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Abstract

This work deals with multiphase fluids which are investigated numerically with
the lattice-Boltzmann method. Two multiphase systems were studied, namely
liquid-vapour flow in paper and shear flow of a non-colloidal and non-Brownian
liquid-particle suspension.

We simulated the behaviour of liquids in an X-ray tomographic reconstruction
of a sample of paper board. For a wetting liquid we considered three different
types of capillary penetration processes, unidirectional and radial penetration of
the liquid, as well as penetration of a small liquid droplet in the paper sample.
Results obtained for unidirectional penetration could well be described with the
Lucas-Washburn equation and those for radial penetration using a capillary model
for such penetration process. Also the data obtained from the droplet penetration
were in qualitative agreement with a generalised radial penetration equation. We
also studied intrusion of a non-wetting liquid into the paper. Our results were in
good agreement with those obtained from experiments when the simulated data
were interpreted exactly as in pore-size distribution measurements with mercury-
intrusion porosimetry. However, a different result was found by image analysis.
This deviation was found to result from the “ink-bottle” effect which is a conse-
quence of not having equal access to all pores in the sample.

For the liquid-particle suspensions we analysed the effect of particle clusters on
the viscosity of the suspension. Detailed momentum-transfer analysis was carried
out for simple suspensions with a single particle or with a single chainlike clus-
ter, as well as for suspensions with thousands of particles. Our analyses showed
how clusters contribute to the viscosity of suspensions by acting as channels for
momentum transfer. We investigated in particular the so-called strain-hardening
phenomenon, and showed that it can be explained by formation of particle clus-
ters.

Keywords: lattice-Boltzmann method, multiphase flows, imbibition, mercury-
intrusion porosimetry, liquid-particle suspensions, strain hardening.
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1 Introduction

Multiphase fluids are substances that include matter in different phases in coexis-
tence, and the resulting substance has a fluid-like behaviour. Dynamics of multi-
phase flows is more complicated than that of single-phase flows. Their behaviour
depends not only on the macroscopic conservation laws but also on the interactions
between different substances in the system. Even more complicated phenomena
are present in so-called complex multiphase flows such as reactive flows, magnetic
flows, and flows with electric charges.

One specific type of multiphase flows is composed of flows where the flowing sub-
stance is a mixture of several different liquids or where liquid and gas phases coex-
ist. Examples of these flows include, e.g., oil-water systems, bubble flows, breaking
of liquid jets, sprays, spreading and sliding droplets on solid surfaces, and imbi-
bition of liquids in porous structures. Further, the last of these examples includes
many interesting phenomena which are important from an industrial and thereby
also from an economical point of view, but as well from a scientific point of view.
Dynamics of wetting liquid fronts in porous media is one of the long-lasting prob-
lems in statistical physics. On the other hand, non-wetting liquids have been used
to characterise the pore structure of materials for more than a half of a century us-
ing mercury-intrusion porosimetry. The validity of this method is still, however, a
fairly open question. Also, penetration of liquid drops into porous structures has
many important applications such as paper coating or ink-jet printing, just to men-
tion two examples.

Another type of multiphase fluid present in many processes is the fluid-particle
suspension. One suspension of special importance is the blood. Blood consists of
many types of cells such as leukocytes, erythocytes, and platelets suspended in the
blood plasma. Suspensions are also commonly met in many branches of industry.
For example, gas-particle suspensions are present in many processes in chemical
engineering, and liquid-particle suspensions in printing and coating technologies.

The behaviour of multiphase flows is still largely unknown. Multiphase flow re-
search has traditionally been done with help of experiments and by theoretical cal-
culations and models. In theoretical models multiphase fluids are often described
using a continuum approach where the mesoscopic character of the fluid is ignored
and the effect of different phases is hidden in the constitutive relations. Although
this kind approach may be helpful in solving engineering problems, it does not



2 Introduction

clarify the underlying mechanism responsible for the non-Newtonian behaviour
of the fluid. On the other hand, it is possible to measure rheological properties of
multiphase fluids, but the experimental verification of the underlying phenomena
responsible for these properties has turned out to be a difficult task.

During the last two decades computer simulations have become an important tool
in the quest to understand the physical mechanisms responsible for the complex
behaviour of multiphase flows. In liquid-particle suspensions, for example, simu-
lations form an excellent tool to study the particle-scale mechanisms that signifi-
cantly alter the macroscopic behaviour of the suspension. In simulations, one can
model the suspension on a level where individual particles and their interactions
with fluid and each others are taken into account. Therefore, they can provide de-
tailed information of the structural features that affect the rheological behaviour of
the suspension at larger scales.

The specific numerical simulation tool used in the investigations reported in this
Thesis is the lattice-Boltzmann method. This method was developed from the
lattice-gas cellular automata. As the lattice-Boltzmann method produces in the hy-
drodynamic limit a flow field obeying the Navier-Stokes equation, it is a decent
method for fluid-flow simulations. Partly owing to its intuitively clear dynamics
inherited from the lattice gases, the lattice-Boltzmann method has been particu-
larly successful in modelling multiphase flows and flow in materials with complex
internal structure. Later also a more rigorous physical background and mathemat-
ical connection to kinetic theory have been established.

In this Thesis we use the lattice-Boltzmann method to study two types of multi-
phase flows. These flows are liquid-vapour flow in porous media and shear flow
of a non-colloidal and non-Brownian liquid-particle suspension. Using the Shan—
Chen multiphase model for vapour-liquid flows within the lattice-Boltzmann
method, we simulated behaviour of both wetting and non-wetting liquids in paper.
As a geometry for the simulation we used a high-resolution X-ray tomographic im-
age of a paper sample. We found that the lattice-Boltzmann method is able to pro-
duce results that agree very well with experimentally verified capillary models de-
veloped for penetration of wetting liquids in porous materials. Using a non-wetting
liquid we analysed the operation of mercury-intrusion porosimetry. We found that
assumptions used when interpretating data in mercury-intrusion porosimetry are
not valid in paper, and we believe that this is the case also more generally. For
the non-colloidal and non-Brownian liquid-particle suspension, we considered the
momentum-transfer mechanisms responsible for the enhanced viscosity observed
in measurements on suspensions of this kind. The main emphasis was on the
strain-hardening effect which is observed in many rheological materials including
liquid-particle suspensions. We were able to show that formation of stress-bearing
particle clusters is the mechanism behind strain hardening in suspensions.
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The outline of this Thesis is as follows. We start by reviewing some aspects of clas-
sical kinetic theory and the lattice-Boltzmann method. We discuss the connection
between the continuum-limit Boltzmann equation and the lattice-Boltzmann equa-
tion, and describe the multiphase models used with the lattice-Boltzmann method.
In Chapter 4 we review some capillary models that are used to describe the be-
haviour of liquids in porous materials, and present results from the liquid-vapour
simulations using both wetting and non-wetting liquid. After this, in Chapter 5,
we describe properties of liquid-particle suspensions and present results from the
simulations. Finally in the last Chapter, we summarise the results and give some
concluding remarks.
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2 Fluid mechanics and classical
kinetic theory

2.1 Fluid mechanics

As fluids we understand such substances that deform continuously under stress.
Most common fluids include liquids and gases, which are often referred to as sim-
ple fluids. So-called complex fluids include, e.g., mixtures of liquids and gases, flu-
ids containing solid particles, and foams. In this Section we consider only simple
fluids and return to more complex cases later.

Since fluids consist of molecules, an accurate description of motion of fluids would
be given by molecular dynamics where fluid is treated as a collection of a large
number of interacting molecules, and all molecular-level interactions are taken into
account. Although this approach might be adequate in some applications in micro-
and nanofluidics, in most cases molecular dynamics is computationally much too
expensive to be used in solving practical fluid-flow problems, since the number of
molecules in realistic systems is typically of order 10%*. However, in most cases such
a microscopic approach includes a lot of information which is unimportant and is
not needed for understanding flow situations in engineering problems. Therefore,
a less accurate description of fluid turns out be satisfactory, and usually fluid is
treated as a continuum.

In a continuum approach, instead of tracking positions and velocities of individual
particles, motion of fluid is described in terms of averaged quantities such as den-
sity, pressure and velocity. To be well defined, such quantities need to be averaged
over a control volume which is large enough to include a large number of parti-
cles but small enough compared to the macroscopic length scale, so that variations
in fluid properties are observed. These requirements are easily fulfilled in typical
engineering fluid-flow problems.

The governing principles under flow equations are conservation of mass and New-
ton’s second law [1]. Conservation of mass is described by the continuity equation

Op + Ou(puy) =0, (2.1)

in which p is the density of fluid and u is its velocity. Newton’s second law leads

5



6 Fluid mechanics and classical kinetic theory

to the momentum equation

d(pug
£, = (Zt ) _ 0y(pua) + O511ag, 2.2)

where f is the density of the external forces acting on the fluid and II,3 is the
momentum-flux tensor that gives the flux of the a component of the momentum in
the (3 direction. If there is no external force, the momentum equation stands for the
principle of conservation of momentum. In the case of incompressible fluids, Egs.
(2.1) and (2.2) are reduced to

Oattq =0 (2.3)

and
Jo = patua + aﬁHaﬂ‘ (24)

In this Thesis we consider only incompressible fluids. For thermal flows one needs
in addition an energy equation, resulting from the conservation of energy. How-
ever, we consider only isothermal flows and the energy equation is thus ignored.

The momentum equation can be written in a more convenient form by using a
detailed expression for the momentum-flux tensor. Generally the momentum-flux
tensor can be written as

Iop = puqus — 0ap, (2.5)

where the first term on the right-hand side describes the convective momentum
flux, and o, is the stress tensor of the fluid. Stress tensor can be further divided in
two parts,

Oap = —POap + O (2.6)

Here pressure p is the isotropic part of the stress tensor and o/, 5 is the deviatoric (or
viscous) stress tensor. For Newtonian and isotropic fluids deviatoric stresses are
given by the constitutive equation

Jtlx,ﬁ’ =K (aauﬁ + aﬁua) : (2.7)

Here the proportionality coefficient ;s between stress and shear rate is the dynamic
shear viscosity. By substituting the obtained momentum-flux tensor in the momen-
tum equation, we obtain the Navier—Stokes equation

1 1
Ot + ugdstia = = Db+ B ta + - o (28)

Navier-Stokes equation is a second-order nonlinear partial differential equation
and it can be solved analytically only under some special circumstances. In some
cases it can be sufficient to use restricted forms of the momentum flux tensor and
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of the momentum equation thus obtained. For example, when the convective mo-
mentum flux is small compared to the viscous stress, the convective mometum flux
can be neglected. The momentum equation is now reduced to the Stokes equation

1 1
atua = ——0up+ Hagﬁua + _foz' (29)
p p p

As an analytical solution for the Navier—Stokes equation is in most cases unknown,
numerical methods are often used when studying flow problems. The ‘conven-
tional” approach in computational fluid dynamics is to discretise the Navier-Stokes
equation, and to numerically solve the discrete equation thus obtained using the
relevant initial and boundary conditions. Well-known methods in computational
fluid dynamics following this path include, e.g., the finite-difference, finite-volume,
and finite-element methods. Another possibility is to use particle-based meth-
ods such as lattice-gas cellular automata [2], dissipative particle dynamics [3], or
smoothed particle dynamics [4]. Lattice-Boltzmann method has been compared to
some other numerical methods by Nourgaliev et al. with a special emphasis on
multiphase flows [5].

2.2 The BBGKY hierarchy

In kinetic theory, properties of the fluid are described by using a distribution func-
tion rather than considering each of the molecules separately. Let us consider an
ensemble of systems with N identical point particles with mass m [6]. Each particle
has three translational degrees of freedom. At a certain time ¢, the state of this sys-
tem can be described as a point in a 6/N-dimensional phase space spanned by 3N
coordinates r¥ = {r;,ry,...,ry} and 3N momenta p¥ = {pi,ps,...,pn}. Since
all particles have the same mass, the momenta of the particles can be written as
p" = mé"N, where ¢V = {£,,€,,..., €y} stands for the microscopic velocities of the
particles. The Hamiltonian of this system can be written as

N
Ha (2, €N) = %m S 4 Vi), (2.10)
=1

where Vy is the total potential energy of the system. Time evolution of the system
is given by the Hamilton’s equations

dI'Z'

E - VpiHN, (211)
d .

Di e V. Hn.(i=1,2,...,N). (2.12)

dt
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Distribution of the phase-space points is given by the N-particle distribution func-
tion f™) (r™,&Y;t). The probability that the system at time ¢ is in a microscopic
state described by a infinitesimal 6 N-dimensional phase-space element dr™d¢" is
givenby f™) (r™,¢V;¢) drVdeg". It is evident that integral of the distribution func-
tion over all coordinates and momenta is constant. This fact is reflected in the Li-
ouville equation which gives the time evolution of the distribution function,

orM 1 N N
ot - m Z (VriHN ' ngf o VﬁiHN Vi f ) . (2.13)
=1

Liouville equation is nothing but a 6 N-dimensional version of the continuity equa-
tion, in which Hamiltonian mechanics is included via Egs. (2.11) and (2.12).

If the only forces acting on particle i are the external force X; and the pairwise
interaction forces F;; due to the other particles j (F;; = 0), Liouville equation can
be written in the form

oM W v W _ Iy v )
=1 i=1 i=1 j=1

Next we consider such a case where only a subset of n(< V) particles is of interest.
Additional information can be removed by integrating f*) over the positions and
momenta of the other (N — n) particles. This leads to an n-particle distribution
function

PO €0 = e [ [ e @)

where we have used notationr™ = {r,,...,r,}, v = {r, 1, ..., vy}, etc. Defin-
ing f™ in this way, f™dr"dp™ is N!/(N — n)! times the probability of finding any
subset of n particles in the reduced phase-space element dr"dp” at time t no mat-
ter what the positions and momenta of the remaining particles are. Also Liouville
equation (Eq. (2.14)) can be integrated over these 6(/N — n) uninteresting degrees of
freedom. By noticing that f) is symmetric with respect to changes of indices, we
obtain an equation connecting f™ and f"+Y,

0 n i ) 3 I (n) (o0 ¢n.
{aﬁ—zzl £i-vri+m<Xz+jZIF”> Vgl]}f (x", &7 t)

1 n
=3 [ dr [ P Ve O (e ). @16)
=1

This famous set of equation for n = 1,2,..., N — 1 is known as the BBGKY hier-
archy after Bogolyubov, Born, Green, Kirkwood, and Yvon. However, this type of
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equation alone is not useful since it expresses an unknown distribution function
™ in terms of another unknown distribution function f*Y. Some additional as-
sumptions are needed to close this set of equations.

2.3 The Boltzmann equation

Boltzmann equation describes a system consisting of a dilute gas with high enough
temperature and low enough density so that the molecules of the gas can be consid-
ered to move freely and interacting with each other only while colliding. In other
words, the potential energy of the interaction is negligible compared to the kinetic
energy of the motion.

In the previous Section we derived a set of kinetic equations, Eq. (2.16). For practi-
cal purposes, the most important kinetic equation is obtained by selecting n = 1 in
Eq. (2.16). In this case we obtain

0 1
(a +& -V + Exl : Vgi) f(l) (ri,€51)
= —/dr2/dp2F12 : vplf(z) (1‘1,51,1'2752??5) (2-17)

The single-particle distribution function ) and the two-particle distribution func-
tion f? are such that f(Vdr,d¢, is N times the probability of finding a particle in
the phase-space element dr;d¢,, and f®dr;d€,dr,d€, is N(N — 1) times the prob-
ability of finding one particle in element dr;d§; and another one at the same time
in element dr,d&,. Thus the number of particles in the system is

N = / fO(r, & t)drd€. (2.18)

Also fluid density, momentum density, and energy are obtained from the single-
particle distribution function,

plr.t) = [ mr (e i) (2.19)
plr.puest) = [ mer®(r.€i g (2.20)
plr. (e, t) = 5 [ i~ &7V (r. € 1)de. @21)

Here u is the fluid velocity.
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The most famous kinetic equation, the Boltzmann equation, is obtained from Eq.
(2.17) under the assumptions that all collisions are binary collisions, the external
force has no effect on the cross section of these collisions, and that successive colli-
sions are uncorrelated (molecular chaos). Boltzmann equation is usually written in
the form

0 af

F
(a"‘& 'VJrE‘Vﬁ) f(r,§>t):(§)cc)ll> (2.22)

where the collision integral on the right-hand side of the equation describes the
effect of particle collisions on the distribution function. An explicit form for the
collision integral is given by [7, 8]

(3 ) = [eo [aeo@ie-ciwr -1, 2.23)
when we assume that the collisions are strictly binary. Above o is the differen-
tial cross section and (2 is the solid angle. Also the following notation is used:
f=1r &), = f(x,&50), fu = f(r,&,,1),and f] = f(r,&.; ). Here the primed ve-
locities refer to particles after collision whereas the non-primed ones refer to those
before collision. Notice also that as from now on we shall only consider single-
particle distribution functions, we have simplified the notation such that we denote
these functions simply by f instead of f().

2.4 Boltzmann’s H-theorem

Let us consider a system where there is no external force. In this case, after suffi-
ciently long time, the system should reach an equilibrium state. By an equilibrium
state we understand a state which can be described by such a distribution function
which is a solution of the Boltzmann equation and independent of time. As there
is no external force, we can also assume that this distribution function is indepen-
dent of r [7]. The equilibrium distribution function f°/(£) is thus a solution of the
following equation:

/d?’f* /dQ o(Q) 1§ = & [f(E) () — [<(€) (&) = 0. (2.24)
A sufficient condition for a solution of this equation is

fUENUE) = f(E)f(E) = 0. (2.25)

Let us now prove the H-theorem following the procedure of Ref. [8]. We define the
H-function as

H(t) = / AES(€. 1) f(E.1). (2.26)



2.4 Boltzmann’s H-theorem 11

Differentiation of this H-function gives

i 0f (& 1)
= [ e (e )T (2.27)
From Egs. (2.22) and (2.23) we find that
T [ [avo@ie-elins - rn-¢- 91, 2.29)
which can be substituted to Eq. (2.27):
d
= [ eEvnung e [ag [ae [aoo@le-glins - fansn g
(2.29)

By applying the Gauss law one can show that first term on the right-hand side
vanishes, assuming that f — 0 for large r and & . Therefore

dH

Fr dﬁ/dﬁ /an NE—ENfif — f AL+ 1n f]. (2.30)

Change of variables £ and &, results in

dH

- [ag e [avs@ie-clins - paemE) @3

Summing these two equations gives

dH 1

o e [ [ao@ie-elny - rnpamn. @)

On the other hand, if we consider the reverse collision, we get

= %/dﬁ’/dﬁi/dﬁ o€ = &L = ffll=2 = f' [ (2.33)

Summing up Egs. (2.32) and (2.33) we find finally that

dH 1 g e I
o1/ [ae [avo@ie-eliny - £nm e

since d¢d¢, = d ¢'d¢) and [€ —€,| = |[¢'— &) | (momentum and energy are conserved
in collisions). It is evident that the integrand in Eq. (2.34) is never positive. Thus
H-function never increases. This result is known as Boltzmann’s H-theorem. On
the other hand, we see that when dH/d¢ = 0, Eq. (2.25) holds, i.e. the distribution
function has reached its equilibrium.
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2.5 Maxwell-Boltzmann distribution

Next we calculate the exact form of the equilibrium distribution function, which
we have seen to be a solution of Eq. (2.25). Taking a logarithm of this equation
gives

In f4(€2) + In f(€') = In f(E,) + In f (&), (2.35)

which has a form of a conservation law. The most general solution to this equation
is a sum of all independently conserved quantities. In the case under consideration,
these conserved quantities are momentum and energy. Thus the solution must be
of the form

log f¢1(&) = —AE* +2A€, - € + (AL +log O) (2.36)
fe€) =Cexp [-A(E - &) . (2.37)

In Eq. (2.36), the first term on the right-hand side is associated with the energy, the
second term with the three components of the momentum, and the last term is an
arbitrary constant. Our task is now to determine the five unknown constants A, C,
&y = (oz: €0y, &02)- To this end we use Egs. (2.19) - (2.21), and obtain the final form
of the equilibrium distribution function,

eq N m i m(€ — € )2
feUE) = % (QMBT) exp [_TTO] . (2.38)

This distribution is the Maxwell-Boltzmann equilibrium distribution function.

2.6 Bhatnagar-Gross-Krook collision function

The collision function derived above may cause difficulties in practical problems
because of its complicated form. Bhatnagar, Gross, and Krook (BGK) introduced a
phenomenological collision function which has a drastically simplified form, but
captures still the essential physics of the kinetic problem [9]. In the BGK approxi-
mation, which is also known as the single-relaxation-time approximation, the col-
lision term is replaced by a relaxation term. This approximate collision term de-
scribes relaxation of the distribution functions towards the local equilibria which
are functions of the local conserved quantities. The BGK collision term has the form

of _J=7
(E)coll T (239)

where 7 is a relaxation time which represents the time scale related to the relaxation
process due to collisions, and f? is the local equilibrium. The main approximation
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in the BGK approximation is the assumption that all modes in the system relax
at the same speed described by the relaxation time, and that this process can be
described by a constant relaxation time through the whole system. In spite of its
drastically simplified form, the BGK collision term gives in many cases a qualita-
tively correct behaviour.
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3 The lattice-Boltzmann equation
method

3.1 Overview

In the previous Chapter we saw that the continuity and Navier-Stokes equations
result from two basic conservation laws, namely conservation of mass and momen-
tum, together with the constitutive relation Eq. (2.7). Actually, conservation laws at
a macroscopic level are reflections of the same principles at the microscopic level.
Although flow simulations using molecular dynamics are in most cases inpracti-
cal or even impossible, it fortunately turns out that microscopic details of molec-
ular interactions are unimportant, if one is only interested in the behaviour of the
fluid at the hydrodynamic level. Therefore, it is possible to construct such artificial
microscopic or mesoscopic systems that the essential conservation laws and sym-
metry requirements are fulfilled, and the correct hydrodynamic behaviour is thus
obtained. These systems can be simplified in such a way that microscopic details
that are not needed for the hydrodynamics are ignored [10]. This kind of systems
can be and have been used in simulations of fluid flow

Examples of this kind of approach include, e.g., lattice-gas cellular automata [2],
dissipative particle dynamics [3], and smoothed particle dynamics [4]. Here we
briefly review the lattice-gas cellular automata which are predecessors of the
lattice-Boltzmann method. In lattice-gas cellular automata, fluid is modelled by
fictitious mesoscopic particles moving on a regular lattice. Also time is discretised
and particles are only allowed to have a set of discrete velocities such that particles
move from one lattice point to another during one time step. The first lattice-gas au-
tomaton aimed at simulating fluid flow was introduced in 1973 by Hardy, Pomeau,
and de Pazzis (HPP) [11]. The HPP model uses a two-dimensional square lattice
which has insufficient symmetries to produce the Navier-Stokes equation. In par-
ticular, the HPP model is neither Galilean invariant nor isotropic. In 1986, Frisch,
Hasslacher, and Pomeau (FHP) [2] and Wolfram [12] introduced a two-dimensional
lattice-gas cellular automaton on a triangular lattice, that was able to simulate the
Navier-Stokes equation. This model was immediately generalised to three dimen-
sions [13]. Evolution of the FHP automaton is given by the equation

15
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where: =1,2,...,6 refer to the six possible (2D) lattice directions in the triangular
lattice, n;, and e; are the corresponding Boolean particle number and velocity, re-
spectively, and €2; is the collision operator which is constructed in such a way that
both mass and momentum are conserved in the collisions. Position vector r points
always to a lattice point in the triangular lattice. Notice that the above equation is
written in lattice units. The evolution of the FHP fluid is divided into two steps, af-
ter the collision process described by the collision operator, particles are moved to
neighbouring lattice nodes according to their velocities. Evolution of the system re-
sults from iteration of these collision and streaming processes. Lattice-gas automata
have some drawbacks: they are noisy and require thus spatial and /or temporal av-
eraging, they are not Galilean invariant, pressure has an unphysical dependence
on macroscopic velocity, and there are some unphysical conserved quantities.

The problems that the FHP automaton was facing were cured by taking an en-
semble average over Eq. (3.1) [14, 15]. The model thus evolved is known as the
lattice-Boltzmann method [17,18]. In the lattice-Boltzmann method Boolean parti-
cle numbers are replaced by the probability of finding a particle at certain lattice
point at certain time with certain velocity. In the first lattice-Boltzmann methods
the collision operator of the lattice-gas method was replaced by an operator in
which the Boolean operations were replaced by corresponding arithmetic oper-
ations. With this collision operator lattice-Boltzmann models are however ineffi-
cient. Their computational efficiency was improved by linearising the collision op-
erator around the equilibrium distribution [16]. The most used model was obtained
by introducing the single-relaxation-time Bhatnagar—Gross—Krook (BGK) approxi-
mation [9] for the collision operator [19-22]. Recently different multiple-relaxation-
time collision operators [23-28] have attracted a lot of interest since they can im-
prove the numerical stability of the method.

3.2 From the Boltzmann equation to the lattice-
Boltzmann equation

In this Section we discretise the Boltzmann equation [29]. Until now we have de-
scribed our system in terms of the number-distribution function. From now on,
in order to follow the usual notation in the lattice-Boltzmann literature, we shall
use the mass-distribution function which is obtained by multiplying the number-
distribution function by the molecular mass m.

We start from the discrete-velocity Boltzmann-BGK equation

Ofit & Vi =~ (fi— 7). 62
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where the velocity space is discretised in such a way that only certain discrete ve-
locities ¢; are allowed for the particles, and f; = f;(r,t) are the corresponding ve-
locity distribution functions. The macroscopic flow variables are obtained from

pu = > & fi (34)

Equation (3.2) is now made dimensionless by using dimensionless quantities €; =
£/&,, V=1LV,{= t&. /L, 7 = 7/t., and fl = fi/p-. Here caret is used to denote
a dimensionless quantity, ¢, is a reference speed , L a characteristic length scale,
t. the time between successive collisions, and p, a reference density. The reference
speed is chosen to be equal to the minimum non-zero velocity, and the reference
density is usually chosen such that the average density in the system equals one.
In addition to ¢., another time scale is given by the characteristic flow time L/¢,.
Using these definitions for the dimensionless quantities, we obtain a dimensionless
discrete-velocity Boltzmann equation

O 1 /. .
oifi+e-Vii=-=(fi- f7), (35)
€T
where the Knudsen number .
€= fr (3.6)

is the ratio of the collision time to the flow time, or of the mean free path to the
characteristic length scale. To keep the notation simple, the carets are not explicitly
shown hereafter, although all quantities are assumed to be dimensionless.

We have now discretised the velocity space and written the discrete-velocity Boltz-
mann equation thus obtained in dimensionless form. Next we shall discretise the
space and time in order to obtain a fully discrete equation. To this end, the time
derivate is replaced by a first-order finite-difference approximation

fi(r, t + (St) — fi(r, t)

a i~ s 3.7
S = (57)
and for the convective term we use a first-order upwind space discretisation,
A Ot t+ 6t) — fi(r,t
o Vf, n JT T EOLEH ) — filr,t) (3.8)

or

We choose the lattice spacing ¢r and time step ¢ such that ér/dt is equal to the
minimum of the speeds |e;|, which, with our choice for the reference speed ¢,, is
equal to unity. Finally, by selecting the dimensional time step to be equal to t., we
obtain the lattice-Boltzmann equation in its standard form:

fi(r + €0t t + 0t) = fi(r,t) — % (fi(r,t) — fi4(x,t)). (3.9)



18 The lattice-Boltzmann equation method

Although we used here first-order discretisations, the method obtained has a
second-order accuracy both in space and time since the discretisation error has a
specific form, and can be included in the viscosity [29]. The set of discrete velocities
should be selected such that they comply with the discretisation of space and time,
i.e., if r is a lattice node also r + e;6¢ should be a lattice node for all e;.

Although the lattice-Boltzmann equation originated historically from the lattice-
gas method, it can also be understood as a specific finite-difference discretisation
of the continuous Boltzmann equation. The discretisations used are rather prim-
itive, and more sophisticated techniques might lead to methods with enhanced
efficiency and stability and more flexible lattice structures. However, the standard
lattice-Boltzmann equation has certain appealing properties. Most importantly, we
can preserve the interpretation of particles streaming and colliding on a lattice as
a heritage from the lattice gases, which is convenient, e.g., when handling bound-
aries and in the parallelisation of the method. Higher order discretisations would
make this kind of interpretation at least more difficult if not impossible.

Several possibilities remain for choosing the lattice structure. In all simulations
presented in this Thesis, the three-dimensional 19-velocity (D3Q19) model was
used [21]. In this model space is discretised using a cubic lattice and the magni-
tudes of the possible velocities are 0, 1, and /2 corresponding to rest particles and
particles moving to nearest or next-nearest lattice nodes. The lattice and the dis-
crete velocities of the D3Q19 model are illustrated in Fig. 3.1. The D3Q19 model
is a common choice in the simulations as the models with larger number of ve-
locities, e.g. D3Q27, require more memory, and the models with smaller number
of velocities, such as D3Q15 or D3Q13, have some spurious invariants (see, e.g.,
Ref. [30]).

3.3 Equilibrium distribution function in the D3Q19
model

The last phase in the discretisation procedure is to find a discrete form for the equi-
librium distribution function. It has been shown that, for some lattices, both the
lattice-Boltzmann equation and the equilibrium distribution function can be ob-
tained by discretising the Boltzmann equation using Gaussian-type quadratures
[31]. In this approach the coefficients in the equilibrium distribution function (cf.
Eq. (3.12) below) are obtained from the weights of the quadratures. Recently, this
type of a priori derivation and quadratures needed were presented for the D3Q19
model [32]. However, we derive the equilibrium distribution function in an a pos-
teriori fashion by using a low-Mach-number expansion of the Maxwell-Boltzmann
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Figure 3.1: Schematic figure of the D3Q19 lattice. Shown are the non-zero lattice vectors. Vectors
with filled arrowhead correspond to lattice directions with velocity 1 and the other to those with
velocity/2. In addition, the D3Q19 model has rest particles with zero velocity.

distribution function with some unknown weight coefficients for different direc-
tions, and determining these weights by requiring the equilibrium distribution to
fulfil appropriate isotropy conditions.

The starting point is a second-order Taylor polynomial of the Maxwell-Boltzmann
distribution function,

fW®:=p( m fﬂwpkﬂglﬁq (3.10)

27T]€BT Qk’BT
m v ex — m§2 X
P 27T]€BT P 2]€BT
L (™ Ve LY w2
kT 2 \ kpT 2 \ kpT

Based on this expression we choose the following form for the discretised equilib-
rium distribution function:

Q

(3.11)

2

€iaU €iaCipUnU U
eq _ t 1 preTeY iatighathg W 312
Jii=r < * 2 * 2¢2 2¢2 )7 (312)

S

where we have the speed of sound of the lattice-Boltzmann fluid ¢, = (kgT/m)"/2.
The weight factor ¢, may have three different value, w, for the rest particles, and
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w; and w, ;5 for particles moving to nearest-neighbour and next-nearest-neighbour
lattice nodes, respectively. The values of constants wy, wi, w, 5 and ¢, must be de-
termined in such a way that no numerical artefacts arise in the hydrodynamic be-
haviour of the model due to discretisation.

To ensure the isotropy we require that the velocity moments of the discretised zero-
velocity equilibrium distribution function (f;?(u = 0)) equal those of the continu-
ous case up to fourth order, since these moments influence the incompressible hy-
drodynamics [19]. By evaluating these moments for the continuous case we obtain
the following conditions:

d ot =1, (3.13)
Ztieiaew = Cgéa/g, (314)
D ticieipenein =t (GapOyu + OarOpu + Oaudsy) - (3.15)

In addition, we notice that the odd-rank lattice tensors vanish. The last one of the
above equations gives two independent conditions, one corresponding to the case
a = =~ = pand another to o = 3 # v = p. Thus we have four equations for the
four unknowns. Solving these equations we find wo = 1/3, w; = 1/18, w 5 = 1/36,
and 2 = 1/3.

3.4 Chapman-Enskog analysis

In this Section we show that the pressure and velocity fields produced by
the lattice-Boltzmann model obey the Navier-Stokes equation, i.e. the lattice-
Boltzmann method is suitable for fluid-flow simulations. We use the D3Q19 model
with the BGK collision operator together with the equilibrium distribution function
derived above. For simplicity and without loss of generality, we use here lattice
units in which the time step and lattice spacing equal one.

We start by taking a perturbative expansion for the distribution function,

fi= 0 v e P 4 (3.16)

Here the small perturbation e is the Knudsen number. The space and time deriva-
tives are also expressed in terms of multiscale variables,

Oy = €D1as (3.17)
(9t = 6@1 + 62(9152 + e (318)
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The physical background of this multiscale formalism is that different physical
phenomena such as inertial propagation and dissipation occur at different time
scales [33]. We use the so-called Chapman-Enskog assumption and require that

£ = fe, (3.19)
p=>_fi=>_ 1" (3.20)
pu = Z e.fi = Z ez’fi(o)- (3.21)
These requirements imply that
S P =o, (3.22)
Y e =0, (3.23)

for k > 1.

Taylor expansion of the lattice-Boltzmann equation (Eq. (3.9)) is

(00 + caadu) i+ 50+ €iada)fi b =~ (= fi7), 6.24)

which, by using expansions of Egs. (3.16) - (3.18), can be written as

(68751 + 628t2 + Eeiaala) <f7,(0) + 6fi(l) + 62f2.(2)> i

1
3 (eatl + 628t2 + eemala) (6&51 + 628t2 + eeigﬁm) (fl-(o) + efl-(l) + e2fi(2))

_ i 20
= <efz- + e ) (3.25)
The terms of the order O(¢) in Eq. (3.25) give
1
(On + €iadha) £ = —— 1. (3.26)
By summing over 7 and utilising Egs. (3.19) - (3.23), we obtain the result

O p + 014 (puy) = 0. (3.27)
Multiplying both sides of the Eq. (3.26) by e;3, summing over ¢, we find that
O, (pug) + O1aIly) =0, (3.28)
where the momentum-flux tensor of zeroth order is defined as

M) = > eineinf”. (3.29)
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The terms of order O(€?) in Eq. (3.25) form an equation
1 1
at2 + 5 (atl + eiaamz) (ah + eiﬂalﬁ) fz‘(O) + (am + ez‘aala) fi(l) = _;fim). (3.30)

After summing over ¢ we find that
O,p = 0. (3.31)
Multiplying both sides of Eq. (3.30) by ¢,3 and summing over i gives
Dry (pug) + 01110 = 0, (3.32)

where the first-order momentum-flux tensor is given by

1
m—(1- — eisfV. .
af ( 27_) zZ: ezaezﬁfz (3 33)

Combination of the first and second order results given by Egs. (3.27) and (3.31)
gives the continuity equation

Op + 0y (puy) = 0. (3.34)

Similarly by combining the first order result of Eq. (3.28) and the second order
result of Eq. (3.32), we arrive at the momentum equation

O (pug) + 0ullap = 0, (3.35)
where the momentum-flux tensor is

Mo = M) + 1. (3.36)

Next we show that the momentum-flux tensor defined above is valid and repro-
duces the Navier-Stokes equation for incompressible flows. To this end we need to
calculate the explicit expression for the momentum-flux tensor, which is done by
using the the equilibrium distribution function given by Eq. (3.12). For the zeroth-
order momentum-flux tensor we obtain the expression

Hg)ﬁ)f = C3pdap + Pllally = Poag + PUatis. (3.37)
From this equation, we find that the pressure in this model obeys the ideal gas law,
p=cp. (3.38)

The first-order momentum-flux tensor can be calculated by substituting Eq. (3.26)
into Eq. (3.33). In the incompressible limit, i.e when 0,p = 0 and O,u, = 0, we
obtain

EHSﬁ) = —vp (Oaup + Opuy) , (3.39)
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where the terms of order O(u?) have been ignored, and the kinematic viscosity is
given by
2r—1, 27—-1
V= Cc. = .
2 6
Now, with the help of these results, the momentum equation (Eq. (3.35)) can be
written as

(3.40)

1
Oug + uaOyug = —;&;p + V@iUg, (3.41)

which is the Navier-Stokes equation for incompressible flow. Since the lattice-
Boltzmann fluid obeys the equation of state of the ideal gas, the fluid is ac-
tually compressible, and simulations should be done in the low-Mach-number
(Ma = u/cg) limit. In addition reference frame should be chosen such that flow
speed is small in order to keep the momentum fluxes due to the terms of order
O(u?) negligible [34,35]. In practice one should not exceed the velocity 0.1 (in lat-
tice units).

The analysis above gives a useful result: in lattice-Boltzmann simulations the devi-
atoric stress tensor can be calculated locally from the distribution values using the
approximation fi(l) ~ [ = f; — f{Y where f'“‘ is the non-equilibrium part of the
distribution function (cf. Eq. (3.33)),

T

ol = — (1 - 2i> > eineis (fi = 7). (3.42)

i

There is no need for numerical differentiation of the velocity field as is the case in
the conventional methods in computational fluid dynamics, and stresses are ob-
tained at low computational cost.

Finally we point out that the lattice-Boltzmann equation can also be used to sim-
ulate Stokes flow. For this purpose the equilibrium distribution function has to be
modified such that

=t (1 + e”“f“) . (3.43)
C

S

The zeroth-order momentum-flux tensor obtained from this linear form of the equi-
librium distribution function is

1) = poas, (3.44)

which differs from the previously obtained form so that it has no convective term.
Thus simulations with this equilibrium distribution function produce flows that
obey the Stokes equation.
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3.5 Shan-Chen multiphase model

The lattice-Boltzmann method in its standard form has an equation of state of
the ideal gas. If we want to simulate systems with multiple phases, an additional
multiphase model is needed. Several multiphase models for the lattice-Boltzmann
method exist. The most widely used models are the colour-gradient model [36],
the Shan-Chen model (model of local interactions) [37], and the free-energy model
[38]. These models have been criticised, since they have some inconsistencies (see
e.g. Ref. [39]). Some new models have been proposed recently [40, 41], which
should have a more solid physical origin. Unfortunately, no reported numerical
simulations exist where these models would have been used. In Ref. [42], a mod-
ification of the model presented in Ref. [41] was used to simulate some physical
phenomena. According to Lee and Lin [43], this modified model has some new
inconsistensies, however.

Here we give a brief review of the Shan—-Chen model which is used in the simula-
tions described in next Chapter. The Shan—Chen model has successfully been used
in simulating flows in porous media [44—46]. As we are interested in large system:s,
an attractive property of the Shan—-Chen model is that it needs only one set of dis-
tribution functions f; when simulating liquid-vapour flows. In other alternatives
two sets of distribution functions are needed, and thus also a double amount of
memory.

In the Shan—Chen model interactions are added between neighbouring fluid nodes.
This cohesive force leads to phase separation in the system so that the fluid has
two equilibrium densities, i.e. a vapour phase and a liquid phase. The cohesive
interaction is incorporated by adding to each fluid node an extra force

Fa(r,t) = —y(r,t) Y Ga(r +e;, t)e;, (3.45)
where the effective mass ¢(r,t) = 1 — exp(—p), and
2G for |e;)| =1

G; = G for |e;| = V2 (3.46)
0 forle; =0

for the D3Q19 model. Notice that G; = 36Gt; ensuring the isotropy of the model.
Models with higher degree of isotropy were recently introduced [47] so as to re-
duce the spurious currents arising at the liquid-vapour interface. These models,
however, require interactions of longer range. The parameter G is used to control
the strength of the cohesive force and thus the magnitude of surface tension. The
effective mass v is chosen such that when p is small ¢ «x p, and when p is large
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Y approaches a constant value. It has been shown that this choice leads to a ther-
modynamic inconsistency of the method [39, 48]. The only choice leading to no
inconsistencies would be 9 o< p. This choice is however out of question since it ig-
nores the effect of repulsive core, i.e. it leads to mass collapse where density tends
to infinity. Therefore, we have chosen the effective mass similarly to the original
article of Shan and Chen [37].

A similar approach can be used to simulate wetting phenomena. To model the in-
teraction between fluid and solid, Martys and Chen introduced another additional
interaction [44]. This force has a similar form as the cohesive force, and can be writ-
ten as

Fy = —1(r,t) > Wis(r +e;, t)e;, (3.47)
where s = 0, 1 for the fluid and solid nodes, respectively, and

2W  for |e;| =1
W;=<¢ W forle]=v2 . (3.48)
0 forle;| =0

The strength of this adhesive force is controlled by parameter W. It is sometimes
erroneously claimed that a negative value of W leads to a wetting liquid and a
positive value to a non-wetting liquid. This is however not true in the case of a
multiphase fluid. Reason for this is that also the cohesive force contributes to the
fluid-solid interaction. The actual transition from a wetting to a non-wetting liquid
happens when W is clearly negative, actual value depending on the parameter G
(see Ref. [II]).

One consequence of this interplay between the forces at walls is that the density of
the fluid in liquid phase is lower near the walls than in the bulk. This feature leads
on the other hand to a slip velocity at the walls even when the no-slip boundary
condition is imposed [46]. However, some authors have used this property when
studying slip in hydrophobic microchannels [49, 50]. One possibility to avoid an
unwanted slip velocity in the multiphase fluid system could be to set the compo-
nent perpendicular to the wall of the cohesive force equal to zero for the nodes next
to the wall, as was done by Kang et al. [51] in the case of the Shan-Chen multicom-
ponent model. This can indeed be done when performing simulations in simple
geometries such as flow between parallel plates, as was the case in Ref. [51], or
more generally, when the exact position and the surface normal of the wall are
known. As we are interested in multiphase flows in more complex geometries, we
are not able to follow their suggestion, however.

The effect of both the cohesive and the adhesive forces are added into the lattice-
Boltzmann formalism in the relaxation process, using a modified velocity deter-
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mined from the equation
pu' = pu+7(Fg + Fy) (3.49)

in the equilibrium distribution function.

The addition of cohesive force leads to a modified equation of state. The force term
can be expanded, in the first order [52], such that

Fo ~ —360G Y t;(Y+e - Vi)e; (3.50)

= -V (18Gcy?). (3.51)

This force modifies the pressure that becomes
1
p=cip+ 18Gcy? = 3Pt 6G>. (3.52)

From the equation above we see that phase separation occurs if G is sufficiently
negative and ¢ is an increasing but bounded (no mass collapse) function of p.

The Shan—Chen model produces also a surface tension at the interface between the
liquid and vapour phases. The magnitude of surface tension depends on parame-
ter GG, and is obtained from numerical simulations. For example, one can simulate
droplets with varying radius and calculate the pressure difference across the liquid-
vapour interface. Surface tension is then obtained from the Laplace law which says
that the pressure difference equals surface tension multiplied by the inverse radius
of the droplet [37,44, 53].

It is evident that the Shan—-Chen model does not conserve momentum locally due
to the forces added. However, momentum is conserved globally [37]. This can be
seen by calculating the total momentum change in the system. By summing over
all lattice nodes, we obtain

AP=>) F(r)=- Z G (r)h(r + e;)e;. (3.53)

Since e; is a dummy variable we can replace it with —e;. This yields

AP =) Gap(r)i(r — e)e;. (3.54)

If the boundary conditions are such that there is no momentum flux from the
boundaries (this is the case with, e.g., periodic boundary conditions) also 7 is a
dummy variable and we can replace r — e; with r. This gives the net momentum
change

AP = Gip(r + e;)(r)e; = —AP. (3.55)

Hence we have AP = (), i.e. the momentum is conserved.
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3.6 Solid boundaries

A boundary condition is needed when a fluid node is next to a solid node. In that
case some of the distribution functions f; are unknown after the streaming process.
The task of the boundary condition is to determine the values of these unknown
quantities. The most common boundary condition is the so-called no-slip boundary
where the velocity of the fluid close to a wall equals the velocity of wall.

3.6.1 Bounce-back boundary condition

In lattice-Boltzmann simulations solid boundaries are usually introduced into the
system by the so-called bounce-back boundary condition. This boundary condi-
tion is simple to implement, computationally very efficient, and can be used for
arbitrary shaped boundaries. These issues have enabled the simulations in compli-
cated geometries such as flow through porous media. The bounce-back boundary
condition has been maybe the most important factor in the success of the lattice-
Boltzmann method. On the other hand, bounce back is in some sense also the weak-
est point in lattice-Boltzmann simulations: bounce back is only first-order accu-
rate [54, 55] (except in some special cases), whereas the lattice-Boltzmann method
itself is second-order accurate in the interior fluid nodes. Therefore bounce-back
treatment for boundaries degrades the accuracy of such lattice-Boltzmann simula-
tions that include solid walls.

The bounce-back scheme is a heuristic boundary treatment which was inherited
from the lattice-gas method [12,56]. In the bounce-back method the particles (in
lattice gas) or distribution functions (in lattice Boltzmann) simply scatter from wall
nodes thus fixing the unknown distribution functions the via relation

f,»(r, t+ ].) = f_,»(r, t), (356)

where —i refers to the direction opposite to direction i, e_; = —e;, and e_; points
to a solid node. One of the advantages of this method is that it conserves the mass.
Several improved boundary conditions have been proposed [57-60]. These bound-
ary conditions are second-order accurate for simple geometries with straight walls
but are difficult to extent to arbitrary surface geometries. On the other hand it has
been shown that, for simple flows confined by straight walls such as Poiseuille
or Couette flows, even the bounce-back scheme produces a second-order conver-
gence of the error if the wall is located between the solid and fluid nodes [61]. It
has also been pointed out that bounce back works quite well when the BGK relax-
ation time is 7 ~ 1.0, but the slip at the wall grows strongly especially for large
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values of 7 [59,60]. However, when multiple-relaxation-time models are used, the
slip velocity is better under control (see e.g. Refs. [62,63]).

Recently, several boundary treatments have been proposed for curved geometries
[64-72]. These methods are not automatically second-order convergent, however.
For example, the method developed by Verberg and Ladd [68] shows only first-
order convergence for a Poiseuille flow in an inclined channel. The Bouzidi method
[69] has second-order convergence, but, on the other hand, it does not conserve the
mass.

3.6.2 Moving walls and force evaluation

Several applications include moving boundaries, such as suspended particles mov-
ing in the fluid or moving walls that are used to achieve a shear flow. Ladd [26]
generalised the bounce-back condition for moving boundaries. For this boundary
condition the scattered distribution function is given by

Filrt+1) = foa(r ) + 252“ (s - &), (357)

where u, is the velocity of the moving boundary. This equation can be understood
as follows [73]: the distribution functions are transformed by a Galilean transfor-
mation to a frame of reference where the moving wall is at rest, then a normal
bounce-back scheme is used, and finally the distributions are transformed back
to the original frame of reference. Notice that the rule of Eq. (3.57) reduces to the
ordinary bounce-back rule when u;, = 0.

Evaluation of the force acting on solid obstacles is of great importance in several
applications where the fluid-structure interaction has a central role, e.g. in sus-
pension flows. There exist two different approaches for calculating the force: the
momentum-exchance method [26] and the stress-integration method [74]. In the
tirst method the force is calculated from the momentum transfer due to the bounce-
back rule, Eq. (3.57), i.e. the force acting on a boundary at r; is

F (rp,t) = Z (in(rb, t) + 252@ uy, - ei) e;. (3.58)

i S

In this summation we only include such directions i for which the generalised
bounce-back rule is used. The total force acting on the obstacle is then obtained
by summing over all boundary points,

Fr=Y F(r,t). (3.59)
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Similarly, the total torque is calculated by summing the torques due to the forces,

Tr =Y (r,—R)xF(ry1), (3.60)

'y

where R is the centre of mass of the obstacle. In the stress-integration method the
total force acting on a particle is calculated by integrating the stress tensor over the
particle surface,

Fr= /Sa' -dS = /s [—pl+ 1 (Vu+ (Vu)T)] - dS. (3.61)

These two approaches have been investigated and compared in a detailed man-
ner by Mei et al [75]. They found that the momentum-exchange method is supe-
rior to the stress-integration method, and assumed that this is due to the fact that,
in the former method, force is calculated directly from the distribution functions
whilst in the latter force is obtained indirectly. Mei and co-workers argued that the
momentum-exchange method is a reliable, accurate, and easy to implement. On
the other hand, stress integration is computationally laborous and more difficult to
implement, especially in the three-dimensional case. Also, fluctuations in the force
are larger in the stress-integration method.

3.7 Suspensions with spherical particles

The lattice-Boltzmann method has been rather successful in simulations of the be-
haviour of particle suspensions. Most of the work has focused on particles having
a size of several lattice spacings. In the majority of this kind of simulations the
coupling between the fluid and solid phases has been realised by the method de-
scribed above, see e.g. Refs. [26, 76-87]. However, recently also approaches based
on the immersed-boundary methods have been used [88-90]. Some work has been
performed with sub-grid-scale particles or by considering suspended particles as
a continuum and solving an advection-diffusion equation coupled with the fluid-
flow simulator [91-93].

In this work particles larger than one lattice unit were used. This enabled us to solve
the flow field between particles and to calculate the internal stresses of individual
particles. The price one had to pay of this accurate description of the suspension
was that number of particles in the simulated systems was rather small, i.e. simula-
tions of industrial-scale systems could not be done with the computational power
available at the moment.

Here we will only consider monodispersed suspension, where particles have a
spherical shape with a diameter larger than one lattice unit. The framework for
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lattice-Boltzmann simulations of suspensions was developed by Ladd [26]. A pe-
culiar property of the Ladd’s original model is that the particles are not actually
solid ones but hollow shells with an internal fluid. This model has been success-
fully applied to simulating suspensions, but it has also some artefacts related to
the time that the internal fluid needs for relaxing after changes in particle velocity.
Another drawback of the Ladd method is that particles must have a density larger
than the fluid density to avoid numerical instabilities.

An alternative scheme for suspension simulations was developed by Aidun and
co-workers [77]. In the Aidun model the internal fluid has been removed. This
eliminates the above mentioned problems related to the internal fluid. However,
new problems emerge. As a particle moves over the lattice, nodes previously lo-
cated under the particle are uncovered, and a method to create fluid to these nodes
is needed. We use the equilibrium distribution function with the velocity of particle
boundary in order to create new fluid. At the same time, fluid nodes may be cov-
ered by particles, and this fluid needs to be removed. Thus fluid mass in the Aidun
model is not strictly conserved. Another problem related to the Aidun model arises
in the situation where two particles come in close contact so that there are no fluid
nodes left between the surfaces of the particles. This situation leads to an unphys-
ically low pressure between the particles. This problem can be solved by adding
‘virtual” fluid in the nodes inside particles next to the particle surface. Here the
equilibrium distribution functions with velocity of the particle boundary and the
average fluid density are used [IV]. This virtual fluid has no effect unless particles
come in close contact.

Also models that slightly differ from these two main approaches have been pro-
posed. In the model developed by Behrend particles are also filled by fluid, but
solid-fluid interaction takes place at lattice nodes. In addition a “relaxed bounce-
back method at the nodes” is used [78]. This method simplifies the Ladd’s algo-
rithm. Another modification to the Ladd method has been proposed by Heemels
et al. who developed a method to remove the artefacts of the internal fluid with-
out removing the fluid itself [79]. The model of Heemels et al. is however rather
complicated, and it has not been used by other authors.

Which model one should choose to use for simulations is partially a matter of taste,
since both the method with and the one without interior fluid have shown their
capability to produce realistic results. We have chosen the Aidun method in order
to keep the possibility to vary the density of the particles more freely.

The algorithm used in lattice-Boltzmann suspension simulations can be described
as follows. The lattice-Boltzmann method is used to solve the flow field in the fluid
phase of the suspension. Forces and torques acting on individual particles are cal-
culated as described in Section 3.6.2, i.e. using Egs. (3.59) and (3.60). The motion
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of particles is governed by Newtonian dynamics. Both the translational and the
rotational motion is allowed in our simulations. The equations of motion for the
particles can be integrated by using methods known from molecular dynamics (cf.
Ref. [94]), and new positions and velocities of the particles are thus obtained.

When two particles close to each other have a non-zero relative motion, so-called
lubrication forces arise. It has been shown that when the distance between parti-
cle surfaces is larger than (approximately) one lattice unit, the lattice-Boltzmann
method is capable of solving lubrication forces correctly (see e.g. [26]). However,
when particles are coming in close contact, typically when the gap between parti-
cles is less than a lattice unit, a more accurate description of the flow between the
particles would be needed, and the lattice-Boltzmann method fails to reproduce
the correct lubrication interaction. Recently, two schemes for the lubrication-force
correction have been developed [95,96]. We have used the correction proposed by
Nguyen and Ladd [95], in which an additional force

i —Om ey <% - %) Uiz - RpRig, 7 <hy (3.62)
0, h > hy

is added between particle pairs. Here y is the dynamic viscosity of the fluid, a,
and a, are the radii of the particles, h is the distance between the particle surfaces,
U, = U; — U, is the velocity difference between the particles, and Ry, is a unit vec-
tor pointing from the centre of particle 1 to that of particle 2. The cut-off distance
hy tells the distance below which the correction is needed and can be deduced
from simulations. For distances h > hy the lattice-Boltzmann method is able to
produce the hydrodynamic interaction correctly and no correction is needed. This
correction accounts only for the normal component of the lubrication correction.
The tangential component is much weaker and has thus been ignored in our simu-
lations.

Lubrication correction is necessary especially when a coarse discretisation for the
particles is used. Unfortunately, at small interparticle distances the divergent lu-
brication force may lead to large accelerations and thus to numerical instabilities
if an explicit velocity update is used. However, using an implicit velocity update
has also problems since it leads to a problem with a computational complexity of
O(n?®), where n is the number of particles. Nguyen and Ladd developed a “clus-
ter implicit method”, where an implicit update is only used when necessary, i.e.
in groups of particles (or clusters) where distances between particle surfaces are
less than hy [95]. The computational cost of their method depends mainly on the
maximum cluster size in the system. The cluster implicit method is, however, not
suitable for our purposes since we are mainly interested in dense suspensions with
large numbers of particles. In this kind of suspension the maximum cluster size
typically becomes large. Also, parallelisation of the cluster implicit method would
be laborous.
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To this end, we have used a simpler, even if less rigorous, method where we have
set a minimum value for the distance h, and thus restricted the lubrication force to
values ensuring the numerical stability of our simulations. To prevent particle over-
laps we added elastic collisions between such pairs of particles which are coming
too close to each others. For the particle pairs that still tend to overlap, also a small
repulsive velocity-independent force was used [IV]. With these modifications we
found that the simulations were stable and no particle overlaps occurred, at least
for sufficiently small shear rates and/or solid volume fractions.
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4.1 Wetting and capillarity

If a liquid droplet is placed in contact with a solid surface it exhibits different wet-
ting behaviour depending on the properties of the liquid, the surface, and the sur-
rounding gas. The wetting behaviour of a liquid is characterised by the contact
angle 0 that liquid forms with the solid at the three-phase contact line. In a case
where contact angle is less than 90° liquid is called wetting (cf. Fig. 4.1), and when
the contact angle is greater than 90°, liquid is called non-wetting. Sometimes, if one
wants to connect wetting behaviour with the surface, one says that surface is hy-
drophilic or hydrophobic. In spite of this terminology, wetting behaviour is neither
a property of the liquid nor the solid phases alone but results from minimisation of
the interfacial free energies of the liquid-solid, liquid-vapour, and vapour-solid in-
terfaces, and thus depends on properties of all phases involved. For a liquid droplet
on an ideal flat and chemically homogeneous surface, this minimisation gives con-
tact angle [97]

cosf = w, 4.1)
TLv

where +;; is the free energy per unit area of phases i and j, and V, L, and S stand
for the vapour, liquid, and solid, respectively. Free energy ~.y is known simply as
surface tension, and is denoted hereafter simply with ~. The above expression for
contact angle is known as the Young’s equation. In practice surface heterogeneities
have a significant effect on contact angle. These heterogeneities also cause the so-
called contact-angle hysteresis, i.e. a macroscopic (apparent) contact angle is not
uniquely defined but varies between minimum and maximum values which are
called the receding and advancing contact angle, respectively.

Wetting and non-wetting liquids behave in opposite manners when meeting with a
capillary tube. A wetting liquid fills the tube and rises inside the tube up to a level
higher than that of the liquid outside the tube. On the other hand, a non-wetting
liquid escapes the tube and the liquid level inside the tube is below the level out-
side. In other words, a wetting liquid spontaneously fills capillaries, but an external
pressure is needed to force a non-wetting liquid to enter a tube. Similar behaviour
is observed also when liquids meet more complex capillary systems such as porous
media.

33
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Figure 4.1: Three droplets with dissimilar wettability resting on a solid surface. In the right-hand
droplet the contact angle is shown.

In spite of its simplicity, a liquid column in a capillary is an important system in
porous-media research, and many models considering the behaviour of liquids in
porous materials are based on expressions derived for a single capillary. There-
fore, we next consider non-wetting and wetting liquids in single capillaries. In both
cases gravity is neglected since in the applications considered later, gravity is not
important.

First we consider a static non-wetting case. An external pressure is needed to force
the liquid to intrude inside a capillary tube with radius a. Let the pressure needed
to keep the liquid column in equilibrium in the tube be Ap. Capillary force tries
in this case to expel the liquid from the tube. Balancing the extruding force (capil-
lary force) and the intruding force (external pressure) leads to so-called Washburn
equation [98]

2~ cosf
Ap = 7@ . (4.2)

The Washburn equation is used, e.g., for interpreting the measurement data in
mercury-intrusion porosimetry.

Next we consider capillary penetration of a wetting, viscous, and incompressible
liquid in a single capillary tube. Since the liquid is wetting, it spontaneously rises
in the tube. Let us consider the case where the flow in tube is laminar and fully
developed (Poiseuille flow). By applying Newton’s second law on a column of
liquid, we obtain

2z 1 [(dz\’ 2ycosf  8uzdz
P[W*é(a)]— « @ “3

where z is the height of the column, a the radius of the tube, and p is the den-
sity, v the surface tension, 0 the contact angle, and 1 the viscosity of the liquid. By
neglecting inertial terms from this equation, the classical result of Lucas [99] and
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Washburn [100],

2ycosf  8uzdz

— — =0 4.4
a a? dt ’ (44)

is obtained. This equation describes a quasi-steady-state process where the driving

capillary force is balanced by the viscous drag. Integration of this equation gives

ay cos 6 12
2(t) = ( 5 ) /2, (4.5)
1

Experiments have shown that this simple expression can also be used to describe
the time evolution of capillary penetration of liquids in porous structures such as,
e.g., paper [101-103].

Let us finally consider radial penetration of a wetting liquid in a porous medium.
More specifically we consider radial penetration taking place from an unlimited
cylindrical source of liquid with radius R,. We start from the Darcy’s law,

Q k oP

~ -tz 4.6

A [ or (4.6)
Here @ is the volumetric flow through a cross section of area A, k is the permeabil-
ity of the medium, and P is the pressure. For the radial penetration A = 27rH with
H the thickness of the medium. Integration of Eq. (4.6) yields

Qu . R
PC:P(R())—P(R): QWHk’ln?O’

(4.7)

where P, is the capillary pressure and R the radius of the wetted area. Now by us-
ing the average liquid velocity V' = dR/dt, Eq. (4.7) becomes a differential equation

:R;Wln(R>dR

P. — | —. 4.8
k Ry) dt (48)

Integration of this equation gives

R\°(, R 1\ 1 2P
— In — — - - =—t. 4.9
(RO) (nRo 2)+2 OuRg *9)
Capillary pressure can be written as P. = 2y cos6/a, and different models for per-
meability k£ may be used. For example, the permeability of a system that consists of
capillary tubes of radius q, is found to be k = ¢a?/24. More sophisticated models

of permeability of low-Reynolds-number flows through porous materials can be
found in, e.g., Ref. [104]. In this case Eq. (4.9) takes the form

2
BN (B L) 1 qacest, (4.10)
R() R() 2 2 6/LRO
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This equation resembles the one derived by Marmur for radial penetration in a
single radial capillary formed between two infinite parallel plates with a cylindrical
source of liquid [105]. There is, however, a different numerical constant in that case
on the right-hand side of the equation. The qualitative validity of an equation of
this kind for planar capillary systems was verified experimentally by Borhan and
Rungta [106], and by Danino and Marmur [102].

4.2 The X-ray tomography technique

Tomography is a non-destructive and non-invasive technique used for three-
dimensional imaging of materials. In X-ray tomography the sample is imaged by
transmitting X rays through it. The transmitted intensity of the beam is collected
with a CCD camera. This intensity is a line integral of the attenuation coefficient
along the beam, and it is a function of the material composition and density. Sample
is rotated and a large number of projected images is obtained by repeating the pro-
cedure at different angles. From this set of images, the local three-dimensional map
of attenuation coefficients of the X rays is obtained by using the Radon transforma-
tion [107]. The quality of this reconstruction depends on the quality and number of
projected images. By segmenting the grey-scale values, material components with
different absorptivities for X rays can be found. For the flow simulations we need
binarised images of the samples, in which the volume is divided into a pore space
and a solid matrix. Recent advancements in X-ray microtomography have made
imaging of such porous materials as paper possible (see e.g. Refs. [108-110]).

The results reported in this Chapter have been obtained using an X-ray tomo-
graphic image of paper obtained from Ramaswamy et al. [111] as the simulation ge-
ometry. This sample was a paper board handsheet with a basis weight of 300 g/m?.
The voxel size of the image is (2.0 um)? and it has been obtained by a SkyScan-1072
device. The same sample has been previously analysed in detail by Ramaswamy et
al. [111] and also flow simulations of a single-phase fluid have been done for it by
the lattice-Boltzmann method [112].

4.3 Liquid penetration in paper

We used the Shan—Chen lattice-Boltzmann model to simulate capillary penetra-
tion of a wetting liquid in the X-ray microtomographic image of paper described
above [I]. Parameters in the simulations were relaxation time 7 = 1.0, cohesion pa-
rameter G = —0.15, and adhesion parameter W = —0.10. These values result in
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a wetting liquid which tends to fill the pores in paper spontaneously. Three cases
were simulated: unidirectional penetration of a liquid front in the paper, radial
two-dimensional penetration of liquid, and penetration of a small liquid droplet.

4.3.1 Unidirectional penetration

Unidirectional penetration of liquid in the paper sample was simulated from an
unlimited liquid source that was realised by using a pressure boundary condition
on one of the boundaries. We chose the value of pressure to match with the equi-
librium pressure. Therefore, liquid penetrated the sample only due to the capillary
forces.

Location of the liquid front was determined from the mass of the penetrated lig-
uid, which can easily be converted to the average position of the front since the
densities of both liquid and vapour phases are known as well as the porosity of
the sample. Results are shown in Fig. 4.2 for penetration both in the transverse
and in the in-plane directions. Results obtained are well fitted by a power law. For
the exponent we found the values 0.50 and 0.47 for the transverse and in-plane
directions, respectively, in good agreement with the value 1/2 predicted by the
Lucas-Washburn equation (Eq. 4.5).

All quantities in the Lucas-Washburn equation are known except the tube radius
and contact angle. We can thus determine a value for the ’effective capillary ra-
dius” a.sy = acosf. In the tranverse direction we found a.;; = 0.74 pym, and in
the in-plane directions 2.8 and 3.5 um for two perpendicular directions. These re-
sults indicate that penetration in the tranverse direction is slower than in the in-
plane directions. This observation is in agreement with the permeabilities obtained
from single-phase lattice-Boltzmann simulations using the same tomographic im-
age [112]. Also, the values of the effective capillary radius are in good agreement
with the pore sizes obtained for the same image [111].

Results obtained are also in agreement with experiments on capillary penetration
of wetting liquids in paper, which have shown that the Lucas-Washburn equation
correctly describes the dynamics of the penetration process [101-103]. Notice, how-
ever, the difference in the length scales: in experiments large systems have been
used whereas in our simulation penetration depths are of the order of one fibre
length.



38

Two-phase flow in paper

10

Fo

10°

10°

Time

10*

10

Figure 4.2: Depth of the liquid front versus time in unidirectional penetration of wetting liquid.
Lower curve stands for the transverse and the upper curve for the in-plane directions. Solid lines

are power-law fits to the simulation data.
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Figure 4.3: A two-dimensional cross section of radial penetration of a wetting liquid. Liquid source
is located in the cavity in the middle of the sample. Blue, red, and cyan are used for solid, liquid,
and vapour phases, respectively.

4.3.2 Radial penetration

The second simulated case was radial penetration of liquid from a cylindrical un-
limited liquid source. Source was added to the simulation by creating a cylindrical
cavity through the sample, and having the source in this cavity (see Fig. 4.3). Liquid
density in the source was kept constant, and the pressure was chosen again such
that penetration took place only because of capillary forces.

The position of the liquid front was obtained from the mass of penetrated liquid
similarly as in the previous case. The average radius of the wetted area is shown in
Fig. 4.4. The capillary model of Eq. (4.10) describing this kind of penetration was
fitted to the simulation results, and good agreement was found. From the fit we
could again calculate the effective capillary radius a.;; which was found to be 4.32
pm. The value obtained was in good agreement with the effective capillary radii
obtained form unidirectional penetration in the in-plane directions of the sample.

4.3.3 Droplet penetration

The last simulation with the wetting liquid was penetration of a small droplet into
the paper sample. In this case the simulation domain included in addition to the
tomographic image also space for a droplet above the sample. Droplet had a di-
ameter of about 95 lattice units, and it was positioned just above the sample. No
initial velocity was given to the droplet, but it started to penetrate the sample due
to capillary forces. Therefore the ratio of the inertial and capillary forces, i.e. the
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Figure 4.4: Radial penetration of wetting liquid. Simulation results are compared with Eq. (4.10)

Weber number, was small, and no splashing of the liquid occurred [113]. A droplet
at four different stages of penetration is illustrated in Fig. 4.5.

The kinetics of droplet penetration was analysed by using a capillary model for
two-dimensional radial penetration. The basal radius and volume of the droplet
above the sample surface were determined as a function of time. Then Eq. (4.8)
was numerically integrated and fitted to the simulation results so as to take into ac-
count the decreasing size of the droplet, i.e. the liquid source. Notice that only the
data obtained from capillary penetration of the droplet were fitted by the model.
The initial phase where droplet spreads, oscillates, and penetrates the sample me-
chanically was excluded. Results of the simulation and a fit by the capillary model
are shown in Fig. 4.6. Simulation data are fitted well by the model. The value
obtained for the effective capillary radius from droplet penetration was 16.9 ym.
This is somewhat different from the value obtained from the simulation of radial
penetration from an unlimited liquid source or of unidirectional penetration. One
should notice, however, that the droplet used in the simulations was quite small.
In principle we should construct a three-dimensional capillary model to describe
the kinetics of droplet penetration. However, we noticed that droplet penetration
in this paper sample was highly anisotropic. In other words, droplet penetrated
mainly in the in-plane direction and only slow penetration in the transverse direc-
tion was observed. This observation is in agreements with the results we obtained
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Figure 4.5: Droplet penetration. Snapshots from four different stages of the penetration process.
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Figure 4.6: Volume of liquid above the sample shown as a function of time. Simulation results
(circles) are compared with those of a capillary model (solid line).
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for unidirectional penetration in the transverse and in-plane directions. Thus the
assumption of two-dimensional radial penetration is not unreasonable. However,
the results obtained for droplet penetration are mainly qualitative.

4.4 Intrusion of non-wetting liquid in paper

4.4.1 Background

Mercury-intrusion porosimetry is a technique that is used for characterisation of
porous materials. In particular it has commonly been used for measurements of
pore-size distribution. Operation of mercury-intrusion porosimetry is based on the
fact that mercury is a non-wetting liquid, i.e. an external pressure is needed to force
the mercury to intrude into the pores.

Interpretation of mercury intrusion data is based on the Washburn equation (Eq.
(4.2)) which gives the relationship between the pressure applied to mercury and the
corresponding pore size [98]. This interpretarion is based on the assumption that all
the pores are cylindrical with circular cross section. All pores are also assumed to be
equally accessible, i.e. connected to sample surface either directly or through larger
pores. In mercury-intrusion porosimetry experiments the sample is immersed in
mercury and the pressure is increased gradually. For increasing pressure mercury
fills smaller and smaller pores. The intruded volume of mercury related to each
pressure increment is measured and assigned with the corresponding pore size as
given by the Washburn equation.

Assumptions made for the pore structure are known to be invalid for most of real
materials. An example of such a situation is the so-called ink-bottle effect. The ink-
bottle effect arises if a larger pore is accessible only through a smaller pore. In this
case larger pore is not filled until the pressure is high enough to fill also the smaller
pore. This leads to an overestimation of the volume of the small pores and to an un-
derestimation of the volume of large pores. In 1945 Ritter and Drake published two
papers where a mercury-intrusion porosimetry equipment was presented and ap-
plied to several materials [114]. These papers are the first published reports where
mercury-intrusion porosimetry has been applied. Already in these papers it was
pointed that “if there exists in the material pores which are considerably larger than the
largest entrances to them, these pores will be measured as of the size of the largest opening.”
In other words, Ritter and Drake worried about such materials which do not fulfil
the assumption of equal accessibility. The problematic pores were later named as
ink-bottle pores by Meyer [115].
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4.4.2 Benchmark simulations

Before discussing the actual mercury-intrusion porosimetry simulation, we con-
sider the behaviour of non-wetting liquid, as produced by the Shan—-Chen multi-
phase lattice-Boltzmann model, in simple pores [II]. Problems arise when the small-
est pores in the tomographic images of paper have a size of just few lattice units.
It is evident that in these cases discretisation is too coarse both for an accurate de-
scription of the pore structures and for the simulation method.

The first bechmark case we simulated was the intrusion of non-wetting liquid into
pores of known size and shape. This test is needed because the contact angle of the
liquid in Shan-Chen model cannot be directly specified. As the pore size is now
known, one can use Eq. (4.2) to determine the contact angle. First we used pores
with a square cross section. In this case there are no geometric discretisation errors
present. Several different pore sizes were used in the simulations starting from a
pore with a cross section of 5 x 5 ending up with a cross section of 21 x 21 (in lattice
units). The value of the contact angle was found to be 132.8° 4+ 0.9° for the adhesion
strength W = 0.05, 116.4°£1.3° for W = 0.06, and 153°£7° for W = 0.04. In the first
two cases the contact angle remained constant, whereas in the most non-wetting
case the error bounds were quite large. This variation is related to decreased liquid
density close to the pore walls due to the growing hydrophobicity, which enhances
problems that results from poor discretisation.

Simulations were repeated for pores having a circular cross section. Here, espe-
cially for small (or coarsely discretised) pores, the discretised shape of the pore
cross section may differ significantly from the actual shape. Therefore using Eq.
(4.2) alone with the nominal radius of the pore cross section leads to an unaccept-
able situation where the contact angle seems to vary as a function of the nominal
radius for small pore sizes. Neither does the use of hydraulic radius help the sit-
uation. The problem seems to be in the determination of the radii of small circles
mapped onto a square lattice. This problem can be circumvented by taking into ac-
count the actual dicretised shape of the pore and then doing the geometric correc-
tion as explained in Ref. [II]. In Fig. 4.7 we show the result for the case W = —0.05.
As can be seen from the figure, when the discrete shape of the pore is taken into ac-
count, contact angle corresponds very closely to the one obtained from pores with
a square cross section.

As a second test case we studied the descent of a non-wetting liquid column in a
capillary tube. Previously Raiskinmdki et al. have studied capillary rise dynamics
by using the same lattice-Boltzmann model [46]. In this test gravity was present.
The tube was initially filled by the liquid and the system was then simulated until
a steady state was obtained. After this the contact angle was obtained from the
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Figure 4.7: Contact angle as a function of pore radius for W = —0.05. Crosses indicate the values

of contact angle obtained directly from Eq. (4.2) and circles the corrected values (cf. Ref. [II]). Solid
line shows the contact angle obtained from pores of square cross section and dashed lines show the
error bounds.
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Figure 4.8: Contact angle as a function of gravitational acceleration. Stars on the vertical axis indi-
cate the contact angles obtained from intrusion tests for W = —0.05 (0) and W = —0.06 (O). The
height of the tube is H and the size of the tube cross section is a x a.

equation
AghAp
Po
Here A and P are the area and perimeter of the pore cross section, respectively, Ap
is the density difference between the two phases, ¢ the gravitational acceleration
and h the height of the liquid column (negative for non-wetting liquids). As we
have seen, in practice lattice-Boltzmann fluids are not totally incompressible. The
effect of compressibility needs to be taken into account when gravity is present,
and this was done by calculating the factor hAp as a density integral along the
centreline of the tube. Results of these simulations are shown in Fig. 4.8. The con-
tact angle determined in this way varied as the gravitational acceleration or the
tube length was varied. This is most likely due to compressibility or some finite-
size effects that appear in our system since the simulated system was rather small.
However, the contact angle had values very close to those obtained from the pore
test indicating that the values obtained from the intrusion test are reasonable.

cosf) = (4.11)

Based on the benchmark simulation we chose to carry out the simulations by using
the parameters G = —0.15 and W = —0.05. This choice adjusts the contact angle
to a value that is close to the one used for paper in mercury-intrusion porosimetry
experiments.
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Figure 4.9: Cumulative porosities as a function of pore diameter, obtained by lattice-Boltzmann
simulation (filled circles), experiment (continuous line), and invasion-percolation simulation (dot-
ted line).

4.4.3 Intrusion of non-wetting liquid in paper

In order to clarify the role of ink-bottle pores for the results of mercury-intrusion
porosimetry, we simulated by the lattice-Boltzmann method intrusion of a non-
wetting liquid into an X-ray tomographic reconstruction of the sample of paper
board described above [III]. The simulation results were compared with those ob-
tained from mercury-intrusion porosimetry experiments on the same paper board
[111] and a numerical invasion-percolation process in the same tomographic im-
age. The lattice-Boltzmann simulation was made to follow the experimental proce-
dure such that experimental results could be used to verify the simulations. Image
analysis was used to obtain ‘correct’ pore-size and pore-throat distributions. Image
analysis was also applied to situations during the simulations, thus allowing us to
quantitatively analyse the intrusion process.

The pore-size analysis we used has been previously used, e.g., by Delarue et al.
[116]. We chose a random initial point from the pore space. The pore size related
to this point was defined as the radius of the largest sphere fitting into the pore
space and including the initial point. This process was iterated to give a pore-size
distribution for the pore space.
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A pore-throat distribution was obtained by first determining the skeleton [117] and
distance map (i.e., the distances from each pore voxel to the pore walls) of the
pore space. Pore throats were found as saddle points in the distance map for the
skeleton. The volume attached to each pore throat was determined as the size of
the pore space that could be invaded away from the closest surface such that the
pore or throat diameter remained larger than or equal to that of the initial throat.

The lattice-Boltzmann simulation followed the experimental procedure. The sam-
ple was immersed in the non-wetting liquid by adding layers of liquid on two op-
posite surfaces of the sample. Pressure was gradually increased and the amount of
liquid intruding into the sample was measured for each increment. The obtained
data were transformed into a cumulative porosity using the Washburn equation
exactly in the same manner as in experiments. In Fig. 4.9 we show the cumula-
tive porosity obtained from the simulation and compare the result with the data
obtained from the experiment and image analysis. Results of simulation and ex-
periment are surprisingly similar. Therefore, we can assume that the simulated in-
trusion process follows quite closely that of real intrusion.

Utilising the data obtained from these analyses we could also simulate the filling of
the pore space by an invasion-percolation process. In the intrusion phase the exter-
nal pressure determined the minimal pore-throat size that could be invaded, while
in the extrusion phase it determined the maximum size of the pores that could
be evacuated. Evacuation was only possible through a continuous liquid phase
reaching the sample surface. In Fig. 4.9, we also show the result of an invasion-
percolation simulation for the same sample. This simulation was affected by the
discreteness of the image (pore-throat radius) more than the lattice-Boltzmann
simulation, but shows, however, a qualitatively similar behaviour as the lattice-
Boltzmann simulation and mercury-intrusion porosimetry measurement.

Comparing the pore spaces filled at different values of pressure (pore radius) by the
lattice-Boltzmann and invasion-percolation simulations, we found that they indeed
are very similar. The inflection point in the cumulative porosity gives the pressure
at which the invading liquid first percolates the sample. In Fig. 4.10 we show the
intruded liquid, just beyond the percolation pressure, as given by the two different
simulations. It is evident that the intrusion process can quite well be described as
one of invasion percolation.

This conclusion supports the earlier experimental observations in two dimensions
of Ref. [118]. The result that the inflection point in the cumulative porosity gives the
percolation pressure is also in line with earlier observations (see, e.g., Ref. [119]),
and with earlier simulation results for a two-dimensional porous-medium model
[120].

To analyse the actual intrusion process in view of the common interpretation of
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Figure 4.10: Pores filled by the liquid just beyond the percolation pressure. The upper image is the
lattice-Boltzmann result and the lower one the invasion-percolation result.
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Figure 4.11: Normalised pore-size distribution of the empty part of the pore space for different
values of pressure. Dashed line is the distribution just before and dotted line just after the inflection
point in the cumulative porosity. Before that point the shape of the distribution does not change
much, but thereafter (solid lines) increasing pressure mostly removes the largest remaining pores
that remain in the distribution.

mercury-intrusion porosimetry results, by which the pore space is filled in decreas-
ing order of pore (or pore-throat) size, we determined in the lattice-Boltzmann sim-
ulation the pore-size distributions by image analysis of the filled and empty parts
of the pore space at each value of pressure. A sequence of pore-size distributions
for the empty part of the pore space is shown in Fig. 4.11. Notice that their shape re-
mains very similar even though the pressure is increased, until the inflection point
in the cumulative porosity is reached. This behaviour is very different from what
one expects on the basis of the common interpretation. It indicates that the ink-
bottle effect is significant for paper-like porous materials, and that the access func-
tion will be markedly nonlinear.

Beyond the inflection point, the pore-size distribution of the empty pore space
evolves qualitatively as expected: mainly the large-size pores gradually vanish
when the pressure is increased further. Notice, however, that there is no sharp cut-
off in the size of the removed pores. A similar analysis of the pore-throat distribu-
tions gave exactly the same result.

The significance of the ink-bottle effect can be evaluated by determining the access
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Figure 4.12: The access function for the sample of paper board as determined by lattice-Boltzmann
(continuous line) and invasion-percolation (dashed line) simulations. The dotted line is the result
in the absence of the ink-bottle effect. In the inset shown are the intrusion and extrusion curve for
this sample as determined by invasion-percolation simulation.

function X,(X,(p)), where Xy, (p) is the fraction of the pore space allowed by the
size of the entry pore throats at pressure p of the invading liquid [121]:

Xsat(p) = Xa(Xth(p))' (412)

Here X,.(p) is the saturation curve that we have determined experimentally
by mercury-intrusion porosimetry, and by the lattice-Boltzmann and invasion-
percolation simulations (corresponding to the cumulative porosities of Fig. 4.9).
The lattice-Boltzmann and invasion-percolation access functions are shown in
Fig. 4.12. The Xy,(p) curve was determined by image analysis from the tomo-
graphic reconstruction.

As anticipated, the access function significantly deviates from the dotted line,
which would be the result from equal access to all pores, i.e., without any ink-
bottle effect. Notice that the lattice-Boltzmann curve lies below the invasion-
percolation curve: the ink-bottle effect is somewhat underestimated by the
invasion-percolation analysis that cannot completely reproduce the intrusion-
extrusion process. Even then the residual saturation S, of this process is about 0.40,
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which is another indication of the significance of the ink-bottle effect in paper-like
materials.

For an additional check of the consistency of the invasion-percolation picture, we
also determined the residual saturation from the invasion-percolation extrusion
curve. With the usual assumptions of invasion percolation [121], the residual satu-
ration is given by

X (X
S, =S — / X,fh g(r)dr, (4.13)
o t

where S is the saturation at the end of intrusion, r, the corresponding minimum
pore diameter of the filled pore space, and g(r) the pore-size distribution deter-
mined from the tomographic reconstruction. If we use the lattice-Boltzmann result
for the access function, we find from this equation that .S, ~ 0.34. This is in good
agreement with the result from the invasion-percolation extrusion curve.

Our simulations show that the ink-bottle effect significantly influence the results
obtained by mercury-intrusion porosimetry. After the inflection point in the cu-
mulative porosity is reached, the intrusion process seems to be similar to what is
expected. We simulated only one sample by the lattice-Boltzmann method since
the simulation time was very long even though parallel computing was used. We
however expect our results to be valid more generally.

Combining the lattice-Boltzmann and invasion-percolation simulations with
image-analysis results, we could also show that intrusion of a non-wetting liquid
can be qualitatively described by invasion-percolation process. The access function
determined indicates that the ink-bottle effect is particularly important at least for
paper-like materials.
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5 Liquid-particle suspensions in
shear flow

5.1 Suspension rheology

Rheology is, by definition [122], a science of deformation and flow. Usually rheol-
ogy is described by a constitutive equation that gives the relationship between the
stress and deformation in the material. In its strict meaning, definition of rheology
includes everything between Hookean solids with the constitutive equation

o= Gy (5.1)
and Newtonian liquids [123] with the constitutive equation

o= Q. (5.2)

Here o is the shear stress, v the strain, 4 the shear (or strain) rate, and there is shear
only in one direction. Constants of proportionality, G and ., are the elastic modulus
and the viscosity, respectively. In practice, however, by rheology we understand
phenomena that lie in between these two extremes [122,124].

Liquid-particle suspensions exhibit a large variety of complex rheological be-
haviour [122]. If one wants to interpret rheometric measurements using the New-
tonian constitutive equation, Eq. (5.2), viscosity is no more constant but depends
on several factors such as the solid volume fraction and shear rate. Several predic-
tions for the suspension viscosity as a function of solid volume fraction ¢ exist. The
pioneering work was done by Einstein who derived the famous equation

=2 =14+25¢ (5.3)

Ho
for the relative viscosity, defined as the ratio of the viscosity of suspension to that
of pure carrier liquid [125]. This equation works well for very dilute suspensions
but fails to describe concentrated ones, as it neglects the effect of hydrodynamic in-
teractions between particles. In order to take these interactions into account, higher
order terms have been added to Eq. (5.3). Batchelor proposed the expression

tr =14 2.5¢ + 6.2¢ (5.4)

53
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for the relative viscosity [126]. Batchelor’s equation does not however predict vis-
cosity correctly for suspensions with high concentration. A simple semi-empirical
expression for the relative viscosity was introduced by Krieger and Dougherty

[127], who proposed that
—némas
Hr = (1 - e ) ) (55)

¢ma:c

where ¢, is the maximum packing fraction and [] is the so-called intrinsic vis-
cosity. Several values can be used for the maximum packing fraction. Experimental
measurements indicate that ¢,,,, varies between 0.63 and 0.71 corresponding to the
limits of low and high values of the Peclet number (ratio of the hydrodynamic force
to the Brownian force) [122]. The intrinsic viscosity is defined as

—1
1] =g§5“ p— (5.6)

For an ideal suspension with rigid and spherical particles the intrinsic viscosity is
found to be 2.5 (cf. Egs. (5.4) and (5.3)) [124]. In practice the maximum packing
fraction and intrinsic viscosity are often considered as fitting parameters.

An important complex behaviour that appears in particle suspensions is shear
thickening of highly concentrated suspensions. Shear thickening is observed as a
rise in the viscosity when the shear rate induced in the suspension is increased. For
lower solid volume fractions shear thickening in often found to be continuous, but
for high concentrations close to the jamming limit shear thickening may be even
discontinuous [128,129].

Two mechanisms have been proposed to cause shear thickening. The older one,
proposed by Hoffman, is based on the mechanism of order-disorder transition [130]
and claims that, for low shear rates, suspension flows as ordered layers of par-
ticles and shear thickening takes place when these layers start to break up lead-
ing to a more disordered state of higher flow resistance. Based on their computer
simulations with Stokesian dynamics, Brady and Bossis argued that shear thick-
ening results from formation of particle clusters [131] which act as channels for
momentum transfer through the system. Clusters, i.e. groups of particles bound
together by hydrodynamic lubrication forces, bear stress efficiently thus causing
the rise in the viscosity. The current understanding is that clustering is responsi-
ble for shear thickening. Although in some cases an order-disorder transition may
coincide with shear thickening, there is also many examples of shear thickening
occurring without an initially ordered particle configuration [128,132,133]. Recent
two-dimensional lattice-Boltzmann simulations by Raiskinmdki et al. [87] indicate
however that, for flows with a high particle Reynolds number (defined below),
clustering is not able to explain the rise in the viscosity, indicating that inertial ef-
fects also play a role in shear thickening.
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5.2 Suspension simulations with parallel computers

One of the main advantages of the lattice-Boltmann method is its suitability for par-
allel computing. The spatial locality of the updating rules, i.e. the lattice-Boltzmann
equation (Eq. (3.9)), makes parallelisation of the lattice-Boltzmann method a rela-
tively easy and straighforward task [134]. Usually one uses domain decomposi-
tion where the computational domain is divided into several subdomains. Each
processor takes care of one subdomain. Information exchange is only needed be-
tween nodes at the opposite sides of the domain boundaries. The easiest way to
do a domain decomposition is to divide the computational domain into (approx-
imately) equal-sized cuboid subdomains in one, two, or three dimensions. This
may lead to poor load balancing if the workload (in practice the fluid phase) is in-
homogeneously distributed over the lattice. If this is the case, more sophisticated
domain decomposition strategies are needed. In Ref. [135] Kandhai et al. used
the orthogonal recursive bisection method to improve the parallel performance
of lattice-Boltzmann simulations. Recently Wang and co-workers presented a cell-
based domain-decomposition method for lattice-Boltzmann simulations, which di-
vides the fluid cells evenly among the processors and thus provides an exact load
balacing [136].

Parallelisation of a lattice-Boltzmann suspension code is a more complicated task.
The main difficulty is related to the fact that particle size exceeds the lattice spac-
ing. Since forces and torques must be integrated over the whole particle surface,
the spatial locality of the lattice-Boltzmann method is lost, and parallelisation thus
becomes more complicated. A particle close to a corner of a subdomain may par-
tially be located in as many as eight different subdomains. Special care is needed
to ensure that forces and torques are correctly calculated in situations of this kind,
and that the good scaling behaviour of the lattice-Boltzmann method is not lost.

Our approach [IV, 137] to this parallelisation problem is to use a similar domain-
decomposition strategy as usually used in single-phase lattice-Boltzmann simula-
tions. Every processor calculates the fluid flow in the subdomain it controls and
the particles are attached to processors such that the control of a particle is given
to the processor that controls the subdomain where the centre point of the particle
is located. If a particle is located partly in a neighbouring subdomain, its replica
is send to the processor taking care of that subdomain. Every processor calculates
the forces acting on all particles located completely or partially in its subdomain.
After this, forces and torques of the replicas are sent to their control processors.
Each processor updates the velocities, angular velocities, and positions of the par-
icles under its control. If in the update of particle positions a particle centre point
crosses a boundary between two processors, the control of this particle is handed
over to the next processor. Notice that a similar parallelisation strategy for a lattice-
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Boltzmann suspension-flow solver has been used by Wollffe et al. in Ref [138].

5.3 Momentum transfer analysis in simplified suspen-
sions

In order to understand better shear thickening and the effect of particle clusters on
the viscosity of suspensions, we conducted simulations of systems consisting only
of one or few particles [IV]. Suspensions were confined between parallel plates and
a shear flow was achieved by moving the plates into opposite directions with equal
speeds. Periodic boundary conditions were used in the other two directions.

As we discussed in Sec. 5.1, both simulations and experiments show plausible ev-
idence that formation of particle clusters is the underlying mechanism responsi-
ble for the shear-thickening behaviour. Recent two-dimensional lattice-Boltzmann
simulations by Raiskinmé&ki show that clustering indeed occurs simultaneously
with shear thickening, but this alone is not able to explain shear thickening [139].
To this end, we studied the simplest possible suspension, i.e. a suspension consist-
ing of only one particle confined between two parallel plates. (Notice, however, the
periodic boundaries.) The system size was 50°, and a particle with a diameter of 22
lattice units was placed in the centre of the system. System was simulated until a
steady state was reached. The viscosity of the suspension was calculated from the
total shear forces acting on the plates as in viscometric measurements. Simulation
was repeated for several values of the particle Reynolds number
)
Re, = ﬁ, (5.7)
v

where d is the diameter of the particle and v is the kinematic viscosity. Reynolds
number was increased by increasing the shear rate and keeping the viscosity con-
stant. Results obtained from these simulations are shown in Fig. 5.1. A small but
clear shear thickening was seen in our simulations. When repeating simulations
by neglecting the nonlinear terms from the equilibrium distribution function (Eq.
3.43), i.e. simulating Stokes flow, no evidence of shear thickening was seen. This
indicates that some kind of inertial effect is responsible for the shear-thickening be-
haviour observed. Simultaneously with shear thickening, a change in the flow field
around the particle was observed. For small shear rates fluid flows around the par-
ticle, but when the shear rate increases, streamlines start to make an increasingly
evident U-turn in front of the particle. Simultaneously fluid speed in the gaps be-
tween the particle and the walls relatively decreases, which furthermore causes
a decrease in the (relative) angular momentum of the particle (cf. Fig. 5.1). Stress
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Figure 5.1: Single particle in shear flow. In the left panel shown is the relative shear stress as a
function of particle Reynolds number. Also shown are results for the Stokes-flow case, and the
different components of the stress in the middle plane of the system. In the right panel angular
velocity of the particle is shown as a function of particle Reynolds number. The insets illustrate the
change in the flow field as the shear rate increases.

analysis shows that shear thickening results from increased solid stress, in particu-
lar from the stress originating from the pressure part of the fluid stress tensor.

Although clustering alone does not seem to be able to explain the shear-thickening
behaviour, it however is an important mechanism not only behind shear thickening
but also in other phenomena observed in suspension flows, such as strain harden-
ing to be discussed below in more detail. An interesting form of cluster is a chain of
particles that rotates in shear flow. We studied the effect of a single artificial chain-
like cluster in shear flow [IV]. This model cluster consisted of seven spherical par-
ticles with a diameter of 14 lattice units. The size of the system was 50 x 160 x 111
lattice units (in the vorticity, flow, and gradient directions, respectively). As this
system was sheared, the cluster rotated (see Fig. 5.2). It turned from an almost hor-
izontal orientation to a vertical one where after the interparticle distances started to
grow again and the cluster broke up. It transferred stress efficiently, which can be
seen as enhanced internal stresses of the particles as well as a high shear stress of
the fluid in the regions between particles (see Figs. 5.2 and 5.3). This simple simula-
tion demonstrates the stress-transfer capability of particle clusters, which increases
the viscosity of suspension as compared to randomly positioned particles in the
fluid. The results discussed above are related to a low-Reynolds-number flow. We
also studied the effect of shear rate on the viscosity of suspension with a single ar-
tificial cluster. We found results comparable with those for the single-particle case,
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Figure 5.2: Single chain-like cluster in shear flow. In the left panel shown is the relative shear stress
with changing orientation of the cluster. In the right panel this stress is divided into parts originating
from the fluid stress and the internal stresses of the particle at the middle plane of the system.

i.e. for Stokes flow no shear thickening was observed whereas for Navier-Stokes
flow shear thickening was found. The results shown are for a cluster at an angle
with the horizontal direction of 57°.

5.4 Strain hardening in liquid-particle suspensions

Strain hardening is an interesting phenomenon observed in many rheological ma-
terials (see e.g. Refs. [140-143]). Recently strain hardening in liquid-particle sus-
pensions was studied in a detailed manner by Carreau and Cotton [144]. In strain
hardening a significant rise in the viscosity is observed when a suspension is in-
duced to shear. The prevailing belief is that this phenomenon is related to forma-
tion of particle clusters [144], but no direct evidence of such clustering has so far
been found. One interesting feature of the strain-hardening phenomenon is that it
is found even in the most simple liquid-particle suspension that consists of a New-
tonian carrier liquid and non-colloidal and non-Brownian spherical particles [144].
In strain hardening some mechanisms responsible for the increased viscosity in
concentrated suspensions come into operation. Therefore a detailed understand-
ing of the underlying mechanism for strain hardening may also help us to better
understand the issues related more generally to the increased viscosity in suspen-
sions.
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Figure 5.3: In the left panel shown is the instantaneous fluid shear stresses in the planar cross section
of the system with a single cluster in a low-Reynolds-number flow. In the right panel shown is the
relative viscosity as a function of particle Reynolds number for both Stokes and Navier-Stokes
flows.

We investigated the strain-hardening phenomenon in liquid-particle suspensions
by simulations [V]. These simulations were done in a similar plane-Couette geom-
etry that was used above for even simpler suspensions. Size of the system in our
simulations was 90 x 260 x 158 lattice units (in the vorticity, flow, and gradient di-
rections, respectively), and the suspension consisted of spherical monodispersed
particles with a diameter of 12 lattice units. Four values for the solid-volume frac-
tion were used (0.41, 0.46, 0.51, and 0.56) and the number of particles in the system
varied between 1655 and 2270, respectively.

Carreau and Cotton used a procedure they called ‘conditioning” in order to break
the particle aggregates possibly existing initially in the suspension [144]. In con-
ditioning a low-strain-amplitude oscillatory flow was imposed in the suspension.
In simulation similar initial condition can be ensured by choosing such a particle
configuration (see Fig. 5.4) in which there are no clusters.

We simulated the so-called start-up test in which shear rate was kept constant
during the shearing. Simulation parameters were chosen such that the particle
Reynolds number was Re, ~ 1.6 - 10~2. In the measurements of Carreau and Cot-
ton shear rates were significantly smaller as they varied in the interval Re, ~
10~ — 107%. We could not use such low values of Re, simply because of the re-
strictions set by the computational power available. We should however notice
that also our simulations clearly were in the creeping flow regime. The only prob-
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Figure 5.4: Initial particle configuration for a strain-hardening simulation with a solid-volume frac-
tion of 0.41.

lem related to the higher value of Re, is that in the beginning of a simulation high
gradients would arise close to the moving plates causing high shear stresses on
them. This would at least partially hide the strain-hardening phenomenon. To pre-
vent this problem and to more closely comply with the experimental conditions,
we initialised the simulations by holding the particles in their initial positions un-
til a steady state was obtained. The velocities and angular velocities were however
updated in a normal fashion. After the flow had developed, particles were released
and the actual strain-hardening simulation started. Another difference between the
experiments of Ref. [144] and our simulations was that the distance of the plates
was in the experiments 100 particle diameters whereas in our simulations this dis-
tance was only 13 particle diameters. Again, perfect match between simulations
and experiments would have made the computations intractable. Due to these dif-
ferences we cannot expect an exact reproduction of experimental data. However,
this does not prevent a qualitative comparison of the results, nor an analysis of the
microstructural mechanism behind the strain-hardening phenomenon.

In Fig. 5.5 shown are viscosities as a function of strain for the four solid-volume
fractions used. It is evident that simulations show a similar strain-hardening be-
haviour as was seen in the experiments of Ref. [144]. A rise in viscosity is observed
when the strain reaches a value of approximately 0.1. For higher particle concen-
trations strain hardening appears at somewhat smaller strains than for lower solid-
volume fractions. Also the rise in viscosity is more pronounced when the concen-
tration in higher.
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Figure 5.5: In the left panel shown is the relative viscosity as a function of strain. Highest (lowest)
curve corresponds to the case with highest (lowest) solid-volume fraction. In the right panel shown
is clustering as a function of strain.

Next we show that strain hardening results from formation of particle clusters.
To this end we need a definition for a particle cluster. We use a simple definition
where a cluster is understood as a compact group of particles where the distances
of neighbouring particles are below a threshold distance é.. In the subsequent anal-
ysis we use the value J. = 0.1. We define the clustering rate as the proportion of
particles that belong to any of the clusters. This quantity does not completely de-
scribe the effect of clustering on the viscosity of suspension. Also the size, shape,
and orientation of the clusters may affect the viscosity. The above definition of clus-
tering should, however, give a qualitative picture of the clustering process during
a start-up test.

In Fig. 5.5 shown is the clustering rate for the same simulations whose viscosities
were discussed above. The behaviour of the clustering rate was quite similar to
that of the viscosity. When the solid-volume fraction increased, clustering started
at lower values of strain. It is evident that for higher solid-volume fractions inter-
particle distances decrease, which enhances clustering.

To find direct evidence of the role of particle clusters in strain hardening we studied
momentum transfer through the suspension. The stresses that originate from the
fluid and solid phases were determined separately. In Fig. 5.6 shown is the total
viscosity and that part of the viscosity which originates from momentum transfer
through the fluid. It is clear that the fluid phase does not significantly contribute to
the enhanced momentum transfer observed in strain hardening and that the main



62 Liquid-particle suspensions in shear flow

> s
o o;
| I —

~~ 4
[
L

T
1
Relative viscosity

35F -

Relative viscosity
PR NN W
o o1 O o1 O
T
1
N w £ o1 (e} ~
T
1

[EEY
T
1
'
'
'
'
'
'
'
'
'
'
'
'
'
I
'
1

o o
o o
N_
> F
o
N_
[N
> F

EETT! RN

Strain Strain

[y
N

=
o

Relative viscosity
(o]
Relative viscosity

N
T
1
ol
T
1

0 -2 10—1 0 0 -2 1 0

Strain Strain
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Figure 5.7: Mean internal stresses of clustered (upper curve) and non-clustered particles.

reason for strain hardening must therefore be related to the internal stresses of the
particles.

We still need to show that the enhanced momentum transfer through the solid
phase is dominated by the clustered particles. To this end we calculated the internal
stresses of each particle in the suspension. This can be done by integrating the
forces acting on the particle surfaces. The averaged components of the stress tensor
of a particle are given by

1

(00 = 577 (Putis + Py} dS, 5.8)

where V is the volume of the particle and P is the external force per unit area [145].
Combining the information related to clustering and to internal stresses of par-
ticles, we can calculate the mean internal stress of clustered and non-clustered
particles. Figure 5.7 shows how these stresses behave as a function of strain. We
clearly see that the stresses in clustered particles are considerably higher than in
non-clustered ones. Thus we can conclude that formation of particle clusters in-
deed is the mechanism behind strain hardening.
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6 Conclusions

In this Thesis the behaviour of multiphase flows was studied with the lattice-
Boltzmann method. The multiphase systems considered in this work were liquid-
vapour systems in paper and liquid-particle suspensions.

The first part of the Thesis considered liquid-vapour flows in paper. High-
resolution images of paper needed for the simulations were obtained with X-ray
microtomography. We considered the behaviour of both wetting and non-wetting
liquids in paper. For a wetting liquid we simulated spontaneous imbibition of lig-
uid into the sample. Results were compared with capillary models that have been
experimentally verified for several types of porous materials including paper. Our
results were in good agreement with these models. Simulations enable investiga-
tion of imbibition at small length scales whereas experiments often measure the
dynamics at larger scales. In the present simulations penetration length was ap-
proximately one fibre length. In the case of non-wetting liquid we performed a sim-
ulation that imitated a pore-size distribution measurement by mercury-intrusion
porosimetry. When the data obtained from simulation was interpreted in an exactly
same manner as in the experimental procedure, our results were in good agreement
with those obtained from a measurement for a similar paper sample. However,
when the tomographic image was analysed by image analysis, a different result
was found. Since the simulation provided detailed information of the intrusion
process, we were able to analyse this process by image analysis. We found that the
result of mercury-intrusion porosimetry was hampered by not having equal access
to all pores in the sample until the liquid first percolated the whole sample. The
point of percolation corresponds to the inflection point in the cumulative porosity
curve.

The second multiphase system considered was a non-Brownian and non-colloidal
liquid-particle suspension induced to shear. Here our motivation was to under-
stand the role and effect of particle clusters on the formation of viscosity in this kind
of suspension. First we simulated very simple suspensions, such as that of a single
particle or single chainlike particle cluster, in shear flow. A detailed momentum-
transfer analysis was carried out so as to gain more information of the origin of
the stress inside particles. We found that even the simplest possible suspension,
namely that consisting of a single particle, exhibited shear thickening. This indi-
cated that clustering alone cannot explain the shear thickening but also some in-
ertial effects are involved. Also large suspensions consisting of thousands of par-

65



66 Conclusions

ticles were simulated. For these suspensions we studied the strain-hardening phe-
nomenon that is observed in small-strain experiments for comparable model sus-
pensions. In this phenomenon increased viscosity is observed when an initially
immobile suspension is sheared. We found that strain hardening is caused by for-
mation of particle clusters. These clusters efficiently transfer stress through the sys-
tem, which is observed as an increased viscosity.

We have seen that lattice-Boltzmann simulations can be used as an effective tool
for studying multiphase flows. These simulations are especially useful when one
wants to understand the phenomena that have their origin at mesoscopic scales,
and are thus difficult to investigate with experimental techniques. The large-scale
simulations reported in this Thesis were done using massively parallel computing.
However, the perpetually increasing computational power has made simulations
with moderately large systems possible even with personal computers. To this end
it seems that simulations are becoming a more and more important tool for studies
on multiphase flow dynamics, and that the scales accessible by lattice-Boltzmann
simulations are approaching those typical of experiments and even industrial pro-
cesses.
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