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ABSTRACT
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This Master’s thesis focuses on studying independent component analysis (ICA) in analysing
high-density averaged auditory event-related potential (ERP) and current source density
(CSD) data. The applicability of ICA was studied in a theory driven and descriptive manner in
attempt to isolate auditory N1 sub-components into independent components. The data
analysed in this study was collected from 20 healthy 9-year-old children participating in the
Jyviskyld Longitudinal Study of Dyslexia. The analysis were focused to responses to the first
syllable /a/ of the /atta/-stimulus that was presented with equal probability with a long ISI
varying pseudo-randomly between 1 and 5 seconds and as a standard in an oddball paradigm
with a short ISI of 610 ms. ICA was applied separately to averaged ERP waveforms and their
CSD transformations, in order to investigate which of the approaches, ERP-ICA or CSD-ICA,
would lead to a better decomposition of the N1 sub-components into biologically plausible
independent components. ICA components representing N1 activation were identified by
visual inspection of their topographical scalp maps and temporal activation patterns, and
grouped together to form clusters consisting of similar components reflecting the same
underlying process in different participants. The selection of the N1-ICA components was
guided by prior knowledge in the literature of the activation of the N1 sub-components in
children. Both ERP-ICA and CSD-ICA solutions produced interpretable ICA components that
were associated to activation of underlying brain structures related to N1 sub-components.
ERP-ICA and CSD-ICA Nl-clusters both included components activating at temporal,
supratemporal and frontal areas. In addition, clusters with parietal and vertex components
were decomposed only with ERP-ICA approach. Overall, the CSD-ICA approach summarised
the N1 activation into more defined and localised ICA components when compared to the
broadly distributed topographies of the ERP-ICA components. Results of this Master’s thesis
suggest that it is informative to contrast both ERP and CSD data in clarifying the nature of
ERP generators.

Keywords: independent component analysis (ICA), developmental auditory event-related
potentials (ERPs), current source density (CSD), auditory N1, N1b, non-specific N1, T-
complex, children




1. INTRODUCTION

1.1. Event-related potential (ERP) components

Measuring brain waves, called event-related potentials (ERPs), is a means of getting
information about brain’s electrical activity in time with a precision of tens of milliseconds
(Regan, 1989). The ERPs are brain responses temporally associated to stimulus events
presented to a participant. They can be extracted from electroencephalogram (EEG) by
averaging. When averaging EEG epochs related to a certain stimulus event, random electrical
activity will approach zero, leaving the enhanced time-locked ERP signal visible. The ERP
waveforms consist of a series of positive and negative voltage deflections that differ in
amplitude, latency, and scalp distribution. The ERP deflections are a sum of electrical activity

that reflects the activation of brain generators elicited by the stimulus.

The ERPs are traditionally classified into exogenous and endogenous components (Coles,
Gratton, & Fabiani, 1990). Exogenous components are relatively stable obligatory
components that are automatically elicited by the physical properties of a stimulus without
attention being paid to the stimulus. Endogenous components, on the other hand, reflect
cognitive processing and they can be elicited also in the absence of an external stimulus. The
ERP components are typically named after their polarity (P for positivity; N for negativity)

and latency or ordinal number of their occurrence in time.

The ERP component structure in children differs from that of adults. In the course of
maturation, exogenous components go through developmental changes and new components
appear. As described by Cheour, Leppénen, & Kraus (2000) and Ponton, Eggermont, Khosla,
Kwong, & Don (2002) the latencies and amplitudes of the ERP components change during
the development. The latencies of ERP components shorten with maturation, which is
suggested to be due to increasing myelinisation and synaptic density with age. Age-related
changes in the amplitudes of the ERP components on the other hand follow an inverted U-
shape with the amplitude first increasing to reach its maxima prior to maturity and then
decreasing again.

In the following sections, a brief description of some well-known ERP components is

provided. The main emphasis is on a negative component called N1, which is in the focus of
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this master’s thesis and thus described more profoundly. After the introduction to ERP
components, main attention is turned to methods that are used for extracting the ERP

components from EEG.

The earliest components in the auditory ERP are exogenous brainstem responses that reflect
the arrival of sensory input to cochlea and brainstem. They are followed by mid latency
responses that are supposedly generated by the medial geniculate nucleus and the primary
auditory cortex (Nédtinen, 1990). The first long-latency exogenous peak in ERP is called P/,
which is suggested to reflect auditory pre-perceptual sensory processing (Ceponiené, Rinne,
& Naitinen, 2002). The P1 is generated by a tangential source located in the secondary
auditory cortex in the lateral portion of Heschl’s gyrus (Liegeois-Chauvel, Musolino, Badier,
Marquis, & Chauvel, 1994; Ponton et al., 2002) and it can be recorded from central and
frontal scalp sites. In children the P1 is recorded at the latency of 80 ms (Ponton et al., 2002).

The P1 is followed by a negative ERP deflection called NI, which is elicited about 100 ms
after the stimulus onset in adults. Several studies indicate that the latency of N1 decreases as a
function of age (Bruneau & Gomot, 1998; Ceponiené et al., 2002; Johnstone, Barry,
Anderson, & Coyle, 1996; Ponton, Eggermont, Kwong, & Don, 2000; Sharma, Kraus,
McGee, & Nicol, 1997). The N1 is an obligatory component and it is presumed to be linked
with general conscious auditory sound level change detection and orienting of attention
(Néitinen & Picton, 1987). The N1 can be elicited by a change in sound or silence; i.e. by an
onset of a stimulus or a change in continuous sound, and also by an offset of a stimulus. The
auditory N1 is sensitive to stimulus intensity and rate of stimulus presentation (Naitinen &
Picton, 1987). Several studies indicate that there are more than one generator contributing to
the scalp-recorded auditory N1 (Eggermont & Ponton, 2002; McCallum & Curry, 1980;
Nistinen & Picton, 1987; Wolpaw & Penry, 1975). Supratemporal, vertex, lateral temporal

and frontal sub-components have been identified.

Supratemporal component of N1 is called NIb and it is generated by bilateral tangentially
oriented dipoles located in the supratemporal plane of the auditory cortex (Hari, Kaila, Katila,
Tuomisto, & Varpula, 1982; Néitdnen & Picton, 1987; Scherg & von Cramon, 1985;
Vaughan & Ritter, 1970). It is suggested that also frontal generators may contribute to N1b
(Bender, Oelkers-Ax, Resch, & Weisbrod, 2006). In ERP, the supratemporal N1b is generally
observed as a negativity at frontocentral site reversing in polarity over the Sylvian fissure and

being positive at temporomastoid areas (Bruneau & Gomot, 1998; Nédtinen & Picton, 1987).
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In a few studies, however, the N1b negativity in children have been seen at parietal areas
instead (Daruna & Rau, 1987; Goodin, Squires, Henderson, & Starr 1978; Hamiléinen,
Leppénen, Guttorm, & Lyytinen, 2007; Pang & Taylor, 2000). In current source density
(CSD) maps, the N1b is seen as a current sink and source at temporoparietal areas also
reversing in polarity over the Sylvian fissure (Giard et al., 1994). (For a description of the
scalp current density method, see the next section.) According to Ponton et al. (2002), the
N1b in children matures slowly. It is suggested by Bruneau and Gomot (1998), that in order
for N1b to be elicited in children, the stimuli need to be presented with an interstimulus
interval (ISI) over 1 second. With fast stimulation rate, the N1b first becomes identifiable at
the age of 9 years as a small inflection of the positive P1 wave (Ponton et al., 2002).
According to Bruneau and Gomot (1998), the N1b in 9-year-old children peaks at the latency
of 110 ms. The supratemporal N1b component is thought to be associated with stimulus-
specific sensory memory formation (Nédtinen & Picton, 1987) or pre-attentive sound

detection (Néétédnen, 1990).

With long ISIs, the predominance of the N1 shifts posteriorly and the frontocentral
component is overlapped by a modality non-specific N1 component. In ERP, the non-specific
N1 is elicited as a widespread negativity at the vertex. Karhu et al. (1997) studied N1 vertex
response to intermittent trains of four identical tone pips presented with ISI of 1 s and
intertrain interval of 12 s. In 9-year-old children, a prominent N1 that was elicited at 130 ms
at the vertex by the first tone of the train decreased by roughly 50 % in amplitude after the
second tone, demonstrating the long refractory period of the non-specific component. In
consequence of shortening the ISI, the latency of N1 was also slightly shortened (Karhu et al.,
1997). According to Nédtinen and Picton (1987), the non-specific N1 is most profoundly
elicited with ISIs exceeding 4 ms. The generator of the non-specific N1 component is
unknown, but a radial source perpendicular to the vertex is suggested by Hari et al. (1982).
Involvement of motor and premotor cortices (Néddtdnen & Picton, 1987) and pre-frontal lobe
(Alcaini, Giard, Thévenet, & Pernier, 1994) have also been suggested. The non-specific N1
component is thought be related to arousal mechanisms (Nddtinen & Picton, 1987) and

orienting of attention (N&détanen, 1990).

Temporal component of the N1 is called T-complex. The T-complex is generated radially in
the superior temporal gyrus in the auditory association cortex of the lateral part of the
temporal lobe (Wolpaw & Penry, 1975). It comprises of a series of negative and positive

peaks (Nla, Ta and Nlc) peaking at anterior temporal regions (Tonnquist-Uhlen, Ponton,
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Eggermont, Kwong, & Don, 2003). Bruneau and Gomot (1998) and Pang and Taylor (2000)
have studied T-complex maturation in children. In 7-9-year-old children, the T-complex peaks
during a latency range of 75-170 ms (Bruneau & Gomot, 1998). In the study of Bruneau and
Gomot (1998), the Nla of 7-9-year-old children was elicited at 75 ms with ISI varying
between 1-2 seconds. The distribution of the Nla was dominated by activity at the left
hemisphere. Using shorter ISI of 600 ms, Pang and Taylor (2002) reported that N1a negativity
in 9-10-year old children was seen around the latency of 100 ms at both hemispheres. The
positivity seen at temporal areas after Nla is called Ta. It peaks at the time window of the
N1b. However, the Ta is produced by a radial source, which is separate from the tangential
temporal positivity associated with N1b (Ponton et al., 2002). In children, the Ta is dominated
by right hemisphere activity (Bruneau & Gomot, 1998). A second negative temporal peak is
referred as Nlc. In 7-10-year-old children it peaks at both hemispheres at the latency of 170
ms (Bruneau & Gomot, 1998; Pang and Taylor, 2000). In the study of Karhu et al. (1997), the
Nlec, recorded from 9-year-old children with an electrode at the left temporal hemisphere, was
larger to the first tone of the train (inter-train-interval of 12 s) decreasing with tone repetition
(ISI of 1 s). The temporal component of N1 can be recorded from children even with short ISI
(Pang et al., 2000; Ponton et al., 2002; Tonnquist-Uhlen et al., 2003). In the literature, it has
been suggested that the T-complex might be merely an inversion of vertex P1-N1b-P2
components but its independence is also supported (Ponton et al., 2002; Tonnquist-Uhlen et

al., 2003).

Evidence of frontal lobe involvement during auditory N1 time window derives from current
source density studies of Alcaini et al. (1994) and Bender et al. (2006) and Giard et al. (1994),
all using 1000 Hz tone bursts as stimuli with varying ISIs. Alcaini et al. (1994) reported
activation of two different frontal components in adults elicited with ISIs varying between 1 s
up to 2 min in separate runs. First frontal component with mid frontal distribution was elicited
for all ISIs at 95 ms while the other frontal component with more central distribution peaking
at 140 ms was elicited only by stimuli presented with ISIs over 4 s. In the study of Giard et al.
(1994), frontal contribution to N1 was studied in adults using ISI of 1 s eliciting only one
frontal component, which peaked bilaterally during the time window of 65-125 ms. Bender et
al., (2006) studied maturation of N1 frontal components in children using ISI varying between
10 to 15 s. Their study indicates that the first frontal component of N1 activating around N1b
time window at mid-frontocentral site is nearly absent in children under 12 years whereas the
second frontal component with mid-frontal sink peaking 40 - 50 ms after N1b is already well

developed in 6-year-old children. Bender et al. (2006) suggested that the first frontal
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component could be part of the frontocentral N1b component. The second frontal component
contributing to N1 is suggested to be part of the non-specific N1 component with possible

generators in anterior cinculate (Alcaini et al., 1994; Bender et al., 2006).

N1 is followed by P2, a second positive component in ERP, activating at central and frontal
scalp sites. In 9-year-old children the P2 can be recorded at 180 ms (Himadléinen et al., 2007).
The P2 is generated in the Heschl’s gyrus in the secondary auditory cortex in the temporal
lobe (Lutkenhdner & Steinstriter, 1998) and it is produced by a tangential dipole (Ponton, et
al., 2002). The most predominant peak in the ERP of children is the N2. It is a second
negative peak of ERP peaking in children at the latency of 250 ms (Ceponiené et al., 2002).
The N2 is not significantly attenuated with a fast stimulus rate like the N1 (Picton, Hillyard,
Krausz, & Galambos, 1974). Karhu et al. (1997) have demonstrated that the N2 of 9-year-old
children in fact increases in size, sensitizates, as a function of stimulus repetition. Like the N1,
the N2 also has a frontocentral distribution (Ceponiené, Alku, Westerfield, Torki, &
Townsend, 2005) and bilateral sources in the supratemporal auditory cortex (Bruneau &
Gomot, 1998) that are produced by a tangential dipole (Ponton, et al., 2002). The N2 is
thought to reflect sound content feature processing and synthesizing of sound features into a

representation (Ceponiené et al., 2005).

As already mentioned, the activations of ERP components overlap with each other in time and
space summing up to produce the observable ERP waveform. Also by the time the signals
from different component generators reach the recording electrodes at the scalp, they have
become even more fused together via volume conduction. The volume conduction is due to
different conductivity in cortex, dura material, skull and scalp which blurs the signals and
distributes them more widely over the scalp (Nunez & Srinivasan, 2006). The overlap of the
ERP components and the volume conduction of their signals make it difficult to study a single
component without first separating it from the rest of the ERP. In the following sections, first
a description of a means for deblurring ERP topographies is provided and finally methods for

identification and separation of the components from the ERP are introduced.

1.2. Current source density (CSD) analysis of ERPs

Despite the use of high-density EEG recordings, spatial resolution of ERP topography is

nevertheless low due to volume conduction. Scalp potentials may also get distorted due to a
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choice of a recording reference acting as a spatial filter and filtering out spatial components of
the potential distributed over the scalp (Nunez & Srinivasan, 2006). To enhance spatial
resolution of the ERP and overcome the problem of choosing the right reference, a reference-
free spatial deblurring technique called current source density estimation (also known as scalp
current density estimation) has been introduced. Current source density (CSD) transformation
technique is based on algorithms that are derived from a negative second spatial (Laplacian)
derivative of interpolated scalp potentials (Perrin, Pernier, Bertrand, & Echallier, 1989). The
CSD waveforms are estimates of the current injected radially into the scalp from the
underlying neuronal generators (Perrin et al., 1989). Sources and sinks in the CSD topography
represent magnitude of radial current flow entering (sink) and leaving (source) the scalp
(Nunez, 1981). Units of the current source density are voltage per unit distance (e.g. pV/cm?).
According to Nunez and Srinivasan (2006), the CSD waveforms are a good estimate of the
durapotential i.e. the potential as it would be measured from the surface below the skull
without being distorted by the volume conduction in the skull and the scalp. The estimated
CSD waveforms are useful in sharpening and summarising the broad ERP voltage
topographies. However, acting as a spatial filter, CSD emphasises EEG signals that are
generated by superficial sources of the brain projecting to relatively small areas of cortex,
while activity of sources deep in the brain or produced by broad dipole layers may not be

captured (Srinivasan, 2005).

CSD transformation has previously been used successfully in analyzing auditory ERP data.
Law, Rohrbaugh, Adams, & Eckardt (1993) showed that CSD transformation improves both
spatial and temporal resolution of evoked EEG responses and also provide a better estimate of
underlying cortical activity than potential waveforms. Kayser and Tenke (2006) compared
principal component analysis (PCA) performed to ERP averages and their CSD
transformations in order to evaluate the effectiveness of these solutions in separating ERP
generator patterns. (For a description of the use of principal component analysis, see the
following section.) Kayser and Tenke (2006) found that both ERP-PCA and CSD-PCA
solutions resulted in very similar and equally interpretable factors. However, the CSD-PCA
factors showed less temporal overlap and sharper and simpler topographies without losing or
distorting any effects of interest. This lead Kayser and Tenke (2006) to conclude that CSD

transformation proved to be a valuable preprocessing step for PCA.
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1.3. Methods for identifying and separating ERP components

Next, an overview of methods for identification and separation of underlying components
from ERP are provided. Classical peak amplitude and latency measurements and difference
wave calculation are conventional methods used in ERP analysis that typically focus on a
small number of channels. Principal component analysis (PCA) and independent component
analysis (ICA), on the other hand, are methods that are more sophisticated and better suited in

analysing high-density ERP data.

Classical peak measurement technique defines components mainly in terms of peak-amplitude
and peak-latency measures of observable ERP deflections (Coles et al., 1990). This approach
has proven to be problematic though, because as is known, the observable ERP deflections
sum up the activity from several overlapping ERP components. Thus an amplitude at a
latency at which the voltage reaches its maximum cannot be considered as a good reflection
of time course and magnitude of a single underlying ERP component (Luck, 2005b), not even
when CSD transformations of ERPs are used. This problem of component ovetlap can be
overcome in certain cases by using difference waves in component identification. For
example, a component that is known to occur in one experimental condition, but not in the
other, can be isolated by subtracting the ERP waveforms obtained in these different
conditions (Coles et al., 1990). However, when analysing peak and difference wave measures,
the statistical analysis are applied only to a small number of channels in selected time
windows which does not make good use of high-density ERP recordings.

To get more profound information about ERP components, one can apply the more advanced
component identification methods based on functional relationships such as principal
component analysis (PCA). PCA exploits the correlational structure of ERP or CSD
waveforms to identify common patterns of covariance across participants, conditions and
scalp locations (Coles et al., 1990). PCA takes into account all information in the dataset and
distributes it ideally into a set of maximally decorrelating factors (i.e. PCA components) that
presumably reflect the underlying ERP components. The PCA factors are derived by grouping
together amplitude values at ERP time points (temporal PCA) or at electrodes (spatial PCA)
that tend to vary in a correlated manner, as would be expected from the time points or scalp
locations reflecting a common cognitive process. PCA allocates the greatest variance of the
data to the first factor, the greatest variance of the remaining data variance to the second

factor and so on, until the whole variance of the ERP dataset is explained. After the initial
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actor extraction the solution must be rotated in order to maximise the chance that each factor
reflects a single underlying component (Dien & Frishkoff, 2005). For a more detailed
description of the application of PCA to ERP data, see Donchin and Heffley (1978).
However, there are some limitations in PCA. Particularly problematic is, that PCA, instead of
a single unique set of components, produces several solutions depending on which rotation is
applied. Thus, additional assumptions are needed to decide on a particular rotation over
another and according to Luck (2005a), there is typically no way to verify thét the

assumptions are correct.

During the last decade, a relatively new method called independent component analysis (ICA)
has emerged in the analysis of ERP data. ICA too is based on the functional relationships like
PCA, and it has, in fact, sometimes been referred to as an advanced and more sophisticated
extension of PCA. In comparison to PCA, which is based on linear relations, ICA uses both
linear and non-linear relations in the identification of components. While PCA removes only
second-order correlations, ICA also minimizes higher order dependencies resulting in
components that are not only decorrelating but also statistically maximally independent of
each other (Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997). The percentage of the data
variance each independent component accounts for, is much more homogenous in ICA than in
PCA. In addition, ICA components are uniquely defined and thus do not need factor rotation
(Stone, 2002). In the next section, a more detailed description of ICA methodology is
provided.

1.4. Independent component analysis (ICA)

Independent component analysis (ICA) is a method of blind source separation that separates
linearly mixed sources into maximally independent components. ICA can be used to analyse
both raw EGG and averaged ERP data. When applied to raw EEG data, ICA is useful in
identifying artefacts and isolating components that are not time-locked to the stimulus.
Averaging, on the other hand, filters out non-time-locked activity, allowing ICA to focus on
separating time-locked neural components. Applying ICA to averaged ERP data is useful in
studying intersubject variability, whereas applying ICA to raw EEG data provides information
on intertrial variability (Johnson et al., 2001). ICA tells of which spatially fixed and
temporally independent activations the recorded EEG/ERP is composed of, but it does not tell

where in the brain these activations arise.
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ICA assumptions. There are four main assumptions underlying application of ICA (Brown,
Yamada, & Sejnowski, 2001; Makeig et al., 1999; Jung et al., 2001). 1) Signals must be
mixed linearly and instantaneously at the sensors. 2) Source activations must be spatially
stationary and temporally independent. 3) Distributions of the source activations must be non-
Gaussian. 4) Number of the sources must be equal to or less than the number of the recorded
mixtures. For ERP analysis, the first ICA assumption is met by volume conduction which
causes the signals to spread widely over the scalp. The volume conduction assures that
summation of the signals at scalp sensors is linear, and that signal conduction times are equal,
leaving no time delays between sources and mixing process at sensors. The second ICA
assumption of the spatially stationary sources is compatible with the general assumption of
ERP generators being spatially fixed. The temporal independence of the sources assumed by
ICA, on the other hand, may be hard to fully achieve in case of averaged ERP data where the
ERP components may have overlapping active periods. However, the temporal independence
can be sufficiently enhanced by systematically varying the experimental stimuli and
conditions thus minimizing the temporal overlap of the resulting averaged ERP components.
In addition, worth noting is that, the data to be decomposed has to contain enough data points
for the temporal independence of the ERP components to be expressed (for criteria, see
below). According to the third ICA assumption, source distributions of recorded signals must
be non-Gaussian, i.e. super- or sub-Gaussian, because ICA cannot separate multiple Gaussian
processes (Hyvérinen & Oja, 2000). This is based on the Central Limit Theorem argument
which states that any mixture of two independent distributions should produce a distribution
that is closer to Gaussian than either of the original distributions alone. Therefore,
distributions that are furthest from the Gaussian are most likely to be as statistically
independent as possible (Jung et al., 2001). Averaged ERPs are generally assumed to be
composed of one or more overlapping series of relatively brief activations which have a
super-Gaussian distribution, but they can also include sub-Gaussian components like line
noise, sensor noise and low frequency activity (Jung et al., 1998). Finally, according to the
fourth ICA assumption, the number of recording sensors must be at least equal to the number
of sources in the data. If there are less sensors than there are sources, the data becomes over-

complete and ICA fails to decompose the sources into independent components.

ICA model. An introduction to a general ICA model can be found in the reviews of Brown et
al. (2001), Onton, Westerfield, Townsend, & Makeig (2006) and Stone (2002). The task of

the independent component analysis is to recover independent source signals s after they are
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linearly mixed by an unknown matrix A, by only knowing the recorded signals x, x=As.
Nothing is known about the sources or the mixing processes, except that there are N different
recorded mixtures. When analysing EEG, this means recovering scalp distribution of
underlying brain sources after the source signals are linearly mixed on the scalp by volume
conduction. Scalp recorded EEG forms the ICA input data matrix x where the rows are
signals recorded at different electrodes and columns are the signals recorded at different time
points. The task of ICA is to find an unmixing matrix W, which linearly inverts the original
source mixing process into the independent components u, u=Wx. In the search of this
unmixing matrix, ICA uses only spatial information and several algorithms actually shuffle

the time points before proceeding to the analysis.

A guideline to how much data is needed for successful ICA decomposition can be found in
Onton et al. (2006). When data from N electrodes is decomposed, the number of time points
in the input data has to be sufficiently large in order for ICA to be able to learn the N*> weights
of the unmixing matrix W. Onton et al. (2006) have suggested that the number of time points
needed to decompose data from a large number of electrodes should be at least 20xN?. In case
there is not enough data available for a complete ICA decomposition, one can pre-process the
data using principal component analysis (PCA) to reduce the dimensionality of the data into a

smaller number of its largest principal components.

Extended infomax algorithm. There are several different algorithms for ICA decomposition
(Lee, Girolami, Bell, & Sejnowski, 2000; Onton et al., 2006). The ICA algorithm used in this
study is a simple neural network learning algorithm called Extended infomax algorithm which
blindly separates the measured signals into independent components using information
maximization. The goal of this algorithm is to maximize the mutual information that the
outputs of the neural network processor (measured signals x) contain about their inputs
(underlying brain sources s). The mutual information between the inputs s and the outputs x
of the neural processor can be maximised by maximizing the joint entropy of the outputs
alone, H(x), which in turn minimizes the mutual information among the ICA output
components (Bell & Sejnowski, 1995; Lee et al., 2000). When mutual information between
the ICA output components is zero, the components are considered to be statistically
independent (Hyvérinen & Oja, 2000). ICA algorithms separate independent components
from a set of mixed signals by finding a square unmixing matrix W that inverts the source
mixing process (Onton et al., 2006). Extended infomax ICA algorithm is based on a general

learning rule proposed by Bell and Sejnowski (1995) which is extended with applying the
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natural gradient by Amari (1998) and the stability analysis by Cardoso and Laheld (1996)
which allows switching between sub- and super-Gaussian distributions (Lee, Girolami, &
Sejnowski, 1999). Extended infomax algorithm uses small randomly drawn batches of the
recorded data to train the algorithm and adjust the unmixing matrix W in a stepwise learning
manner until the entropy of the measured signals is maximized. At the end of the training,
ICA multiplies the input data matrix x with the unmixing matrix W, linearly unmixing the
recorded EEG into a sum of temporally and spatially fixed components, u = Wx (Onton et al.,

2006).

Outputs of the ICA model. The outputs of the ICA model are described e.g. in the reviews of
Brown et al. (2001) and Onton et al. (2006). Rows of the ICA output data matrix u are called
component activations and they give a spatially constant temporal activation pattern of the
ICA components. These ICA component activations are similar to the factor weights
produced by spatial principal component analysis (PCA). The inverse ICA unmixing matrix
W™ corresponds to the original source mixing matrix, A= W™, up to a permutation and a
scale change. Columns of the unmixing matrix W™ give a temporally constant projection
strengths of the respective components onto the scalp sensors. The projection strengths of the
components are arbitrary since ICA does not preserve scale. The projection of ith independent
component onto the original data channels in the original recorded units (e.g. pV) can be
attained by multiplying the ith row of the component activation matrix u with the ith column
of the inverse unmixing matrix W™, The sum of all projected components reconstructs the

original data.

When applying ICA to ERP data, ICA is known to be prone to point out intersubject
variability due to an inevitable differences between participants in recorded EEG signals. An
electrode placed on the very same scalp location in every participant is likely to pick up
different mixtures and strengths of equivalent EEG sources as a result of a unique folding of
every brain and differences in orientation of functionally analogous sources within
participants. Thus the strengths of different ICA component scalp maps and activation time
courses are explicitly variable across participants and different participants contribute to

different ICA components (Onton et al., 2006).

Limitations of ICA. Like any correlation-based method, ICA too encounters some limitations.
For example, when two or more sources contribute to ERP averages at the same latency, ICA

may capture them into a single component even if they occur in different locations of the

15



brain and represent different functions (Delorme & Makeig, 2004; Luck, 2005a).
Furthermore, according to Luck (2005a), if a single component varies in latency across
conditions, it may be treated by ICA as multiple components. Nevertheless, ICA is shown to

be an effective tool for independent component decomposition of ERP data.

1.5. Aims of the study

This study was conducted to investigate the use of independent component analysis (ICA)
method in the analysis of high-density averaged child auditory ERP data. The applicability of
ICA was studied in a theory driven descriptive manner in attempt to isolate the auditory N1
sub-components. ICA was applied to two different types of input data, ERP waveforms and
their CSD transformations. The aim was to investigate which of the approaches, ERP-ICA or
CSD-ICA, would better decompose the auditory N1 component into biologically plausible

independent components.

Knowing that some auditory N1 sub-components in children are sensitive to changes in ISI,
different experimental conditions were used in order to tease out the N1 sub-components. It
was hypothesised that a supratemporal N1b at 110 ms, a non-specific vertex-response at 130
ms and a radial temporal T-complex at the latency range of 80 - 170 ms would be elicited
with long ISI, while only a radial temporal T-complex and maybe a small supratemporal N1b
would be observed in short ISI condition at the same latencies than in the long ISI condition
(Bruneau & Gomot, 1998; Karhu et al., 1997; Néétdnen & Picton, 1987; Pang et al., 2000,
Ponton et al., 2002; Tonnquist-Uhlen, et al, 2003). ICA was hypothesised to extract N1-ICA
components at least from the large N1 elicited in the long ISI condition. It was assumed that
ICA performed to CSD transformations would produce more precise and sharply defined
components, since CSD maps by themselves are more precise and sharper in topography than

broad ERP voltage maps.
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2. METHODS

2.1. Participants

The ERP data analysed in this study was collected from 20 healthy 9-year-old children at 3
grade participating in the ERP studies of Jyviskyld Longitudinal Study of Dyslexia (JLD)
research project (Hiamildinen et al., 2007; Hamaldinen, Leppdnen, Guttorm, & Lyytinen.,
2008; Leinonen et al., 2001; Lyytinen et al., 2004). Approximately 200 children participating
in the JLD-project were selected to the study even before their birth and followed up until
adolescence. Half of these children had a familial risk for dyslexia, while the other half were
born to families with similar backgrounds but with no incidents of dyslexia (Leinonen et al.,
2001). Participants in this Master’s thesis were 20 healthy children (9 boys, 11 girls) with a
mean age of 9,4 years (range: 9,1 — 9,8 years) that had no familial risk for dyslexia, no

reported neurological problems, and no reading or speech perception deficits.

2.2. Experiment and stimuli

Experiment. The ERP experiment consisted of five consecutive conditions: two speech
conditions, two non-speech conditions and an equal probability condition (Hdméldinen et al.,
2007; Himéldinen et al., 2008). The interest of this study is limited only to the speech stimuli
presented in speech and equal probability conditions which are described in more detail
below. Duration of the experiment was approximately three hours in total including net
application. During the experiment, participants watched a self-selected silent video or played
a silent computer game. They were instructed not to pay any attention to the sounds. The
stimuli were presented with the intensity of 75 dBA via a loud speaker located about 80 - 90

centimetres above the participant’s head.

Stimuli. The speech stimuli used were naturally produced pseudowords /ata/, /apa/, /atta/ and
/appa/. The pseudowords /ata/ and /apa/ were 300 ms in duration consisting of a first part of
72 ms including an initial glottal stop and a vowel /a/, a voiceless stop with a silent period of
95 ms and a second part of 133 ms including an explosion of /t/ in /ata/ or the explosion of /p/
in /apa/ and a final vowel /a/. The /atta/ and /appa/ stimuli were 460 ms in duration and they

were artificially produced from /ata/ and /apa/ by lengthening the silent gap from 95 ms to
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255 ms. Other acoustical aspects such as fundamental frequency and intensity were held

constant (for further details, see Leppénen et al., 2002).

Experimental conditions. In the two speech conditions, stimuli were presented in an oddball
paradigm in 5 blocks consisting of a total of 1000 standard stimuli and 250 deviant stimuli of
two types, 125 stimuli per each deviant. The offset-to-onset interstimulus interval (ISI) was
610 ms. In the /ata/-condition the standard stimulus was /ata/ occurring with an 80 %
probability and the deviant stimuli were pseudo-randomly occurring /atta/ and /apa/ both
occurring with a 10 % probability. In the /atta/-condition the standard stimulus was /atta/ and
the deviant stimuli were /ata/ and /appa/ (the probabilities of occurrence same as above). In
the equal probability (EQ) -condition the stimuli from the /ata/- and /atta/-conditions (plus
from the two non-speech conditions not analysed in this study) were presented with an equal
probability paradigm with a probability of occurrence 12,5 %. Each stimulus was presented

80 times with ISI varying pseudo-randomly between 1 and 5 seconds.

2.3. EEG recording and preprocessing

EEG recording. The EEG data was collected with an Electric Geodesics Inc. (EGI) EEG-
system (http://www.egi.com/) using Ag-AgCl electrodes attached to the EGI 128-channel

sensor  net. The data  was recorded  with  NetStation 2.0 software

(http://www.egi.com/netstation.html/). The sampling rate was 500 Hz. The EEG was filtered

online with a low cut off filter of 0,1 and a high cut off filter of 100 Hz and referenced to the
vertex electrode. Electro-oculogram (EOG) was recorded with four electrodes located below
and lateral to eyes. Electrode impedances were pursued to set below 50 kQ in the beginning
of the experiment. During the experiment, the quality of the data was monitored and the

electrode impedances were adjusted when necessary.

Averaging. The data was pre-processed and averaged using BESA 5.1 analysis program

(http://www.besa.de/). The EEG was digitally filtered off-line with a low cut off filter of 0.53

Hz using a 6 dB/octave roll off and a filter type forward. To attenuate electrical noise, notch
filter was set to 50.0 Hz with the width of 2.0 Hz. Eye blinks in the data were corrected before
averaging with an individual eye blink correction algorithm implemented in BESA using PCA
(Ille, Berg & Scherg, 2002). Responses to all speech stimuli in the oddball and in the equal

probability conditions were averaged separately in epochs of -300 — 1070 ms and baselined to
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-50 - 0 ms. Channels with multiple artefacts throughout the data were set bad and omitted
from the averaging. Artefactual epochs with the voltage deflections exceeding +£150 uV peak-
to-peak were also excluded from the averaging. For the stimuli of interest in this study, the
mean number of epochs accepted for averaging was 93 for pre-deviant standard-/atta/ (range
69-114) and 56 for EQ-/atta/ (range 47-65). After the averaging, the channels previously set
as bad channels were interpolated using spherical spline interpolation method (Perrin et al.,
1989) and the data was filtered with a zero phase high cut off filter of 35 Hz using a 12
dB/octave roll off.

Current source density (CSD) transformation. Averaged ERPs were also transformed into
CSD waveforms with BESA using CSD-Laplacian (10-10) montage resulting in interpolation
to standard 81 channels. BESA computes the CSD waveforms as a second spatial derivative
by spherical spline interpolation using information from all electrodes. A more detailed

description of this method can be found in Petrin et al. (1989).

2.4. Data analysis

In this study, the analyses were guided by the prior knowledge in the literature of the N1 sub-
components and the latency range of their occurrence. The analyses were restricted only to the
responses to /atta/-stimulus based on inspection of the grand averaged ERP waveforms, which
revealed that longer silent gap in the stimulus allowed the waveform to develop better with
less overlap with the responses to the second syllable. The /atta/-stimulus was chosen because
it enabled the investigation of the brain responses to the same stimulus presented frequently
with a fast ISI in an oddball paradigm and rarely with a longer ISI in an equal probability
paradigm. In this study, the responses to pre-deviant standard-/atta/ and to EQ-/atta/ were
analysed. Because the main interest of this study was in the method used to analyse the data,
the dataset was predefined to be as simple and unambiguous as possible in order to facilitate
the interpretation of ICA analysis. For this purpose, the inspection of the data was further
restricted only to the responses to the first vowel /a/ of the /atta/-stimulus in order to exclude

overlapping responses to the first and the second syllable.

ICA analysis. Independent component analysis was performed using EEGLAB 5.04, a freely

available open source toolbox (http:/www.sccn.ucsd.edu/eeglab) developed by Delorme and

Makeig (2004), running under Matlab 7.0.1 (www.mathworks.com). The average-referenced
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ERP average waveforms of all speech stimuli and their reference-free CSD transformations
were imported to EEGLAB. Two separate datasets were created, one for ERP waveforms and
one for CSD waveforms, both including the responses to all speech stimuli from 20
participants. Even though the analysis were chosen to concentrate only to the responses to the
first syllable /a/ of the /atta/ stimulus, all the speech stimuli were used as an input to ICA
analysis to increase the input-to-timepoint ratio of the data to the sufficient level suggested by
Onton et al. (2006). ICA was performed to epochs of -50 to 855 ms of both average reference
ERP and reference free CSD datasets, resulting in the same number of components as there
were channels in the input data; 128 for ERP and 81 for CSD datasets. ICA learning batch
size was 58 samples. Initial learning rate started at 0.001 and was gradually reduced to 1E-7
during 373 learning iterations for ERP and 362 for CSD. In the next step, after applying ICA
to ERP and CSD datasets including the responses to all speech stimuli, the attained
component weightings were applied separately only to the responses to the first syllable and

the voiceless stop of the pre-deviant standard- and EQ-/atta/.

ICA component selection. The resulting ICA solutions, ERP-ICA and CSD-ICA, were
explored to identify N1 components activating in response to the first syllable /a/ in the EQ-
and standard-/atta/ conditions. A large number of components returned by ICA, when applied
to multi-channel data, makes it challenging to decide which of the components are of interest
and which represent artefactual sources. In this study, the components of interest were
identified by visual inspection of topographical 2-D and 3-D scalp maps of the components
and their activation time courses. The selection of the N1-ICA components was driven by the

theory of activation of N1 and its sub-components in children.

The N1 was expected to activate more profoundly in long ISI condition, and thus the ICA
components of interest were selected based on their activation in response to EQ-/atta/. The
activation of the selected ICA components were inspected also in response to standard-/atta/.
This was done in order to see whether the same N1-ICA components activated in the short ISI
condition too, even though the N1 was not clearly visible from the grand averaged waveforms
elicited with the short ISIL. In order for a component to be selected for further inspection, the
activation time course of the component had to show activity during the expected latency in
response to EQ-/atta/ and the distribution of the component scalp map had to be in line with

the theory.
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The component types that were searched for were: 1) Nla, a radial temporal negativity at the
left hemisphere around 75 ms (Bruneau & Gomot, 1998), 2) a frontal negativity around 110
ms (Bender et al, 2006), 3) N1b, a frontocentral or parietal negativity accompanied with
temporal positivities around 110 ms reflecting activation in the supratemporal plane (Bruneau
& Gomot, 1998; Hiamaildinen et al, 2007; Néitinen & Picton, 1987; Pang & Taylor, 2000;
Ponton et al, 2002), 4) Ta, bilateral radial temporal positivity around 110 ms (Ponton et al.,
2002; Tonnquist-Uhlen et al, 2003), 5) non-specific N1, a vertex-negativity around 130 ms
(Hari et al., 1982; Karhu et al., 1997; Néiténen & Picton 1987), 6) a frontal negativity around
140-150 ms (Bender et al., 2006), and 7) Nlc, a radial temporal negativity around 170 ms
(Bruneau & Gomot, 1998; Pang & Taylor, 2000). (For a more detailed description of the N1
sub-components, see the Introduction.) The selection of ICA components of interest was
carried out separately for ERP and CSD datasets. It was expected, that due to an inevitable
intersubject variability, the strengths of different ICA component scalp maps and activation
time courses would vary across participants and different participants would contribute to
different ICA components. Thus, not every participant was expected to contribute to every
component. Instead, several similar sub-components contributed by sub-group of the

participants were expected to be decomposed.

In the next step, the selected ICA components were grouped together to form clusters of
similar components. The component clusters were created by visual inspection based on
similarities of ICA component 2D and 3D scalp maps and activation time courses, assuming
that similar components represent analogous underlying brain activity. Also the contribution
of participants to the components was assessed to find out how many participants contributed
to which component. One component could be assigned into several clusters according to it’s
activity in different time windows. Clustering was performed separately for ERP-ICA and
CSD-ICA resulting in two separate sets of clusters. Source localization would also have been
helpful in the selection and clustering of ICA components of interest, but it could not be

applied in the scope of this master’s thesis.

3. RESULTS

Next, brain responses of 20 healthy 9-year-old children to EQ-/atta/, presented with equal
probability with a long ISI varying pseudo-randomly between 1 -5 seconds, and to standard-

/atta/, presented as a standard in an oddball paradigm with a short ISI of 610 ms, are
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presented. Figures 1 and 3 present grand averaged ERP and CSD waveforms while figures 2
and 4 show 2-D topography maps of the grand averaged ERP and CSD waveforms in the
latency range of 75 to 175 ms.

3.1. Visual inspection of grand averaged ERP waveforms and

topographies

Figure 1 shows grand averaged ERP waveforms of the responses to EQ- and standard-/atta/ at
selected channels. At central channels (C3, Cz, C4), the response to first syllable /a/ of EQ-
/atta/ showed clear P1, N1, P2 and N2 peaks while the response to first syllable /a/ of
standard-/atta/ consisted of a positive P1-N1-P2 —wave and a large N2 peak. Reversal of the
polarity can be seen at temporal (T3, T4) and mastoid channels (ML, MR). At central
channels, the N1 to EQ-/atta/ peaked at the latency of 110 ms whereas the N1 to standard-
/atta/ peaked only as a small deflection from the positive wave at 116 ms. The amplitude of
the N1 to standard-/atta/ was markedly more positive than in response to EQ-/atta/. A large P2
peaked in response to EQ-/atta/ at the latency of 190 ms. The N2, on the other hand, was
larger in response to standard-/atta/ and also peaked earlier in latency of 260 ms while the N2

in response to EQ-/atta/ peaked at 290 ms.
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Figure 1. Grand averaged ERP waveforms in response to EQ-/atta/ (black line) and standard-/atta/
(red line) at the latency range of -300 - 1070 ms on selected channels (frontal: F3/E25, Fz/Ell,
F4/E124; central: C3/E37, Cz/E129, C4/E105; parietal: P3/E60, Pz/E62, P4/E86; temporal: T3/E46,
T4/E109; mastoid: ML/E57, MR/E101; 10-20 system electrode numbers/EGI 128-sensor net electrode

numbers).

22



Figure 2 shows 2-D topographies of the grand averaged ERP waveforms during the N1 time
window in the latency range of 75 - 175 ms. In response to EQ-/atta/ (Fig. 2, left panel), a
negativity was distributed around left temporal site and parietal areas at 65 ms where it shifted
to more central site activating at centroparietal areas around 105 - 135 ms. Centroparietal
negativity was accompanied with temporal positivities with a right hemisphere dominance.
Around 145 - 165 ms, negativities were observed at temporoparietal areas, especially at the
left hemisphere, and also at midfrontal site from 155 ms onwards. From 55 to 135 ms, the
response to standard-/atta/ (Fig. 2, right panel) was dominated by frontocentral positivity,
while a negativity was observed over temporal (larger at the left hemisphere) and parietal
areas. From 145 ms, the positivity moved to more central site and over right temporoparietal
areas with the negativity withdrawing to left parietal area and finally disappearing at 175 ms.

A frontal negativity appeared around 155 ms.

ERP topography to EQ-/atta/ ERP topography to standard-/atta/

75.0 ms 85.0 ms

115.0 ms 125.0 ms 135.0 ms 1450 ms 115.0 ms 125.0 ms 135.0 ms 145.0 ms

155.0 ms 165.0 ms 175.0 ms 0.25 pV / step 155.0 ms 165.0 ms 175.0 ms 0.25 v / step

Figure 2. Topographies of the ERP grand averaged waveforms in response to EQ-/atta/ (left panel)
and standard-/atta/ (right panel) at the latency range of 75 - 175 ms.
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3.2. Visual inspection of grand averaged CSD waveforms and

topographies

Figure 3 shows grand averaged CSD waveforms of the corresponding responses to EQ- and
standard-/atta/ at the same selected channels. At central channels (C3, Cz, C4), the CSD
response to first syllable /a/ of EQ-/atta/ showed P1, N1, P2 and N2 peaks while the CSD
response to first syllable /a/ of standard-/atta/ consisted of a positive P1-N1-P2 —wave and a
large N2 peak, as in ERP waveforms too. Reversal of the polarity can be seen at temporal (T3,
T4) and mastoid (ML, MR) channels. In response to EQ-/atta/, N1-CSD peaked at central
areas at the latency of 110 ms. Peaking at 110 ms as a small deflection from positive P1-N1-
P2 wave, N1-CSD component to standard-/atta/ was markedly smaller than the N1-CSD to
EQ-/atta/. Nevertheless, the difference in magnitude of the N1 component to standard- and
EQ-/atta/ was not as large in CSD waveforms as was observed from the respective ERP
waveforms. The P2-CSD peaking at central areas at 180 ms was larger in response to EQ-
/atta/. The N2-CSD peak in response to EQ-/atta/ peaked at central channels at 290 ms while
N2-CSD to standard-/atta/ peaked earlier at 270 ms being slightly larger in amplitude.

!a/ ftal

1w

1070 ms

—— EQ-/atta/
standard-/atta/

Figure 3. Grand averaged CSD waveforms in response to EQ-/atta/ (black line) and standard-/atta/
(red line) at the latency range of -300 - 1070 ms on selected channels (frontal: F3/F3, Fz/Fz, F4/F4;
central: C3/C3, Cz/Cz, C4/C4; parietal: P3/P3, Pz/Pz, P4/P4; temporal: T3/T7, T4/T8; mastoid
ML/TP9, MR/TP10; 10-20 system electrode numbers/10-10 system electrode numbers).
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Figure 4 shows 2-D topographies of the grand averaged CSD waveforms during the N1 time
window in the latency range of 75 - 175 ms. In the CSD topographies, sources and sinks
represent magnitude of radial current flow entering (sink) and leaving (source) the scalp
(Nunez, 1981). (For a more detailed description of current source density method, see the
Introduction.) In response to EQ-/atta/ (Fig. 4, left panel), bilateral prefrontal sinks were
active from 60 to 115 ms along with temporoparietal sinks (more temporal at the left
hemisphere) that activated at 65 - 85 ms. Temporal sources (right larger than left) were active
from 105 to 145 ms corresponding to bilateral centroparietal sinks that started to shift to
temporoparietal areas after 125 ms reaching temporal areas at 155 ms. At 155 - 185 ms a
midfrontal sink was observed. The response to standard-/atta/ (Fig. 4, right panel) was
dominated from 65 to 115 ms by bilateral frontocentral sources corresponding to frontal and
temporoparietal sinks. At 145 ms a frontal sink appeared and the parietal negativity shifted to

left parietal site.

CS8D topography to EQ-/atta/ CSD topography to standard-/atta/

85.0 ms 95.0 ms 105.0 ms

1450 ms 1150 ms 1250 ms 135.0 ms 145.0 ms

155.0 ms 165.0 ms 175.0 ms 0.04 BV / step 155.0 ms 165.0 ms 175.0 ms 0.04 pV / step

Figure 4. Topographies of the CSD grand averaged waveforms in response to EQ-/atta/ (left panel)
and standard-/atta/ (right panel) at the latency range of 75 - 175 ms.
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This study replicates the finding reported in several previous studies by demonstrating that N1
amplitude decreases as a result of shortening the ISI. The grand averaged ERP and CSD
waveforms clearly indicate that N1 response to first syllable /a/ of /atta/-stimulus recorded
from central channels is markedly more larger when the stimulus is presented with an equal
probability and a long ISI in, and almost vanishes when the stimulus is presented as a
standard with a shorter ISI in an oddball paradigm. In fact, just by looking the waveforms and
topographies of ERP and CSD response to standard-/atta/, it is hard to determine whether the

N1 actually is present in the data or not.

3.3. Identification of ERP-ICA and CSD-ICA N1 sub-components

ICA was performed separately to averaged ERP waveforms and their CSD transformations of
all speech stimuli presented in the oddball and equal probability paradigms resulting in
decomposition of 129 ERP-ICA components and 81 CSD-ICA components. In this study, the
inspection of ICA components was restricted to N1-ICA components activating in responses
to first syllable /a/ of EQ- and standard-/atta/ stimuli. ICA components of interest were
selected on theoretical grounds based on visual inspection of their topographical scalp
distribution maps and their temporal activation in the long ISI condition. Clustering was

performed separately for ERP-ICA and CSD-ICA.

Next, N1-ICA component clusters to the first syllable /a/ of EQ- and standard-/atta/
decomposed from averaged ERP and CSD waveforms are presented. The figures present
topographical scalp maps of the selected ICA components and their temporal activation
patterns in response to EQ- and standard-/atta/. The scalp map of each ICA component is
identical at each time point of the component’s temporal activation pattern, apart from its
magnitude, which is scaled according to the temporal activation value at each time point and
reversed when temporal activation pattern is negative. For clarity, in the figures here,
whenever the temporal activation pattern of a component is negative during the time window
of interest, the corresponding component scalp map is depicted inverted, as indicated by the
sign ‘-¢ in front of the component number. The activation peak latencies at N1 time window
of the selected components and the number of participants contributing to the components are

presented in Tables 1 and 2 in response to both EQ- and standard-/atta/.
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During the N1 time window, a total of 24 ERP-ICA and 19 CSD-ICA components showed
activation in response to first syllable /a/ of EQ-/atta/ stimulus presented with long ISI. These
components were grouped into 8 ERP-ICA and 6 CSD-ICA clusters based on the similarities
of their scalp distribution maps and temporal activation patterns. Two ERP-ICA components

and seven CSD-ICA components were assigned into two clusters.

Nla, temporal negativity. Figure 5 presents an ERP-ICA cluster activating at temporal areas
around 80 ms (ERP-T80). The ERP-T80, decomposed from ERP waveforms, consisted of two
components that had radial temporal negativities at the left hemisphere. The independent
component number 74, with inverted scalp map, decomposed from ERP waveforms (IC -E74)
showed some activation also at the right temporal hemisphere, but the left hemisphere activity
was clearly dominating. The ERP-T80 activated around 80 ms in response to both EQ- and

standard-/atta/ showing somewhat larger activation in the long ISI condition.
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Figure 5. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-T80 activating at temporal areas around 80 ms.
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Figure 6 presents a CSD-ICA cluster activating at temporal areas around 84 ms (CSD-T84).
The CSD-T84 was composed of four early activating components, decomposed from CSD
waveforms, that had radial sinks at the left temporal hemispheres. The independent
component number 24 decomposed from CSD waveforms (IC C24) activated also slightly at
the right hemisphere, but the main activation was at left temporal site. The IC C14 had a
concurrent frontal sink at the right hemisphere while the ICs C59 and -C60 had concurrent
midparietal sinks. The only component activating in response to standard-/atta/ was the IC

C24, which was, however, contributed by only four participants (see Table 2).
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Figure 6. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the

cluster CSD-T84 activating at temporal areas around 84 ms.
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Ta, temporal positivity. Cluster of components with radial temporal positivities decomposed
from ERP waveforms is presented in Figure 7. Cluster ERP-T112 was composed of ERP-ICA
components that showed positive radial temporal activation around 112 ms. One of the
components in ERP-T112, IC -E83, had bilateral radial temporal positivity while the other
four components showed radial positivity only at the right temporal hemisphere. Interestingly,
components showing some negative activity at the left temporal hemisphere in response to
EQ-/atta/, ICs -E19 and -E21, also activated slightly during the time window of ERP-T80
which accounted for the negativity at the left temporal hemisphere around 80 ms. However,
the left temporal negativities in these components were not as focal and radial looking as in
the ERP-T80 components. The right hemisphere radial temporal positivities of the ICs -E19
and -E56 showed activation also in response to standard-/atta/ while the other components

activated only in long ISI condition.
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Figure 7. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-T112 activating at temporal areas around 112 ms.

29



Figure 8 presents the cluster of components with radial temporal sources decomposed from
CSD waveforms. CSD-ICA components, with radial temporal sources in both or only one
hemisphere, formed the cluster CSD-T107 that activated around 107 ms. Most of the
components, ICs C73, C63 and -C26, activated also at N2 time window. The structure of IC -
C3 might also have been dipolar but the possible dipole seemed to be too superior to be
generated by tangential source in supratemporal plane and thus the component was assigned
into the radial temporal cluster. The IC C3 also activated with reversed scalp distribution at
the later Nlc latency in response to both EQ- and standard-/atta/ and also at the earlier Nla
latency in response to standard-/atta/. Only one CSD-T107 component, IC C73, activated at

the Ta time window in response to standard-/atta/.
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Figure 8. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the

cluster CSD-T107 activating at temporal areas around 107 ms.
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Parietal negativity. ERP-ICA cluster ERP-P112 is presented in Figure 9. The ERP-P112
consisted of four components composed of negativities at parietal areas and accompanying
positivities at frontal sites. ICs -E46 and -E23 had large activations peaking at 112 ms. ICs
E41 and E100, peaking earlier in latency, were contributed by only a few participants (see
Table 1) and their activations were also notably weaker. In response to standard-/atta/, only
ICs E41 and E100 were active. No CSD-ICA components having only parietal distribution
activated around this time window. Nevertheless, in some CSD-ICA components, parietal
sinks were associated with other concurrent activity elsewhere in the brain, but these
components were assigned into other clusters according to the leading activity of the

component.
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Figure 9. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-P112 activating at parietal areas around 112 ms.
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Frontal negativity. Frontal components assigned to clusters ERP-F114 are presented in Figure
10. ERP-F114 consisted of one ERP-ICA component that had a negative distribution over
frontocentral scalp site. It activated only in response to EQ-/atta/ around the latency of 114
ms, but only in 6 participants (see Table 1). It showed somewhat larger activation with
inverted topography around P2 time window as well. No other frontal components activating
around the same time window were decomposed from ERP waveforms in response to EQ -

/atta/.

E R P_ F 1 1 4 — EQ-/atta/

standard-/atta/

-E13

-50 ! 326

Figure 10. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-F114 activating at frontal areas around 114 ms.
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Figure 11 presents the CSD-F110 cluster activating at frontal areas around 110 ms. Several
CSD-ICA components with frontal distribution activated around the latency of 110 ms in
response to EQ-/atta/. Four of the CSD-ICA components in CSD-F110 cluster had bilateral
prefrontal or frontal sinks whereas one component had a frontal sink only at the right
hemisphere and two of the components were composed of midfrontal sinks. ICs -C9 and -C13
activated also for N2 and IC -C6 with inverted topography for P1 and P2. Three of the CSD-
F110 components also activated in response to standard-/atta/ at somewhat earlier latency (see

Table 2).
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Figure 11. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the

cluster CSD-F110 activating at frontal areas around 110 ms.

NIb, supratemporal negativity. Figure 12 presents the ERP-ST116 cluster which consists of
components decomposed from ERP waveforms. ERP-ST116 components that had broad
negativities distributed over central areas and accompanying positivities at temporal or

temporoparietal areas activating around the latency of 116 ms. The reversal of the polarity
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occurred over the Sylvian fissure, suggesting a tangential source located in the temporal lobe.
ICs E8, E2, E9, -E7 and -E4 showed very similar structure. Activation of ICs E8, E2 and E9
was notably weaker than the activations of the rest of the components in the ERP-ST116
around the latency of 116 ms. While the abovementioned components activated at both
hemispheres, IC -E15 activated at the right hemisphere and IC E39 at the left hemisphere. The
components in the ERP-C116 cluster did not activate during the N1 latency range in response
to standard-/atta/. Instead, in the short ISI condition, ICs E8, E2, E9, -E7 and -E4 seemed to
activate at the later latency of N2 time window and ICs -E7 and -E4 also with reversed scalp
distribution around the P1 time window. In response to EQ-/atta/, many of the ERP-ST116
components activated also for N2 (ICs -E8, E9 and -E7) and with inverted scalp distribution
for P1 (IC -E4) and P2 (ICs E8, -E15).
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Figure 12. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the
cluster ERP-ST116 activating around 116 ms.
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Figure 13 presents the CSD-ST114 cluster which consisted of four CSD-ICA components
activating in response to EQ-/atta/ around the latency of 114 ms. Less CSD-ICA components
than ERP-ICA components reflecting activation of supratemporal N1b was identified. The
components in CSD-T114 were composed of sources at temporal or temporoparietal areas
that corresponded to sinks at central areas. The reversal of polarity over the Sylvian fissure
indicated that the components were produced by tangential source located in the temporal
lobe. IC C2 activated only at the right hemisphere, while the distributions of the other
components were bilateral. In addition to tangential temporal activation, IC C78 had also
bilateral frontal sinks and a midparietal sink. The CSD-T114 components in response to EQ-
/atta/ activated only at N1 time window. In response to standard-/atta/, however, they did not
activate at all during the N1 time window, but instead two of the components, ICs C2 and CI1,

activated for N2 and IC C1 also for P1 with inverted topography.
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Figure 13. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the
cluster CSD-ST114 activating around 114 ms.
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The scalp topography maps of the selected representative ERP-ST116 and CSD-ST114
components reveal that CSD-ICA component distribution was considerably more focused and

localised than the distribution of the ERP-ICA component (see Figure 14).

Supratemporal ICs

Figure 14. Scalp topography maps of the selected representative supratemporal ERP-ICA and CSD-

ICA components.
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Non-specific N1, vertex negativity. Figure 15 shows activation of two ERP-ICA components
forming the cluster ERP-V127 activating around 127 ms. IC -E6 had centroparietal
distribution centred around vertex, while IC -E75 activated at slightly posterior regions. The
main activation of these components was, nevertheless, at P2 time window where they
activated with reversed scalp distributions. Neither of these ERP-ICA components activated
in response to standard-/atta/. Furthermore, no corresponding components activating at the
non-specific N1 component time window were decomposed from CSD waveforms in
response to EQ-/atta/. CSD-ICA component IC -C6 from cluster CSD-F110 (see Figure 11),
however, had, in addition to prefrontal sinks, also a sink around the vertex, but it activated

already around 118 ms.

ERP-V127 —— EQ-/altas

standard-/atta/

! 326

Figure 15. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-V127 activating at centroparietal areas around 127 ms.
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Non-specific N1, frontal negativity. ERP-ICA and CSD-ICA clusters composed of frontal
components activating around 140 ms are presented in Figures 16 and 17. ERP-F140
consisted of a single ERP-ICA component, IC -E10, that activated at 140 ms as a negativity
over frontocentral area. CSD-F142, on the other hand, was composed of two components
having either a midfrontal or bilateral frontal sinks that activated around 142 ms. None of
these frontal ERP-ICA or CSD-ICA components activated at N1 time window in short ISI
condition in response to standard-/atta/. However, the IC -E10 in ERP-F140 activated at the

N2 time window in response to standard-/atta/.
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Figure 16. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-F140 activating at frontal areas around 140 ms.

CSD-F142 —— EOfalta/
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Figure 17. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the

cluster CSD-F142 activating at frontal areas around 142 ms.
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Nlc, temporal negativity. Figure 18 presents the ERP-ICA cluster representing late-latency
temporal negativity. Cluster ERP-T163 was composed of four ERP-ICA components
activating negatively around 163 ms at temporal areas. ICs -E91 and E114 had negativities at
the left hemisphere, while ICs E37 and E56 had negativities at the right hemisphere. ICs E37
and E56 activated also earlier in latency with reversed scalp distribution belonging to
temporal positivity ERP-T112 cluster. None of the components in ERP-T163 activated in

response to standard-/atta/.
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Figure 18. Scalp maps and temporal activation patterns of the ERP-ICA components constituting the

cluster ERP-T163 activating at temporal areas around 163 ms.
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The CSD-ICA cluster representing late-latency temporal negativity is presented in Figure 19.
CSD-T160 consisted of CSD-ICA components activating around 160 ms in response to EQ-
/atta/. Some of the components in CSD-T160 had bilateral radial temporal sinks while others
had a radial sink only in one hemisphere. Right hemisphere temporal sinks in ICs -C42 and -
C15 were somewhat inferior compared to sinks in other CSD-T160 components. Only IC C3
with bilateral temporal sinks activated also in response to standard-/atta/. The temporal sinks
in CSD-T160 components were more localized than the large temporal negativities in ERP-

T163 components that encompassed the whole temporal lobe.

CSD-T160 —— EQattar

standard-/atta/
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Figure 19. Scalp maps and temporal activation patterns of the CSD-ICA components constituting the

cluster CSD-T160 activating at temporal areas around 160 ms.
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4. DISCUSSION

The aim of this Master’s thesis was to investigate the use of ICA in the analysis of averaged
high-density ERP waveforms and their CSD transformations recorded from 20 healthy 9-
year-old children. The aim was to decompose auditory N1 component into biologically
plausible independent components reflecting N1 activation in different experimental
conditions. Furthermore, it was investigated which approach, ERP-ICA or CSD-ICA, would
lead to a better ICA decomposition of N1 sub-components. ICA was performed separately for
averaged ERP waveforms and their CSD transformations. The resulting solutions, ERP-ICA
and CSD-ICA, were explored in order to identify the N1-ICA components. The N1 was
expected to activate more profoundly in a long ISI condition, and thus the NI1-ICA
components were selected based on their activation in response to the first syllable /a/ of /atta/
stimulus presented in an equal probability paradigm with ISI varying pseudo-randomly
between 1 and 5 seconds. The activation of the selected ICA components were inspected also
in response to standard-/atta/ presented in an oddball paradigm with short ISI of 610 ms. The
ICA components representing N1 activation were identified by visual inspection separately
for ERP-ICA and CSD-ICA. The selection of N1-ICA components was drive by the theory of
activation and scalp distribution of N1 sub-components in children. The selected N1-ICA
components were grouped together based on visual inspection to form clusters of similar
components reflecting activation of different N1 sub-components. In the following sections,
the activation and the distribution of grand averaged N1-ERP and N1-CSD peaks and the
selected N1-ICA component clusters are discussed in relation to the literature following with
a discussion of the ability of the studied ICA approaches to isolate the N1 sub-components

into independent components.

According to the literature, the N1 is normally recorded largest at frontocentral areas
(Bruneau & Gomot, 1998; McCallum & Curry, 1980; Naatdnen & Picton, 1987) reflecting the
activation of N1b component. In this study, instead, the N1 in response to EQ-/atta/, presented
with an equal probability and a long ISI, seemed to appear in more posterior areas at
centroparietal site as observed from ERP and CSD topographies. Some studies, however,
have also reported more parietal N1b distribution in children (Daruna & Rau, 1987; Goodin et
al., 1978; Pang & Taylor, 2000). Centroparietal negativity and accompanying temporal
positivities were observed from both grand averaged ERP and CSD waveforms in response to

EQ-/atta/ at the latency of 110 ms. The ICA decomposition of the ERP waveforms in response
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to EQ-/atta/ produced supratemporal, frontal and parietal component clusters activating
around the latency of expected N1b time window, whereas the decomposition of the CSD

waveforms returned only supratemporal and frontal component clusters.

Supratemporal N1b. The scalp distributions of supratemporal components, belonging to the
clusters ERP-ST116 and CSD-ST114, changed polarity over the Sylvian fissure indicating
that they were produced by tangential sources. These clusters were thought to reflect the
activation of N1b, produced by a tangential source located in the supratemporal plane of the
auditory cortex, as described by Nédtinen and Picton (1987). The orientation and localization
of the dipoles producing the observed electrical fields was a lot easier to assess from CSD-
ICA components than from broad scalp distributions of ERP-ICA components. In response to
EQ-/atta/, presented with a long ISI, several supratemporal components with similar scalp
distributions were decomposed from ERP waveforms, whereas the decomposition of CSD
waveforms, on the other hand, yielded to extraction of fewer and more defined supratemporal
components. This could imply that the supratemporal N1b activation distributed to several
ERP-ICA components might have been contributed by sub-groups of participants, whereas
the overlap between participants in CSD-ICA supratemporal components might have been
larger. According to Ponton et al. (2002), the N1b first becomes identifiable with fast
stimulation rate at the age of 9 years as a small inflection of the positive P1 wave. In line with
Ponton et al. (2002), in this study, the N1b in response to standard-/atta/ presented with a
short ISI was observed as a small inflection of the positive wave in grand averaged ERP and
CSD waveforms. However, neither of the supratemporal clusters activated in the short ISI

condition.

Furthermore, when observing N1b-ICA components decomposed from ERP waveforms, it
was impossible to say whether they represented the activation of supratemporal source of the
N1b only, or whether they might have included activation of possible radial frontal or vertex
sources as well. In theory, if two sources are active at the same latency, ICA may capture
them into a single component even if they occur in different locations of the brain (Delorme
& Makeig, 2004; Luck, 2005a). On the contrary, topographies of the CSD-ICA Nlb
components clearly revealed that there were no radial vertex sources observable from the
CSD-ICA components reflecting N1b activation. Frontal sinks, on the other hand, were
observed to activate concurrently with a supratemporal source in one CSD-ICA Nlb

component.
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Frontal component of NI1b. Frontal sources have been suggested to be associated to N1b
activity (Bender et al., 2006). Frontal ICA clusters ERP-F114 and CSD-F110 were observed
to activate in response to EQ-/atta/ during N1b time window. Interestingly, this frontal
activation was revealed with ERP-ICA as well, even though inspection of grand averaged
ERP waveforms did not show any signs of frontal activation during the N1b time window.
However, ERP-F114 was composed of only one frontal component that was contributed by
only 6 participants. In contrast, several frontal CSD-ICA components activating at the N1b
time window were identified in response to EQ-/atta/. In grand averaged CSD topographies,
early bilateral frontal sinks were observed in response to both EQ- and standard-/atta/, and
some of the CSD-F110 components activated in the short ISI condition too, but at earlier
latency. The cluster ERP-F114, on the other hand, did not show activity in response to
standard-/atta/. Frontal activation during N1b time window in response to both long and short
ISI has been reported in adults (Alcaini et al.,1994; Giard et al., 1994). In the study of Bender
et al. (2006), investigating the maturation of frontal component in children, only long ISIs
were used, and thus there is no information of frontal activation in children with short ISI.
The CSD results obtained here, nevertheless, indicate that frontal activation is elicited in
children with short ISI too, and that its latency shortens with faster stimulation rate.
According to the abovementioned study of Bender et al. (2006), frontal N1b components,
observed from CSD waveforms, were nearly absent in children in age group of 6-11 years and
became clearly evident only in 12-18-year-old adolescents. Contradictory to results obtained
in this study, the frontal N1b component of Bender et al. (2006) was elicited at mid-
frontocentral site, whereas in this study, the scalp distribution of frontal ICA components
were more frontal. These topographical differences might indicate that the activation of

frontal components may not yet be fully matured in 9-year-old children.

Parietal N1b. In this study, also parietal ICA components activating at N1b time window
were observed. The parietal ERP-P114 cluster had an early onset and the activation was
longer lasting than the activation of the supratemporal and frontal ERP-ICA clusters. No
parietal cluster was decomposed from CSD waveforms, but some CSD-ICA components that
were assigned into frontal or early temporal clusters showed concurrent activation in parietal
areas as well. Some previous studies have reported parietal N1b activation in children. With
long ISIs the N1b in 7-year-old children was seen in parietal areas (Daruna & Rau, 1987) and
in 9-year-old children at centroparietal site (Hdmaéldinen et al., 2007). Parietal N1b has also
been reported to be elicited with short ISI in 9-10 -year-old children (Pang & Taylor, 2000).

In this study, in response to standard-/atta/ presented with short ISI, no parietal negativity was
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observed from grand averaged ERP or CSD waveforms. Nevertheless, two parietal ERP-ICA
components in the cluster ERP-P114 activated also in response to standard-/atta/, whereas the

same was not true for CSD-ICA components having parietal activation.

Non-specific NI. The centroparietal N1 distribution to EQ-/atta/ in this study, could also be
explained by long ISI in the equal probability paradigm, which would activate the non-
specific N1 vertex component, thus shifting the N1 predominance to more posterior regions.
According to Niitinen and Picton (1987), due to a long refractory period, the non-specific N1
component is elicited with ISIs over 4 seconds and observed as a negativity over the vertex. In
this study, the non-specific N1 was assumed to be elicited only in the long ISI condition. A
negativity over the vertex was observed from ERP grand averaged waveforms in response to
EQ-/atta/ between 105 and 135 ms. During the same latency range, parietal sinks and
corresponding temporal sources were observed in grand averaged CSD waveforms, while no
equivalent sinks/negativities were observed in response to standard-/atta/ neither from grand
averaged CSD nor ERP waveforms. Decomposition of ERP waveforms revealed a cluster
ERP-V127 activating in response to EQ-/atta/ only. The cluster ERP-V127 was composed of
two components with negative centroparietal distribution activating around the latency of 127
ms. In the study of Karhu et al. (1997) the non-specific N1 was seen in 9-year-old children at
vertex at the latency of 130 ms. Thus, the cluster ERP-V127 can be thought to reflect the non-
specific N1. However, no CSD-ICA components having sinks at vertex around 130 ms were
identified. This could mean either that, despite the distributions of ERP-V127 components,
the vertex activation was not present in the data after all, or that it might have been produced
by a deep source, as suggested by Hari et al. (1982), or by a broad dipole layer, which would
cause its activation to be vanished with CSD transformation. According to Srinivasan (2005),

the activity of deep sources or broad dipole layers may not be capture d by CSD.

Frontal component of non-specific NI. Tt has been suggested that the non-specific N1 is
contributed also by activation of frontal generators (Alcaini et al., 1994; Bender et al., 2006).
The frontal components linked to the non-specific N1 are elicited with long ISI around the
latency of 140-150 ms and they are demonstrated to be elicited mid-frontally already in 6-
year-old children (Bender et al., 2006) and more frontocentrally in adults (Alcaini et al.,
1994). In this study, two frontal ICA clusters, ERP-F140 and CSD-F142, were observed to
activate in response to EQ-/atta/ only. ERP-F140 had a negativity distributed over
frontocentral areas while sinks in CSD-F142 were more focused and localised at frontocentral

site. These frontal ICA clusters did not activate in short IST condition, despite the fact that late
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frontal activation was observed after 155 ms from grand averaged ERP and CSD waveforms
in response to standard-/atta/ as well. This might indicate that late frontal activation in these
different conditions were produced by independent sources in the brain. Judging from
temporal and spatial behaviour of the ERP-F140 and CSD-F142 clusters and their absence in
short ISI condition, it could be argued that these clusters reflect the activation of the frontal
component of the non-specific N1. CSD-ICA components in CSD-F142 activated also during
N1b latency, but with reversed scalp distributions, showing more frontal activation in earlier
latency. This could indicate that the frontal N1 components observed during the time

windows of N1b and non-specific N1 originate from different brain areas.

Temporal T-complex. Temporal activation resembling T-complex was observable in grand
averaged ERP and CSD waveforms. Both ERP-ICA and CSD-ICA approaches decomposed

the temporal activation into Nla-, Ta- and N1c-ICA components.

Temporal negativity, Nla. An early temporal negativity was observed from grand averaged
ERP and CSD waveforms around 75 to 85 ms at left temporal site while right temporal site
remained positive, indicating activation of N1a component. The N1a activation in response to
EQ-/atta/ was reflected in clusters ERP-T80 and CSD-T84 that had dominating radial
temporal negativities at the left hemisphere. The activation of these N1a-ICA components
elicited dominantly at the left hemisphere was in line with results of Bruneau and Gomot
(1998). The temporal activation patterns observed from grand averaged ERP and CSD
waveforms in response to standard-/atta/, however, were quite different from the ones
obtained with long ISI. In response to standard-/atta/, temporal negativities were seen in grand
averaged ERP and CSD waveforms at both hemispheres until 105 ms, as was the case in the
study of Pang and Taylor (2002) as well. The ICA, nevertheless, revealed that the Nla
activation of ERP-T80 and CSD-T84 clusters was present in response to standard-/atta/
already around the same latency of 80/84 ms as in response to EQ-/atta/. However, the CSD-
T84 activated in a lesser degree in response to standard-/atta/ by showing activation of only
one component with bilateral temporal sinks. In addition, another CSD-ICA component with
bilateral temporal sinks activated in the N1a time window in response to standard-/atta/, while
in response to EQ-/atta/ that component activated with reversed scalp distribution during Ta
time window. This could indicate that the Nla activation in the short ISI condition is more
bilateral and not as clearly dominated by left hemisphere activity as in the long ISI condition.

This would be in line with the results obtained in the study of Pang and Taylor (2002).
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Temporal positivity, Ta. In response to EQ-/atta/, a positivity at both temporal areas was seen
during N1b time window in ERP and CSD topographies at 105 - 135 ms. As expected, the
positivity was dominant at the right hemisphere, which was in line with the results reported by
Bruneau and Gomot (1998). Radial temporal positivity was reflected in ICA clusters ERP-
T112 and CSD-T107. The scalp distributions of CSD-T107 components were more localised
than broad positivities in ERP-Ta components. The right hemisphere Ta was clearly more
represented in ERP-T112 component than the left hemisphere Ta, while in CSD-T107 both
hemisphere Ta-components were equally represented. Two of the ERP-T112 components
with right temporal positivity, activated also in response to standard-/atta/, whereas the CSD-
T107 did not activate as clearly in short IST condition. Interestingly, CSD-T107 in response to
EQ-/atta/ activated also at N2 time window, possibly suggesting that N2 elicited with long ISI

might have an additional positive radial temporal component.

Temporal negativity, Nlc. Negativities at temporoparietal areas were seen in grand averaged
ERP and CSD waveforms only in response to EQ-/atta/ around 165 ms. They were more
clearly observable from CSD waveforms. These negativities, thought to represent Nlc
activation, occurred here at about the same time range as in the studies of Bruneau and Gomot
(1998) and Pang and Taylor (2002), where the Nlc in children was seen at 170 ms. The late
negative temporal activation was represented in ICA clusters ERP-T163 and CSD-T160.
Components in ERP-T163 activated only at either right or left hemisphere, while cluster
CSD-T160 included components with bilateral sinks too. In response to standard-/atta/, on the
other hand, the N1c was not observable from grand averaged ERP nor CSD waveforms at all.
Yet, the studies of Pang and Taylor (2000), Ponton et al. (2002) and Tonnquist-Uhlen et al.
(2003) imply that the N1c can be elicited in children even with short ISIs as well. Inspection
of selected N1c-ICA components revealed that only one CSD-ICA component from CSD-
T160 cluster activated also in response to standard-/atta/. Thus the Nlc activity in the short

IST condition was not very clearly present in this study.

Some of the radial temporal Nlc ERP-ICA and CSD-ICA components showed inverted
positive temporal activation earlier in latency reflecting Ta activation, and some Nlc CSD-
ICA components activated also during the Nla time window. This suggests that same brain
generators are active at these different time windows. However, several of the temporal radial
ICA components activated only at the time window of N1a, Ta or Nlc. This indicates that the

T-complex might not be as unitary complex as previously suggested in the literature, but
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rather composed of separate sub-components that have at least partly independent activation

patterns.

In addition to these abovementioned radial temporal clusters, temporal activation was seen in
other ERP-ICA and CSD-ICA components as well, but their topographies indicated that they
were produced by tangential source rather than radial. This corroborates the results of
Tonnquist-Uhlen et al. (2003) and Ponton et al. (2002) of the existence of both radial T-
complex and the temporal inversion of P1, N1b and P2 components produced by tangential

sources.

Reliability of the ICA solutions. As mentioned in the introduction, there are some important
presupposition to be considered before applying ICA. According to Brown et al. (2001) and
Jung et al. (2001), the assumptions underlying the use of ICA include that 1) signals must be
linearly mixed, 2) sources must be spatially stationary and temporally independent, 3) sources
must be non-Gaussian and 4) the number of sources must be equal to or less than the number
of recorded mixtures. When ICA is applied to high-density data, the EEG signals measured
from the scalp are invariably linearly mixed by volume conduction and the number of
recorded mixtures is high. Furthermore, in line with the assumptions is that underlying EEG
sources in the brain are commonly assumed to be spatially stationary. In this study, the
temporal independence of the underlying sources was attempted to be maximized by varying
the experimental stimuli and conditions, thus minimizing the temporal overlap of the resulting
ERP components. Furthermore, before applying ICA, the data was filtered and artefactual
epochs were rejected in order to exclude the possible non-Gaussian sources like line noise and
sensor noise. Also the guideline by Onton et al. (2006), of the sufficient amount of time points
needed for reliable ICA decomposition, was followed. Thus, in this study, the prerequisites
for ICA were considered to be fulfilled on a satisfactory level, and the resulting ICA solutions

can, in this respect, be regarded as reliable.

Methodological considerations. In this study, N1-ICA components were identified and
clustered in groups of N1-ICA sub-components based on their activation in response to EQ-
/atta/ presented in with equal probability and a long ISI. Surprisingly, when assessing the
activation of the selected components in response to standard-/atta/ presented with a short ISI,
quite many of the components that were expected to activate in a short ISI condition, did not,
however, show any activity. According to Luck (2005a), if a single component varies in

latency across conditions, it may be treated by ICA as multiple components. In the study of
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Karhu et al. (1997), the latency of N1 in children was slightly shortened in response to faster
stimulus presentation. Thus in theory, it could be possible that ICA might isolate N1
activation in different conditions into different components. However, in this study, no
differences in N1 latency produced by different conditions were observed from grand

averaged waveforms.

Some of the ERP-ICA and CSD-ICA components activating during the N1 time window in
response to EQ-/atta/ activated only for N1 whereas others showed activity around P1, P2
and/or N2 time windows as well. This would suggest that while there are some activation
patterns that seem to be associated only to N1, there are also topographical distributions that
are involved during activation of other ERP components as well. The same was observed in
ICA study of Ceponiené et al. (2005), where it was concluded that N1 shared several
independent components with P1 and P2. The temporal sources producing N1b, P1, P2 and
N2 are all tangential and at least N1b and P1 dipoles have the same orientation (Ponton et al.,
2002). Thus, it could be that the spatial proximity of the source generators and the partial
temporal overlap of their activation time courses might have been too challenging for ICA to

fully differentiate the scalp distributions produced by these different sources.

According to Onton et al. (2006), ICA is prone to point out intersubject variability due to a
unique folding of every brain and differences in orientation of functionally analogous sources
within participants. ICA, thus, may decompose a single process into several similar
components that are contributed by different subsets of participants. This was evident from
both ERP-ICA and CSD-ICA solutions investigated in this study. Most of the ERP-ICA and
CSD-ICA component clusters that were identified were composed of several similar
components. Each of the components was contributed by only 4 - 12 participants and most of
the clusters included several very similar components. This could suggest that the similar
components in one cluster might have represented slightly different manifestations of the
same underlying process contributed by different sub-groups of participants, and also that one
participant may have contributed to more than one component in the cluster. In this study,
however, it was not investigated which of the participants contributed to which components,
because that was beyond the scope of this Master’s thesis. In the future research, however,
this hypothesis could be studied by exploring component contributions more profoundly and
possibly different of sub-groups of participants having somewhat different activation patterns
could be identified. In the identification of different activation patterns of different sub-groups

of participants, further statistical analysis of the components would also be useful.
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Comparing ERP-ICA and CSD-ICA. In this study, both ERP-ICA and CSD-ICA approaches
produced interpretable ICA components that could be associated to activation of undetlying
brain structures related to N1 sub-components. As hypothesised, CSD-ICA approach
produced more precise and sharply defined components than ERP-ICA approach.
Topographies of the components extracted with CSD-ICA approach were more accurate and
localized when compared to the broadly distributed topographies of ERP-ICA components.
The CSD-ICA approach was also assumed to lead to a decomposition of temporally more
distinct and “peakier” activation patterns than the ERP-ICA approach. No differences,
nevertheless, were observed in general shape of the activation time courses of CSD-ICA

components when compared to ERP-ICA components.

CSD is known to emphasise local cortical activity over widespread volume conducted activity
thus producing more focused topographies (Srinivasan, 2005). CSD is suggested to provide a
more directly proportional estimate of the underlying generators of the electrical fields. While
it is possible in the ERP, that a midline central maxima can be produced by either one source
perpendicular to it or by bilateral sources, CSD will overcome this ambiguity by filtering out
volume conducted activity propagating from distant areas (Bender et al., 2006). However, the
non-specific N1 vertex component, that is suggested to be generated by a deep source (Hari et
al., 1982), was extracted with ERP-ICA, but not identified at all among the CSD-ICA
components. CSD is known to emphasises EEG signal that are generated by superficial
sources projecting to relatively small areas of cortex, while activity of sources deep in the

brain or produced by broad dipole layers may not be captured (Srinivasan, 2005).

The CSD-ICA approach seemed to compress the data into fewer ICA components activating
in N1 time window than the ERP-ICA approach. Furthermore, several CSD-ICA components
topographies included sources and sinks at two or more areas of the brain, suggesting that the
activations of these different sources co-varied. As this might be true, it could also be, that the
CSD-ICA was not able to properly separate the activation of these different structures. For
instance, parietal activation was not isolated in separate CSD-ICA components, but merged
into same components together with some other concurrent activities elsewhere in the brain.
ICA returns as many ICA output components than there are recoding sensors used in the
collection of the data. Thus, the decomposition of ERP waveforms produced 128 ERP-ICA
components, whereas the decomposition of CSD waveforms returned only 81 CSD-ICA
components. The CSD-ICA approach had to compress the data into less than 2/3 of the

components that were available in ERP-ICA approach. In order to minimize this effect, it
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would be worthwhile to preprocess the ERP data with PCA, in order to reduce the
dimensionality of the ERP data into the same level as in the CSD data. In the future research,
it would be informative to examine whether the ERP-ICA solution produced in this way,
yielding to 81 PCA-preprocessed ERP-ICA components, would differ from the solution
obtained with the approach applied in this study. This, however, was not possible to carry out

in the scope of this Master’s thesis.

Conclusions. From the results obtained here, it can be inferred that ICA was able to isolate N1
sub-components in response to EQ-/atta/ presented with equal probability and long ISI. The
results of this study indicate that there are advantages and disadvantages in both ERP-ICA
and CSD-ICA approach in analysing high-density averaged EEG data. CSD waveforms are
useful in sharpening and summarising the broad ERP voltage topographies by producing more
defined and focal components. However, activity of deep sources or widespread dipole layers
might be better captured by ERP. Thus, it is informative to contrast both ERP and CSD data

in clarifying the nature of ERP generators.
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