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Tassa tutkimuksessa selvitettiin kaksivaiheisen padkomponenttianalyysin (PCA)
kykya erotella lahekkéisia tai padallekkaisia auditorisia herédtevastekomponentteja
(ERP). Kahta eri PCA sovellusta — ERP-PCA:ta ja CSD-PCA:ta — tutkittiin, ja
niiden tuloksia vertailtiin. Aineisto keréttiin kahdeltakymmenelta 9-vuctiaalta
lapselta tihedlla elektrodiverkolla. Nain saadut ERP kayrat muutettiin lisdksi CSD
kayriksi (toinen spatiaalinen derivaatta; Laplacian), ja aineistot analysoitiin rinnak-
kain. Aineistoista tutkittiin eksogeenisia N1 ja N250 komponenttga ja niiden
herkkyyttd arsykkeiden esitystiheydelle (ISl). Lyhyen IS:n tilanteessa 'atta’ arsyk-
keitd esitettiin 610 ms [Sl:1la, kun taas pitkan 19:n tilanteessa arsykkeet esitettiin
néenndis-satunnaisesti 1-5 sekunnin valein. Molemmat PCA sovellukset kykenivat
erottelemaan N1:n, N250:n ja niiden alakomponentteja. Seka ERP- ettd CSD-PCA
erottelivat aineistoista kaksi N1 alakomponenttia, epaspesifin N1:n ja T-kompleksin,
jotka olivat aktiivisia molemmilla esitystiheyksilla. Kumpikaan menetelma el
erotellut aineistoista kolmatta N1 alakomponenttia, N1b:t&d. CSD-PCA aineistossa oli
|6ytynyt ERP-PCA aineistosta. Liséksi CSD-PCA aineistosta 10ytyi N250:lle
positiivinen, radiaalinen alakomponentti, joka muistutti T-kompleksin Ta kompo-
nenttia. Vaikka ERP-PCA:n ja CSD-PCA:n erottelemien komponenttien rakenteissa
oli samankaltaisuuksia, CSD-PCA:n erottelemat komponentit antoivat tarkemman ja
yksityiskohtaisemman kuvan aineiston temporaalisesta ja spatiaalisesta jakaantumi-
sesta. Kaksivaiheinen PCA vahensi huomattavasti 129 elektrodin tuottaman tiedon
maaraa, helpottaen nain ollen olennaisten komponenttien valintaa jatkoanalyyseihin.
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Abstract

The separation of close or overlapping auditory event-related potential (ERP) components was in-
vestigated by the means of two-step principal component analysis (PCA). Two solutions within
PCA — ERP-PCA and CSD-PCA — were applied and compared. The data was recorded from twenty
9-year-old children with a dense array of 129 electrodes. The obtained ERP waveforms were addi-
tionally transformed into spherical spline current source density (CSD) waveforms, and the data
were analyzed in parallel. Exogenous N1 and N250 components and their sensitivity to changesin
inter-stimulus-interval (1SI) were examined. In the short 1S condition the naturally produced * atta’
stimuli were presented with a constant ISl of 610 ms, whereas in the long IS condition they were
played at pseudo-random intervals of 1-5 s. PCA components corresponding to N1, N250 and their
subcomponents were extracted by both solutions. Both ERP- and CSD-PCA disentangled two N1
subcomponents, non-specific N1 and T-complex, which were active with both 1SIs. No frontocen-
tral N1b was extracted by either of the solutions. There was evidence of 1S| sensitivity for N250 in
the CSD-, but not in the ERP-PCA data. Additionally, a positive radial subcomponent, equivalent to
the Ta of T-complex, was distinguished for N250 in the CSD-PCA data. Although similarities be-
tween the component structures between ERP- and CSD-PCA solutions were evident, CSD-PCA
produced sharper and more detailed summary about the temporal and topographical distribution of
the ERP data. Using a two-step PCA considerably reduced the amount of information obtained by
the 129 electrodes, facilitating the selection of relevant components for further analyses.

Keywords. Event-related potential (ERP); Principal component analysis (PCA); Current source den-
sity (CSD); Children; N1; N250; Inter-stimulus-interval (1Sl)

1. Introduction

The application of different methodological approaches to event-related potentials (ERPs) can have
substantial effects on the conclusions made from the data. As the ERP measurement techniques
have developed from low-density and midline recordings to extensive multiple channel recordings,
the traditional analyzing methods, such as peak measurement, are no longer able to handle the com-
plexity of the growing amount of data. In addition, the development of data collection equipment

enables more accurate and less noise-affected recording of event-related potentials. New, reliable



analyzing methods for ERP data are needed to get more detailed and profound information about
the nature of ERP components.

In this study, the methodological possibilities of principal component analysis (PCA) ap-
plied into a high-density (128-channel) ERP data are considered. PCA is a comprehensively stud-
ied, ‘data-driven’ technique, and its applicability to electroencephalographic (EEG) data has been
acknowledged widely among researchers. PCA utilizes all the information from 128 channels, and
is thereby able to identify components not necessarily even visible in the grand averages of ERP
data (Kayser & Tenke, 2006d). However, opinions still differ as to how and what kind of different
PCA algorithms and solutions should be used. The introduction of a new CSD-PCA method (Tenke
& Kayser, 2005) called forth the need for its comparison with more traditional PCA methods. Ac-
cordingly, a comparison of two different PCA methodologies ability to extract physiologically
relevant components from (maturational) ERP data is of interest in this present study. Next, a brief
review of the studied ERP components and their maturation is introduced, followed by a presenta-
tion of principal component analysis of ERP data.

Maturation of the ERP components N1 and N250. Event-related potentials (ERPS) are distinctive
time-locked deflections on an averaged EEG trace produced by repeated presentation of stimuli.
ERP components are considered to be contributions of localized physiological generators to the
ERP waveform, activated by the stimuli (Naétanen & Picton, 1987). The definition of different
components is somewhat ambiguous and difficult due to the fact that the ERP waveform is a sum of
gpatialy and temporally overlapping post-synaptic brain potentials. Thus, components are not
merely positive or negative waves visible in an averaged trace, but rather a set of arithmetical sum-
mations of activity underlying those peaks and throughs (Naétéanen, 1992). Multiple generators con-
tribute to the scalp-recorded components and they are, accordingly, composed of several overlap-
ping subcomponents.

ERP components are traditionally classified into exogenous and endogenous components on
the account of their characteristics. Exogenous components are obligatory and determined by an
external stimulus, whereas endogenous components depend on the subject's intentions and are usu-
aly elicited in the absence of external stimuli (Donchin, Ritter, & McCallum, 1978). Subsequently,
a more detailed classification has been suggested by N&dtanen (1989). It separates components into
Six categories called sensory-specific obligatory, activational, integrative, executive, motorspecific
and anticipatory components. ERP components are labeled by polarity (P = positive, N = negative),
followed by an ordinal number or the number indicating the latency of a component in millisec-

onds.



This study concentrated on two obligatory negative ERP components in children (N1 and
N2; also referred to as N250), both of which have an early onset latency and are evoked by the
presentation of distinct stimuli without active attention. Motivation for the investigation of these
particular components was that early ERP components have the largest amplitudes and are conse-
guently relatively easy to detect. Moreover, the spatial and tempora proximity of the componentsin
guestion is a challenge for PCA and thereby an interesting research area. In addition, the employed
research paradigm, which did not demand active attention or performance, seemed reasonable in the
case of children subjects.

There are marked differences between ERP component structures of children and adults
(Johnstone, Barry, Anderson, & Coyle, 1996; DeFrance, Sands, Schweitzer, Gingsberg, & Sharma,
1997; Ponton, Eggermont, Kwong, & Don, 2000; Albrecht, von Suchodoletz, & Uwer, 2000; Cepo-
niené, Rinne, & Naatanen, 2002; Ceponiené, Alku, Westerfield, Torki, & Townsend, 2005). Matu-
ration has an affect on the amplitude and latency of components. However, there is no clear consen-
sus on whether, or how, components from different maturational stages correspond with each other.
Also the rate in which stimuli are presented, as well as the chosen research paradigm, has an effect
on the elicited ERP components. Defining all the known ERP components and their maturation
processes is beyond the scope of this study, and thus, only the negative components crucial to the
employed oddball paradigm are defined next in detall.

The basic idea of an auditory oddball paradigm is to present at least two different kinds of
stimuli to the subject. The more frequent ones are called standards and the infrequent ones deviants.
In adults, a N1-P2 vertex complex is usually elicited as a response to standard tones, preceded by a
small P1 component (N&iténen, 1992). The N1 component is, accordingly, considered as a level
change detection component (Picton, Alain, Otten, Ritter, & Achim, 2000), which is elicited when-
ever the central nervous system detects a stimulus. The adult N1 is dominated by a non-specific
subcomponent, originated from the frontal motor and premotor cortices. It includes also a radially
oriented subcomponent called T-complex (N1c), generated in the lateral surface of the auditory cor-
tex and a frontocentral N1b subcomponent, generated by a vertically oriented dipole in the su-
pratemporal plane of the auditory cortex (Gomes et a, 2001). Topographically, the non-specific N1
is maximal posterior to the scalp distribution of the frontocentra N1b (Ponton et al., 2000). T-
complex is composed of three subcomponents (i.e. N1a, Ta and Tb), from which the focus in this
study is on the negative Th, only visible at the temporal leads ~ 45 ms after N1 (Gomes et al., 2001;
Tonnquist-Uhlen, Ponton, Eggermont, Kwong, & Don, 2003). To deviant tones, a frontally or fron-
tocentrally maximal N2 component is additionally elicited, from which a specific integrative mis-



match negativity (MMN) component can be isolated (N&&ténen, 1992). Interestingly, Kayser, Tenke
and Bruder (1998) found N2 to be maximal at central and temporal sites in adults.

In children, the corresponding components to rapidly presented sounds are P150, N250,
N450 — the numbers indicating the longer latency range of components compared to those of adults
—and do not become adult-like until the age of 16-18 years (Ceponiené et al., 2001; 2005). Accord-
ing to previous research, it seems that children’s N250 component overlaps the adult-like N1 and
P2 components (Johnstone et al., 1996; Ceponiené et al., 2002). In fact, unlike in children, no N2 is
elicited in adults either to standard or unattended stimuli (Johnstone et al., 1996; Karhu et al., 1997).
Interestingly, Johnstone et al. (1996) found that the amplitude, latency and frontal scalp distribution
of N250 in children did not differ between standard and target stimuli. It was also concluded that
while the N250 latency to target stimuli did not change significantly with age, the amplitude did
decrease. Similar findings were reported by Ceponiené, Cheour and N&atanen (1998) and Cepo-
niené et a. (2002). Yet, Ponton et al. (2000) found that N250 component increased in latency as a
function of age at central electrodes, but showed no age-related change at frontal electrodes. Conse-
guently, when other ERP component latencies shorten with age, N250 wave diminishes and N1
wave becomes visible, along with P2 (Johnstone et al., 1996). Some researchers assume that adult
N1 is equivalent to the child N250 component (Kurtzberg, Vaughan, Kreuzer, & Fliegler, 1995;
Ceponiené et al., 2001), whereas others have concluded that children’s N250 resembles that of adult
N2 (Johnstone et al., 1996; Ceponiené et al., 1998; 2002). However, the maturational process of
ERP components continues to some extent up to adolescence, and before that the N1 component is
not consistently present (Ponton et al., 2000).

However, when interstimulus-intervall (1SI) duration exceeds 1s, N1 can also be seen in
younger children. It was suggested by Gomes et al. (2001) that in this case, the observed component
actually consists of N1 subcomponents T-complex and N1b, whereas the T-complex is observable
from early childhood even with short ISIs. Karhu et al. (1997) found topographically separate paral-
lel processing in children in form of different ERP components recorded at Cz and T3 electrodes
with an I1SI of 1s. At Cz, a decreasing N1 wave was observed accompanied with an increasing N2
wave. At temporal electrode (T3) only N1 response was found, although slightly longer in latency
and larger in amplitude than at Cz. These two N1 components could be justifiably referred to as
N1b (Cz) and T-complex (T3). Additionally, in a study examining the effects of 1Sl prolongation to
the exogenous ERP components, it was found that when ISl duration was 700 ms or longer, a dis-
tinct frontocentral N160 component was separable from the N250 component in 5-7-year-old chil-
dren (Ceponiéne et a., 1998). The authors assumed this to be — not similar but — equivalent to the
adult N1 component. They also observed a temporally negative component N190, peaking 26-30



ms later than the N160, and concluded that these two components correspond the subcomponents of
adult N1 (i.e. N1b and T-complex). In a subsequent study, however, Ceponiené et al. (2002) argue
that it is the non-specific subcomponent of N1 that is observable in young children when stimuli are
presented at a slow rate, and with rapid stimulus presentation N1 is revealed only when the slow
activity is filtered out from the data. Furthermore they, as many others (e.g. Albrecht et al., 2000;
Ponton, Eggermont, Khosla, Kwong, & Don, 2002), suggested that children’s N1 has a protracted
maturational course and is composed of differentially weighed subcomponents than adult N1.

The aforementioned, simultaneously occurring processes in topographicaly different parts
of the brain, issues a challenge to the analysis of auditory ERPs. Ponton et al. (2000) suggested that
analyzing responses from a single electrode is not adequate, because observed auditory responses
are crucially dependent on the scalp location at which they are recorded. More accurate ERP data
can be acquired through dense electrode arrays, but the amount of information, then, is too over-
whelming to peak measurement analysis. Consequently, these findings support the use of high-
density electrode array providing information extensively from different scalp locations. They also
encourage researchers towards the use of analyzing methods, which enable the revelation of both
temporal and spatial aspects of different components and subcomponents. When it comes to child
ERP data, the objectivity provided by the more sophisticated ‘data-driven’ methods is especially
crucial, because particularly around age 10 abrupt step-like decreases take place in the amplitude of
component complexes and the temporal and spatial structure of ERP components change as a func-
tion of development and maturation (Ponton et al., 2000; Bishop, Hardiman, Uwer, & von
Suchodoletz, 2007). Accordingly, a two-step principal component analysis (e.g. van Boxtel, 1998;
Spencer, Dien, & Donchin 2001; Dien, Spencer, & Donchin, 2003) is the approach utilized here as
an attempt to extract spatially and temporally overlapping negative components of auditory ERP
data

Principal component analysis of ERP data. The concept of principal component analysis (PCA)
belongs to a class of factor-analytic procedures (van Boxtel, 1998; Dien & Frishkoff, 2005). PCA is
based on a second-order covariance or correlation matrix, which it decomposes into orthogonal lin-
ear combinations (i.e. components). Thus, PCA summarizes the complex relations of the original
data, in a decreasing order, into a small number of components, most efficiently explaining the
variation between all variables. From the initial association matrix, a certain number of components
are retained and rotated, on the ground of chosen extraction criterion, to obtain a simpler interpreta-
tion of the components (e.g. Chapman & McCarthy, 1995; van Boxtel, 1998; Dien, Beal, & Berg,

2005). The two most commonly used methods are orthogonal rotation (e.g. Varimax), producing



independent factors and oblique rotation (e.g. Promax), producing correlated factors. After rotation,
PCA assigns factor loadings and scores.

Asatool for the sudy of ERPs, PCA was advocated by Donchin in 1966. It can be used asa
pre-processing method for raw EEG data for the purposes of e.g. ocular artefact rejection (e.g.
Wallstrom, Kass, Miller, Cohn, & Fox, 2004; Casarotto, Bianchi, Cerutti, & Chiarenza, 2004). It is
also widely used as an explorative analysis for averaged or raw EEG data (e.g.; Kayser et al., 1998,
2006, Spencer, Dien, & Donchin, 1999, 2001; Richards, 2004). In ERP data, the variables are mi-
crovolt readings either at consecutive time points (tempora PCA) or at each electrode (spatial
PCA). The major source of covariance is assumed to be the ERP components (Dien & Coles, 1991).
According to Delorme and Makeig (2004), rotation methods are in fact applied after the basic PCA
analysis, because the electrical activity in the brain is nearly always non-orthogonal and overlap-
ping, contrary to the assumptions of PCA. Generally speaking, the purpose of rotation is to reduce
temporal and spatial overlap of the components (van Boxtel, 1998). Only some researchers support
the use of Promax (Dien et al., 2003, 2005), while the conventional Varimax criterion is preferred
by others (Kayser & Tenke, 2003; Beauducel & Debener, 2003; van Boxtel, 1998). Dien et al.
(2003, 2005) argue that when using temporal PCA for ERP datasets, the latent variables are signifi-
cantly correlated due to the scalp topography (3-dimensional), and thus recommend the use of Pro-
max rotation. On the other hand, Kayser and Tenke (2005) note that even though oblique rotations
(e.g. Promax) may achieve a grater degree of simple structure, Varimax-rotated components are
more concise and accurate.

There are, accordingly, many decisions to be made before the application of PCA, concern-
ing the selection of association matrix, algorithm, rotation method and extraction criteria. Various
combinations of algorithms and solutions are possible, but only a few of them have become well
established in the field of ERP research. Traditionally, a temporal PCA is applied followed by a
Varimax rotation (Beauducel & Debener, 2003; Delplanque, Silvert, Hot, & Sequeira, 2005; Kayser
& Tenke, 2003, 2006a, 2006b; Kayser et al., 1998, 2006). When using a dense electrode array, a
two-step approach (e.g. spatiotemporal PCA) has been recommended by researchers, for it allows a
greater reduction in the dimensionality of the data set and helps to disentangle spatially and tempo-
rally overlapping ERP components (e.g. Spencer et a., 2001; Dien et a. 2003).

Recently, Tenke & Kayser, (2005) have introduced a new CSD-PCA technique, which oper-
ates on spherical spline current source density (CSD; second spatial derivative; Laplacian) maps
instead of ERP scalp topographies (e.g. Law, Rohrbaugh, Adams, & Eckardt, 1993). CSD is a
mathematical transformation, which represents the magnitude of the radial current flow entering

(sinks) and leaving (sources) the scalp (Nunez, 1981). CSD waveforms are reference-free transfor-



mations of the original ERP waveforms (Kayser & Tenke, 2006a, 2006b). In the CSD-PCA tech-
nique, ERP waveforms are transformed into CSD waveforms and analyzed with PCA. The concept
of CSD maps in ERP studies is not novel per se (e.g. Tenke et al., 1998, Gomot, Giard, Roux,
Barthélémy, & Bruneau, 2000; Gomes et al., 2001). However, the combination of CSD and PCA
methodologies has not been examined until the last few years. Results have been promising con-
cerning the use of temporal PCA for CSD waveformsto identify ERP generator patterns (Kayser &
Tenke, 2006a; 2006b; Kayser et al., 2006). As argued by the researchers, the superiority of the
combined CSD-PCA solution is based on the production of sharper and simpler topographies with-
out the ambiguities of recording reference.

Like traditional ERP measurement techniques, also PCA has its shortcomings. The risk of
misallocation of variance (e.g. Wood & McCarthy, 1984; Beauducel & Debener, 2003), low signal-
to-noise ratios, outliers and latency jitter (e.g. van Boxtel, 1998; Chapman & McCrary, 1995) can
reduce the reliability of PCA-derived component measures. However, these limitations are well-
known and made explicit, which leads to a cautious and critical consideration of the obtained re-
sults. Additionally, the correspondence between principal components and ERP components has
been criticized, and this relationship should always be interpreted and stated with caution. More-
over, the placement of the recording reference essentially impacts the polarities, amplitudes and
peak latencies of recorded ERP components. To solve this problem, the above mentioned current
source density (CSD) transformation algorithm providing a reference-free representation of current
generators that underlie ERP topography has been proposed (Nunez, 1981).

The use of a 129-electrode Geodesic Sensor Net (EGI, Inc., Eugene, OR) (Tucker, 1993) re-
quires the application of more efficient methods to enable the most optimal utilization of the infor-
mation. Here, ERP waveforms and their CSD transformations were analyzed with a two-step prin-
cipal component analysis (PCA).

Objective. The goal of this study was to explore, if atwo-step principal component analysis (PCA)
could extract temporally and spatially close or overlapping auditory brain responses (ERPs) meas-
ured with 129-electrode Geodesic Sensor Net (EGI, Inc., Eugene, OR) (Tucker, 1993). Two differ-
ent solutions within temporospatial PCA — ERP-PCA and CSD-PCA — were applied and their out-
comes compared. Focus was on the exogenous (i.e. obligatory) unattended negative auditory ERP
components N1 and N250 elicited from healthy 9-year-old children. In addition, the correspondence
of the extracted PCA components to the actual ERP components was discussed.

As suggested by many researchers (e.g. Dien et al., 2003; Spencer et al., 2001; van Boxtel,
1998) atwo-step PCA is crucial when analyzing data from dense electrode arrays. Y et, ERP studies



using high density electrode arrays and the recommended two-step PCA approach are continually
quite scarce. Methodological research of the recently proposed new CSD-PCA technique has been
restricted to temporal PCA (Tenke & Kayser, 2005; Kayser & Tenke, 2006a, 2006b). The objective
here was to explore, if there are significant differences between the component structures extracted
by the traditional ERP-PCA and the novel CSD-PCA. It was hypothesized that the CSD-PCA, op-
erating with sharper and more distinct scalp topographies would surpass the more traditional ERP-
PCA solution in accuracy.

The properties of the two methodological solutions were compared by applying them to the
ERP data dlicited from healthy children with different inter-stimulus-intervals (1Sls). Considering
the age of the children (9 years), it was assumed that the applied research paradigms would €licit
different subcomponents of the N1 and the N250 component in the long IS condition. In the short
IS condition, N1 was not expected to be elicited, but N250 — similar to the one observed in the long
IS condition — was thought to be visible. Thus, the ability of ERP- and CSD-PCA to separate ERP
components specific to the long and short IS conditions, and the separation of N1 subcomponents
and N250 from each other, was investigated and compared. This was assumed to be a challenge for
PCA due to temporal and spatial overlap of the components. There is, however, support for the
PCA technique in such cases (Richards, 2004).

Along with the development of ERP measurement techniques, also requirements for more
sophisticated analyzing methods arise. The main purpose of this study was to obtain cumulative
support for the use of ERP-PCA and CSD-PCA methodologies in event-related potential research
by investigating their use in an unparalleled fashion.

2. Methods
2.1. Participants

Appropriate subjects considering this particular study were selected among the participants of The
Jyvéskyla Longitudinal Study of Dyslexia. The JLD-project commenced in 1993, investigating ap-
proximately 200 families in the area of Jyvaskyld, half of which had a family history of dyslexia
and the other half did not (Leinonen et al., 2001).

Altogether twenty EEG data sets (9 boys, 11 girls; 3 grade; mean age 9,4; range: 9,1-9,8)
from the original research were accepted to this study. They were all collected from control subjects

with normal reading skills and no familial risk for dyslexia.



2.2. Stimuli and procedure

The experimental design of the JLD-project was an auditory oddball (3 conditions) and EQ para
digm (control condition) for 3" graders. Two of the oddball conditions consisted of naturally pro-
duced speech stimuli (see Fig. 1). In addition, there was one condition with non-speech stimuli.
Lastly, a control condition (EQ paradigm) with speech and non-speech stimuli to make sure that the
differences in the oddball paradigm were not due to a compulsory response to the stimuli, but areal
detection of change. For the purposes of this particular study, expedient stimuli were selected from
the two speech experiments and from the control experiment.

There were four different kinds of stimuli in the speech conditions (‘ata’, ‘atta’, ‘apa’,
‘“appa’). In the first experiment ‘ata’ was used as a standard (probability 0.8) and ‘atta’ and ‘apa’
were deviant stimuli (probability 0.1). In the second, otherwise similar, experiment ‘atta’ was stan-
dard and ‘ata’ and ‘appa’ were deviant stimuli. In both conditions there were altogether 1250 stim-
uli presented with a constant 1Sl (off-set to on-set) of 610 ms in five consecutive blocks. For the
analyses of this study, two standard ‘atta’ stimuli (‘atta’ following ‘ata’ i.e. /s8dt-satta/, and * atta’
following ‘apa’ i.e. /sBdp-satta/) aong with the deviant *atta’ (i.e. /dat8-datta/) and deviant * appa’
(i.e. /dap8-dappa/) were selected. These stimuli are henceforth referred to as stimuli of the short 1S
condition.

In the control condition (EQ paradigm), all of the stimuli (including non-speech stimuli)
were placed to the same experiment and played at pseudo-random intervals of 1-5 seconds with
equal probability. However, only the two speech stimuli (‘atta’ i.e. /ata8-datta8/ and ‘appa’ i.e.
/apa8-dappa8/) from the control condition were included to the analyses of this study. The chosen
control stimuli are henceforth referred to as stimuli of the long IS condition.

During the experiment children were sitting in a chair watching soundless cartoons of their
own choice or playing a ssmple videogame. They were asked to ignore the noises. To secure the
well-being of children, they were visually monitored and short snack or stretching pauses were

taken whenever necessary. The duration of the experiment was approximately three hours.

2.3. EEG recording and averaging

Scalp EEG was recorded and stored with Net Station 2.0 using a High-density Geodesic Sensor Net
(EGI) with 129 electrodes (www.egi.com/c_120 eegtech.html). Continuous EEG data was online
filtered using a 0.1 Hz highpass and 100 Hz lowpass filters, with a sampling rate of 500 Hz. Data



was referenced to the vertex electrode and then re-referenced using an average reference. | mped-
ances for most of the electrodes were kept below 50 kQ. For the few electrode locations where the
impedance was higher, EEG quality was visually ensured. EEG-channels with excessive electric or
other extra-cerebral noise were marked and later interpolated (see below). The vertex was used as a
reference electrode during recording. Stimulus trigger codes were recorded online with the EEG.

The recorded EEG data was analyzed with Besa 5.1.6. (www.besa.de/index_home.htm). Be-
fore averaging, artifacts were scanned with the offline filters set to 0.53 Hz for the low cutoff (6
dB/forward) and the notch filter to 50 Hz, width 2 Hz. Trials with peak-to-peak deflections exceed-
ing 200 uV (extra-cerebral artifacts, including noise from electric devices, movement or tension-
related noise etc.) were excluded from the analyses, along with the channels that were bad during
the whole experiment. Blink correction was done by using an individual eye blink correction
method by BESA (Hamaldinen, J. A., Leppanen, P. H. T., Guttorm, T. K., & Lyytinen, H., 2007).
Altogether 20-200 blinks were averaged. Next, trials were averaged separately for each stimulus
type. Before further analysis, all the previously marked bad channels were spherical spline interpo-
lated (Perrin et al., 1989, 1990) and averages were digitally filtered (high cutoff 35 Hz/12 dB zero)
(see BESA tutorial: www.besa.de/index_home.htm?/tutorials/index_viewlets_intro.htm).

Before PCA analyses, all averaged ERP waveforms from 20 participants were also trans-
formed into current source density (CSD) estimates using the spherical spline surface Laplacian al-
gorithm (Perrin et al. 1989, 1990). Asaresult, two different data sets - the other with ERP and the
other with CSD waveforms - were obtained.
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Figure 1. Exampleof the ‘atta’ stimulus, showing it’stime course and frequency spectra.
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2.4. Temporospatial PCA

For the averaged ERP and CSD waveforms a temporospatial PCA was applied. In other words, first
atemporal, then a spatial PCA were conducted to avoid the conflation of different ERP components
with similar time courses. As a rotation method for both - temporal and spatial — PCA, a Varimax
rotation with 99% extraction criteria was used (Kayser & Tenke, 2003; Beauducel & Debener,
2003; van Boxtel, 1998). Thus, extracted components accounting for 99 % of the variance were ro-
tated. A covariance matrix was chosen based on the recommendations made by Kayser & Tenke
(2003) and Dien et al. (2005).

In order to find the time points which vary most across participants and experimental condi-
tions, 685 sample points (-300 — 1068 ms) as variables and 15480(ERP)/9720(CSD) observations
(participants x condition (i.e. oddball and EQ)/stimuli (i.e. standard ‘atta’, deviant ‘atta’, deviant
‘“appa’ and EQ ‘atta’ and ‘appa’) x electrode sites) were submitted to the temporal PCA. A set of
principal components, virtual epochs, were thereby extracted.

Next, temporal components for the succeeding spatial PCA were selected, if their factor
loadings and topographies (spatial configurations) resembled real ERP components. Consequently,
the selection was not strictly restricted to the studied negative obligatory ERP components at this
point, because it was assumed that the following spatial PCA would benefit also from the variance
of other components (e.g. P1, P2) or even noise-related variance at the time range at which the N1
and N250 were observed in the grand average waveforms (Kayser & Tenke, 2003).

Accordingly, the temporal factor scores from the chosen components were rearranged so
that the scores for each observation were positioned as variables. The reconstructed dataset was
then subjected to the spatial PCA (685 time points as observations). The obtained components were,
correspondingly, referred to as virtual electrodes (see Results for more detailed description).

2.5. Satistical analysesfor the selected PCA factor scores

The selection of the spatial components (virtual electrodes) for the statistical analyses was made
based on the topographic distributions and aggregated factor scores of the spatial PCA components.
Each selected spatial ERP- and CSD-PCA component was examined in relation to the temporal
PCA components active at the latency of the studied ERP components.

Spatial components active at the latency of ~100 ms and with frontal or frontocentral scalp
distribution were thought to resemble N1b and components with a distribution maximal posterior to
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that of N1b were assumed to reflect non-specific N1 activity. Additionally, spatial components ac-
tive at ~ 45 ms after N1 with a temporal distribution were regarded as Tb of the T-complex. Fur-
thermore, the factor scores of the components at the latency of N1 activity were assumed to be
dominated by the long IS condition. Considering the N250, spatial components active at the la-
tency of ~250 ms with a frontal or frontocentral distribution were examined. The factor scores of
these components were assumed to be aimost equally active in short and long IS conditions, be-
cause N250 has been shown to be insensitive to IS changes (Ceponiene et al., 1998, 2002). Statisti-
cal analyses were restricted to the comparison of standard ‘atta’ stimuli (i.e. /s8dt-satta/ and /s8dp-
satta/) from the short 1S condition with the ‘atta’ stimulus (i.e. ﬂata8—datta8/) inthelong IS condi-
tion'. To find out if there were significant differences between the short and long IS conditions, the
factor scores of the selected components were submitted to separate paired-samples T-tests for both

conditions. A conventional significance level (p<0.05) was applied.

The factor scores of ERP- and CSD-PCA are not directly proportional. Consequently, no
statistical analyses were performed to compare the selected spatial components extracted by the two
methods. Instead, a descriptive comparison of the topographic distributions and spatial factor scores
of the selected components was conducted (see Discussion).

3. Reaults

3.1. Average ERP and CSD waveforms

Grand average event-related potential (ERP) waveforms of the surface potentials and the scalp to-
pography maps at the peak latencies of N1 and N250 are shown in Fig. 2, separately for short and
long IS conditions. When it comes to the investigated ERP components, in the short IS condition a
small negativity was observable at 118 ms, which was not, however, visible in the topography map.
The small negativity was followed by a large frontocentrally maximal negativity peaking at 260 ms,
representing N250. In the long IS condition, a clear N1 component was identified at 110 ms, suc-
ceeded by a N250 at 290 ms. In the topography maps, a central-posterior negativity for the N1 and a
frontocentral negativity for the N250 were observed.

! To avoid needless complexity, the factor scores of the two standard ‘atta’ stimuli were aggregated as one variable rep-
resenting the short 1S condition, and compared with the ‘atta’ stimulus from thelong ISl condition.
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The reference-free current source density (CSD) transformations of the ERP waveforms, and
the scalp topography maps at the peak latencies of N1 and N250, are shown in Fig. 3. In the short
IS condition, a small negativity was barely observable at 104 ms. In the scalp topography, small
frontal and posterior negativities were visible, but positivity was predominating. A large frontocen-
tral negativity was evident at 260 ms, representing N250. In the long IS condition, a clear central-
posterior negativity was observable at 104 ms, followed by a central negativity at 288 ms, repre-
senting N1 and N250, respectively. The scalp topographies of the long IS condition were much
alike, but at N1 latency, a posterior negativity predominated, whereas at N250 latency, a central
negativity was grater. Altogether, in line with theoretical assumptions, the topographies of N250 in
both conditions for ERP and CSD waveforms were noticeably similar, whereas the topographies at
N1 latency differed considerably.

3.2. Temporospatial PCA of ERP and CSD waveforms

The analysis began by submitting both, ERP and CSD, datato atemporal PCA. In total, 57 compo-
nents in the ERP data and 73 in the CSD data, respectively, were acquired to sufficiently explain
99% of the data sets. By visual inspection, the time courses of CSD factor loadings seemed sharper
and more distinct than those of ERP data. Moreover, alarger amount of CSD-PCA factors were ac-
quired to explain the data, compared to the ERP-PCA solution. Both PCA solutions, however, re-
sembled closely each other. The only marked exception was the double-peaked component T1-282-
454-608, accounting for 51,2 % of the ERP data, corresponding to the two distinct T3-286 and T2-
614 factors, together accounting for 17,7 % of the CSD data.

For the subsequent spatial PCA, ten temporal components from the ERP data (Figs. 4 and 5)
and fourteen components from the CSD data (Figs. 6 and 7) were selected on the account of their
temporal and topographical characteristics. Consequently, components were selected, if their factor
loadings peaked at 76-500 ms for the ERP data and at 70-420 ms for the CSD data, respectively.
The time range criterion for the factor loadings was determined by utilizing the information about
real ERP component latencies (N1, N250) in the grand averages. Moreover, loadings of the factors
had to reach the 0.7/0.07 (ERP/CSD) criterion for at least one time point. In addition, the topogra-
phies (spatial configurations) of the selected components resembled real ERP components.
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Figure 2. Left: Grand average event-related potential (ERP) waveforms for 20 healthy children at al 129 electrodes.
Upper figure includes responses of the short IS condition stimuli (oddball) ‘ dat8-datta’, ‘ s8dt-satta’, ‘ dap8-dappa’ and
‘sBdp-satta’. Lower figure includes responses of the long 19 condition (EQ) stimuli ‘ata8-datta8’ and ‘apa8-dappa8’.
Right: Scalp topographies of the grand averages at the peak latencies of N1 and N250, separately for short (up) and
long IS (below) stimuli.
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Figure 3. Left: Reference-free current source density (CSD) waveforms for 20 hedthy children at al 129 electrodes.
Upper figure includes responses of the short 1S condition (oddball) stimuli ‘dat8-datta’, ‘ s8dt-satta’, ‘ dap8-dappa’ and
‘s8dp-satta’. Lower figure includes responses of the long 1S condition (EQ) stimuli ‘ata8-datta8’ and ‘apa8-dappa8’.
Right: Scalp topographies of the CSD waveforms at the peak latencies of N1 and N250, separately for short (up) and
long 1S (below) stimuli.
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—1-282-454-608
4-118
—5-192
—7-490
—8-414
-~ 18-236
—23-154
——24-370
—28-90
—34-456

Figure 4. The sdlected ten temporal factor |oadings extracted from ERP waveforms. The peak latency and the number
of each component are shown in the box (right).

T1-282-454-608  T4-118 T5-192 T7-488 T8-416
(51,2%) (5,1%) (3,6%) (2,4%) (1,7%)

T18-236 T23-154 T24-370 T28-90 T34-454
(0,5%) (0,3%) (0,3%) (0,2%) (0,1%)

Figure 5. The selected ten temporal factor score topographies extracted from ERP waveforms. Percentage of the vari-
ance accounted for by each component after rotation is shown in parentheses.
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Figure 6. Selected fourteen temporal factor loadings extracted from CSD waveforms. The peak latency and the number
of each component is shown in the box (right).

T5178 T6-420 T7-116 T13-72 T18-218 T22-90
(34%) (2.7%) (2.5%) (0,7%) (0.5%) (0.3%)

T25-370  T26-142  T34-344 T47-158 T57-322 T58-406 T60-198
(0,3%) (0,3%) (0,1%) (0,1%) (0,1%) (0,1%) (0,1%)

Figure 7. The sdlected fourteen temporal factor score topographies extracted from CSD waveforms. Percentage of the
variance accounted for by each component after rotation is shown in parentheses.
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The selected temporal components (from both data sets separately) were then submitted to spatial
PCA. A total of 80 spatial components in the ERP data and 64 in the CSD data accounted for 99 %
of the data sets. The first fifteen spatial components from both data sets are shown in Fig. 8. The
selection of spatial components for statistical analyses was made among these fifteen components.
Note, that the spatial factor score topographies represent the common variance between spatial
component and the temporal components, and are not directly comparable to ERP and CSD maps.

Spatial ERP-PCA components Spatial CSD-PCA components

3D Mapping: EEG - Yoltage - o =] 5 #} 3D Mapping: EEG - Yoltage _ (ol x|
e R EE =TT AP |Mzfataa

1.0 ms 2.0 ms 3.0 ms

5.0 ms 6.0 ms

7.0 ms 9.0 ms

10.0 ms 11.0 ms 12.0 ms

13.0 ms 14.0 ms 15.0 ms 13.0 ms 15.0 ms
8.0 ms reference free 8.0 ms reference free
EEG - Voltage IRTTTTITTTT0 0.06 pV / step EEG - Voltage 0.06 pV / step

Figure 8. The first fifteen spatial ERP- and CSD-PCA components extracted from the selected temporal PCA compo-
nents.
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3.3. Satistical results of the selected temporospatial PCA factor scores

The selection of the obtained spatial components for the statistical analysis was restricted to the
components that could be related to the investigated ERP components through their temporal and
gpatial characteristics. Moreover, only components with large and representative PCA factor scores,
a the latencies of the investigated ERP components, were selected for further analysis. Thus, the
most active spatial components at the latencies (i.e. virtual epochs) of the investigated ERP compo-
nents — indicated by the factor scores — were sudied further. All the selected components (factor
scores and topographies) are shown in Figs. 9.-10., separately for ERP and CSD data.

3.3.1. ERP-PCA

N1 components. Spatial component $4 had a frontal scalp distribution and large factor scores at the
latency of N1b (i.e. T4-118). The factor scores of S4-T4 were positive, indicating frontal positivity.
No statistical differences between the short and long IS conditions were found (t (19) =-1.262, p =
.222), adthough the factor scores were dominated by the short IS condition by visual inspection.

Spatial component S2 was maximal posterior to the scalp distribution of N1b and was active
at the latency of non-specific N1 component (i.e. T4-118). The factor scores of S2-T4 were posi-
tive, indicating posterior negativity, and slightly dominated by the short IS condition. No statistical
differences between conditions were found (t (19) = .092, p = .928).

Spatial components S3 and S5 had a temporal distribution and large factor scores at the la-
tency of Tb (i.e. T23-154). The factor scores of S3-T23 and S5-T23 were negative, indicating nega-
tivities on the left (i.e. S3-T23) and right (i.e. S5-T23) temporal lobes. The conditions were almost
equally active for S3-T23, whereas the short IS condition slightly dominated the factor scores of
S5-T23. Comparisons of conditions did not reach statistical significances (S3-T23: t (19) = -.080, p
=.937; S5-T23: t (19) = .540, p = .595).

N250 components. Spatial components S1 and S2 had a central and frontal distribution and were
active at the latency of N250 (i.e. T1-282-454-608). The factor scores of S1-T1 were negative, indi-
cating central negativity. For S2-T1 the factor scores were negative, indicating frontal negativity.
The factor scores of the components were almost equally active and, accordingly, no significant dif-
ferences between conditions were found (S1: t (19) = .301, p=.767; S2: t (19) = .015, p = .988).
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3.3.2. CD-PCA

N1 components. Spatial components S12 and S14 had a frontocentral scalp distributions and large
factor scores at the latency of N1b (i.e. T7-116). The factor scores of S12-T7 were dominated by the
short IS condition, while the opposite was true for S14-T7. Factor scores of both components were
positive, indicating frontal sourceson left (i.e. S12-T7) and right (i.e. S14-T7) hemispheres, accom-
panied with anterior sinks. For S12-T7, significant differences between short and long IS condi-
tions were found (t (19) = -2.290, p = .034), indicating sensitivity to ISl changes. The factor scores
of S14-T7 did not differ significantly between conditions (t (19) = .767, p = .452).

Spatial component S2 was maximal posterior to the scalp distribution of N1b and was active
at the latency of non-specific N1 component (i.e. T7-116). The factor scores of S2-T7 were negative
in the short and positive in the long 1S condition, indicating a posterior sink in the short 1S condi-
tion and a central sink in the long IS condition. The comparison of the factor scores did not reach
statistical significance (t (19) = -1.031, p = .315), but the opposite weightings of the factor scores
indicate a shift in the topographical distribution dueto ISl change.

Spatial components $4 and S13 had temporal distributions and large factor scores at the la-
tency of Tb (i.e. T26-142). The factor scores of S4-T26 were positive in the short and slightly nega-
tivein thelong 1S condition. The difference between conditions was not significant (t (19) = 1.024,
p = .319), indicating a left temporal source. The factor scores of S13-T26 were positive for both
conditions, and dominated by the short IS condition, indicating a right temporal source. No signifi-

cant differences were found between conditions (t (19) = 1.274, p = .218).

N250 components. Spatial lcomponents S6, S4 and S13 had a frontal or temporal® scalp distributions
and large factor scores at the latency of N250 (i.e. T3-286). The factor scores of S6-T3 were nega-
tive and dominated by the long IS condition, indicating a lateral frontal sink. Differences between
conditions were significant (t (19) = 2.669, p = .015), indicating sensitivity to 1Sl changes. Factor
scores of $A-T3 and S13-T3 were positive, indicating temporal sources on both hemispheres. For
SA-T3, the factor scores were dominated by the long ISl condition, while the opposite was true for
S13-T3. No sgnificant differences were found between the short and long IS conditions of these
two components (S4-T3: t (19) =-.339, p=.738; S13-T3: t (19) = .848, p = .407).

2 Although not frontally or frontocentrally maximal, components $4 and S13 were thought to represent N250 activity
because of their considerably large spatial factor scores at the latency of N250 (i.e. T3-286; Fig. 10).
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Figure 9. The scalp topographies and factor scores (including stimuli /s8dt-satta/, /s8dp-satta/ and /ata8-datta8/) of the
selected spatial ERP-PCA components in reation to the temporal ERP-PCA components active at the latency of the
studied ERP components.
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Figure 10. The scalp topographies and factor scores (including stimuli /s8dt-satta/, /s8dp-satta/ and /ata8-datta8/) of
the sdlected spatiad CSD-PCA componentsin relation to the temporal CSD-PCA components active at the latency of the
studied ERP components.

22



4. Discussion

The purpose of this study was to explore if principal component analysis (PCA) was an efficient
and reliable method for extracting temporally and spatially close or overlapping ERP components
measured with dense electrode array. This was done by evaluating and comparing the ability of two
different solutions within temporospatial PCA — ERP-PCA and CSD-PCA —to separate auditory N1
and N250 from each other. Both PCA solutions were expected to be able to extract the desired
components, although CSD-PCA was assumed to surpass the more traditional ERP-PCA in accu-
racy. The data was obtained from 9-year-old children by auditory oddball and EQ (control) para-
digms with the inter-stimulus-intervals of 610 msin the oddball and 1-5 s in the EQ paradigm. The
stimuli from the oddball paradigm were jointly referred to as the short IS condition, whereas the
stimuli from the EQ paradigm, respectively, asthe long IS condition. Consequently, temporospatial
PCA components thought to represent N1 activity were assumed to differ between conditions,
whereas the conditions of N250 components were assumed not to differ (Ceponiené et al., 1998,
2002). The topographical configurations of the extracted spatial PCA components (i.e. virtual elec-
trodes) were assumed to have negative scalp digtributions either frontally, centrally or temporally,
depending on the ERP component it was assumed to represent. Furthermore, the factor scores of the
selected spatial PCA components had to be large and representative at the latency (i.e. virtual ep-
och) of the investigated ERP components.

As expected, the temporal PCA factor loadings derived from ERP and CSD data (Figs. 4 and
6) resembled closely each other, although there were less overlap among the CSD factor loadings.
The spatial factor scores and topographies (Figs. 8, 9 and 10), however, differed considerably be-
tween the two solutions, the CSD-PCA scores and topographies being sharper and more distinct.
Both PCA solutions extracted components that were associated with N1 subcomponents, as well as
N250. Moreover, the components extracted by CSD-PCA solution were more focal and easier to
associate with real ERP components than the topographically more extensive components extracted
by ERP-PCA solution.

Using a two-step PCA as a method for analyzing high-density ERP data was found to be
confirmative as well as informative. Moreover, it considerably reduced the amount of information
obtained by the 129 electrodes, facilitating the selection of physiologically relevant components for
further analysis. Temporospatial PCA was able to disentangle spatial distributions visible in the real
ERP grand averages. In addition, it certainly has the ability to extract ERP subcomponents not visi-
ble in the grand averages, but the interpretation of such components should be carried out with cau-
tion. Unfortunately temporospatial PCA loses the information about the channels and no critical ex-
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aminations about or comparisons between their contributions can be made (Kayser & Tenke,
2006a). On the other hand, the aim of this study was to analyse multi-channel ERP data in an all-
inclusive fashion, not merely in relation to certain selected channels. It was concluded that a two-
step PCA suits well especially for the purposes of explorative analysis of high-density ERP data.
An explorative analysis is ideal for maturational ERP data, because no consensus of children’s ERP
maturation processes or component structures has been achieved (e.g. Johnstone et al., 1996; Cepo-
niené et al., 1998; Gomes et al., 2001). In this study the assumption was, according to Johnstone et
al. (1996) that ERP components N1 and N250 correspond to those of adults' N1 and N2. There s,
however, no certainty about the correspondence of adult ERP components to those of children
(Albrecht et al., 2000).

The association of the extracted temporospatial PCA components to real N1 and N250 activ-
ity was rather easy when they were directly proportional to the topographies of the grand average
ERP and CSD waveforms. However, as far as ERP subcomponents — not visible in the grand aver-
age — are concerned, it is very difficult to prove that the selected spatial PCA components actually
represent certain ERP subcomponents. Here, this problem was attempted to overcome by utilizing
the theoretical information about the effects of short and long IS experimental conditions on the
ERP components of children (Karhu et al., 1997; Gomes et al., 2001; Ceponiené et al., 1998, 2002).

4.1. Selected temporospatial PCA components associated with real ERP components

4.1.1. ERP-PCA

For the ERP-PCA (Fig. 9), no evidence of sensitivity to ISI changes was found among the chosen
components associated with N1 activity. In addition, component $4-T4, thought to represent N1b,
was frontally positive indicated by the factor scores. It is therefore unlikely that the component in
guestion actually reflected N1b activity. Component S2-T4, associated with the non-specific N1,
had a negative scalp distribution posterior to vertex and was almost equally active in both, short and
long IS, conditions. This would imply that the non-specific N1 component is observable also with
short ISIsin children. According to the weighing of the factor scores, components S3-T23 and S5-
T23 had atemporally negative topography, indicating Th of T-complex — separately for both hemi-
spheres. Judging from the fact that the factor scores of the components were almost equally active
in both conditions, it would support the conclusions of Gomes et al. (2001) that T-complex is ob-
servable from early childhood even with short ISIs. There were two components associated with
N250; S1-T1 indicating central and S2-T1 frontal negativity. In line with the assumptions (Cepo-
niené et al., 1998, 2002), N250 seemed to be insensitive to I S| changes.
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4.1.2. CSD-PCA

For the CSD-PCA (Fig. 10), evidence of ISl sensitivity was found for S12-T7 component, thought
to represent the left dipole of N1b. The factor scores of this component were positive and domi-
nated by the short IS condition, indicating a frontal positivity and a slightly weaker negativity ante-
rior to it. The same was true for S14-T7 assumed to reflect the right dipole of N1b, except for the
evidence of ISl sensitivity. Thus, this would imply that it is improbable for these components to re-
flect N1b activity, because the predominance of the negativity associated with N1b shifts from ante-
rior to more central after age 6 (Ceponiené et al., 2002). The factor scores of the component S2-T7,
associated with the non-specific N1, were negative in the short IS condition and positive in the
long IS condition, indicating a posterior negativity in the short IS condition and a central negativ-
ity in the long 1S condition. Although the difference was not significant, it could be inferred that
the non-specific N1 component was observable in both conditions, and its topography was affected
by changes in the inter-stimulus-interval. This would be logical, because all the other N1 subcom-
ponents are sensitive to 1Sl changes (Ceponiené et al., 1998, 2002). According to the previous re-
search, however, the shift of the negativity has been from central to posterior with longer 1SIs
(N&&téanen & Picton, 1987; Ceponiené et al., 2002). In that sense this result is contradictory to the
previous findings. As for the components reflecting Tb (i.e. $4-T26 and S13-T26), it appeared that
these temporally maximal components were observable even with short | SI's, supporting the sugges-
tion of Gomes et a. (2001). Interestingly, the topographies of these two components were tempo-
rally positive, indicated by the factor scores. A positive peak at temporal sites called Ta, whichis a
predecessor of the negativity (Th) in the T-complex, is usually elicited at the peak latency of N1
(e.g. Ponton et a., 2000; Tonnquist-Uhlen et al., 2003). The frontally negative component S6-T3, as
well as the temporally positive components $4-T3 and S13-T3, were assumed to represent N250
activity. Contrary to the previous research (Ceponiené et al., 1998, 2002), the frontal component
seemed to be sensitive to ISl changes. The temporally positive components speak in favour of Ta-
like radially oriented subcomponents, active in conjunction with N250.

4.1.3. Comparison of the selected ERP- and CSD-PCA components

Due to the fact that ERP-PCA and CSD-PCA are not directly proportional, only descriptive and
suggestive comparisons can be made. It is clear that despite of certain similarities, the outcomes of
these two solutions on the same data set were somewhat different. What can be inferred, however,
is that neither of the solutions could extract a clear component reflecting N1b. Children’s N1 has
been reported to be either frontal (e.g. Johnstone et al., 1996; Ceponiené et al., 2002) or frontocen-
tral (e.g. Ceponiené et al., 1998, 2001; Ponton et al., 2000), but the weighing of N1 subcomponents
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in the scalp distribution is still unclear. In the grand averages of this study, only negativities poste-
rior to vertex were visible at the latencies of N1, indicating non-specific N1 component. In fact,
non-specific N1 was extracted by both of the PCA solutions, with short and long ISIs. It is possible
that the more robust non-specific N1 superimposed N1b and the consequent temporal and spatial
overlap was too challenging for PCA. The non-specific N1 has been concluded to be an orienting
component with a long refractory period (Naétanen & Picton, 1987; Ceponiené et al., 1998). Thus,
in an averaged data it can distort the magnitude of the simultaneously occurring N1b component,
which is not necessarily even visible in the grand averages. When it comes to the negative peak of
the T-complex (Tb), there was clear activation at temporal leads at the latency of Tb in both data
sets. In the CSD-PCA data, however, the activation was positive indicating Ta, which is usually
elicited in conjunction with N1. Yet, it is not unquestionable that this activation was a manifestation
of Ta, because it was maximal ~ 40 ms after N1 peak visible in the grand average. Accordingly, the
possibility exists that T-complex represents the inversion of the N1, but there is also evidence of its
independence (Ponton et al., 2002; Tonnquist-Uhlen et al., 2003). In other words, if the activation in
guestion would not depend on the latency of N1, it could in fact represent Ta activity. Altogether,
these results support the suggestion of Tonnquist-Uhlen et al. (2003) that T-complex components
are observable in children even with short |Sls (see also Karhu et al., 1997; Ceponiené et al., 1998;
Gomes et al., 2001). For the components representing N250, the common feature between solutions
was a frontal negativity. It could, however, be argued that in the CSD-PCA data, the frontal compo-
nent did not represent N250 because of its sensitivity to I SI changes (Ceponiené et al., 1998, 2002).
On the other hand, in the studies of Ceponiené et al. (1998, 2002) the amount of subjects and re-
cording channels wasrelatively small and could have resulted in false conclusions about the proper-
ties of N250. Interestingly, in the CSD-PCA data, Ta-like positive peaks at temporal sites were ad-
ditionally observed, which suggests that N250 might also have radial subcomponents (cf. N1, P1;
e.g. Karhu et al., 1997; Albrecht et al., 2000). The robust central N250 component S1-T1 of ERP-
PCA data, not visible in the CSD-PCA data, could have been a result of the distorting effect of the
extensive temporal component T1 ranging from 282 msto 608 ms.

As can be inferred from these results, the hypothesis that PCA would separate ERP compo-
nents specific to the short and long IS conditions was not fully verified. The two N1 subcompo-
nents extracted by PCA did not consistently differ as a result of the changes in ISIs. The differences
between short and long 1S conditions were obvious in the grand averages of ERP and CSD data,
but PCA was not able to disclose them as expected. However, they were better brought out by CSD-
PCA. It is possible that PCA misallocated the variance in the data and, thus, emphasized the activa-
tion of short and long IS conditions incorrectly. Additionally, ERP data collected from children
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subjects has considerably lower signal-to-noise-ratio and a higher risk for latency jitter than a data
collected from adults. Also the age of the children subjects used in thisstudy is critical in away that
around age 9, developmental changes in the brain start to occur and marked individual differences
in the measured event-related potentials are likely (e.g. Johnstone et al., 1996; Ponton et al., 2000).
However, PCA could have interpreted the N1 and N250 components in both conditions as reflecting
the same processes and, thus, did not separate them as distinct components.

4.2. Conclusions

It was made clear by this study that different methodological approaches can have substantial ef-
fects on the interpretations made about ERP components. In line with previous studies by Kayser &
Tenke (2006a, 2006b) and Kayser et al. (2006), the results support the use of CSD-PCA in the
analysis of multi-channel ERP data. It seems that ERP-PCA reveals the overall activation of the
data, whereas CSD-PCA enables more detalled and exact summary about the distribution of the
variance. Furthermore, a two-step PCA was concluded to be an ideal method for an explorative
analysis of ERP data. From a methodological point of view, a challenge for future research is to
study and compare the ability of two-step ERP-PCA and CSD-PCA to extract ERP components
with a data collected from adult subjects. While real ERP data is crucial when validating new ERP
analyzing methods, ssimulation studies could give additional information about their strengths and
weaknesses.

The development of ERP recording and measuring equipment preconceives that ERP analyz-
ing methods develop as well. New methods, such as principal component analysis and independent
component analysis (e.g. Hyvérinen & Oja, 2000; Makeig, Debener, Onton, & Delorme, 2004), en-
able more distinct and comprehensive picture about the features of ERP data. Although the purpose
of component analyses is to efficiently summarize the information of ERP data set, they yet extract
vast amounts of components from which the relevant ones ought to be selected. Thus, the problem
of the disputed association between PCA components and ERP components still remains. In future
research, the selection of components could be facilitated by combining PCA technique with dipole
source localization procedure (Dien et al., 2003). Nevertheless, the development of ERP analysing
methods is not likely to eliminate or even diminish the demand for the researchers extensive
knowledge about the physiology of ERP components.
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