.

61

It’s important that user documentation is built at the same time as the related software;

then documentation testing and verification can be done at the same time with software

testing. Interaction between developing and documenting has to be smooth and

continual. This communication helps a documentation crew to understand all nuances of

features of the application.

Learn about your own and other developer’s errors. Some developers say in interviews

that they need some kind of hall of fame and shame to help the design process.

Designers do not need to reinvent the wheel.

Another simple action towards better applications is to add a usability person in to a

project. This means that somebody from a development crew or someone outsider has

to be named as a usability “coordinator” of the section. The person keeps eye on

changes of in-house usability instructions and delivers information to all other

developers. A direct contact to the testing crew is one essential task that this usability

person has to do. As Karat (1997, p. 35) argues: simply renaming a job title can help

usability to establish its position in the organisation, brings down futile fences and

opens new possibilities to improve the development process. He mentions, for example,

his own experience of renaming his title from ”human factor specialist” to ”usability

engineer”, which opened the access to different development teams.

62

5 DISCUSSION

This research finds some answers to questions on the case NEMU. The first main

question was “What is the level of usability in NEMU?” Overall usability of NEMU

applications was quite high; there were some deviations in both directions. But there

were a great number more good than poor things. The result of usability evaluation is

better than assumed at the beginning of this work. Some problems were so in the

foreground that they gave a poor first impression of the whole system. A closer look up

showed that those problems were minor in their impacts and they were easily fixed.

The first sub questions of the primary question were “What are the best usability

features of NEMU?” and “What are the most important usability features which should

be improved in NEMU?” The best aspect of the whole NEMU application family is that

all applications are uniform in their layout and consistent in their usage, even if the

consistency inspection results are not so good. All remarkable found problems have

been fixed. Documentation is not yet as it has to be, that is clearly the poorest feature of

NEMU user feedback can easily confirm that argument.

The second main question, to which this research tries to find an answer, was “What are

the causes for usability problems?” and its sub question was “How these problems

could be minimised in the future?” Answers to both questions are not ambiguous. Some

reasons for the first question might be the age of the section and scattered organisation.

Young age means that there is not a stable way to work yet, but this can also seen as a

strength of development work. Scattered organisation causes needless underestimation

of other parts of organisation, and it might cause lack of information, because of

exiguous interaction. Answers of the second questions are not clear, but in this case

increasing the level of the knowledge of usability might bring back of its investments.

Supportive work of development and usability actions and methods may help

developers’ everyday work, for example, code or sample library for rarely used

functions and dialogue layouts.

63

The results of this research have some restrictions. All the testees were some kind of

professionals, but not in the domain of the target system. This means that the results

might be different if real end users had made their own estimation. Other essential note

is that NEMU applications are not designed for normal consumers, such as word

processors are. Users of NEMU applications are experts of their own domain and

applications have to be adapted for this purpose.

Almost all of the user feedback items that were received in the Pronto system have been

handled as the result of usability evaluations. They have already been used or going to

be used in development work. Some Prontos, which are in the lowest level, might be

used in future.

After this research there are still things that have to be studied. The first one, which

needs some verification is the effect of a task-centred approach to NEMU applications

like cases. Are there any good reasons why it would be better or wore then a use user-

centred approach? Other level of the first question could be whether there are any other

approaches which support development work better than the currently used one. This

was one of the original planned research questions, but it did not suit the final schedule.

One quite interesting field of study might be the problem classification model and

developing a “solved problems” database to support NEMU development. When there

are quite a large number of performed usability tests and with they a larger number of

problems have been found with them, control and exploitation of these become quite

problematic. With a simple and efficient classification database one can easily made

queries and find solutions when new problems appear.

64

6 BIBLIOGRAPHY

Bevan, N., 1995. Measuring Usability as Quality of Use. Journal of Software Quality, 4,

pp. 115-130

Beyer, H., & Holtzblatt, K., 1998. Contextual Design: Defining Customer-Centered

Systems, San Francisco: Morgan Kaufmann Publishers

Bias, R., 1994. The Pluralistic Usability Walkthrough: Coordinated Empathies. In J.

Nielsen & R. Mack (Eds.) Usability Inspection Methods, John Wiley & Sons Inc.,

pp. 63-76

Brooks, F., 1975, The Mythical Man-Month, Reading: Addison-Wesley

Boehm, B., 1988. A Spiral Model of Software Development and Enhancement. IEEE,

Computer. 21(5), pp. 61-72

Card, S., Moran, T. & Newell, A., 1980. The Keystroke-Level Model for User

Performance Time With Interactive System, Communications of the ACM, 23(7),

pp. 396-410

Card, S., Moran, T. & Newell, A., 1983. The Psychology of Human-Computer

Interaction, Hillsdale: Lawrence Erlbaum Associates

Cooper, A.,1995. About Face: The Essentials of User Interface Design, Foster City:

IDG books Worldwide Inc.

Dehlholm, F., 1992. Picture Analysis of Screen Images. In Leponiemi, J. (Ed.),

NordDATA'92 Precedings, pp. 353-359

Diaper, D., 1989. Task Observation for Human-Computer Interaction. In D. Diaper

(Ed.), Task Analysis for Human-Computer Interaction, Chichester: Ellis Horwood,

pp. 210-237

Dicks, S., 2002. Mis-usability: On the Uses and Misuses of Usability Testing, In

Proceedings of the 20th Annual International Conference on Computer

Documentation, ACM Press, October 20-23, pp. 26-30

65

Dumas, J., & Redish, J., 1993. A Practical Guide to Usability Testing, Norwood: Ablex

FOLDOC, The Free On-line Dictionary of Computing,

<http://foldoc.doc.ic.ac.uk/foldoc/index.html>. Checked 26.08.2003

Gould, J. & Lewis, C., 1985. Design for Usability – Key Principles and What Designers

Think. In Proceedings of the ACM CHI’83 Conference on Human Factors in

Computing Systems, pp. 99-106

Gould, J., Boies, S. & Lewis, C., 1991. Making Usable, Useful, Productivity-Enhancing

Computer Applications. Communications of the ACM, 34(1), pp. 75-85

Gray, W., John, B. & Atwood, M., 1993. Project Enrnestie: A Validation of GOMS for

Prediction and Explanation of Real-World Task Performance, Human-Computer

Interaction, pp. 237-309

Gulliksen J., 1996. Designing for Usability – Domain Specific Human-Computer

Interface in Working Life, Uppsala: Acta Universitatis Upsaliensis

Haikala, I. & Märijärvi, J., 1998. Ohjelmistotuotanto, Jyväskylä: Satku

Holtzblatt, K., & Beyer, H., 1993. Making Customer-Centered Design Work for Teams.

Communications of the ACM, 36, 10, pp. 92-103

Holtzblatt, K. & Beyer, H., 1999. Contextual Design, Interactions, 6, ACM, pp. 32-42

ISO/DIS 9241-11:1999, Ergonomic Requirements for Office Work With Visual Display

Terminals (VDTs) – Part 11: Guidance to Usability

ISO/FDIS 13407:1999, Human-Centred Design Process for Interactive Systems.

John, B. & Kieras, D., 1994. The GOMS Family of Analysis Techniques: Tools for

Design and Evaluation, Technical Report, Carnegie Mellon University

Kaner, C., Falk, J. & Nquyen, H. Q., 1999. Testing Computer Software, second edition,

John Wiley & Sons

66

Karat, T., 1997. User-Centered Software Evaluation Methods, In M. Helander, T.K.

Laudauer & P. Prabhu (Eds.), Handbook of Human-Computer Interaction, Elsevier

Science, pp. 689-704

Kieras, D., 1988. Towards a Practical GOMS Model Methodology for User Interface

Design. In M. Helander ed., Handbook of Human-Computer Interaction, Elsevier,

pp. 135-157

Kieras, D., 1997. A Guide to GOMS Model Usability Evaluation Using NGOMSL. In

M. Helander, T.K. Laudauer & P. Prabhu (Eds.), Handbook of Human-Computer

Interaction, Elsevier Science, pp. 733-766

Kieras, D., 2002. Model-Based Evaluation. In J. Jacko & A. Sears, (Eds.), The Human-

Computer Interaction Handbook: Fundamentals, Evolving Technologies and

Emerging Applications, Lawrence Erlbaum Associates, pp. 1139-1151

Lewis, C., Polson, P., Wharton, C. & Reiman, J., 1990. Testing a Walkthrough

Methodology for Theory-Based Design of Walk-up-and-Use Interface, In

Proceedings of the ACM CHI’90 Conference on Human Factors in Computing

Systems, pp. 235-242

Lewis, C. & Wharton, C., 1997. Cognitive Walkthroughs. In M. Helander, T.K.

Laudauer & P. Prabhu (Eds.), Handbook of Human-Computer Interaction, Elsevier

Science, pp.717-732

Life, A., 1990. Simulation and the User Interface, London: Taylor & Francis

Mayhew, D., 1999. The Usability Engineering Lifecycle: A Practitioner's Handbook for

User Interface Design, San Francisco: Morgan Kaufmann Publishers

Molich, R. & Nielsen, J., 1990, Improving a Human-Computer Dialogue.

Communications of The ACM, Vol 33, no. 3, pp 338-348

Musa J., 1998. Software Reliability Engineering, McGraw-Hill

67

Muller, M. & McClard, A., 1995. Validating an Extension to Participatory Heuristic

Evaluation: Quality of Work and Quality of Work Life. CHI 95 Conference

Companion, pp. 115-116

Muller, M., Matheson, L., Page, C. & Gallup, R., 1998. Participatory Heuristic

Evaluation. In Interactions, Vol 5, no. 5, pp 13-18

Myers, G., 1976. The Art of Software Testing, New York: John Wiley & Sons Inc.

Nielsen J., 1993. Usability Engineering, Academic Press

Nielsen, J. & Mack, R., 1994a. Usability Inspection Methods, New York: John Wiley

and Sons

Nielsen, J, 1994b. Enhancing the Explanatory Power of Usability Heuristics. In

Proceedings of the ACM CHI'94 Conference on Human Factors in Computing

Systems, pp.152-158

Nieminen, M. & Koivunen, M., 1995. Visual Walkthrough. In G. Allen, J. Wilkinson &

P. Wrigth, (Eds.), HCI'95, People and Computers, Adjunct Proceedings, The

University of Huddersfield, The School of Computing & Mathematics, pp. 86-89

Nieminen M., Riihiaho S., Sinkkonen I. & Parkkinen J., 1997. Käytettävyysopas.

Ohjelmiston käytettävyyden arviointi –seminaari, Tieturi

Norman, D.A., 1986. Cognitive Engineering, In D. Norman & S. Draper (Eds.) User

Centered System Design: New Perspective on Human-Computer Interaction,

Lawrence Erlbaum Associates

Norros L, 2003. Understanding Use in the Design of Smart Objects – Reflections on the

Conception of Collaborative Design, Proceedings of Smart Objects Conference

Polson, P., Lewis, C., Rieman, J. & Wharton, C., 1992. Cognitive Walkthroughs: A

Method for Theory-Based Evaluation of User Interfaces. International Journal of

Man-Machine Studies, 36, pp. 741-773

68

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. & Carey, T., 1994. Human-

Computer Interaction, Addison-Wesley Publishing Company

Pressman R., S., 1997. Software Engineering: A Practitioner’s Approach, Fourth

Edition, McGraw-Hill

Ravden, S. & Johnson, G., 1989. Evaluating Usability of Human-Computer Interfaces:

A Practical Method, Chichester: Ellis Horwood Limited

Rowley, D. & Rhoades, D., 1992. The Cognitive Jogthrough: A Fast-Paced User

Interface Evaluation Procedure. Proceedings of the ACM Conference on Human

Factors in Computing Systems, pp. 389-395

Rubin, J., 1994. Handbook of Usability Testing, New York: Wiley

Silander, S., 1999. DX Primer: Introduction to DX200 Software Engineering, Helsinki:

Edita

Sinkkonen, I., Kuoppala, H., Parkkinen, J. & Vastamäki, R., 2002. Käytettävyyden

psykologia, Helsinki: IT Press

Shneiderman, B., 1998. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. 3rd ed., Reading: Addison-Wesley

Strong G., 1994. New Directions in Human-Computer Interaction Education, Research,

and Practice, <http://www.sei.cmu.edu/community/hci/directions>, Checked

26.06.2003

Tukiainen, M. & Lempinen, R., Raportti B-1994-1, 1994. Joensuun yliopisto

raporttisarja B, Also available in ftp-site: <ftp://ftp.cs.joensuu.fi/pub/Reports/B-

1994-1.ps>, Checked 29.08.2003

Virzi, R., 1997. Usability Inspection Methods. In M. Helander, T.K. Landauer & P.

Prabhu (Eds.) Handbook of Human-Computer Interaction, 2nd ed., Elsevier

Science, pp.705-715

69

Wharton, C., Rieman, J., Lewis, C. & Polson, P., 1994. The Cognitive Walkthrough

Method: A Practitioner's Guide. In J. Nielsen, & R. Mack (Eds.), Usability

Inspection Methods, New York: John Wiley and Sons

Wilson, C. & Coyne, 2001. K.P. (Eds.), Tracking Usability Issues: to Bug or Not to

Bug? Interactions, Vol. 8, 3, pp. 15-19

Wixon, D., Jones, S. Tse, L. & Casady, G., 1994. Inspections and Design Reviews:

Framework, History, and Reflection, In J. Nielsen, & R. Mack (Eds.), Usability

Inspection Methods, New York: John Wiley and Sons

Young, J., 1994. W., A Technology for Producing Ideas, NTC Business Books

70

7 APPENDIX

7.1 Appendix 1 Used Usability Test Forms

A Heuristic evaluation test form

Name of the application Severity

Heuristic 0 1 2 3 4

Feedback

Speak the users’ language

Clearly marked exits and user control

Consistency and standards

Prevent errors

Minimise user memory load

Shortcuts, flexibility

Use simple and natural dialogue

Heuristic checklist

Yleistä

Seuraavassa on tutkimuksessa käytettävä heuristisen arvioinnin muistilista. Alla oleva

kymmenkohtainen muistilista on sovellettu Jakob Nielsenin heuristisen arvioinnin muistilistasta

(Nielsen 1993).

Listaa on täydennetty esimerkki kysymyksillä, joiden tarkoituksena on valaista kutakin muistilistan

kohtaa, joskaan ei antaa tyhjentävää kuvausta sen tarkoituksesta. Usein muistilistan jokainen otsikko

on riittävä kimmoke mahdollisen ongelman tunnistamiseen ja luokitteluun.

71

1. Ohjelman tilan näkyvyys

Käyttäjän pitäisi aina pystyä nopeasti huomaamaan mikä on ohjelman tila ja käyttäjän sijainti

ohjelmassa.

• Onko ohjelma pystyssä (ts. toimiiko se vielä)?

• Onko ohjelma vastaanottanut syötteeni?

• Mitä seuraavaksi on tapahtumassa?

• Missä päin ohjelmaa olen?

• Minne voin mennä seuraavaksi?

• Olenko menossa oikeaan (haluamaani) suuntaan?

2. Ohjelman ja tosielämän vastaavuus

Ohjelmassa pitäisi käyttää normaalissa prosessiteollisuudessa tuttuja termejä, sanontoja ja käsitteitä.

• Ovatko sanat ja lauserakenteet helposti ymmärrettävissä?

• Käytetäänkö käsitteitä samassa merkityksessä kuin tosielämässä?

• Toimivatko metaforat loogisesti?

• Onko ohjelman käyttö ristiriidassa muun maailman toimintaan?

3. Käyttäjän kontrolli ja vapaus

Käyttäjän pitäisi päästä nopeasti ja vaivatta takaisin kunkin vaiheen alkutilaan, tehtyään epätoivotun

tai virheellisen valinnan. Ohjelma ei myöskään saisi tehdä häiritseviä asioita käyttäjän tahtoa vasten tai

tältä kysymättä.

• Joutuuko ohjelmassa navigoimaan turhien hyppyjen kautta (ts. saman voisi tehdä paljon

nopeammin pienellä muutoksella)?

• Joutuuko tietylle sivulle päästäksensä noudattamaan pakollisia ja hankalia reittejä?

• Pääseekö pääsivuille ja tärkeimmille alasivuille takaisin helposti?

• Voiko virheellisen syötteen (esim. lomakkeessa) muuttaa vielä lähettämisen jälkeen riittävän

helposti?

• Onko näyttöjä/ikkunoita liian paljon, voisiko asiat ilmaista tiiviimmin?

4. Yhteneväisyys ja standardit

Viestien ja toimintojen pitäisi tarkoittaa yhteneväisesti aina samoja asioita (sanoja tai merkityksiä ei

saisi vaihtaa lennossa). Olemassa olevia verkko- ja muita standardeja pitäisi hyödyntää

yhteneväisyyteen pyrittäessä.

• Onko nimiä, värejä ja muita tunnisteita käytetty yhtenäisesti kaikilla sivuilla?

• Onko linkkejä, painikkeita, tunnisteita ja syötekenttiä käytetty yhtenäisesti läpi ohjelman?

• Ovatko navigointipalkki ja painikkeet tutuissa paikoissa?

72

• Näyttävätkö linkit, painikkeet ja syötekentät tutuilta (esim. väri ja muoto)?

• Onko navigointityyli eheä läpi ohjelman?

5. Virheiden estäminen

Ohjelman pitäisi tunnistaa mahdolliset virhetilanteet ja estää niiden toistuminen kertomalla käyttäjälle

ennen virheen tapahtumista. Opastus pitäisi olla aina helposti saatavilla ja ymmärrettävissä.

• Onko lomakkeissa hyödynnetty riittävästi virheellisten syötteiden tarkistusta?

• Annetaanko ongelmallisista syötteistä selkeä ja opastava ilmoitus ajoissa?

• Onko syöte- ja toimintotilanteissa saatavilla opastus?

6. Tunnistaminen mieluummin kuin muistaminen

Asioiden, toimintojen ja vaihtoehtojen pitäisi olla näkyvissä käyttöliittymässä. Käyttöliittymän

painikkeiden ja syötteiden pitäisi liittyä ohjelman toimintoihin loogisesti, niin että näiden vastaavuus

on pääteltävissä helposti. Käyttäjää ei saisi pakottaa muistamaan asioita ruudulta toiselle siirryttäessä.

• Ovatko tärkeimmät toiminnot näkyvissä aina niin, että niiden sijaintia toisella sivulla ei tarvitse

muistaa?

• Ovatko kaikki toimintoja aikaansaavat käyttöliittymäelementit merkitty niin, että ne

ymmärretään painikkeiksi (tai syötekentiksi, tms.)?

• Ovatko käyttöliittymän elementit sijoitettu niin, että niiden riippuvuus ja suhde muihin ruudun

elementteihin on selvä?

• Voiko käyttäjä edetä sivulta toiselle, ilman että hänen täytyy muistaa ulkoa aikaisemmilla

sivuilla näkemäänsä tietoa?

7. Käytön joustavuus ja tehokkuus

Käytön pitäisi olla joustavaa ja tehokasta sekä aloitteleville että edistyneille käyttäjille. Käytön pitäisi

olla myös joustavaa ja tehokasta käyttäjän laitteistosta ja yhteydestä riippumatta.

• Ovatko yleisimmät toiminnot aina käytettävissä ja näkyvillä?

• Voiko monimutkaista tai laajasisältöistä liittymää muokata yksinkertaisemmaksi tarpeidensa

mukaan?

• Mukautuuko ohjelma eri näytöille, selainversioille, kirjasintyypeille, väreille, konetyypeille,

käyttöjärjestelmille ja yhteysnopeuksille?

• Voiko usein käytettyihin sivuihin linkittää helposti?

73

• Voiko dynaamisesti tuotetut sivut saada helposti ladattua uudestaan (esim. kyselyt)?

8. Esteettinen ja minimalistinen design

Ruudulla pitäisi olla ne elementit, jotka ilmaisevat halutun tiedon, toiminnot, tunnelman ja tyylin, ei

enempää.

• Onko ruudulla käytetty rajoitetusti värisävyjä (n. 1-3)?

• Onko kirjasintyyppejä ja kokoja käytetty rajoitetusti (n. 1-3)?

• Onko tyhjää tilaa hyödynnetty selkeyttämään näyttöjä?

• Kiinnittyykö huomio tärkeimpiin elementteihin ensin?

• Hallitseeko jokin tai jotkin elementti koko näyttöä ja sen navigointia muiden kustannuksella?

• Onko teksti sopivan mittaista, tyylistä ja kokoista ruudulta luettavaksi?

9. Virhetilanteiden tunnistaminen, ilmoittaminen ja korjaaminen

Virheilmoitusten pitäisi kertoa selkokielellä mitä tapahtui, miksi näin kävi, miten asia voidaan korjata

ja kuinka se voidaan välttää ensi kerralla.

• Onko virheilmoitus ymmärrettävissä?

• Selviääkö virheilmoituksesta mitä tapahtui, miksi ja miten korjata/välttää tilanne?

• Ovatko virheilmoitukset kohteliaita ja välttävät syyttelyä?

• Ovatko korjaavat toimintaohjeet helposti seurattavissa?

10. Opastus ja ohjeistus

Vaikka käytön pitäisi tapahtua ilman opastusta ja ohjeita, ovat ne usein välttämättömiä käyttäjille.

Näiden pitäisi olla helposti saatavilla, nopeasti etsittävissä, toimintaan ohjaavia, käyttötilannetta

tukevia ja riittävän lyhyitä.

• Annetaanko opastusta automaattisesti vaikeissa paikoissa?

• Ovatko ohjeet aina saatavilla?

• Ovatko ohjeet ja opastus tilanne- tai sivukohtaisia?

• Ovatko ohjeet helposti ymmärrettävissä ja vaiheet toteutettavissa?

• Ovatko ohjeet lyhyitä (lyhyisiin, mutta järkeviin kokonaisuuksiin pilkottuja)?

74

Vakavuusluokitus

Jokainen arvioinnissa löydetty ongelma luokitellaan vakavuusasteikolla, joka kertoo asiantuntijan

mielipiteen käytettävyysongelman vakavuudesta. Ongelman vakavuuden luokitus pitäisi nojata ainakin

seuraavaan neljään seikkaan:

• Esiintymistiheys: kuinka usein potentiaaliseen ongelmatilanteeseen törmää? (usein/harvoin)

• Vaikutukset käyttäjälle: onko ongelmatilanteesta helppo vai vaikea selvitä? (vaikea/helppo)

• Toistuvuus: Onko ongelma helposti ohitettavissa, kun sen on kerran tunnistanut, vai vaivaako

se jatkuvasti? (toistuva/ohitettava)

Vakavuusluokka ilmaistaan numeroilla nollasta neljään seuraavasti:

0 = En pidä ongelmaa käytettävyysongelmana

1 = Kosmeettinen ongelma: korjataan kun ehditään

2 = Pieni käytettävyysongelma: vaikeuttaa käyttö, korjataan

3 = Suuri käytettävyysongelma: vaikeuttaa merkittävästi, korjataan heti

4 = Katastrofaalinen ongelma: ohjelma lähes käyttökelvoton

75

B Cognitive walkthrough test form (Polson et al. 1992)

Cognitive Walkthrough for a Step

Task __ Action# _______

1 Goal structure for this step

1.1 Correct goals

What are the appropriate goals for this point in the interaction? Describe as for initial goals.

1.2 Mismatch with likely goals

What percentage of users will not have these goals, based on the analysis at the end of the previous step? Check each goal

in this structure against your analysis at the end of the previous step. Based on that analysis, will all users have the goal at

this point, or may some users have dropped it or failed to form it? Also, check the analysis at the end of the previous step to

see if there are unwanted goals, not appropriate for this step that will be performed or retained by some users. (% 0 25 50

75 100)

2 Choosing and executing the action

Correct action at this step: ___________________________________

2.1 Availability. Is it obvious that the correct action is a possible choice here? If not, what percentage of users might miss

it? (% 0 25 50 75 100)

2.2 Label. What label or description is associated with the correct action?

2.3 Link of label to action. If there is a label or description associated with the correct action, is it obvious and is it clearly

linked with this action? If not, what percentage of users might have trouble? (% 0 25 50 75 100)

2.4 Link of label to goal. If there is a label or description associated with the correct action, is it obviously connected with

one of the current goals for this step? How? If not, what percentage of users might have trouble? Assume all users have the

appropriate goals listed in Section 1. (% 0 25 50 75 100)

2.5 No label. If there is no label associated with the correct action, how will users relate this action to a current goal? What

percentage might have trouble doing so? (% 0 25 50 75 100)

2.6 Wrong choices. Are there other actions that might seem appropriate to some current goal? If so, what are they and what

percentage of users might choose one of these? (% 0 25 50 75 100)

76

2.7 Time-out. If there is a time-out in the interface at this step, does it allow time for the user

to select the appropriate action? How many users might have trouble? (% 0 25 50 75 100)

2.8 Hard to do. Is there anything physically tricky about executing the action? If so, what percentage of users will have

trouble? (% 0 25 50 75 100)

3 Modification of goal structure

Assume the correct action has been taken. What is the system's response?

3.1 Quit or backup. Will users see that they have made progress towards some current goal? What will indicate this to

them? What percentage of users will not see progress and try to quit or backup? (% 0 25 50 75 100)

3.2 Accomplished goals. List all current goals that have been accomplished. Is it obvious from the system response that

each has been accomplished? If not, indicate for each, how many users will not realise it is complete.

3.3. Incomplete goals that look accomplished. Are there any current goals that have not been accomplished, but might

appear to have been based on the system response? What might indicate this? List any such goals and the percentage of

users who will think that they have actually been accomplished.

3.4 "And-then" structures. Is there an "and-then" structure, and does one of its subgoals appear to be complete? If the

subgoal is similar to the supergoal, estimate, how many users may prematurely end the "and-then" structure.

3.5 New goals in response to prompts. Does the system response contain a prompt or cue that suggests any new goal or

goals? If so, describe the goals. If the prompt is unclear, indicate the percentage of users who will not form these goals. (%

0 25 50 75 100)

3.6 Other new goals. Are there any other new goals that users will form given their current goals, the state of the interface,

and their background knowledge? Why? If so, describe the goals and indicate, how many users will form them. NOTE that

these goals may or may not be appropriate, so forming them may be bad or good.

77

Guide for cognitive walkthrough

Yleistä
Käytettävyystestauksessa käytetään yhtenä arviointi tapana kognitiivista läpikäyntiä. Tällä

menetelmällä on tarkoitus löytää ohjelmien käyttöä ja niiden oppimista hankaloittavia rakenteita. Tässä

testissä ei arvioida millään tavalla testaajan tietoja tai taitoja.

Menetelmän kuvaus
Tässä menetelmässä testaaja arvioi ensin lopputuloksen joka on mahdollista suorittaa testattavalla

ohjelmaosalla. Tämän jälkeen testaaja arvioi samalla tietyllä kriteereillä selviytymismahdollisuuksiaan

kohti asettamaansa tavoitetta. Ja lopuksi testaaja arvioi onnistumisensa tehtävässä. Seuraavassa

kerrotaan testausmenetelmästä tarkemmin.

Varsinaisen läpikäynnin vaiheet ovat:

Valitaan tarkasteltava tehtäväkokonaisuus ja rajataan se.

Kuvataan käyttäjän alustavat tavoitteet (miksi ollaan ylipäätään tilanteessa, jossa tätä laitetta halutaan

käyttää?).

Käydään läpi valittu tehtäväkokonaisuus ohjelman tai sen määrittelyjen avulla ja analysoidaan

käyttäjän päätöksentekoprosessi kaikissa tilanteissa, joissa joudutaan suorittamaan valintoja tai

tulkitsemaan tuloksia.

Kognitiivisessa läpikäynnissä käydään vuorovaikutustilanne läpi seuraavia asioita tarkastelevien

kysymyskokonaisuuksien avulla:

Mikä on käyttäjän tavoite toimenpiteiden suorittamista aloitettaessa? Onko tavoite oikea?

Havaitseeko käyttäjä, onko oikea toimenpide käytettävissä?

Osaako käyttäjä yhdistää tavoitteensa oikeisiin vuorovaikutuselementteihin?

Ymmärtääkö käyttäjä toiminnon suoritettuaan, että hän on edistynyt tavoitettaan kohti?

Kognitiivisen läpikäynnin arviointilomakkeessa on tarkennettu ohjeisto kognitiivisen läpikäynnin

suorittamiseksi, seuraavassa on lyhennetty kuvaus:

Ensimmäinen osa on kognitiivista läpikäyntiä tukeva lomake.

Toinen osa on jaettu kolmeen alalomakkeeseen:

Ensimmäisellä lomakkeella käydään läpi tehtävän osan suorittamiseen liittyvä käyttäjän tavoite.

Toisella lomakkeella arvioidaan käyttäjän mahdollisuuksia valita ja toteuttaa haluttu, oikea tai väärä

toiminto.

Viimeinen lomake käsittelee käyttäjän tavoitteissa tapahtuneita muutoksia.

Lisäksi kognitiivisen läpikäynnin arviointilomakkeessa on tarkat kuvaukset arvioitavista tehtävistä

Lopputuloksen analyysin kannalta keskeisimmän osan muodostaa käyttäjän päätöksentekoprosessin
tarkastelu ei ainoastaan tilanteen selvittäminen.

C Ravden & Johnson Method test form (Tukiainen & Lempinen, 1994)

JÄRJESTELMÄN KÄYTETTÄVYYSTESTI (ver. 1.1)

78

Testattava järjestelmä___________________________ Versio______

Testaajan nimi_____________________________ Pvm____________

OSA K1: VISUAALINEN SELKEYS

Visuaalisella selkeydellä tarkoitetaan sitä,

että järjestelmän näytöt tulisivat olla selkeitä,

hyvin organisoituja, yksikäsitteisiä ja

helppoja lukea.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Onko tärkeät tiedot riittävästi korostettu?

(esim. kohdistin, aktiivinen ikkuna, ohjeet,

virheilmoitukset)

2. Kun syötät tietoja, tiedätkö

(a) mihin kohtaan tieto syötetään?

(b) missä muodossa tieto tulisi syöttää (esim.

pvm)?

3. Onko tiedot ryhmitelty loogisesti?

4. Onko erityyppiset tiedot erotettu selvästi

toisistaan? (esim. ohjeet, syöttöalueet,

tulosalueet)

5. Jos näytöllä (ikkunassa) esitetään paljon

tietoa, onko näyttö jaettu selkeästi

hahmotettaviin osiin?

6. Auttaako värien käyttö tietojen

hahmottamisessa?

7. Onko esitettävä tieto helppo nähdä ja lukea?

8. Onko näytön (ikkunan) yleisrakenne selkeä?

9. Ovatko kuviot ja kuvat (esim. diagrammit)

selkeitä (esim. koko, väri, selitteet)?

10. Löydätkö helposti tarvitsemasi tiedot?

11. Millaisen yleisarvosanan antaisit näyttöjen

(ikkunoiden) selkeydestä

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

79

Muut kommentit

OSA K2a: TIETOJEN YHDENMUKAISUUS

Tietojen yhdenmukaisuudella tarkoitetaan

sitä, että järjestelmän syöttö- ja tulostietojen

muoto tulisi olla käyttäjälle tuttu ja sama

tietojen kaikissa esiintymissä.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Ovatko käytetyt lyhenteet, koodit ja muut

esitystavat

a) helppo tunnistaa ja ymmärtää?

b) yleisesti käytettyjen esitysmuotojen mukaisia

(esim. päivämäärä muotoa pp.kk.vvvv)?

2. Ovatko käytetyt ikonit, symbolit ja muu

kuvallinen tieto

a) helppo tunnistaa ja ymmärtää?

b) yleisesti käytettyjen esitysmuotojen

mukaisia?

3. Onko käytetty ammattisanasto ja

terminologia sinulle tuttua?

4. Esiintyykö samanlainen tieto säännöllisesti

samassa muodossa

a) syötettäessä tietoa järjestelmään?

b) järjestelmän esittämänä?

c) järjestelmään syötettäessä ja järjestelmän

esittämänä ?

5. Esitetäänkö ja käsitelläänkö tieto yksiköissä,

joiden kanssa normaalisti työskentelet? (esim.

markat, kilometrit)

6. Vastaako tulosteissa oleva tietojen

esitysjärjestys ja -tapa näytön esitysjärjestystä ja

-tapaa?

80

7. Millaisen yleisarvosanan antaisit tietojen

yhdenmukaisuudesta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K2b: KÄYTÖN YHDENMUKAISUUS

Käytön yhdenmukaisuudella tarkoitetaan

sitä, että järjestelmän käyttäminen tulisi olla

käyttäjän ennustettavissa ja noudattaa

tuttuja käytäntöjä.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1.Onko kunkin tiedon syöttötapa

yhdenmukainen järjestelmässä (esim. tietojen

syöttäminen näppäimistöltä, toimintojen

valitseminen valikosta)?

2. Reagoiko järjestelmä samalla tavalla toisiaan

vastaaviin toimintoihin (esim. ENTER-

näppäimen painallus eri tilanteissa)?

3. Onko järjestelmässä käytetty ammattisanasto

ja terminologia sinulle tuttua?

4. Ovatko ohjaustoiminnot samankaltaisia kuin

muissa mahdollisesti käyttämissäsi

järjestelmissä (esim. tulostoiminnon

käynnistäminen)?

5. Onko järjestelmän toiminnot järjestetty

tehtävääsi vastaavalla tavalla?

6. Voitko suorittaa tarvitsemasi toiminnot

helposti haluamassasi järjestyksessä?

7. Toimiiko järjestelmä olettamallasi tavalla?

8. Millaisen yleisarvosanan antaisit käytön

yhdenmukaisuudesta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

81

OSA K3: PALAUTTEET

Palautteilla tarkoitetaan sitä, että

järjestelmän antamat palautteet tulisivat olla

selkeitä, informatiivisia ja käyttäjän sen

hetkistä toimintaa eteenpäin vieviä.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Ovatko järjestelmän ohjeet ja ilmoitukset

ytimekkäitä ja selkeitä?

2. Liittyvätkö järjestelmän ilmoitukset

käsiteltävään asiaan?

3. Ilmaisevatko ohjeet ja kehotteet selvästi, mitä

tulee tehdä?

4. Onko sinulle selvää, mitä toimintoja voit

tehdä kussakin vaiheessa?

5. Onko sinulle selvää, mitä sinun on tehtävä

suorittaaksesi tietyn toiminnon (esim. mitä

valintoja/optioita valita, mitä näppäimiä

painaa)?

6. Onko sinulle selvää, mitä tietoja kulloinkin

pitää syöttää?

7. Onko sinulle selvää, mitä syötteiden

nopeutuksia järjestelmä sisältää (esim.

lyhenteet, peräkkäisten valintojen yhdistäminen

(onko nopeutukset näkyvillä)) ?

8. Ovatko tilailmoitukset (esim. mitä

järjestelmä tekee tai on juuri tehnyt):

a) informatiivisia?

b) tilanteeseen sopivia?

9. Ilmoittaako järjestelmä selvästi suoritettuaan

pyytämäsi toiminnon (onnistuneesti tai

epäonnistuneesti)?

10. Ilmoittaako järjestelmä käsittelevänsä

syötettäsi, mikäli toiminto kestää pitkään?

11. Ilmeneekö virheilmoituksista selvästi:

a) missä virhe ovat?

82

b) mikä virhe on?

c) miksi virhe tapahtui?

12. Onko sinulle selvää, mitä pitäisi tehdä

virheen korjaamiseksi?

13. Millaisen yleisarvosanan antaisit

järjestelmän palautteista

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K4: YKSIKÄSITTEISYYS

Yksikäsitteisyydellä tarkoitetaan sitä, että

järjestelmän toiminta ja rakenne tulisi olla

käyttäjälle selvä ja ymmärrettävä.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Kun järjestelmä tarjoaa joukon

toimintovaihtoehtoja (esim. valikossa), onko

sinulle selvää, mitä kukin toiminto tarkoittaa?

2. Onko sinulle selvää, missä osassa

järjestelmän osassa kulloinkin olet?

3. Onko sinulle selvää, mitä järjestelmän eri osat

tekevät?

4. Onko sinulle selvää kuinka, missä ja miksi

yhdessä osassa järjestelmää tekemäsi muutokset

vaikuttavat muihin järjestelmän osiin?

5. Onko sinulle selvää, miksi järjestelmä on

organisoitu ja rakennettu kuten se on?

6. Onko sinulle selvää, miksi näyttöjen

(ikkunoiden) sarjat ovat sellaisessa

järjestyksessä kuin ne ovat?

7. Onko järjestelmän rakenne mielestäsi

järkevä?

8. Onko järjestelmä tehtäväsi kannalta hyvin

organisoitu?

83

9. Millaisen yleisarvosanan antaisit järjestelmän

yksikäsitteisyydestä

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K5: OIKEA TOIMINNALLISUUS

Oikealla toiminnallisuudella tarkoitetaan

sitä, että käyttäjä voi suorittaa haluamansa

tehtävän haluamallaan tavalla.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Onko käytettävissä oleva syöttölaite (esim.

hiiri, näppäimistö) sopiva tehtävän

suorittamiseksi?

2. Sisältääkö jokainen näyttö (ikkuna) kaiken

sen tiedon, joka on tehtäväsi kannalta oleellista?

3. Onko sinulla koko ajan käytössäsi kaikki

tarvitsemasi toiminnot?

4. Onko sinulla saatavilla kaikki se tieto, jota

tarvitset nykyisen tehtävän suorittamiseksi?

5. Salliiko järjestelmä, että teet kaiken sen

minkä katsot tarpeelliseksi tehtävää

suorittaessasi?

6. Sisältävätkö avustus- ja opastustoiminnot

todellisia tehtäväalueesi esimerkkejä ja

ongelmia?

7. Millaisen yleisarvosanan antaisit järjestelmän

toiminnallisuudesta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K6: JOUSTAVUUS JA HALLINTA

84

Joustavuudella ja hallinnalla tarkoitetaan

sitä, että järjestelmä joustaa käyttäjän

toiminnoissa ja käyttäjä voi itse muokata

järjestelmää jonkin verran.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Onko sinun helppo perua suorittamasi

toiminto ja palata edelliselle tasolle tai näytölle?

(esim. jos teet väärän valinnan)

2. Jos voit perua toiminnon, niin voitko myös

perua perumisen (ts. kumota peruuttamisen)?

3. Voitko riittävästi kontrolloida järjestystä,

jossa pyydät tietoja tai suoritat joukon

toimintoja?

4. Voitko riittävästi selailla näyttöjä (ikkunoita)

edestakaisin?

5. Jos järjestelmä on valikko-ohjattu, niin voitko

helposti palata päävalikkoon mistä tahansa

osasta järjestelmää?

6. Voitko tarvittaessa helposti siirtyä

järjestelmän eri osiin?

7. Voitko tarvittaessa kumota koneen tuottaman

(esim. oletusarvo) tiedon?

8. Voitko helposti muuttaa tiettyjä osia

käyttöliittymästä omien mieltymystesi ja

tarpeittesi mukaan (esim. värit, oletusarvot ja

tiedon esitysmuodot)?

9. Millaisen yleisarvosanan antaisit järjestelmän

joustavuudesta ja hallinnasta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K7: VIRHEIDEN KORJAAMINEN

Virheiden korjaamisella tarkoitetaan sitä,

että käyttäjä voi helposti korjata tekemänsä

virheet ja ei joudu tekemään ylimääräistä

työtä virheitä korjatakseen.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

85

1. Voitko helposti korjata tekemäsi virheet

(esim. kirjoitusvirheet) ennekuin järjestelmä

käsittelee syötteen?

2. Onko sinun helppo korjata tekemäsi virheet

jälkikäteen?

3. Saatko virheen tapahtuessa kaiken

tarvitsemasi diagnostisen tiedon ratkaistaksesi

ongelman? (esim. missä ja mikä vika on, mitä

tarvitaan sen korjaamiseksi)

4. Millaisen yleisarvosanan antaisit virheiden

korjaamisesta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K8: KÄYTTÄJÄN OPASTAMINEN

Käyttäjän opastamisella tarkoitetaan sitä,

että käyttäjä saa opastusta haluamallaan

hetkellä ja että opastus on selkeää ja

toiminnan kannalta hyödyllistä.

A
in

a

U
seim

m
iten

Josk
u

s

H
arvoin

E
i k

osk
aan

Kommentit

1. Voitko käynnistää avustustoiminnon helposti

mistä tahansa kohdasta järjestelmää?

2. Onko selvää, kuinka käynnistät ja lopetat

avustuksen?

3. Esitetäänkö ohjeet selvästi häiritsemättä

kesken olevaa tehtävääsi?

4. Pyytäessäsi ohjeita, selittävätkö ne nykyisessä

tilanteessa valittavissa olevat toiminnot?

5. Löydätkö ohjeista tärkeän tiedon suoraan

tarvitsematta selailla läpi tarpeetonta tietoa?

6. Salliiko avustustoiminto myös järjestelmän

muiden osien tietojen selailun?

7. Tarjoavatko järjestelmän kirjalliset

käyttöohjeet perusteellisen, järjestelmän kaikki

ominaisuudet kattavan kuvauksen?

8. Löydätkö käyttöohjeesta helposti tarvitsemasi

86

osan?

9. Onko järjestelmän kaikkien avustusmuotojen

rakenne sellainen, että löydät niistä tehtävän

suorittamiseksi tarvitsemasi tiedon helposti?

10. Selittävätkö avustustoiminnot tarpeeksi

hyvin virheet (sekä sinun tekemäsi että

järjestelmästä johtuvat) ja niiden korjaamiseen

tarvittavat toimenpiteet?

11. Millaisen yleisarvosanan antaisit käyttäjän

opastamisesta

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K9: JÄRJESTELMÄN KÄYTETTÄVYYDEN ONGELMAT

Onko jokin seuraavista aiheuttanut sinulle

ongelmia

E
i on

gelm
ia

V
äh

äisiä on
gelm

ia

V
äh

än
 on

gelm
ia

Joitk
in

 on
gelm

ia

P
aljon

 on
gelm

ia

Kommentit

1. Selvittää, kuinka järjestelmää käytetään

2. Puutteellinen tai puuttuva järjestelmän käytön

opastus

3. Huonot tai puuttuvat järjestelmän käsikirjat

4. Ymmärtää, kuinka suoritat haluamasi tehtävät

5. Tietää, mitä sinun pitää tehdä seuraavaksi

6. Käsittää, kuinka näytön tieto liittyy tehtävääsi

tai toimintaasi

7. Tietää, kuinka löydät haluamasi tiedon

8. Vaikeasti luettava tieto

9. Liian paljon värejä näytöllä

10. Häiritseviä värejä, joita on vaikea katsella

11. Järjestelmän joustamattomuus

87

12. Avustustoiminnon joustamattomuus

13. Et tiedä, missä osassa järjestelmää olet, mitä

olet tekemässä tai tehnyt

14. Liian paljon muistettavaa tehtävää

suoritettaessa

15. Järjestelmän liian nopea toiminta, jolloin on

vaikea ymmärtää mitä on tekeillä

16. Tieto, joka häviää näytöltä ennen kuin ehdit

lukea sen.

17. Järjestelmän hitaus

18. Järjestelmän odottamattomat toiminnot

19. Tehtävään sopimaton syöttölaite

20. Tietää, minne tai miten syöttää tietoa

21. Tiedon syöttämiseen kuluva liian pitkä aika

22. Virheiden välttämiseen vaadittava

varovaisuus

23. Ratkaista, kuinka korjata virheet

24. Virheiden korjaamiseen kuluva liian pitkä

aika

25. Samantyyppisten tehtävien suorittaminen eri

tavoilla

26. Millaisen yleisarvosanan antaisit

järjestelmän käytettävyydestä

� Täysin riittämätön

� Melko riittämätön

� Kohtalainen

� Melko riittävä

� Täysin riittävä

Muut kommentit

OSA K10: YLEISIÄ KYSYMYKSIÄ JÄRJESTELMÄN KÄYTETTÄVYYDESTÄ

Kerro mielipiteesi järjestelmän

käytettävyydestä vastaamalla alla oleviin

kysymyksiin.

Kommentit

1. Mitkä ovat järjestelmän parhaat puolet?

88

2. Mitkä ovat järjestelmän huonoimmat puolet?

3. Onko järjestelmässä osia, jotka ovat

hämmentäviä tai vaikeita ymmärtää?

4. Oliko järjestelmässä jotain erityisen

ärsyttävää, vaikka se ei aiheuttanutkaan

kohtuuttomia

5. Mitkä olivat yleisimmät virheet, joita teit

käyttäessäsi järjestelmää?

6. Mitä muutoksia tekisit järjestelmään

tehdäksesi sen käyttäjän kannalta paremmaksi?

7. Onko jotain muuta, mitä haluaisit lisätä

koskien järjestelmää?

7.2 Appendix 2 NEMU at nutshell

NEMU, Network Element Management Unit, is the common name for an additional network

management system. This system is separate but cannot work without the DX200/IPA2800 switching

exchange. The NEMU system is composed of client computers, a server computer platform and its

operating system and a specific collection of applications and server services. NEMU offers extra

value to telephone network operators by adding graphical tools to maintain and follow up the

switching exchanges operations. More about NEMU is in Appendix 2.

The server computer platform can be any type of processor based; the only limitation for the platform

is to be able to run Microsoft Windows, Unix or Linux or HPUX operating systems. Nowadays the

server platform is a Compaq multiprocessor server system.

The NEMU applications are a collection of programs for offering extra values for network

management to the operator.

89

NEMU architecture is a client-server type Java application, where the possible client types are both

thin and fat client and additionally some applications can run in offline mode without a server

connection. Every single connection to the NEMU server needs its own Application Launcher or the

other way the Application Launcher can only make connection to one NEMU server at a time. This

feature means that the operator can open several Application Launchers and those applications can be

operated in the same screen.

When the user needs a NEMU application, he starts the Application Launcher. During the Application

Launcher start up it loads system nested Java jars of NEMU in the client computer, secondly, the

Application Launcher starts the login dialog and demands the user authentication. The third phase sets

up the connection and opening of a new session to the NEMU server. Now all the users accepted

applications are in the Application Launcher’s window and the user can choose the desired application

to use. After shutting down the Application Launcher, it makes ending actions to shut down the open

applications, clear the session and user authentication.

All the thin client applications run in a separate server beside the DX200/IPA2800 switching platform

but all the individual NEMU functionalities are linked and connect in the DX/IPA server. NEMU

applications cannot run without DX/IPA connection because some services use DX switching

exchange’s own services. NEMU applications GUIs are made in Java, and high-level services such as

CORBA and COM components are made mainly in C++. All NEMU applications are designed to run

in Windows NT/2000, Unix/Linux and HPUX platforms. In application design must also be noticed

limitations and possibilities of target platform.

NEMU applications can be e.g. user management, software version checking, fault management, radio

network controlling tools, network performance exploring tool etc. All applications, except the

Application Launcher, have a common help library and presentation application, called NED, Nokia

Electronic Documentation, that did not work properly during usability testing. This application

collection has at least applications launching utility called Application Launcher. The Application

Launcher is a Microsoft Windows like application, which can start different applications by offering

some basic services. These services are authentication, session management, and own Java help system

as mentioned before. All applications, which started in Application Launcher, are authenticated. This

means that users do not retype username or password even application requires authentication at the

start, if the session is still alive.

90

The NEMU system administrator can set the limitations for accepted users. The limitation can be, for

example, that a user can only view but not set new values via applications to NEMU system.

7.3 Appendix 3 NEMU Applications

Note that the capital letter preceding the program name refers to the command, which is used to call

that program, for example, J is used to call the Version viewer

A Action Log Viewer

B Active Sessions This application shows all active connections of the NEMU.

C Application Launcher This application is a base of NEMU software. On this platform can be

launched any application on NEMU. Application includes all needed services such as authentication

and session management.

D Application Launcher OO-version This application was a prototype of new Application Launcher.

This was not finalized and some of it functions were not implemented. OO version means Object

Oriented version.

E MMI Window This is command based, Telnet lookout, application, which can connect to any

NEMU. Application uses MML, man-machine language, to controlling DX200/IPA2800 switching

exchange.

F NE Login This application executes network element login actions. Application has only the login

feature and help.

G NEMU Log Analyser is a tool to help analyse event or/and trace logs. It shows events graphically

on timeline and also in textual format.

H Personal Settings This application can handle, show and modify, user’s personal settings of

NEMU.

I Remote Launcher With this application can launch any NEMU application in other NEMU.

Application includes authentication services.

91

J Version Viewer This application can list versions of the NEMU software’s. Application has several

different functions to data queries.

K Alarm Browser Jyväskylä Polytechnic students project group members had produced a NEMU

application for handling of all kinds of alarms in a NEMU. In this application the possible handling

methods are browsing, cancelling and quitting incoming alarms. The application has the main window,

which shows all alarms and two dialogs for handling alarms.

92

7.4 Appendix 4 Usability Test Cases

A Heuristic evaluation, the first meeting

Ne login
Start the application

Try to clarify what you can do

Leave text fields empty and press OK

Follow the instructions

Write the right name of the NEMU server, but wrong username or password

Follow the instructions

Log in the NEMU server with right username and password

Active Sessions
Start the application

Try to clarify what you can do

Update you data

Try to stop any of the listed sessions

Personal settings
Start the application

Try to clarify what you can do

Input wrong a password

Input wrong password in retype password field

Change password with valid inputs

BEFORE you log out, RESET the previous password!

Remote launcher
Start the application

Try to clarify what you can do

Try to open connect in any other NEMU server with an invalid data

Follow the instructions

Open connection to any of the listed NEMU server

Open any application

Try to clarify which applications are able to start

Application launcher
Try to clarify what you can do

Check the consistency between help and application

93

B Heuristic evaluation, the second meeting

MMI Window
Start the application

Try to clarify what you can do

Open a new instance of MMI connection

Action log viewer
Start the application

Try to clarify what you can do

Check the menu

Save as –dialog, Settings –dialog, Filter Events –dialog and Detail -dialog
Try to clarify what you can do

C Heuristic evaluation, the third meeting

Version viewer
Start the application

Try to clarify what you can do

Check the menus, icons and help

Properties -dialog
Delete any of the listed files

Check the properties of the any of the listed files

Check the properties of the file that have long name and file path

Settings -dialog
Try any variations of settings

Find -dialog
Try to find with different conditions

Get Version Of Single File -dialog
Try to find with different conditions

User Authority Manager
Start the application

Try to clarify what you can do

Check the menus and icons

Create new a group

Create new a group with the existing group name

Create new a user

Create new a user with the existing user name

Create new a user with the invalid data

Set privileges of the user

Set applications of the user

94

D Ravden & Johnson method, the fourth meetings

Application Launcher
Start the application (log in dialogue)

Try to clarify what you can do

Check the menus, icons and help

E Ravden & Johnson method, the fifth meetings

Version viewer
Start the application (log in dialogue)

Try to clarify what you can do

Check the menus, icons and help

Properties -dialog
Delete any of the listed files

Check the properties of the any of the listed files

Check the properties of the file that have long name and file path

Settings -dialog
Try any variations of settings

Find -dialog
Try to find with different conditions

Get Version Of Single File -dialog
Try to find with different conditions

F Heuristic evaluation, the sixth meeting

Nemu Log Analyser
Try to clarify what you can do and how you can do it.

Is the view clear and easily learnable?

Check the menus, icons

Check the consistency of help and application

G Additional heuristic evaluation for Application Launcher OO version

Application Launcher, Object Oriented
Try to clarify what you can do and how you can do it.

Is the view clear and easily learnable?

Which one of the basic control feature (tabs or tool buttons) is better to use?

Is there enough information in objects/applications tab, are icons good enough?

Which one of the properties listing is better?

Which one of the structures listing is better (list and menu or tree)?

Free form comments

95

Skenaario
You are an operator in a big teleoperator’s main operation center. Your duty is control your

network. Your main tasks are update privileges of the network elements user groups and

users.

Next tasks you have to do with the both of AL’s interfaces (1 and 2).

Create new group and name it as a new_group

Create new user and name it as a new_user

Set user password as a nemuuser

Leave the MMI username field empty

Link user to previous made group

Set privileges of the group only for the viewing applications

Is there any differences between interfaces, which one might be better or/and efficient to use?

96

7.5 Appendix 5 Pilot Usability Tests Results

Test backgrounds: These tests are planned usability tests at the same time these tests are pilot tests

for wider NEMU usability test. Main purpose of these tests is to evaluate the usability of Alarm

Browser and to make check of usability evaluation materials such as test cases and test forms.

Date and time: 20.03.2001 13.00 - 15.10

Place: Nokia, Mattilanniemi 2, Jyväskylä

Test persons: Four persons, who have excellent knowledge of Information technology. Each of them

has approximately 7 years experience of computers usage. Their own estimation of their knowledge of

usability in general is good.

Tests: Visual walk through and heuristic evaluation.

Background of Tested Application: Tested application was Jyväskylä Polytechnics project course

outcome. This application can chart and trace malfunctions and errors of NEMU. This application was

not complete, thus part of the tests were made in paper prototypes. So the results of the tests could be

used for further developing of application. All of testees ware developers of the application; this fact

sets some conditions of results. Evaluation of own work is not easy, and might not be objective.

Visual Walkthrough

Purpose of this test is find things that affect usability either positively or negatively. This test is based

on heuristics. Execution of the test: Testee walk through features of application and evaluate it in scale

–10, -5, 0, 5, 10, where –10 is the worst and 10 is the best value of estimation, zero is meaningless. All

estimations are collected in one table and with statistical methods each feature gets its own value, see

Table 1.

Interpretation of Table

Meaning of the first row titles:

• -10, -5, 0, 5, 10 (need to fix now, need to fix, good, excellent): Testees estimations of features.

• AV !0: average value of columns of the row, but not zero

97

• ¼: quartile of the average value.

• % in ¼: percentage of estimation that belong to average value quartile.

• Todo: This column has artificial classification, which propose the action of correction or miss

fit of evaluation. Values of correction are excellent, good, need to fix, and need to fix now.

Statistical miss fit values are wide dispersion and low number of estimations. In this test wide

dispersion >= 33%, so value is 0 or near it, and low number of estimations >=2. Todo gets the

same value than estimation, if there are enough estimations and dispersion is low enough.

• Feature: evaluated feature of system.

Table 1

-10 -5 0 5 10 AV !0 ¼ % in ¼ Todo Feature

3 1 -8,75 -10 75 Need to fix now Readability

3 1 6,25 10 25 Good Functionality and navigation

1 2 1 6,67 10 33 Excellent Consistency

1 3 8,75 10 75 Excellent User control

2 1 5,00 5 100 Low number of

estimations

Help and documentation

1 2 -5,00 -5 100 Low number of

estimations

Error messages

3 1 -2,50 -5 75 Need to fix Finding the information

1 1 1 1 3,33 5 33 Good Layout of elements

2 2 0,00 0 0 Wide dispersion Features texts (colours and fonts)

2 2 0,00 0 0 Wide dispersion Figures and graphics

2 1 6,67 10 33 Excellent Command buttons (clarity and unambiguity)

1 1 1 1 3,33 5 33 Good Command buttons (styles and colour)

2 2 7,50 10 50 Excellent Overall structure

98

Summary of the Test

Clearly Good or Excellent features

• Functionality and navigation

• Consistency

• User control

• Layout of elements

• Command buttons (clarity and unambiguity)

• Command buttons (styles and colour)

• Overall structure

Clearly Need to fix or Need to fix now features

• Readability

• Finding the information

Other estimations need more evaluation, to reduce dispersion of estimations and to increase

meaningful estimations.

Comments

Here are only the most essential free form comments; others are in heuristic evaluation report.

What is the first thing that you noticed?

Picture in upper left, bell icon of alarms, density of text and other information.

How many elements are in the window?

Three or four

Is the layout of window harmonious? If not, why?

Bell icons are not on the same line. Layout is left balanced.

Can you assume the function of application that happened command buttons and other texts?

99

• History graph

• Timeline

• History time frame

• Acknowledge all

• Unit

• Object

• Alarm text

• Tools

Yes to all texts.

Are all of the terms descriptive?

Not all

Conclusion

Visual walk through tells that application has some excellent features and some of the features need to

work so that usability would be better. There was, for example, feature Command buttons (clarity and

unambiguity) it is good in estimation but in other hand user cannot assume all of its functionality.

Even if the estimation gives a good degree of overall structure, some of the testees said that layout is

left balanced. One of the testees said that all feature gets familiar quite soon.

Heuristic Evaluation

Heuristic evaluation is a set of certain rules (heuristics) based on evaluation method. This method tries

to find those problems that can be usability problems.

Execution of Test

Testee makes evaluation of whole application or a part of it. Testee walks through tested window on

the computer screen and compares it to heuristic checklist and makes his/her estimation in certain scale

with respect to the usability of the application.

Test Results

100

Main window

All testees made this test. Only some of the features were implemented.

Table 2

Main window Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards Q

Prevent errors Q

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue X

Good error messages Q

Help and documentation L

Interpretation of Table 2

Q: Too wide dispersion of estimations

L: Low number of estimations

Only the heuristic Clearly marked exits and user control was good enough and testees did not require

changes of it.

These features need to be fixed

• Feedbacks

• Minimise user memory load

• Good error messages

101

• Lack of Help and documentation, this is not noticed by testees.

Other heuristics rules were not evaluated, because testees did not consider they harmful enough or

those heurisrics does not get needed amount of estimations so those heuristics might need some

addional studies.

Free form comments

• Background of tabs is too dark, this might not good at LCD’s

• Lines are too close each other.

• Icons are too small and blurred.

• Font size and style must be user defined.

• Time column is like zigzag.

• There is no Find!

• Metaphors are quite easy.

• Copy icon sucks.

• Reordering of fields is really good.

• Status bar is not clear; it has drowned into the window.

• There need to be a connected –icon in status bar. Refreshing is unknown.

• Icons are ambiguous, you have to know they meaning.

• Bell icon does not fit to colour-blind ->it could be the number of icons that shows the

seriousness of alarm.

• Jumps to eyes.

• Title of window is missing.

102

Settings dialog

This test was made in paper test, because this dialog was not implemented yet.

Table 3

Settings dialog Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language Q

Clearly marked exits and user control X

Consistency and standards X

Prevent errors Q

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue Q

Good error messages Q

Help and documentation Q

Interpretation of Table 3

Q: Too wide dispersion of estimations. Testees does not agree their evaluations

This evaluation does not get unanimous estimations enough.

Clearly poor features

• Use of simple and natural dialogue

• Help and documentation

Some corrections, which need to be made

103

• Feedback

• Speak the users’ language

• Consistency and standards

• Prevent errors, especially on showing the timestamps

• Good error messages

Testees did not notice as a usability problem

• Clearly marked exits and user control

• Minimise user memory load

• Shortcuts, flexibility

Free form comments

• Too many things in the dialogues.

• Some names are weird.

• The text “during” is not good.

• Does not follow any standard.

• Looks so awful

• There is not any kind of title in this dialog.

Conclusion

In heuristic evaluation there were found some very clean usability problems. The most essential

features that need to be fixed immediately are status of application and making help and other

instructions. The best feature of Alarm browser is user control.

In settings dialog there is some important features that have to be fixed or redesign. These are make

the visual outlook simple and improve consistency and status of application. There is also some work

to be done with error preventing. Testees cannot bring up any good feature.

There is quite easy to improve the usablity of the main window, but setting dialogues need much more

redesign work to do.

104

7.6 Appendix 6 The Results of The Consistency Inspection Meeting

Place: Tampere

Date: 6.2.2001 10.00-15.30

Testees: 7 persons from different Units (Nokia Networks personnel from Helsinki, Jyväskylä, and

Tampere).

Tested applications: 13 NEMU applications. In this paper is presented only problems of applications

that are included in other usability evaluations of this study.

Common comments

• Tool bars must be harmonised -> tool bar have to act as NET Look&Feel demo (NET

Look&Feel: 4.1.4. Nokia bar, 4.1.4.1. Menu bar/Tool bar)

(http://osstre.ntc.nokia.com/NMS/quality/usability/uiguide/netlookfeel/demo/d

emo.html)

• Colouring of dialogues has to be as said in guidance. Colouring must be: User Foreground: is

light grey (230-230-230) and User Background standard grey (192-192-192). (NET

Look&Feel: 5.3.1. User Foreground and Background Colours)

• Status bars have to as said in guidance (Nokia Look&Feel: 4.1.5. Status bar)

• Font colors and sizes have to as said in guidance. Check ”bold” font face usage. (Nokia

Look&Feel: 5.3.5. Label Text Colour, 6 Typography, 5.2. Primary and Secondary Colours)

• Items in “Help” -menu are: “Help on This Window” and “Documentation” (Use underlined

characters as a mnemonic.)

• Icon, size 20x20, has to insert in menus, if the menu item have no icon, transparent empty

20x20 icon must be inserted.

• If the whole menu has no icons, then no empty icons inserted.

• All menu items text starts with capital.

• Status bar status have to be: application + current action (lower case no comma separate), for

example, "Object browser is ready"

• All (command) buttons have to be the same size.

105

• Tables do not have “double” frames. (See Tincidunt-> Veniam

http://osstre.ntc.nokia.com/NMS/quality/usability/uiguide/netlookfeel/demo/d

emo.html)

• Abbreviation of the WCDMA Cell is WCEL

• No version information in window title.

Requirements to Platypus

• Platypus has to offer the same “About box” regardless of application.

• There is wrong font colour (Look & Feel) in ”wrong value” field, it have to be white instead of

black.

Some Questions to Representatives

• Which one is right to use Nokia or Nokia Networks?

• Which is the right place command buttons? When they are in the middle of the dialogue and

when they are justified on left? What is the size of “tiny” dialoque, in which buttons have to

centred? According the NET Look&Feel- guidance buttons must be at the same line as the text,

when this is appropriate?

• There is no guidance to edited table.

• How about the table colouring? How expanding table is described?

MMI Window

• Remove "One touch expander" arrows.

• Ctrl-C does not work.

• Menu background is wrong. Check NET Look & Feel. Documentation.

• Nokia bar is missing -> has to add

• Separation line must be inserted over the “About” and “Exit” menu items.

• Mnemonic of the Save is A.

• Help on This Window icon have to be like this:

106

Action Log Viewer

• Tool bar and menu have wrong colours. No bold font face in menu.

• Tables need “air”

• The “Log” text have to be changed to “File”

• Remove the borders of the titles

• Filter dialogue: Must be left justified.

• Check the background colour of combo box

• No radio buttons in menu

Active Session

• Colours and borders as said in guidance.

• Add Nokia bar

• More "air" in layout

• Tool bars and menus as said in guidance.

• Close and Help items in menu.

• Application layout has to changes as an application style instead of dialogue style.

• If the application is dialogues style application, then structure of application have to changed

more simple.

Conclusion of consistency inspection

As the previous topic “Some Questions to Representatives” show that there was not enough valid and

unambiguous information to support developing. The most of the findings are quite easily fixed and

they reoccurrence might be prevented with simple and clear guidance. This inspection shows that this

kind of evaluation and comparing between applications increase integrity of whole product family. In

this case it is remarkable essential because NEMU applications are made in different sections and

place and time between the first and the last evaluated application developing was more than a year.

107

7.7 Appendix 7 Heuristic evaluation results by applications

A Application Launcher, NE login, Personal settings, Active Sessions, and Remote Launcher.

Application Launcher Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language

Clearly marked exits and user control Q

Consistency and standards X

Prevent errors Q

Minimise user memory load

Shortcuts, flexibility X

Use simple and natural dialogue

Good error messages Q

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Status of the connection is missing.

• “Save As” dialogue should be directed to cache path instead of application path

• Window opens in a wrong place on the screen.

• Testees suggest personalisation feature

• Some fixes have to make in help. Need some pictures, which could clarify text, and some part

of help are too childish.

108

NE Login Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards X

Prevent errors X

Minimise user memory load Q

Shortcuts, flexibility X

Use simple and natural dialogue X

Good error messages Q

Help and documentation X

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• There is no information about which application login this is.

• ”Error” dialogues does not have OK button as a default.

• It might be good if there are previously visited servers and previous login names in drop down

lists.

• Application close, if user name or password is typed wrong.

109

Active sessions Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language X

Clearly marked exits and user control Q

Consistency and standards Q

Prevent errors Q

Minimise user memory load X

Shortcuts, flexibility X

Use simple and natural dialogue Q

Good error messages Q

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Help is poor.

• Reordering of fields functionality is missing.

• Bad procedure on terminating sessions feature.

• Dialogues are not consistent.

• Application status information is missing.

110

Personal settings Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language Q

Clearly marked exits and user control X

Consistency and standards Q

Prevent errors Q

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue Q

Good error messages X

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Error messages need to check

• Layout of dialogue is not as described in Nokia Look & Feel guide.

• Help is missing.

• “User name” should as a label field of dialogue.

111

Remote Launcher Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards X

Prevent errors X

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue Q

Good error messages Q

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments
• Inappropriate “key” icon.

• No information of the name of the servers.

• Help is missing.

• No information of application of the remote server.

112

MMI Window Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language

Clearly marked exits and user control Q

Consistency and standards X

Prevent errors Q

Minimise user memory load

Shortcuts, flexibility X

Use simple and natural dialogue

Good error messages Q

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments
• Status of connection is missing.

• “Save As” dialogue should be directed to cache path instead of application path.

• Window opens in a wrong place on the screen.

• Tool tips are different from menu texts.

• Wrong titles in error message dialogues.

• More detailed help.

• “Ok” button is not default in dialogues.

113

Action Log Viewer Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language Q

Clearly marked exits and user control Q

Consistency and standards Q

Prevent errors

Minimise user memory load

Shortcuts, flexibility Q

Use simple and natural dialogue Q

Good error messages

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Status of connection is missing.

• Titles are missing.

• Menu items are not the same than title of dialogue.

• Refreshing does not work properly.

• Bad icons or icons are missing.

• Menus are not in right order or too deep.

• Wrong components in menu, radio button-> check box.

• All mnemonics are missing.

• Default directory should be cache directory.

114

Setting dialogue Severity

Heuristic 0 1 2 3 4

Feedback

Speak the users’ language

Clearly marked exits and user control

Consistency and standards Q

Prevent errors

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue

Good error messages

Help and documentation

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Text fields need tool tips.

• Title of dialogue is misleading or it is quite hard understand.

• Help is missing.

• Dialogue needs redesign.

115

Filter Events dialogue Severity

Heuristic 0 1 2 3 4

Feedback

Speak the users’ language Q

Clearly marked exits and user control Q

Consistency and standards X

Prevent errors

Minimise user memory load Q

Shortcuts, flexibility Q

Use simple and natural dialogue Q

Good error messages

Help and documentation

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• “Find” functionality is missing.

• Text “Clear” should be “Default”.

• Title of dialogue is wrong

• Mnemonics does not work properly.

• Dialogues layout is incoherent and there is used too many different font.

116

Detail dialogue Severity

Heuristic 0 1 2 3 4

Feedback

Speak the users’ language Q

Clearly marked exits and user control

Consistency and standards

Prevent errors

Minimise user memory load

Shortcuts, flexibility Q

Use simple and natural dialogue

Good error messages

Help and documentation

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• If data not found dialogue closes, annoying feature.

• Mnemonics does not work.

• Buttons are logically in a wrong order.

117

Version Viewer Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language Q

Clearly marked exits and user control Q

Consistency and standards Q

Prevent errors X

Minimise user memory load X

Shortcuts, flexibility Q

Use simple and natural dialogue X

Good error messages X

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Icons are not good.

• Text “Find file” should be “Find”.

• “About” dialogue is not as Nokia Look & Feel says.

• Status of application is missing.

• Command button is not disabled even that feature is not possible.

118

•
Get Version of Single File Dialogue Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards X

Prevent errors X

Minimise user memory load X

Shortcuts, flexibility X

Use simple and natural dialogue X

Good error messages X

Help and documentation X

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• This is futile dialogue, if this dialogue has not any other meaning.

• This dialogue has been removed after usability test.

119

Find Dialogue Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language Q

Clearly marked exits and user control X

Consistency and standards Q

Prevent errors X

Minimise user memory load X

Shortcuts, flexibility X

Use simple and natural dialogue X

Good error messages Q

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments
• Error message goes into the other window

• Cursor does not change.

• Wrong text, “Find file” should be “Find” or “Find String”.

120

Properties Dialogue Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards X

Prevent errors X

Minimise user memory load X

Shortcuts, flexibility Q

Use simple and natural dialogue X

Good error messages X

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

• Help is incomplete.

• There should be command buttons instead of menu items.

• Fields does not adjust the size of dialogue.

121

Settings dialogue Severity

Heuristic 0 1 2 3 4

Feedback Q

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards X

Prevent errors Q

Minimise user memory load X

Shortcuts, flexibility Q

Use simple and natural dialogue X

Good error messages X

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

Comments

“Default”, “Select All”, and “Clear All” buttons are missing.

122

Nemu Log Analyzer Severity

Heuristic 0 1 2 3 4

Feedback X

Speak the users’ language X

Clearly marked exits and user control X

Consistency and standards Q

Prevent errors X

Minimise user memory load X

Shortcuts, flexibility X

Use simple and natural dialogue X

Good error messages X

Help and documentation Q

Q: The average value of estimations is in this level, but the number of estimations too low (<3).

123

7.8 Appendix 8 The Results of Cognitive walkthrough

This method tried to find out things and features that do not help using or learning of system.

Application Launcher

• Progression of event does not see clearly, maybe 25% of users do not notice progression.

• Some users, less than 25%, might use the right button of mouse to choose next action.

• There is no any kind of indication of progression on mouse cursor.

NE login dialogue

• Annoying behaviour. The windows should no be closed if user have typed name or

password wrongly.

Personal Settings dialogue

• Title might be as a “Changing password”, because this dialogue does not include anything

else. How about the name ”Changing personal settings”?

• If the users objective is change password, this title does not give any clue for decision-

making.

Active Sessions dialogue

• There should be a ”Refresh” feature, because users aim is to check real active sessions. This

dialogue might have been open quite long time.

Action Log Viewer

Main window

• Some of the names (command buttons and menus) are misleading; user does not combine text

and action behind the text.

• Shortcuts are quite exotic, users might not notice they.

• Name “Detail” could be as an “Event detail”.

124

• If the previous view have been “View -> Log by Type” and user want to view all events then

the condition have to change via path “View -> Log by Type -> All events”. This does not be

as a clear structure.

• The contrast of the colours of ”timer bar” is too narrow. This might be a problem with LCD’s.

”Setting” dialogue

• Choosing the right action is not obvious on the first time, but it does not bother next time. Help

might be helpful, but it is not applicable.

• If user makes any changes then popup window appears. In this window says that: “Changes

you made are effective when applications that belongs to authority domains that you are

restarted in the server”. This might be very confusing especially the part “restarted in the

server”. There is also a severe problem; this popup dialogue does not have any kind of cancel

feature.

”Filter Events” dialogue

• Text ”Source” and ”User” might be unclear, because the content of those features is not

unambiguous. Below the “Source” button is one empty field. Below the “User” button is text

”N/A”.

• User can change status of check boxes elsewhere or in this dialogue. This is quite confusing. It

might be logically if those changes can make only one place.

• The structure of view menu is too deep.

• Sorting orders of logs should be as an alphabetical, Date & Time (as a default), Log and User

orders.

Version viewer

Main window

• Reordering of fields can use in one direction.

• System does not give any kind of information of its status.

“Find” dialogue

• If user does not give any condition on “Find” field then find feature make symbolic search and

does not give anything as a result.

• ”Get version of single file” feature does not give appropriate error messages.

• “Find next” feature is missing.

125

7.9 Appendix 9 Cross-reference heuristic evaluation vs. Ravden & Johnson method

Application Launcher

Evaluated
property

Description of the problem Heuristic
evaluation

Ravden &
Johnson
method

Status of

application

Status of exception is not visible X

Wrong information in status bar X

No information of server and status of connection X X

No hourglass cursor X X

Waiting times are too long, no indication of

progress
X

Status bar could be bigger font. X

Menus Mnemonics are missing or they are wrong X X

Icons Icons are too small X

Error messages Have to be clear and logical X

Wrong type ”error” and “information” dialogues X X

Some typos X

Features of main

window

Personification feature is needed X

Exception procedures does not work properly X

User feedback have to be ambiguous X

Wrong user name or password closes whole

application

X X

No default values X

Scroll bar is missing X

Where is the “Search”? X

Features of

dialogues

Default buttons does not react keyboard X X

(continues)

126

Application Launcher (continued)

Futile resizing option X

Mnemonics does not work properly X X

Dialog is too big or it is in wrong place on main

window

X X

Some dialogues are too fast X X

Different “Close” -Button X

Wrong colour in buttons X

Guidance Lack of approriate information X X

Some mistakes on help X

Common

problems

Style have to be the same around the application X

Better grouping of information X X

Some font are wrong X X

The form of the user input have to defined

somewhere (IP or net name)
X X

Shade of colours are too close each others X X

Unification of terms and abbreviations X X

127

Version Viewer

Evaluated
property

Description of the problem Heuristic
evaluation

Ravden &
Johnson
method

Icons “Refresh” look like “Undo” X X

Menus Menu items are not the same than

titles of dialogue.

X

”About” dialogue is faulty X

“Settings” dialogue: Check boxes

must be at white background. Now

they look like disabled.

X X

Layout of dialogues

Check boxes in “Find” and “Settings”

–dialogs are in different order.
X X

Too many check box. XContent of dialogues

Wrong title on dialogue X

“Settings” dialogue: “Select all”

button is missing.
X

Find does not give any clue to typing

values, especially “true/false” –values.
X X

Wrong title in field X

Features of dialogues

”Find” starts finding without

conditions.
X X

(Error) Messages are showed only in

the status bar

X X

”File not found” –message unclear. X

Error message is missing. X

Error messages

If ”Find” does not return anything

then previous message does not

disappear.

X

(continues)

128

Version Viewer (continued)

Status is missing in status bar. Is

application alive?

X X

Cursor does not change during the

refresh.
X X

Components of the

main window

Status bar have wrong text sometimes X

Horizontal scroll bar is missing. X X

Colours are too same in tabs. X

User cannot save a certain view to be

as a default view. View is always the

same at the start

X XFeatures of main

window

Futile information X

Text fields do not change they size

when window is resized.
X

“Copy” does not work. X

Lack of guidance * *

Enter key does not work as assumed. X

Dialogue covers the menu X

Guidance

Common problems

Hierarch –view tree structure unclear. X

Automated sorting work too

automated
X X

“Settings” need speed buttons “select

all”/”deselect all”/”default values”

X X

* No estimations. Help does not exist.

Proposals to developing

• “Find” could be “Find string/file”

• Redesign functionality of ”Find”.

129

Action Log Viewer

Evaluated
property

Description of the problem Heuristic
evaluation

Consistency
Inspection

Opens inactive X

No information about the log X

Status bar almost useless X

Status of the

application

Data refreshing does not work properly X

Menu item <> title of dialogue X

Wrong order X

No Mnemonics or they are wrong X

No bold font face in menu X

”Log” text must replace with ”File” text X

Menus

No radio buttons in menu X X

Could they be as button X

”Refresh” not clear X

Icons are not mostly appropriate X

Icons

Some menu bar icon is missing and

some menu item is missing
X X

Layout of the

dialogues

Some mnemonics is wrong or missing X

Command button have wrong text

“clear”-> “default”
X

Long text field does not work, try “Tool

tip” feature
X

Some mistakes in text X

”Filter” dialogue: Left justified X

(continues)

130

Action Log Viewer (continued)

Features of the

dialogues

Wrong background colour in combo box X

Must be (de)select all button X

Buttons logically upside down X

Default folder? X

The structure of application does not

give any hints to usage -> Use ”tool tips”

X

Titles of windows are wrong or missing X

There is no ”find” functionality X

Common problems

Table needs "air” X

Remove titled borders X

Application icon have to add on title bar X

131

MMI Window

Evaluated
property

Description of the problem Heuristic
Evaluation

Consistency
Inspection

Status of the

application

Status of the connection is not

available
X

Main window opens in random place

of the screen
X

Main window opens in random size X

Wrong components in main window X

Features of the main

window

Ctrl-C does not work X X

Menu items are not the same than the

title of dialogue
X

Menus have a wrong background

colour.
X

Separators are missing in File and

Help menus

Mnemonic of the “Save” is a X

Menus

“Help on This Window” has a wrong

icon
X

Mnemonics are wrong or they are

missing
XLayout dialogues

”About dialog” is wrong type X

Guidance Help need some information X

Letters capital or normal X

Command letters have echo into the

screen
X

Nokia bar is missing X

Common problems

No defaults folder How about “cache”

folder?

X

132

7.10 Appendix 10 User feedback

Pronto
number

Severity Topic of
reported fault

Correction or answer

P1040105 B Major ApplicationLaunc

her: Error-box is

unreachable

There was a problem with a thread conflicting with the UI

in the session service.

P2205716 C Minor MML FREEZES This error occured with all MML- commands that did not

fit in a single line. When MMI- system sent a command

for MmiWindow to move cursor one step downwards,

MmiWindow did not check if such line is already created

in it´s text area. Because of this MmiWindow tried to write

characters outside of the allocated data area, and data

buffer was wrapped over. , Now MmiWindow always

checks if necessary data area is already allocated before

moving cursor.

P2533016

P2671116

C Minor Cannot open

Application

Launcher

(problem has

occurred since

TS4.1)

Unable to reproduce error situations found in the log files.,

Log files were from a long period of time. Some errors

occurred only once. Clearly sometimes everything worked

fine. Therefore we were unable pinpoint any error that

would cause the need for resetting NEMU server.

P2627616

P2711616

B Major NEMU in Restart

Loop

Nemu was in restart loop, because NemuAlarm failed at

startup. NemuAlarm failed because

NemuEMTResourceManager crashed. Crash was caused

by corrupted temp file of NemuEMTResourceManager.

Startup of NemuAlarm fixed so that if some

subcomponent of NemuAlarm fails that does not cause

restart loop. NemuEMTResourceManager checks now if

data in temp file is valid., Nemu was in restart loop,

because NemuAlarm failed at startup. NemuAlarm failed

because NemuEMTResourceManager crashed. Crash was

caused by corrupted temp file of

NemuEMTResourceManager. Startup of NemuAlarm

fixed so that if some subcomponent of NemuAlarm fails

that does not cause restart loop.

NemuEMTResourceManager checks now if data in temp

file is valid

P2753016 C Minor Service-Terminal

is not supported

by MMI-Window

This is not a fault, but more a specification issue. Since the

beginning it has been specified that MmiWindow does not

support service terminal session. If this feature seems to be

necessary anyway, Nokia should be informed about the

issue, and maybe service terminal support can be

implemented in the forthcoming releases.

(continues)

133

User feedback (continued)

P2885816 C Minor Can't connect to object

browser

We can't connect to object

browser, mml window and

user authority manager of

nemu via application

launcher. all other points are

possible to connect. all

service which are available

are running

P2885816: correction not needed. Reason:

Login password was found to be expired by

customer.

P2950816 C Minor Query regarding testing

Help functionality

When I do Help/Index in

AL's Remote Upgrade I get

an error box saying: "Open

Help failed

com.nokia.platypus.help.Hel

pException: Browser launch

failed" If I then click on the

link to 'Product

Documentation', NED fails

to appear and I get the

'Could not connect to Jrun

Server' error message again.

Interestingly, the User

Authority Manager also

won't work - this time the

error message reads "An

unexpected error has

occured while opening

UAM". Event Viewer shows

a large number of yellow

error logs concerning

DHCPServer which all say

"The DHCP server issued a

NACK to the client

(0002A5B591A3) for the

address (10.249.74.20)

request".

P2950816: correction not needed. Reason: This

fault report contains quite a few errors which do

not relate to each other. Therefore no-one seems

to be willing to take responsibility of the fault.

Please create a fault report for each fault found.

If we create fault reports for each cases, the

information requests will also be directed to us.

Error for using RemoteUpgrade help should be

directed to group responsible for

RemoteUpgrade. Error with JRun and NED

should be directed to group responsible for

NED. Error with UserAuthorityManager can be

directed to us, E-TEJN group. Error with

DHCPServer should be directed to group

responsible for DHCPServer. Furthermore,

Application Launcher should not be installed to

server itself and that configuration is not

supported. Java Runtime Environment for

Application Launcher may clash with JRun

environment.

(contunues)

134

User feedback (continued)

P3124816 B Major NEMU: Can't connect to

Jrun server when you want

to co

RNC: NEMU

JRun configuration will be corrected to NM1

4.14-1 platform build, JRun configuration of

NEMU will be updated as instructed by

Macromedia Inc. to prevent JRun services

shutting down when user logs off from

Windows NT / Windows 2000. JRun servers are

terminated during log off because of fault in

Java Virtual Machine version used in NEMU.

This fault has been confirmed by Macromedia

Inc. Until permanent fix has been made, you can

enable JRun again by logging on to system and

starting "JRun Admin Server" and "JRun

Default Server" services. Also restarting NEMU

will restart JRun services.

P602141 B Major Remote Upgrade application

do not open

Remote Upgrade is not part of this release.

